WO2020095454A1 - 積層造形装置 - Google Patents

積層造形装置 Download PDF

Info

Publication number
WO2020095454A1
WO2020095454A1 PCT/JP2018/041751 JP2018041751W WO2020095454A1 WO 2020095454 A1 WO2020095454 A1 WO 2020095454A1 JP 2018041751 W JP2018041751 W JP 2018041751W WO 2020095454 A1 WO2020095454 A1 WO 2020095454A1
Authority
WO
WIPO (PCT)
Prior art keywords
processing
height
measurement
manufacturing apparatus
additive manufacturing
Prior art date
Application number
PCT/JP2018/041751
Other languages
English (en)
French (fr)
Inventor
秀 多久島
河野 裕之
良次 澤
大嗣 森田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2018/041751 priority Critical patent/WO2020095454A1/ja
Priority to JP2019507958A priority patent/JP6576593B1/ja
Priority to CN201880099220.0A priority patent/CN112955270B/zh
Priority to DE112018008046.3T priority patent/DE112018008046T5/de
Priority to US17/285,910 priority patent/US20210370409A1/en
Publication of WO2020095454A1 publication Critical patent/WO2020095454A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/25Direct deposition of metal particles, e.g. direct metal deposition [DMD] or laser engineered net shaping [LENS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/90Means for process control, e.g. cameras or sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/30Platforms or substrates
    • B22F12/33Platforms or substrates translatory in the deposition plane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/50Means for feeding of material, e.g. heads
    • B22F12/57Metering means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/03Observing, e.g. monitoring, the workpiece
    • B23K26/032Observing, e.g. monitoring, the workpiece using optical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/0823Devices involving rotation of the workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/083Devices involving movement of the workpiece in at least one axial direction
    • B23K26/0853Devices involving movement of the workpiece in at least in two axial directions, e.g. in a plane
    • B23K26/0861Devices involving movement of the workpiece in at least in two axial directions, e.g. in a plane in at least in three axial directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • B23K26/342Build-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to a layered modeling apparatus that forms a modeled product by melting and stacking a processing material at a processing position.
  • Patent Document 1 discloses a layered manufacturing apparatus that uses a directional energy deposition (DED) method as a method of stacking metal as a processing material.
  • the layered modeling apparatus using the directional energy deposition method described in Patent Document 1 supplies a metal material such as a metal wire or a metal powder as a processing material from a supply port to a base for modeling a modeled object, and a laser or an electron.
  • a shaped object is formed by melting and laminating a metal material with a beam or the like.
  • the additive manufacturing apparatus described in Patent Document 1 can move the supply port in three axial directions of the X direction, the Y direction, and the Z direction orthogonal to the X direction and the Y direction.
  • the additive manufacturing apparatus described in Patent Document 1 moves the supply port along a predetermined locus. Therefore, the formed object may not have the shape as designed.
  • the metal material cannot be uniformly laminated. For example, if the metal material is supplied from a supply port located in a place where the distance between the upper surface of the base and the supply port of the metal material is longer than an appropriate value range, in other words, the height of the modeled object is designed. When the value is lower than the value, the supplied metal material becomes droplets, and irregularities occur on the modeled object.
  • the height of the modeled object is higher than the design value.
  • the temperature is high, the unmelted residue occurs due to the influence of the metal material being pressed against the modeled object too much.
  • the formed object does not become as designed, and the accuracy of forming the object may decrease.
  • the present invention has been made in view of the above, and an object of the present invention is to obtain a layered modeling apparatus that suppresses a decrease in accuracy of forming a modeled object.
  • the additive manufacturing apparatus performs additional processing by stacking the molten processing material at the processing position while moving the processing position on the work, It is a layered modeling device that repeats additional processing to form a modeled object, and a height measurement unit that outputs the measurement result indicating the height at the measurement position of the modeled object that has already been formed on the work, and newly stacks at the measurement position. And a control unit that controls processing conditions for performing the processing according to a measurement result.
  • FIG. 1 is a perspective view showing a configuration of a layered modeling apparatus according to a first embodiment.
  • FIG. 3 is a diagram showing a control circuit according to the first embodiment.
  • Another view showing an XZ cross section of a machining point during machining according to the first embodiment Flowchart showing a procedure of wire height control according to the first embodiment
  • FIG. 3 is a diagram showing an image of a line beam formed on a light receiving element when a line beam is applied to the modeled object according to the first embodiment.
  • 1 is a schematic diagram showing an image formation result of an image sensor which is a light receiving element being processed according to the first embodiment.
  • Another view showing a cross section of the XZ plane of FIG. The 1st figure which shows the XY cross section in the case of performing the process which changed the formation direction of the modeling thing concerning Embodiment 2.
  • the 2nd figure which shows the XY cross section in the case of performing the process which changed the formation direction of the modeling thing concerning Embodiment 2.
  • 3rd figure which shows the XY cross section at the time of performing the process which changed the formation direction of the molded article concerning Embodiment 2.
  • FIG. 1 is a perspective view showing the configuration of the additive manufacturing apparatus 100 according to the first embodiment.
  • the layered manufacturing apparatus 100 is assumed to be a metal layering apparatus that uses metal as a processing material, but other processing materials such as resin may be used. ..
  • the modeled object formed by the additive manufacturing apparatus 100 may be referred to as a laminate.
  • the additive manufacturing apparatus 100 melts the processing material by using the processing laser and performs the lamination processing, but may use another processing method such as arc discharge.
  • the additive manufacturing apparatus 100 of the present embodiment includes a processing laser 1, a processing head 2, a fixture 5, a drive stage 6, a line illumination 8, a calculation unit 9, and a control unit 10.
  • the processing laser 1 is a light source that emits processing light 30 used for modeling for forming the modeled object 4 on the work 3.
  • a fiber laser using a semiconductor laser or a CO 2 laser is used as the processing laser 1.
  • the wavelength of the processing light 30 emitted by the processing laser 1 is, for example, 1070 nm.
  • the processing head 2 includes a processing optical system and a light receiving optical system.
  • the processing optical system images the processing light 30 emitted from the processing laser 1 at a processing position on the work 3.
  • the light receiving optical system measures the height of the modeled object 4 formed on the work 3.
  • the light receiving optical system is also called a measurement optical system or a height sensor.
  • the processing light 30 is condensed in a dot shape at the processing position, and hence the processing position is hereinafter referred to as a processing point.
  • the processing laser 1 and the processing optical system form a processing section.
  • the line cutting method using the optical system is used as the height measuring method including the following embodiments, but another measuring method, for example, the optical method may be used.
  • the optical method include a spot type triangulation method and a confocal method.
  • a height measuring method other than the optical method may be used.
  • the processing head 2 and the height sensor are integrated by disposing the light receiving optical system in the processing head 2. However, if the processing head 2 and the height sensor are integrated.
  • the layered manufacturing apparatus 100 may use another integrated method. In order to reduce the size of the additive manufacturing apparatus 100, it is desirable to incorporate a light receiving optical system for measuring the height in the processing head 2 and integrate the processing optical system and the light receiving optical system.
  • the work 3 is placed on the drive stage 6 and fixed on the drive stage 6 by the fixture 5.
  • the work 3 serves as a base when the modeled object 4 is formed.
  • a base plate is assumed as the work 3, but it may be an object having a three-dimensional shape.
  • the additive manufacturing apparatus 100 performs additional processing by stacking the molten processing material 7 at processing points that move on the work 3. More specifically, the additive manufacturing apparatus 100 drives the drive stage 6 to move the candidate point of the processing position on the work 3. At least one of the candidate points on the movement path is a processing point where the processing material 7 is laminated.
  • the additive manufacturing apparatus 100 melts the processing material 7 supplied for performing additional processing with the processing light 30.
  • the layered modeling apparatus 100 stacks the beads generated by solidifying the molten processing material 7 by repeating scanning of the processing points to form the modeled article 4 on the work 3. That is, the layered modeling apparatus 100 repeats additional processing to generate the modeled article 4.
  • the additive manufacturing apparatus 100 stacks the molten processing material 7 on the work 3 in the first additional processing.
  • the layered modeling apparatus 100 stacks the molten processing material 7 on the modeled article 4 that has already been formed at the time of processing.
  • the drive stage 6 can scan in three XYZ axes. That is, the drive stage 6 can be translated in any one of the XYZ axes.
  • the drive stage 6 is often a 5-axis stage that can also rotate in the XY plane and the YZ plane. Here, the drive stage 6 is assumed to scan on five axes, but the processing head 2 may be scanned.
  • the line illumination 8 irradiates the measurement position on the work 3 with a line beam 40, which is a linear illumination light for measurement, in order to measure the height of the modeled object 4 that has been formed by the time of measurement.
  • the measurement position is a position different from the processing point.
  • the line beam 40 is reflected at the measurement position.
  • a light receiving optical system is arranged in the processing head 2 so that the light reflected at the measurement position can be received. Further, the light receiving optical system is arranged so as to have an optical axis that is oblique to the optical axis of the line beam 40.
  • the light source of the line illumination 8 is a green laser near the wavelength of 550 nm or a blue laser near the wavelength of 420 nm, which is far from the peak wavelength of the thermal radiation light. It is desirable to use.
  • the illumination light used to measure the height of the modeled object 4 does not necessarily have to be the line beam 40, and may be a spot beam, which is illumination light condensed in a point shape. If the spot beam is used, the height of the illuminated point on the work 3 can be measured. On the other hand, if the line beam 40 is used, the height distribution of the illuminated range on the work 3 can be measured. In the present embodiment, the line beam 40 is used to measure the height of the modeled object 4.
  • the calculation unit 9 calculates the height of the modeled object 4 at the position irradiated with the line beam 40 based on the trigonometric principle based on the light receiving position of the reflected light of the line beam 40 in the light receiving optical system.
  • the height of the modeled object 4 is the position of the upper surface of the modeled object 4 in the Z direction.
  • the control unit 10 also controls the processing conditions in the additional processing using the height calculated by the calculation unit 9. More specifically, the control unit 10 uses the height calculated by the calculation unit 9 to drive the driving laser 1 and the driving stage 6, and supplies a metal wire to be the processing material 7. Optimize processing conditions such as drive conditions for the supply section.
  • the driving condition of the wire supply unit includes the height for supplying the metal wire.
  • the line illumination 8 serves as measurement illumination.
  • the line illumination 8 and the light receiving optical system form a height sensor.
  • the height sensor and the calculation unit 9 constitute a height measuring unit. That is, the height measuring unit measures the height of the modeled object 4 already formed on the work 3 at the
  • the arithmetic unit 9 and the control unit 10 according to the embodiment are realized by a processing circuit that is an electronic circuit that performs each process.
  • This processing circuit may be dedicated hardware or a control circuit including a memory and a CPU (Central Processing Unit) that executes a program stored in the memory.
  • the memory corresponds to, for example, a nonvolatile or volatile semiconductor memory such as a RAM (Random Access Memory), a ROM (Read Only Memory), and a flash memory, a magnetic disk, an optical disk, and the like.
  • FIG. 2 is a diagram showing the control circuit according to the first embodiment.
  • the control circuit is, for example, the control circuit 200 having the configuration shown in FIG.
  • the control circuit 200 includes a processor 200a, which is a CPU, and a memory 200b.
  • a processor 200a which is a CPU
  • a memory 200b When implemented by the control circuit 200 shown in FIG. 2, it is implemented by the processor 200a reading and executing a program stored in the memory 200b and corresponding to each process.
  • the memory 200b is also used as a temporary memory in each processing executed by the processor 200a.
  • FIG. 3 is a view showing a cross section of the additive manufacturing apparatus 100 according to the first embodiment in the XZ plane.
  • the processing head 2 includes a light projecting lens 11, a beam splitter 12, an objective lens 13, a bandpass filter 14, a condenser lens 15, and a light receiving unit 16.
  • the processing light 30 emitted from the processing laser 1 passes through the light projecting lens 11, is reflected by the beam splitter 12 toward the work 3, and is condensed by the objective lens 13 at the processing point on the work 3.
  • the light projecting lens 11, the beam splitter 12, and the objective lens 13 constitute a processing optical system provided in the processing head 2.
  • the projection lens 11 has a focal length of 200 mm and the objective lens 13 has a focal length of 460 mm.
  • the surface of the beam splitter 12 is coated to increase the reflectance of the wavelength of the processing light 30 emitted from the processing laser 1 and to transmit the light of the wavelength shorter than the wavelength of the processing light 30.
  • the layered manufacturing apparatus 100 supplies the metal wire or the metal powder as the processing material 7 to the processing point while driving the drive stage 6 to scan the work 3 in the + X direction. As a result, every time the processing point is scanned, the processing material 7 is melted by the processing light 30 at the processing point, is solidified after being melted, and the bead is formed such that the bead extends in the ⁇ X direction.
  • the + X direction is, for example, a direction in which the X axis illustrated in FIG. 1 extends in the arrow direction.
  • the formed bead becomes a part of the molded article 4.
  • a bead is newly stacked on a part of the work 3 serving as the base or the modeled object 4 that has already been modeled, whereby a part of the modeled object 4 is newly formed.
  • the processed material 7 is laminated to form the modeled product 4 as the final product.
  • the description will proceed assuming that a metal wire is used as the processing material 7.
  • the processing direction in the present embodiment, the work 3 is scanned in the + X direction, and the bead extends in the ⁇ X direction, that is, in the direction opposite to the direction in which the processing material 7 is supplied.
  • the bead extending in the + X direction, that is, the same direction as the direction in which the processing material 7 is supplied, while scanning the work 3 in the ⁇ X direction by driving the drive stage 6. it can.
  • the bead is described as being formed so as to extend linearly, but the bead formed in a dot shape is connected to form one bead, and other bead forming methods. But good.
  • the height measurement line illumination 8 is attached to the side surface of the processing head 2 and irradiates the line beam 40 toward the measurement position on the workpiece 3 or the formed object 4.
  • the measurement position is determined in consideration of the supply direction of the processing material 7 and the like. For example, if the measurement position is on the side opposite to the supply direction of the processing material 7 with respect to the processing point, it becomes easy to illuminate the measurement position without being blocked by the processing material 7.
  • the line beam 40 is perpendicular to the direction in which the beads are formed, and is formed by using a cylindrical lens or the like so as to form a beam that spreads in a direction parallel to the upper surface of the drive stage 6 (Y direction). .. Therefore, the line beam 40 irradiates the formed shaped article 4 in a line shape.
  • the line beam 40 irradiated at the measurement position is reflected at the measurement position, enters the objective lens 13, passes through the beam splitter 12 and the bandpass filter 14, and is focused on the light receiving unit 16 by the condenser lens 15.
  • the objective lens 13 and the condenser lens 15 are collectively called a light receiving optical system.
  • the light receiving optical system is configured by using, for example, two lenses, that is, the objective lens 13 and the condenser lens 15. However, three or more lenses are used, for example, the condenser lens 15 is configured by a convex lens and a concave lens.
  • the configuration may be changed as long as it has a function of forming an image on the light receiving unit 16.
  • the light receiving unit 16 may be an area camera having a light receiving element such as a CMOS (Complementary Metal Oxide Semiconductor) image sensor, but may have a configuration including a light receiving element in which pixels are arranged two-dimensionally.
  • CMOS Complementary Metal Oxide Semiconductor
  • the bandpass filter 14 that transmits only the irradiation wavelength of the line beam 40 be inserted in the optical system from the beam splitter 12 to the light receiving unit 16.
  • the band-pass filter 14 it is possible to remove light having an unnecessary wavelength from processing light, heat radiation light, ambient light, and the like.
  • the layered manufacturing apparatus 100 supplies a metal wire as a processing material 7 to a processing point and irradiates the processing light 30 to the processing point, thereby stacking a new layer on the formed object 4 that has already been formed, thereby forming a new modeling object. Additional processing to be the object 4 is performed.
  • FIG. 4 is a diagram showing the height of the supply port of the metal wire with respect to the modeled article 4 according to the first embodiment.
  • the height of the metal wire supply port refers to the height of the metal wire supply port based on the upper surface of the work 3.
  • the height of the supply port of the metal wire may be simply referred to as the height of the supply port.
  • the height of the tip of the metal wire can be calculated from the height of the supply port.
  • the output amount of the metal wire from the supply port represents the length from the supply port to the tip of the metal wire.
  • the height of the tip of the metal wire can be controlled.
  • the amount of metal wire emitted from the supply port is controlled to be constant, and the height of the supply port and the height of the tip of the metal wire have a one-to-one correspondence.
  • the appropriate height range of the height of the supply port depends on the height of the modeled article 4 that has already been modeled. As shown in FIG.
  • an appropriate height range of the supply port corresponding to the formed object 4 shown in FIG. 4 is ha ⁇ ⁇ .
  • the height of the supply port is the center of the range of ha ⁇ ⁇ . That is, in FIG. 4A, the height of the supply port is ha.
  • ha + ⁇ is shown as the upper limit value 21.
  • ha- ⁇ is shown as the lower limit value 20.
  • the height of the supply port is ha, which is within the range of ha ⁇ ⁇ , so that no problem occurs in the processing result.
  • FIG. 4A the height of the supply port is ha, which is within the range of ha ⁇ ⁇ , so that no problem occurs in the processing result.
  • the height hb of the supply port is hb> ha + ⁇ , which is outside the range of ha ⁇ ⁇ .
  • the metal wire melted by being irradiated with the processing light 30 does not sufficiently adhere to the formed model 4 and a droplet 71 is generated, resulting in unevenness on the modeled product 4 after processing.
  • the height hc of the supply port is hc ⁇ ha- ⁇ , which is outside the range of ha ⁇ ⁇ .
  • the metal wire is excessively pressed in the direction of the formed article 4 and even if the processing light 30 is irradiated, the metal wire is not completely melted and the unmelted portion 72 of the metal wire is generated. As a result, the metal wire left unmelted is included in the modeled object 4 after processing.
  • the height of the supply port should be kept constant.
  • the height of the modeled object 4 that has been formed up to the previous time is not as high as the design value. In this case, even if the supply port is raised by a height corresponding to one layer in design from the height of the supply port at the time of the previous stacking, the height of the modeled object 4 up to the time of the previous stacking is actually increased.
  • the height of the supply port is not within the appropriate range of the supply port corresponding to the part to be laminated this time, in the portion where is different from the design value. It is also possible that the height of the modeled article 4 is not constant depending on the position. Even if the height of the second layer is within the appropriate height range (ha ⁇ ⁇ ), in other words, even if it is within the allowable error range, if the processing is performed a plurality of times and the nth layer (n ⁇ 2) is processed, the lamination is performed. Since the error is added n times, it may not fall within the allowable error range (ha ⁇ ⁇ ). Here, it is necessary to measure the height of the modeled object 4 after processing and use the measurement result at the next processing to perform optimum control. Further, it is desirable that the height of the modeled object 4 be measured after the temperature of the modeled object 4 has dropped.
  • FIG. 5 is a diagram showing an XZ cross section of a processing point during processing according to the first embodiment.
  • FIG. 5 shows a case where the bead is processed so as to extend in the + X direction (the same direction as the wire).
  • the position where the height of the formed object 4 is measured is the position moved in the ⁇ X direction with respect to the processing point.
  • a region where the processing light is applied to the processing point during the additional processing and the metal wire is melted on the work 3 is called a melt pool 31.
  • the machining point moves on the work 3 in the + X direction, and the linear shaped object 4 is extended so as to extend in the + X direction. It can be processed.
  • the vicinity of the melt pool 31 at the processing point is at a high temperature, and when the drive stage 6 is moved in the -X direction, the melt pool 31 is naturally cooled, but after the melt pool 31 after processing (-X direction).
  • the beads 4 are stacked to form the shaped article 4.
  • the high temperature portion 32 is generated in the ⁇ X direction which is the opposite direction to the direction in which the machining point moves on the workpiece 3 with the machining point as a reference.
  • the direction in which the processing point moves on the work 3 refers to the direction along the movement path of the processing point.
  • the end of the melt pool 31 is located at a position away from the center of the processing point (the optical axis of the processing light 30) by a distance W, and the high temperature portion 32 where the bead has a high temperature and is not sufficiently solidified is melt pool 31.
  • the distance is U from the edge of. Since the processing material 7 is melted in the melt pool 31, it is difficult to accurately measure the height of the formed article 4 that has been formed. Further, since the melt pool 31 has a temperature high enough to melt the processing material 7 such as metal, very high brightness heat radiation is generated, and this heat radiation hinders measurement. Therefore, it is desirable that the measurement position where the height is measured is a position separated by W or more from the center of the processing point. That is, it is desirable that the measurement position does not overlap the melt pool 31.
  • the high temperature part 32 exists in the range of the distance W + U from the center of the processing point in the ⁇ X direction with respect to the processing point.
  • the beads are not completely solidified, which makes it difficult to measure the height accurately. Therefore, when the height is measured at the position moved in the ⁇ X direction with respect to the processing point, it is more preferable that the irradiation position L of the line beam 40 is at least a distance W + U away from the center of the processing point. .. That is, it is more preferable that the measurement position where the height is measured is located outside the range in which the processing material 7 is melted during processing.
  • FIG. 6 is another diagram showing an XZ cross section of a machining point during machining according to the first embodiment.
  • FIG. 6 shows a case where the bead is processed so as to extend in the ⁇ X direction (the direction opposite to the wire).
  • the position at which the height of the formed model 4 is measured is the position moved in the ⁇ X direction with respect to the processing point.
  • the drive stage 6 on which the work 3 is placed is scanned in the + X direction
  • the machining point moves on the work 3 in the ⁇ X direction
  • the linear shaped object 4 is extended so as to extend in the ⁇ X direction. It can be processed.
  • the high temperature portion 32 on the outer side of the melt pool 31 is generated in the direction opposite to the direction in which the processing point moves on the work 3 with the processing point as a reference.
  • the high temperature portion 32 outside the melt pool 31 is generated in the + X direction with respect to the processing point.
  • the height of the formed object 4 that has been formed is measured at the position in the ⁇ X direction, which is the same direction as the direction in which the machining point moves on the workpiece 3 with the machining point as a reference. Since the high temperature portion 32 does not occur in the ⁇ X direction with respect to the processing point, only the melt pool 31 should be avoided as the measurement position. Therefore, the irradiation position L of the line beam 40 may be at least a distance W or more from the center of the processing point.
  • the line beam 40 is irradiated in the traveling direction of the processing path as seen from the processing point as shown in FIG.
  • the drive stage 6 may be configured to scan in the ⁇ X direction as shown in FIG. 5
  • FIG. 7 is a flowchart showing a procedure of wire height control according to the first embodiment.
  • the wire height refers to the height of the tip of the processing material 7 irradiated with the processing light 30 with the upper surface of the work 3 as a reference.
  • the wire height is the height of the tip of the processing material 7 when the processing material 7 is not melted.
  • step S1 the additional processing of the first layer is started (step S1). With a flat base plate, there is no bead at the measurement position during the additional processing of the first layer, so there is no need to measure the height. However, the height measurement of the first layer is effective for performing accurate lamination processing when processing is performed on the modeled object 4 or when the base plate is distorted.
  • the measurement of the height of the modeled object 4 is started together with the additional processing of the first layer (step S2), and the measurement result of the height of the modeled object 4 with respect to the measurement position is stored (step S3). Then, when the next processing is performed at the measured position of the modeled object 4, the processing control is performed using the measurement result stored in step S3 (step S4).
  • the measurable height interval of the modeled object 4 is determined by the frame rate of the image sensor used as the light receiving element in the light receiving section 16 and the scanning speed of the processing axis (scanning speed of the processing point).
  • the control unit 10 controls the processing conditions for newly stacking at the measurement position according to the measurement result.
  • FIG. 8 is a diagram showing a wire height when the additive manufacturing apparatus 100 according to the first embodiment processes the second layer.
  • the target stack height indicates the height of a preset stack that is newly stacked on the modeled object 4.
  • the modeled object 4 formed in the first layer can be modeled at T2 (> T0) higher than the design in the area II and can be modeled at T3 ( ⁇ T0) lower than the design in the area III.
  • the wire height for processing the modeled article 4 to the target stacking height is the same as the target stacking height T0 when the formed modeled article 4 is used as a reference, the second layer is stacked.
  • the wire height may be set to 2 ⁇ T0.
  • the wire height for processing the modeled article 4 to the target height will be described as T0 which is the same as the height of the target modeled article 4, but it may actually be different.
  • the stacking height of the second layer is set to 2 ⁇ T0. It is necessary to set the stacking amount to T2-T0.
  • processing parameters processing conditions
  • various parameters such as processing laser output, wire feed speed, and stage feed speed are conceivable. Here, the case of controlling the wire feed speed will be described.
  • the wire feeding speed is slowed and the supply amount of the metal material is reduced so that the stacking amount of the second layer including the first layer is 2 It is controlled to be ⁇ T0.
  • the stacking amount of the second layer including the first layer is controlled to be 2 ⁇ T0. That is, the processing conditions are controlled by the control unit 10 in accordance with the difference between the height of a preset laminate newly stacked on the modeled article 4 and the measurement result.
  • the processing conditions are optimally controlled, as shown in FIG. It is possible to maintain the stacking height with respect to the wire of ha ⁇ ⁇ . Therefore, the processing can be continued without causing a processing defect.
  • the wire feed speed is changed to perform the machining control, but another parameter or a plurality of parameters may be changed to perform the machining control. For example, when it is desired to reduce the stacking amount, a method of reducing the laser output and increasing the stage speed can be considered.
  • the nth layer is processed after the processing of the n-1th layer is completed.
  • the amount of change in the wire height to be increased for processing is taken as the average height of the n-2 layer measured with respect to the design value T0, and the measurement result of the n-1 layer is used during the processing of the nth layer.
  • a method of performing optimum processing control is also conceivable. Further, as shown in FIG. 8, when the measurement result of the height of the modeled object 4 in each of the n-th region I, the n-th region II, and the n-th region III is different, the height is increased for each region. It is also conceivable to change the amount of change in the wire height.
  • FIG. 9 is an enlarged XZ cross section of the modeled article 4 onto which the line illumination 8 according to the first embodiment is projected.
  • the height of the model 3 with respect to the upper surface of the work 3 is ⁇ Z and the irradiation angle of the line beam 40 is ⁇
  • the irradiation position of the line beam 40 on the upper surface of the work 3 and the irradiation position of the line beam 40 on the model 4 are determined.
  • FIG. 10 is a diagram showing an image of the line beam 40 formed on the light receiving element when the modeled object 4 according to the first embodiment is irradiated with the line beam 40. Due to the difference between the height of the modeled object 4 and the height of the workpiece 3, the irradiation position of the line beam 40 is shifted by ⁇ X ′ and projected.
  • ⁇ X ′ M ⁇ ⁇ X.
  • the size of one pixel of the image sensor is P
  • the height from the sensor to the object can be calculated from the projection position of the line beam 40 of the image sensor image by the principle of triangulation. Further, the height of the modeled object 4 can be calculated from the difference in the irradiation position of the line beam 40 between the upper surface of the work 3 and the upper surface of the modeled object 4. Even if the height of the modeled object 4 becomes higher than the upper surface of the work 3 and the reflected light of the line beam 40 from the upper surface of the work 3 cannot be received, it is reflected from the upper surface of the modeled object 4 in the field of view on the light receiving element. The distance from the sensor can be calculated by using the irradiation position of the line beam 40.
  • the irradiation position of the line beam 40 is generally calculated from the X-direction center of gravity position of the projection pattern of the line beam 40.
  • the output in the X direction is calculated for each Y-direction pixel, and the center of gravity position is calculated from the cross-sectional intensity distribution of the line beam 40.
  • the calculation method of the irradiation position of the line beam 40 is not limited to the barycentric position, but may be appropriately selected such as the peak position of the light amount.
  • the irradiation width of the line beam 40 needs to be large enough to calculate the irradiation position. For example, in the case of calculating the center of gravity, if the center of gravity is too narrow, the center of gravity cannot be calculated. Therefore, about 5 to 10 pixels is desirable.
  • the line length of the line beam 40 (irradiation width of the line beam 40) may be sufficiently longer than the width of the modeled object 4.
  • the luminance barycentric position in the X direction is calculated for each pixel in the Y direction of the image, and the result is converted into the height, whereby the cross-sectional distribution of the height of the model 4 in the width direction of the model 4 is obtained.
  • a spot beam is used as the illumination light used to measure the height of the modeled object 4
  • the spot size is appropriately selected. By doing so, it is possible to perform measurement with less error.
  • the processing point becomes a high-luminance light emitting point and the melt pool 31
  • the image of is reflected in the center of the image.
  • the bandpass filter 14 is installed in the light receiving optical system, and the output of the line illumination 8 is made sufficiently large to measure the height from the line beam 40 without being affected by the light emission in the melt pool 31. You can
  • FIG. 11 is a schematic diagram showing an image formation result of the image sensor which is the light receiving element being processed according to the first embodiment.
  • the irradiation position of the line beam 40 is separated from the melt pool 31, it is possible to separate the thermal radiation light emitted from the processing point 50 and the reflected light of the line beam 40. If the measurement position is provided in the high temperature part 32 and the bead is not completely solidified and is in a liquid state, the line beam 40 is not sufficiently reflected and the illuminance distribution on the bead cannot be measured. there is a possibility. Further, even if the measurement can be performed, the melting method differs depending on the measurement position, so that a measurement error occurs in the bead height with respect to the measurement position.
  • the additive manufacturing apparatus 100 of the present embodiment measures the moving direction of the processing point 50 with respect to the processing point 50, if the measurement position is separated from the melt pool end, the bead at the high temperature part 32 will be The stack height can be measured with high accuracy without being affected by melting.
  • the additive manufacturing apparatus 100 measures the bead height in the advancing direction of the additive processing during processing and controls the processing conditions to be appropriate during the next processing, thereby achieving the target lamination. The height of the object can be maintained.
  • the layered manufacturing apparatus 100 of the present embodiment can maintain a constant height between the wire supply port and the layered product, it is possible to realize highly accurate layered processing. Therefore, the layered modeling apparatus 100 can suppress a decrease in accuracy of forming the modeled article 4. Further, since the additive manufacturing apparatus 100 of the present embodiment can measure the bead height near the processing point 50, the height sensor can be integrated with the processing head 2 and the apparatus can be downsized. it can.
  • the configuration in which the height sensor and the processing head 2 are integrated to downsize the apparatus has been described, but it is not strictly necessary that the height sensor and the processing head 2 are integrated, and the processing head 2 is It goes without saying that the same effect can be obtained even when the height sensor is arranged as a separate body and the height of the laminate near the processing point 50 is measured.
  • the condenser lens 15 since the height measurement is performed using the line beam 40, the condenser lens 15 that does not use both for processing and for height measurement uses only the line beam 40 in the light receiving unit 16. It is better to have an optical system that can form an image.
  • FIG. 12 is another diagram showing a cross section of the XZ plane of FIG. 1.
  • the central axis of the objective lens 13 and the central axis of the condenser lens 15 may be offset from each other in the direction perpendicular to the central axis of the objective lens 13.
  • the objective lens 13 is a lens that collects the processing light 30 at the processing position. Therefore, in the configuration in FIG. 12, the position of the central axis of the optical system that forms the reflected light transmitted through the objective lens 13 on the light receiving unit 16 is the central axis of the objective lens 13 that condenses the processing light 30 at the processing position. The position is different. With such a configuration, the reflected light of the line beam 40, which is the illumination light for measurement, can be focused on the light receiving element without being affected by the aberration of the lens as much as possible, and the height measurement accuracy can be improved. ..
  • the central axis of the third imaging optical system that forms an image of the reflected light that has passed through the objective lens 13 on the light receiving unit 16 is the processing light at the processing position.
  • the same effect can be obtained by arranging the objective lens 13 for condensing 30 so as to be inclined with respect to the central axis thereof. Further, the shape of the lens surface of the condenser lens 15 may be changed. Further, the visual field of the light receiving unit 16 may be wider than the range in which the line beam 40 moves within the height measurement range, and the line beam 40 can be formed by using an imaging system that expands only the moving range of the line beam 40. The resolution can be increased and the height measurement accuracy can be improved.
  • the additive manufacturing apparatus 100 according to the second embodiment has the same configuration as that of the first embodiment, but the shape of the line beam used for height measurement is different.
  • the irradiation shape of the line beam 40 is not a straight line but a circular shape centered on the processing point 50. In this way, by making the irradiation shape of the line beam 40 circular, even when the machining shape is not a straight line and the scanning direction of the machining point 50 changes during machining, a direction that intersects the model 4 at a right angle ( Since the line illumination 8 can be irradiated in the width direction of the modeled object 4, the rotation mechanism of the scanning stage can be eliminated, and the apparatus can be downsized.
  • the measurement position when the drive stage 6 is rotated in the XY plane, the measurement position can be located in front of the processing point 50 even when scanning is performed obliquely with respect to the X axis and the Y axis.
  • the irradiation shape of the line beam 40 circular, at least part of the measurement position can be located in front of the processing point 50 without rotating the drive stage 6.
  • FIG. 13 is a first diagram showing an XY cross section in the case of performing processing in which the forming direction of the modeled article 4 according to the second embodiment is changed.
  • a range surrounded by a dotted line indicates a range in which the layered modeling apparatus 100 is scheduled to be layered.
  • FIG. 13A when performing processing in which the formation direction of the modeled object 4 is changed by using the rotary stage, the rotary stage on the XY plane on the drive stage 6 is used, and FIG.
  • the processing direction is always constant. In this case, even if the linear line beam 40 is used, the line beam 40 can always be irradiated perpendicularly to the processing direction of the modeled object 4.
  • FIG. 14 is a second diagram showing an XY cross section in the case of performing processing in which the forming direction of the molded article 4 according to the second embodiment is changed.
  • the operating speed in the X-axis direction and the operating speed in the Y-axis direction are set to an appropriate ratio.
  • the machining direction can be changed by controlling the above, but it is necessary to machine in an oblique direction with respect to the XY plane.
  • the linear line beam 40 is used, as shown in FIG. 14B, when processing is performed in an oblique direction, a cross section perpendicular to the stacking direction of the modeled objects 4 is measured. Can't do it.
  • FIG. 15 is a third diagram showing an XY cross section in the case of performing processing in which the forming direction of the modeled article 4 according to the second embodiment is changed.
  • the line illumination 8 uses a circular line beam 40a.
  • the line beam 40a is irradiated in a circular shape centering on the processing point 50, so that it does not depend on the processing direction.
  • the height of the modeled object 4 at a constant distance from the processing point 50 can always be measured.
  • the additive manufacturing apparatus 100 uses an irradiation area in front of the processing point 50 in the moving direction on the workpiece 3 in the irradiation area where the line beam 40a is circularly irradiated. Measure the height.
  • the reflected light from the entire circumference of the circular irradiation area is imaged on the light receiving unit 16, but the layered manufacturing apparatus 100 of the present embodiment uses the arc in front of the machining point 50 in the moving direction. Height is measured using the image of reflected light.
  • the wire is loaded from the + X direction, it is generally processed in the range of 180 degrees from the + Y direction to the ⁇ X direction to the ⁇ Y direction.
  • the circular line beam 40a has been described here, it does not have to be a strictly circular shape, may be an elliptical shape, and there is no problem even if it is partially interrupted such as a semicircle.
  • the height of the formed object 4 that has already been formed can be measured regardless of the direction in which the processing point 50 is scanned.
  • the central angle may be 90 degrees or more. If a 90-degree arc-shaped line beam from the -X direction to the + Y direction is used, when the bead is formed so as to extend in the + X direction and the -Y direction, the measurement immediately after processing is performed. When the beads are formed so as to extend in the ⁇ X direction and the + Y direction, the measurement is performed immediately before the processing.
  • the amount of change in the tangential direction may be 90 degrees or more.
  • a square shape such as a square shape may be used.

Abstract

積層造形装置(100)は、ワーク(3)上で加工位置を移動させながら溶融した加工材料(7)を加工位置で積層することで付加加工を行うとともに、付加加工を繰り返して造形物(4)を形成する積層造形装置(100)であって、ワーク(3)上に形成済みの造形物(4)の計測位置における高さを示す計測結果を出力する高さ計測部と、計測位置に新たに積層するときの加工条件を計測結果に応じて制御する制御部(10)と、を備えることを特徴とする。

Description

積層造形装置
 本発明は、加工位置で加工材料を溶融して積層することで造形物を形成する積層造形装置に関する。
 3Dプリンタのように加工材料を積層して3次元の造形物を形成する積層造形装置が従来から知られている。特許文献1は、加工材料として金属を積層する方式として、指向性エネルギー堆積(DED:Directed Energy Deposition)方式を用いた積層造形装置を開示する。特許文献1に記載の指向性エネルギー堆積方式を用いる積層造形装置は、供給口から金属ワイヤ、金属粉末などの金属材料を加工材料として、造形物を造形するためのベースに供給し、レーザ、電子ビームなどで金属材料を溶融して積層することで造形物を形成する。また、特許文献1に記載の積層造形装置は、供給口をX方向と、Y方向と、X方向およびY方向とそれぞれ直交するZ方向との3軸方向に移動することができる。
特開2015-174420号公報
 しかしながら、特許文献1に記載の積層造形装置は、あらかじめ定められた軌跡で供給口を移動させる。このため、形成された造形物が設計通りの形状とならない場合がある。具体的には、特許文献1に記載の積層造形装置は、ベースの上面と、供給口との間の距離が適切な値の範囲から外れると、均一に金属材料を積層することができない。例えば、ベースの上面と金属材料の供給口との間の距離が、適切な値の範囲よりも長い場所に位置する供給口から金属材料が提供された場合、言い換えれば造形物の高さが設計値よりも低い場合には、供給した金属材料が溶滴となり、造形物に凹凸が生じる。一方、ベースの上面と金属材料の供給口との間の距離が、適切な値の範囲よりも短い場所に位置する供給口から供給された場合、言い換えれば造形物の高さが設計値よりも高い場合には、金属材料が造形物に押し付けられ過ぎる影響で溶け残りが発生する。このように、従来の積層造形技術においては、形成された造形物が設計通りのものとはならず造形物を形成する精度が低下する場合があった。
 本発明は、上記に鑑みてなされたものであって、造形物を形成する精度の低下を抑制する積層造形装置を得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本発明にかかる積層造形装置は、ワーク上で加工位置を移動させながら溶融した加工材料を加工位置で積層することで付加加工を行うとともに、付加加工を繰り返して造形物を形成する積層造形装置であって、ワーク上に形成済みの造形物の計測位置における高さを示す計測結果を出力する高さ計測部と、計測位置に新たに積層するときの加工条件を計測結果に応じて制御する制御部と、を備えることを特徴とする。
 本発明によれば、造形物を形成する精度の低下を抑制する積層造形装置を得ることができるという効果を奏する。
実施の形態1にかかる積層造形装置の構成を示す斜視図 実施の形態1にかかる制御回路を示す図 実施の形態1にかかる積層造形装置のXZ平面の断面を示す図 実施の形態1にかかる造形物に対する金属ワイヤの供給口の高さを示す図 実施の形態1にかかる加工中の加工点のXZ断面を示す図 実施の形態1にかかる加工中の加工点のXZ断面を示す別の図 実施の形態1にかかるワイヤ高さ制御の手順を示すフローチャート 実施の形態1にかかる積層造形装置が第2層目を加工する場合のワイヤ高さを示す図 実施の形態1にかかるライン照明が投影された造形物を拡大したXZ断面を示す図 実施の形態1にかかる造形物にラインビームを照射した際の受光素子上に結像されたラインビームの画像を示す図 実施の形態1にかかる加工中の受光素子であるイメージセンサの結像結果を示す概略図 図1のXZ平面の断面を示す別の図 実施の形態2にかかる造形物の形成方向を変更した加工を行う場合のXY断面を示す第1の図 実施の形態2にかかる造形物の形成方向を変更した加工を行う場合のXY断面を示す第2の図 実施の形態2にかかる造形物の形成方向を変更した加工を行う場合のXY断面を示す第3の図
 以下に、本発明の実施の形態にかかる積層造形装置を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態1.
 図1は、実施の形態1にかかる積層造形装置100の構成を示す斜視図である。なお、以降の実施の形態も含めて、積層造形装置100は、金属を加工材料として使用する金属積層装置であるものとするが、樹脂などの他の加工材料を使用するものであっても良い。また、積層造形装置100によって形成される造形物は、積層物と呼ばれることもある。また、積層造形装置100は、加工用レーザを用いて加工材料を溶解し、積層加工を行うものとするが、アーク放電など、他の加工方法を使用するものであっても良い。本実施の形態の積層造形装置100は、加工用レーザ1と、加工ヘッド2と、固定具5と、駆動ステージ6と、ライン照明8と、演算部9と、制御部10とを備える。
 加工用レーザ1は、ワーク3上に造形物4を形成する造形加工に用いられる加工光30を発する光源である。加工用レーザ1は、半導体レーザを用いたファイバレーザ、またはCOレーザが用いられる。加工用レーザ1が照射する加工光30の波長は、例えば、1070nmである。加工ヘッド2は、加工光学系と、受光光学系とを備える。加工光学系は、加工用レーザ1から照射される加工光30をワーク3上の加工位置に結像する。受光光学系は、ワーク3上に形成された造形物4の高さの計測を行う。受光光学系は、計測光学系、または高さセンサとも呼ばれる。一般的に、加工光30は加工位置に点状に集光されるので、以降では加工位置を加工点と呼ぶ。加工用レーザ1および加工光学系が、加工部を構成する。ここで、以降の実施の形態も含めて、高さ計測方式として、光学系を用いたライン切断方式を用いるとするが、他の計測方式、例えば、光学方式を用いても良い。光学方式は、例えば、スポットタイプの三角測量方式、または共焦点方式が挙げられる。なお、光学方式以外の高さ計測方式を用いても良い。また、本実施の形態では、加工ヘッド2内に受光光学系を配置することで加工ヘッド2と高さセンサとを一体化したが、加工ヘッド2と高さセンサとが一体になっていれば、積層造形装置100はその他の一体化方式を用いても良い。積層造形装置100の小型化のためには、加工ヘッド2に高さ計測を行う受光光学系を内蔵し、加工光学系と受光光学系とを一体化することが望ましい。
 ワーク3は、駆動ステージ6に載せられ、固定具5で駆動ステージ6の上に固定される。ワーク3は、造形物4が形成される際の土台となるものである。ここでは、ワーク3としてベースプレートを想定するが、3次元形状を有する物体であっても良い。駆動ステージ6が駆動されることで、加工ヘッド2に対するワーク3の位置が変化し、ワーク3上を加工点が移動する。すなわち、ワーク3上の加工点が走査される。加工点が走査されるとは、定められた経路に沿って、すなわち定められた軌跡を描くように加工点が移動することを意味する。積層造形装置100は、ワーク3上で加工位置である加工点を移動させながら、溶融した加工材料7を加工点で積層することで付加加工を行う。言い換えると、積層造形装置100は、ワーク3上を移動する加工点で、溶融した加工材料7を積層することで付加加工を行う。より具体的には、積層造形装置100は、駆動ステージ6を駆動することで、ワーク3上で加工位置の候補点を移動させる。移動経路上の候補点の少なくとも1点が、加工材料7が積層される加工点となる。
 積層造形装置100は、加工点において、付加加工を行うために供給される加工材料7を加工光30で溶融する。積層造形装置100は、加工点の走査を繰り返すことで、溶融した加工材料7が凝固して生成されたビードを積層して、ワーク3上に造形物4を形成する。すなわち、積層造形装置100は、付加加工を繰り返して造形物4を生成する。積層造形装置100は、最初の付加加工ではワーク3の上に溶融した加工材料7を積層する。付加加工が繰り返されると、積層造形装置100は、加工時点で既に形成済みの造形物4の上に溶融した加工材料7を積層する。駆動ステージ6は、XYZの3軸の走査が可能である。すなわち、駆動ステージ6は、XYZの軸いずれか1軸の方向に平行移動することが可能である。駆動ステージ6は、XY面内、YZ面内での回転も行うことができる5軸ステージが使用されることが多い。ここで、駆動ステージ6を5軸で走査するものとするが、加工ヘッド2を走査しても良い。
 ライン照明8は、計測時点までに形成済みの造形物4の高さを計測するために、ワーク3上の計測位置に、計測用のライン状の照明光であるラインビーム40を照射する。計測位置は、加工点とは異なる位置となる。ラインビーム40は計測位置で反射する。計測位置で反射した光を受光できるように、加工ヘッド2の中に受光光学系は配置される。また、受光光学系は、ラインビーム40の光軸に対して斜め方向の光軸を持つように配置される。加工時に発生する熱輻射光のピーク波長が赤外であるため、ライン照明8の光源には、熱輻射光のピーク波長から離れた、波長550nm付近の緑色レーザ、または波長420nm付近の青色レーザを用いることが望ましい。なお、造形物4の高さを計測するために用いられる照明光は、必ずしもラインビーム40である必要はなく、点状に集光された照明光であるスポットビームであっても良い。スポットビームを用いれば、ワーク3上の照明された点の高さを計測できる。一方、ラインビーム40を用いれば、ワーク3上の照明された範囲の高さ分布を計測できる。本実施の形態では、造形物4の高さを計測するためにラインビーム40が用いられるものとする。
 演算部9は、ラインビーム40の反射光の受光光学系における受光位置に基づいて、三角測量の原理によって、ラインビーム40が照射された位置における造形物4の高さを演算する。造形物4の高さは、造形物4の上面のZ方向の位置となる。また、制御部10は、演算部9で演算された高さを用いて、付加加工における加工条件を制御する。より具体的には、制御部10は、演算部9で演算された高さを用いて、加工用レーザ1の駆動条件、駆動ステージ6の駆動条件、加工材料7となる金属ワイヤを供給するワイヤ供給部の駆動条件などの加工条件を最適化する。ワイヤ供給部の駆動条件には、金属ワイヤを供給する高さが含まれる。ライン照明8が計測用照明となる。また、ライン照明8および受光光学系が、高さセンサを構成する。また、高さセンサおよび演算部9が、高さ計測部を構成する。つまり、高さ計測部は、ワーク3上に形成済みの造形物4の計測位置における高さを計測する。
 実施の形態にかかる演算部9および制御部10は、各処理を行う電子回路である処理回路により実現される。
 本処理回路は、専用のハードウェアであっても、メモリおよびメモリに格納されるプログラムを実行するCPU(Central Processing Unit、中央演算装置)を備える制御回路であってもよい。ここでメモリとは、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリなどの、不揮発性または揮発性の半導体メモリ、磁気ディスク、光ディスクなどが該当する。図2は、実施の形態1にかかる制御回路を示す図である。本処理回路がCPUを備える制御回路である場合、この制御回路は例えば、図2に示す構成の制御回路200となる。
 図2に示すように、制御回路200は、CPUであるプロセッサ200aと、メモリ200bとを備える。図2に示す制御回路200により実現される場合、プロセッサ200aがメモリ200bに記憶された、各処理に対応するプログラムを読みだして実行することにより実現される。また、メモリ200bは、プロセッサ200aが実施する各処理における一時メモリとしても使用される。
 図3は、実施の形態1にかかる積層造形装置100のXZ平面の断面を示す図である。加工ヘッド2は、投光レンズ11と、ビームスプリッタ12と、対物レンズ13と、バンドパスフィルタ14と、集光レンズ15と、受光部16と、を備える。加工用レーザ1から出射した加工光30は投光レンズ11を透過し、ビームスプリッタ12でワーク3の方向に反射され、対物レンズ13によってワーク3上の加工点に集光される。投光レンズ11、ビームスプリッタ12、および対物レンズ13は、加工ヘッド2に備えられる加工光学系を構成する。例えば、投光レンズ11の焦点距離は200mm、対物レンズ13の焦点距離は460mmである。ビームスプリッタ12の表面には、加工用レーザ1から照射される加工光30の波長の反射率を高くし、加工光30の波長より短い波長の光を透過するようなコーティングが行われる。また、積層造形装置100は、駆動ステージ6を駆動することでワーク3を+X方向に走査しながら、金属ワイヤまたは金属粉末を加工材料7として加工点に供給する。この結果、加工点が走査されるたびに、加工点において加工光30によって加工材料7が溶融され、溶融された後に凝固し、ビードは-X方向にビードが延びていくように形成される。ここで+X方向とは、例えば、図1に記載されるX軸が矢印に延びる方向である。この形成されたビードが造形物4の一部となる。加工点が走査されるたびに、土台となるワーク3または造形済みの造形物4の一部の上に新たにビードが積層されることで、新たに造形物4の一部が形成される。この動作を繰り返すことで、加工材料7が積層されて最終生成物である造形物4が形成される。
 本実施の形態では、加工材料7として金属ワイヤが用いられるものとして説明を進める。また、加工の方向として、本実施の形態では、ワーク3を+X方向に走査し、-X方向、すなわち加工材料7が供給される方向と反対方向にビードが延びていくように形成する条件で説明するが、駆動ステージ6を駆動することでワーク3を-X方向に走査しながら、+X方向、すなわち加工材料7が供給される方向と同じ方向にビードが延びていくように形成することもできる。ここで、以降の実施の形態も含めて、ビードは線状に延びるように形成されるものとして説明するが、点状に形成したビードを繋げて一つのビードとするなど、その他のビード形成方法でも良い。
 高さ計測用のライン照明8は、加工ヘッド2の側面に取り付けられワーク3または形成済みの造形物4上の計測位置に向けてラインビーム40を照射する。計測位置は、加工材料7の供給方向などを考慮して決定される。例えば、計測位置は、加工点を基準として加工材料7の供給方向と反対側とすると、加工材料7に遮られることなく計測位置を照明するのが容易となる。ラインビーム40は、ビードが造形される方向に対して直角であり、駆動ステージ6の上面に対して平行な方向(Y方向)に広がったビームを形成するようシリンドリカルレンズなどを用いて形成される。したがって、ラインビーム40は、形成済みの造形物4にライン状に照射される。計測位置に照射されたラインビーム40は計測位置で反射され、対物レンズ13に入射し、ビームスプリッタ12とバンドパスフィルタ14とを透過して、集光レンズ15により受光部16に結像される。
 対物レンズ13と集光レンズ15とを合わせて受光光学系と呼ぶ。受光光学系は、例えば、対物レンズ13および集光レンズ15のレンズ2枚を用いて構成されるが、集光レンズ15を凸レンズと凹レンズとの2枚構成にするなど3枚以上のレンズを用いた構成でも良く、受光部16に結像できる機能を有していれば良い。受光部16は、CMOS(Complementary Metal Oxide Semiconductor)イメージセンサなどの受光素子を搭載したエリアカメラなどが用いられるが、二次元に画素が配列された受光素子を備える構成であれば良い。なお、ビームスプリッタ12から受光部16までの光学系内に、ラインビーム40の照射波長のみを透過するバンドパスフィルタ14を入れておくことが望ましい。バンドパスフィルタ14を備えることで、加工光、熱輻射光、外乱光などのうち、不必要な波長の光を除去することができる。
 積層造形装置100は、加工点に加工材料7として金属ワイヤを供給し、加工点に加工光30を照射することで、形成済みの造形物4の上に新たな層を積層して新たな造形物4とする付加加工を行う。図4は、実施の形態1にかかる造形物4に対する金属ワイヤの供給口の高さを示す図である。ここで、金属ワイヤの供給口の高さとは、ワーク3の上面を基準とした金属ワイヤの供給口の高さを示す。以降では、金属ワイヤの供給口の高さは、単に供給口の高さと呼ばれることもある。なお、供給口からの金属ワイヤの出射量を既知の値に設定しておけば、供給口の高さから金属ワイヤの先端部の高さも算出することができる。供給口からの金属ワイヤの出射量は、供給口から金属ワイヤの先端部までの長さを表す。供給口の高さを制御することによって、金属ワイヤの先端部の高さを制御することができる。ここでは、供給口からの金属ワイヤの出射量は一定となるように制御され、供給口の高さと金属ワイヤの先端部の高さとは1対1に対応するものとする。また、供給口の高さの適切な高さの範囲は、造形済みの造形物4の高さに依存する。図4に示す通り、形成済みの造形物4に応じた金属ワイヤを適切な高さで供給できなければ、加工結果に不具合が発生する。例えば、図4に示す形成済みの造形物4に応じた供給口の適切な高さ範囲をha±αとする。図4(a)では、供給口の高さは、ha±αの範囲の中央である。つまり、図4(a)では、供給口の高さが、haである。図4(a)においてha+αを上限値21として示す。図4(a)においてha-αを下限値20として示す。図4(a)では、供給口の高さはhaであり、ha±αの範囲内であるため、加工結果に不具合は発生しない。しかし、図4(b)では、供給口の高さhbは、hb>ha+αであり、ha±αの範囲外である。この場合、加工光30が照射されて溶けた金属ワイヤが形成済みの造形物4に十分付着せず、溶滴71が発生し、加工後の造形物4に凹凸が発生する。また、図4(c)では、供給口の高さhcは、hc<ha-αであり、ha±αの範囲外である。この場合、金属ワイヤが形成済みの造形物4の方向に押し付けられ過ぎ、加工光30が照射されても金属ワイヤが全て溶けきらず、金属ワイヤの溶け残り72が発生する。この結果、加工後の造形物4に溶け残った金属ワイヤが含まれてしまう。このように、形成済みの造形物4に応じた供給口の高さを加工中に適切な値に維持し続けることが高精度な加工には不可欠である。
 ワーク3に対して造形物4を加工し始める1層目の場合、ワーク3の高さが平坦であれば、供給口の高さを一定に維持して加工すればよい。しかし、2層目以降は、前回(前層)までに形成済みの造形物4上に加工を行う必要がある。ここで、前回までに形成済みの造形物4の高さが設計値通りの高さになっていない場合が考えられる。この場合には、前回の積層時の供給口の高さから、設計上の1層分の高さだけ供給口を上昇させても、実際には、前回の積層時までの造形物4の高さが設計値と異なる部分では、供給口の高さが今回積層する部分に対応する供給口の適切な範囲内ではない可能性がある。また、位置によって造形物4の高さが一定になっていない場合も考えられる。もし、2層目では適切な高さ範囲(ha±α)、言い換えると許容誤差範囲に入っていたとしても、複数回加工を行い、n層目(n≧2)を加工する場合には積層誤差がn回加算されるため、許容誤差範囲(ha±α)に入らない可能性がある。ここで、加工後の造形物4の高さを計測し、次回の加工時にこの計測結果を利用して、最適な制御を行う必要がある。また、造形物4の高さは、造形物4の温度が低下した後に計測することが望ましい。
 次に、計測された形成済みの造形物4の高さを用いて、形成済みの造形物4に対して金属ワイヤを適切な高さに維持する方法について説明する。造形物4の加工後、加工とは別に再び同一経路を計測のために走査し、形成済みの造形物4の高さを計測することも可能である。しかし、この場合には、1層の付加加工に対して、加工経路を2度走査する必要があるため、時間がかかる。ここで、加工中に形成済みの造形物4の高さを計測することで、1層の付加加工に対する加工経路の走査回数を一度にしつつ、付加加工と形成済みの造形物4の高さの計測との両方を行うことができる。
 図5は、実施の形態1にかかる加工中の加工点のXZ断面を示す図である。図5は、ビードが+X方向(ワイヤと同じ方向)に延びるように加工する場合である。図5において、形成済みの造形物4の高さを計測する位置は、加工点に対して-X方向に移動した位置である。ここで、付加加工時に加工点に加工光30が照射され、ワーク3上で金属ワイヤが溶けた状態となっている領域をメルトプール31と呼ぶ。
 例えば、図5のように-X方向にワーク3を載せた駆動ステージ6を走査すれば、加工点はワーク3上を+X方向に移動し、+X方向に延びるように直線状の造形物4を加工することができる。加工点のメルトプール31近傍は高温となっており、駆動ステージ6を-X方向に移動させていくと、メルトプール31は自然冷却されるが、加工後のメルトプール31の後ろ(-X方向)には金属が高温となった領域、すなわち高温部32が発生し、さらに時間が十分たつと、金属のビードとして一定の形状に凝固する。このビードが積層されて造形物4が形成される。高温部32は、加工点を基準として加工点がワーク3上を移動していく方向と反対方向である-X方向に発生する。ここで、加工点がワーク3上を移動していく方向は、加工点の移動経路に沿った方向を指す。
 ここで、メルトプール31端を加工点の中心(加工光30の光軸)から距離W離れた位置とし、さらに、ビードが高温となっており、十分凝固していない高温部32をメルトプール31の端から距離U離れた位置とする。メルトプール31では加工材料7が溶融しており、形成済みの造形物4の高さを正確に計測することが困難である。また、メルトプール31は、金属などの加工材料7を溶かす程の高温になるため、非常に高輝度な熱輻射光が発生し、この熱輻射光が計測の妨げとなる。したがって、高さが計測される計測位置は、加工点の中心からW以上離れた位置とすることが望ましい。すなわち、計測位置は、メルトプール31と重ならないことが望ましい。
 また、加工点を基準として-X方向には、加工点の中心から距離W+Uの範囲に高温部32が存在することになる。高温部32ではビードが完全に凝固しておらず、正確な高さの測定が困難となる。したがって、加工点に対して-X方向に移動した位置で高さを計測する場合には、ラインビーム40の照射位置Lは加工点の中心から少なくとも距離W+U以上離れた位置とすることがより望ましい。すなわち、高さが計測される計測位置は、加工時に加工材料7が溶解している範囲から外れた位置とすることがより望ましい。
 図6は、実施の形態1にかかる加工中の加工点のXZ断面を示す別の図である。図6は、ビードが-X方向(ワイヤと反対方向)に延びるように加工される場合である。図6においても、形成済みの造形物4の高さを計測する位置は、加工点に対して-X方向に移動した位置である。図6のように、+X方向にワーク3を載せた駆動ステージ6を走査すれば、加工点はワーク3上を-X方向に移動し、-X方向に延びるように直線状の造形物4を加工することができる。この場合にも、メルトプール31の外側の高温部32は、加工点を基準として加工点がワーク3上を移動していく方向と反対方向に発生する。図6の場合には、加工点はワーク3上を-X方向に移動するので、メルトプール31の外側の高温部32は加工点に対して+X方向に発生する。これに対して、形成済みの造形物4の高さは、加工点を基準として加工点がワーク3上を移動していく方向と同一方向である-X方向の位置で計測される。加工点に対して-X方向には高温部32は発生しないため、計測位置はメルトプール31のみ避ければよい。したがって、ラインビーム40の照射位置Lは加工点の中心から少なくとも距離W以上離れた位置とすればよい。
 このように、加工点を基準として加工点がワーク3上を移動していく方向と同一方向、すなわち、加工経路の進行方向に高さの計測位置を設けることで、加工点に対して近い位置で高さを計測することができる。言い換えると、加工点が移動する経路上であり、時間が経過したときに加工点が移動していく位置を計測位置とすると、加工点に近い位置で高さを計測することができる。したがって、加工点から見て、加工点がワーク3上を移動していく方向、すなわち、加工経路の進行方向に高さの計測位置を設けることがより望ましい。図6のように、加工点に対して高温部32が発生する方向とは反対方向に計測位置を設けることで、ビードが高温となり、凝固せずに溶けている影響を受けずに、しかも加工点に対して近い位置を計測することができる。本実施の形態の積層造形装置100において、ラインビーム40は図6のように加工点から見て加工経路の進行方向に照射される。
 図5のように、加工点に対して高温部32が発生する方向と同一方向に計測位置を設けた場合でも、ラインビーム40の照射位置が加工点から十分遠ければ、ビードも十分凝固している。しかしながら、ラインビーム40の照射角度を一定にする場合、ライン照明8および受光光学系の設置位置を加工ヘッド2から離す必要があり、装置が大きくなる。または、受光部16の撮影エリア内にラインビーム40が入るように、視野が大きくなるよう受光光学系の倍率を決定する必要があり、受光部16の1pixel当たりの解像度が低下するという課題がある。また、加工ヘッド2とライン照明8とを一体化した構成では計測できなくなることも考えられる。図5のように-X方向に駆動ステージ6を走査し、+X方向からワイヤを供給する構成の場合、加工経路の進行方向(+X方向)を計測しようとすると、ワイヤの供給部が計測の妨げになる。しかし、ラインビーム40を用いる方法以外でワイヤの供給部が計測の妨げとならない場合には、図5のように-X方向に駆動ステージ6を走査する構成でも良い。
 次に、ワイヤ高さ制御の手順を説明する。図7は、実施の形態1にかかるワイヤ高さ制御の手順を示すフローチャートである。ワイヤ高さとは、ワーク3の上面を基準とした、加工光30が照射される加工材料7の先端部の高さを示す。なお、ワイヤ高さは、加工材料7が溶融していない状態での加工材料7の先端部の高さである。まず、1層目の付加加工を開始する(ステップS1)。平坦なベースプレートでは、1層目の付加加工時に計測位置にビードはないため、高さ計測の必要は無い。しかし、造形物4上に加工する場合、またはベースプレートがひずんでいる場合など、正確な積層加工を行うために1層目の高さ計測が有効である。ここで、1層目の付加加工と共に造形物4の高さの計測を開始し(ステップS2)、計測位置に対する造形物4の高さの計測結果を保存する(ステップS3)。そして、計測した造形物4の位置で次回の加工をする場合には、ステップS3で保存した計測結果を用いて加工制御を行う(ステップS4)。ここで、計測できる造形物4の高さの間隔は、受光部16で受光素子として用いるイメージセンサのフレームレートと加工軸の走査速度(加工点の走査速度)とで決定される。例えば、フレームレートをF[fps]、駆動ステージ6の移動速度をv[mm/s]とすると、造形物4の高さの加工点の走査方向の計測間隔Λ[mm]は、Λ=v/Fとなる。このため、加工点から計測点までの距離をLとすると、L/Λ回前の周期で計測した結果が今回の加工位置に対応する計測結果となる。実際には加工点のステージの位置と計測位置とが紐づけられているため、現在の加工位置の計測結果を参照することができる。つまり、n層目を加工する際に、ある計測位置のn-1層目の積層物の高さを計測し、この計測からL/Λ周期後に、加工位置である前述した計測位置を加工する際に計測した計測結果を用いて、最適な加工制御を行う。つまり、制御部10は、計測位置に新たに積層するときの加工条件を計測結果に応じて制御する。
 図8は、実施の形態1にかかる積層造形装置100が第2層目を加工する場合のワイヤ高さを示す図である。加工制御の方法について、図8を用いて説明を行う。1層目で形成された造形物4が、目標の積層高さT0に対して、領域Iでは設計通り高さT1(=T0)で造形できたとする。ここで、目標の積層高さとは、造形物4に新たに積層されるあらかじめ設定された積層物の高さを示す。また、1層目で形成された造形物4は、領域IIでは設計より高いT2(>T0)で造形でき、領域IIIでは設計より低いT3(<T0)で造形できたとする。ここで、造形物4を目標の積層高さに加工するための、形成済みの造形物4を基準としたときのワイヤ高さを目標の積層高さと同じT0とすると、2層目を積層する際に積層高さを2×T0とするためにはワイヤ高さを2×T0とすれば良いことになる。ここで、簡単のため、造形物4を目標の高さに加工するためのワイヤ高さを、目標の造形物4の高さと同じT0として説明するが、実際には異なっていても良い。
 領域Iの2層目を加工する場合には、2層目の計測結果T1が目標の積層高さT0と同じであるため、特に加工条件を変更する必要は無い。しかし、領域IIを加工する場合には、計測した積層高さT2が目標の積層高さT0よりも高いため、2層目の積層高さを2×T0とするためには、2層目の積層量をT2-T0とする必要がある。積層量を変更するための加工パラメータ(加工条件)として、加工レーザ出力、ワイヤ送り速度、ステージの送り速度など様々なパラメータが考えられるが、ここでは、ワイヤ送り速度を制御する場合について説明する。領域IIの場合には、積層量を設計より小さくする必要があるため、ワイヤ送り速度を遅くし、金属材料の供給量を減らすことで、1層目と合わせた2層目の積層量が2×T0となるように制御する。同様に、領域IIIを加工する場合には、計測した積層高さT3が目標の積層高さT0よりも小さいため、2層目の積層量をT0-T3とする必要がある。このため、ワイヤ送り速度を速くして、金属材料の供給量を多くすることで、1層目と合わせた2層目の積層量が2×T0となるように制御する。つまり、加工条件は、造形物4に新たに積層されるあらかじめ設定された積層物の高さと計測結果との差に応じて制御部10によって制御される。
 このように、n層目を加工する際に直前に計測したn-1層目の積層高さの計測結果を用いて、加工条件を最適に制御することで図4に示した通り、常に目標のワイヤに対する積層高さをha±αに維持することができる。このため、加工不具合を発生させずに加工を継続することができる。ここでは、ワイヤ送り速度を変更して加工制御を行ったが、別のパラメータ、または複数のパラメータを変更して加工制御を行っても良い。例えば、積層量を少なくしたい場合には、レーザ出力を小さくし、ステージ速度を速くするなどの方法が考えられる。また、n層目を加工する前にn-2層目の平均高さが目標の積層高さT0に対して大きく異なっていた場合には、n-1層目の加工終了後にn層目を加工するために上昇させるワイヤ高さの変化量を設計値であるT0に対してn-2層目を計測した平均高さとし、n層目加工中にn-1層目の計測結果を用いて最適な加工制御を行う方法も考えられる。また、図8のように、n層目の領域I、n層目の領域II、n層目の領域IIIでそれぞれの領域の造形物4の高さの計測結果が異なる場合、領域ごとに上昇させるワイヤ高さの変化量を変更することも考えられる。
 次に、加工後のビード高さを計測するための、光切断方式を用いた高さ計測動作について説明する。図9は、実施の形態1にかかるライン照明8が投影された造形物4を拡大したXZ断面を示す図である。ワーク3上面に対する造形物4の高さを△Zとし、ラインビーム40の照射角度をθとすると、ワーク3上面のラインビーム40の照射位置と、造形物4上のラインビーム40の照射位置の差異△Xは、△X=△Z/tanθで表される。図10は、実施の形態1にかかる造形物4にラインビーム40を照射した際の受光素子上に結像されたラインビーム40の画像を示す図である。造形物4の高さとワーク3の高さとの違いにより、ラインビーム40の照射位置は△X’ずれて投影される。ここで、受光光学系の倍率Mを用いると、△X’=M×△Xとなる。イメージセンサの1画素の大きさをPとすると、1画素当たりの高さ変位量△Z’は、△Z’=P×tanθ/Mと表される。例えば、P=5.5μm、M=1/2、θ=72degとすると、△Z’=33.8μmとなる。このようにイメージセンサ画像のラインビーム40の投影位置から、三角測量の原理により、センサから対象物までの高さを算出することができる。また、ワーク3上面と造形物4の上面とのラインビーム40の照射位置の差異から造形物4の高さを算出することができる。もし、造形物4の高さがワーク3上面に対して高くなり、ワーク3上面からのラインビーム40の反射光が受光できなくなったとしても、受光素子上の視野内の造形物4上面から反射したラインビーム40の照射位置を用いて、センサからの距離を算出することができる。
 ラインビーム40の照射位置は、一般的にラインビーム40の投影パターンのX方向重心位置から計算される。各Y方向画素に対して、X方向の出力を算出し、ラインビーム40の断面強度分布から重心位置を算出する。ここで、ラインビーム40の照射位置の算出方法は重心位置に限らず、光量のピーク位置など適切に選択される。ラインビーム40の照射幅は、照射位置の算出に対して十分な大きさである必要がある。例えば、重心計算の場合には、狭すぎると重心計算ができず、太すぎるとビームの強度パターン変化の影響で誤差が生じやすい。このため、5~10pixel程度が望ましい。また、ラインビーム40のラインの長さ(ラインビーム40の照射幅)は造形物4の幅に対して十分長ければ良い。このように画像のY方向の各画素に対してX方向の輝度重心位置を算出し、この結果を高さに換算することで、造形物4の幅方向における造形物4の高さの断面分布を計測することができる。造形物4の高さを計測するために用いられる照明光として、スポットビームを用いる場合には、造形物4の高さの断面分布を計測することはできないが、スポットの大きさを適切に選択することで、誤差の少ない測定が可能となる。
 上記では、加工していない状態でラインビーム40から造形物4の高さを算出する方法について説明したが、加工中に計測する場合には、加工点が高輝度な発光点となり、メルトプール31の像が画像中心に写る。ここで、バンドパスフィルタ14を受光光学系内に設置し、ライン照明8の出力を十分大きくすることで、メルトプール31での発光の影響を受けずにラインビーム40から高さを計測することができる。
 図11は、実施の形態1にかかる加工中の受光素子であるイメージセンサの結像結果を示す概略図である。上述の通り、ラインビーム40の照射位置をメルトプール31から離しているため、加工点50から出た熱輻射光とラインビーム40の反射光とを分離することが可能である。もし、高温部32に計測位置を設けた場合には、ビードが完全に凝固しておらず、液状になっていると、ラインビーム40が十分反射されず、ビード上の照度分布が計測できなくなる可能性がある。また、仮に計測できたとしても計測位置によって溶け方が異なるため、計測位置に対するビード高さに計測誤差が発生する。また、凝固後の状態と溶けている状態とでは金属の熱収縮により誤差が生じる。しかし、本実施の形態の積層造形装置100は、加工点50に対して加工点50の移動方向を計測するので、メルトプール端よりも計測位置を離しておければ、高温部32でビードが溶けている影響を受けず、高精度に積層物高さを計測することができる。
 ここで、計測したい高さの範囲をDとすると、距離Dに対するラインビーム40の移動量Sは、S=D×M/tanθで表されるため、画像中心からメルトプール端までの距離Wに対してW+Sとなる視野を受光光学系としては最低限確保できるように設計することが望ましい。このように、本実施の形態の積層造形装置100は、加工中に積層加工の進行方向のビード高さを計測し、次回加工時に加工条件を適切となるように制御することで、目標の積層物高さを維持することができる。また、本実施の形態の積層造形装置100は、ワイヤ供給口と積層物との間の高さを一定に維持できるため、高精度積層加工を実現することができる。よって、積層造形装置100は、造形物4を形成する精度の低下を抑制することができる。さらに、本実施の形態の積層造形装置100は、加工点50に近い位置のビード高さを計測できるため、高さセンサを加工ヘッド2と一体化することができ、装置を小型化することができる。
 今回は高さセンサと加工ヘッド2とを一体化して装置の小型化を行う構成について説明したが、厳密に高さセンサと加工ヘッド2とが一体化している必要は無く、加工ヘッド2とは別体として高さセンサを配置し、加工点50の近傍の積層物高さを計測する場合でも同様の効果が得られることは言うまでもない。ここで、本発明における高さセンサでは、ラインビーム40を用いて高さ計測を行うため、加工用と高さ計測用とを併用しない集光レンズ15は、ラインビーム40のみを受光部16に結像できる光学系であった方が良い。
 図12は、図1のXZ平面の断面を示す別の図である。例えば、図12に示すように、対物レンズ13の中心軸に対して直角な方向に、対物レンズ13の中心軸と、集光レンズ15の中心軸とを軸ずれさせておいてもよい。ここで、対物レンズ13は、加工位置に加工光30を集光するレンズである。したがって、図12における構成では、対物レンズ13を透過した反射光を受光部16に結像する光学系の中心軸の位置は、加工位置に加工光30を集光する対物レンズ13の中心軸の位置とは異なっている。このような構成とすることで、計測用の照明光であるラインビーム40の反射光をできるだけレンズの収差の影響を受けずに受光素子に結像できるようになり、高さ計測精度を向上できる。
 上記のように中心軸の位置をずらした構成とする代わりに、対物レンズ13を透過した反射光を受光部16に結像する第三の結像光学系の中心軸が、加工位置に加工光30を集光する対物レンズ13の中心軸に対して傾いた構成とすることでも同様の効果が得られる。また、集光レンズ15のレンズ面の形状を変更しても良い。また、受光部16の視野は、高さ計測範囲内でラインビーム40が移動する範囲より広ければよく、ラインビーム40の移動範囲だけを拡大するような結像系を用いることでラインビーム40の解像度を上げることができ、高さ計測精度を向上することができる。
実施の形態2.
 実施の形態2にかかる積層造形装置100は、実施の形態1におけるものと構成は同様であるが、高さ計測に用いるラインビームの形状が異なる。実施の形態2にかかる積層造形装置100は、ラインビーム40の照射形状が直線ではなく、加工点50を中心とした円形形状である。このようにラインビーム40の照射形状を円形とすることで、加工形状が直線ではなく、加工点50の走査方向が加工中に変化する場合にも、造形物4に対して直角に横切る方向(造形物4の幅方向)にライン照明8を照射することができるため、走査ステージの回転機構を無くすことができ、装置を小型化できる。例えば、駆動ステージ6をXY平面内で回転させれば、X軸およびY軸に対して斜め方向に走査する場合でも、計測位置が加工点50の前方となるようにすることができる。しかし、ラインビーム40の照射形状を円形とすることで、駆動ステージ6を回転させなくても、計測位置の少なくとも一部が、加工点50の前方となるようにすることができる。
 図13は、実施の形態2にかかる造形物4の形成方向を変更した加工を行う場合のXY断面を示す第1の図である。なお、図13以降において、点線で囲われた範囲は、積層造形装置100が積層する予定の範囲を示す。図13(a)に示すように、回転ステージを用いて造形物4の形成方向を変更した加工を行う場合には、駆動ステージ6上のXY平面の回転ステージを用いて、図13(b)に示すように、ワーク3をθ回転させ造形を行うことができるので、加工方向は常に一定である。この場合、直線状のラインビーム40を用いても、常に造形物4の加工方向に対して垂直にラインビーム40を照射することができる。
 図14は、実施の形態2にかかる造形物4の形成方向を変更した加工を行う場合のXY断面を示す第2の図である。図14(a)に示すように、回転ステージがない場合に造形物4の形成方向を変更した加工を行う場合には、X軸方向の動作速度とY軸方向の動作速度とを適切な比率に制御することで、加工方向を変更することができるが、XY平面に対して斜め方向に加工する必要がある。しかし、直線状のラインビーム40を用いると、図14(b)に示すように、斜め方向に加工する場合に、造形物4が延びるように積層される方向に対して垂直な断面を計測することができなくなる。
 図15は、実施の形態2にかかる造形物4の形成方向を変更した加工を行う場合のXY断面を示す第3の図である。図15(a)に示すように、ライン照明8は、円形のラインビーム40aを用いる。この場合、図15(b)に示すように、斜め方向に造形物4の加工を行っても、ラインビーム40aが加工点50を中心とした円形状で照射されるため、加工方向に依らず、常に加工点50から一定の距離の造形物4の高さを計測することができる。本実施の形態の積層造形装置100は、ラインビーム40aが円状に照射された照射エリアのうち、加工点50を基準としてワーク3上における加工点50の移動方向の前方にある照射領域を用いて高さ計測を行う。
 受光部16には円状の照射エリアの全周からの反射光が結像されるが、本実施の形態の積層造形装置100は、これらのうち加工点50の移動方向の前方にある円弧からの反射光の像を用いて高さを計測する。ワイヤを+X方向から装填する場合、一般には、+Y方向~-X方向~-Y方向の180度の範囲で加工されることが多い。このため、ここでは、円形のラインビーム40aについて説明したが、厳密に円形である必要はなく、楕円形状であっても良く、半円など、一部途切れていても問題はない。ラインビームのラインが延びる方向の変化量が90度以上であれば、加工点50がどの方向に走査される場合であっても、形成済みの造形物4の高さ測定が可能である。例えば、円弧状のラインビーム40aの場合、中心角が90度以上であればよい。もし、-X方向から+Y方向までの90度の円弧状のラインビームを用いるとすると、+X方向、-Y方向にビードが延びるように形成される場合には、加工直後を計測することとなり、-X方向、+Y方向にビードが延びるように形成される場合には、加工直前を計測することとなる。また、曲線状のラインビームであれば、接線方向の変化量が90度以上であればよい。また、加工方向が互いに垂直な2方向だけであれば、正方形などの四角形状でも良い。
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
 1 加工用レーザ、2 加工ヘッド、3 ワーク、4 造形物、5 固定具、6 駆動ステージ、7 加工材料、8 ライン照明、9 演算部、10 制御部、11 投光レンズ、12 ビームスプリッタ、13 対物レンズ、14 バンドパスフィルタ、15 集光レンズ、16 受光部、20 下限値、21 上限値、30 加工光、31 メルトプール、32 高温部、40,40a ラインビーム、50 加工点、71 溶滴、72 溶け残り、100 積層造形装置、200 制御回路、200a プロセッサ、200b メモリ。

Claims (10)

  1.  ワーク上で加工位置を移動させながら溶融した加工材料を前記加工位置で積層することで付加加工を行うとともに、前記付加加工を繰り返して造形物を形成する積層造形装置であって、
     前記ワーク上に形成済みの前記造形物の計測位置における高さを示す計測結果を出力する高さ計測部と、
     前記計測位置に新たに積層するときの加工条件を前記計測結果に応じて制御する制御部と、
     を備えることを特徴とする積層造形装置。
  2.  前記計測位置は、
     前記加工位置の移動に伴って移動し、前記加工位置とは異なる位置であることを特徴とする請求項1に記載の積層造形装置。
  3.  前記計測位置は、
     前記加工位置から見て前記加工位置が前記ワーク上を移動していく方向に位置することを特徴とする請求項2に記載の積層造形装置。
  4.  前記高さ計測部は、
     前記計測位置に計測用の照明光を照射する計測用照明と、
     前記計測用の照明光が前記計測位置で反射した反射光を受光素子で受光する受光光学系と、
     を有し、
     前記受光素子上における前記反射光の受光位置に基づいて、前記ワーク上に形成された造形物の高さを算出することを特徴とする請求項1から3のいずれか1つに記載の積層造形装置。
  5.  前記加工材料を溶融する加工光を前記加工位置に結像する加工光学系を有することを特徴とする請求項4に記載の積層造形装置。
  6.  前記受光光学系は、
     前記加工光学系と一体であることを特徴とする請求項5に記載の積層造形装置。
  7.  前記計測位置は、
     前記受光素子の視野内であることを特徴とする請求項5または6に記載の積層造形装置。
  8.  前記計測用の照明光は、
     ライン状に照射されるラインビームであることを特徴とする請求項5から7のいずれか1つに記載の積層造形装置。
  9.  前記計測用の照明光は、
     円形状に照射されるラインビームであることを特徴とする請求項5から7のいずれか1つに記載の積層造形装置。
  10.  前記ラインビームのラインが延びる方向の変化量が90度以上であることを特徴とする請求項8または9に記載の積層造形装置。
PCT/JP2018/041751 2018-11-09 2018-11-09 積層造形装置 WO2020095454A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2018/041751 WO2020095454A1 (ja) 2018-11-09 2018-11-09 積層造形装置
JP2019507958A JP6576593B1 (ja) 2018-11-09 2018-11-09 積層造形装置
CN201880099220.0A CN112955270B (zh) 2018-11-09 2018-11-09 层叠造形装置
DE112018008046.3T DE112018008046T5 (de) 2018-11-09 2018-11-09 Vorrichtung zur additiven fertigung
US17/285,910 US20210370409A1 (en) 2018-11-09 2018-11-09 Additive manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/041751 WO2020095454A1 (ja) 2018-11-09 2018-11-09 積層造形装置

Publications (1)

Publication Number Publication Date
WO2020095454A1 true WO2020095454A1 (ja) 2020-05-14

Family

ID=67982915

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/041751 WO2020095454A1 (ja) 2018-11-09 2018-11-09 積層造形装置

Country Status (5)

Country Link
US (1) US20210370409A1 (ja)
JP (1) JP6576593B1 (ja)
CN (1) CN112955270B (ja)
DE (1) DE112018008046T5 (ja)
WO (1) WO2020095454A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3970950A1 (de) * 2020-09-22 2022-03-23 Siemens Aktiengesellschaft Anordnung zur additiven fertigung eines dreidimensionalen druckobjekts
EP4015987A1 (en) * 2020-12-18 2022-06-22 Lortek S. Coop. Height measuring system in laser metal depositions and corresponding measuring method

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110545947B (zh) * 2017-04-19 2021-05-28 沃尔沃卡车集团 具有用于接触钎焊焊丝并与检测器相关联地阻挡激光束的第一部分的夹具的激光钎焊系统、监测激光钎焊系统的方法
CN114222642A (zh) * 2019-08-07 2022-03-22 三菱电机株式会社 层叠造形装置、层叠造形方法及层叠造形程序
CN114630721B (zh) * 2019-11-11 2024-04-16 三菱电机株式会社 层叠造形装置
JP7398650B2 (ja) * 2020-01-28 2023-12-15 パナソニックIpマネジメント株式会社 レーザー加工装置、及びレーザー加工装置の出力制御装置
US20230101500A1 (en) 2020-03-19 2023-03-30 Mitsubishi Electric Corporation Additive manufacturing path generation apparatus, additive manufacturing path generation method, and machine learning apparatus
DE112020007549T5 (de) * 2020-08-26 2023-06-15 Mitsubishi Electric Corporation 3d-druckvorrichtung
JP2022106172A (ja) 2021-01-06 2022-07-19 株式会社神戸製鋼所 積層造形物の製造方法
CN113770389A (zh) * 2021-08-24 2021-12-10 清华大学 定向能量沉积设备
CN117161413B (zh) * 2023-11-02 2024-03-15 成都飞机工业(集团)有限责任公司 一种实时修复3d打印缺陷的装置及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009083326A (ja) * 2007-09-28 2009-04-23 Fujifilm Corp 光学部材の製造方法およびこの製造方法により形成された光学部材
JP2017160471A (ja) * 2016-03-07 2017-09-14 セイコーエプソン株式会社 三次元造形物の製造方法、三次元造形物製造装置および三次元造形物
WO2018053299A1 (en) * 2016-09-15 2018-03-22 Arconic Inc. Systems and methods for z-height measurement and adjustment in additive manufacturing
WO2018147296A1 (ja) * 2017-02-08 2018-08-16 株式会社神戸製鋼所 積層制御装置、積層制御方法及びプログラム

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10267628A (ja) * 1997-01-23 1998-10-09 Hitachi Ltd 3次元形状検出方法およびその装置並びに基板の製造方法
JPH11245308A (ja) * 1998-02-27 1999-09-14 Toyota Motor Corp 積層造形に用いられる散布方法及び散布装置
DE10007711C1 (de) * 2000-02-19 2001-08-16 Daimler Chrysler Ag Vorrichtung und Verfahren zum Sintern eines Pulvers mit einem Laserstrahl
WO2003042895A1 (en) * 2001-11-17 2003-05-22 Insstek Inc. Method and system for real-time monitoring and controlling height of deposit by using image photographing and image processing technology in laser cladding and laser-aided direct metal manufacturing process
JP5981474B2 (ja) * 2014-03-18 2016-08-31 株式会社東芝 ノズル装置、積層造形装置及び積層造形物の製造方法
CN107428080A (zh) * 2015-03-12 2017-12-01 株式会社尼康 三维造型物制造装置及构造物的制造方法
CN104807410B (zh) * 2015-04-14 2017-10-20 西安交通大学 激光熔覆快速成形层高测量装置与闭环控制方法
EP3271160B1 (en) * 2015-06-19 2020-07-29 Hewlett-Packard Development Company, L.P. Build material analysis
US10005229B2 (en) * 2015-08-31 2018-06-26 Xerox Corporation System for using optical sensor focus to identify feature heights on objects being produced in a three-dimensional object printer
JP6626036B2 (ja) * 2017-04-18 2019-12-25 ファナック株式会社 測定機能を有するレーザ加工システム
CN114630721B (zh) * 2019-11-11 2024-04-16 三菱电机株式会社 层叠造形装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009083326A (ja) * 2007-09-28 2009-04-23 Fujifilm Corp 光学部材の製造方法およびこの製造方法により形成された光学部材
JP2017160471A (ja) * 2016-03-07 2017-09-14 セイコーエプソン株式会社 三次元造形物の製造方法、三次元造形物製造装置および三次元造形物
WO2018053299A1 (en) * 2016-09-15 2018-03-22 Arconic Inc. Systems and methods for z-height measurement and adjustment in additive manufacturing
WO2018147296A1 (ja) * 2017-02-08 2018-08-16 株式会社神戸製鋼所 積層制御装置、積層制御方法及びプログラム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3970950A1 (de) * 2020-09-22 2022-03-23 Siemens Aktiengesellschaft Anordnung zur additiven fertigung eines dreidimensionalen druckobjekts
WO2022063625A1 (de) * 2020-09-22 2022-03-31 Siemens Aktiengesellschaft Anordnung zur additiven fertigung eines dreidimensionalen druckobjekts
EP4015987A1 (en) * 2020-12-18 2022-06-22 Lortek S. Coop. Height measuring system in laser metal depositions and corresponding measuring method

Also Published As

Publication number Publication date
JPWO2020095454A1 (ja) 2021-02-15
DE112018008046T5 (de) 2021-06-24
US20210370409A1 (en) 2021-12-02
CN112955270B (zh) 2024-02-13
CN112955270A (zh) 2021-06-11
JP6576593B1 (ja) 2019-09-18

Similar Documents

Publication Publication Date Title
WO2020095454A1 (ja) 積層造形装置
US11806810B2 (en) Shaping apparatus and shaping method
TWI727479B (zh) 造形裝置及造形方法
US20190381736A1 (en) Additive manufacturing having optical process monitoring
JP6765569B1 (ja) 積層造形装置、積層造形方法、および積層造形プログラム
JP6964801B2 (ja) 積層造形装置
CN115533303A (zh) 加工装置及加工方法
KR20190069472A (ko) 열 커팅 프로세스 모니터링 장치 및 그 방법
CN114630721B (zh) 层叠造形装置
JP6896193B1 (ja) 積層造形装置
JP2009241095A (ja) エネルギービーム加工装置及びエネルギービーム加工物製造方法
WO2024057496A1 (ja) 加工システム、データ構造及び加工方法
CN113853272A (zh) 造型系统
TWI783672B (zh) 層疊造形裝置及其校正方法
KR102224037B1 (ko) 레이저 성형 장치
WO2023238319A1 (ja) 加工システム及び加工方法
WO2023248458A1 (ja) 造形方法及び造形装置
JP2023127355A (ja) 付加製造装置、付加製造システムおよび付加製造装置の制御方法
JP2024011365A (ja) 芯ずれ検出装置、レーザ加工機、及び芯ずれ検出方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019507958

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18939360

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18939360

Country of ref document: EP

Kind code of ref document: A1