WO2020093735A1 - 静电式自供能应变栅格传感器 - Google Patents

静电式自供能应变栅格传感器 Download PDF

Info

Publication number
WO2020093735A1
WO2020093735A1 PCT/CN2019/097736 CN2019097736W WO2020093735A1 WO 2020093735 A1 WO2020093735 A1 WO 2020093735A1 CN 2019097736 W CN2019097736 W CN 2019097736W WO 2020093735 A1 WO2020093735 A1 WO 2020093735A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
sliding
strain
sensing unit
sliding plate
Prior art date
Application number
PCT/CN2019/097736
Other languages
English (en)
French (fr)
Inventor
张鹤
全力威
张计炜
张治成
Original Assignee
浙江大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江大学 filed Critical 浙江大学
Priority to US16/764,390 priority Critical patent/US11143496B2/en
Priority to JP2019567616A priority patent/JP6806932B1/ja
Publication of WO2020093735A1 publication Critical patent/WO2020093735A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/16Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge
    • G01B7/22Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge using change in capacitance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/16Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/02Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/005Measuring force or stress, in general by electrical means and not provided for in G01L1/06 - G01L1/22
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
    • G01L1/2287Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges constructional details of the strain gauges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0261Strain gauges

Definitions

  • the invention relates to an electrostatic self-powered strain grid sensor device.
  • strain measuring instruments are widely used in strain measurement of bridges, railways, dams, and various construction facilities.
  • commonly used strain measuring instruments mainly include dial gauge strain gauge, resistance strain gauge, vibrating wire sensor, etc.
  • an electrostatic self-powered strain grid sensor for measuring the strain of a member to be measured, and its characteristics include a U-shaped chute, the upper end of the chute is opened, and a Slider; the slide is parallel to the bottom of the chute and has the same length; the bottom of the slide is fixed to a skateboard perpendicular to the slide; the slide is perpendicular to the sliding direction of the slide; one end of the top of the slide passes
  • the connecting member is fixed to the member to be tested, and the bottom surface of the chute is provided with a sensor array composed of a plurality of strip-shaped sensing units parallel to the sliding plate; the slide plate is inserted from the other end of the chute and the end is fixed to the to-be-measured Components; the lower end of the slide plate also has a strip-shaped sensing unit; the sensing unit in the sensing array and the sensing unit at the lower end of the slide plate are sequentially arranged with a metal electrode layer and a dielectric material layer
  • the indicator light and the ammeter are integrated on the back of the chute.
  • the sliding groove, the sliding plate and the sliding plate are all made of insulating material.
  • each sensing unit in the sensing array is the same, and the distance between two adjacent sensing units is the same as the width of the sensing unit.
  • the thickness of the sliding plate is the same as the width of the sensing unit.
  • ⁇ x (t) represents the displacement at time t
  • l 1 is the length of the chute (1).
  • ⁇ x (t) ⁇ x 1 (t) + ⁇ x 2 (t); ⁇ x 1 (t) indicates coarse displacement, which is determined by the position of the indicator; ⁇ x 2 (t) indicates fine displacement, which is determined according to the current value.
  • ⁇ x 1 (t) (
  • ⁇ x 2 (t) f (IR k )
  • R k represents the resistance of the k-th indicator
  • I represents the number of currents
  • f () is a function of the displacement between two sensor units in contact with each other and the output voltage Relationship.
  • the beneficial effect of the present invention is that the present invention can convert the mechanical law of the component when it is strained into electrical signals according to its force-electricity conversion characteristics, and passes through the signal processing device in the device, so the magnitude of the strain can be expressed by electrical signals through the output device And output.
  • the electrostatic self-powered strain grid sensor has the advantages of simple structure, wide application range, high measurement accuracy, no need to provide additional power supply, low cost, etc., and creatively solves the problem of positioning and shifting according to the electrical signal. Unstable results.
  • Figure 1 is a structural diagram of an electrostatic self-powered strain sensor
  • FIG. 2 is a schematic view of the installation of the strain sensor shown in FIG. 1 on a member to be measured;
  • FIG. 3 is a compressive strain measurement state of the installation diagram shown in FIG. 2;
  • FIG. 4 is the tensile strain measurement state of the installation diagram shown in FIG. 2;
  • FIG. 5 is a circuit diagram of the displacement sensor shown in FIG. 1 used for electrical signal measurement
  • the invention provides an electrostatic self-powered strained segmented electrode sensor for measuring the strain of a member to be measured, which includes a U-shaped sliding slot 1, the upper end of the sliding slot 1 is open, and a sliding sheet 2 is inserted; the sliding sheet 2 and the sliding slot 1
  • the bottom surfaces are parallel and the lengths are equal; the bottom surface of the sliding plate 2 is fixed with a sliding plate 21 perpendicular to the sliding plate 2; the sliding plate 21 is perpendicular to the sliding direction of the sliding plate; one end of the top surface of the sliding groove 1 passes through the connecting member 3 fixed to the member to be tested, the bottom surface of the chute 1 is provided with a sensor array composed of a plurality of strip-shaped sensing units parallel to the sliding plate 21; the slide plate 2 is inserted from the other end of the chute 1 and the end is fixed
  • the lower end of the slide plate 21 also has a strip-shaped sensing unit; the sensing unit in the sensing array and the sensing unit at the lower end of the slide plate are sequentially
  • the installation form is shown in FIG. 2 (the left end of the slide slot 1 is fixed to the member to be tested through the connecting member 3, and the right end of the slide plate is fixed to the member to be tested through the connecting member 3).
  • the electrical signal measuring device and related connecting wires are integrated at the bottom of the chute.
  • the connecting members are fixed to the member to be tested by adhesive.
  • each sensing unit in the sensing array is the same, and the distance between two adjacent sensing units is the same as the width of the sensing unit.
  • the thickness of the sliding plate is the same as the width of the sensing unit, which is convenient for measurement.
  • the sensor unit and the sensor unit at the lower end of the slider can be regarded as an independent power supply.
  • Power supply can make the corresponding indicator light. It is known that the length of each grid in the sub-sensing array is l 0.
  • the indicator with a negative number lights up it means that the object to be measured is compressed; when the indicator with a positive number lights up, it means that the object to be tested is stretched.
  • the second displacement amount ⁇ x 2 (t) of the member can be obtained from the relationship between V (t) and x (t) obtained as follows.
  • x (t) represents the relative displacement between electrode plates coated with two dielectric materials.
  • x (t) changes from 0 to the maximum.
  • the electrode plates are charged, and the surfaces of the two electrode plates obtain opposite static charges with equal charge density ⁇ (produced by contact friction) Charge density).
  • the electric charge generates current through the external circuit.

Abstract

一种静电式自供能应变栅格传感器,用于测量待测构件的应变,装置结构包括滑槽(1)和滑片(2),滑槽(1)固定于固定端,且滑槽(1)内侧底部布置有传感阵列;滑片(2)固定连接待测构件,滑片(2)下端部与滑槽(1)内侧底部相接触。当滑片(2)划过传感阵列时,将会输出一个对应的电信号,通过该信号所示的传感阵列中的传感单元的编号和输出电流大小,可得到滑片(2)划过的分段个数和在单个传感阵列上的传感单元上划过的距离,进而来求得结构应变。本应变栅格传感器具有结构简单、应用范围广、测量精度高、无需额外提供电源等优点,并且解决了按电信号标定应变的结果不稳定的问题。

Description

静电式自供能应变栅格传感器 技术领域
本发明涉及用于一种静电式自供能应变栅格传感器装置。
背景技术
结构的应变测试是工程人员进行结构优化设计,了解结构受力状态以及保证结构安全的一个很重要的环节。在现今的土木工程行业中,应变测量仪器广泛地应用于桥梁、铁路、大坝以及各种建筑设施的应变测量。目前常用的应变测量仪器主要有千分表应变计、电阻应变计、振弦式传感器,等等。其中,如采用千分表应变计,由于标注长度以及安装的限制,在实际应用中受限较大;如采用电阻应变计,具有非线性,输出信号微弱,抗干扰能力较差,受环境影响较大,且其只能测构件表面一个点沿某个方向的应变而不能进行全域性测量;如采用振弦式传感器,则对传感器材料及加工工艺要求较高,且测量精度较低。
发明内容
本发明所要解决的技术问题是提供一种静电式自供能应变栅格传感器,能够用于应变的测量,并且无需额外提供能源,能够将待测构件变形能转化为电能并以电信号的形式输出,同时还具备精度高、应用范围广、易加工、成本低廉和操作简便的特点。
本发明解决技术问题所采用的技术方案是:一种静电式自供能应变栅格传感器,用于测量待测构件的应变,其特征包括一U形的滑槽,滑槽上端开口,并插有一滑片;滑片与滑槽底面平行,长度相等;所述滑片底面固定一垂直于所述滑片的滑板;滑板与所述滑片的滑动方向垂直;所述滑槽的顶面一端通过连接构件固定于待测构件,滑槽底面布置有由多个平行于所述滑板的条状传感单元组成的传感阵列;所述滑片从滑槽的另一端插入,末端固定于待测构件;所述滑板下端也具有条状传感单元;所述传感阵列中的传感单元以及滑板下端的传感单元均依次布置有金属电极层和介电材料层组成,且所述传感阵列中的传感单元以及滑板下端的传感单元的介电材料层相互接触,且两者极性相反。滑板下端的金属电极层与电流表相连后,与多个并联的指示灯相连接,且每个指示灯都分别连接传感阵列中的一个传感单元的金属电极层。
进一步地,所述连接构件都通过胶黏剂固定于待测构件。
进一步地,所述指示灯和电流表均集成在所述滑槽的背面。
进一步地,所述的滑槽、滑片与滑板均由绝缘材料制成。
进一步地,传感阵列中的各个传感单元宽度相同,且相邻两个传感单元之间的间距与传感单元的宽度相同。滑板的厚度与所述传感单元的宽度相同。
进一步地,t时刻的应变值通过以下公式计算得到:ε(t)=Δx(t)/l 1
其中,Δx(t)表示t时刻的位移量,l 1为滑槽(1)的长度。
Δx(t)=Δx 1(t)+Δx 2(t);Δx 1(t)表示粗位移,通过指示灯的位置来确定;Δx 2(t)表示精细位移,根据电流值来确定。
Δx 1(t)=(|k|-1)×l 0,其中k表示亮的指示灯的序号,l 0为传感单元宽度;
Δx 2(t)=f(IR k),R k表示第k个指示灯的电阻,I表示电流表示数,f()为两个相互接触的传感单元之间的位移与输出电压的函数关系式。
本发明的有益效果是:本发明可以根据其力电转换特性将构件发生应变时的力学规律转化为电信号,经过该装置中的信号处理装置,因此通过输出装置能够将应变大小用电信号表示并输出。相比其他应变测量装置来说,静电式自供能应变栅格传感器具有结构简单、应用范围广、测量精度高、无需额外提供电源、成本低廉等优点,并且创造性地解决了按电信号标定位移的结果不稳定的问题。
附图说明
图1是静电式自供能应变传感器的结构图;
图2是图1所示应变传感器在待测构件上的安装示意图;
图3是图2所示安装示意图的压缩应变测量状态;
图4是图2所示安装示意图的拉伸应变测量状态;
图5是图1所示位移传感器用于电信号测量的电路图;
图中标号:1-滑槽;2-滑片;21-滑板;3连接构件;l 0-传感器上一个栅格电极与其相邻段的宽度之和;l 1-应变传感器的初始标注;Δx(t)-构件拉伸量/缩短量;Δx 1(t)-构件第一位移量;Δx 2(t)-构件第二位移量。
具体实施方式
以下结合附图,对发明的具体技术方案作进一步描述。
本发明提供静电式自供能应变分段电极传感器,用于测量待测构件的应变,包括一U形的滑槽1,滑槽1上端开口,并插有一滑片2;滑片2与滑槽1底面平行,长度相等;所述滑片2底面固定一垂直于所述滑片2的滑板21;滑板21与所述滑片的滑动方向垂直;所述滑槽1的顶面一端通过连接构件3固定于待测构件,滑槽1底面布置有由多个平行于所述滑板21的条状传感单元组成的传 感阵列;所述滑片2从滑槽1的另一端插入,末端固定于待测构件;所述滑板21下端也具有条状传感单元;所述传感阵列中的传感单元以及滑板下端的传感单元均依次布置有金属电极层和介电材料层组成,且所述传感阵列中的传感单元以及滑板下端的传感单元的介电材料层相互接触,且两者极性相反。滑板21下端的金属电极层与电流表相连后,与多个并联的指示灯相连接,且每个指示灯都分别连接传感阵列中的一个传感单元的金属电极层。
安装形式如图2所示(滑槽1左端通过连接构件3固定于待测构件,滑片右端通过连接构件3固定于待测构件)。电信号测量装置及相关的连接导线集成在滑槽的底部。连接构件都通过胶黏剂固定于待测构件。
传感阵列中的各个传感单元宽度相同,且相邻两个传感单元之间的间距与传感单元的宽度相同。滑板的厚度与所述传感单元的宽度相同,方便测量。
本发明的静电式自供能应变栅格传感器实现应变测量的原理如下:
如图5所示,本结构中的传感阵列上每个传感单元都有编号,从正中间向两侧对称进行编号,在远离滑槽上的矩形连接块侧,编号为1号到n号;在靠近滑槽上的矩形连接块侧,编号为-1到-n号。每个传感阵列上的传感单元也都对应有一个指示灯,指示灯的编号与该传感单元编号相同。滑片下端的传感单元分别与每个传感阵列上的传感单元通过导线相连,形成一条指示电路,各个指示电路都相互独立,互不影响,并联在一起,且每条电路中都会设有对应的指示灯。在该检测电路的总路中布置有一电流表。当滑片划过传感阵列中的第k号传感单元时,将会产生一定的电势差,此时可将该传感单元与滑片下端的传感单元视为一个独立电源,通过该电源供电能使对应的指示灯点亮。已知分传感阵列中每一格的长度为l 0,当k号指示灯点亮时,则可得出构件第一位移量Δx 1(t)=(|k|-1)×l 0。当编号为负数的指示灯点亮时,说明待测物体被压缩;当编号为正数的指示灯点亮时,说明待测物体被拉伸。
同上所述,滑片划过传感阵列中的k号传感单元时,也会对应输出一个I(t)。已知各个指示灯的电阻均为R,则可以计算得到电压V(t)=R×|I(t)|。又可根据如下推到所得的V(t)与x(t)的关系式,可求出构件第二位移量Δx 2(t)。
以图3所示的待测物体处于压缩应变测量状态为例,在某一时刻t时,构件压缩量为x(t),即第一电极层与第二电极层的相对位移量为x(t)。
在静电式自供能位移传感器中,两种介电材料的厚度分别为d1和d2,两者的相对介电常数分别为εr1和εr2。x(t)代表涂有两种介电材料的电极板之间的相对位移。当位移传感器装置工作时,x(t)从0到最大变化。当两个涂有介电材料的电极板无相对位移(即x(t)=0),电极板充电,两个电极板的表面获得相反 的静电荷,具有相等的电荷密度σ(接触摩擦产生的电荷密度)。并且当两电极板产生相对位移时,电荷经外加电路产生电流。当负载电阻给定为R时,电荷量Q的表达式为:
Figure PCTCN2019097736-appb-000001
其中d0=d1/εr1+d2/εr2,为介电材料的等效厚度,l为电极板上涂有介电材料的长度,w为单个传感单元上介电材料的宽度,ε0为真空介电常数。
因而电压可表示为:
Figure PCTCN2019097736-appb-000002
联立(1)(2)三式,可以得到电压与位移量x(t)在某时刻t存在映射关系,即某时刻t,通过测量电压V(t),能够得出此刻的位移量从而通过测量电路将位移大小表达为电信号。
图4所示的待测物体处于拉伸应变测量状态的原理与上述相同。
此时即可得位移总量Δx(t)=Δx 1(t)+Δx 2(t)。已知初始应变传感器的初始标注为l 1,则可得该结构得应变为ε=Δx(t)/l 1

Claims (6)

  1. 一种静电式自供能应变栅格传感器,用于测量待测构件的应变,其特征包括一U形的滑槽(1),滑槽(1)上端开口,并插有一滑片(2);滑片(2)与滑槽(1)底面平行,长度相等;所述滑片(2)底面固定一垂直于所述滑片(2)的滑板(21);滑板(21)与所述滑片的滑动方向垂直;所述滑槽(1)的顶面一端通过连接构件(3)固定于待测构件,滑槽(1)底面布置有由多个平行于所述滑板(21)的条状传感单元组成的传感阵列;所述滑片(2)从滑槽(1)的另一端插入,末端固定于待测构件;所述滑板(21)下端也具有条状传感单元;所述传感阵列中的传感单元以及滑板下端的传感单元均依次布置有金属电极层和介电材料层组成,且所述传感阵列中的传感单元以及滑板下端的传感单元的介电材料层相互接触,且两者极性相反;滑板(21)下端的金属电极层与电流表相连后,与多个并联的指示灯相连接,且每个指示灯都分别连接传感阵列中的一个传感单元的金属电极层。
  2. 根据权利要求1所述的传感器,其特征是,所述连接构件(3)都通过胶黏剂固定于待测构件。
  3. 根据权利要求1所述的传感器,其特征是,所述指示灯和电流表均集成在所述滑槽的背面。
  4. 根据权利要求1所述的传感器,其特征是,所述的滑槽、滑片与滑板均由绝缘材料制成。
  5. 根据权利要求1所述的传感器,其特征是,传感阵列中的各个传感单元宽度相同,且相邻两个传感单元之间的间距与传感单元的宽度相同;滑板(21)的厚度与所述传感单元的宽度相同。
  6. 根据权利要求5所述的传感器,其特征是,t时刻的应变值通过以下公式计算得到:ε(t)=△x(t)/l 1
    其中,△x(t)表示t时刻的位移量,l 1为为滑槽(1)的长度;
    △x(t)=△x 1(t)+△x 2(t);△x 1(t)表示粗位移,通过指示灯的位置来确定;△x 2(t)表示精细位移,根据电流值来确定;
    △x 1(t)=(|k|-1)×l 0,其中k表示亮的指示灯的序号,l 0为传感单元宽度;
    △x 2(t)=f(IR k),R k表示第k个指示灯的电阻,I表示电流表示数,f()为两个相互接触的传感单元之间的位移与输出电压的函数关系式。
PCT/CN2019/097736 2018-11-05 2019-07-25 静电式自供能应变栅格传感器 WO2020093735A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/764,390 US11143496B2 (en) 2018-11-05 2019-07-25 Electrostatic self-powered strain grid sensor
JP2019567616A JP6806932B1 (ja) 2018-11-05 2019-07-25 静電式自己エネルギー供給歪みグリッドセンサ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811308827.3A CN109470133B (zh) 2018-11-05 2018-11-05 静电式自供能应变栅格传感器
CN201811308827.3 2018-11-05

Publications (1)

Publication Number Publication Date
WO2020093735A1 true WO2020093735A1 (zh) 2020-05-14

Family

ID=65667030

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/097736 WO2020093735A1 (zh) 2018-11-05 2019-07-25 静电式自供能应变栅格传感器

Country Status (4)

Country Link
US (1) US11143496B2 (zh)
JP (1) JP6806932B1 (zh)
CN (1) CN109470133B (zh)
WO (1) WO2020093735A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109470133B (zh) * 2018-11-05 2019-09-06 浙江大学 静电式自供能应变栅格传感器
CN109458922B (zh) 2018-11-05 2019-08-30 浙江大学 一种静电式自供能位移栅格传感器
TWI723467B (zh) * 2019-07-18 2021-04-01 美宸科技股份有限公司 壓力感測裝置及其製造方法
CN111059995B (zh) * 2019-12-28 2020-12-25 浙江大学 一种基于摩擦纳米发电机的自驱动位移传感器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN86106558A (zh) * 1986-09-09 1988-03-23 王祖斌 栅形电容式位移传感器
EP0522377A1 (de) * 1991-07-10 1993-01-13 Ief Werner Gmbh Positionssensor für Linearmotoren
CN103791927A (zh) * 2013-11-12 2014-05-14 国家纳米科学中心 自驱动位移和速度传感方法、传感器和传感器的制作方法
CN108613623A (zh) * 2018-05-11 2018-10-02 浙江大学 静电式自供能应变传感器
CN109458922A (zh) * 2018-11-05 2019-03-12 浙江大学 一种静电式自供能位移栅格传感器
CN109470133A (zh) * 2018-11-05 2019-03-15 浙江大学 静电式自供能应变栅格传感器

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2341119Y (zh) * 1998-06-11 1999-09-29 上海量具刃具厂 改进的容栅传感器
CN2709942Y (zh) * 2003-11-07 2005-07-13 中国科学院物理研究所 用于扫描隧道显微镜的步进电机的容性定性传感器
CN102353324B (zh) * 2011-07-26 2013-06-05 华中科技大学 一种柔性半透明应变传感器及其制备方法
CN102589405B (zh) * 2012-02-17 2014-06-04 清华大学 一种电机动子位移测量方法
CN103368451B (zh) * 2013-01-28 2016-02-03 北京纳米能源与系统研究所 一种滑动摩擦纳米发电机
WO2015158302A1 (zh) * 2014-04-18 2015-10-22 北京纳米能源与系统研究所 基于静电感应的传感器、发电机、传感方法与发电方法
CN105526871B (zh) * 2016-01-25 2018-09-25 广东工业大学 基于cmos的光栅位移测量系统及其测量方法
CN206125516U (zh) * 2016-10-28 2017-04-26 红塔烟草(集团)有限责任公司 一种位置检测装置
CN106940197B (zh) * 2017-03-17 2019-05-31 重庆理工大学 一种绝对式时栅直线位移传感器
JP2019120555A (ja) * 2017-12-28 2019-07-22 ミネベアミツミ株式会社 ひずみゲージ、センサモジュール
CN208026210U (zh) * 2018-04-26 2018-10-30 中国安全生产科学研究院 一种地埋大直径薄壁柔性管道变形监测装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN86106558A (zh) * 1986-09-09 1988-03-23 王祖斌 栅形电容式位移传感器
EP0522377A1 (de) * 1991-07-10 1993-01-13 Ief Werner Gmbh Positionssensor für Linearmotoren
CN103791927A (zh) * 2013-11-12 2014-05-14 国家纳米科学中心 自驱动位移和速度传感方法、传感器和传感器的制作方法
CN108613623A (zh) * 2018-05-11 2018-10-02 浙江大学 静电式自供能应变传感器
CN109458922A (zh) * 2018-11-05 2019-03-12 浙江大学 一种静电式自供能位移栅格传感器
CN109470133A (zh) * 2018-11-05 2019-03-15 浙江大学 静电式自供能应变栅格传感器

Also Published As

Publication number Publication date
JP6806932B1 (ja) 2021-01-06
CN109470133A (zh) 2019-03-15
US20210270592A1 (en) 2021-09-02
US11143496B2 (en) 2021-10-12
CN109470133B (zh) 2019-09-06
JP2021500529A (ja) 2021-01-07

Similar Documents

Publication Publication Date Title
WO2020093735A1 (zh) 静电式自供能应变栅格传感器
WO2020093733A1 (zh) 一种静电式自供能位移栅格传感器
CN108613623B (zh) 静电式自供能应变传感器
CN106643463A (zh) 一种柔性全桥式电阻应变片
CN101995517B (zh) 一种测量材料静态阻值和动态变化阻值的仪器及测量方法
WO2021129372A1 (zh) 一种基于摩擦纳米发电机的自驱动位移传感器
CN107219026A (zh) 一种多方向微纳力测量装置及测量方法
CN206146872U (zh) 一种监测混凝土表面裂缝的装置
CN102707248A (zh) 一种双通道电容法测量磁致伸缩的装置及其方法
CN106768523A (zh) 一种压力机吨位测量方法及其装置
CN108917587A (zh) 一种基于惠斯通全桥原理的电阻应变式曲率传感器
CN105157551A (zh) 一种“三角形”位移传感器
RU2481669C2 (ru) Наклеиваемый полупроводниковый тензорезистор
CN209215098U (zh) 一种光伏组件机械载荷形变量测量装置
CN209299316U (zh) 一种手机摄像头
CN102997837B (zh) 电容式超大应变传感器
CN1013408B (zh) 一种无损测定残余应力的方法
CN102680790B (zh) 一种材料动态阻值的测量方法
Volodin et al. Samarium-monosulfide-based semiconductor strain gages for spacecraft-strain transformation
CN208805150U (zh) 一种高精度容栅式数显量表
Kawamura et al. Design and development of new electrostatic voltmeter using strain gauge
CN107315116B (zh) 一种利用pvdf叠堆薄块的逆压电效应实现对直流电场强度检测的装置
CN2919215Y (zh) 新型压力检测装置
SU70237A1 (ru) Приспособление дл отсчета показаний измерительных приборов
Azaman et al. Resistance Behaviour of Quantum Tunneling Composite (QTC) Pill for Tactile Sensor Application

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019567616

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19882332

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19882332

Country of ref document: EP

Kind code of ref document: A1