WO2020095868A1 - 有精卵雌雄鑑定装置、有精卵雌雄鑑定方法、及びプログラム - Google Patents

有精卵雌雄鑑定装置、有精卵雌雄鑑定方法、及びプログラム Download PDF

Info

Publication number
WO2020095868A1
WO2020095868A1 PCT/JP2019/043191 JP2019043191W WO2020095868A1 WO 2020095868 A1 WO2020095868 A1 WO 2020095868A1 JP 2019043191 W JP2019043191 W JP 2019043191W WO 2020095868 A1 WO2020095868 A1 WO 2020095868A1
Authority
WO
WIPO (PCT)
Prior art keywords
axis
fertilized egg
contour
angle
minor axis
Prior art date
Application number
PCT/JP2019/043191
Other languages
English (en)
French (fr)
Inventor
良輔 谷口
Original Assignee
八木 宜英
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 八木 宜英 filed Critical 八木 宜英
Priority to EP19882318.9A priority Critical patent/EP3878274A4/en
Priority to JP2020556057A priority patent/JP7320710B2/ja
Priority to US17/292,228 priority patent/US11819010B2/en
Publication of WO2020095868A1 publication Critical patent/WO2020095868A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K43/00Testing, sorting or cleaning eggs ; Conveying devices ; Pick-up devices
    • A01K43/04Grading eggs
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/02Food
    • G01N33/08Eggs, e.g. by candling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/12Edge-based segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/174Segmentation; Edge detection involving the use of two or more images
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • G06T7/62Analysis of geometric attributes of area, perimeter, diameter or volume
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B2210/00Aspects not specifically covered by any group under G01B, e.g. of wheel alignment, caliper-like sensors
    • G01B2210/54Revolving an optical measuring instrument around a body
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20112Image segmentation details
    • G06T2207/20168Radial search
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30128Food products

Definitions

  • the present invention relates to a technique for discriminating male and female fertilized eggs.
  • an oval shape such as a bulge or slender head is used as a reference.
  • a method has been proposed.
  • the appraisal by the same method has not been put to practical use, because if the shape of the egg changes depending on the parent bird or the breeding environment, the discrimination criteria for male and female itself will vary and the appraisal will be difficult.
  • the blunt end side on the long axis of the egg is called the head, and the sharp end side (the tip side) is called the tail, and the size (length dimension) on the long axis is the long diameter, and the short axis perpendicular to the long axis.
  • the size at is called the minor axis.
  • Patent Document 1 the area strain and the area strain (limit cycle) that are latent in the contour of the fertilized egg are obtained by performing a difference calculation on image data taken at angles of 0 degree and 90 degrees on the minor axis. It discloses an appraisal method that focuses on the difference in phase difference between males and females.
  • Patent Document 1 does not sufficiently disclose a specific method for substituting the present appraisal rates for the anal appraisal and the feather appraisal from the image data obtained by imaging. Therefore, it is impossible to obtain an appraisal rate equal to 95% to 98% in the current anal appraisal and feather appraisal, and there is a limit to the improvement of the appraisal rate.
  • the present invention has been made in view of such a problem, and the object thereof is, based on image data obtained by photographing the outline of an egg, at a high identification rate, and at high speed, male and female of fertilized eggs. It is to provide a technique for appraisal.
  • the fertilized egg sex determination method determines the sex of the fertilized egg contour
  • the optical axis is tilted at an angle of 45 degrees to one side and the other side on the Y-axis with respect to the Z-axis, and First and second cameras are installed so that the optical axes on the other side are on the two-dimensional plane and intersect the Y axis at the center of the fertilized egg, and the angle of the fertilized egg is changed.
  • Extract the contour based on the image data obtained by shooting calculate the minor axis from the contour, by the first camera
  • the phase difference of the minor axis which is the difference between the minor axis photographed at the angle of 0 degrees and the minor axis photographed at the angle of 90 degrees by the second camera, is calculated, and the photographing at the angle of 0 degree by the first camera,
  • a logical product of the inclinations of the minor axis obtained by the image capturing at the angle of 90 degrees by the second camera is calculated, and the sex is determined using the phase difference of the minor axis and the logical product.
  • a fertilized egg sex test apparatus is a fertilized egg sex test apparatus for determining a male and female by the contour of a fertilized egg, wherein the long axis of the fertilized egg is the X axis and the short axis is A Y-axis, an axis perpendicular to the X-axis and the Y-axis is a Z-axis, and above the two-dimensional plane defined by the X-axis and the Y-axis, on the Y-axis with respect to the Z-axis.
  • the optical axes are inclined at an angle of 45 degrees to the one side and the other side, respectively, so that the optical axis on one side and the optical axis on the other side both intersect the Y axis at the center of the fertilized egg on the two-dimensional plane.
  • the first and second cameras installed and the fertilized egg are extracted at different angles based on the image data obtained and the contour is extracted, the minor axis is calculated from the contour, and the first camera is used.
  • the phase difference of the minor axis which is the difference between the minor axis photographed at an angle of 0 degrees and the minor axis photographed at an angle of 90 degrees by the second camera, is calculated.
  • a program according to another aspect of the present invention is such that a long axis of a fertilized egg is an X axis, a short axis is a Y axis, an axis perpendicular to the X axis and the Y axis is a Z axis, and the X axis and the Above the two-dimensional plane constituted by the Y axis, the optical axes are inclined at an angle of 45 degrees to the one side and the other side on the Y axis with respect to the Z axis, and the optical axis on one side and the optical axis on the other side are inclined.
  • a program for performing sex determination wherein a computer extracts a contour based on image data obtained by photographing the fertilized egg at different angles, calculates a minor axis from the contour, and calculates the first camera. With the minor axis at an angle of 0 degree and the short axis at an angle of 90 degree by the second camera.
  • the phase difference of the minor axis which is the difference between the two, is calculated, and the logical product of the inclinations of the minor axes obtained by the photographing by the first camera at an angle of 0 degrees and the photographing by the second camera at an angle of 90 degrees is calculated. It is calculated, and it functions as a control unit that determines the sex by using the phase difference of the minor axis and the logical product.
  • the present invention it is possible to provide a technique for performing male and female identification of fertilized eggs at a high identification rate and at high speed based on image data obtained by photographing the outline of an egg.
  • FIGS. 1 (a) and 1 (b) show the difference between the contour of an egg and its contour distortion, which is the focus of the sex determination by the fertilized egg sex determination device according to the first embodiment of the present invention.
  • FIGS. 1 (c) and 1 (d) are diagrams for explaining the difference between eggs, and are diagrams showing contour distortion.
  • FIG. 2 is an analysis result of image data showing the sex determination characteristics of fertilized eggs.
  • FIG. 3 is a diagram showing the installation relationship of the cameras. 4 (a) and 4 (b) show inclination changes of the minor axis extracted from image data obtained by photographing 360 degrees to the right when viewed from the blunt end side around the long axis of the fertilized egg.
  • FIG. 5 (a) to 5 (c) are diagrams showing the difference in the minor axis of fertilized eggs.
  • FIG. 6A to FIG. 6C are diagrams showing the angular difference in the contour area of the fertilized egg.
  • FIG. 7A to FIG. 7C are diagrams showing the angular difference of the integrated value of the contour vector from the head vertex of the contour of the fertilized egg to 54 degrees.
  • FIG. 8A to FIG. 8C are diagrams showing the configuration of an imaging system which is a part of the fertilized egg sex tester.
  • 9 (a) to 9 (c) are diagrams for explaining the structure viewed on a two-dimensional plane centered on the center of the contour of the fertilized egg and the minor axis.
  • FIG. 10 (b) are diagrams showing the configuration of the control system of the fertilized egg sex test device according to the first embodiment of the present invention.
  • FIG. 11 is a flowchart illustrating a processing procedure performed by the fertilized egg sex determination device according to the first embodiment of the present invention.
  • FIG. 12 is a diagram illustrating the basic structure of a fertilized egg to be inspected.
  • FIG. 13 is a diagram for explaining the definition of the contour vector.
  • FIG. 14 is a diagram for explaining the definition of the reference contour vector.
  • FIG. 15 is a diagram illustrating the spiral structure of an egg.
  • 16 (a) to 16 (d) are views for explaining the first aspect of the sex determination by the fertilized egg sex determination device according to the second embodiment of the present invention.
  • 17 (a) to 17 (c) are diagrams for explaining the first aspect of the sex determination by the fertilized egg sex determination device according to the second embodiment of the present invention.
  • 18 (a) to 18 (d) are diagrams for explaining a second aspect of sex determination by the fertilized egg sex determination device according to the second embodiment of the present invention.
  • FIGS. 19 (a) to 19 (d) are views for explaining the second aspect of the sex determination by the fertilized egg sex determination device according to the second embodiment of the present invention.
  • 20 (a) to 20 (e) are diagrams for explaining the third aspect of the sex determination by the fertilized egg sex determination device according to the second embodiment of the present invention.
  • FIG. 21 is a diagram illustrating a fourth aspect of the sex determination by the fertilized egg sex determination device according to the second embodiment of the present invention.
  • 22 (a) to 22 (d) are diagrams showing analysis results by the fertilized egg sex test device according to the second embodiment of the present invention.
  • 23 (a) to 23 (f) are diagrams showing analysis results by the fertilized egg sex tester according to the second embodiment of the present invention.
  • FIG. 24 is a diagram for explaining a singular point.
  • FIG. 25: is a figure which shows the structure of the analysis part of the fertilized egg sex determination apparatus which concerns on 2nd Embodiment of this invention.
  • the first form of the present invention is characterized by the following, for example.
  • the inventor of the present application has paid attention to the fact that a fertilized egg has opposite rotation directions depending on its sex.
  • the three-dimensional characteristics of the outer shell of the eggs that differ between males and females can be converted into data as the three-dimensional characteristics of each male and female.
  • the fertilized egg male-female identifying device and the like since the data relating to the three-dimensional characteristics can be manifested as parameters for characterizing each male and female of the fertilized egg, An accurate appraisal can be performed based on this.
  • the fertilized egg male-female identifying device is a unit for photographing the outer surface (outer shell, contour, etc.) of a fertilized egg to be inspected at different angles.
  • it is configured to include a photographing means using a plurality of cameras and an image processing means.
  • a high-resolution CCD or CMOS image sensor or the like is adopted as the camera.
  • the outer shape (outer shell contour) of the fertilized egg is photographed with a single camera while changing the angle, or is photographed with a plurality of cameras to obtain image data three-dimensionally, and the image data is accurately measured.
  • the contour data into different contour data, the data in which the trace of the rotation as described above is actualized is obtained.
  • the difference between the outline of an egg and its outline distortion which is the focus of the sex determination by the fertilized egg sex determination device according to the first embodiment of the present invention, is the female.
  • the contour distortion is calculated from the contour data extracted from the image taken while rotating the egg 10 rightward 360 degrees in the direction indicated by the arrow in the figure around the major axis connecting the blunt end 4 and the sharp end 5.
  • FIG. 1A is an enlarged view of the contour 1 of the egg 10 and its contour distortion.
  • FIG. 1B shows the contour distortion of the contour 1 calculated from the camera output (speed change: angular velocity) obtained by intermittently photographing the egg 10 between the photographing angles of 0 to 360 degrees, and its approximate curve. ..
  • the speed curves have different patterns between males and females, which is due to the fact that the rotation directions when born from a parent bird are opposite for males and females.
  • This characteristic can be defined as a periodic function composed of relaxation vibrations at two frequencies.
  • the well-known van der Paul equation can be applied to the relaxation vibration.
  • the forced vibration can be defined as the following equation, where ⁇ is the viscosity coefficient and ⁇ is the amplitude of the vibration.
  • Van der Paul pointed out for the first time that the above-mentioned properties can be given by a mathematically simple modification in which the viscosity coefficient ⁇ depends on the amplitude ⁇ of vibration. ⁇ may be negative when the amplitude is small and positive when the amplitude is large.
  • the van der Paul equation is defined by the following equation including a dimensionlessized parameter ⁇ .
  • the temporal change of the amplitude ⁇ is a phenomenon of two different time scales. One is a part showing a slow change, and the other is a part showing an abrupt change. This characteristic phenomenon is the above-mentioned relaxation vibration.
  • the motion ⁇ (t) of the limit cycle (periodic activation included in the limit set of a certain point) can be represented by a Fourier series, and any mechanical quantity X (t) can be defined as the following equation. it can.
  • contour distortion as shown in FIGS. 1C and 1D can be expressed by the following equation.
  • FIG. 2 shows the analysis result of the image data showing the sex identification characteristics of the fertilized egg and will be explained.
  • FIG. 3 shows the position of the camera (angle with respect to the fertilized egg) for photographing the fertilized egg.
  • the egg 10 is placed on the installation table 23 with its long axis extending from the front to the back of the paper.
  • the camera 200 images the outline of the egg with a 90 degree angle difference between the right (Right) and the left (Left) positions on the short axis side of the placed egg.
  • the long axis of the fertilized egg is the X axis
  • the short axis is the Y axis
  • the axis perpendicular to the X axis and the Y axis is the Z axis
  • the optical axis is tilted at an angle of 45 degrees, and the outline of the fertilized egg is imaged at a position of one side (shooting angle 0 degree) and the other side (shooting angle 90 degrees) with an angle difference of 90 degrees.
  • the rotation direction is determined by taking the difference between the image data obtained by the respective photographing. By determining this rotation direction, sex determination can be performed.
  • Meas-No is the imaging number of the egg to be inspected
  • SEX is the verification result by the feather examination
  • IncSR0 is the tilt direction at the minor axis of the contour at a photographing angle of 0 degrees
  • IncSR90 is the minor axis of the contour at a photographing angle of 90 degrees.
  • Inclination direction PD_YRL indicates the phase difference of the minor axis
  • PD_SEAL indicates the angle difference of the area
  • PD_TRFRL indicates the angle difference of the contour
  • PD_TRARL indicates the angle difference of all the contour vectors.
  • Left indicates that the minor axis is tilted to the left
  • Right is tilted to the right
  • Lag is phase delayed
  • Lead is phase advanced.
  • FIG. 4A shows the characteristics of a female egg
  • FIG. 4B shows the characteristics of a male egg
  • the horizontal axis represents the image number
  • the vertical axis represents the tilt amount (°).
  • the right tilt is set as the start point for both male and female.
  • FIGS. 4 (a) and 4 (b) the characteristics of the inclination of the minor axis of the fertilized egg around the major axis differ between males and females. Gender identification is possible.
  • FIG. 5 (a) shows changes in the slope IncSR0 at the minor axis of the contour where the photographing angle is 0 degree, and is 0 degree to 90 degrees, 90 degrees to 180 degrees, 180 degrees to 270 degrees.
  • the area is divided at 270 degrees to 360 degrees.
  • the characteristic of a female egg is a curve F
  • the characteristic of a male egg is a curve M.
  • FIG. 5B shows the phase difference PD_YRLn of the minor axis of the female egg
  • FIG. 5B shows the phase difference PD_YRLn of the minor axis of the female egg
  • 6C shows the phase difference PD_YRLn of the minor axis of the male egg. If it is greater than 0 degrees, it is right rotation, and if it is less than 0, it is left rotation. Male and female characteristics are different in each area. Therefore, by using the phase difference of the short diameter of the fertilized egg, the sex can be identified.
  • FIG. 6 (a) shows changes in the slope IncSR0 at the minor axis of the contour where the photographing angle is 0 degree, and is 0 degree to 90 degrees, 90 degrees to 180 degrees, 180 degrees to 270 degrees.
  • the area is divided at 270 degrees to 360 degrees.
  • the characteristic of a female egg is a curve F
  • the characteristic of a male egg is a curve M.
  • FIG. 6B shows the angle difference PD_SERLn in the area of the female egg
  • FIG. 6C shows the angle difference PD_SERLn in the area of the male egg. Differences appear in the characteristics of the angle difference PD_SERLn between the male and female areas in the same phase as the minor axis phase difference. Therefore, sex can be identified by using the angle difference of the contour area of the fertilized egg.
  • FIG. 7 (a) shows the inclination change of the minor axis
  • Figs. 7 (b) and 7 (c) show the angle difference of the contour vector integrated value from the vertex of the head of the fertilized egg to a predetermined angle.
  • FIG. 7A shows a change in the slope IncSR0 at the minor axis of the contour with the photographing angle of 0 degree, which is 0 degree to 90 degrees, 90 degrees to 180 degrees, 180 degrees to 270 degrees, The area is divided at 270 degrees to 360 degrees.
  • the characteristic of a female egg is a curve F
  • the characteristic of a male egg is a curve M.
  • contour F the contour of the female egg and the male egg from an angle of 0 degree to an angle of 45 degrees, respectively.
  • contour F the contour of the contour
  • the left and right average values are obtained, and the angle difference at an angle of 90 degrees is calculated.
  • FIGS. 7A to 7C the characteristics are opposite to the phase difference of the minor axis and the angle difference of the areas described above, but there is regularity. Therefore, by using the angle difference PD_TRFRL of the contour F of the fertilized egg, the sex can be identified.
  • the three-dimensional change in the average value of the contour vector or the contour area angle difference resulting from the contour distortion obtained by photographing the contour of the fertilized egg to be inspected at different angles causes the egg A structural non-linear property is exhibited that indicates the rotation that occurs when a parent bird is born.
  • the three-dimensional characteristics of each male and female present in the outline of the fertilized egg can be converted into data, and according to the data representing this three-dimensional characteristic It is possible to determine the sex of a fertilized egg.
  • FIG. 8 shows and describes the configuration of an imaging system which is a part of the fertilized egg sex tester.
  • FIG. 8A is a schematic diagram of the imaging system
  • FIG. 8B shows the procedure for adjusting the horizontal position of the fertilized egg to be imaged
  • FIG. 8C shows the procedure for adjusting the horizontal position.
  • the structure of the photographing system includes three cameras 201, 211, 221 arranged so that photographing can be performed at different photographing angles.
  • the long axis of the fertilized egg is the X-axis
  • the short axis is the Y-axis
  • the axis perpendicular to the X-axis and the Y-axis is the Z-axis
  • the two-dimensional plane composed of the X-axis and the Y-axis and the X-axis.
  • a camera 201 center camera
  • the camera 211 (left camera), the camera so that the optical axis is inclined at an angle of 45 degrees and the optical axis on one side and the optical axis on the other side both intersect the Y axis at the center of the fertilized egg on the two-dimensional plane 221 (light camera) is installed.
  • shooting by the camera 211 (left camera) is called shooting at an angle of 0 degrees
  • shooting by the camera 221 (right camera) is called shooting at an angle of 90 degrees.
  • the mounting table 23 on which the fertilized egg 10 to be inspected is mounted is driven by a three-axis control unit 24 which is responsible for horizontal angle control, rotation angle control, and height control.
  • the fertilized egg 10 is placed on the placing table 23 with its major axis perpendicular to the paper surface.
  • the mounting table 23 has a horizontal angle and a rotation angle such that the center of the major axis (major axis) thereof coincides with the intersection of the optical axes of the three cameras 201, 211, 221 according to the posture and size of the fertilized egg.
  • And the height are controlled by the triaxial control unit 24.
  • the camera 201 is installed so that its optical axis coincides with a vertical line (Z axis perpendicular to the XY axis plane of the mounting table 23).
  • the three-axis control unit 24 controls the horizontal angle control for adjusting the XY axes (horizontal plane, two-dimensional plane) of the mounting table 23 and the orientation angle of the long axis.
  • a three-axis control unit 24 that controls the rotation angle and the height is provided.
  • the center of the egg changes along the vertical line (Z axis) from the intersection of the optical axes of the camera 211 and the camera 221, and moves upward. This change is shifted upward in the X-axis direction from the angle of 90 degrees to be photographed by the left and right cameras 211 and 221. Therefore, the three-axis control unit 24 drives and controls the mounting table 23 so that the optical axes of the left and right cameras 211 and 221 coincide with the long axis of the egg.
  • the triaxial control unit 24 may employ a servo control method.
  • the shooting operation with such a configuration is as follows. First, the egg to be inspected is placed on the placing table 23, and the long axis of the egg as seen by the camera 201 is the X-axis of the camera (horizontal and vertical scanning directions, while the horizontal direction is the X-axis here).
  • the triaxial control unit 24 servo-controls so that it is parallel to The same applies to the rotation angle CAngle.
  • the minor axis (minor axis dimension, width) of the egg is calculated based on the image data obtained by the photographing by the camera 201, and the height adjustment (Z axis adjustment) is performed so as to be a preset fixed value. ..
  • the horizontal angle is adjusted based on the image data obtained by the camera 201, and the long axis of the image data obtained by the cameras 211 and 221 is the long axis of the image data obtained by the camera 201. To match. With all adjustments made, images of the three surfaces are taken by the cameras 201, 211, 221.
  • FIG. 9A shows a straight line (segment) 14 drawn radially from the center of the egg (the intersection of the X axis and the Y axis) to the outer shell at a constant angle ⁇ in the direction of arrow A.
  • the change in length (vector change) of the line segment when moved is shown.
  • FIG. 9B shows vector changes of the contour right (upper curve) and the contour left (lower curve) when the contour of the egg is viewed from 0 to 180 degrees.
  • FIG. 9C shows a coordinate display for applying the vector change to the outline of the egg.
  • the line connecting the blunt end head top (Head top) and the sharp end tail top (Tail top) is the major axis ( LongRadial)
  • the line connecting the right vertex of the short axis (width top vertex) and left width vertex (lower top) is the short radius (ShortRadial)
  • the contour of the width right vertex is the right contour (Right Contour).
  • the contour on the left apex side is referred to as the left contour. Since there are individual differences, the center of the minor axis of the egg does not necessarily coincide with the center of the major axis (EggCenter).
  • FIG. 10 shows the configuration of the control system of the fertilized egg sex test device according to the first embodiment of the present invention, which will be described in detail.
  • the fertilized egg male-female identifying device includes three cameras 50, 51, 52 arranged so that images can be taken at different imaging angles.
  • the mounting table 70 on which the fertilized egg 10 to be inspected is mounted has three axes adjusted by a horizontal angle adjustment mechanism 64, a rotation angle control adjustment mechanism 65, and a height adjustment mechanism 66.
  • the mounting table 70 has a horizontal angle and a rotation angle so that the center of the long axis (major axis) of the fertilized egg coincides with the intersection of the optical axes of the three cameras 50, 51, and 52, depending on the posture and size of the fertilized egg. , And the height are controlled by the angle controller 60.
  • the fertilized egg sex determination device includes a control unit 53 that controls the entire operation.
  • the control unit 53 is connected to the display unit 67, the operation unit 68, and the storage unit 69. Then, the control unit 53 executes the program stored in the storage unit 69, so that the 0-degree contour generating unit 54, the 45-degree contour generating unit 55, the 90-degree contour generating unit 56, the three-sided contour synthesizing unit 57, and the analysis unit. It functions as the unit 58 and the angle command unit 59.
  • the angle command unit 59 is connected to the angle control unit 60.
  • the angle control unit 60 is connected to the horizontal adjustment mechanism 64 via the wave driver 61, the rotation driver 62 is connected to the rotation angle adjustment mechanism 65, and is connected to the height adjustment mechanism 66 via the lift driver 63. There is.
  • the control unit 53 is realized by a computer or the like.
  • the shooting system it is equipped with three cameras 50, 51, 52 arranged so that shooting can be performed at different shooting angles.
  • the long axis of the fertilized egg is the X-axis
  • the short axis is the Y-axis
  • the axis perpendicular to the X-axis and the Y-axis is the Z-axis
  • the two-dimensional plane composed of the X-axis and the Y-axis and the X-axis.
  • a camera 51 center camera
  • the optical axis is inclined at an angle of 45 degrees, and the optical axis on one side and the optical axis on the other side both intersect with the Y axis at the center of the fertilized egg on the two-dimensional plane.
  • 52 light camera
  • Shooting with the camera 50 left camera is called shooting at an angle of 0 degrees
  • shooting by the camera 51 center camera is called shooting at an angle of 45 degrees
  • shooting by the camera 52 right camera is shooting at an angle of 90 degrees. It is called shooting.
  • the image data obtained by the three cameras 50 are the control unit 53.
  • the 0-degree contour generation unit 54 the 45-degree contour generation unit 55, and the 90-degree contour generation unit 56.
  • the contour data (0-degree contour data, 45-degree contour data, and 90-degree contour data) based on the image data obtained by photographing at each of the angles of 0 degree, 45 degrees, and 90 degrees in the respective units 54, 55, and 56. Contour data; coordinate data, etc.) is generated.
  • contour data are sent to the three-sided contour synthesizing unit 57, and the three-sided contour synthesis of 0-degree contour data, 45-degree contour data, and 90-degree contour data is performed. Then, the analysis unit 58 analyzes each contour data and the combined three-plane contour data.
  • the analysis unit 58 of the control unit 53 includes an element calculation unit 58a, a minor axis inclination change calculation unit 58b, a minor diameter angle difference calculation unit 58c, a contour area angle difference calculation unit 58d, and a contour angle difference calculation unit 58e. , 58 f of all contour vector angle differences, and 58 g of appraisal parts.
  • the element calculation unit 58a calculates elements (for example, long diameter, short diameter, area, short diameter inclination, long diameter inclination, etc.) necessary for calculation in each portion.
  • the minor axis inclination change calculation unit 58b calculates the minor axis inclination change of the fertilized egg to be inspected.
  • the minor axis angle difference calculation unit 58c calculates the minor axis angle difference of the fertilized egg.
  • the contour area angle difference calculation unit 58d calculates the angle difference between the contour areas of the fertilized eggs.
  • the contour angle difference calculation unit 58e calculates the angle difference between the contours of the fertilized egg.
  • the all-contour vector angle difference calculation unit 58f calculates the angle difference between all the contour vectors.
  • the appraisal part 58g appraises the male and female of a fertilized egg using at least one of the calculation results of each part 58a thru
  • the analysis result by the analysis unit 58 is stored in the storage unit 69. Further, the display unit 57 displays the sex determination result of the fertilized egg to be inspected.
  • the angle command unit 59 sends a control signal for driving the mounting table 70 to the angle control unit 60, and the angle control unit 60 causes the wave driver 61, the rotation driver 62, and the lift driver 63. Send a control signal to.
  • the wave driver 61, the rotation driver 62, and the lift driver 63 drive the horizontal angle adjustment mechanism 64, the rotation angle control adjustment mechanism 65, and the height adjustment mechanism 66 based on the control signal.
  • the control unit 53 receives and processes the image data input from each of the cameras 50 to 52 (S1). Subsequently, the image data is sent to the 0-degree contour generation unit 54, the 45-degree contour generation unit 55, and the 90-degree contour generation unit 56 of the control unit 53, and the contour data (coordinate data on the XY plane, etc.) is stored in each unit. Is generated. This contour data is sent to the three-sided contour synthesizing unit 57, and the three-sided contour synthesis of the 0-degree contour data, the 45-degree contour data, and the 90-degree contour data is performed (S2).
  • the analysis unit 58 analyzes each contour data and the combined three-plane contour data (S3). Specifically, the element calculation unit 58a calculates the elements (for example, the contour vector, the major axis, the minor axis, the area, the minor axis inclination, the major axis inclination, and the like defined above) necessary for the calculation in each section.
  • the minor axis inclination change calculation unit 58b calculates the minor axis inclination change of the fertilized egg to be inspected.
  • the minor axis angle difference calculation unit 58c calculates the minor axis angle difference of the fertilized egg.
  • the contour area angle difference calculation unit 58d calculates the angle difference between the contour areas of the fertilized eggs.
  • the contour angle difference calculation unit 58e calculates the angle difference between the contours of the fertilized egg.
  • the all-contour vector angle difference calculation unit 58f calculates the angle difference between all the contour vectors.
  • the appraisal unit 58g appraises the male and female of the fertilized egg using at least one of the calculation results of the respective units 58a to 58f (S3). In this way, the result of the appraisal is displayed on the display unit 67 (S4), and the series of processes relating to the fertilized egg sex test is completed.
  • a fertilized egg sex determination method for determining male and female from the contour of an egg, the contour resulting from contour distortion obtained by photographing the contour of the fertilized egg to be inspected at different angles A fertilized egg sex determination method for determining sex by using the change in the shooting angle difference of the vector average value in three-dimensional space.
  • a fertilized egg sex determination method for determining male and female from the contour of an egg, the contour resulting from contour distortion obtained by photographing the contour of the fertilized egg to be inspected at different angles A fertilized egg male-female identifying method for determining male and female by using the change in the shooting angle difference of the area in three-dimensional space.
  • the contour vector average value on the surface of the fertilized egg is measured around the long axis connecting the blunt end and the sharp end of the fertilized egg.
  • the long axis connecting the blunt end and the sharp end of the fertilized egg is the X axis
  • the short axis orthogonal to the long axis is the Y axis
  • the X axis and the Y axis are orthogonal to the X-axis and the Y-axis at the intersection of
  • the contour distortion in the contour of the fertilized egg around the X-axis in the XY two-dimensional plane viewed from above the Z-axis is around the X-axis.
  • the contour distortion is at an angle ⁇ divided in advance from the intersection of the X axis and the Y axis of the fertilized egg on the XY two-dimensional plane.
  • the contour distortion is in a four quadrant of the two-dimensional plane formed by the X axis and the Y axis along the rotation of the fertilized egg around the X axis.
  • a fertilized egg sex determination method wherein a change in area in each quadrant is formed in a three-dimensional space in the Z-axis direction along with rotation about the X-axis.
  • the data for expressing the contour distortion is above the two-dimensional plane composed of the X axis and the Y axis of the fertilized egg, and the Z axis.
  • a pair of optical axes that are inclined at a preset angle ⁇ and that are positioned so that the optical axis on one side and the optical axis on the other side both intersect the Y axis at the center of the fertilized egg on the two-dimensional plane.
  • Fertilized egg sex determination method generated from image data generated from an image pickup signal from a side camera of the above.
  • the second embodiment of the present invention is characterized by the following, for example.
  • the second embodiment of the present invention will be described in detail. It should be noted that the various definitions such as the ring distortion and the hardware configuration described in the first embodiment are also applied to the present embodiment.
  • the focus of the sex determination by the fertilized egg sex determination device according to the second embodiment of the present invention that is, the difference between the contour of the egg and its contour distortion is different between the female egg ( ⁇ ) and the male egg ( ⁇ ). Since it is similar to that described above with reference to FIGS. 1A to 1D, duplicate description will be omitted.
  • the long axis of the fertilized egg is the X axis
  • the short axis is the Y axis
  • the axis perpendicular to the X axis and the Y axis is the Z axis
  • the two axes are composed of the X axis and the Y axis.
  • a center camera is installed above the dimensional plane and above the Z axis of the fertilized egg at the intersection of the X axis and the Y axis, and above the two dimensional plane, one side on the Y axis with respect to the Z axis.
  • the left and right cameras are tilted to the other side at an angle of 45 degrees so that the optical axis on one side and the optical axis on the other side both intersect the Y axis at the center of the fertilized egg on the two-dimensional plane.
  • the "inclination of minor axis" means the inclination of the minor axis on the two-dimensional plane when viewed from the optical axis direction, and the inclination on the two-dimensional plane when viewed from the optical axis direction.
  • the inclination of the minor axis and the head area strain HLMC are in phase
  • the head area strain HLMC and the tail area strain TLMC are in the opposite phase.
  • the relationship between the minor axis inclination IncSR and the tail area strain TLMC is reversed at 180 degrees. Further, when the phase difference of the minor axis was obtained, it was revealed that the phase difference was reversed at 90 degree intervals, and further the phase difference was reversed between the female egg and the male egg. Therefore, if the inclination of the minor axis and the logical product of the area strain are combined, it is possible to identify males and females in four quadrants (90 degree intervals).
  • the head area strain HLMC and the tail area strain TLMC are the right side area S_HR of the head from the minor axis, the left side area S_HL of the head from the minor axis, the right area S_TR of the tail from the minor axis, and the tail from the minor axis. It is defined as follows by the left side area S_TL.
  • the phase difference at the minor axis is defined as follows by the minor axis Ly0 obtained by photographing at an angle of 0 degree and the minor axis Ly90 obtained by photographing at an angle of 90 degrees.
  • PD_YRL Ly0-Ly90
  • the imaging system includes a plurality of cameras arranged so that imaging can be performed at different imaging angles, and the long axis of the fertilized egg is the X axis, the short axis is the Y axis, An axis perpendicular to the X-axis and the Y-axis is defined as the Z-axis, and above the two-dimensional plane formed by the X-axis and the Y-axis, an angle of 45 degrees to the Z-axis on one side and the other on the Y-axis The optical axis is tilted so that one side is photographed at an angle of 0 degrees and the other side is photographed at an angle of 90 degrees.
  • shooting by the camera 50 (left camera) is performed at an angle of 0 degree
  • shooting by the camera 51 (center camera) is performed at an angle of 45 degrees
  • camera 52 is taken.
  • Shooting with a (light camera) is at a 90 degree angle.
  • the logical product of the inclinations of the minor axis is defined as follows by the inclinations IncSR0 and IncSR90 at the minor axis obtained by photographing at an angle of 0 degree and photographing at an angle of 90 degrees.
  • AIP_SRRL and (IncSR0, IncSR90)
  • the distance at which the radiation divided from the center of the egg to be inspected at an arbitrary angle intersects with the contour line is defined as a contour vector, and the value obtained by integrating the line segments is TRA.
  • TRA the value obtained by calculating the difference between the contour vectors calculated from the image data obtained by shooting with the angle changed by 90 degrees.
  • the outline distortion is shown together with the outline of the egg. From the figure, the contour distortion converges to zero at the position Lx / 4 from the head vertex on the long axis Lx. Therefore, in the present embodiment, the contour vector at the zero contour distortion point is defined as the reference vector BLA, and the vector distortion from the head vertex to the reference point (indicated by hatching in the figure) is defined as FLMC.
  • phase difference of the reference vector is defined as follows by the reference vectors BLA0, BLA45, and BLA90 defined on the image data obtained by the imaging at the angles of 0, 45, and 90 degrees.
  • PD_BLARL BLA0-BLA90
  • PD_BLARC BLA0-BLA45
  • PD_BLARL BLA45-BLA90
  • the outline distortion is shown together with the outline of the egg.
  • the egg is slightly elliptical rather than a perfect circle.
  • the major axis of the ellipse gradually and continuously rotates from the head apex to the tail apex. This is the spiral structure of the egg.
  • the left and right contour vectors Vq at 1/4 point from the head vertex of the long axis Lx are balanced.
  • the contour distortion converges to zero as shown. From such a viewpoint, it is possible to determine the sex of the egg by taking the correlation between the vector Vq and the minor axis Ly.
  • FIG. 16 (a) shows the minor axis Ly of the female egg
  • FIG. 16 (b) shows the minor axis Ly of the male egg
  • FIG. 16 (c) shows the minor axis of the female egg obtained by a plurality of cameras.
  • Fig. 16 (d) shows the difference in the values
  • Fig. 16 (d) shows the difference in the values obtained by a plurality of cameras with the short diameter of the male egg.
  • the minor axis Ly changes slightly when the egg is photographed while rotating 360 degrees. Then, when the change (difference) is expanded, a difference appears in the characteristics between male and female.
  • FIG. 17 (a) shows the minor axis Ly0 calculated from the image data obtained by photographing a female egg at an angle of 0 degree
  • FIG. 17 (b) shows that the female egg at an angle of 90 degrees
  • the minor axis Ly90 calculated from the image data obtained by photographing is shown
  • FIG. 17C shows the phase difference PD_YRL of the minor axis.
  • FIG. 18 (a) shows the slope IncSR0 of the minor axis calculated from the image data obtained by photographing the female egg at an angle of 0 degree
  • FIG. 18 (b) shows that the angle of the female egg at an angle of 0 degree
  • 18 shows the minor axis Ly0 calculated from the image data obtained by photographing
  • FIG. 18 (c) shows the minor axis Ly90 calculated from the image data obtained by photographing the female egg at an angle of 90 degrees
  • D has shown the phase difference PD_YRL of a short diameter.
  • FIG. 19A shows the slope IncSR0 of the minor axis calculated from the image data obtained by photographing the male egg at an angle of 0 degree
  • FIG. 19B shows the male egg angle 0.
  • FIG. 19 (c) shows the minor axis Ly90 calculated from the image data obtained by photographing at an angle of 90 degrees of a male egg
  • FIG. 19D shows the phase difference PD_YRL of the minor axis.
  • the minor axis Ly0 has characteristics based on the minor axis inclination IncSR0.
  • the phase of the minor axis Ly0 is advanced 90 degrees (Ly90) and the phase difference PD_YRL is calculated, the characteristics of the male and female are in the opposite phase in any of the four quadrants. This is the same when using image data obtained by installing a plurality of cameras at 90-degree intervals. Therefore, according to the phase difference PD_YRL of this short diameter, it is possible to identify male and female fertilized eggs.
  • the phase difference PD_YRL with the minor axis of 90 degrees corresponds to the rotation direction of the spiral structure of the egg.
  • FIG. 20 (a) shows the slope IncSR0 of the minor axis calculated from the image data obtained by photographing a female egg at an angle of 0 degree
  • FIG. 20 (b) shows that at a female egg angle of 90 degrees
  • FIG. 20 (c) shows the logical product AIP_SRRL of the minor axis inclinations IncSR0 and IncSR90
  • FIG. 20 (d) shows the female egg short axis.
  • the phase difference PD_YRL of the diameter is shown
  • FIG. 20E shows the phase difference PD_YRL of the short diameter of the male egg.
  • the characteristic of the logical product AIP_SRRL can be used for the determination of male and female, like the phase difference PD_YRL of the minor axis.
  • This figure shows the minor axis extracted from the image data of 16 planes taken at 22.5 degree intervals while rotating one fertilized egg for each male and female at 360 degrees, and the measured values of the inclination of the minor axis.
  • FIGS. 22 (a) to 22 (d) and FIGS. 23 (a) to 23 (f) show measurement results according to the present embodiment, which will be described.
  • FIGS. 23 (a) to 23 (f) show a plurality of measurement results. It is the measurement result based on the image data obtained by the automatic shooting by the camera.
  • Egg-No is the egg number.
  • the first two digits such as W30 indicate the age of the week, and the smaller the number following W, the younger the age.
  • the age, measurement date, and system are as follows.
  • SEX is the sex test result of the eggs tested by feather test.
  • SGPT indicates singular point (SGS) or non-singular point (NoSG). If the case of detecting a singularity as shown in FIG. 24 and the case other than that are separated, it is possible to avoid an appraisal error due to a minute signal, and therefore, which one is set for appraisal is shown.
  • TLMC45 is the tail area distortion caused by shooting at an angle of 45 degrees.
  • IncSR0 is the inclination of the minor axis taken at an angle of 0 degrees
  • IncSR90 is the inclination of the minor axis taken at an angle of 90 degrees. Left is tilted to the left, right is tilted to the right.
  • AIP_XRC is a logical product of the distortion direction of the contour vector obtained by photographing at the photographing angle of 0 degree and the distortion direction of the contour vector obtained by photographing at the photographing angle of 45 degrees.
  • PD_BLARL is the 90-degree phase difference of the reference vector.
  • PD_TRTCL is a logical product of the integrated value of the contour vector of the tail portion from the minor axis taken by the photographing at the photographing angle of 45 degrees and the integrated value of the contour vector of the tail portion from the minor diameter taken by the photographing at the angle of 90 degrees.
  • PD_F45FB is a phase characteristic in which the contour vector distortion of the head is further divided into about 27 degrees from the balance point described above. When Forward is stronger than back, it is Lead, and when it is weak, it is Lag.
  • PD_YRL is used to accurately identify males and females regardless of whether (TLMC45, AIP_XRC) is (Left, IP) or (Left, AP). .. 22 (c) and 22 (d), in both cases of (TLMC45, PD_BLARL) of (Right, Lead) and (Right, Lag), PD_YRL can accurately identify the sex of the egg. I understand that. The result of W3617 egg identification is considered to be an error due to a flaw in the imaging mechanism.
  • PD_YRL in any case of (PD_F45FB, PD_TRTCL) is (Lead, Lead), (Lead, Lag), (Lag, Lag), (Lag, Lead) It can be seen that the male and female are properly identified. Further, in this group, regularity is found between the combination of PD_F45FB and PD_TRTCL and PD_YRL, so it is also possible to determine the sex of eggs by the combination of PD_F45FB and PD_TRTCL.
  • PD_YRL in any case of (PD_F45FB, PD_TRTCL) is (Lead, Lead), (Lead, Lag), (Lag, Lead), (Lag, Lag). It can be seen that the male and female are properly identified. This means that accurate judgment is possible in any of the four quadrants in which 360 degrees is divided into 90 degrees. It should be noted that the egg identification result of W4734 is considered to be an error due to a flaw in the imaging mechanism.
  • FIGS. 23 (a) to 23 (f) shows AIP_SRRL as AP.
  • PD_YRL is used to accurately determine sex. I understand that.
  • the decision element PD_YRL information is reversed for two eggs out of 41 eggs.
  • Information that is the opposite is determined by violating the four-quadrant reversible theorem, but the structural information up to the determination has the same complicated condition.
  • the photographic mechanism is ideal, no erroneous determination will occur. This fact arises from the fact that the male and female structure of the egg is not affected by the size and strain, and it is unlikely that the egg is transsexual. Therefore, the present application sufficiently discloses a specific method for substituting the current appraisal rates for anal and feather appraisals, and the appraisal equivalent to the current anal appraisal and feather appraisal rates of 95% to 98%. You can get a rate.
  • the configuration and operation of the fertilized egg sex test device according to the second embodiment of the present invention, which employs the viewpoint of sex test described above, are substantially the same as those of the first embodiment described above with reference to FIG. 10. is there. However, the details of the analysis unit are different from those in the first embodiment.
  • the control unit of the fertilized egg sex determination device is realized by a computer or the like.
  • FIG. 25 a detailed configuration of the analysis unit is shown and described.
  • the analysis unit 100 of the fertilized egg sex test device executes the program of the storage unit 69 to thereby calculate the element calculation unit 100a, the area strain calculation unit 100b, the short diameter phase difference calculation unit 100c, and the short diameter. It functions as the inclination calculating unit 100d, the minor axis inclination logical product calculating unit 100e, the area strain and the minor axis inclination logical product calculating unit 100f, and the appraisal unit 100g.
  • the imaging system includes a plurality of cameras arranged so that imaging can be performed at different imaging angles, and the long axis of the fertilized egg is the X axis, the short axis is the Y axis, and the X axis.
  • the Z-axis is an axis perpendicular to the Y-axis and the Y-axis, and the light is emitted at an angle of 45 degrees to one side and the other side on the Y-axis with respect to the Z-axis above the two-dimensional plane composed of the X-axis and the Y-axis.
  • the axis is tilted so that one side is photographed at an angle of 0 degrees and the other side is photographed at an angle of 90 degrees.
  • shooting by the camera 50 (left camera) is performed at an angle of 0 degree
  • shooting by the camera 51 (center camera) is performed at an angle of 45 degrees
  • camera 52 (right). The image is taken with a camera at an angle of 90 degrees.
  • the element calculation unit 100a calculates elements (for example, contour vector, minor axis, major axis, area, etc.) necessary for calculation in each section.
  • the area strain calculating unit 100b calculates the head area strain S_HR from the short diameter, the left side area S_HL of the head from the short diameter, the right area S_TR of the tail from the short diameter, and the left area S_TL of the tail from the short diameter. HLMC and tail area strain TLMC are calculated.
  • the minor axis phase difference calculation unit 100c calculates the minor axis phase difference PD_YRL from the minor axis Ly0 by the photographing at the photographing angle of 0 degrees, the minor diameter Ly45 by the photographing at the angle of 45 degrees, and the minor diameter Ly90 by the photographing at the angle of 90 degrees.
  • PD_YRC, PD_YCL are calculated.
  • the minor axis inclination calculation unit 100d calculates minor axis inclinations IncSR0, IncSR45, and IncSR90 from image data obtained by photographing at angles of 0 degrees, 45 degrees, and 90 degrees.
  • the minor axis inclination logical product calculation unit 100e calculates the logical products AIP_SRRL, AIP_SRRC, and AIP_SRCL based on the inclination of the minor axis.
  • the area strain and the minor axis inclination logical product calculating section 100f calculates the logical product of the tail area strain and the minor axis gradient by the tail area strains TLMC0, TLMC45, TLMC90 and the minor axis gradients IncSR0, IncSR45, IncSR90.
  • the appraisal unit 100g performs male and female appraisal of the fertilized egg based on at least one of the calculation results of the respective units, and outputs it.
  • the processing procedure by the fertilized egg sex test apparatus according to the second embodiment of the present invention is substantially the same as that described in the first embodiment above, but the processing of analysis (S3) is different.
  • male and female identification is performed by the above-mentioned analysis by each of the parts 100a to 100g described above.
  • (2-1) A method for determining the sex of a fertilized egg by determining the sex of the fertilized egg by a computer, the contour being extracted based on image data obtained by photographing the fertilized egg at different angles Then, a fertilized egg sex determination method in which the minor axis is calculated from the contour, the phase difference of the minor axis corresponding to imaging at each angle is calculated, and the phase difference of the minor axis is used to determine the sex.
  • FIG. 20C shows a logical product AIP_SRRL of the minor axis inclinations IncSR0 and IncSR90. Since this characteristic is the same kind of characteristic as the phase difference of the minor axis, the characteristic of the logical product can be used for male and female judgment, like the phase difference of the minor axis. From this point of view, in the present invention, it is possible to determine the sex by using the phase difference of the minor axis and the logical product.
  • the velocity curve of the egg can be obtained from the slope of the minor axis, and it matches the principle of forced vibration of the pendulum.
  • the value changes abruptly, that is, non-linearly depending on the imaging angle, but unless the change pattern is specified, automatic discrimination between male and female is impossible. Therefore, in the present invention, the primary area standard is "inclination of minor axis".
  • the strain that changes with the size of an egg that does not change phase is not a parameter that replaces the slope of the minor axis.
  • sex discrimination of eggs is realized by "logical product of inclinations of minor axis".
  • the rotation direction of the egg appears to be the same for males and females every 90 ° (4 quadrants). Therefore, a technique for automatically detecting the four quadrants is necessary for sex identification of eggs. Therefore, in the present invention, the detection is performed by the rotation speed in the tilt direction of the egg. That is, as a concrete method, it is obtained by the logical product of the inclinations of the minor axes of the eggs. It was found that the logical product takes advantage of the non-linear characteristic of the egg, and that the parameter having the anti-phase characteristic is particularly effective for the 4-quadrant detection.
  • the head area strain HLMC is in phase with the slope
  • the tail area strain TLMC is 90 degrees ahead of the minor axis slope IncSR in female eggs, and the phase in male eggs. It became clear that it would be delayed by 90 degrees. Therefore, it was revealed that male and female identification can be performed even with the tail area strain. Therefore, by taking the area strain into consideration, a more accurate male and female test can be realized.
  • the sex identification by simultaneous three-sided imaging was realized for the first time in the world. It is generally known that the size of an egg changes approximately 20% from the time when the parent bird begins to lay eggs until it becomes abandoned chicken, but this change also changes the center of the egg placed on the mounting table, and this change As a result, the position of the long axis of the egg changes on the horizontal plane and on the vertical line and affects the imaging, but in the present invention, the influence is prevented by adjusting the mounting table by the three-axis control unit.
  • the fertilized egg is non-destructive, non-contact, and has a high test rate. Since it is possible to identify female eggs, it is possible to use vaccines other than female eggs, such as female eggs and rarely indistinguishable eggs, or to turn them into food materials. This eliminates the need to dispose of the hatched male chicks, thus eliminating ethical problems. Furthermore, by targeting only female eggs, half of the hatching facilities can be used to increase the production of female chicks. In addition, by turning foods other than hens into foodstuffs, it is possible to cope with the situation of lack of protein sources worldwide.
  • a warning may be issued to foresee a measurement error and prompt adjustment or shooting cancellation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Geometry (AREA)
  • Animal Husbandry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Quality & Reliability (AREA)
  • Image Analysis (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本発明では、卵の輪郭を撮影した画像データに基づいて、高い鑑定率で、且つ高速に有精卵の雌雄鑑定を行う技術を提供する。即ち、コンピュータにより有精卵の輪郭で雌雄を判定する有精卵の雌雄鑑定方法であって、前記有精卵を、角度を変えて撮影して得た画像データに基づいて輪郭を抽出し、前記輪郭から短径を算出し、各角度での撮影に対応した前記短径の位相差を算出し、前記短径の位相差を用いて雌雄の判定を行う有精卵雌雄鑑定方法、有精卵雌雄鑑定装置、及びプログラムである。

Description

有精卵雌雄鑑定装置、有精卵雌雄鑑定方法、及びプログラム
 本発明は、有精卵の雌雄を判別する技術に関する。
 従来、鳥卵、典型的には鶏卵の有精卵(以下、単に卵とも称する)の雌雄鑑定に、頭部の膨らみや細長さなどといった卵形(卵の外殻形状)観察を基準とする手法が提案されている。しかし、同手法による鑑定は、親鳥個体や飼育環境により卵の形が変わると、雌雄の判別基準そのものがばらつき、鑑定が困難となるため、実用化には至っていない。以下では、鶏卵の長軸上で鈍端側を頭部、鋭端側(尖端側)を尾部といい、長軸上でのサイズ(長さ寸法)を長径、長軸と直行する短軸上でのサイズを短径という。
 一方、従来、有精卵を、その外形形状(外殻の輪郭)を、複数のカメラで撮影した画像に基づいて雌雄を鑑定する手法が提案されている。例えば、特許文献1では、有精卵の輪郭に潜在する面積歪と面積歪(リミットサイクル)を、短径上で0度と90度の角度で撮影した画像データを差分演算して得た位相差が雌雄で異なることに着目した鑑定手法を開示している。
特開2011-142866号公報
 しかしながら、特許文献1に開示された鑑定手法では、撮像により得られた画像データから現在の肛門鑑定や羽毛鑑定の鑑定率にとって代わるための具体的な手法を十分には開示していない。従って、現在の肛門鑑定や羽毛鑑定の鑑定率95%から98%と同等の鑑定率を得ることは不可能であり、その鑑定率の向上には限界がある。
 本発明は、このような課題に鑑みてなされたものであり、その目的とするところは、卵の輪郭を撮影した画像データに基づいて、高い鑑定率で、且つ高速に、有精卵の雌雄鑑定を行う技術を提供することにある。
 上記課題を解決するため、本発明の一つの態様に係る有精卵雌雄鑑定方法は、コンピュータにより、複数のカメラによる撮影で得られた画像データに基づいて、有精卵の輪郭で雌雄を判定する有精卵の雌雄鑑定方法であって、前記有精卵の長軸をX軸とし、短軸をY軸とし、前記X軸と前記Y軸とに垂直な軸をZ軸とし、前記X軸と前記Y軸で構成される二次元平面の上方で、前記Z軸に対して前記Y軸上の一方側と他方側にそれぞれ角度45度で光軸を傾斜させ、一方側の光軸と他方側の光軸が共に前記二次元平面上にある前記有精卵の中心で前記Y軸と交差する如く第1及び第2カメラが設置されており、前記有精卵を、角度を変えて撮影して得た画像データに基づいて輪郭を抽出し、前記輪郭から短径を算出し、前記第1カメラによる角度0度での撮影による短径と前記第2カメラによる角度90度での撮影による短径の差である前記短径の位相差を算出し、前記第1カメラによる角度0度での撮影、及び前記第2カメラによる前記角度90度での撮影により得られた短径の傾きの論理積を算出し、前記短径の位相差、及び前記論理積を用いて雌雄の判定を行う。
 本発明の他の態様による有精卵雌雄鑑定装置は、有精卵の輪郭で雌雄を判定する有精卵雌雄鑑定装置であって、前記有精卵の長軸をX軸とし、短軸をY軸とし、前記X軸と前記Y軸とに垂直な軸をZ軸とし、前記X軸と前記Y軸で構成される二次元平面の上方で、前記Z軸に対して前記Y軸上の一方側と他方側にそれぞれ角度45度で光軸を傾斜させ、一方側の光軸と他方側の光軸が共に前記二次元平面上にある有精卵の中心で前記Y軸と交差する如く設置された第1及び第2カメラと、前記有精卵を、角度を変えて撮影して得た画像データに基づいて輪郭を抽出し、前記輪郭から短径を算出し、前記第1カメラによる角度0度での撮影による短径と前記第2カメラによる角度90度での撮影による短径の差である前記短径の位相差を算出し、前記第1カメラによる角度0度での撮影、及び前記第2カメラによる角度90度での撮影により得られた短径の傾きの論理積を算出し、前記短径の位相差、及び前記論理積を用いて雌雄の判定を行う制御部と、を備える。
 本発明の他の態様によるプログラムは、有精卵の長軸をX軸とし、短軸をY軸とし、前記X軸と前記Y軸とに垂直な軸をZ軸とし、前記X軸と前記Y軸で構成される二次元平面の上方で、前記Z軸に対して前記Y軸上の一方側と他方側にそれぞれ角度45度で光軸を傾斜させ、一方側の光軸と他方側の光軸が共に前記二次元平面上にある前記有精卵の中心で前記Y軸と交差する如く配置された第1及び第2カメラによる撮影で得られた画像データに基づいて前記有精卵の雌雄判定を行うプログラムであって、コンピュータを、前記有精卵を、角度を変えて撮影して得た画像データに基づいて輪郭を抽出し、前記輪郭から短径を算出し、前記第1カメラによる角度0度での撮影による短径と前記第2カメラによる角度90度での撮影による短径の差である前記短径の位相差を算出し、前記第1カメラによる角度0度での撮影、及び前記第2カメラによる角度90度での撮影により得られた短径の傾きの論理積を算出し、前記短径の位相差、及び前記論理積を用いて雌雄の判定を行う制御部として機能させる。
 本発明によれば、卵の輪郭を撮影した画像データに基づいて、高い鑑定率で、且つ高速に、有精卵の雌雄鑑定を行う技術を提供することができる。
図1(a)、図1(b)は、本発明の第1実施形態係る有精卵雌雄鑑定装置による雌雄鑑定の着眼点である、卵の輪郭とその輪郭歪の相違が雌卵と雄卵で異なることを説明する図、図1(c)、図1(d)は輪郭歪を示す図である。 図2は、有精卵の雌雄鑑定特性を示す画像データの解析結果である。 図3は、カメラの設置関係を示す図である。 図4(a)、図4(b)は、有精卵の長軸を中心として鈍端側から見て右方向へ360度撮影して得られた画像データから取り出した短径の傾き変化を示す図である。 図5(a)乃至図5(c)は、有精卵の短径の角度差を示す図である。 図6(a)乃至図6(c)は、有精卵の輪郭面積の角度差を示す図である。 図7(a)乃至図7(c)は、有精卵の輪郭の頭部頂点から54度までの輪郭ベクトルの積算値の角度差を示す図である。 図8(a)乃至図8(c)は、有精卵雌雄鑑定装置の一部である撮影系の構成を示す図である。 図9(a)乃至図9(c)は、有精卵の輪郭の中心と短径を中心にした二次元平面でみた構造を説明する図である。 図10(a)、図10(b)は、本発明の第1実施形態に係る有精卵雌雄鑑定装置の制御系の構成を示す図である。 図11は、本発明の第1実施形態に係る有精卵雌雄鑑定装置による処理手順を説明するフローチャートである。 図12は、被検査対象となる有精卵の基本構造を説明する図である。 図13は、輪郭ベクトルについて、その定義を説明する図である。 図14は、基準輪郭ベクトルについて、その定義を説明する図である。 図15は、卵の螺旋構造について説明する図である。 図16(a)乃至図16(d)は、本発明の第2実施形態に係る有精卵雌雄鑑定装置による雌雄鑑定の第1の観点につき説明する図である。 図17(a)乃至図17(c)は、本発明の第2実施形態に係る有精卵雌雄鑑定装置による雌雄鑑定の第1の観点につき説明する図である。 図18(a)乃至図18(d)は、本発明の第2実施形態に係る有精卵雌雄鑑定装置による雌雄鑑定の第2の観点につき説明する図である。 図19(a)乃至図19(d)は、本発明の第2実施形態に係る有精卵雌雄鑑定装置による雌雄鑑定の第2の観点につき説明する図である。 図20(a)乃至図20(e)は、本発明の第2実施形態に係る有精卵雌雄鑑定装置による雌雄鑑定の第3の観点につき説明する図である。 図21は、本発明の第2実施形態に係る有精卵雌雄鑑定装置による雌雄鑑定の第4の観点につき説明する図である。 図22(a)乃至図22(d)は、本発明の第2実施形態に係る有精卵雌雄鑑定装置による解析結果を示す図である。 図23(a)乃至図23(f)は、本発明の第2実施形態に係る有精卵雌雄鑑定装置による解析結果を示す図である。 図24は、特異点について説明するための図である。 図25は、本発明の第2実施形態に係る有精卵雌雄鑑定装置の解析部の構成を示す図である。
 以下、図面を参照しつつ本発明の一実施形態について説明する。
<第1実施形態>
 本発明の第1形態は、例えば、以下を特徴としている。
(a-1) 被検査対象の有精卵の輪郭を、角度を変えて撮影して得られた輪郭歪に起因する輪郭ベクトルの平均値あるいは輪郭面積の撮影角度差の3次元変化は、卵が親鳥から回転して生まれ出ることで微細な螺旋状の潜在的形状を発現する。本願発明者は、有精卵は、その雌雄によって回転方向が逆になることに着目した。この雌雄で異なる卵の外殻の3次元的特徴は、雌雄それぞれの3次元的特徴としてデータ化することができる。本発明の第1実施形態に係る有精卵雌雄鑑定装置等によれば、この3次元的特徴に係るデータを有精卵の雌雄それぞれを特徴づけるためのパラメータとして顕在化できるので、当該パラメータに基づいて的確な鑑定を行うことができる。
(a-2) 本発明の第1実施形態に係る有精卵雌雄鑑定装置は、被検査対象である有精卵の外形表面(外殻、輪郭等)を、角度を変えて撮影する1台又は複数台のカメラを用いた撮影手段と画像処理手段を備えた構成となる。カメラとしては、高解像度のCCDあるいはCMOSイメージセンサ等を採用している。そして、有精卵の外形(外殻の輪郭)を1台のカメラで角度を変えながら撮影し、あるいは複数台のカメラで撮影し、3次元的に画像データを取得し、当該画像データを精密な輪郭データに変換することで、前述したような回転の痕跡を顕在化したデータを得ている。
 以下、本発明の第1実施形態について詳述する。
 先ずは、実験データ等を紹介しながら、本発明の第1実施形態に係る有精卵雌雄鑑定装置、有精卵雌雄鑑定方法、及びプログラムが、有精卵の雌雄鑑定に際して着眼した観点を詳細に説明する。
 図1(a)乃至図1(d)を参照して、本発明の第1実施形態係る有精卵雌雄鑑定装置による雌雄鑑定の着眼点である、卵の輪郭とその輪郭歪の相違が雌卵(♀)と雄卵(♂)で異なることを説明する。
 本実施形態では、卵10を、その鈍端4と鋭端5とを結ぶ長径周りに図中矢印で示す方向に360度右回転させながら撮影した画像から抽出した輪郭データから輪郭歪を算出する。図1(a)は、卵10の輪郭1とその輪郭歪を拡大して示したものである。図1(b)は、卵10を撮影角度0度から360度の間で間欠撮影したカメラ出力(速度変化:角速度)より算出した輪郭1の輪郭歪と、その近似曲線を示したものである。
 図1(b)に示されるように、速度曲線は、雌雄でパターンが異なり、それは親鳥から生まれ出るときの回転方向が雌雄で逆になっていることに起因している。この特性は2つの周波数による弛張振動で構成した周期関数と定義できる。尚、弛張振動については、公知のファン・デル・ポールの方程式の考え方を適用できる。
 ここで、一般に、強制振動は、粘性係数をγ、振動の振幅をθとすると、次式のように定義することができる。
Figure JPOXMLDOC01-appb-M000001
 そして、強制振動を適切に記述するには、
 ・拡大、または縮小に対する不変性を破ること
 ・γ<0でエネルギーの増大を抑えること
 ・γ<0のときにはエネルギーの損失を補うために、連続的補給できるようにすること
が求められる。
 ファン・デル・ポールは、粘性係数γを振動の振幅θに依存させるという数学的には単純な変更によって、上記のような性質を持たせられることを初めて指摘した。振幅が小さいときγは負で、大きな振幅になると正になるとすればよい。ファン・デル・ポールの方程式は、無次元化されたパラメータεを含む次式で定義される。
Figure JPOXMLDOC01-appb-M000002
 同式によれば、εが大きい場合には振幅θの時間的変化は二つの異なった時間スケールの現象となる。一方はゆっくりとした変動を示す部分で、他方は急激な変化を示す部分である。この特徴的な現象が前述した弛張振動である。そして、リミットサイクル(ある点の極限集合に含まれる周期起動)の運動θ(t)は、フーリエ級数で示すことができ、いかなる力学量X(t)をとっても次式のように定義することができる。
Figure JPOXMLDOC01-appb-M000003
 そして、速度近似式については、次式で定義される。
Figure JPOXMLDOC01-appb-M000004
 さらに、図1(c)及び図1(d)に示されるような輪郭歪は、次式で示すことができる。
Figure JPOXMLDOC01-appb-M000005
 図2には、有精卵の雌雄鑑定特性を示す画像データの解析結果を示し説明する。尚、図3は、有精卵を撮影するカメラの位置(有精卵に対する角度)を示している。
 図3に示されるように、卵10は設置台23の上にその長軸が紙面の手前から奥になるように載置される。カメラ200は、載置された卵の短軸側の右(Right)と、左(Left)の位置で90度の角度差をもって卵の輪郭を撮影する。より詳細には、有精卵の長軸をX軸、短軸をY軸、X軸とY軸とに垂直な軸をZ軸とし、Z軸に対してY軸上の一方側と他方側にそれぞれ角度45度で光軸を傾斜させ、一方側(撮影角度0度)と他方側(撮影角度90度)の位置で90度の角度差をもって有精卵の輪郭を撮影する。そして、それぞれの撮影により得られた画像データの差分をとって、回転方向を判断する。この回転方向を求めることで、雌雄鑑定が可能となる。
 図2において、Meas-Noは被検卵の撮影番号、SEXは羽毛鑑定による検証結果、IncSR0は撮影角度0度の輪郭の短径での傾斜方向、IncSR90は撮影角度90度の輪郭の短径での傾斜方向、PD_YRLは短径の位相差、PD_SEALは面積の角度差、PD_TRFRLは輪郭の角度差、PD_TRARLは全輪郭ベクトルの角度差を示している。さらに、各評定欄のLeftは短径の傾きが左方向、Rightは右方向、Lagは位相遅れ、Leadは位相進み、をそれぞれ示している。
 図2からも明らかなように、PD_TRFRLとPD_TRARLにおいて、雌雄による特性の違いを確認することができる可能性がある。尚、PD_TRARLにおいては、数カ所のエラーが見られるが、これには撮影誤差を起因しているものと考える。
 図4(a)、図4(b)には、有精卵の長軸を中心として鈍端側から見て右方向へ360度撮影して得られた画像データから取り出した短径の傾き変化を示し説明する。具体的には、図4(a)は雌卵の特性、図4(b)は雄卵の特性を示す。各図において、横軸は撮影番号、縦軸は傾き量(°)である。さらに、縦軸で、0より大きい場合は右傾斜(右傾き)、0より小さい場合は左傾斜(左傾き)である。ここでは、説明を分かり易くするために、雌雄とも右傾斜をスタートポイントに設定している。図4(a)、図4(b)より明らかなように、長軸周りの有精卵の短径の傾きの特性が雌雄で異なることから、当該傾きを算出することで、有精卵の雌雄鑑定が可能となる。
 図5(a)には短径の傾き変化、図5(b)、図5(c)には、有精卵の短径の位相を示し説明する。より具体的には、図5(a)は撮影角度が0度の輪郭の短径での傾きIncSR0の変化を示しており、0度~90度、90度~180度、180度~270度、270度~360度で領域が分けられている。雌卵の特性は曲線F、雄卵の特性は曲線Mである。図5(b)は雌卵の短径の位相差PD_YRLn、図6(c)は雄卵の短径の位相差PD_YRLnである。0度より大きい場合は右回転、0より小さい場合は左回転である。各領域で、雌雄の特性は異なる。従って、有精卵の短径の位相差を利用すれば、雌雄の鑑定ができる。
 図6(a)には短径の傾き変化、図6(b)、図6(c)には、有精卵の輪郭面積の角度差を示し説明する。より具体的には、図6(a)は撮影角度が0度の輪郭の短径での傾きIncSR0の変化を示しており、0度~90度、90度~180度、180度~270度、270度~360度で領域が分けられている。雌卵の特性は曲線F、雄卵の特性は曲線Mである。図6(b)は、雌卵の面積の角度差PD_SERLn、図6(c)は雄卵の面積の角度差PD_SERLnを示している。短径の位相差と同じ位相で、雌雄の面積の角度差PD_SERLnの特性に違いが現れている。従って、この有精卵の輪郭面積の角度差を利用すれば、雌雄の鑑定ができる。
 図7(a)には短径の傾き変化、図7(b)、図7(c)には、有精卵の輪郭の頭部頂点から所定角度までの輪郭ベクトル積算値の角度差を示し説明する。より具体的には、図7(a)は、撮影角度が0度の輪郭の短径での傾きIncSR0の変化を示し、0度~90度、90度~180度、180度~270度、270度~360度で領域が分けられている。雌卵の特性は曲線F、雄卵の特性は曲線Mである。図7(b)と図7(c)は、それぞれ雌卵、雄卵の角度0度から角度45度までの輪郭(輪郭Fという)の角度差PD_TRFRLを示している。これは、輪郭をベクトル値に変換した後、左右の平均値を求め、角度90度での角度差を算出したものである。図7(a)乃至図7(c)から明らかなように、前述した短径の位相差、面積の角度差とは特性が逆になっているが、規則性がある。従って、この有精卵の輪郭Fの角度差PD_TRFRLを利用すれば、雌雄の鑑定ができる。
 このように、検査対象の有精卵の輪郭を、角度を変えて撮影して得られた輪郭歪に起因する輪郭ベクトルの平均値、あるいは輪郭面積の角度差の3次元変化には、卵が親鳥から生まれる際に起こる回転を示す構造的非線形の特性が発現する。この非線形に基づいて雌雄の鑑定を行うことで有精卵の輪郭に存在している雌雄それぞれの3次元的特徴をデータ化することができ、この3次元的特徴を表すデータによれば、的確な有精卵の雌雄鑑定が可能となる。
 ここで、図8には、有精卵雌雄鑑定装置の一部である撮影系の構成を示し説明する。図8(a)は撮影系の模式図であり、図8(b)は撮影対象となる有精卵の水平位置調整の手順を示し、図8(c)は水平位置調整の手順を示す。
 同図に示されるように、撮影系の構成は、異なる撮影角度での撮影が可能なように配置された3台のカメラ201,211,221を備えている。有精卵の長軸をX軸、短軸をY軸、X軸とY軸とに垂直な軸をZ軸とし、X軸とY軸で構成される二次元平面の上方で且つX軸とY軸との交叉部で有精卵のZ軸の上方にカメラ201(センターカメラ)が設置されており、二次元平面の上方で、Z軸に対してY軸上の一方側と他方側にそれぞれ角度45度で光軸を傾斜させ、一方側の光軸と他方側の光軸が共に二次元平面上にある有精卵の中心でY軸と交差する如くカメラ211(レフトカメラ)、カメラ221(ライトカメラ)が設置されている。この例では、カメラ211(レフトカメラ)による撮影を角度0度での撮影といい、カメラ221(ライトカメラ)による撮影を角度90度での撮影という。
 検査対象の有精卵10が載置される載置台23は、水平角制御、回転角制御、及び高さ制御を担う3軸制御部24により駆動される。有精卵10は、長径を紙面に垂直な方向にして載置台23に載置されることになる。載置台23は、有精卵の姿勢、大きさに応じて長軸(長径)中心が3台のカメラ201,211,221の光軸の交叉点と一致するように、その水平角、回転角、及び高さが3軸制御部24で制御される。通常、カメラ201は、垂直線(載置台23のX-Y軸平面に対して垂直なZ軸)上にその光軸が一致するように設置される。
 一般に、親鳥が卵を産み始めてから廃鶏になるまで、卵のサイズは20%近く変化することが知られている。この変化によって載置台23に置かれ卵の中心も変化する。この中心の変化に伴って卵の長軸の位置が水平面上と垂直線上で変化するため、卵の輪郭が正しく撮影されなくなる。その結果、卵の回転方向を捉える角度差の精度が悪化して正確な画像データを得られなくなり、鑑定率に影響を及ぼしてしまう。
 そこで、本実施形態では、この問題を解消するために、3軸制御部24で載置台23のX-Y軸(水平面、二次元平面)を調整する水平角制御、長軸の向き角を制御する回転角制御、高さ制御を行う3軸制御部24を設けている。図8には、卵が大きくなることで当該卵の中心がカメラ211とカメラ221の光軸の交叉点から垂直線(Z軸)に沿って変化し、上方に移動する。この変化は、左右のカメラ211,221で撮影すべき角度90度からX軸方向の上方にずれる。そこで、左右のカメラ211,221の光軸が往査する点と卵の長軸を併せるように3軸制御部24が載置台23を駆動制御する。尚、3軸制御部24は、サーボ制御方式を採用してもよい。
 このような構成による撮影動作は次のようになる。先ず、被検査対象の卵を載置台23に載置し、カメラ201で見た当該卵の長軸をカメラのX軸 Horizontal(水平、垂直走査方向の一方で、ここでは水平方向をX軸とする)に平行になるように3軸制御部24がサーボ制御する。回転角度CAngleについても同様である。
 続いて、カメラ201による撮影で得た画像データに基づいて卵の短径(短軸寸法、幅)を算出し、予め設定された固定値となるように高さ調整(Z軸調整)を行う。同様に、カメラ201による撮影で得た画像データに基づいて水平角度を調整し、カメラ211,221による撮影で得られた画像データの長軸をカメラ201による撮影で得られた画像データの長軸と一致させる。全て調整された状態で、カメラ201,211,221による3面の画像撮影を行う。
 ここで、図9(a)乃至図9(c)を参照して、有精卵の輪郭の中心と短径を中心にした二次元平面でみた構造について説明する。
 図9(a)は卵の中心(X軸とY軸の交叉点)から外殻に一定角度θで輪郭(外殻)に対して放射状に引いた直線(線分)14を矢印A方向に動かしたときの当該線分の長さ変化(ベクトル変化)を示している。図9(b)は、卵の輪郭を0度から180度でみた場合の輪郭右(上側の曲線)と輪郭左(下側の曲線)のベクトル変化を示している。図9(c)は、ベクトル変化を卵の輪郭に適用するための座標表示を示している。
 図9(c)に示されるように、本実施形態では、卵の輪郭1において、鈍端である頭部頂点(Head top)と鋭端である尾部頂点(Tail top)を結ぶ線が長径(Long Radial)、短軸の右頂点である幅右頂点(Upper top)と幅左頂点(Lower top)とを結ぶ線が短径(Short Radial)、幅右頂点側の輪郭を右輪郭(Right Contour)、幅左頂点側の輪郭を左輪郭(Left Contour)と称する。なお、個体差があるので、卵の短径の中心は、長径の中心(Egg Center)とは必ずしも一致しないことは勿論である。
 以下、前述したような雌雄鑑定の視点を採用した、本発明の第1実施形態に係る有精卵雌雄鑑定装置の構成及び作用について詳細に説明する。
 図10には、本発明の第1実施形態に係る有精卵雌雄鑑定装置の制御系の構成を示し詳細に説明する。
 同図に示されるように、有精卵雌雄鑑定装置は、異なる撮影角度での撮影が可能なように配置された3台のカメラ50,51,52を備えている。検査対象の有精卵10が載置される載置台70は、水平角調整機構64、回転角制御調整機構65、及び高さ調整機構66に3軸が調整される。載置台70は、有精卵の姿勢、大きさに応じて長軸(長径)中心が3台のカメラ50,51,52の光軸の交叉点と一致するように、その水平角、回転角、及び高さが角度制御部60で制御される。
 有精卵雌雄鑑定装置は、全体の制御を司る制御部53を備える。制御部53は、表示部67、操作部68、及び記憶部69と接続されている。そして、制御部53は、記憶部69に記憶されたプログラムを実行することで、0度輪郭生成部54、45度輪郭生成部55、90度輪郭生成部56、3面輪郭合成部57、解析部58、及び角度指令部59として機能する。角度指令部59は、角度制御部60に接続されている。そして、角度制御部60は、ウェーブドライバ61を介して水平調整機構64に接続され、回転ドライバ62を回転角調整機構65に接続され、リフトドライバ63を介して高さ調整機構66に接続されている。尚、制御部53は、コンピュータ等により実現される。
 撮影系の構成については、異なる撮影角度での撮影が可能なように配置された3台のカメラ50,51,52を備えている。有精卵の長軸をX軸、短軸をY軸、X軸とY軸とに垂直な軸をZ軸とし、X軸とY軸で構成される二次元平面の上方で且つX軸とY軸との交叉部で有精卵のZ軸の上方にカメラ51(センターカメラ)が設置されており、二次元平面の上方で、Z軸に対してY軸上の一方側と他方側にそれぞれ角度45度で光軸を傾斜させ、一方側の光軸と他方側の光軸が共に二次元平面上にある有精卵の中心でY軸と交差する如くカメラ50(レフトカメラ)、カメラ52(ライトカメラ)が設置されている。カメラ50(レフトカメラ)による撮影を角度0度での撮影といい、カメラ51(センターカメラ)による撮影を角度45度での撮影といい、カメラ52(ライトカメラ)による撮影を角度90度での撮影という。
 このような構成において、3台のカメラ50(撮影角度0度)、カメラ51(撮影角度45度)、及びカメラ52(撮影角度90度)による撮像で得られた各画像データは、制御部53の0度輪郭生成部54、45度輪郭生成部55、及び90度輪郭生成部56にそれぞれ送られる。そして、各部54,55,56で、角度0度、角度45度、及び角度90度のそれぞれでの撮影で得られた画像データに基づく輪郭データ(0度輪郭データ、45度輪郭データ、及び90度輪郭データ;座標データ等)が生成される。これらの輪郭データは、3面輪郭合成部57にそれぞれ送られ、0度輪郭データ、45度輪郭データ、及び90度輪郭データの3面輪郭合成が行われる。そして、解析部58は、各輪郭データ、及び合成された3面輪郭データを解析する。
 より具体的には制御部53の、解析部58は、要素算出部58a、短径傾き変化算出部58b、短径角度差算出部58c、輪郭面積角度差算出部58d、輪郭角度差算出部58e、全輪郭ベクトル角度差算出部58f、及び鑑定部58gとして機能する。
 要素算出部58aは、各部での算出に必要となる要素(例えば、長径、短径、面積、短径傾き、長径傾き等)を算出する。短径傾き変化算出部58bは、検査対象である有精卵の短径の傾き変化を算出する。短径角度差算出部58cは、有精卵の短径の角度差を算出する。輪郭面積角度差算出部58dは、有精卵の輪郭面積の角度差を算出する。輪郭角度差算出部58eは、有精卵の輪郭の角度差を算出する。全輪郭ベクトル角度差算出部58fは、全ての輪郭ベクトルの角度差を算出する。そして、鑑定部58gは、各部58a乃至58fの算出結果の少なくともいずれかを用いて、有精卵の雌雄を鑑定し、鑑定結果を出力する。
 そして、解析部58による解析結果は、記憶部69に記憶される。さらに、表示部57には、検査対象の有精卵の雌雄鑑定結果が表示される。
 上記解析部58による解析の過程で、角度指令部59は、載置台70の駆動に係る制御信号角度制御部60に送出し、角度制御部60は、ウェーブドライバ61、回転ドライバ62、リフトドライバ63に制御信号を送出する。ウェーブドライバ61、回転ドライバ62、リフトドライバ63は、制御信号に基づいて、水平角調整機構64、回転角制御調整機構65、及び高さ調整機構66を駆動する。
 以下、図11のフローチャートを参照して、本発明の第1実施形態に係る有精卵雌雄鑑定装置による処理手順を説明する。この処理手順の少なくとも一部は、本発明の第1実施形態に係る有精卵雌雄鑑定方法にも相当する。
 処理を開始すると、制御部53は、各カメラ50乃至52からの画像データの入力を受け、処理する(S1)。続いて、画像データは制御部53の0度輪郭生成部54、45度輪郭生成部55、及び90度輪郭生成部56に送られ、各部で輪郭データ(XY平面上での座標データ等)が生成される。この輪郭データは、3面輪郭合成部57に送られ、0度輪郭データ、45度輪郭データ、及び90度輪郭データの3面輪郭合成が行われることになる(S2)。
 続いて、解析部58は、各輪郭データ、及び合成された3面輪郭データを解析する(S3)。具体的には、要素算出部58aは、各部での算出に必要となる要素(例えば、先に定義した輪郭ベクトル、長径、短径、面積、短径傾き、長径傾き等)を算出する。短径傾き変化算出部58bは、検査対象である有精卵の短径の傾き変化を算出する。短径角度差算出部58cは、有精卵の短径の角度差を算出する。輪郭面積角度差算出部58dは、有精卵の輪郭面積の角度差を算出する。輪郭角度差算出部58eは、有精卵の輪郭の角度差を算出する。全輪郭ベクトル角度差算出部58fは、全ての輪郭ベクトルの角度差を算出する。そして、鑑定部58gは、各部58a乃至58fの算出結果の少なくともいずれかを用いて、有精卵の雌雄を鑑定する(S3)。こうして、表示部67に鑑定結果を表示し(S4)、有精卵雌雄鑑定に係る一連の処理を完了する。
 以上説明したように、本発明の第1実施形態によれば、以下の技術が実現される。
(1-1) 卵の輪郭で雌雄を判定する有精卵の雌雄鑑定方法であって、被検査対象の有精卵の輪郭を、角度を変えて撮影して得た輪郭歪に起因する輪郭ベクトル平均値の撮影角度差の三次元空間での変化を用いて雌雄の判定を行う有精卵雌雄鑑定方法。
(1-2) 卵の輪郭で雌雄を判定する有精卵の雌雄鑑定方法であって、被検査対象の有精卵の輪郭を、角度を変えて撮影して得た輪郭歪に起因する輪郭面積の撮影角度差の三次元空間での変化を用いて雌雄の判定を行う有精卵雌雄鑑定方法。
(1-3) 上記(1-1)又は(1-2)において、前記有精卵の鈍端と鋭端を結ぶ長軸の周りで、前記有精卵の表面における前記輪郭ベクトル平均値と輪郭面積が雌雄で異なる方向の螺旋状を呈することを用いて雌雄の鑑定を行う有精卵雌雄鑑定方法。
(1-4) 上記(1-3)において、前記有精卵の鈍端と鋭端を結ぶ長軸をX軸、前記長軸に直交する短軸をY軸、前記X軸と前記Y軸の交差点で当該X軸とY軸に直交するX軸とし、前記Z軸上方からみたX-Y二次元平面で前記X軸周りにおける前記有精卵の輪郭における前記輪郭歪が前記X軸周りでの回転に沿って変化し、前記輪郭歪が前記被検卵の雌雄によって逆方向であることを用いて前記有精卵の雌雄鑑定を行う有精卵雌雄鑑定方法。
(1-5) 上記(1-4)において、前記輪郭歪が、前記X-Y二次元平面上で前記有精卵の前記X軸と前記Y軸の交叉点から予め分割された角度θで前記有精卵の輪郭に伸びる直線の前記二次元平面上でのベクトルデータの変化を前記X軸周りでの回転に沿って前記Z軸方向において三次元空間に形成したものである有精卵雌雄鑑定方法。
(1-6) 上記(1-3)において、前記輪郭歪は前記有精卵の前記X軸周りでの回転に沿う前記X軸と前記Y軸で形成される前記二次元平面の四象限の各象限における面積の変化を前記X軸周りでの回転に沿って前記Z軸方向において三次元空間に形成されたものである有精卵雌雄鑑定方法。
(1-7) 上記(1-3)において、前記輪郭歪を表すためのデータは、前記有精卵の前記X軸及び前記Y軸で構成される二次元平面の上方で、かつ前記Z軸上において前記X軸を光軸に一致させたカメラの撮像信号から生成する画像データと、前記Z軸に関して前記二次元平面の上方で、前記Z軸に関して前記Y軸上の一方側と他方側にあらかじめ設定された角度φで光軸を傾斜させ、一方側の光軸と他方側の光軸が共に前記二次元平面上にある前記有精卵の中心で前記Y軸と交差する如く位置した一対のサイドカメラからの撮像信号から生成する画像データとから生成される有精卵雌雄鑑定方法。
(1-8) 上記(1-1)乃至(1-7)の方法を実行する有精卵雌雄鑑定装置、プログラム、又はプログラムを記録したコンピュータ読み取り可能な記録媒体。
<第2実施形態>
 本発明の第2実施形態は、例えば、以下を特徴としている。
(b-1) 被検査対象の有精卵の外形(外殻の輪郭)を複数台のカメラで撮影し、3次元的に画像データを取得し、当該画像データを精密な輪郭データに変換し、輪郭における短径を算出し、当該短径の位相差を算出し、当該位相差により有精卵の雌雄を鑑定する。
(b-2) 被検査対象の有精卵の外形(外殻の輪郭)を複数台のカメラで撮影し、3次元的に画像データを取得し、当該画像データを精密な輪郭データに変換し、輪郭における短径の傾きを算出し、当該短径の傾きの論理積を算出し、当該論理積により有精卵の雌雄を鑑定する。
(b-3) 被検査対象の有精卵の外形(外殻の輪郭)を複数台のカメラで撮影し、3次元的に画像データを取得し、当該画像データを精密な輪郭データに変換し、輪郭における面積歪と短径の傾きを算出し、当該面積歪と短径の傾きの論理積を算出し、当該論理積により有精卵の雌雄を鑑定する。
 以下、本発明の第2実施形態について詳述する。尚、先に第1実施形態で説明した輪歪等の各種定義、ハードウェア構成等は、本実施形態においても適用される。例えば、本発明の第2実施形態係る有精卵雌雄鑑定装置による雌雄鑑定の着眼点、即ち、卵の輪郭とその輪郭歪の相違が雌卵(♀)と雄卵(♂)で異なることは、先に図1(a)乃至図1(d)で説明したのと同様であるので、重複した説明は省略する。
 先ず、図12を参照して、被検査対象となる有精卵の基本構造を説明する。
 卵の長軸を中心として右に360度回転させながら撮影すると、当該卵の長軸に対する短径の傾きが図12に示すように変化する。同図では、左に傾いた場合をLeft、右に傾いた場合をRightと表記している。例えば、前述したように、有精卵の長軸をX軸とし、短軸をY軸とし、X軸とY軸とに垂直な軸をZ軸とし、X軸とY軸で構成される二次元平面の上方で且つX軸とY軸との交叉部で有精卵のZ軸の上方にセンターカメラが設置され、二次元平面の上方で、Z軸に対してY軸上の一方側と他方側にそれぞれ角度45度で光軸を傾斜させ、一方側の光軸と他方側の光軸が共に二次元平面上にある有精卵の中心でY軸と交差する如くレフトカメラ、ライトカメラが設置される場合、「短径の傾き」とは、光軸方向から見たときの二次元平面上での短径の傾きをいい、光軸方向から見たときに二次元平面上で短径の傾きが右下がりとなる場合はRightとし、左下がりとなる場合はLeftとしている。このように短径が左右に傾くことで、当該短径の長さLyも変化し、その結果、卵の頭部と尾部の面積歪の関係が変化する。
 そして、短径の傾きと頭部面積歪HLMCは同相、頭部面積歪HLMCと尾部面積歪TLMCとは逆相の関係にある。また、短径の傾きIncSRと尾部面積歪TLMCとの関係は180度で反転する。また、短径の位相差を求めると、90度間隔で反転し、更に雌の卵と雄の卵とで位相差が逆になることが明らかとなった。従って、短径の傾きと、面積歪の論理積を組み合わせると、4象限(90度間隔)で雌雄の鑑定が可能となる。
 ここで、頭部面積歪HLMCと、尾部面積歪TLMCは、短径より頭部の右側面積S_HR、短径より頭部の左側面積S_HL、短径より尾部の右側面積S_TR、短径より尾部の左側面積S_TLにより、以下のように定義される。
  HLMC=S_HR-S_HL
  TLMC=S_TR-S_TL
 さらに、短径での位相差は、角度0度での撮影による短径Ly0、90度での撮影による短径Ly90により、以下のように定義される。
  PD_YRL=Ly0-Ly90
 ここで、この実施形態でも、撮影系は、異なる撮影角度での撮影が可能なように配置された複数のカメラを備えており、有精卵の長軸をX軸、短軸をY軸、X軸とY軸とに垂直な軸をZ軸とし、X軸とY軸で構成される二次元平面の上方で、Z軸に対してY軸上の一方側と他方側にそれぞれ角度45度で光軸を傾斜させ、一方側での撮影を角度0度での撮影とし、他方側での撮影を角度90度での撮影としている。すなわち、例えば、先に示した図10の構成で説明すると、カメラ50(レフトカメラ)による撮影が角度0度での撮影、カメラ51(センターカメラ)による撮影が角度45度での撮影、カメラ52(ライトカメラ)による撮影が角度90度での撮影となる。
 そして、短径の傾きによる論理積は、角度0度での撮影、及び90度での撮影により得た短径での傾きIncSR0、IncSR90により、以下のように定義される。
  AIP_SRRL=and(IncSR0,IncSR90)
 次に、図13を参照して、輪郭ベクトルについて、その定義を説明する。
 本実施形態では、図13に示すように、検査対象の卵の中心から任意の角度で分割した放射線が、輪郭線と交わる距離を輪郭ベクトルと定義し、その線分を積算した値をTRAと定義する。具体的には、
Figure JPOXMLDOC01-appb-M000006
となる。つまり、角度を90度変えた撮影により得た画像データより算出した輪郭ベクトルの差を求めた値がPD_TRARLとなる(PD_TRARL=TRA0-TRA90)。
 次に、図14を参照して、基準輪郭ベクトルについて、その定義を説明する。
 同図では、卵の輪郭と共に、その輪郭歪を重ねて示している。同図より、長軸Lx上の頭部頂点よりLx/4の位置では輪郭歪がゼロに収束している。そこで、本実施形態では輪郭歪ゼロ点の輪郭ベクトルを基準ベクトルBLAと定義し、頭部頂点から基準点までのベクトル歪(図中、ハッチングで示す)をFLMCと定義した。
 ここで、基準ベクトルの位相差については、角度0度、45度、90度の各撮影で得られた画像データ上で定義される基準ベクトルBLA0、BLA45、BLA90により、以下のように定義される。
  PD_BLARL=BLA0-BLA90
  PD_BLARC=BLA0-BLA45
  PD_BLARL=BLA45-BLA90
 次に、図15を参照して、卵の螺旋構造について説明する。
 同図では、卵の輪郭と共に、その輪郭歪を重ねて示している。卵を頭部頂点から観察すると、完全な真円ではなくわずかに楕円になっている。更に、その楕円の長軸は、頭部頂点から尾部頂点に向かって、漸次連続的に回転する。これが、卵の螺旋構造である。
 その一方、卵の頭部頂点を精密に検出するために、長軸Lxの頭部頂点から1/4のポイントにおける左右の輪郭ベクトルVqをバランスさせている。その結果、輪郭歪は、図示のようにゼロに収束する。このような観点から、ベクトルVqと短径Lyとの相関を取ることで卵の雌雄鑑定が可能となる。
 以下、上記定義を前提とした、本実施形態に係る有精卵雌雄鑑定装置による雌雄鑑定の観点を、実験データをふまえて詳細に説明する。
 先ず、図16(a)乃至図16(d)、及び図17(a)乃至図17(c)を参照して雌雄鑑定の第1の観点につき説明する。
 図16(a)は雌の卵の短径Lyを示し、図16(b)は雄の卵の短径Lyを示し、図16(c)は雌の卵の短径の複数カメラで得た値の差分を示し、図16(d)は雄の卵の短径の複数カメラで得た値の差分を示している。これらの図からも明らかなように、卵を360度回転させながら撮影すると短径Lyがわずかに変化する。そして、変化(差分)を拡大すると、雌雄で特性に違いが現れる。
 一方、図17(a)は、雌の卵の角度0度での撮影で得られた画像データから算出した短径Ly0を示し、図17(b)は、雌の卵の角度90度での撮影で得られた画像データから算出した短径Ly90を示し、図17(c)は、短径の位相差PD_YRLを示している。これらの図からも明らかなように、短径の差分を90度の間隔で算出すると、4象限で差の特性が逆となる。これと同様の操作を雄の卵についても行うことで、雄の卵についても4象限での特性を得ることができるが、その特性は雌雄で逆相となる。従って、当該特性を用いれば、有精卵の雌雄を鑑定することが可能となる。尚、短径の90度の位相差PD_YRLは、卵の螺旋構造の回転方向に相当するものである。
 次に、図18(a)乃至図18(d)、及び図19(a)乃至図19(d)を参照して雌雄鑑定の第2の観点につき説明する。
 図18(a)は、雌の卵の角度0度での撮影で得られた画像データから算出した短径の傾きIncSR0を示し、図18(b)は、雌の卵の角度0度での撮影で得られた画像データから算出した短径Ly0を示し、図18(c)は、雌の卵の角度90度での撮影で得られた画像データから算出した短径Ly90を示し、図18(d)は、短径の位相差PD_YRLを示している。
 同様に、図19(a)は、雄の卵の角度0度での撮影で得られた画像データから算出した短径の傾きIncSR0を示し、図19(b)は、雄の卵の角度0度での撮影で得られた画像データから算出した短径Ly0を示し、図19(c)は、雄の卵の角度90度での撮影で得られた画像データから算出した短径Ly90を示し、図19(d)は、短径の位相差PD_YRLを示している。
 これらの図で、短径Ly0は、短径の傾きIncSR0を基準とした特性となっている。短径Ly0の位相を90度進め(Ly90)、その位相差PD_YRLを算出すると、4象限のいずれにおいても、雄雌の特性は逆相になっている。これは、90度間隔で複数のカメラを設置して得られた画像データを用いる場合も同様となる。従って、この短径の位相差PD_YRLによれば、有精卵の雌雄の鑑定を行うことができる。尚、短径の角度90度の位相差PD_YRLは、卵の螺旋構造の回転方向に相当するものである。
 次に、図20(a)乃至図20(e)を参照して雌雄鑑定の第3の観点につき説明する。
 図20(a)は、雌の卵の角度0度での撮影で得られた画像データから算出した短径の傾きIncSR0を示し、図20(b)は、雌の卵の角度90度での撮影で得られた画像データから算出した短径の傾きIncSR90を示し、図20(c)は、短径の傾きIncSR0、IncSR90の論理積AIP_SRRLを示し、図20(d)は雌の卵の短径の位相差PD_YRLを示し、図20(e)は、雄の卵の短径の位相差PD_YRLを示している。
 先に図12でも説明したのと同様に、卵の長軸を中心にして右に360度回転させながら撮影すると、卵の短径の傾きが図12のように変化する。短径が左右に傾くことで長さも変化し、その結果、頭部と尾部の面積歪が変化する。そして、傾きIncSR0の位相を90度進め(IncSR)、両者の論理積AIP_SRRLを求めると、90度ごとに特性が反転することが明らかとなった。この特性は、短径の位相差PD_YRLと同種の特性となるので、短径の位相差PD_YRLと同じように、論理積AIP_SRRLの特性は、雌雄の鑑定に利用できる。
 次に、図21を参照して、雌雄鑑定の第4の観点につき説明する。
 同図は、雄雌各1個の有精卵を、360度回転させながら22.5度間隔で撮影した16面の画像データから抽出した短径と、当該短径の傾き等の測定値を一覧にまとめたものである。同図より、尾部面積歪と短径の傾きとの論理積AIP_TS0は、雌の卵と雄の卵とで特性がIP(同相)/AP(逆相)と明確に分かれているので、当該論理積は、有精卵の雌雄鑑定に利用することができることが明らかとなった。
 次に、図22(a)乃至図22(d)、及び図23(a)乃至図23(f)には、本実施形態に係る測定結果を示し説明する。
 なお、図22(a)乃至図22(d)は1台のカメラによる手動撮影により得られた画像データに基づく測定結果であり、図23(a)乃至図23(f)は、複数台のカメラによる自動撮影により得られた画像データに基づく測定結果である。
 これらの図において、Egg-Noは卵の番号である。W30等とある最初の2桁は週齢を示しており、Wに続く番号が若いほど、週齢が若いことを意味する。
 週齢と計測日、及びシステム(手動/自動)は次の通りである。
Figure JPOXMLDOC01-appb-T000007
 SEXは、羽毛鑑別で鑑定した卵の雌雄鑑定結果である。SGPTは、特異点(SGS)又は特異点以外(NoSG)の旨を示すものである。図24に示されるような特異点を検出する場合とそれ以外とを分けると、微少信号による鑑定エラーを避けることができるため、鑑定に際していずれに設定したかが示される。AIP_SRRLは、検査態様である卵の短径の傾きによる論理積(=and(IncSR0,IncSR90))である。同相の場合にはIP、逆相の場合にはAPとなる。
 TLMC45は、角度45度での撮影による尾部面積歪である。IncSR0は、角度0度での撮影による短径の傾きであり、IncSR90は角度90度での撮影による短径の傾きである。左に傾いた場合はLeft、右に傾いた場合はRightとなる。AIP_XRCとは、撮影角度0度での撮影による輪郭ベクトルの歪方向と角度45度での撮影による輪郭ベクトルの歪方向の論理積である。
 PD_BLARLは、基準ベクトルの90度位相差である。PD_TRTCLは、撮影角度45度での撮影による短径より尾部の輪郭ベクトルの積算値と角度90度での撮影による短径より尾部の輪郭ベクトルの積算値との論理積である。PD_F45FBは、前述したバランス点より頭部の輪郭ベクトル歪を更に27度前後に分けた位相特性である。Forwardがbackよりも強い時をLead、弱い時をLagとした。そして、PD_YRLは、短径の位相差(=Ly0-Ly90)である。Lagは位相遅れ、Leadは位相進み、をそれぞれ意味する。
 図22(a)、図22(b)より、(TLMC45、AIP_XRC)が(Left、IP)、(Left、AP)のいずれの場合でも、PD_YRLにより雌雄の的確な鑑定がなされていることが分かる。また、図22(c)、図22(d)より、(TLMC45、PD_BLARL)が(Right、Lead)、(Right、Lag)のいずれの場合においても、PD_YRLにより卵の雌雄の的確な鑑定がなされていることが分かる。W3617の卵の鑑定結果は、撮影機構の不備によるエラーと考えられる。
 図23(a)、図23(b)より、(PD_F45FB、PD_TRTCL)が(Lead、Lead)、(Lead、Lag)、(Lag、Lag)、(Lag、Lead)のいずれの場合においても、PD_YRLにより雌雄の的確な鑑定がなされていることが分かる。また、このグループでは、PD_F45FBとPD_TRTCLとの組み合わせとPD_YRLとの間に規則性が見られるので、PD_F45FBとPD_TRTCLの組合せにより卵の雌雄の鑑定を行うことも可能である。
 図23(c)乃至図23(f)より、(PD_F45FB、PD_TRTCL)が(Lead、Lead)、(Lead、Lag)、(Lag、Lead)、(Lag、Lag)のいずれの場合においても、PD_YRLにより雌雄の的確な鑑定がなされていることが分かる。これは、360度を90度ごとに区分した4象限のいずれにおいても的確な鑑定が可能であることを意味する。尚、W4734の卵の鑑定結果は撮影機構の不備によるエラーであると考えられる。
 そして、図22(a)乃至図22(d)はAIP_SRRLがIP、図23(a)乃至図23(f)はAIP_SRRLがAPであり、いずれの場合でも、PD_YRLにより雌雄の的確な鑑定がなされていることが分かる。
 この例では、サンプル数41個の卵のうち、2個の卵について、判定要素PD_YRLの情報が逆になっている。その逆であるとの情報は、4象限可逆の定理に反していることで判定されているが、判定に至るまでの構造的情報は複雑な条件を同じにしている。しかも、この2個の卵は撮影ミスであることが判明しているので、撮影機構が理想的であれば判定ミスは発生しない。この事実は、卵の雌雄構造が大きさや歪みの大きさに左右されないことから生じており、卵が性転換していることも考えにくい。従って、現在の肛門鑑定や羽毛鑑定の鑑定率にとって代わるための具体的な手法を本願は十分には開示しており、現在の肛門鑑定や羽毛鑑定の鑑定率95%から98%と同等の鑑定率を得ることができる。
 以上説明したような雌雄鑑定の視点を採用した、本発明の第2実施形態に係る有精卵雌雄鑑定装置の構成、作用については、先に図10で説明した第1実施形態と略同様である。但し、解析部の詳細が第1実施形態とは異なる。有精卵雌雄鑑定装置の制御部はコンピュータ等により実現される。
 そこで、図25には、解析部の詳細な構成を示し説明する。
 第2実施形態に係る有精卵雌雄鑑定装置の解析部100は、記憶部69のプログラムを実行することで、要素算出部100a、面積歪算出部100b、短径位相差算出部100c、短径傾き算出部100d、短径傾き論理積算出部100e、面積歪と短径傾き論理積算出部100f、及び鑑定部100gとして機能する。
 この実施形態においても、撮影系は、異なる撮影角度での撮影が可能なように配置された複数のカメラを備えており、有精卵の長軸をX軸、短軸をY軸、X軸とY軸とに垂直な軸をZ軸とし、X軸とY軸で構成される二次元平面の上方で、Z軸に対してY軸上の一方側と他方側にそれぞれ角度45度で光軸を傾斜させ、一方側での撮影を角度0度での撮影とし、他方側での撮影を角度90度での撮影としている。例えば、先に示した図10の構成で説明すると、カメラ50(レフトカメラ)による撮影が角度0度での撮影、カメラ51(センターカメラ)による撮影が角度45度での撮影、カメラ52(ライトカメラ)による撮影が角度90度での撮影となる。
 より詳細には、要素算出部100aは、各部での演算に必要となる要素(例えば、輪郭ベクトル、短径、長径、面積等)を算出する。面積歪算出部100bは、短径より頭部の右側面積S_HR、短径より頭部の左側面積S_HL、短径より尾部の右側面積S_TR、短径より尾部の左側面積S_TLにより、頭部面積歪HLMCと尾部面積歪TLMCを算出する。短径位相差算出部100cは、撮影角度0度での撮影による短径Ly0、角度45度での撮影による短径Ly45、角度90度での撮影による短径Ly90により、短径の位相差PD_YRL、PD_YRC、PD_YCLを算出する。短径傾き算出部100dは、角度0度、45度、及び90度の撮影により得た画像データより短径の傾きIncSR0、IncSR45、IncSR90を算出する。短径傾き論理積算出部100eは、短径の傾きによる論理積AIP_SRRL、AIP_SRRC、AIP_SRCLを算出する。面積歪と短径傾き論理積算出部100fは、尾部面積歪と短径の傾きとの論理積を、尾部面積歪TLMC0、TLMC45、TLMC90と短径の傾きIncSR0、IncSR45、IncSR90により算出する。そして、鑑定部100gは、各部の算出結果の少なくともいずれかに基づいて、有精卵の雌雄鑑定を行い出力する。
 本発明の第2実施形態に係る有精卵雌雄鑑定装置による処理手順は先に第1実施形態で説明したのと略同様であるが、解析(S3)の処理が異なる。この解析の処理では、前述した各部100a乃至100gによる上記解析により雌雄鑑定を行う。
 本発明の第2実施形態によれば、以下の技術が実現される。
(2-1)コンピュータにより有精卵の輪郭で雌雄を判定する有精卵の雌雄鑑定方法であって、前記有精卵を角度を変えて撮影して得た画像データに基づいて輪郭を抽出し、前記輪郭から短径を算出し、各角度での撮影に対応した前記短径の位相差を算出し、前記短径の位相差を用いて雌雄の判定を行う有精卵雌雄鑑定方法。
(2-2)上記(2-1)の前記雌雄の判定においては、前記画像データに基づいて輪郭を抽出し、前記輪郭から短径の傾きを算出し、各角度での撮影に対応した前記短径の傾きの関係を更に用いる有精卵雌雄鑑定方法。
(2-3)上記(2-1)、(2-2)の前記雌雄の判定においては、前記画像データに基づいて輪郭を抽出し、前記輪郭から面積歪と短径の傾きを算出し、前記面積歪と前記短径の傾きの関係を更に用いる有精卵雌雄鑑定方法。
(2-4) 上記(2-1)乃至(2-3)の方法を実行する有精卵雌雄鑑定装置、プログラム、又はプログラムを記録したコンピュータ読み取り可能な記録媒体。
 以上詳述したように、卵の長軸を中心にして右に360度回転させながら撮影すると卵の短径の傾きが、先に図12に示したように変化する。本発明では、前述したように、左に傾いた場合はLeft、右に傾いたときはRightと定義している。短径が左右に傾くことで長さも変化し、その結果、頭部と尾部の面積歪が変化する。そして、傾き0度の位相を90度進め、両者の論理積を求めると、90度ごとに特性が反転することが明らかとなった。例えば、図20(c)は、短径の傾きIncSR0とIncSR90の論理積AIP_SRRLを示している。この特性は、短径の位相差と同種の特性となるので、短径の位相差と同じように、論理積の特性は雌雄鑑定に利用できる。かかる観点から、本発明では、短径の位相差、及び前記論理積を用いて雌雄の判定を行うことを可能とした。
 さらに、卵の速度曲線は短径の傾きで求めることができ、且つ振り子の強制振動の原理と一致している。撮影角度により、その値は急激に、即ち非線形に変化するが、その変化パターンを特定しない限り、雌雄の自動鑑別は不可能である。そこで、本発明では、1次領域基準を「短径の傾き」としている。位相変化の起こらない卵の大きさで変化する歪みは、短径の傾きに代わるパラメータではない。そして、本願発明では「短径の傾きの論理積」により卵の雌雄鑑別を実現している。
 また、卵の回転方向は90°毎(4象限)に雌雄で逆に見える。したがって、4象限を自動的に検知する技術が卵の雌雄鑑別には必要となる。そこで、本発明では、その検知を卵の傾き方向による回転速度により行っている。すなわち、具体的な手法としては、卵の短径の傾きの論理積により求めている。論理積は、卵の非線形特性を活用しており、特に逆相特性を持つパラメータも4象限検知には有効であることが分かった。
 さらに、卵の傾きIncSRを基準にすると頭部面積歪みHLMCは傾きと位相が一致し、尾部面積歪みTLMCは雌の卵では短径の傾きIncSRより位相が90度進み、オスの卵では位相が90度遅れることが明らかとなった。従って、尾部面積歪でも雌雄鑑定ができることが明らかとなった。従って、面積歪を加味することで、より一層、精度の高い雌雄鑑定が実現されるのである。
 また、本願発明では、世界で初めて3面同時撮影による雌雄鑑定を実現したことを明確にしたものである。一般に、親鳥が卵を産み始めてから廃鶏になるまでに卵のサイズは20%近く変化することが知られているが、この変化によって載置台に置かれた卵の中心も変化し、この変化に伴って卵の長軸の位置が水平面上と垂直線上で変化し撮影に影響するが、本願発明では、3軸制御部による載置台の調整により、当該影響が及ぶのを防止している。
 したがって、本発明の第1及び第2実施形態に係る有精卵雌雄鑑定装置、有精卵雌雄鑑定方法、及びプログラムによれば、有精卵を、非破壊、非接触、且つ高い鑑定率で雌卵を鑑定することができるために、雌卵や希に混在する鑑別不能卵などの雌卵以外をワクチン製造、あるいは食材に回すことができる。これにより、孵化した雄雛の処分は不要となるので、倫理的な問題も解消できる。さらに、雌卵のみを孵化対象とすることで孵化設備の半数は雌雛の増産に使うことができる。また、雌卵以外を食材に回すことで、世界的な蛋白源不足の事態にも対応できる。
 以上、本発明の第1及び第2実施形態について説明したが、本発明はこれに限定されることなくその趣旨を逸脱しない範囲で種々の改良・変更が可能であることは勿論である。
 例えば、測定の過程で得られる卵の長軸の傾きが所定値以上である場合には、測定エラーを予見し、調整又は撮影の中止を促すような警告を行ってもよい。
 50,51,52…カメラ、53…制御部、54…0度輪郭生成部、55…45度輪郭生成部、56…90度輪郭生成部、57…3面輪郭合成部、58…解析部、59…角度指令部、60…角度制御部、61…ウェーブドライバ、62…回転ドライバ、63…リフトドライバ、64…水平角調整機構、65…回転角制御調整機構、66…高さ調整機構、67…表示部、68…操作部、69…記憶部、70…載置台。

Claims (7)

  1.  コンピュータにより、複数のカメラによる撮影で得られた画像データに基づいて、有精卵の輪郭で雌雄を判定する有精卵の雌雄鑑定方法であって、
     前記有精卵の長軸をX軸とし、短軸をY軸とし、前記X軸と前記Y軸とに垂直な軸をZ軸とし、前記X軸と前記Y軸で構成される二次元平面の上方で、前記Z軸に対して前記Y軸上の一方側と他方側にそれぞれ角度45度で光軸を傾斜させ、一方側の光軸と他方側の光軸が共に前記二次元平面上にある前記有精卵の中心で前記Y軸と交差する如く第1及び第2カメラが設置されており、
     前記有精卵を、角度を変えて撮影して得た画像データに基づいて輪郭を抽出し、前記輪郭から短径を算出し、前記第1カメラによる角度0度での撮影による短径と前記第2カメラによる角度90度での撮影による短径の差である前記短径の位相差を算出し、前記第1カメラによる角度0度での撮影、及び前記第2カメラによる前記角度90度での撮影により得られた短径の傾きの論理積を算出し、前記短径の位相差、及び前記論理積を用いて雌雄の判定を行う
     有精卵雌雄鑑定方法。
  2.  前記雌雄の判定においては、前記輪郭から前記短径を境にし、前記短径よりも頭部の右側面積と短径より頭部の左側面積の差である頭部面積歪と、前記短径より尾部の右側面積と短径より尾部の左側面積の差である尾部面積歪を算出し、前記頭部面積歪及び前記尾部面積と前記短径の傾きの関係を更に用いる
     請求項1に記載の有精卵雌雄鑑定方法。
  3.  有精卵の輪郭で雌雄を判定する有精卵雌雄鑑定装置であって、
     前記有精卵の長軸をX軸とし、短軸をY軸とし、前記X軸と前記Y軸とに垂直な軸をZ軸とし、前記X軸と前記Y軸で構成される二次元平面の上方で、前記Z軸に対して前記Y軸上の一方側と他方側にそれぞれ角度45度で光軸を傾斜させ、一方側の光軸と他方側の光軸が共に前記二次元平面上にある有精卵の中心で前記Y軸と交差する如く設置された第1及び第2カメラと、
     前記有精卵を、角度を変えて撮影して得た画像データに基づいて輪郭を抽出し、前記輪郭から短径を算出し、前記第1カメラによる角度0度での撮影による短径と前記第2カメラによる角度90度での撮影による短径の差である前記短径の位相差を算出し、前記第1カメラによる角度0度での撮影、及び前記第2カメラによる角度90度での撮影により得られた短径の傾きの論理積を算出し、前記短径の位相差、及び前記論理積を用いて雌雄の判定を行う制御部と、を備えた
     有精卵雌雄鑑定装置。
  4.  前記制御部は、前記雌雄の判定において、前記輪郭から前記短径を境にし、前記短径よりも頭部の右側面積と短径より頭部の左側面積の差である頭部面積歪と、前記短径より尾部の右側面積と短径より尾部の左側面積の差である尾部面積歪を算出し、前記頭部面積歪及び前記尾部面積と前記短径の傾きの関係を更に用いる
     請求項3に記載の有精卵雌雄鑑定装置。
  5.  前記X軸と前記Y軸で構成される前記二次元平面の上方で且つ前記X軸と前記Y軸との交叉部で前記有精卵の前記Z軸の上方に配置された第3カメラと、
     水平角制御、回転角制御、及び高さ制御が可能な載置台と、
     前記水平角制御、回転角制御、及び高さ制御を行う3軸制御部と、を備え、
     前記有精卵は前記載置台に置かれ、
     前記3制御部は、前記第3カメラで見た前記有精卵の長軸を前記X軸に平行となるようにサーボ制御し、前記有精卵の前記短径が予め設定された固定値となるように高さ制御を行い、前記第1カメラ及び前記第2カメラの光軸が往査する点と前記有精卵の長軸を合わせるように前記載置台を駆動制御し、前記第1乃至第3カメラによる3面画像撮影を行う
     請求項3に記載の有精卵鑑定装置。
  6.  有精卵の長軸をX軸とし、短軸をY軸とし、前記X軸と前記Y軸とに垂直な軸をZ軸とし、前記X軸と前記Y軸で構成される二次元平面の上方で、前記Z軸に対して前記Y軸上の一方側と他方側にそれぞれ角度45度で光軸を傾斜させ、一方側の光軸と他方側の光軸が共に前記二次元平面上にある前記有精卵の中心で前記Y軸と交差する如く配置された第1及び第2カメラによる撮影で得られた画像データに基づいて前記有精卵の雌雄判定を行うプログラムであって、
     コンピュータを、
     前記有精卵を、角度を変えて撮影して得た画像データに基づいて輪郭を抽出し、前記輪郭から短径を算出し、前記第1カメラによる角度0度での撮影による短径と前記第2カメラによる角度90度での撮影による短径の差である前記短径の位相差を算出し、前記第1カメラによる角度0度での撮影、及び前記第2カメラによる角度90度での撮影により得られた短径の傾きの論理積を算出し、前記短径の位相差、及び前記論理積を用いて雌雄の判定を行う制御部として機能させる
     プログラム。
  7.  前記制御部は、前記雌雄の判定において、前記輪郭から前記短径を境にし、前記短径よりも頭部の右側面積と短径より頭部の左側面積の差である頭部面積歪と、前記短径より尾部の右側面積と短径より尾部の左側面積の差である尾部面積歪を算出し、前記頭部面積歪及び前記尾部面積と前記短径の傾きの関係を更に用いる
     請求項6に記載のプログラム。
PCT/JP2019/043191 2018-11-07 2019-11-05 有精卵雌雄鑑定装置、有精卵雌雄鑑定方法、及びプログラム WO2020095868A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19882318.9A EP3878274A4 (en) 2018-11-07 2019-11-05 FERTILIZED EGGS SEX IDENTIFICATION DEVICE, FERTILIZED EGGS SEX IDENTIFICATION METHOD AND PROGRAM
JP2020556057A JP7320710B2 (ja) 2018-11-07 2019-11-05 有精卵雌雄鑑定装置、有精卵雌雄鑑定方法、及びプログラム
US17/292,228 US11819010B2 (en) 2018-11-07 2019-11-05 Sex identification device for fertilized eggs, sex identification method for fertilized eggs, and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP2018/041388 WO2020095394A1 (ja) 2018-11-07 2018-11-07 有精卵雌雄鑑定装置、有精卵雌雄鑑定方法、及びプログラム
JPPCT/JP2018/041388 2018-11-07

Publications (1)

Publication Number Publication Date
WO2020095868A1 true WO2020095868A1 (ja) 2020-05-14

Family

ID=70611893

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2018/041388 WO2020095394A1 (ja) 2018-11-07 2018-11-07 有精卵雌雄鑑定装置、有精卵雌雄鑑定方法、及びプログラム
PCT/JP2019/043191 WO2020095868A1 (ja) 2018-11-07 2019-11-05 有精卵雌雄鑑定装置、有精卵雌雄鑑定方法、及びプログラム

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/041388 WO2020095394A1 (ja) 2018-11-07 2018-11-07 有精卵雌雄鑑定装置、有精卵雌雄鑑定方法、及びプログラム

Country Status (4)

Country Link
US (1) US11819010B2 (ja)
EP (1) EP3878274A4 (ja)
JP (2) JPWO2020095394A1 (ja)
WO (2) WO2020095394A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003274791A (ja) * 2002-03-27 2003-09-30 Horiuchi:Kk 有精卵の雌雄鑑別技術
US20040040515A1 (en) * 2002-08-30 2004-03-04 Kabusiki Kaisya Horiuchi Method and apparatus for determining the sex of a fertilized egg
JP2005087123A (ja) * 2003-09-18 2005-04-07 Towa Sangyo Kk 卵の水平設置装置及びそれを利用した有精卵の雌雄鑑別装置
JP2011142866A (ja) 2010-01-15 2011-07-28 Ryosuke Taniguchi 輪郭による有精卵の雌雄識別法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6029080A (en) * 1997-07-09 2000-02-22 Reynnells; Richard D. Method and apparatus for avian pre-hatch sex determination
JP2010038897A (ja) * 2008-07-07 2010-02-18 Ryosuke Taniguchi 卵の立体歪み計測法
CN102803952A (zh) * 2009-06-25 2012-11-28 耶路撒冷希伯来大学伊萨姆研发有限公司 卵能育性和性别的高光谱识别
EP2336751B1 (de) * 2009-12-16 2014-09-10 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Bestimmung des Geschlechts an Vogeleiern
DE102010006161B3 (de) * 2010-01-21 2011-01-13 Technische Universität Dresden Verfahren und Vorrichtung zur Bestimmung des Geschlechtes von befruchteten und nicht bebrüteten Vogeleiern
US8908945B2 (en) * 2012-10-22 2014-12-09 General Electric Company Biological unit identification based on supervised shape ranking
EP4345769A3 (en) * 2015-02-17 2024-05-29 Matrixspec Solutions Inc. Systems, devices, and methods for detecting fertility and gender of unhatched eggs
JP2019058073A (ja) * 2017-09-25 2019-04-18 オリンパス株式会社 画像処理装置、細胞認識装置、細胞認識方法および細胞認識プログラム
WO2021111420A1 (en) * 2019-12-05 2021-06-10 The State Of Israel, Ministry Of Agriculture & Rural Development Agricultural Research Organization Systems and methods for chicks sexing and health assessment of newly-hatched chicks
US11703457B2 (en) * 2020-12-29 2023-07-18 Industrial Technology Research Institute Structure diagnosis system and structure diagnosis method
US20230088338A1 (en) * 2021-09-10 2023-03-23 Illumina, Inc. Sequencer focus quality metrics and focus tracking for periodically patterned surfaces

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003274791A (ja) * 2002-03-27 2003-09-30 Horiuchi:Kk 有精卵の雌雄鑑別技術
US20040040515A1 (en) * 2002-08-30 2004-03-04 Kabusiki Kaisya Horiuchi Method and apparatus for determining the sex of a fertilized egg
JP2005087123A (ja) * 2003-09-18 2005-04-07 Towa Sangyo Kk 卵の水平設置装置及びそれを利用した有精卵の雌雄鑑別装置
JP2011142866A (ja) 2010-01-15 2011-07-28 Ryosuke Taniguchi 輪郭による有精卵の雌雄識別法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NOZAKI KOICHI: "Study about realization and inspection of fertilized egg by high definition digital image processing", 2 June 2015 (2015-06-02), pages 1 - 4, XP055705064, Retrieved from the Internet <URL:https://kaken.nii.ac.jp/ja/file/KAKENHI-PROJECT-25540073/25540073seika.pdf> [retrieved on 20181211] *
See also references of EP3878274A4

Also Published As

Publication number Publication date
US20210400922A1 (en) 2021-12-30
JP7320710B2 (ja) 2023-08-04
JPWO2020095868A1 (ja) 2021-09-30
EP3878274A1 (en) 2021-09-15
WO2020095394A1 (ja) 2020-05-14
EP3878274A4 (en) 2022-08-03
US11819010B2 (en) 2023-11-21
JPWO2020095394A1 (ja) 2021-02-15

Similar Documents

Publication Publication Date Title
US9532029B2 (en) 3d scanning laser systems and methods for determining surface geometry of an immersed object in a transparent cylindrical glass tank
JP5480914B2 (ja) 点群データ処理装置、点群データ処理方法、および点群データ処理プログラム
JP5587137B2 (ja) 測定装置及び測定方法
WO2012053521A1 (ja) 光学情報処理装置、光学情報処理方法、光学情報処理システム、光学情報処理プログラム
CN110402388A (zh) 检查系统、控制方法及存储介质
CN109242890A (zh) 用于飞行器的激光散斑系统和方法
CN104165671A (zh) 散装材料的拓扑确定
KR102122893B1 (ko) Uav 탑재용 하이브리드 이미지 스캐닝에 기반한 자동화 구조물 균열 평가 시스템 및 그 방법
JP2013101045A (ja) 物品の3次元位置姿勢の認識装置及び認識方法
JP6580761B1 (ja) 偏光ステレオカメラによる深度取得装置及びその方法
JP5522630B2 (ja) 三次元化装置
CN105717513A (zh) 一种基于普通摄像头芯片的低成本激光测距装置及方法
WO2017038659A1 (ja) 運動検出装置及びそれを用いた三次元形状測定装置
WO2020095868A1 (ja) 有精卵雌雄鑑定装置、有精卵雌雄鑑定方法、及びプログラム
JP7267337B2 (ja) 眼の画像データ処理
JP4591103B2 (ja) X線ct検査装置及びx線ct検査方法
JP6485616B2 (ja) 外観計測システム、画像処理方法及びプログラム
JP7320709B2 (ja) 有精卵雌雄鑑定装置、有精卵雌雄鑑定方法、及びプログラム
JP3991040B2 (ja) 三次元計測装置及び三次元計測方法
JP6699019B2 (ja) 壁面計測装置、飛行ロボットおよび壁面検査システム
CN108288285B (zh) 一种基于全向环的三维全景扫描系统及方法
JP6702370B2 (ja) 計測装置、計測システム、計測方法およびコンピュータプログラム
WO2021241533A1 (ja) 撮影システム、撮影方法、撮影プログラム、及び情報取得方法
JP2020051806A (ja) 光学配置生成装置、光学配置生成プログラム、光学配置生成方法、及び表面検査システム
CN108592790A (zh) 一种用于改进型α-β扫描方法的延迟相位标定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19882318

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020556057

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019882318

Country of ref document: EP

Effective date: 20210607