WO2020094128A1 - 小区间干扰协调方法、基站及存储介质 - Google Patents

小区间干扰协调方法、基站及存储介质 Download PDF

Info

Publication number
WO2020094128A1
WO2020094128A1 PCT/CN2019/116640 CN2019116640W WO2020094128A1 WO 2020094128 A1 WO2020094128 A1 WO 2020094128A1 CN 2019116640 W CN2019116640 W CN 2019116640W WO 2020094128 A1 WO2020094128 A1 WO 2020094128A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
cell
interference coordination
base station
interference
Prior art date
Application number
PCT/CN2019/116640
Other languages
English (en)
French (fr)
Inventor
邬钢
Original Assignee
深圳市中兴微电子技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市中兴微电子技术有限公司 filed Critical 深圳市中兴微电子技术有限公司
Priority to EP19881888.2A priority Critical patent/EP3879718A4/en
Publication of WO2020094128A1 publication Critical patent/WO2020094128A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/063Parameters other than those covered in groups H04B7/0623 - H04B7/0634, e.g. channel matrix rank or transmit mode selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0632Channel quality parameters, e.g. channel quality indicator [CQI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0689Hybrid systems, i.e. switching and simultaneous transmission using different transmission schemes, at least one of them being a diversity transmission scheme
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/086Weighted combining using weights depending on external parameters, e.g. direction of arrival [DOA], predetermined weights or beamforming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • H04J11/005Interference mitigation or co-ordination of intercell interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • H04J11/005Interference mitigation or co-ordination of intercell interference
    • H04J11/0059Out-of-cell user aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports

Definitions

  • the present disclosure relates to but is not limited to the field of wireless communication.
  • An important feature of the fifth generation mobile communication (5G) system is the use of large-scale antennas (Massive MIMO) as the key technology to improve system reliability and capacity, and expand cell coverage.
  • massive MIMO massive-scale antennas
  • ITU-IMT-2020 International Telecommunication Union-Advanced International Mobile Telecommunications
  • 3GPP 3G partner
  • 5G NR New Radio
  • Massive MIMO has a great improvement over the maximum 8-antenna port of the fourth-generation advanced long-term evolution (4G LTE-A).
  • the 5G system also adopts a more intensive site deployment networking form, and at the same time, the deployment of small cells (Small cells), relays (Relay), micro cells (Pico) cells and other forms are used to further encrypt the deployment of cells.
  • small cells Small cells
  • Relay relays
  • micro cells Pico cells
  • the R16 standardization discussion has specifically carried out research topics: IAB (Integrated Access and Backhaul for NR, NR integrated access and backhaul), which allows the terminal to capture more spectrum in a certain area and improve the spectrum efficiency of the system, thereby greatly improving System capacity.
  • IAB Integrated Access and Backhaul for NR, NR integrated access and backhaul
  • Anti-jamming technology for the anti-jamming technology using NAICS receivers, due to the complexity of the terminal, NAICS can only handle 1 to 2 strong interference sources, so NAICS has limited processing power and cannot meet the dense 5G NR networking The requirements of the complex interference environment; for the anti-interference technology using SRS interference measurement, SRS interference measurement can face the interference between UEs, but it cannot solve the interference problem between cells; for the anti-interference technology using cooperative beamforming, all For each beam, the UE measures the interference from the neighboring cell base station and the neighboring cell terminal in real time, and reports the interference measurement results. Each cell forms various interference conditions into tables, and performs interference coordination among the cells according to the interference table, because The amount of feedback is too large and prolonged to make it difficult to achieve.
  • an embodiment of the present disclosure provides an inter-cell interference coordination method, which is applied to a first base station.
  • the method includes: sending radio resource configuration information RRC to a first terminal of a cell; receiving the first terminal based on When the measured value of the signal receiving parameter reported by the RRC determines that the measured value meets the setting condition, the corresponding hybrid beamforming strategy is used to perform interference coordination according to the location information or beam number information of the first terminal.
  • an embodiment of the present disclosure provides a base station that includes a processor and a memory configured to store a computer program that can be run on the processor; wherein, when the processor is configured to run the computer program, Perform the inter-cell interference coordination method provided by any embodiment of the present disclosure.
  • an embodiment of the present disclosure provides a storage medium in which a computer program is stored.
  • the computer program is executed by a processor, the inter-cell interference coordination method provided by any embodiment of the present disclosure is implemented.
  • FIG. 1 is a schematic diagram of an application scenario of an inter-cell interference coordination method in an embodiment of the present disclosure
  • FIG. 2 is a first schematic flowchart of an inter-cell interference coordination method according to an embodiment of the present disclosure
  • FIG. 3 is a second schematic diagram of an application scenario of an inter-cell interference coordination method in an embodiment of the present disclosure
  • FIG. 4 is a second schematic flowchart of an inter-cell interference coordination method according to an embodiment of the present disclosure
  • FIG. 5 is a third schematic flowchart of an inter-cell interference coordination method according to an embodiment of the present disclosure.
  • FIG. 6 is a third schematic diagram of an application scenario of an inter-cell interference coordination method in an embodiment of the present disclosure.
  • FIG. 7 is a fourth schematic flowchart of an inter-cell interference coordination method according to an embodiment of the present disclosure.
  • FIG. 8 is a fifth schematic flowchart of an inter-cell interference coordination method according to an embodiment of the present disclosure.
  • FIG. 9 is a sixth schematic flowchart of an inter-cell interference coordination method according to an embodiment of the present disclosure.
  • FIG. 10 is a fourth schematic diagram of an application scenario of an inter-cell interference coordination method in an embodiment of the present disclosure.
  • FIG. 11 is a seventh schematic flowchart of an inter-cell interference coordination method according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram of an inter-cell interference coordination device according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic structural diagram of a base station according to an embodiment of the present disclosure.
  • FIG. 1 provides a schematic diagram of an operating system architecture applying an inter-cell interference coordination method provided by an embodiment of the present disclosure.
  • the operating system architecture includes: a first base station 110, a first terminal 120 corresponding to a cell where the first base station 110 is located, The second base station 130 and the second terminal 140 corresponding to the cell where the second base station 130 is located.
  • the first base station 110 and the second base station 130 may be a macro base station (gNB), a small base station (Small cell), a relay (Relay), a micro base station (Micro cell), a pico base station (Pico cell) or a home base station (HeNB ) Wait
  • the structure of the first base station 110 and the second base station 130 can be equal, for example, the first base station 110 and the second base station 130 are one of gNB, Small cell, Relay, Micro cell, Pico cell, HeNB; the first base station The structure of 110 and the second base station 130 may also be unequal, for example, the first base station 110 is gNB, the second base station 130 may be one of Small cell, Relay, Micro cell, Pico cell, HeNB, or the second base station 130 is gNB
  • the first base station 110 is one of Small cell, Relay, Micro cell, Pico cell, and HeNB.
  • the first terminal 120 and the second terminal 140 may be user equipment (UE) connected to a wireless communication network and transmitting and receiving data.
  • UE user equipment
  • terminal may be used such as “UE”, “Mobile Station (MS)”, “Mobile Subscriber Station (MSS)”, “Subscriber Station (SS)”, “Advanced Mobile Station (AMS)”, “Wireless Terminal ( WT) ",” Machine Type Communication (MTC) Device “,” Machine to Machine (M2M) Device “,” Device to Device (D2D) Device “,” Station (STA) ", etc. are replaced.
  • MTC Machine Type Communication
  • M2M Machine to Machine
  • D2D Device to Device
  • STA Station
  • the terminal mentioned in the specification is not limited to this, and may be any device connected to the wireless communication network provided by the present disclosure.
  • the interference to be handled by interference coordination includes downlink interference that interferes with neighboring cells and uplink interference that interferes with the terminal.
  • Interfering neighboring cells may include peer-to-peer homogeneous cells and heterogeneous cells with relays or micro cells.
  • FIG. 2 is a flowchart of an inter-cell interference coordination method according to an embodiment of the present disclosure.
  • the inter-cell interference coordination method may be applied to the first base station shown in FIG. 1.
  • the inter-cell interference The coordination method includes the following steps 201 and 202.
  • radio resource configuration information RRC is sent to the first terminal of the cell.
  • the first base station sends radio resource configuration information RRC (Radio Resource Control, Radio Resource Control Protocol) to the first terminal to enable the first terminal to measure signal reception parameters.
  • the signal reception parameters include CSI-RSRP (Channel State-Information-ReferenceSignalReceivePower), and / or CSI-RSRQ (Channel State-Information-ReferenceSignalReceiveQuality, channel state information reference signal Reception quality).
  • the first terminal reports the measured CSI-RSRP and / or CSI-RSRQ to the first base station.
  • the first terminal receives RRCs of multiple cells including interfering neighbor cells, thereby generating CSI-RSRP and / or CSI-RSRQ corresponding to the multiple cells, and uploading the CSI including the multiple cells -RSRP and / or CSI-RSRQ to the first base station.
  • step 202 when receiving the measurement value of the signal reception parameter reported by the first terminal based on the RRC and determining that the measurement value meets the setting condition, the corresponding hybrid is used according to the position information or beam number information of the first terminal
  • the beamforming strategy performs interference coordination.
  • the measured value meets the setting condition means that the measured value of the signal receiving parameter is lower than a preset threshold value.
  • the first base station receives the CSI-RSRP and / or CSI-RSRQ measurement values of the first terminal for multiple cells, and when the CSI-RSRP and / or CSI-RSRQ measurement values are all lower than the corresponding set threshold, then It is determined that the measured value meets the set condition.
  • determining that the measured value meets the setting condition refers to determining that the measured value of the information receiving parameter reported by the second terminal in the cell where the first base station is located and the corresponding interference neighboring area all meet the setting condition.
  • the determining, by the first base station, the interference neighboring cell corresponding to the cell in which the first base station receives includes: the first base station receives the CSI-RSRP and / or CSI-RSRQ measurement values of multiple cells sent by the first terminal, and determines that the ranking is in Two measured values of two, and two corresponding neighboring cells are determined according to the two measured values ranked first and second, and the corresponding two adjacent cells are the cell where the first terminal is currently located, respectively. And the corresponding interference neighbor cell (the first terminal is located at the edge of the two neighbor cells). In this way, by determining the interference neighboring cell corresponding to the cell where the first terminal is located, the first base station is convenient for adopting a corresponding hybrid beamforming strategy to perform interference coordination on the cell where the first terminal is located and the corresponding interference neighboring cell.
  • the measurement value uploaded by the first terminal includes CSI-RSRP corresponding to multiple cells. Assuming that the CSI-RSRP measurement value generated by the first terminal corresponding to each cell is Ai, the measurement value received by the first base station may be expressed as ⁇ A1, ... An ⁇ , where i ⁇ n, n is a natural number greater than 1.
  • the first base station determines that the values of each Ai are less than the first set threshold according to the received measurement value, it is determined that the first terminal is interfered by the neighboring cell, and the first terminal corresponds to the Ai corresponding to the largest and second largest in the measured value Interfere with the neighboring cell, and then coordinate interference with the neighboring cell.
  • the measurement value uploaded by the first terminal includes CSI-RSRQ corresponding to multiple cells.
  • the measurement value received by the first base station may be expressed as ⁇ B1, ... Bn ⁇ , where i ⁇ n, n is a natural number greater than 1.
  • the first base station determines that the value of each Bi is less than the second set threshold according to the received measurement value, it is determined that the first terminal is interfered by the neighboring cell, and according to the Bi corresponding to the largest and second largest in the measurement value, the first terminal corresponds to Interfere with the neighboring cell, and then coordinate interference with the neighboring cell.
  • the measurement values uploaded by the first terminal include CSI-RSRQ and CSI-RSRQ corresponding to multiple cells, and it is assumed that the first terminal performs weighted summation according to CSI-RSRQ and CSI-RSRQ to obtain the measurement values corresponding to each cell Ci
  • the measurement value received by the first base station can be expressed as ⁇ C1,... Cn ⁇ , where i ⁇ n, and n is a natural number greater than 1.
  • the beam number information refers to the beam number information corresponding to the pairing of the cell where the first terminal is located and the interference neighboring beam.
  • the cell where the first terminal is located is in a setting scenario relative to the interference neighboring cell, like the interference coordination requirement of a structured or heterogeneous cell, indoor or outdoor scenario.
  • the setting scenario includes an outdoor scenario where a cell where the first terminal is located is in a homogeneous cell relative to an interference neighbor cell, an indoor scenario of a homogeneous cell, a heterogeneous cell scenario, and so on.
  • the beamforming strategy can be set accordingly based on different scenarios of the first terminal to satisfy the first terminal in different scenarios Requirements for interference coordination during handover between different scenarios. For example, for outdoor scenes in homogeneous cells that can receive better satellite navigation signals, hybrid beamforming can be used to coordinate interference based on the location information of the terminal; for indoor scenes in homogeneous cells, due to obstructions, satellite navigation signals If the reception quality is not good, hybrid beamforming can be used for interference coordination based on beam number information; for heterogeneous cell scenarios, analog beamforming can be used for interference coordination based on beam number information corresponding to beam pairing between heterogeneous cells.
  • the first base station sends the RRC to the first terminal of the cell where it is received; when it receives the measurement value of the signal reception parameter reported by the first terminal based on the RRC and determines that the measurement value meets the setting conditions, Use the corresponding hybrid beamforming strategy for interference coordination according to the position information or beam number information of the first terminal.
  • the hybrid beamforming strategy may include starting digital beamforming and / or analog beamforming based on the location information or beam number information Interference coordination is carried out, so that the beam of the base station is directed to the terminal of the cell, which can effectively reduce the interference from the neighboring cell base station and the neighboring cell terminal, and is suitable for different complex cell deployment scenarios and multiple interference sources, improving terminal reception Performance and communication system capacity.
  • the cell where the first base station is located and the cell where the second base station is located are interference neighboring cells, and the first base station and the second base station can be interchanged, that is to say, the inter-cell interference coordination method provided in the above embodiment It may also be applied to the second base station shown in FIG. 1, and the method for inter-cell interference coordination applied to the second base station is the same as that applied to the first base station, and details are not described herein again.
  • the interference coordination using the corresponding hybrid beamforming strategy according to the location information of the first terminal includes: acquiring location information of the first terminal; determining and Whether the location information of the second terminal interfering with the neighboring cell is distinguishable, and the analog coordination or the digital beamforming is used to perform interference coordination to the first terminal according to the distinguishable result.
  • the first base station adopts a hybrid beamforming strategy corresponding to the location information of the terminal to perform interference coordination.
  • the first base station determines whether the location information of the second terminal interfering with the neighboring cell is distinguishable according to the location information of the first terminal, including: the first base station receives the location information of the second terminal sent by the second base station corresponding to the interfering neighboring cell , Determining whether the location information of the first terminal and the second terminal are distinguishable according to the location information of the first terminal and the location information of the second terminal.
  • the analog beam can distinguish the first terminal and the second terminal, so that the first base station can use the analog beam assignment for the first terminal
  • the second base station applies analog beamforming to the second terminal to suppress the interference of the first terminal, thereby completing interference coordination.
  • the analog beam cannot distinguish the first terminal and the second terminal, so that the first base station forms a
  • the second base station forms a digital beam for the second terminal under the selected analog beam to complete interference coordination under hybrid beamforming.
  • the method before determining whether the location information of the second terminal interfering with the neighboring cell is distinguishable according to the location information of the first terminal, the method further includes: acquiring a second signal sent by a second base station corresponding to the interfering neighboring cell The location information of the terminal; and / or after acquiring the location information of the first terminal, includes: sending the location information of the first terminal to the second base station corresponding to the interfering neighboring cell.
  • the first base station sends the location information of the first terminal to the second base station corresponding to the interfering neighboring cell before determining whether the location information of the second terminal interfering with the neighboring cell is distinguishable according to the location information of the first terminal
  • the first base station and the second base station are interchangeable, and the second base station will also send the position information of the second terminal to the first base station, so that the first base station can use the position information of the first terminal in its own cell and the received
  • the location information of the second terminal sent by the second base station corresponding to the interference neighboring cell determines whether the location information of the first terminal is distinguishable from the location information of the second terminal interfering with the neighboring cell.
  • the position information of the first terminal is transferred to the second base station through the X2 interface.
  • the second base station obtains the position information of the second terminal , Passing the location information of the second terminal to the first base station through the X2 interface.
  • the first base station After acquiring the position information of the first terminal and the second terminal, the first base station can determine whether the two can be distinguished by judging whether the difference between the position information of the first terminal and the second terminal meets the set discrimination threshold. According to the distinguishable result, analog beamforming or digital beamforming is used to perform interference coordination to the first terminal.
  • the corresponding interference coordination using analog beamforming or digital beamforming to the first terminal according to the distinguishable result includes: determining the location information of the first terminal and the first When the location information of the two terminals is distinguishable, use analog beamforming to the first terminal to perform interference coordination; when it is determined that the location information of the first terminal and the location information of the second terminal are indistinguishable, One terminal uses digital beamforming to perform interference coordination.
  • the first base station determines that the position information of the first terminal and the position information of the second terminal are distinguishable, it indicates that the analog beam can distinguish the first terminal and the second terminal.
  • a terminal uses analog beamforming to perform interference coordination.
  • the second base station and the first base station are interference neighbors to each other, and the second base station uses analog beamforming to the second terminal to perform interference coordination.
  • the first base station determines that the position information of the first terminal and the position information of the second terminal are indistinguishable, it indicates that the analog beam cannot distinguish the first terminal and the second terminal.
  • Digital beamforming is used for interference coordination.
  • the second base station uses digital beamforming for interference coordination to the second terminal.
  • the first base station may periodically send RRC to the first terminal and upload based on the first terminal Measured value, when it is determined that the measured value meets the set conditions, start positioning query, obtain the position information of the first terminal and send the position information of the first terminal to the second base station; in the same way, the second base station can periodically send RRC to The second terminal, and based on the measurement value uploaded by the second terminal, determines that the measurement value meets the setting condition, starts a positioning query, obtains position information of the second terminal, and sends the position information of the second terminal to the first base station.
  • the first base station or the second base station determines whether the location information of the first terminal and the second terminal can be distinguished according to the acquired location information of the first terminal and the second terminal.
  • the interference coordination using analog beamforming to the first terminal includes: configuring a gain weight for the transmitting antenna according to the position information of the first terminal and the position information of the second terminal, according to The gain weight forms an analog beam, and the peak direction of the analog beam is directed to the position of the first terminal, and the valley direction of the analog beam is directed to the position of the second terminal;
  • the use of digital beamforming for the first terminal to perform interference coordination includes: receiving a feedback value of the first terminal based on the channel state information reported by the RRC, and according to the feedback value, configuring a pre-configuration under the selected analog beam
  • the encoded codebook forms a digital beam, and the digital beam is directed to the first terminal.
  • the first base station adopting analog beamforming to the first terminal to perform interference coordination includes: configuring appropriate gain weights to generate an analog beam, and aligning the peak direction of the analog beam with the position of the first terminal, and the valley direction of the analog beam Align the position of the second terminal.
  • the gain weight includes amplitude and / or phase weight values. The gain weight is used to adjust the amplitude, phase, or amplitude and phase of the transmitting antenna to form an analog beam, so that the peak direction of the analog beam is aligned with the position of the first terminal.
  • the direction of the trough is in a position that interferes with the second terminal in the neighboring cell.
  • the second base station aligns the peak direction of the analog beam with the position of the second terminal, and the valley direction of the analog beam with the position of the first terminal, so as to suppress the interference of the first terminal.
  • the first base station adopting digital beamforming to perform interference coordination includes: receiving the feedback value of the first terminal based on the channel state information reported by the RRC, and according to the feedback value, configuring a precoding codebook under the selected analog beam to form a digital beam To direct the digital beam to the first terminal.
  • the first base station may periodically send RRC to the first terminal or may send RRC to the first terminal when it is determined that digital beamforming is required, and the first terminal enables calculation of the feedback value of the channel state information according to the received RRC
  • the feedback value includes: CRI (CSI-RS Resource Indicator, channel state information reference signal resource indicator), RI (Rank Indicator, rank indicator), PMI (Precoding Matrix Indicator, precoding matrix indicator), and CQI (Channel Quality Indicator, channel quality indicator).
  • the first terminal may generate a feedback value according to the requirement for maximizing the system capacity of the digital beamforming and report the feedback value to the first base station, and the first base station configures the transmit port under the selected analog beam according to the feedback value with a suitable
  • the precoding codebook forms a digital beam, so that the digital beam of the first base station is aimed at the first terminal, and interference coordination under hybrid beamforming is completed.
  • the acquiring the location information of the first terminal includes sending a location request to the mobile management entity MME to acquire the location information of the first terminal, where the location request is used to enable an evolved service mobile location
  • the center E-SMLC obtains positioning capability information from the first terminal, and determines the position information of the first terminal according to the global navigation satellite system GNSS measurement result of the first terminal and returns it to the MME; receives the MME The returned position information of the first terminal; or, sending a positioning request to the MME to obtain the position information of the first terminal, where the positioning request is used to enable the E-SMLC to obtain positioning capability information from the first terminal And enable the first terminal to determine the position information of the first terminal according to the GNSS measurement result; receive the position information of the first terminal returned by the first terminal.
  • the first base station acquiring the location information of the first terminal may include the following two schemes.
  • Solution 1 Obtain the location information of the first terminal based on the network-side GNSS
  • the first base station sends a first positioning request to the MME to obtain the location information of the first terminal; the MME sends a second positioning request to the E-SMLC according to the first positioning request; the E-SMLC sends to the first terminal according to the second positioning request Positioning capability query request; the first terminal reports positioning capability information to the E-SMLC according to the positioning capability query request and requests auxiliary data from the E-SMLC.
  • the first terminal performs GNSS positioning measurement based on the auxiliary data provided by the E-SMLC, and locates The measurement result is returned to E-SMLC;
  • E-SMLC calculates the position information of the first terminal according to the positioning measurement result, and sends the position information of the first terminal to the MME;
  • the MME sends the position information of the first terminal to the first base station .
  • the first solution is particularly applicable to the scenario where the cell where the first base station is located and the corresponding interference neighboring cell form a homogeneous cell, and the first terminal and the second terminal are outdoors.
  • Solution 2 Acquire location information of the first terminal based on the terminal side
  • the first base station sends a first positioning request to the MME to obtain the location information of the first terminal; the MME sends a second positioning request to the E-SMLC according to the first positioning request; the E-SMLC sends to the first terminal according to the second positioning request Positioning capability query request; the first terminal reports positioning capability information to the E-SMLC according to the positioning capability query request and requests auxiliary data from the E-SMLC.
  • the first terminal performs GNSS positioning measurement based on the auxiliary data provided by the E-SMLC and performs local Calculate to obtain the position information of the first terminal, and send the position information of the first terminal to the first base station.
  • the second solution is particularly applicable to the scenario where the cell where the first base station is located and the corresponding interference neighboring cell form a homogeneous cell, and the first terminal and the second terminal are outdoors.
  • the first base station determines that the measured value meets the setting condition based on the measured value of the signal reception parameter reported by the first terminal based on the RRC, by acquiring the location information of the first terminal and the second terminal, according to the The location information of the first terminal determines whether it is distinguishable from the location information of the second terminal that interferes with the neighboring cell, and uses analog beamforming or digital beamforming to the first terminal to perform interference coordination according to the distinguishable result.
  • the peak of the analog beam of the first base station is directed to the first terminal and the valley is directed to the second terminal through analog beam forming.
  • digital beamforming is performed under the selected analog beam, so that the digital beam of the first base station is aimed at the first terminal to perform interference coordination. It can effectively reduce the interference from the neighboring cell terminal and the neighboring cell base station, and improve the terminal receiving performance and communication system capacity.
  • the interference coordination using the corresponding hybrid beamforming strategy according to the beam number information includes: initiating a first interference coordination request to a second base station corresponding to the interference neighboring cell of the first terminal; receiving After the second interference coordination request of the interference neighboring cell, the corresponding beam number information is used to perform analog beam forming to the first terminal.
  • the first base station uses a hybrid beamforming strategy corresponding to the beam number information to perform interference coordination.
  • the base station cannot obtain position information due to the poor reception quality of the satellite navigation signal, and the interference coordination is performed through the beam number information to Meet the interference coordination requirements of different scenarios.
  • the first base station and the second base station before initiating the first interference coordination request to the second base station corresponding to the interference neighboring cell of the first terminal, adopt a hybrid beamforming strategy corresponding to the location information of the terminal Perform interference coordination. For example, after the first base station or the second base station performs interference coordination by using analog beamforming or digital beamforming based on the location information of the terminal, the first base station determines the value based on the measurement value of the signal reception parameter reported by the first terminal based on RRC When the measurement value still meets the setting condition, start beamforming according to the beam number information, or the second base station determines that the measurement value still meets the setting condition based on the measurement value of the signal reception parameter reported by the second terminal based on the RRC Then start beam forming according to the beam number information. Wherein, the first base station and / or the second base station uses a hybrid beamforming strategy corresponding to the location information of the terminal to perform interference coordination. The scheme is the same as that described above, and is not repeated here.
  • the first base station adopting a hybrid beamforming strategy corresponding to the beam number information for interference coordination includes: the first base station initiates a first interference coordination request to a second base station corresponding to the interference neighboring cell of the first terminal; and the first After receiving the second interference coordination request from the neighboring cell, the base station uses the corresponding beam number information to perform simulated beam forming on the first terminal; in the same way, the cell where the second base station is located and the first base station The located cells are interfering neighboring cells.
  • the second base station also uses the hybrid beamforming strategy corresponding to the beam number information to perform interference coordination.
  • the second base station initiates a second interference coordination request to the first base station and receives the cell where the first base station is located. After the first interference coordination request, the corresponding beam number information is used to perform simulated beamforming to the second terminal.
  • the corresponding beam number information refers to the beam number information that is determined by beam pairing with neighboring neighboring cells.
  • the first base station may determine the interference neighboring cell according to the measurement value reported by the first terminal.
  • the first base station determining the interference neighboring cell includes the first base station receiving CSI-RSRP and / or CSI of multiple cells sent by the first terminal -RSRQ measurement values, determine the two measurement values ranked first and second, and determine the corresponding two neighboring cells according to the two measurement values ranked first and second, the corresponding two phases
  • the neighboring cells are the cell where the first terminal is currently located and the corresponding interference neighboring cell (the first terminal is located at the edge of the two neighboring cells).
  • the pairing refers to the combination of beam numbers that are preliminarily set during the network planning period and have little interference between the two cells. In this way, by selecting appropriate beam number information for simulated beam forming, the two can be reduced. Interference in small areas.
  • the terminal number is distinguished by using the beam number of the analog beam, and the beam number information with relatively low interference between the beam numbers is simulated by the inter-cell coordination to perform simulated beam forming , Effectively reducing the interference between the two cells.
  • the method further includes: receiving the measurement value of the signal reception parameter reported by the first terminal based on RRC, and determining When the measured value meets the setting conditions, receive the feedback value of the first terminal based on the channel state information reported by the RRC, and according to the feedback value, configure a precoding codebook under the selected analog beam to form a digital beam, and convert the digital The beam is directed to the first terminal.
  • the first base station determines that the measured value is still lower than the setting based on the measured value of the signal reception parameter reported by the first terminal based on the RRC
  • digital beamforming is performed to the first terminal.
  • the first terminal enables the calculation of the feedback value of the channel state information according to the received RRC.
  • the feedback value includes: CRI, RI, PMI, and CQI.
  • the first terminal generates according to the requirement to maximize the system capacity of digital beamforming.
  • the first base station configures a suitable precoding codebook for the transmission port under the selected analog beam to form a digital beam according to the feedback value, so that the digital beam of the first base station is aligned
  • the first terminal completes interference coordination under hybrid beamforming.
  • the second base station determines that the measured value is still lower than the set threshold based on the measured value of the signal reception parameter reported by the second terminal based on RRC, it performs digital beamforming to the second terminal.
  • the second terminal enables the calculation of the feedback value of the channel state information according to the received RRC.
  • the feedback value includes: CRI, RI, PMI, and CQI.
  • the second terminal generates according to the requirement to maximize the system capacity of digital beamforming. Feedback the value and report the feedback value to the second base station. Based on the feedback value, the second base station configures a suitable precoding codebook for the transmission port under the selected analog beam to form a digital beam, so that the digital beam of the second base station is aligned
  • the second terminal completes interference coordination under hybrid beamforming.
  • the digital beam forming is further performed by the digital base beam to align the digital beam of the first base station to the first terminal, Further suppress interference, improve terminal reception performance and communication system capacity, especially suitable for interference after the cell where the first base station is located and the corresponding interference neighboring cell constitute a homogeneous cell, and the first terminal and the second terminal are switched from the outdoor scene to the indoor scene coordination.
  • the use of a corresponding hybrid beamforming strategy for interference coordination according to the beam number information includes: selecting beam number information corresponding to the beam pairing of the interference neighboring interval corresponding to the located cell to perform simulated beamforming, wherein , The located cell and the interference neighboring cell constitute a heterogeneous cell.
  • the first base station adopts the beam number information corresponding to the beam pairing between heterogeneous cells and uses analog beam forming to perform interference coordination.
  • Interference neighboring cell is a heterogeneous cell corresponding to this cell. Pairing here refers to the combination of beam numbers between two cells that have been set in advance during the network planning period and that have small mutual interference. In this way, by selecting the appropriate beam number
  • the information is simulated beamforming, which can reduce the interference between the two cells.
  • the first base station may be in the form of a small cell (Small cell), a relay (Relay), or a micro cell (Pico cell), and the second base station It is a macro base station (gNB) different from the 5G NR of the first base station.
  • Small cell Small cell
  • Relay relay
  • micro cell Pico cell
  • the first base station sends RRC to the first terminal, and the first terminal also receives the RRC sent by the second base station.
  • the first terminal generates a first measurement value according to the RRC sent by the first base station, generates a second measurement value according to the RRC sent by the second base station, and the first terminal reports the generated first measurement value and second measurement value to the first base station,
  • the first base station forwards the first measurement value and the second measurement value to the second base station.
  • the first base station may confirm that the first terminal moves to an area where the interference of the second base station (macro base station) is high.
  • a base station selects the beam number information paired with the second base station to perform analog beam forming, and the beam number information is a combination of beam numbers with a small mutual interference between the first base station and the second base station preset in the network planning period, In this way, by selecting appropriate beam number information for analog beamforming, the interference between the two cells can be reduced.
  • the beam number information paired with the first base station is selected for simulated beam forming, so that the simulation of the second base station The direction of the valley of the beam is aimed at the first terminal.
  • the first base station determines the measured value meets the setting condition according to the measured value of the signal reception parameter uploaded by the first terminal, according to the beam number information of the beam pairing preset by the heterogeneous cell during the network planning period, Carrying out analog beamforming can effectively reduce the interference between two cells.
  • a single-port single-carrier 100MHz bandwidth of a UE in 5G if it is a 30kHz subcarrier
  • the embodiment of the present disclosure reduces the interference from the neighboring cell base station and the neighboring cell terminal by performing hybrid beamforming based on the location information or the beam number information, and can be applied to different complex cell deployment scenarios and multiple interference sources to improve
  • the receiving performance and system capacity of the terminal can avoid real-time feedback of a large amount of interference information measured by each beam.
  • a UE only needs one piece of location information or beam number information for positioning, and uses the cell measurement information CSI-RSRP and CSI-RSRQ of the system to achieve interference coordination, which greatly reduces the complexity of measurement and feedback , And combines analog and digital beamforming to reduce the complexity of large-scale antenna processing to achieve interference coordination.
  • FIG. 3 shows a second structural schematic diagram of an application scenario of an inter-cell interference coordination method in an embodiment of the present disclosure.
  • the first base station is gNB1
  • the second base station is gNB2
  • the cell where the first base station gNB1 is located hereinafter referred to as the own cell
  • the corresponding interference neighbor cell hereinafter referred to as neighbor cell
  • the base station gNB1 of this cell and the base station gNB2 of the neighboring cell may be 5G NR macro base stations with the same processing capability.
  • the interference of user UE1 is expected to mainly come from the downlink interference of gNB2 and the uplink interference of UE2. Please refer to FIG. 4 in combination.
  • the inter-cell interference coordination method includes the following steps 401 to 426.
  • Step 401 gNB1 sends RRC to UE1.
  • gNB1 sends RRC to UE1 in the cell, enabling UE1 to perform CSI-RSRP and CSI-RSRQ measurement.
  • Step 402 gNB2 sends RRC to UE2.
  • gNB2 sends RRC to UE2 in the cell, enabling UE2 to perform CSI-RSRP and CSI-RSRQ measurement.
  • step 403 UE1 performs measurement and calculation.
  • UE1 performs CSI-RSRP and CSI-RSRQ measurement, and generates measurement values including CSI-RSRP and CSI-RSRQ. It should be noted that, when receiving the RRC of multiple cells including the interfering cell, UE1 generates measurement values corresponding to the multiple cells.
  • step 404 UE2 performs measurement and calculation.
  • UE2 performs CSI-RSRP and CSI-RSRQ measurement, and generates measurement values including CSI-RSRP and CSI-RSRQ. It should be noted that, when receiving the RRC of multiple cells including the interfering cell, UE2 generates measurement values corresponding to the multiple cells.
  • step 405 UE1 reports the measured value.
  • UE1 reports the generated measurement value to gNB1.
  • step 406 UE2 reports the measured value.
  • UE2 reports the generated measurement value to gNB2.
  • Step 407 gNB1 sends an interference coordination request to gNB2.
  • gNB1 determines whether UE1 has interference according to the received measurement value of UE1. Specifically, for the CSI-RSRP and CSI-RSRQ measurement values of multiple cells measured by UE1, if the CSI-RSRP and CSI-RSRQ measurement values of each cell are lower than the set threshold, determine the two largest and second largest A measured value can determine the two neighboring cells currently corresponding to UE1, determine the interference neighboring cell corresponding to UE1, and then perform interference coordination with the interference neighboring cell. In this embodiment, gNB1 determines that UE1 is interfered by gNB2, and can initiate an interference coordination request to gNB2 through the X2 interface.
  • gNB2 determines whether there is interference in UE2 according to the received measurement value of UE2. Specifically, for the CSI-RSRP and CSI-RSRQ measurement values of multiple cells measured by UE2, if the CSI-RSRP and CSI-RSRQ measurement values of each cell are lower than the set threshold, determine the two largest and second largest A measured value can determine the two neighboring cells currently corresponding to UE2, determine the interference neighboring cell corresponding to UE2, and then perform interference coordination with the interference neighboring cell. In this embodiment, gNB2 determines that UE2 is interfered by gNB1, and can initiate an interference coordination request to gNB1 through the X2 interface.
  • step 408 gNB1 sends a location query request to the MME.
  • gNB1 can send a location query request to the mobility management function MME when it determines that UE1 has interference according to the measured value of UE1, or it can be when gNB1 receives the interference coordination request sent by the neighboring cell (such as gNB2) , Send a location query request to the mobility management function MME.
  • the neighboring cell such as gNB2
  • step 409 gNB2 sends a positioning query request to the MME.
  • gNB2 determines that UE2 has interference according to the measurement value of UE2, it sends a location query request to the mobility management function MME, or it can be when gNB2 receives the interference coordination request sent by the neighboring cell (such as gNB1). , Send a location query request to the mobility management function MME.
  • Step 410 the MME sends a positioning request to the E-SMLC.
  • the MME initiates a positioning request to the E-SMLC (Evolved Serving Mobile Location, Evolved Service Mobile Location Center) according to the received location query request.
  • E-SMLC Evolved Serving Mobile Location, Evolved Service Mobile Location Center
  • step 411 the E-SMLC sends positioning capability query information to UE1.
  • step 412 the E-SMLC sends positioning capability query information to UE2.
  • step 413 UE1 reports positioning capability information to E-SMLC and requests auxiliary data.
  • step 414 UE2 reports the positioning capability information to the E-SMLC and requests auxiliary data.
  • step 415 the E-SMLC provides UE1 with auxiliary data and requests measurement.
  • step 416 the E-SMLC provides UE2 with auxiliary data and requests measurement.
  • Step 417 UE1 performs positioning measurement.
  • UE1 uses the auxiliary data to perform GNSS measurements and generate positioning measurement results.
  • step 418 UE2 performs positioning measurement.
  • UE2 uses the auxiliary data to perform GNSS measurements and generate positioning measurement results.
  • Step 419 UE1 uploads the positioning measurement result to E-SMLC.
  • step 420 UE2 uploads the positioning measurement result to E-SMLC.
  • Step 421 the E-SMLC performs position calculation.
  • E-SMLC calculates the location information of UE1 according to the positioning measurement result of UE1; calculates the location information of UE2 according to the positioning measurement result of UE2.
  • Step 422 the E-SMLC sends location information to the MME.
  • the E-SMLC sends the calculated location information of UE1 and UE2 to the MME.
  • step 423 the MME sends location information to gNB1 and gNB2.
  • the MME sends the location information of UE1 and UE2 to gNB1 and gNB2, respectively.
  • the MME sends the location information of UE1 to gNB1, and the location information of UE2 to gNB2, and then gNB2 transmits the location information of UE2 to gNB1 through the X2 interface; gNB1 transmits the location information of UE1 to the X2 interface Passed to gNB2.
  • Step 424 gNB1 and gNB2 respectively start interference coordination.
  • gNB1 starts interference coordination according to the location information of UE1 and UE2.
  • gNB2 starts interference coordination according to the location information of UE1 and UE2.
  • Step 425 gNB1 performs analog beamforming to UE1.
  • the location information of UE1 and UE2 can be distinguished, and the analog beam can distinguish the two UEs.
  • gNB1 performs analog beamforming and configures the transmit antenna with appropriate gain weights (amplitude and phase) to form the analog beam.
  • the peak direction of the simulated beam is aligned with the position of UE1, and the valley direction of the simulated beam is at the position of UE2, thereby suppressing interference of UE2.
  • Step 426 gNB2 performs analog beamforming to UE2.
  • gNB2 performs analog beamforming, and configures the transmit antenna with appropriate gain weights (amplitude and phase) to form an analog beam, so that the peak direction of the analog beam is aligned with the position of UE2, and the valley direction of the analog beam is at the position of UE1.
  • UE1 interference is a technique that uses analog beamforming to form an analog beam, so that the peak direction of the analog beam is aligned with the position of UE2, and the valley direction of the analog beam is at the position of UE1.
  • FIG. 5 shows a third schematic flowchart of the inter-cell interference coordination method according to an embodiment of the present disclosure. This method can be applied to the application scenario shown in FIG. 3. Please refer to FIG. 5, the method includes the following steps 501 to 523.
  • step 501 gNB1 sends RRC to UE1.
  • gNB1 sends RRC to UE1 in the cell, enabling UE1 to perform CSI-RSRP and CSI-RSRQ measurement.
  • Step 502 gNB2 sends RRC to UE2.
  • gNB2 sends RRC to UE2 in the cell, enabling UE2 to perform CSI-RSRP and CSI-RSRQ measurement.
  • step 503 UE1 performs measurement and calculation.
  • UE1 performs CSI-RSRP and CSI-RSRQ measurement, and generates measurement values including CSI-RSRP and CSI-RSRQ. It should be noted that, when receiving the RRC of multiple cells including the interfering cell, UE1 generates measurement values corresponding to the multiple cells.
  • step 504 UE2 performs measurement and calculation.
  • UE2 performs CSI-RSRP and CSI-RSRQ measurement, and generates measurement values including CSI-RSRP and CSI-RSRQ. It should be noted that, when receiving the RRC of multiple cells including the interfering cell, UE2 generates measurement values corresponding to the multiple cells.
  • step 505 UE1 reports the measurement value.
  • UE1 reports the generated measurement value to gNB1.
  • Step 506 UE2 reports the measured value.
  • UE2 reports the generated measurement value to gNB2.
  • step 507 gNB1 sends an interference coordination request to gNB2.
  • gNB1 determines whether UE1 has interference according to the received measurement value of UE1. Specifically, for the CSI-RSRP and CSI-RSRQ measurement values of multiple cells measured by UE1, if the CSI-RSRP and CSI-RSRQ measurement values of each cell are lower than the set threshold, determine the two largest and second largest A measured value can determine the two neighboring cells currently corresponding to UE1, determine the interference neighboring cell corresponding to UE1, and then perform interference coordination with the interference neighboring cell. In this embodiment, gNB1 determines that UE1 is interfered by gNB2, and can initiate an interference coordination request to gNB2 through the X2 interface.
  • gNB2 determines whether there is interference in UE2 according to the received measurement value of UE2. Specifically, for the CSI-RSRP and CSI-RSRQ measurement values of multiple cells measured by UE2, if the CSI-RSRP and CSI-RSRQ measurement values of each cell are lower than the set threshold, determine the two largest and second largest A measured value can determine the two neighboring cells currently corresponding to UE2, determine the interference neighboring cell corresponding to UE2, and then perform interference coordination with the interference neighboring cell. In this embodiment, gNB2 determines that UE2 is interfered by gNB1, and can initiate an interference coordination request to gNB1 through the X2 interface.
  • step 508 gNB1 sends a positioning query request to the MME.
  • gNB1 can send a location query request to the mobility management function MME when it determines that UE1 has interference according to the measured value of UE1, or it can be when gNB1 receives the interference coordination request sent by the neighboring cell (such as gNB2) , Send a location query request to the mobility management function MME.
  • the neighboring cell such as gNB2
  • step 509 gNB2 sends a positioning query request to the MME.
  • gNB2 determines that UE2 has interference according to the measurement value of UE2, it sends a location query request to the mobility management function MME, or it can be when gNB2 receives the interference coordination request sent by the neighboring cell (such as gNB1). , Send a location query request to the mobility management function MME.
  • Step 510 the MME sends a positioning request to the E-SMLC.
  • the MME initiates a positioning request to the E-SMLC (Evolved Serving Mobile Location, Evolved Service Mobile Location Center) according to the received location query request.
  • E-SMLC Evolved Serving Mobile Location, Evolved Service Mobile Location Center
  • step 511 the E-SMLC sends positioning capability query information to UE1.
  • step 512 the E-SMLC sends positioning capability query information to UE2.
  • Step 513 UE1 reports positioning capability information to E-SMLC and requests auxiliary data.
  • Step 514 UE2 reports the positioning capability information to E-SMLC and requests auxiliary data.
  • Step 515 the E-SMLC provides UE1 with auxiliary data.
  • step 516 the E-SMLC provides UE2 with auxiliary data.
  • step 517 UE1 performs positioning calculation.
  • UE1 uses the auxiliary data to perform GNSS measurements and generate corresponding location information.
  • Step 518 UE2 performs positioning measurement.
  • UE2 uses the auxiliary data to perform GNSS measurements and generate corresponding location information.
  • step 519 UE1 uploads the location information to gNB1.
  • step 520 UE2 uploads the location information to gNB2.
  • Step 521 gNB1 and gNB2 respectively start interference coordination.
  • gNB1 After gNB1 receives the location information uploaded by UE1, gNB1 transmits the location information of UE1 to gNB2 through the X2 interface. After gNB2 receives the location information uploaded by UE2, gNB2 transmits the location information of UE2 to gNB1 through the X2 interface. gNB1 starts interference coordination according to the location information of UE1 and UE2. Similarly, gNB2 starts interference coordination according to the location information of UE1 and UE2.
  • Step 522 gNB1 performs analog beamforming to UE1.
  • the location information of UE1 and UE2 can be distinguished, and the analog beam can distinguish the two UEs.
  • gNB1 performs analog beamforming and configures the transmit antenna with appropriate gain weights (amplitude and phase) to form the analog beam.
  • the peak direction of the simulated beam is aligned with the position of UE1, and the valley direction of the simulated beam is at the position of UE2, thereby suppressing interference of UE2.
  • step 523 gNB2 performs analog beamforming to UE2.
  • gNB2 performs analog beamforming, and configures the transmit antenna with appropriate gain weights (amplitude and phase) to form an analog beam, so that the peak direction of the analog beam is aligned with the position of UE2, and the valley direction of the analog beam is at the position of UE1.
  • UE1 interference is a technique that uses analog beamforming to form an analog beam, so that the peak direction of the analog beam is aligned with the position of UE2, and the valley direction of the analog beam is at the position of UE1.
  • FIG. 6 shows a third structural schematic diagram of an application scenario of an inter-cell interference coordination method in an embodiment of the present disclosure.
  • the base station gNB1 of this cell and the base station gNB2 of the neighboring cell are 5G NR macro base stations with the same processing capacity. It is expected that the user UE1 and the interfering user UE2 are located at the edges of the two cells and the positions are indistinguishable, and the interference of the user UE1 is mainly expected to come from Interference between the downlink of gNB2 and the uplink of UE2.
  • FIG. 7 shows a fourth schematic flowchart of the inter-cell interference coordination method according to an embodiment of the present disclosure.
  • the method can be applied to the application scenario shown in FIG. 6.
  • the method includes the following steps 701 to 733.
  • Step 701 gNB1 sends RRC to UE1.
  • gNB1 sends RRC to UE1 in the cell, enabling UE1 to perform CSI-RSRP and CSI-RSRQ measurement.
  • Step 702 gNB2 sends RRC to UE2.
  • gNB2 sends RRC to UE2 in the cell, enabling UE2 to perform CSI-RSRP and CSI-RSRQ measurement.
  • step 703 UE1 performs measurement and calculation.
  • UE1 performs CSI-RSRP and CSI-RSRQ measurement, and generates measurement values including CSI-RSRP and CSI-RSRQ. It should be noted that, when receiving the RRC of multiple cells including the interfering cell, UE1 generates measurement values corresponding to the multiple cells.
  • step 704 UE2 performs measurement and calculation.
  • UE2 performs CSI-RSRP and CSI-RSRQ measurement, and generates measurement values including CSI-RSRP and CSI-RSRQ. It should be noted that, when receiving the RRC of multiple cells including the interfering cell, UE2 generates measurement values corresponding to the multiple cells.
  • step 705 UE1 reports the measured value.
  • UE1 reports the generated measurement value to gNB1.
  • step 706 UE2 reports the measured value.
  • UE2 reports the generated measurement value to gNB2.
  • Step 707 gNB1 sends an interference coordination request to gNB2.
  • gNB1 determines whether UE1 has interference according to the received measurement value of UE1. Specifically, for the CSI-RSRP and CSI-RSRQ measurement values of multiple cells measured by UE1, if the CSI-RSRP and CSI-RSRQ measurement values of each cell are lower than the set threshold, determine the two largest and second largest A measured value can determine the two neighboring cells currently corresponding to UE1, determine the interference neighboring cell corresponding to UE1, and then perform interference coordination with the interference neighboring cell. In this embodiment, gNB1 determines that UE1 is interfered by gNB2, and can initiate an interference coordination request to gNB2 through the X2 interface.
  • gNB2 determines whether there is interference in UE2 according to the received measurement value of UE2. Specifically, for the measured values of CSI-RSRP and CSI-RSRQ of multiple cells measured by UE2, if the measured values of CSI-RSRP and CSI-RSRQ of each cell are lower than the set threshold, the two largest and second largest are determined. A measured value can determine the two neighboring cells currently corresponding to UE2, determine the interference neighboring cell corresponding to UE2, and then perform interference coordination with the interference neighboring cell. In this embodiment, gNB2 determines that UE2 is interfered by gNB1, and can initiate an interference coordination request to gNB1 through the X2 interface.
  • Step 708 gNB1 sends a location query request to the MME.
  • gNB1 can send a location query request to the mobility management function MME when it determines that UE1 has interference according to the measured value of UE1, or it can be when gNB1 receives the interference coordination request sent by the neighboring cell (such as gNB2) , Send a location query request to the mobility management function MME.
  • the neighboring cell such as gNB2
  • step 709 gNB2 sends a positioning query request to the MME.
  • gNB2 determines that UE2 has interference according to the measurement value of UE2, it sends a location query request to the mobility management function MME, or it can be when gNB2 receives the interference coordination request sent by the neighboring cell (such as gNB1). , Send a location query request to the mobility management function MME.
  • Step 710 the MME sends a positioning request to the E-SMLC.
  • the MME initiates a positioning request to the E-SMLC (Evolved Serving Mobile Location, Evolved Service Mobile Location Center) according to the received location query request.
  • E-SMLC Evolved Serving Mobile Location, Evolved Service Mobile Location Center
  • step 711 the E-SMLC sends positioning capability query information to UE1.
  • step 712 the E-SMLC sends positioning capability query information to UE2.
  • step 713 UE1 reports the positioning capability information to the E-SMLC and requests auxiliary data.
  • step 714 UE2 reports the positioning capability information to the E-SMLC and requests auxiliary data.
  • step 715 the E-SMLC provides UE1 with auxiliary data and requests measurement.
  • step 716 the E-SMLC provides UE2 with auxiliary data and requests measurement.
  • step 717 UE1 performs positioning measurement.
  • UE1 uses the auxiliary data to perform GNSS measurements and generate positioning measurement results.
  • step 718 UE2 performs positioning measurement.
  • UE2 uses the auxiliary data to perform GNSS measurements and generate positioning measurement results.
  • step 719 UE1 uploads the positioning measurement result to E-SMLC.
  • Step 720 UE2 uploads the positioning measurement result to the E-SMLC.
  • Step 721 E-SMLC performs position calculation.
  • E-SMLC calculates the location information of UE1 according to the positioning measurement result of UE1; calculates the location information of UE2 according to the positioning measurement result of UE2.
  • Step 722 the E-SMLC sends location information to the MME.
  • the E-SMLC sends the calculated location information of UE1 and UE2 to the MME.
  • step 723 the MME sends location information to gNB1 and gNB2.
  • the MME sends the location information of UE1 and UE2 to gNB1 and gNB2, respectively.
  • the MME sends the location information of UE1 to gNB1, and the location information of UE2 to gNB2, and then gNB2 transmits the location information of UE2 to gNB1 through the X2 interface; gNB1 transmits the location information of UE1 to the X2 interface Passed to gNB2.
  • step 724 gNB1 and gNB2 respectively start interference coordination.
  • gNB1 starts interference coordination according to the location information of UE1 and the location information of UE2.
  • step 725 is performed; similarly, gNB2 according to the location information of UE1 and the location of UE2 The information initiates interference coordination. Since the location information of UE1 and UE2 are indistinguishable, step 726 is performed.
  • step 725 gNB1 sends RRC to UE1.
  • gNB1 sends RRC to UE1 in the cell, enabling UE1 to calculate the channel state information CRI, RI, PMI and CQI.
  • Step 726 gNB2 sends RRC to UE2.
  • gNB2 sends RRC to UE2 in the cell, enabling UE2 to calculate the channel state information CRI, RI, PMI and CQI.
  • step 727 UE1 performs feedback calculation.
  • UE1 enables the calculation of the feedback value of the channel state information according to the received RRC.
  • the feedback value includes: CRI, RI, PMI, and CQI.
  • UE1 generates the feedback value according to the requirement to maximize the system capacity of digital beamforming.
  • step 728 UE2 performs feedback calculation.
  • UE2 enables calculation of the feedback value of the channel state information according to the received RRC.
  • the feedback value includes: CRI, RI, PMI, and CQI.
  • UE2 generates the feedback value according to the requirement to maximize the system capacity of digital beamforming.
  • step 729 UE1 reports the feedback value to gNB1.
  • UE1 reports the calculated feedback value to gNB1, and the feedback value includes: CRI, RI, PMI and CQI.
  • Step 730 UE2 reports the feedback value to gNB2.
  • UE2 reports the calculated feedback value to gNB2, and the feedback value includes: CRI, RI, PMI and CQI.
  • step 731 gNB1 and gNB2 respectively start interference coordination.
  • gNB1 starts interference coordination according to the feedback value reported by UE1.
  • gNB2 starts interference coordination according to the feedback value reported by UE2.
  • Step 732 gNB1 performs hybrid beamforming.
  • gNB1 Based on the received feedback value, gNB1 configures the transmit port with a suitable precoding codebook under the selected analog beam to form a digital beam, so that the digital beam of gNB1 is aimed at UE1, and interference coordination under hybrid beamforming is completed.
  • Step 733 gNB2 performs hybrid beamforming.
  • gNB2 Based on the received feedback value, gNB2 configures the transmit port with a suitable precoding codebook under the selected analog beam to form a digital beam, so that the digital beam of gNB2 is aimed at UE2, and interference coordination under hybrid beamforming is completed.
  • FIG. 8 shows a fifth schematic flowchart of an inter-cell interference coordination method according to an embodiment of the present disclosure. This method can be applied to the application scenario shown in FIG. 6. Please refer to FIG. 8, the method includes the following steps 801 to 830.
  • Step 801 gNB1 sends RRC to UE1.
  • gNB1 sends RRC to UE1 in the cell, enabling UE1 to perform CSI-RSRP and CSI-RSRQ measurement.
  • Step 802 gNB2 sends RRC to UE2.
  • gNB2 sends RRC to UE2 in the cell, enabling UE2 to perform CSI-RSRP and CSI-RSRQ measurement.
  • step 803 UE1 performs measurement and calculation.
  • UE1 performs CSI-RSRP and CSI-RSRQ measurement, and generates measurement values including CSI-RSRP and CSI-RSRQ. It should be noted that, when receiving the RRC of multiple cells including the interfering cell, UE1 generates measurement values corresponding to the multiple cells.
  • Step 804 UE2 performs measurement and calculation.
  • UE2 performs CSI-RSRP and CSI-RSRQ measurement, and generates measurement values including CSI-RSRP and CSI-RSRQ. It should be noted that, when receiving the RRC of multiple cells including the interfering cell, UE2 generates measurement values corresponding to the multiple cells.
  • step 805 UE1 reports the measured value.
  • UE1 reports the generated measurement value to gNB1.
  • step 806 UE2 reports the measurement value.
  • UE2 reports the generated measurement value to gNB2.
  • step 807 gNB1 sends an interference coordination request to gNB2.
  • gNB1 determines whether UE1 has interference according to the received measurement value of UE1. Specifically, for the CSI-RSRP and CSI-RSRQ measurement values of multiple cells measured by UE1, if the CSI-RSRP and CSI-RSRQ measurement values of each cell are lower than the set threshold, determine the two largest and second largest A measured value can determine the two neighboring cells currently corresponding to UE1, determine the interference neighboring cell corresponding to UE1, and then perform interference coordination with the interference neighboring cell. In this embodiment, gNB1 determines that UE1 is interfered by gNB2, and can initiate an interference coordination request to gNB2 through the X2 interface.
  • gNB2 determines whether there is interference in UE2 according to the received measurement value of UE2. Specifically, for the CSI-RSRP and CSI-RSRQ measurement values of multiple cells measured by UE2, if the CSI-RSRP and CSI-RSRQ measurement values of each cell are lower than the set threshold, determine the two largest and second largest A measured value can determine the two neighboring cells currently corresponding to UE2, determine the interference neighboring cell corresponding to UE2, and then perform interference coordination with the interference neighboring cell. In this embodiment, gNB2 determines that UE2 is interfered by gNB1, and can initiate an interference coordination request to gNB1 through the X2 interface.
  • step 808 gNB1 sends a location query request to the MME.
  • gNB1 determines that UE1 has interference according to the measurement value of UE1, it sends a location query request to the mobility management function MME, or it can be that gNB1 receives the interference coordination request sent by the neighboring cell (such as gNB2). Send a location query request to the mobility management function MME.
  • step 809 gNB2 sends a positioning query request to the MME.
  • gNB2 determines that UE2 has interference according to the measurement value of UE2, it sends a location query request to the mobility management function MME, or it can be that gNB2 receives the interference coordination request sent by the neighboring cell (such as gNB1). Send a location query request to the mobility management function MME.
  • Step 810 the MME sends a positioning request to the E-SMLC.
  • the MME initiates a positioning request to the E-SMLC (Evolved Serving Mobile Location, Evolved Service Mobile Location Center) according to the received location query request.
  • E-SMLC Evolved Serving Mobile Location, Evolved Service Mobile Location Center
  • step 811 the E-SMLC sends positioning capability query information to UE1.
  • step 812 the E-SMLC sends positioning capability query information to UE2.
  • step 813 UE1 reports the positioning capability information to the E-SMLC and requests auxiliary data.
  • step 814 UE2 reports the positioning capability information to E-SMLC and requests auxiliary data.
  • step 815 the E-SMLC provides UE1 with auxiliary data.
  • step 816 the E-SMLC provides UE2 with auxiliary data.
  • step 817 UE1 performs positioning calculation.
  • UE1 uses the auxiliary data to perform GNSS measurements and generate corresponding location information.
  • Step 818 UE2 performs positioning measurement.
  • UE2 uses the auxiliary data to perform GNSS measurements and generate corresponding location information.
  • Step 819 UE1 uploads the location information to gNB1.
  • Step 820 UE2 uploads the location information to gNB2.
  • step 821 gNB1 and gNB2 respectively start interference coordination.
  • gNB1 After gNB1 receives the location information uploaded by UE1, gNB1 transmits the location information of UE1 to gNB2 through the X2 interface. After gNB2 receives the location information uploaded by UE2, gNB2 transmits the location information of UE2 to gNB1 through the X2 interface. gNB1 starts interference coordination according to the location information of UE1 and the location information of UE2. In this embodiment, since the location information of UE1 and the location information of UE2 are indistinguishable, step 822 is performed; in the same way, gNB2 according to the location information of UE1 and the location of UE2 The information initiates interference coordination. Since the location information of UE1 and UE2 are indistinguishable, step 823 is performed.
  • Step 822 gNB1 sends RRC to UE1.
  • gNB1 sends RRC to UE1 in the cell, enabling UE1 to calculate the channel state information CRI, RI, PMI and CQI.
  • Step 823 gNB2 sends RRC to UE2.
  • gNB2 sends RRC to UE2 in the cell, enabling UE2 to calculate the channel state information CRI, RI, PMI and CQI.
  • Step 824 UE1 performs feedback calculation.
  • the UE1 enables calculation of the feedback value of the channel state information according to the received RRC.
  • the feedback value includes: CRI, RI, PMI, and CQI.
  • the first terminal generates the feedback value according to the requirement to maximize the system capacity of digital beamforming.
  • Step 825 UE2 performs feedback calculation.
  • the UE2 enables calculation of the feedback value of the channel state information according to the received RRC.
  • the feedback value includes: CRI, RI, PMI, and CQI.
  • the second terminal generates the feedback value according to the requirement to maximize the system capacity of digital beamforming.
  • step 826 UE1 reports the feedback value to gNB1.
  • UE1 reports the calculated feedback value to gNB1, and the feedback value includes: CRI, RI, PMI and CQI.
  • step 827 UE2 reports the feedback value to gNB2.
  • UE2 reports the calculated feedback value to gNB2, and the feedback value includes: CRI, RI, PMI and CQI.
  • step 828 gNB1 and gNB2 respectively start interference coordination.
  • gNB1 starts interference coordination according to the feedback value reported by UE1.
  • gNB2 starts interference coordination according to the feedback value reported by UE2.
  • Step 829 gNB1 performs hybrid beamforming.
  • gNB1 Based on the received feedback value, gNB1 configures the transmit port with a suitable precoding codebook under the selected analog beam to form a digital beam, so that the digital beam of gNB1 is aimed at UE1, and interference coordination under hybrid beamforming is completed.
  • Step 830 gNB2 performs hybrid beamforming.
  • gNB2 Based on the received feedback value, gNB2 configures the transmit port with a suitable precoding codebook under the selected analog beam to form a digital beam, so that the digital beam of gNB2 is aimed at UE2, and interference coordination under hybrid beamforming is completed.
  • FIG. 9 shows a sixth schematic flowchart of the inter-cell interference coordination method according to an embodiment of the present disclosure; this method can be applied to the application scenario shown in FIG. 3 or FIG. 6.
  • the method includes the following steps 901 to 919.
  • Step 901 gNB1 sends RRC to UE1.
  • gNB1 sends RRC to UE1 in the cell, enabling UE1 to perform CSI-RSRP and CSI-RSRQ measurement.
  • Step 902 gNB2 sends RRC to UE2.
  • gNB2 sends RRC to UE2 in the cell, enabling UE2 to perform CSI-RSRP and CSI-RSRQ measurement.
  • step 903 UE1 performs measurement and calculation.
  • UE1 performs CSI-RSRP and CSI-RSRQ measurement, and generates measurement values including CSI-RSRP and CSI-RSRQ. It should be noted that, when receiving the RRC of multiple cells including the interfering cell, UE1 generates measurement values corresponding to the multiple cells.
  • step 904 UE2 performs measurement and calculation.
  • UE2 performs CSI-RSRP and CSI-RSRQ measurement, and generates measurement values including CSI-RSRP and CSI-RSRQ. It should be noted that, when receiving the RRC of multiple cells including the interfering cell, UE2 generates measurement values corresponding to the multiple cells.
  • step 905 UE1 reports the measured value.
  • UE1 reports the generated measurement value to gNB1.
  • step 906 UE2 reports the measured value.
  • UE2 reports the generated measurement value to gNB2.
  • step 907 gNB1 sends an interference coordination request to gNB2.
  • gNB1 determines whether UE1 has interference according to the received measurement value of UE1. Specifically, for the CSI-RSRP and CSI-RSRQ measurement values of multiple cells measured by UE1, if the CSI-RSRP and CSI-RSRQ measurement values of each cell are lower than the set threshold, determine the two largest and second largest A measured value can determine the two neighboring cells currently corresponding to UE1, determine the interference neighboring cell corresponding to UE1, and then perform interference coordination with the interference neighboring cell. In this embodiment, gNB1 determines that UE1 is interfered by gNB2, and can initiate an interference coordination request to gNB2 through the X2 interface.
  • gNB2 determines whether there is interference in UE2 according to the received measurement value of UE2. Specifically, for the CSI-RSRP and CSI-RSRQ measurement values of multiple cells measured by UE2, if the CSI-RSRP and CSI-RSRQ measurement values of each cell are lower than the set threshold, determine the two largest and second largest A measured value can determine the two neighboring cells currently corresponding to UE2, determine the interference neighboring cell corresponding to UE2, and then perform interference coordination with the interference neighboring cell. In this embodiment, gNB2 determines that UE2 is interfered by gNB1, and can initiate an interference coordination request to gNB1 through the X2 interface.
  • Step 908 gNB1 and gNB2 select the beam number.
  • gNB1 and gNB2 After gNB1 and gNB2 each receive the interference coordination request from the neighboring cell, they select the preset beam number information paired with the interfering neighboring cell to perform analog beamforming.
  • the selected beam number is the number corresponding to the beam pairing of gNB1 and gNB2.
  • Beam pairing is a pairing combination with good mutual interference that is generated during network planning.
  • step 909 gNB1 performs analog beamforming.
  • gNB1 performs analog beamforming according to the selected beam number to reduce interference between neighboring cells.
  • gNB1 may further perform step 911 to perform digital beam Shaped.
  • step 910 gNB2 performs analog beamforming.
  • gNB2 performs analog beamforming according to the selected beam number to reduce interference between adjacent cells.
  • gNB2 may further perform step 912 to perform digital beam Shaped.
  • step 911 gNB1 sends RRC to UE1.
  • gNB1 sends RRC to UE1 in the cell, enabling UE1 to calculate the channel state information CRI, RI, PMI and CQI.
  • step 912 gNB2 sends RRC to UE2.
  • gNB2 sends RRC to UE2 in the cell, enabling UE2 to calculate the channel state information CRI, RI, PMI and CQI.
  • step 913 UE1 performs feedback calculation.
  • the UE1 enables calculation of the feedback value of the channel state information according to the received RRC.
  • the feedback value includes: CRI, RI, PMI, and CQI.
  • the first terminal generates the feedback value according to the requirement to maximize the system capacity of digital beamforming.
  • step 914 UE2 performs feedback calculation.
  • the UE2 enables calculation of the feedback value of the channel state information according to the received RRC.
  • the feedback value includes: CRI, RI, PMI, and CQI.
  • the second terminal generates the feedback value according to the requirement to maximize the system capacity of digital beamforming.
  • step 915 UE1 reports the feedback value to gNB1.
  • UE1 reports the calculated feedback value to gNB1, and the feedback value includes: CRI, RI, PMI and CQI.
  • step 916 UE2 reports the feedback value to gNB2.
  • UE2 reports the calculated feedback value to gNB2, and the feedback value includes: CRI, RI, PMI and CQI.
  • step 917 gNB1 and gNB2 respectively start interference coordination.
  • gNB1 starts interference coordination according to the feedback value reported by UE1.
  • gNB2 starts interference coordination according to the feedback value reported by UE2.
  • step 918 gNB1 performs hybrid beamforming.
  • gNB1 Based on the received feedback value, gNB1 configures the transmit port with a suitable precoding codebook under the selected analog beam to form a digital beam, so that the digital beam of gNB1 is aimed at UE1, and interference coordination under hybrid beamforming is completed.
  • step 919 gNB2 performs hybrid beamforming.
  • gNB2 Based on the received feedback value, gNB2 configures the transmit port with a suitable precoding codebook under the selected analog beam to form a digital beam, so that the digital beam of gNB2 is aimed at UE2, and interference coordination under hybrid beamforming is completed.
  • FIG. 10 shows a fourth schematic diagram of an application scenario of an inter-cell interference coordination method in an embodiment of the present disclosure.
  • the cell is in the form of small cell (Small cell), relay (Relay) or micro cell (Pico cell), etc.
  • the interfering base station is a 5G macro base station (gNB) of NR.
  • the channel communicates directly with the macro cell or is forwarded by the micro cell, and the UE will be strongly interfered by the data channel from the macro cell in the micro cell.
  • FIG. 11 shows a seventh schematic flowchart of an inter-cell interference coordination method according to an embodiment of the present disclosure.
  • the method can be applied to the application scenario shown in FIG. 10.
  • the method includes the following steps 1101 to 1108.
  • Step 1101 Relay sends RRC to UE1.
  • the Relay sends RRC to the UE1 in the cell, enabling the UE1 to perform CSI-RSRP and CSI-RSRQ measurement.
  • Step 1102 gNB sends RRC to UE1.
  • the gNB sends RRC to UE1, enabling UE1 to perform CSI-RSRP and CSI-RSRQ measurement.
  • step 1103 UE1 performs measurement and calculation.
  • UE1 performs CSI-RSRP and CSI-RSRQ measurement, and generates measurement values including CSI-RSRP and CSI-RSRQ. It should be noted that UE1 receives the RRC sent by Relay and the RRC sent by gNB. Therefore, UE1 generates measurement values including CSI-RSRP and CSI-RSRQ corresponding to Relay and CSI-RSRP and CSI-RSRQ corresponding to gNB.
  • step 1104 UE1 reports the measured value to Relay.
  • UE1 reports the generated measurement value to Relay.
  • Step 1105 Relay reports the measurement value to gNB.
  • Relay After receiving the measured value, Relay reports it to gNB.
  • Step 1106 Relay and gNB perform interference coordination separately.
  • Relay and gNB perform separately based on the received measured values Interference coordination. Specifically, Relay and gNB perform beam pairing to select a beam number to perform analog beamforming. The selected beam number is the number corresponding to the beam pair of Relay and gNB. Beam pairing is a pairing combination with good mutual interference that is generated during network planning.
  • Step 1107 Relay performs analog beamforming.
  • the Relay performs analog beam forming according to the selected beam number to ensure that the peak direction of the Relay's analog beam is aligned with UE1.
  • Step 1108, gNB performs analog beamforming.
  • the gNB performs analog beam forming according to the selected beam number to ensure that the valley direction of the analog beam of the gNB is aligned with UE1, so as to suppress the interference of the macro cell.
  • the technical solution of the embodiments of the present disclosure can reduce the interference from the neighboring cell base station and the neighboring cell terminal by performing hybrid beamforming based on location information or beam number information. It is suitable for different cell deployment scenarios and multiple interference sources, which improves the terminal's receiving performance and system capacity, and at the same time avoids real-time feedback of a large amount of interference information measured by each beam.
  • a UE only needs one piece of location information or beam number information for positioning, and uses the cell measurement information CSI-RSRP and CSI-RSRQ of the system to achieve interference coordination, which greatly reduces the complexity of measurement and feedback , And combines analog and digital beamforming to reduce the complexity of large-scale antenna processing to achieve interference coordination.
  • a device for inter-cell interference coordination based on a large-scale antenna includes: a sending module 1201 configured to send radio resource configuration information RRC to a first terminal of a cell
  • the beamforming module 1202 is configured to root receive the measurement value of the signal reception parameter reported by the first terminal based on the RRC, and determine that the measurement value meets the setting conditions, according to the position information or beam of the first terminal
  • the numbering information uses the corresponding hybrid beamforming strategy for interference coordination.
  • the beamforming module 1202 is further configured to: obtain the location information of the first terminal; determine whether the location information of the second terminal interfering with the neighboring cell is distinguishable according to the location information of the first terminal, and The distinguishable result correspondingly uses the analog beamforming or digital beamforming to perform interference coordination to the first terminal.
  • the first terminal uses analog beamforming to perform interference coordination.
  • the transmission antenna is configured with appropriate gain weights (amplitude and / or phase) to form the simulation beam, so that the peak direction of the simulation beam is aligned with the position of the first terminal, and the valley direction of the simulation beam is in the interference neighboring second The location of the terminal suppresses interference from the second terminal.
  • the first base station when the first base station determines that the location information of the first terminal is indistinguishable from the location information of the second terminal in the neighboring cell, it uses digital beamforming to the first terminal to perform interference coordination. At this time, since the positions of the first terminal and the second terminal are indistinguishable, the analog beam cannot separate the two terminals.
  • digital beamforming is further used to configure the transmission port with a suitable precoding under the selected analog beam.
  • the codebook forms a digital beam so that the digital beam of the first base station is aimed at the first terminal to complete interference coordination under hybrid beamforming.
  • the beamforming module 1202 is further configured to: before determining whether the location information of the second terminal interfering with the neighboring cell is distinguishable from the location information of the first terminal, obtain the information sent by the second base station corresponding to the interfering neighboring cell The location information of the second terminal; and / or after acquiring the location information of the first terminal, send the location information of the first terminal to the second base station corresponding to the interfering neighboring cell.
  • the beamforming module 1202 is further configured to: receive the feedback value of the first terminal based on the channel state information reported by the RRC, and perform digital beamforming according to the feedback value.
  • the first base station may periodically send RRC to the first terminal or may send RRC to the first terminal when it is determined that digital beamforming is required.
  • the first terminal enables calculation of the feedback value of channel state information according to the received RRC.
  • the feedback value includes: CRI (CSI-RS Resource Indicator, channel state information reference signal resource indicator), RI (Rank Indicator, rank indicator), PMI (Precoding Matrix Indicator, precoding matrix indicator), and CQI (Channel Quality (Indicator, channel quality indicator),
  • CRI CSI-RS Resource Indicator, channel state information reference signal resource indicator
  • RI Rank Indicator, rank indicator
  • PMI Precoding Matrix Indicator, precoding matrix indicator
  • CQI Channel Quality (Indicator, channel quality indicator)
  • the first terminal uses the feedback value to select the analog beam
  • the transmission port is configured with an appropriate precoding codebook to form a digital beam, so that the digital beam of the first base station is aimed at the first terminal, and interference coordination under hybrid beamforming is completed.
  • the beamforming module 1202 acquiring the location information of the first terminal includes sending a positioning request to the MME to acquire the location information of the first terminal, the positioning request is used to enable the E-SMLC to The first terminal obtains positioning capability information, determines the position information of the first terminal according to the GNSS measurement result of the navigation and positioning function of the first terminal, and returns it to the MME; receiving the first terminal ’s return from the MME location information.
  • network-side GNSS can be used to achieve precise positioning with a positioning accuracy of less than 5 meters, which is beneficial to realize simulated beam forming based on position information.
  • the beamforming module 1202 acquiring the location information of the first terminal includes sending a positioning request to the MME to acquire the location information of the first terminal, the positioning request is used to enable the E-SMLC to The first terminal obtains positioning capability information, enables the first terminal to determine the position information of the first terminal according to the GNSS measurement result, and receives the position information of the first terminal returned by the UE.
  • the GNSS measurement results on the terminal side are used to achieve simulated beamforming based on position information.
  • the beamforming module 1202 is further configured to: send a first interference coordination request to the second base station corresponding to the current interference neighboring cell of the first terminal; use the beam number information for the first terminal to perform simulation Beamforming.
  • the interference coordination is performed through the beam number information to meet different scenarios. Interference coordination needs.
  • the beamforming module 1202 is further configured to: receive the measured value of the signal receiving parameter reported by the first terminal based on the RRC, and determine that the measured value meets the set condition, and adopt a digital value to the first terminal Beamforming performs interference coordination.
  • the first base station determines the CSI-RSRP and CSI-RSRQ based on the measured values of the signal reception parameters reported by the first terminal based on the RRC When both are lower than the set threshold, digital beamforming is performed to the first terminal.
  • the first terminal enables the calculation of the feedback value of the channel state information according to the received RRC, the feedback value includes: CRI, RI, PMI, and CQI, and the first terminal is based on the requirement to maximize the system capacity of digital beamforming Generate a feedback value and report the feedback value to the first base station.
  • the first base station configures a suitable precoding codebook for the transmission port under the selected analog beam to form a digital beam, so that the digital beam of the first base station pairs
  • the quasi-first terminal completes interference coordination under hybrid beamforming.
  • the beamforming module 1202 is further configured to: select the beam number information corresponding to the beam pairing of the interference neighboring interval corresponding to the located cell to simulate beamforming, wherein the located cell and the neighboring interference cell Form a heterogeneous cell. .
  • each module in the device may be composed of a central processing unit (CPU, Central Processing Unit), a microprocessor (MPU, Microprocessor Unit), and a digital signal processor (DSP, Digital Signal Processor), or Field Programmable Gate Array (FPGA, Field-Programmable Gate Array) and other implementations.
  • CPU Central Processing Unit
  • MPU Microprocessor Unit
  • DSP Digital Signal Processor
  • FPGA Field-Programmable Gate Array
  • the base station 1300 includes a processor 1301 and a memory 1302 for storing a computer program that can run on the processor 1301; When executing the program 13021, the processor 1301 is configured to execute the inter-cell interference coordination method described in any of the foregoing embodiments when the executable program 13021 is executed.
  • the base station also includes at least one network interface 1303. The components in the base station are coupled together via the bus system 1304. It can be understood that the bus system 1304 is used to implement connection and communication between these components.
  • the bus system 1304 also includes a power bus, a control bus, and a status signal bus. However, for clear explanation, various buses are marked as the bus system 1304 in FIG. 13.
  • An embodiment of the present disclosure also provides a storage medium in which a computer program is stored.
  • the storage medium may be a memory such as FRAM, ROM, PROM, EPROM, EEPROM, Flash, magnetic surface memory, optical disk, or CD-ROM.
  • the embodiments of the present disclosure may be provided as methods, systems, or computer program products. Therefore, the present disclosure may take the form of a hardware embodiment, a software embodiment, or an embodiment combining software and hardware. Moreover, the present disclosure may take the form of a computer program product implemented on one or more computer usable storage media (including but not limited to disk storage and optical storage, etc.) containing computer usable program code.
  • a computer usable storage media including but not limited to disk storage and optical storage, etc.
  • These computer program instructions can be provided to the processor of a general-purpose computer, special-purpose computer, embedded processing machine, or other programmable data processing device to produce a machine that enables the generation of instructions executed by the processor of the computer or other programmable data processing device
  • These computer program instructions may also be stored in a computer-readable memory that can guide a computer or other programmable data processing device to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including an instruction device, the instructions The device implements the functions specified in one block or multiple blocks of the flowchart one flow or multiple flows and / or block diagrams.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device, so that a series of operating steps are performed on the computer or other programmable device to produce computer-implemented processing, which is executed on the computer or other programmable device
  • the instructions provide steps for implementing the functions specified in one block or multiple blocks of the flowchart one flow or multiple flows and / or block diagrams.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开实施例提供一种小区间干扰协调方法、基站及存储介质,所述方法包括:发送无线资源配置信息RRC给所在小区的第一终端;接收所述第一终端基于所述RRC上报的信号接收参数的测量值,确定所述测量值符合设置条件时,根据所述第一终端的位置信息或者波束编号信息采用对应的混合波束赋形策略进行干扰协调。

Description

小区间干扰协调方法、基站及存储介质 技术领域
本公开涉及但不限于无线通信领域。
背景技术
第五代移动通信(5G)系统的一个重要特性就是采用大规模天线(Massive MIMO)作为提高系统可靠性和容量、扩展小区覆盖的关键技术。为了满足国际电信联盟-高级国际移动通信(ITU IMT-2020)对于5G系统的高系统容量的要求,第三代合作伙伴(3GPP)的5G NR(New Radio,新空口)采用了高达64天线端口的Massive MIMO,相对于第四代高级长期演进(4G LTE-A)的最大8天线端口有着很大的提升。此外,5G系统还采用了更加密集的站点部署组网形式,同时还通过部署小基站(Small cell)、中继(Relay)、微小区(Pico cell)等形式来进一步加密小区的部署,3GPP的R16标准化讨论中已经专门开展了研究课题:IAB(Integrated Access and Backhaul for NR,NR的综合接入和回程),使得终端在一定区域内捕获更多的频谱,提升系统的频谱效率,从而大幅提高系统容量。
然而,随着小区密度的增加,小区间的干扰问题更加突出,干扰成为制约性能的主要因素。在4G LTE-A中,就已经面临着异构网下的干扰环境了,用户设备(UE)会受到来自相邻小区的强干扰,干扰强度可能也会超过本小区的发射功率。为了对抗邻区的干扰,接收机要采用网络辅助的干扰抑制消除与抑制(NAICS:Network Assistant Interference Cancelling and Suppression)技术。针对5G的复杂干扰环境下,3GPP R15标准化专门讨论了几种抗干扰技术,如采用先进接收机(即NAICS接收机)、SRS(Sounding reference symbol,探测参考符号)干扰测量、协作波束赋形等抗干扰技术,然而,针对采用NAICS接收机的抗干扰技术,由于终端复杂度的限制,NAICS只能处理1至2个强干扰源,从而NAICS的处理能力有限,无法满足5G NR的密集组网的复杂干扰环境的需求;针对采用SRS干扰 测量的抗干扰技术,SRS干扰测量可以面向UE之间的干扰,但不能解决小区间的干扰问题;针对采用协作波束赋形的抗干扰技术,需要所有UE对于每个波束都实时测量来自邻区基站的干扰和邻区终端的干扰,并将干扰测量结果上报,各个小区将各种干扰情况做成表格,根据干扰表格在小区间进行干扰协调,因为反馈量过大和时延长而难以实现。
发明内容
第一方面,本公开实施例提供一种小区间干扰协调方法,应用于第一基站,所述方法包括:发送无线资源配置信息RRC给所在小区的第一终端;接收所述第一终端基于所述RRC上报的信号接收参数的测量值,确定所述测量值符合设置条件时,根据所述第一终端的位置信息或者波束编号信息采用对应的混合波束赋形策略进行干扰协调。
第二方面,本公开实施例提供一种基站,所述基站包括处理器和配置为存储能够在处理器上运行的计算机程序的存储器;其中,所述处理器配置为运行所述计算机程序时,执行本公开任一实施例所提供的小区间干扰协调方法。
第三方面,本公开实施例提供一种存储介质,所述存储介质中存储有计算机程序,所述计算机程序被处理器执行时实现本公开任一实施例所提供的小区间干扰协调方法。
附图说明
图1为本公开实施例中小区间干扰协调方法的应用场景示意图之一;
图2为本公开实施例小区间干扰协调方法的流程示意图之一;
图3为本公开实施例中小区间干扰协调方法的应用场景示意图之二;
图4为本公开实施例小区间干扰协调方法的流程示意图之二;
图5为本公开实施例小区间干扰协调方法的流程示意图之三;
图6为本公开实施例中小区间干扰协调方法的应用场景示意图 之三;
图7为本公开实施例小区间干扰协调方法的流程示意图之四;
图8为本公开实施例小区间干扰协调方法的流程示意图之五;
图9为本公开实施例小区间干扰协调方法的流程示意图之六;
图10为本公开实施例中小区间干扰协调方法的应用场景示意图之四;
图11为本公开实施例小区间干扰协调方法的流程示意图之七;
图12为本公开实施例小区间干扰协调装置的结构示意图;
图13为本公开实施例基站的结构示意图。
具体实施方式
为了能够更加详尽地了解本公开实施例的特点与技术内容,以下结合说明书附图及本公开实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本公开实施例。
除非另有定义,本文所使用的所有的技术和科学术语与属于本公开的技术领域的技术人员通常理解的含义相同。本文中在本公开的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
在以下的描述中,涉及到“一些实施例”的表述,其描述了所有可能实施例的子集,但是应当理解,“一些实施例”可以是所有可能实施例的相同子集或不同子集,并且可以在不冲突的情况下相互结合。
目前,如何在5G NR的复杂干扰环境下更好地降低干扰影响以实现高系统容量,仍然是一个有待解决的技术问题。根据本公开的一个实施例,能够最大程度降低密集组网环境下的干扰、提高通信系统容量和终端的接收性能。
图1提供了一种应用本公开实施例所提供的小区间干扰协调方法的运行系统架构的示意图,该运行系统架构包括:第一基站110、第一基站110所在小区对应的第一终端120、第二基站130、第二基 站130所在小区对应的第二终端140。
这里,第一基站110、第二基站130可以是宏基站(gNB)、小基站(Small cell)、中继(Relay)、微基站(Micro cell)、微微基站(Pico cell)或者家庭基站(HeNB)等,第一基站110与第二基站130的结构可以对等,如第一基站110和第二基站130均为gNB、Small cell、Relay、Micro cell、Pico cell、HeNB之一;第一基站110与第二基站130的结构亦可以为不对等,如第一基站110为gNB,第二基站130可以为Small cell、Relay、Micro cell、Pico cell、HeNB之一,或者第二基站130为gNB,第一基站110为Small cell、Relay、Micro cell、Pico cell、HeNB之一。第一终端120、第二终端140可以是与无线通信网络连接并且发送和接收数据的用户设备(UE)。这里,“终端”可以被诸如“UE”、“移动站(MS)”、“移动订户站(MSS)”、“订户站(SS)”、“高级移动站(AMS)”、“无线终端(WT)”、“机器型通信(MTC)装置”、“机器对机器(M2M)装置”、“装置对装置(D2D)装置”、“站(STA)”等的术语替代。然而,说明书中提到的终端不限于此,可以是与本公开提供的无线通信网络连接的任何装置。
在一些实施例中,干扰协调要处理的干扰包括干扰邻区的下行干扰和干扰终端的上行干扰。干扰邻区可以包括对等的同构小区,以及带中继或微小区的异构小区。
图2为本公开一实施例提供的小区间干扰协调方法的流程图,示例性地,该小区间干扰协调方法可以应用于图1中所示的第一基站,参照图2,该小区间干扰协调方法包括如下步骤201和202。
在步骤201,发送无线资源配置信息RRC给所在小区的第一终端。
这里,第一基站发送无线资源配置信息RRC(Radio Resource Control,无线资源控制协议)给第一终端,使能第一终端进行信号接收参数的测量。这里,信号接收参数包括CSI-RSRP(Channel State Information-Reference Signal Receive Power,信道状态信息的参考信号接收功率)和/或CSI-RSRQ(Channel State  Information-Reference Signal Receive Quality,信道状态信息的参考信号接收质量)。第一终端将测量的CSI-RSRP和/或CSI-RSRQ上报给第一基站。在一实施方式中,第一终端会接收到包括干扰邻区在内的多个小区的RRC,从而生成对应多个小区的CSI-RSRP和/或CSI-RSRQ,并上传包含多个小区的CSI-RSRP和/或CSI-RSRQ给第一基站。
在步骤202,接收所述第一终端基于所述RRC上报的信号接收参数的测量值,确定所述测量值符合设置条件时,根据所述第一终端的位置信息或者波束编号信息采用对应的混合波束赋形策略进行干扰协调。
这里,所述测量值符合设置条件是指,信号接收参数的测量值低于预先设定的门限值。第一基站接收到第一终端对于多个小区的CSI-RSRP和/或CSI-RSRQ测量值,当所述CSI-RSRP和/或CSI-RSRQ测量值均低于对应的设定门限时,则确定所述测量值符合设置条件。在另一可选的实施例中,确定测量值符合设置条件是指,确定所述第一基站所在小区及其对应的干扰邻区内的第二终端上报的信息接收参数的测量值均符合设置条件。所述第一基站确定其所在小区对应的干扰邻区包括:第一基站接收所述第一终端发送的多个小区的CSI-RSRP和/或CSI-RSRQ测量值,确定排序在第一和第二的两个测量值,根据所述排序在第一和第二的两个测量值确定对应的两个相邻小区,所述对应的两个相邻小区分别为所述第一终端当前所在小区及对应的干扰邻区(第一终端位于该两个相邻小区的边缘)。如此,第一基站通过确定第一终端所在小区对应的干扰邻区,便于采用对应的混合波束赋形策略对所述第一终端所在小区及对应的干扰邻区进行干扰协调。
在一个示例中,第一终端上传的测量值包括对应多个小区的CSI-RSRP,假定第一终端对应各小区生成的CSI-RSRP测量值为Ai,第一基站接收的测量值可以表示为{A1、……An},其中,i∈n,n为大于1的自然数。第一基站根据接收的测量值确定各Ai的值均小于第一设定门限时,则确定第一终端受到邻区干扰,且根据测量值中最 大和次大对应的Ai,确定第一终端对应的干扰邻区,然后和干扰邻区进行干扰协调。
在一个示例中,第一终端上传的测量值包括对应多个小区的CSI-RSRQ,假定第一终端对应各小区生成的CSI-RSRQ测量值为Bi,第一基站接收的测量值可以表示为{B1、……Bn},其中,i∈n,n为大于1的自然数。第一基站根据接收的测量值确定各Bi的值均小于第二设定门限时,则确定第一终端受到邻区干扰,且根据测量值中最大和次大对应的Bi,确定第一终端对应的干扰邻区,然后和干扰邻区进行干扰协调。
在一个示例中,第一终端上传的测量值包括对应多个小区的CSI-RSRQ和CSI-RSRQ,假定第一终端根据CSI-RSRQ和CSI-RSRQ进行加权求和得到对应各小区测量值为Ci,第一基站接收的测量值可以表示为{C1、……Cn},其中,i∈n,n为大于1的自然数。第一基站根据接收的测量值确定各Ci的值均小于第三设定门限时,确定第一终端受到邻区干扰,且根据测量值中最大和次大对应的Ci,确定第一终端对应的干扰邻区,然后和干扰邻区进行干扰协调。
其中,波束编号信息是指第一终端所在小区与干扰邻区波束配对对应的波束编号信息,通过根据第一终端的位置信息或者波束编号信息采用对应的混合波束赋形策略进行干扰协调,能够满足所述第一终端所在小区相对于干扰邻区处于设置场景,如同构或异构小区、室内或室外场景的干扰协调需求。所述设置场景包括所述第一终端所在小区相对于干扰邻区处于同构小区室外场景、同构小区室内场景、异构小区场景等。通过根据所述第一终端的位置信息或者波束编号信息采用对应的混合波束赋形策略进行干扰协调,可以分别基于第一终端的不同场景而相应设置波束赋形策略,满足第一终端在不同场景下和于不同场景之间切换过程中的干扰协调的要求。譬如,对于同构小区室外场景,能够收到较好的卫星导航信号,可以采用基于终端的位置信息采用混合波束赋形进行干扰协调;对于同构小区室内场景,由于有遮挡物,卫星导航信号接收质量不好,可以基于波束编号信息采用混合波束赋形进行干扰协调;对于异构小区场景,可以基于异构小区 间的波束配对所对应的波束编号信息采用模拟波束赋形进行干扰协调。
本公开上述实施例中,第一基站通过发送RRC给所在小区的第一终端;接收所述第一终端基于所述RRC上报的信号接收参数的测量值,确定所述测量值符合设置条件时,根据第一终端的位置信息或者波束编号信息采用对应的混合波束赋形策略进行干扰协调,混合波束赋形策略可以包括基于位置信息或波束编号信息而启动数字波束赋形和/或模拟波束赋形进行干扰协调,使得基站的波束指向本小区的终端,能够有效减少来自邻区基站和邻区终端的干扰,且适用于不同的复杂的小区部署场景和多个干扰源的情形,提高了终端接收性能和通信系统容量。
需要说明的是,第一基站所在小区和第二基站所在小区互为干扰邻区,所述第一基站和第二基站可以互换,也就是说,上述实施例所提供的小区间干扰协调方法同样可以是应用于图1所示的第二基站,所述小区间干扰协调方法应用于所述第二基站和应用于第一基站相同,在此不做赘述。
在一些实施例中,所述根据所述第一终端的位置信息采用对应的混合波束赋形策略进行干扰协调,包括:获取第一终端的位置信息;根据所述第一终端的位置信息确定与干扰邻区的第二终端的位置信息是否可区分,根据是否可区分的结果相应向所述第一终端采用模拟波束赋形或数字波束赋形进行干扰协调。
这里,第一基站采用基于终端的位置信息对应的混合波束赋形策略进行干扰协调。第一基站根据所述第一终端的位置信息确定与干扰邻区的第二终端的位置信息是否可区分,包括:第一基站接收干扰邻区对应的第二基站发送的第二终端的位置信息,根据第一终端的位置信息和第二终端的位置信息确定所述第一终端和所述第二终端的位置信息是否可区分。所述第一终端和所述第二终端对应的位置信息可区分时,则表征模拟波束可以将第一终端和第二终端区分开,从而第一基站可以对所述第一终端采用模拟波束赋形,抑制第二终端的干扰,相应的,第二基站对所述第二终端采用模拟波束赋形,抑制第一 终端的干扰,从而完成干扰协调。反之,所述第一终端和所述第二终端的位置信息不可区分时,表征模拟波束不能将第一终端和第二终端区分开,从而第一基站在所选模拟波束下形成针对所述第一终端的数字波束,相应的,第二基站在所选模拟波束下形成针对所述第二终端的数字波束,完成混合波束赋形下的干扰协调。
在一些实施例中,所述根据所述第一终端的位置信息确定与干扰邻区的第二终端的位置信息是否可区分之前,还包括:获取干扰邻区对应的第二基站发送的第二终端的位置信息;和/或所述获取第一终端的位置信息之后,包括:将所述第一终端的位置信息发送给干扰邻区对应的第二基站。
这里,第一基站根据所述第一终端的位置信息确定与干扰邻区的第二终端的位置信息是否可区分之前,将第一终端的位置信息发送给干扰邻区对应的第二基站,由于第一基站和第二基站可互换,第二基站也会将第二终端的位置信息发送给第一基站,从而第一基站可以根据自身所在小区的第一终端的位置信息、和接收到的干扰邻区对应的第二基站发送的第二终端的位置信息,确定第一终端的位置信息与干扰邻区的第二终端的位置信息是否可区分。
在一可选实施方式中,第一基站获取第一终端的位置信息之后,通过X2接口将第一终端的位置信息传递给第二基站,同理,第二基站获取第二终端的位置信息之后,通过X2接口将第二终端的位置信息传递给第一基站。
第一基站获取第一终端和第二终端的位置信息之后,通过判断第一终端和第二终端的位置信息的差值是否符合设定的区分阈值,即可判定二者是否可以区分。根据是否可区分的结果相应向所述第一终端采用模拟波束赋形或数字波束赋形进行干扰协调。
在一些实施例中,所述根据是否可区分的结果相应向所述第一终端采用模拟波束赋形或数字波束赋形进行干扰协调,包括:确定所述第一终端的位置信息与所述第二终端的位置信息可区分时,向所述第一终端采用模拟波束赋形进行干扰协调;确定所述第一终端的位置信息与所述第二终端的位置信息不可区分时,向所述第一终端采用数 字波束赋形进行干扰协调。
这里,第一基站确定所述第一终端的位置信息与所述第二终端的位置信息可区分时,则表征模拟波束可以将第一终端和第二终端区分开,第一基站向所述第一终端采用模拟波束赋形进行干扰协调。第二基站与第一基站互为干扰邻区,第二基站向所述第二终端采用模拟波束赋形进行干扰协调。第一基站确定所述第一终端的位置信息与所述第二终端的位置信息不可区分时,则表征模拟波束不能将第一终端和第二终端区分开,第一基站向所述第一终端采用数字波束赋形进行干扰协调,与此同理,第二基站向所述第二终端采用数字波束赋形进行干扰协调。
需要说明的是,所述第一终端的位置信息与所述第二终端的位置信息是否可区分可能是变化的,第一基站可以通过周期性发送RRC给第一终端,并基于第一终端上传的测量值,确定测量值符合设置条件时,启动定位查询,获得第一终端的位置信息并发送该第一终端的位置信息给第二基站;同理,第二基站可以通过周期性发送RRC给第二终端,并基于第二终端上传的测量值,确定测量值符合设置条件时,启动定位查询,获得第二终端的位置信息并发送该第二终端的位置信息给第一基站。第一基站或者第二基站根据获取的第一终端和第二终端的位置信息判断二者的位置信息是否可以区分。
在一些实施例中,所述向所述第一终端采用模拟波束赋形进行干扰协调包括:根据所述第一终端的位置信息和所述第二终端的位置信息给发射天线配置增益权重,根据所述增益权重形成模拟波束,将所述模拟波束的波峰方向指向所述第一终端的位置、且所述模拟波束的波谷方向指向所述第二终端的位置;
所述向所述第一终端采用数字波束赋形进行干扰协调,包括:接收所述第一终端基于RRC上报的信道状态信息的反馈值,根据所述反馈值,在所选模拟波束下配置预编码码本形成数字波束,将所述数字波束指向所述第一终端。
这里,第一基站向所述第一终端采用模拟波束赋形进行干扰协调包括:配置合适的增益权重生成模拟波束,以及使得模拟波束的波 峰方向对准第一终端的位置,模拟波束的波谷方向对准第二终端的位置。通过配置合适的增益权重及根据终端的位置确定模拟波束的方向,能够最大程度抑制来自干扰邻区的第二终端的干扰。其中,增益权重包括幅度和/或相位权重值,通过增益权重对发射天线的幅度、相位或者幅度和相位进行调整形成模拟波束,使得模拟波束的波峰方向对准第一终端的位置,模拟波束的波谷方向处于干扰邻区第二终端的位置。与此同理,第二基站将模拟波束的波峰方向对准第二终端的位置,模拟波束的波谷方向对准第一终端的位置,以抑制第一终端的干扰。
第一基站采用数字波束赋形进行干扰协调包括:接收所述第一终端基于RRC上报的信道状态信息的反馈值,根据所述反馈值,在所选模拟波束下配置预编码码本形成数字波束,将所述数字波束指向所述第一终端。这里,第一基站可以周期性发送RRC给第一终端或者可以在确定需要进行数字波束赋形时发送RRC给第一终端,第一终端根据接收的RRC,使能信道状态信息的反馈值的计算,本实施例中,该反馈值包括:CRI(CSI-RS Resource Indicator,信道状态信息参考信号资源指示)、RI(Rank Indicator,秩指示)、PMI(Precoding Matrix Indicator,预编码矩阵指示)及CQI(Channel Quality Indicator,信道质量指示)。第一终端可以根据使得数字波束赋形的系统容量最大的要求生成反馈值并上报该反馈值给第一基站,第一基站根据该反馈值,在所选的模拟波束下给发射端口配置合适的预编码码本形成数字波束,使得第一基站的数字波束对准第一终端,完成混合波束赋形下的干扰协调。
在一些实施例中,所述获取第一终端的位置信息,包括:向移动管理实体MME发送获取所述第一终端的位置信息的定位请求,所述定位请求用于使能演进的服务移动位置中心E-SMLC向所述第一终端获取定位能力信息、并根据所述第一终端的全球导航卫星系统GNSS测量结果确定所述第一终端的位置信息且返回给所述MME;接收所述MME返回的所述第一终端的位置信息;或者,向MME发送获取所述第一终端的位置信息的定位请求,所述定位请求用于使能E-SMLC向所 述第一终端获取定位能力信息,并使能所述第一终端根据GNSS测量结果确定所述第一终端的位置信息;接收所述第一终端返回的所述第一终端的位置信息。
这里,第一基站获取第一终端的位置信息可以包括以下两种方案。
方案一:基于网络侧GNSS获取第一终端的位置信息
第一基站向MME发送获取第一终端的位置信息的第一定位请求;MME根据该第一定位请求向E-SMLC发送第二定位请求;E-SMLC根据该第二定位请求向第一终端发送定位能力查询请求;第一终端根据该定位能力查询请求上报定位能力信息给E-SMLC并向E-SMLC请求辅助数据,第一终端根据E-SMLC提供的辅助数据进行GNSS定位测量,并将定位测量结果返回给E-SMLC;E-SMLC根据该定位测量结果计算出第一终端的位置信息,并将第一终端的位置信息发送给MME;MME将第一终端的位置信息发送给第一基站。
通过采用网络侧GNSS,可以实现定位精度5米以下的精确定位,利于实现基于位置信息的模拟波束赋形。
其中,方案一尤其适用于第一基站所在小区与对应的干扰邻区构成同构小区,且第一终端和第二终端处于室外的场景。
方案二:基于终端侧获取第一终端的位置信息
第一基站向MME发送获取第一终端的位置信息的第一定位请求;MME根据该第一定位请求向E-SMLC发送第二定位请求;E-SMLC根据该第二定位请求向第一终端发送定位能力查询请求;第一终端根据该定位能力查询请求上报定位能力信息给E-SMLC并向E-SMLC请求辅助数据,第一终端根据E-SMLC提供的辅助数据进行GNSS定位测量,并进行本地计算,得到第一终端的位置信息,并将第一终端的位置信息发送给第一基站。
通过采用终端侧的GNSS测量结果,便于实现基于位置信息的模拟波束赋形。
其中,方案二尤其适用于第一基站所在小区与对应的干扰邻区构成同构小区,且第一终端和第二终端处于室外的场景。
本公开上述实施例中,第一基站根据第一终端基于RRC上报的信号接收参数的测量值,确定测量值符合设置条件时,通过获取的第一终端和第二终端的位置信息,根据所述第一终端的位置信息确定与干扰邻区的第二终端的位置信息是否可区分,根据是否可区分的结果相应向所述第一终端采用模拟波束赋形或数字波束赋形进行干扰协调。在位置可区分时,通过模拟波束赋形使得第一基站的模拟波束的波峰指向第一终端,波谷指向第二终端。在位置不可区分时,在所选模拟波束下通过数字波束赋形,使得第一基站的数字波束对准第一终端,进行干扰协调。能够有效减少来自邻区终端和邻区基站的干扰,提高了终端接收性能和通信系统容量。
在一些实施例中,所述根据波束编号信息采用对应的混合波束赋形策略进行干扰协调,包括:向所述第一终端的干扰邻区对应的第二基站发起第一干扰协调请求;收到所述干扰邻区的第二干扰协调请求后,采用对应的波束编号信息向所述第一终端进行模拟波束赋形。
这里,第一基站采用基于波束编号信息对应的混合波束赋形策略进行干扰协调。在一些实施例中,当第一终端或者第二终端进入室内场景或者被遮挡物遮挡时,由于卫星导航信号接收质量不好,导致基站无法获取位置信息,则通过波束编号信息进行干扰协调,以满足不同场景的干扰协调需求。
在一些实施例中,向所述第一终端的干扰邻区对应的第二基站发起第一干扰协调请求之前,第一基站和/第二基站采用基于终端的位置信息对应的混合波束赋形策略进行干扰协调。譬如,第一基站或者第二基站通过基于终端的位置信息采用模拟波束赋形或数字波束赋形进行干扰协调之后,第一基站根据第一终端基于RRC上报的信号接收参数的测量值,确定所述测量值仍符合设置条件时,则启动根据波束编号信息进行波束赋形,或者第二基站根据第二终端基于RRC上报的信号接收参数的测量值,确定所述测量值仍符合设置条件时,则启动根据波束编号信息进行波束赋形。其中,所述第一基站和/或第二基站采用基于终端的位置信息对应的混合波束赋形策略进行干扰协调的方案同前所述,在此不赘述。
所述第一基站采用基于波束编号信息对应的混合波束赋形策略进行干扰协调包括:第一基站向所述第一终端的干扰邻区对应的第二基站发起第一干扰协调请求;且第一基站收到所述干扰邻区的第二干扰协调请求后,采用对应的波束编号信息向所述第一终端进行模拟波束赋形;与此同理,第二基站所在小区与所述第一基站所在小区互为干扰邻区,第二基站同样采用基于波束编号信息对应的混合波束赋形策略进行干扰协调,第二基站向第一基站发起第二干扰协调请求,并收到第一基站所在小区的第一干扰协调请求后,采用对应的波束编号信息向所述第二终端进行模拟波束赋形。
其中,所述对应的波束编号信息是指与干扰邻区进行波束配对确定的波束编号信息。第一基站可以根据第一终端上报的测量值确定干扰邻区,所述第一基站确定干扰邻区包括:第一基站接收所述第一终端发送的多个小区的CSI-RSRP和/或CSI-RSRQ测量值,确定排序在第一和第二的两个测量值,根据所述排序在第一和第二的两个测量值确定对应的两个相邻小区,所述对应的两个相邻小区分别为所述第一终端当前所在小区及对应的干扰邻区(第一终端位于该两个相邻小区的边缘)。如此,通过确定第一终端所在小区对应的干扰邻区,便于采用对应的混合波束赋形策略对所述第一终端所在小区及对应的干扰邻区进行干扰协调。此处的配对是指在网络规划期预先设置好的两个小区之间的互相干扰较小的波束编号组合,这样,通过选择合适的波束编号信息进行模拟波束赋形,就可以减小两个小区间的干扰。
本公开上述实施例,对于难以获得终端的精确位置信息的场景,通过采用模拟波束的波束编号来区分终端,由各小区间协调将波束编号间相对干扰较小的波束编号信息进行模拟波束赋形,有效减少了两个小区间的干扰。
在一些实施例中,所述选择与干扰邻区配对的预设的波束编号信息进行模拟波束赋形之后,还包括:接收所述第一终端基于RRC上报的信号接收参数的测量值,确定所述测量值符合设置条件时,接收所述第一终端基于RRC上报的信道状态信息的反馈值,根据所述反馈值,在所选模拟波束下配置预编码码本形成数字波束,将所述数字 波束指向所述第一终端。
如果在通过基于波束编号信息的模拟波束赋形后,两个小区间的干扰仍然存在,如第一基站根据第一终端基于RRC上报的信号接收参数的测量值,确定测量值仍低于设定门限时,则向第一终端进行数字波束赋形。这里,第一终端根据接收的RRC,使能信道状态信息的反馈值的计算,该反馈值包括:CRI、RI、PMI及CQI,第一终端根据使得数字波束赋形的系统容量最大的要求生成反馈值并上报该反馈值给第一基站,第一基站根据该反馈值,在所选的模拟波束下给发射端口配置合适的预编码码本形成数字波束,使得第一基站的数字波束对准第一终端,完成混合波束赋形下的干扰协调。
与此同理,第二基站根据第二终端基于RRC上报的信号接收参数的测量值,确定测量值仍低于设定门限时,则向第二终端进行数字波束赋形。这里,第二终端根据接收的RRC,使能信道状态信息的反馈值的计算,该反馈值包括:CRI、RI、PMI及CQI,第二终端根据使得数字波束赋形的系统容量最大的要求生成反馈值并上报该反馈值给第二基站,第二基站根据该反馈值,在所选的模拟波束下给发射端口配置合适的预编码码本形成数字波束,使得第二基站的数字波束对准第二终端,完成混合波束赋形下的干扰协调。
本公开上述实施例,第一基站对采用波束编号信息进行模拟波束赋形后,在干扰仍未消除的情形下,进一步通过数字波束赋形,使得第一基站的数字波束对准第一终端,进一步抑制干扰,提高终端接收性能和通信系统容量,尤其适用于第一基站所在小区与对应的干扰邻区构成同构小区,且第一终端和第二终端从室外场景切换到室内场景后的干扰协调。
在一些实施例中,所述根据波束编号信息采用对应的混合波束赋形策略进行干扰协调,包括:选择与所在小区对应的干扰邻区间波束配对所对应的波束编号信息进行模拟波束赋形,其中,所述所在小区与所述干扰邻区构成异构小区。
这里,第一基站采用基于异构小区间的波束配对所对应的波束编号信息采用模拟波束赋形进行干扰协调。干扰邻区即为本小区对应 的异构小区,此处的配对是指在网络规划期预先设置好的两个小区之间的互相干扰较小的波束编号组合,这样,通过选择合适的波束编号信息进行模拟波束赋形,就可以减小两个小区间的干扰。
第一基站所在小区与干扰邻区构成异构小区的实施例中,第一基站可以为小基站(Small cell)、中继(Relay)或微小区(Pico cell)等形式,而第二基站可以为不同于第一基站的5G NR的宏基站(gNB)。
第一基站发送RRC给第一终端,第一终端还接收第二基站发送的RRC。第一终端根据第一基站发送的RRC生成第一测量值,根据第二基站发送的RRC生成第二测量值,第一终端将生成的第一测量值和第二测量值上报给第一基站,第一基站将第一测量值和第二测量值转发给第二基站。第一基站确定第一测量值和第二测量值均低于对应的设定门限时,此时,第一基站可以确认第一终端移动至第二基站(宏基站)干扰较高的区域,第一基站选择与第二基站配对的波束编号信息进行模拟波束赋形,该波束编号信息为在网络规划期预先设置好的第一基站与第二基站之间的互相干扰较小的波束编号组合,这样,通过选择合适的波束编号信息进行模拟波束赋形,就可以减小两个小区间的干扰。与此同理,第二基站确定第一测量值和第二测量值均低于对应的设定门限时,选择与第一基站配对的波束编号信息进行模拟波束赋形,使得第二基站的模拟波束的波谷方向对准第一终端。
本公开上述实施例中,第一基站根据第一终端上传的信号接收参数的测量值,确定测量值符合设置条件时,根据异构小区在网络规划期预先设置好的波束配对的波束编号信息,进行模拟波束赋形,可以有效减小两个小区间的干扰。
相关技术一般通过对各个资源块的干扰测量反馈进行干扰协调,需要实时反馈大量的各个波束所测量的干扰信息,举例来说,5G中一个UE的单端口单载波100MHz带宽,如果是30kHz子载波间隔就有272个资源块需要进行干扰测量和反馈。本公开实施例通过基于位置信息或者波束编号信息进行混合波束赋形,减小来自邻区基站的干扰和邻区终端的干扰,可以适用于不同的复杂的小区部署场景和多个干扰源,提高终端的接收性能和系统容量,同时可以避免实时反馈大 量的各个波束所测量的干扰信息。本实施例中,一个UE仅需要一份定位的位置信息或者波束编号信息,并利用系统的小区测量信息CSI-RSRP和CSI-RSRQ,就能实现干扰协调,大大降低了测量和反馈的复杂度,并将模拟和数字波束赋形相结合,降低了大规模天线处理实现干扰协调的复杂度。
为了能够对本公开实施例所提供的小区间干扰协调方法的实现的进一步理解,下面分别以多种应用场景为例,对小区间干扰协调方法的具体实现进行说明。
请参阅图3,示出了本公开实施例中小区间干扰协调方法应用场景的结构示意图之二。其中,以第一基站为gNB1、第二基站为gNB2、且第一基站gNB1所在小区(下称为本小区)与对应的干扰邻区(下称为邻区)构成同构小区,且第一终端UE1与第二终端UE2处于室外场景为例,本小区的基站gNB1和邻区的基站gNB2可以是具有相同处理能力的5G NR宏基站,期望用户UE1和干扰用户UE2位于两个小区的边缘且位置可区分,期望用户UE1的干扰主要来自于gNB2的下行和UE2的上行干扰,请结合参阅图4,所述小区间干扰协调方法包括以下步骤401至426。
步骤401,gNB1发送RRC至UE1。
gNB1发送RRC给所在小区的UE1,使能UE1进行CSI-RSRP和CSI-RSRQ的测量。
步骤402,gNB2发送RRC至UE2。
gNB2发送RRC给所在小区的UE2,使能UE2进行CSI-RSRP和CSI-RSRQ的测量。
步骤403,UE1进行测量计算。
UE1进行CSI-RSRP和CSI-RSRQ的测量,生成包含CSI-RSRP和CSI-RSRQ的测量值。需要说明的是,UE1在接收到包含干扰小区在内的多个小区的RRC时,会生成对应多个小区的测量值。
步骤404,UE2进行测量计算。
UE2进行CSI-RSRP和CSI-RSRQ的测量,生成包含CSI-RSRP和CSI-RSRQ的测量值。需要说明的是,UE2在接收到包括干扰小区在内 的多个小区的RRC时,会生成对应多个小区的测量值。
步骤405,UE1上报测量值。
UE1上报生成的测量值给gNB1。
步骤406,UE2上报测量值。
UE2上报生成的测量值给gNB2。
步骤407,gNB1发送干扰协调请求给gNB2。
gNB1根据接收到的UE1的测量值判断UE1是否存在干扰。具体地,对于UE1测量的多个小区的CSI-RSRP和CSI-RSRQ测量值,如果各小区的CSI-RSRP和CSI-RSRQ测量值都低于设定门限时,确定其中最大和次大的两个测量值,即可判定UE1当前对应的两个相邻小区,确定UE1对应的干扰邻区,然后和干扰邻区进行干扰协调。本实施例中,gNB1确定UE1受到gNB2的干扰,可以通过X2接口向gNB2发起干扰协调请求。
同理,gNB2根据接收到的UE2的测量值判断UE2是否存在干扰。具体地,对于UE2测量的多个小区的CSI-RSRP和CSI-RSRQ测量值,如果各小区的CSI-RSRP和CSI-RSRQ测量值都低于设定门限时,确定其中最大和次大的两个测量值,即可判定出UE2当前对应的两个相邻小区,确定UE2对应的干扰邻区,然后和干扰邻区进行干扰协调。本实施例中,gNB2确定UE2受到gNB1的干扰,可以通过X2接口向gNB1发起干扰协调请求。
步骤408,gNB1发送定位查询请求给MME。
需要说明的是,gNB1可以根据UE1的测量值确定UE1存在干扰时,发送定位查询请求给移动性管理功能体MME,也可以是gNB1在接收到干扰邻区(如gNB2)发送的干扰协调请求时,发送定位查询请求给移动性管理功能体MME。
步骤409,gNB2发送定位查询请求给MME。
需要说明的是,gNB2可以根据UE2的测量值确定UE2存在干扰时,发送定位查询请求给移动性管理功能体MME,也可以是gNB2在接收到干扰邻区(如gNB1)发送的干扰协调请求时,发送定位查询请求给移动性管理功能体MME。
步骤410,MME发送定位请求给E-SMLC。
MME根据接收到的定位查询请求向E-SMLC(Evolved Serving Mobile Location Center,演进的服务移动位置中心)发起定位请求。
步骤411,E-SMLC发送定位能力查询信息给UE1。
步骤412,E-SMLC发送定位能力查询信息给UE2。
步骤413,UE1上报定位能力信息给E-SMLC并请求辅助数据。
步骤414,UE2上报定位能力信息给E-SMLC并请求辅助数据。
步骤415,E-SMLC向UE1提供辅助数据并请求测量。
步骤416,E-SMLC向UE2提供辅助数据并请求测量。
步骤417,UE1进行定位测量。
UE1利用辅助数据进行GNSS测量,生成定位测量结果。
步骤418,UE2进行定位测量。
UE2利用辅助数据进行GNSS测量,生成定位测量结果。
步骤419,UE1上传定位测量结果给E-SMLC。
步骤420,UE2上传定位测量结果给E-SMLC。
步骤421,E-SMLC进行位置计算。
E-SMLC根据UE1的定位测量结果计算出UE1的位置信息;根据UE2的定位测量结果计算出UE2的位置信息。
步骤422,E-SMLC发送位置信息给MME。
E-SMLC将计算出的UE1的位置信息、UE2的位置信息发送给MME。
步骤423,MME发送位置信息给gNB1和gNB2。
在一实施方式中,MME将UE1和UE2的位置信息均分别发送给gNB1和gNB2。
在另一实施方式中,MME将UE1的位置信息发送给gNB1,将UE2的位置信息发送给gNB2,然后,gNB2将UE2的位置信息通过X2接口传给gNB1;gNB1将UE1的位置信息通过X2接口传给gNB2。
步骤424,gNB1、gNB2分别启动干扰协调。
gNB1根据UE1的位置信息和UE2的位置信息启动干扰协调,同理,gNB2根据UE1的位置信息和UE2的位置信息启动干扰协调。
步骤425,gNB1向UE1进行模拟波束赋形。
在本实施例中,UE1和UE2的位置信息可区分,模拟波束可将两个UE区分开,则gNB1进行模拟波束赋形,给发射天线配置合适的增益权重(幅度和相位)形成模拟波束,使得模拟波束的波峰方向对准UE1的位置,模拟波束的波谷方向处于UE2的位置,抑制UE2的干扰。
步骤426,gNB2向UE2进行模拟波束赋形。
同理,gNB2进行模拟波束赋形,给发射天线配置合适的增益权重(幅度和相位)形成模拟波束,使得模拟波束的波峰方向对准UE2的位置,模拟波束的波谷方向处于UE1的位置,抑制UE1的干扰。
请参阅图5,示出了本公开实施例小区间干扰协调方法的流程示意图之三,该方法可以应用于图3所示的应用场景。请参阅图5,该方法包括以下步骤501至523。
步骤501,gNB1发送RRC至UE1。
gNB1发送RRC给所在小区的UE1,使能UE1进行CSI-RSRP和CSI-RSRQ的测量。
步骤502,gNB2发送RRC至UE2。
gNB2发送RRC给所在小区的UE2,使能UE2进行CSI-RSRP和CSI-RSRQ的测量。
步骤503,UE1进行测量计算。
UE1进行CSI-RSRP和CSI-RSRQ的测量,生成包含CSI-RSRP和CSI-RSRQ的测量值。需要说明的是,UE1在接收到包含干扰小区在内的多个小区的RRC时,会生成对应多个小区的测量值。
步骤504,UE2进行测量计算。
UE2进行CSI-RSRP和CSI-RSRQ的测量,生成包含CSI-RSRP和CSI-RSRQ的测量值。需要说明的是,UE2在接收到包括干扰小区在内的多个小区的RRC时,会生成对应多个小区的测量值。
步骤505,UE1上报测量值。
UE1上报生成的测量值给gNB1。
步骤506,UE2上报测量值。
UE2上报生成的测量值给gNB2。
步骤507,gNB1发送干扰协调请求给gNB2。
gNB1根据接收到的UE1的测量值判断UE1是否存在干扰。具体地,对于UE1测量的多个小区的CSI-RSRP和CSI-RSRQ测量值,如果各小区的CSI-RSRP和CSI-RSRQ测量值都低于设定门限时,确定其中最大和次大的两个测量值,即可判定出UE1当前对应的两个相邻小区,确定UE1对应的干扰邻区,然后和干扰邻区进行干扰协调。本实施例中,gNB1确定UE1受到gNB2的干扰,可以通过X2接口向gNB2发起干扰协调请求。
同理,gNB2根据接收到的UE2的测量值判断UE2是否存在干扰。具体地,对于UE2测量的多个小区的CSI-RSRP和CSI-RSRQ测量值,如果各小区的CSI-RSRP和CSI-RSRQ测量值都低于设定门限时,确定其中最大和次大的两个测量值,即可判定出UE2当前对应的两个相邻小区,确定UE2对应的干扰邻区,然后和干扰邻区进行干扰协调。本实施例中,gNB2确定UE2受到gNB1的干扰,可以通过X2接口向gNB1发起干扰协调请求。
步骤508,gNB1发送定位查询请求给MME。
需要说明的是,gNB1可以根据UE1的测量值确定UE1存在干扰时,发送定位查询请求给移动性管理功能体MME,也可以是gNB1在接收到干扰邻区(如gNB2)发送的干扰协调请求时,发送定位查询请求给移动性管理功能体MME。
步骤509,gNB2发送定位查询请求给MME。
需要说明的是,gNB2可以根据UE2的测量值确定UE2存在干扰时,发送定位查询请求给移动性管理功能体MME,也可以是gNB2在接收到干扰邻区(如gNB1)发送的干扰协调请求时,发送定位查询请求给移动性管理功能体MME。
步骤510,MME发送定位请求给E-SMLC。
MME根据接收到的定位查询请求向E-SMLC(Evolved Serving Mobile Location Center,演进的服务移动位置中心)发起定位请求。
步骤511,E-SMLC发送定位能力查询信息给UE1。
步骤512,E-SMLC发送定位能力查询信息给UE2。
步骤513,UE1上报定位能力信息给E-SMLC并请求辅助数据。
步骤514,UE2上报定位能力信息给E-SMLC并请求辅助数据。
步骤515,E-SMLC向UE1提供辅助数据。
步骤516,E-SMLC向UE2提供辅助数据。
步骤517,UE1进行定位计算。
UE1利用辅助数据进行GNSS测量,生成对应的位置信息。
步骤518,UE2进行定位测量。
UE2利用辅助数据进行GNSS测量,生成对应的位置信息。
步骤519,UE1上传位置信息给gNB1。
步骤520,UE2上传位置信息给gNB2。
步骤521,gNB1、gNB2分别启动干扰协调。
gNB1收到UE1上传的位置信息后,gNB1将UE1的位置信息通过X2接口传给gNB2。gNB2收到UE2上传的位置信息后,gNB2将UE2的位置信息通过X2接口传给gNB1。gNB1根据UE1的位置信息和UE2的位置信息启动干扰协调,同理,gNB2根据UE1的位置信息和UE2的位置信息启动干扰协调。
步骤522,gNB1向UE1进行模拟波束赋形。
在本实施例中,UE1和UE2的位置信息可区分,模拟波束可将两个UE区分开,则gNB1进行模拟波束赋形,给发射天线配置合适的增益权重(幅度和相位)形成模拟波束,使得模拟波束的波峰方向对准UE1的位置,模拟波束的波谷方向处于UE2的位置,抑制UE2的干扰。
步骤523,gNB2向UE2进行模拟波束赋形。
同理,gNB2进行模拟波束赋形,给发射天线配置合适的增益权重(幅度和相位)形成模拟波束,使得模拟波束的波峰方向对准UE2的位置,模拟波束的波谷方向处于UE1的位置,抑制UE1的干扰。
请参阅图6,示出了本公开实施例中小区间干扰协调方法的应用场景结构示意图之三。其中,本小区的基站gNB1和邻区的基站gNB2都是具有相同处理能力的5G NR宏基站,期望用户UE1和干扰用户UE2位于两个小区的边缘且位置不可区分,期望用户UE1的干扰主要来自于gNB2的下行和UE2的上行干扰。
请参阅图7,示出了本公开实施例小区间干扰协调方法的流程示 意图之四,该方法可以应用于图6所示的应用场景。请参阅图7,该方法包括以下步骤701至733。
步骤701,gNB1发送RRC至UE1。
gNB1发送RRC给所在小区的UE1,使能UE1进行CSI-RSRP和CSI-RSRQ的测量。
步骤702,gNB2发送RRC至UE2。
gNB2发送RRC给所在小区的UE2,使能UE2进行CSI-RSRP和CSI-RSRQ的测量。
步骤703,UE1进行测量计算。
UE1进行CSI-RSRP和CSI-RSRQ的测量,生成包含CSI-RSRP和CSI-RSRQ的测量值。需要说明的是,UE1在接收到包含干扰小区在内的多个小区的RRC时,会生成对应多个小区的测量值。
步骤704,UE2进行测量计算。
UE2进行CSI-RSRP和CSI-RSRQ的测量,生成包含CSI-RSRP和CSI-RSRQ的测量值。需要说明的是,UE2在接收到包括干扰小区在内的多个小区的RRC时,会生成对应多个小区的测量值。
步骤705,UE1上报测量值。
UE1上报生成的测量值给gNB1。
步骤706,UE2上报测量值。
UE2上报生成的测量值给gNB2。
步骤707,gNB1发送干扰协调请求给gNB2。
gNB1根据接收到的UE1的测量值判断UE1是否存在干扰。具体地,对于UE1测量的多个小区的CSI-RSRP和CSI-RSRQ测量值,如果各小区的CSI-RSRP和CSI-RSRQ测量值都低于设定门限时,确定其中最大和次大的两个测量值,即可判定UE1当前对应的两个相邻小区,确定UE1对应的干扰邻区,然后和干扰邻区进行干扰协调。本实施例中,gNB1确定UE1受到gNB2的干扰,可以通过X2接口向gNB2发起干扰协调请求。
同理,gNB2根据接收到的UE2的测量值判断UE2是否存在干扰。具体地,对于UE2测量的多个小区的CSI-RSRP和CSI-RSRQ测量值, 如果各小区的CSI-RSRP和CSI-RSRQ测量值都低于设定门限时,确定其中最大和次大的两个测量值,即可判定出UE2当前对应的两个相邻小区,确定UE2对应的干扰邻区,然后和干扰邻区进行干扰协调。本实施例中,gNB2确定UE2受到gNB1的干扰,可以通过X2接口向gNB1发起干扰协调请求。
步骤708,gNB1发送定位查询请求给MME。
需要说明的是,gNB1可以根据UE1的测量值确定UE1存在干扰时,发送定位查询请求给移动性管理功能体MME,也可以是gNB1在接收到干扰邻区(如gNB2)发送的干扰协调请求时,发送定位查询请求给移动性管理功能体MME。
步骤709,gNB2发送定位查询请求给MME。
需要说明的是,gNB2可以根据UE2的测量值确定UE2存在干扰时,发送定位查询请求给移动性管理功能体MME,也可以是gNB2在接收到干扰邻区(如gNB1)发送的干扰协调请求时,发送定位查询请求给移动性管理功能体MME。
步骤710,MME发送定位请求给E-SMLC。
MME根据接收到的定位查询请求向E-SMLC(Evolved Serving Mobile Location Center,演进的服务移动位置中心)发起定位请求。
步骤711,E-SMLC发送定位能力查询信息给UE1。
步骤712,E-SMLC发送定位能力查询信息给UE2。
步骤713,UE1上报定位能力信息给E-SMLC并请求辅助数据。
步骤714,UE2上报定位能力信息给E-SMLC并请求辅助数据。
步骤715,E-SMLC向UE1提供辅助数据并请求测量。
步骤716,E-SMLC向UE2提供辅助数据并请求测量。
步骤717,UE1进行定位测量。
UE1利用辅助数据进行GNSS测量,生成定位测量结果。
步骤718,UE2进行定位测量。
UE2利用辅助数据进行GNSS测量,生成定位测量结果。
步骤719,UE1上传定位测量结果给E-SMLC。
步骤720,UE2上传定位测量结果给E-SMLC。
步骤721,E-SMLC进行位置计算。
E-SMLC根据UE1的定位测量结果计算出UE1的位置信息;根据UE2的定位测量结果计算出UE2的位置信息。
步骤722,E-SMLC发送位置信息给MME。
E-SMLC将计算出的UE1的位置信息、UE2的位置信息发送给MME。
步骤723,MME发送位置信息给gNB1和gNB2。
在一实施方式中,MME将UE1和UE2的位置信息均分别发送给gNB1和gNB2。
在另一实施方式中,MME将UE1的位置信息发送给gNB1,将UE2的位置信息发送给gNB2,然后,gNB2将UE2的位置信息通过X2接口传给gNB1;gNB1将UE1的位置信息通过X2接口传给gNB2。
步骤724,gNB1、gNB2分别启动干扰协调。
gNB1根据UE1的位置信息和UE2的位置信息启动干扰协调,本实施例中,由于UE1的位置信息和UE2的位置信息不可区分,执行步骤725;同理,gNB2根据UE1的位置信息和UE2的位置信息启动干扰协调,由于UE1的位置信息和UE2的位置信息不可区分,执行步骤726。
步骤725,gNB1发送RRC至UE1。
gNB1发送RRC给所在小区的UE1,使能UE1进行信道状态信息CRI、RI、PMI及CQI的计算。
步骤726,gNB2发送RRC至UE2。
gNB2发送RRC给所在小区的UE2,使能UE2进行信道状态信息CRI、RI、PMI及CQI的计算。
步骤727,UE1进行反馈计算。
UE1根据接收的RRC,使能信道状态信息的反馈值的计算,该反馈值包括:CRI、RI、PMI及CQI,UE1根据使得数字波束赋形的系统容量最大的要求生成反馈值。
步骤728,UE2进行反馈计算。
UE2根据接收的RRC,使能信道状态信息的反馈值的计算,该反馈值包括:CRI、RI、PMI及CQI,UE2根据使得数字波束赋形的系统 容量最大的要求生成反馈值。
步骤729,UE1上报反馈值给gNB1。
UE1上报计算生成的反馈值给gNB1,该反馈值包括:CRI、RI、PMI及CQI。
步骤730,UE2上报反馈值给gNB2。
UE2上报计算生成的反馈值给gNB2,该反馈值包括:CRI、RI、PMI及CQI。
步骤731,gNB1、gNB2分别启动干扰协调。
gNB1根据UE1上报的反馈值启动干扰协调,同理,gNB2根据UE2上报的反馈值启动干扰协调。
步骤732,gNB1进行混合波束赋形。
gNB1根据接收的反馈值,在所选的模拟波束下给发射端口配置合适的预编码码本形成数字波束,使得gNB1的数字波束对准UE1,完成混合波束赋形下的干扰协调。
步骤733,gNB2进行混合波束赋形。
gNB2根据接收的反馈值,在所选的模拟波束下给发射端口配置合适的预编码码本形成数字波束,使得gNB2的数字波束对准UE2,完成混合波束赋形下的干扰协调。
请参阅图8,示出了本公开实施例小区间干扰协调方法的流程示意图之五,该方法可以应用于图6所示的应用场景。请参阅图8,该方法包括以下步骤801至830。
步骤801,gNB1发送RRC至UE1。
gNB1发送RRC给所在小区的UE1,使能UE1进行CSI-RSRP和CSI-RSRQ的测量。
步骤802,gNB2发送RRC至UE2。
gNB2发送RRC给所在小区的UE2,使能UE2进行CSI-RSRP和CSI-RSRQ的测量。
步骤803,UE1进行测量计算。
UE1进行CSI-RSRP和CSI-RSRQ的测量,生成包含CSI-RSRP和CSI-RSRQ的测量值。需要说明的是,UE1在接收到包含干扰小区在内 的多个小区的RRC时,会生成对应多个小区的测量值。
步骤804,UE2进行测量计算。
UE2进行CSI-RSRP和CSI-RSRQ的测量,生成包含CSI-RSRP和CSI-RSRQ的测量值。需要说明的是,UE2在接收到包括干扰小区在内的多个小区的RRC时,会生成对应多个小区的测量值。
步骤805,UE1上报测量值。
UE1上报生成的测量值给gNB1。
步骤806,UE2上报测量值。
UE2上报生成的测量值给gNB2。
步骤807,gNB1发送干扰协调请求给gNB2。
gNB1根据接收到的UE1的测量值判断UE1是否存在干扰。具体地,对于UE1测量的多个小区的CSI-RSRP和CSI-RSRQ测量值,如果各小区的CSI-RSRP和CSI-RSRQ测量值都低于设定门限时,确定其中最大和次大的两个测量值,即可判定UE1当前对应的两个相邻小区,确定UE1对应的干扰邻区,然后和干扰邻区进行干扰协调。本实施例中,gNB1确定UE1受到gNB2的干扰,可以通过X2接口向gNB2发起干扰协调请求。
同理,gNB2根据接收到的UE2的测量值判断UE2是否存在干扰。具体地,对于UE2测量的多个小区的CSI-RSRP和CSI-RSRQ测量值,如果各小区的CSI-RSRP和CSI-RSRQ测量值都低于设定门限时,确定其中最大和次大的两个测量值,即可判定UE2当前对应的两个相邻小区,确定UE2对应的干扰邻区,然后和干扰邻区进行干扰协调。本实施例中,gNB2确定UE2受到gNB1的干扰,可以通过X2接口向gNB1发起干扰协调请求。
步骤808,gNB1发送定位查询请求给MME。
需要说明的是,gNB1可以根据UE1的测量值确定UE1存在干扰时,发送定位查询请求给移动性管理功能体MME,也可以是gNB1在接收到邻区(如gNB2)发送的干扰协调请求时,发送定位查询请求给移动性管理功能体MME。
步骤809,gNB2发送定位查询请求给MME。
需要说明的是,gNB2可以根据UE2的测量值确定UE2存在干扰时,发送定位查询请求给移动性管理功能体MME,也可以是gNB2在接收到邻区(如gNB1)发送的干扰协调请求时,发送定位查询请求给移动性管理功能体MME。
步骤810,MME发送定位请求给E-SMLC。
MME根据接收到的定位查询请求向E-SMLC(Evolved Serving Mobile Location Center,演进的服务移动位置中心)发起定位请求。
步骤811,E-SMLC发送定位能力查询信息给UE1。
步骤812,E-SMLC发送定位能力查询信息给UE2。
步骤813,UE1上报定位能力信息给E-SMLC并请求辅助数据。
步骤814,UE2上报定位能力信息给E-SMLC并请求辅助数据。
步骤815,E-SMLC向UE1提供辅助数据。
步骤816,E-SMLC向UE2提供辅助数据。
步骤817,UE1进行定位计算。
UE1利用辅助数据进行GNSS测量,生成对应的位置信息。
步骤818,UE2进行定位测量。
UE2利用辅助数据进行GNSS测量,生成对应的位置信息。
步骤819,UE1上传位置信息给gNB1。
步骤820,UE2上传位置信息给gNB2。
步骤821,gNB1、gNB2分别启动干扰协调。
gNB1收到UE1上传的位置信息后,gNB1将UE1的位置信息通过X2接口传给gNB2。gNB2收到UE2上传的位置信息后,gNB2将UE2的位置信息通过X2接口传给gNB1。gNB1根据UE1的位置信息和UE2的位置信息启动干扰协调,本实施例中,由于UE1的位置信息和UE2的位置信息不可区分,执行步骤822;同理,gNB2根据UE1的位置信息和UE2的位置信息启动干扰协调,由于UE1的位置信息和UE2的位置信息不可区分,执行步骤823。
步骤822,gNB1发送RRC至UE1。
gNB1发送RRC给所在小区的UE1,使能UE1进行信道状态信息CRI、RI、PMI及CQI的计算。
步骤823,gNB2发送RRC至UE2。
gNB2发送RRC给所在小区的UE2,使能UE2进行信道状态信息CRI、RI、PMI及CQI的计算。
步骤824,UE1进行反馈计算。
UE1根据接收的RRC,使能信道状态信息的反馈值的计算,该反馈值包括:CRI、RI、PMI及CQI,第一终端根据使得数字波束赋形的系统容量最大的要求生成反馈值。
步骤825,UE2进行反馈计算。
UE2根据接收的RRC,使能信道状态信息的反馈值的计算,该反馈值包括:CRI、RI、PMI及CQI,第二终端根据使得数字波束赋形的系统容量最大的要求生成反馈值。
步骤826,UE1上报反馈值给gNB1。
UE1上报计算生成的反馈值给gNB1,该反馈值包括:CRI、RI、PMI及CQI。
步骤827,UE2上报反馈值给gNB2。
UE2上报计算生成的反馈值给gNB2,该反馈值包括:CRI、RI、PMI及CQI。
步骤828,gNB1、gNB2分别启动干扰协调。
gNB1根据UE1上报的反馈值启动干扰协调,同理,gNB2根据UE2上报的反馈值启动干扰协调。
步骤829,gNB1进行混合波束赋形。
gNB1根据接收的反馈值,在所选的模拟波束下给发射端口配置合适的预编码码本形成数字波束,使得gNB1的数字波束对准UE1,完成混合波束赋形下的干扰协调。
步骤830,gNB2进行混合波束赋形。
gNB2根据接收的反馈值,在所选的模拟波束下给发射端口配置合适的预编码码本形成数字波束,使得gNB2的数字波束对准UE2,完成混合波束赋形下的干扰协调。
请参阅图9,示出了本公开实施例小区间干扰协调方法的流程示意图之六;该方法可以应用于图3或者图6所示的应用场景中。请参 阅图9,该方法包括以下步骤901至919。
步骤901,gNB1发送RRC至UE1。
gNB1发送RRC给所在小区的UE1,使能UE1进行CSI-RSRP和CSI-RSRQ的测量。
步骤902,gNB2发送RRC至UE2。
gNB2发送RRC给所在小区的UE2,使能UE2进行CSI-RSRP和CSI-RSRQ的测量。
步骤903,UE1进行测量计算。
UE1进行CSI-RSRP和CSI-RSRQ的测量,生成包含CSI-RSRP和CSI-RSRQ的测量值。需要说明的是,UE1在接收到包含干扰小区在内的多个小区的RRC时,会生成对应多个小区的测量值。
步骤904,UE2进行测量计算。
UE2进行CSI-RSRP和CSI-RSRQ的测量,生成包含CSI-RSRP和CSI-RSRQ的测量值。需要说明的是,UE2在接收到包括干扰小区在内的多个小区的RRC时,会生成对应多个小区的测量值。
步骤905,UE1上报测量值。
UE1上报生成的测量值给gNB1。
步骤906,UE2上报测量值。
UE2上报生成的测量值给gNB2。
步骤907,gNB1发送干扰协调请求给gNB2。
gNB1根据接收到的UE1的测量值判断UE1是否存在干扰。具体地,对于UE1测量的多个小区的CSI-RSRP和CSI-RSRQ测量值,如果各小区的CSI-RSRP和CSI-RSRQ测量值都低于设定门限时,确定其中最大和次大的两个测量值,即可判定UE1当前对应的两个相邻小区,确定UE1对应的干扰邻区,然后和干扰邻区进行干扰协调。本实施例中,gNB1确定UE1受到gNB2的干扰,可以通过X2接口向gNB2发起干扰协调请求。
同理,gNB2根据接收到的UE2的测量值判断UE2是否存在干扰。具体地,对于UE2测量的多个小区的CSI-RSRP和CSI-RSRQ测量值,如果各小区的CSI-RSRP和CSI-RSRQ测量值都低于设定门限时,确定 其中最大和次大的两个测量值,即可判定UE2当前对应的两个相邻小区,确定UE2对应的干扰邻区,然后和干扰邻区进行干扰协调。本实施例中,gNB2确定UE2受到gNB1的干扰,可以通过X2接口向gNB1发起干扰协调请求。
步骤908,gNB1、gNB2选择波束编号。
gNB1和gNB2各自收到邻区的干扰协调请求后,都选择与干扰邻区配对的预设的波束编号信息,以进行模拟波束赋形。选择的波束编号是gNB1和gNB2的波束配对所对应的编号。波束配对是在网络规划时期就生成好的相互干扰较小的配对组合。
步骤909,gNB1进行模拟波束赋形。
gNB1根据选择的波束编号进行模拟波束赋形,以减少相邻小区间的干扰。可选地,gNB1根据模拟波束赋形后UE1基于RRC上报的信号接收参数的测量值,确定CSI-RSRP和CSI-RSRQ都仍低于设定门限时,gNB1进一步可以执行步骤911,进行数字波束赋形。
步骤910,gNB2进行模拟波束赋形。
gNB2根据选择的波束编号进行模拟波束赋形,以减少相邻小区间的干扰。可选地,gNB2根据模拟波束赋形后UE2基于RRC上报的信号接收参数的测量值,确定CSI-RSRP和CSI-RSRQ都仍低于设定门限时,gNB2进一步可以执行步骤912,进行数字波束赋形。
步骤911,gNB1发送RRC至UE1。
gNB1发送RRC给所在小区的UE1,使能UE1进行信道状态信息CRI、RI、PMI及CQI的计算。
步骤912,gNB2发送RRC至UE2。
gNB2发送RRC给所在小区的UE2,使能UE2进行信道状态信息CRI、RI、PMI及CQI的计算。
步骤913,UE1进行反馈计算。
UE1根据接收的RRC,使能信道状态信息的反馈值的计算,该反馈值包括:CRI、RI、PMI及CQI,第一终端根据使得数字波束赋形的系统容量最大的要求生成反馈值。
步骤914,UE2进行反馈计算。
UE2根据接收的RRC,使能信道状态信息的反馈值的计算,该反馈值包括:CRI、RI、PMI及CQI,第二终端根据使得数字波束赋形的系统容量最大的要求生成反馈值。
步骤915,UE1上报反馈值给gNB1。
UE1上报计算生成的反馈值给gNB1,该反馈值包括:CRI、RI、PMI及CQI。
步骤916,UE2上报反馈值给gNB2。
UE2上报计算生成的反馈值给gNB2,该反馈值包括:CRI、RI、PMI及CQI。
步骤917,gNB1、gNB2分别启动干扰协调。
gNB1根据UE1上报的反馈值启动干扰协调,同理,gNB2根据UE2上报的反馈值启动干扰协调。
步骤918,gNB1进行混合波束赋形。
gNB1根据接收的反馈值,在所选的模拟波束下给发射端口配置合适的预编码码本形成数字波束,使得gNB1的数字波束对准UE1,完成混合波束赋形下的干扰协调。
步骤919,gNB2进行混合波束赋形。
gNB2根据接收的反馈值,在所选的模拟波束下给发射端口配置合适的预编码码本形成数字波束,使得gNB2的数字波束对准UE2,完成混合波束赋形下的干扰协调。
请参阅图10,示出了本公开实施例中小区间干扰协调方法的应用场景示意图之四。其中,本小区是小基站(Small cell)、中继(Relay)或微小区(Pico cell)等形式,而干扰基站是5G NR的宏基站(gNB),UE的数据信道与微小区通信,控制信道与宏小区直接通信或由微小区转发,UE在微小区内会受到来自于宏小区的数据信道的强干扰。
请参阅图11,示出了本公开实施例小区间干扰协调方法的流程示意图之七,该方法可以应用于图10所示的应用场景。请参阅图11,该方法包括以下步骤1101至1108。
步骤1101,Relay发送RRC至UE1。
Relay发送RRC给所在小区的UE1,使能UE1进行CSI-RSRP和 CSI-RSRQ的测量。
步骤1102,gNB发送RRC至UE1。
gNB发送RRC给UE1,使能UE1进行CSI-RSRP和CSI-RSRQ的测量。
步骤1103,UE1进行测量计算。
UE1进行CSI-RSRP和CSI-RSRQ的测量,生成包含CSI-RSRP和CSI-RSRQ的测量值。需要说明的是,UE1在接收到Relay发送的RRC和gNB发送的RRC,因此,UE1生成包含Relay对应的CSI-RSRP和CSI-RSRQ和gNB对应的CSI-RSRP和CSI-RSRQ的测量值。
步骤1104,UE1上报测量值给Relay。
UE1将生成的测量值上报给Relay。
步骤1105,Relay上报测量值给gNB。
Relay接收到测量值后将其上报给gNB。
步骤1106,Relay和gNB分别进行干扰协调。
如果测量值中的CSI-RSRP和CSI-RSRQ测量值都低于设定门限时,则判定UE已经移动到宏小区干扰较高的区域,此时,Relay和gNB分别根据接收到的测量值进行干扰协调。具体地,Relay与gNB进行波束配对来选择波束编号,以进行模拟波束赋形。选择的波束编号是Relay和gNB的波束配对所对应的编号。波束配对是在网络规划时期就生成好的相互干扰较小的配对组合。
步骤1107,Relay进行模拟波束赋形。
Relay根据选择的波束编号进行模拟波束赋形,以保证Relay的模拟波束的波峰方向对准UE1。
步骤1108,gNB进行模拟波束赋形。
gNB根据选择的波束编号进行模拟波束赋形,以保证gNB的模拟波束的波谷方向对准UE1,以抑制宏小区的干扰。
结合上述的多个实施例,可以得知,本公开实施例的技术方案,通过基于位置信息或者波束编号信息进行混合波束赋形,减小来自邻区基站的干扰和邻区终端的干扰,可以适用于不同的小区部署场景和多个干扰源,提高终端的接收性能和系统容量,同时可以避免实时反 馈大量的各个波束所测量的干扰信息。本实施例中,一个UE仅需要一份定位的位置信息或者波束编号信息,并利用系统的小区测量信息CSI-RSRP和CSI-RSRQ,就能实现干扰协调,大大降低了测量和反馈的复杂度,并将模拟和数字波束赋形相结合,降低了大规模天线处理实现干扰协调的复杂度。
本公开实施例另一方面,还提供一种基于大规模天线的小区间干扰协调装置,参照图12,该装置包括:发送模块1201,配置为发送无线资源配置信息RRC给所在小区的第一终端;波束赋形模块1202,配置为根接收所述第一终端基于所述RRC上报的信号接收参数的测量值,确定所述测量值符合设置条件时,根据所述第一终端的位置信息或者波束编号信息采用对应的混合波束赋形策略进行干扰协调。
在一实施例中,波束赋形模块1202还配置为:获取第一终端的位置信息;根据所述第一终端的位置信息确定与干扰邻区的第二终端的位置信息是否可区分,根据是否可区分的结果相应向所述第一终端采用模拟波束赋形或数字波束赋形进行干扰协调。
在一实施例中,第一基站确定第一终端的位置信息与干扰邻区的第二终端的位置信息可区分时,向所述第一终端采用模拟波束赋形进行干扰协调。通过模拟波束赋形,给发射天线配置合适的增益权重(幅度和/或相位)形成模拟波束,使得模拟波束的波峰方向对准第一终端的位置,模拟波束的波谷方向处于干扰邻区第二终端的位置,抑制第二终端的干扰。
在一实施例中,第一基站确定第一终端的位置信息与干扰邻区的第二终端的位置信息不可区分时,向所述第一终端采用数字波束赋形进行干扰协调。此时,由于第一终端与第二终端的位置不可区分,模拟波束不能将两个终端分开,本实施例进一步通过数字波束赋形,在所选的模拟波束下给发射端口配置合适的预编码码本形成数字波束,使得第一基站的数字波束对准第一终端,完成混合波束赋形下的干扰协调。
可选地,波束赋形模块1202还配置为:根据所述第一终端的位 置信息确定与干扰邻区的第二终端的位置信息是否可区分之前,获取干扰邻区对应的第二基站发送的第二终端的位置信息;和/或所述获取第一终端的位置信息之后,将所述第一终端的位置信息发送给干扰邻区对应的第二基站。
在一实施例中,波束赋形模块1202还配置为:接收所述第一终端基于所述RRC上报的信道状态信息的反馈值,根据所述反馈值进行数字波束赋形。第一基站可以周期性发送RRC给第一终端或者可以在确定需要进行数字波束赋形时发送RRC给第一终端,第一终端根据接收的RRC,使能信道状态信息的反馈值的计算,本实施例中,该反馈值包括:CRI(CSI-RS Resource Indicator,信道状态信息参考信号资源指示)、RI(Rank Indicator,秩指示)、PMI(Precoding Matrix Indicator,预编码矩阵指示)及CQI(Channel Quality Indicator,信道质量指示),第一终端根据使得数字波束赋形的系统容量最大的要求生成反馈值并上报该反馈值给第一基站,第一基站根据该反馈值,在所选的模拟波束下给发射端口配置合适的预编码码本形成数字波束,使得第一基站的数字波束对准第一终端,完成混合波束赋形下的干扰协调。
在一实施例中,波束赋形模块1202获取第一终端的位置信息,包括:向MME发送获取所述第一终端的位置信息的定位请求,所述定位请求用于使能E-SMLC向所述第一终端获取定位能力信息,根据所述第一终端的导航定位功能GNSS测量结果确定所述第一终端的位置信息后返回给所述MME;接收所述MME返回的所述第一终端的位置信息。
该实施例采用网络侧GNSS可以实现定位精度5米以下的精确定位,利于实现基于位置信息的模拟波束赋形。
在一实施例中,波束赋形模块1202获取第一终端的位置信息,包括:向MME发送获取所述第一终端的位置信息的定位请求,所述定位请求用于使能E-SMLC向所述第一终端获取定位能力信息,使能所述第一终端根据GNSS测量结果确定所述第一终端的位置信息;接收所述UE返回的所述第一终端的位置信息。
在该实施例中,采用终端侧的GNSS测量结果,以实现基于位置信息的模拟波束赋形。
在一实施例中,波束赋形模块1202还配置为:发送第一干扰协调请求给所述第一终端当前的干扰邻区对应的第二基站;向所述第一终端采用波束编号信息进行模拟波束赋形。
当第一终端或者第二终端进入室内场景或者被遮挡物遮挡时,由于卫星导航信号接收质量不好,导致基站无法获取准确的位置信息,则通过波束编号信息进行干扰协调,以满足不同场景的干扰协调需求。
在一实施例中,波束赋形模块1202还配置为:接收所述第一终端基于RRC上报的信号接收参数的测量值,确定所述测量值符合设置条件时,向所述第一终端采用数字波束赋形进行干扰协调。
如果在通过基于波束编号信息的模拟波束赋形后,两个小区间的干扰仍然存在,如第一基站根据第一终端基于RRC上报的信号接收参数的测量值,确定CSI-RSRP和CSI-RSRQ都低于设定门限时,则向第一终端进行数字波束赋形。具体地,第一终端根据接收的RRC,使能信道状态信息的反馈值的计算,该反馈值包括:CRI、RI、PMI及CQI,第一终端根据使得数字波束赋形的系统容量最大的要求生成反馈值并上报该反馈值给第一基站,第一基站根据该反馈值,在所选的模拟波束下给发射端口配置合适的预编码码本形成数字波束,使得第一基站的数字波束对准第一终端,完成混合波束赋形下的干扰协调。
在一实施例中,波束赋形模块1202还配置为:选择与所在小区对应的干扰邻区间波束配对所对应的波束编号信息进行模拟波束赋形,其中,所述所在小区与所述干扰邻区构成异构小区。。
在实际应用中,所述装置中的各模块,均可由位于所述装置中的中央处理器(CPU,Central Processing Unit)、微处理器(MPU,Microprocessor Unit)、数字信号处理器(DSP,Digital Signal Processor)、或现场可编程门阵列(FPGA,Field-Programmable Gate Array)等实现。
本公开实施例还提供一种基站,如图13所示,所述基站1300 包括处理器1301和用于存储能够在处理器1301上运行的计算机程序的存储器1302;其中,存储器1302上存储有可执行程序13021,处理器1301用于运行可执行程序13021时,执行前述任一实施例所述的小区间干扰协调方法。该基站还包括至少一个网络接口1303。该基站中的各个组件通过总线系统1304耦合在一起。可理解,总线系统1304用于实现这些组件之间的连接通信。总线系统1304除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图13中将各种总线都标为总线系统1304。
本公开实施例还提供一种存储介质,存储介质中存储有计算机程序,该计算机程序被处理器运行时,执行前述任一实施例对应的方法。该存储介质可以是FRAM、ROM、PROM、EPROM、EEPROM、Flash Memory、磁表面存储器、光盘、或CD-ROM等存储器等。
本领域内的技术人员应明白,本公开的实施例可提供为方法、系统、或计算机程序产品。因此,本公开可采用硬件实施例、软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本公开是参照根据本公开实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中 指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
以上所述仅为本公开示例性实施例,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。本公开的保护范围应以所述权利要求的保护范围以准。

Claims (12)

  1. 一种小区间干扰协调方法,应用于第一基站,所述方法包括:
    发送无线资源配置信息(RRC)给所在小区的第一终端;
    接收所述第一终端基于所述RRC上报的信号接收参数的测量值,确定所述测量值符合设置条件时,根据所述第一终端的位置信息或者波束编号信息采用对应的混合波束赋形策略进行干扰协调。
  2. 如权利要求1所述的小区间干扰协调方法,其中,根据所述第一终端的位置信息采用对应的混合波束赋形策略进行干扰协调,包括:
    获取第一终端的位置信息;
    根据所述第一终端的位置信息确定与干扰邻区的第二终端的位置信息是否可区分,根据是否可区分的结果相应向所述第一终端采用模拟波束赋形或数字波束赋形进行干扰协调。
  3. 如权利要求1所述的小区间干扰协调方法,其中,根据波束编号信息采用对应的混合波束赋形策略进行干扰协调,包括:
    向所述第一终端的干扰邻区对应的第二基站发起第一干扰协调请求;
    收到所述干扰邻区的第二干扰协调请求后,采用对应的波束编号信息向所述第一终端进行模拟波束赋形。
  4. 如权利要求3所述的小区间干扰协调方法,其中,所述向所述第一终端的干扰邻区对应的第二基站发起第一干扰协调请求之前,所述方法还包括:
    获取第一终端的位置信息;
    根据所述第一终端的位置信息确定与干扰邻区的第二终端的位置信息是否可区分,根据是否可区分的结果相应向所述第一终端采用模拟波束赋形或数字波束赋形进行干扰协调;
    并且其中,所述向所述第一终端的干扰邻区对应的第二基站发起第一干扰协调请求,包括:
    接收所述根据是否可区分的结果相应向所述第一终端采用模拟波束赋形或数字波束赋形进行干扰协调之后,所述第一终端基于RRC上报的信号接收参数的测量值,确定所述测量值仍然符合设置条件时,向所述第一终端的干扰邻区对应的第二基站发起第一干扰协调请求。
  5. 如权利要求3所述的小区间干扰协调方法,其中,所述采用对应的波束编号信息向所述第一终端进行模拟波束赋形之后,所述方法还包括:
    接收所述第一终端基于RRC上报的信号接收参数的测量值,确定所述测量值仍然符合设置条件时,接收所述第一终端基于RRC上报的信道状态信息的反馈值,根据所述反馈值,在所选模拟波束下配置预编码码本形成数字波束,将所述数字波束指向所述第一终端。
  6. 如权利要求2或4所述的小区间干扰协调方法,其中,根据所述第一终端的位置信息确定与干扰邻区的第二终端的位置信息是否可区分之前,所述方法还包括:获取干扰邻区对应的第二基站发送的第二终端的位置信息;和/或
    所述获取第一终端的位置信息之后,包括:将所述第一终端的位置信息发送给干扰邻区对应的第二基站。
  7. 如权利要求2或4所述的小区间干扰协调方法,其中,所述根据是否可区分的结果相应向所述第一终端采用模拟波束赋形或数字波束赋形进行干扰协调,包括:
    确定所述第一终端的位置信息与所述第二终端的位置信息可区分时,向所述第一终端采用模拟波束赋形进行干扰协调;
    确定所述第一终端的位置信息与所述第二终端的位置信息不可区分时,向所述第一终端采用数字波束赋形进行干扰协调。
  8. 如权利要求7所述的小区间干扰协调方法,其中,所述向所述第一终端采用模拟波束赋形进行干扰协调,包括:
    根据所述第一终端的位置信息和所述第二终端的位置信息给发射天线配置增益权重,根据所述增益权重形成模拟波束,将所述模拟波束的波峰方向指向所述第一终端的位置、且所述模拟波束的波谷方向指向所述第二终端的位置;
    所述向所述第一终端采用数字波束赋形进行干扰协调,包括:
    接收所述第一终端基于RRC上报的信道状态信息的反馈值,根据所述反馈值,在所选模拟波束下配置预编码码本形成数字波束,将所述数字波束指向所述第一终端。
  9. 如权利要求2或4所述的小区间干扰协调方法,其中,所述获取第一终端的位置信息,包括:
    向移动管理实体(MME)发送获取所述第一终端的位置信息的定位请求,所述定位请求用于使能演进的服务移动位置中心(E-SMLC)向所述第一终端获取定位能力信息、并根据所述第一终端的全球导航卫星系统(GNSS)测量结果确定所述第一终端的位置信息且返回给所述MME;
    接收所述MME返回的所述第一终端的位置信息;或者
    向MME发送获取所述第一终端的位置信息的定位请求,所述定位请求用于使能E-SMLC向所述第一终端获取定位能力信息,并使能所述第一终端根据GNSS测量结果确定所述第一终端的位置信息;
    接收所述第一终端返回的所述第一终端的位置信息。
  10. 如权利要求1所述的小区间干扰协调方法,其中,根据波束编号信息采用对应的混合波束赋形策略进行干扰协调,包括:
    选择与所在小区对应的干扰邻区间波束配对所对应的波束编号信息进行模拟波束赋形,其中,所述所在小区与所述干扰邻区构成异构小区。
  11. 一种基站,包括处理器和配置为存储能够在处理器上运行的计算机程序的存储器;其中,
    所述处理器配置为运行所述计算机程序时,执行如权利要求1至10任一所述的小区间干扰协调方法。
  12. 一种存储介质,所述存储介质中存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至10任一所述的小区间干扰协调方法。
PCT/CN2019/116640 2018-11-09 2019-11-08 小区间干扰协调方法、基站及存储介质 WO2020094128A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP19881888.2A EP3879718A4 (en) 2018-11-09 2019-11-08 INTER-CELL INTERFERENCE COORDINATION METHOD, BASE STATION, AND INFORMATION HOLDER

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811334421.2 2018-11-09
CN201811334421.2A CN111182629B (zh) 2018-11-09 2018-11-09 小区间干扰协调方法、基站及存储介质

Publications (1)

Publication Number Publication Date
WO2020094128A1 true WO2020094128A1 (zh) 2020-05-14

Family

ID=70611468

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/116640 WO2020094128A1 (zh) 2018-11-09 2019-11-08 小区间干扰协调方法、基站及存储介质

Country Status (3)

Country Link
EP (1) EP3879718A4 (zh)
CN (1) CN111182629B (zh)
WO (1) WO2020094128A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114554520A (zh) * 2020-11-26 2022-05-27 维沃移动通信有限公司 干扰测量方法、装置、终端及网络侧设备
CN112788614B (zh) * 2021-01-13 2023-04-07 上海闻泰信息技术有限公司 波束赋形的方法和装置、波束赋形系统和计算机存储介质
US11924124B2 (en) 2021-05-24 2024-03-05 Samsung Electronics Co., Ltd. Set of rules for triggering coordinated beamforming
CN115481521A (zh) * 2021-05-31 2022-12-16 深圳市中兴微电子技术有限公司 多用户多输入多输出检测方法和装置、电子设备、介质
CN114584995B (zh) * 2022-04-07 2024-05-07 中国移动通信集团陕西有限公司 干扰处理方法、装置、设备及计算机存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104303477A (zh) * 2012-05-10 2015-01-21 三星电子株式会社 使用模拟和数字混合波束成形的通信方法和装置
US20160323028A1 (en) * 2015-05-01 2016-11-03 Futurewei Technologies, Inc. Device, network, and method for receiving data transmission under scheduling decoding delay in mmwave communication
US20180048375A1 (en) * 2016-08-10 2018-02-15 Samsung Electronics Co., Ltd. Method and apparatus for beam measurement and management in wireless systems
CN108347273A (zh) * 2017-01-25 2018-07-31 华为技术有限公司 一种数据复用和数据解析方法、装置及系统
CN108702180A (zh) * 2016-03-03 2018-10-23 Idac控股公司 用于波束成形系统内的波束控制的方法及设备

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4906928B2 (ja) * 2008-01-07 2012-03-28 三菱電機株式会社 アナログビームフォーミング通信システム
CN101686078B (zh) * 2008-09-26 2012-10-31 电信科学技术研究院 一种数据传输的方法及装置
CN101931446A (zh) * 2009-06-25 2010-12-29 中兴通讯股份有限公司 小区间干扰的抑制方法以及基站
CN102045758B (zh) * 2009-10-20 2013-08-28 华为技术有限公司 确定小区间干扰协调的方法、基站及系统
CN103369539B (zh) * 2012-04-06 2016-10-05 华为技术有限公司 干扰协调的方法和装置
WO2016089070A2 (ko) * 2014-12-05 2016-06-09 엘지전자 주식회사 간섭 제거 대상 셀을 선정하는 방법 및 사용자 장치
CN108337065A (zh) * 2017-01-18 2018-07-27 索尼公司 电子设备和通信方法
US10588102B2 (en) * 2017-01-24 2020-03-10 Qualcomm Incorporated Coordinated synchronization channel transmission and restricted measurement

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104303477A (zh) * 2012-05-10 2015-01-21 三星电子株式会社 使用模拟和数字混合波束成形的通信方法和装置
US20160323028A1 (en) * 2015-05-01 2016-11-03 Futurewei Technologies, Inc. Device, network, and method for receiving data transmission under scheduling decoding delay in mmwave communication
CN108702180A (zh) * 2016-03-03 2018-10-23 Idac控股公司 用于波束成形系统内的波束控制的方法及设备
US20180048375A1 (en) * 2016-08-10 2018-02-15 Samsung Electronics Co., Ltd. Method and apparatus for beam measurement and management in wireless systems
CN108347273A (zh) * 2017-01-25 2018-07-31 华为技术有限公司 一种数据复用和数据解析方法、装置及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3879718A4 *

Also Published As

Publication number Publication date
EP3879718A4 (en) 2022-08-03
CN111182629A (zh) 2020-05-19
EP3879718A1 (en) 2021-09-15
CN111182629B (zh) 2023-04-07

Similar Documents

Publication Publication Date Title
US11064381B2 (en) Method and apparatus for generating cell measurement information in a wireless communication system
JP7114600B2 (ja) 信号伝送方法及び装置
WO2020094128A1 (zh) 小区间干扰协调方法、基站及存储介质
US8774800B2 (en) UE initiated frequency partitioning based CoMP scheme for downlink cellular communications
US9172438B2 (en) Devices and methods related to controlling UE assumption of interference
US20210337549A1 (en) Resource indication method and apparatus
US9154194B2 (en) Devices and methods related to improvements in coordinated multipoint transmission arrangements
US20130010880A1 (en) Feedback Framework for MIMO Operation in Heterogeneous Communication Network
US20220014936A1 (en) Coverage adjustment method, apparatus, and system
US10560860B2 (en) System and method for measuring and reporting uplink channel condition
US11272387B2 (en) Managing communication in a wireless communication network
AU2017323374A1 (en) Apparatus and method for selecting cell in wireless communication system
US11394444B2 (en) Signal sending method and related device
US10805121B2 (en) Wireless device, and method performed therein for managing communication in a wireless communication network
WO2020258085A1 (en) Method and apparatus for information sharing
EP3925257B1 (en) Methods and devices for inter-cell interference estimation
EP3902179A1 (en) Resource indication method and apparatus
CN117528604A (zh) 网络资源控制方法、终端、装置及存储介质
CN117641549A (zh) Sl-prs的功率控制方法、终端、网络侧设备、装置及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19881888

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019881888

Country of ref document: EP

Effective date: 20210609