WO2020093693A1 - 一种摄像机及电子设备 - Google Patents

一种摄像机及电子设备 Download PDF

Info

Publication number
WO2020093693A1
WO2020093693A1 PCT/CN2019/090286 CN2019090286W WO2020093693A1 WO 2020093693 A1 WO2020093693 A1 WO 2020093693A1 CN 2019090286 W CN2019090286 W CN 2019090286W WO 2020093693 A1 WO2020093693 A1 WO 2020093693A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter
light
lens
camera
sensor
Prior art date
Application number
PCT/CN2019/090286
Other languages
English (en)
French (fr)
Inventor
杨昆
章恒师
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2020093693A1 publication Critical patent/WO2020093693A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets

Definitions

  • the utility model relates to the technical field of optics, in particular to a video camera and electronic equipment.
  • Video surveillance as an important part of the security system is gradually popularized in commercial and civil use.
  • Video surveillance systems include front-end surveillance cameras, transmission cables and video surveillance platforms. It is used in various fields to escort social security; in the field of security, such as road traffic, the low-light effect of surveillance cameras in low light has always been the focus of users' attention.
  • the current requirements of users are Color images under low light are mainly used for monitoring on remote and dark roads.
  • an infrared light and visible light fusion camera which includes a group of infrared light cameras and a group of visible light cameras.
  • the images under infrared light and visible light are respectively taken, and then the two Image fusion, so that the monitoring picture is obtained under low illumination; however, due to the different refractive index of light at different wavelengths, chromatic aberration (chromatic aberration) will be formed after the light of different wavelengths passes through the lens.
  • the position of the photoelectric convergence point of infrared light after the lens is different, resulting in the problem that infrared light and visible light are not confocal.
  • the imaging resolution of the surveillance camera under low illumination is provided.
  • the embodiment of the utility model provides a camera and an electronic device, which can filter the light obtained by the infrared camera and the visible camera based on the infrared and visible light fusion camera, thereby avoiding the infrared and visible light
  • the problem of chromatic aberration caused by confocal lens improves the clarity of the camera image under low illumination.
  • the first aspect of the present application provides a camera including a lens, a wavelength cut-off device, a sensor, and a processor, wherein the first side of the wavelength cut-off device is opposite to the lens, and the second side of the wavelength cut-off device
  • the sensor is arranged opposite to the sensor, and the sensor is connected to the processor, so that light sequentially enters the sensor through the lens and the wavelength cutoff device, and the wavelength cutoff device is used to filter the light.
  • the number of the camera can be one group or multiple groups
  • the lens can be a lens that is confocal of infrared and visible light, or a lens that is not confocal of infrared and visible light, it can be a fixed focus lens, or it can be electric
  • the sensor can be a color sensor or a black and white sensor.
  • a lens, a wavelength cut-off device, a sensor, and a processor are provided in this order along the direction of light incidence; when the light enters the sensor from the lens, the wavelength cut-off device filters out light of a specific wavelength to solve
  • the processor then performs image fusion on the accurately focused images obtained under visible light and infrared light, respectively, so as to obtain a clear image.
  • the wavelength cut-off device is a filter
  • the lens is provided with a groove
  • the filter is embedded in the groove.
  • the filter may be a filter that completely cuts off visible light or a filter that retains part of visible light, or a filter that cuts off wavelengths other than visible light or a band-pass filter. It can be seen from the first possible implementation above that a filter is used as a wavelength cut-off device to filter the light passing through the lens, and by selecting cut-off filters of different wavelengths, the wavelength band of the light entering the sensor is controlled to eliminate light There is a problem of non-confocal images caused by different wavelengths of light, preventing chromatic aberration in the image.
  • the wavelength cut-off device includes a plurality of filters with different cut-off wavelengths.
  • the wavelength cut-off device may be a double-filter switch or a multi-filter switch. It can be seen from the above second possible implementation that the wavelength cut-off device includes a plurality of filters for cutting off different wavelengths. During the working process, different filters can be switched according to the light conditions to meet the filter. Requirements to enable the wavelength cut-off device to work in various light environments.
  • the wavelength cutoff device includes a fully transparent substrate, and a plurality of plating layers with different cutoff wavelengths are arranged on the substrate, the A plurality of filters with different cutoff wavelengths are plating layers with different cutoff wavelengths.
  • the substrate may be a transparent glass substrate or a transparent polymer substrate. It can be seen from the third possible implementation manner that, on a substrate, plating layers for cutting off different wavelengths are arranged and arranged, so that a composite filter with multiple cut-off wavelengths is obtained on a substrate.
  • the wavelength cutoff device further includes a driving mechanism, and the driving mechanism is used to drive the multiple One of the filters with different cut-off wavelengths moves to a position opposite to the lens.
  • the driving mechanism may include a motor and a transmission device. It can be seen from the above fourth possible implementation manner that the driving mechanism is used to drive different filters to a position opposite to the lens, which improves the flexibility of the wavelength cut-off device.
  • the driving mechanism is a stepping motor, and the output shaft of the stepping motor is connected to the filter.
  • the stepping motor may be a reactive stepping motor, a permanent magnet stepping motor or a hybrid stepping motor. It can be seen from the fifth possible implementation above that the output shaft of the stepper motor is connected to the filter, which enables the stepper motor to directly drive different filters to the position opposite to the lens, and the cost of the stepper motor Lower, easy to repair and replace.
  • the driving mechanism includes a pair of opposed electromagnets, a metal piece is disposed on the filter, and the metal piece is located on the electromagnetic Between iron.
  • the metal piece may be an iron block or an iron piece. It can be seen from the sixth possible implementation manner described above, that the metal block on the filter is arranged between a pair of oppositely arranged electromagnets. By controlling the two electromagnets to alternately attract the metal piece, the different filters are driven to move to The position opposite to the lens can achieve a faster switching speed between the filters by the above-mentioned solenoid valve driving method.
  • the driving mechanism is a first motor, an output shaft of the first motor is provided with a gear, and the filter is provided with the Rack with gears engaged.
  • the gear may be a spur gear, a helical gear or a herringbone gear.
  • the gear provided on the output shaft of the first motor is used for transmission, and the filter is provided with a rack that engages with the gear.
  • the output The shaft drives the gear to rotate.
  • the gear rotation it drives the rack gear that engages with it, thereby driving different filters to the position opposite to the lens.
  • the gear driving rack can move between the filters Switching smoothly, reducing device jitter during camera operation.
  • the driving mechanism includes a second motor, a first pulley, a second pulley, and a belt, and the output shaft of the second motor and the first A pulley is connected, the first pulley and the second pulley are connected by the belt, and the belt is connected to the filter.
  • the belt and the optical filter may be connected by a connecting member, or may be directly connected.
  • the filter Since the filter is connected to the belt, the belt During the rotation of one pulley and the second pulley, the filters move accordingly, thereby driving different filters to move to a position opposite to the lens.
  • the driving method of the pulley can effectively protect the filter and prevent the drive mechanism from forcibly driving the filter to break when the filter is stuck.
  • the camera includes a plurality of wavelength cutoff devices with different cutoff wavelengths.
  • the wavelength cutoff device may be two groups, one group is used to cut off visible light, and the other group is used to cut off infrared light. It can be seen from the ninth possible implementation manner that the above-mentioned multiple sets of wavelength cut-off devices are respectively provided with respective lenses and sensors, and each wavelength cut-off device cuts off a specific wavelength, so that each sensor obtains a clear focus at this wavelength The picture, and then the picture obtained by each sensor is fused into a picture by the processor, thereby solving the problem of image sharpness reduction caused by non-confocal.
  • the camera further includes an infrared lamp, and the infrared lamp is connected to the sensor.
  • the infrared lamp may be a U-shaped lamp board disposed around the lens, and the U-shaped lamp board is provided with infrared lamp beads. It can be seen from the tenth possible implementation manner described above that the infrared lamp is connected to the sensor, and in the infrared light band, when the sensor determines that the infrared light conditions of the current environment cannot provide a clear image, the infrared lamp is activated to fill the light. Irradiating the subject through an infrared lamp enhances the reflection of infrared light, thereby obtaining a clear image in the infrared light band.
  • a second aspect of the present invention provides an electronic device including the camera described in the first aspect and any possible implementation manner of the first aspect. Based on the same inventive concept, since the principle and beneficial effects of the electronic device can be referred to the above first aspect and each possible implementation manner of the first aspect and the beneficial effects brought about, the implementation of the electronic device can be referred to the above first aspect The implementation will not be repeated here.
  • a camera and an electronic device are provided, which respectively obtain images of the same image under infrared light and visible light.
  • the infrared light image is filtered to filter out visible light, thereby forming a focus Clear black-and-white infrared light; filter the visible light at the same time to filter out the infrared light, so as to obtain a clearly-focused visible light color picture, and then merge the infrared black-and-white picture and the visible light color picture through the processor, so as to
  • the camera image with improved chromatic aberration, accurate focusing and clear image is obtained under low illumination, which solves the problem of blurring the image fusion effect under the mixed light image in the prior art.
  • FIG. 1 is a schematic diagram of a binocular camera in an embodiment of this application.
  • FIG. 2 is an exploded view of a binocular camera equipped with a filter in an embodiment of the present application
  • FIG. 3 is a schematic diagram of the installation of the first lens and the first filter in the embodiment of the present application.
  • FIG. 4 is an exploded view of a binocular camera equipped with a multi-filter switcher in an embodiment of this application;
  • FIG. 5 is a side view of the first mounting bracket in the embodiment of the present application.
  • FIG. 6 is a front view of the first mounting bracket in the embodiment of the present application.
  • FIG. 7 is an exploded view of a side view of a first multi-filter switcher in an embodiment of this application.
  • FIG. 8 is a front view of a first multi-filter switcher in an embodiment of the present application.
  • FIG. 9 is a bottom view of the first multi-filter switch in the embodiment of the present application.
  • FIG. 10 is a front view of the first multi-filter switch installed in the first mounting bracket in the embodiment of the present application;
  • FIG. 11 is a side view of the first multi-filter switch installed in the first mounting bracket in the embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a stepping motor driving mechanism in an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a solenoid valve driving mechanism in an embodiment of this application.
  • 15 is a schematic structural diagram of a pulley drive mechanism in an embodiment of this application.
  • 16 is a top view of a binocular camera in an embodiment of this application.
  • 17 is a schematic diagram of a monocular camera in an embodiment of the present application.
  • the embodiment of the utility model provides a video camera and electronic equipment, which can obtain clearly-focused images at different wavelengths through filtering, and then perform image fusion through a processor to obtain a clear picture under low illumination conditions , Solve the problem of chromatic aberration caused by non-confocal infrared light and visible light.
  • two sets of cameras Under the condition of low illumination, in order to obtain a clear monitoring picture, two sets of cameras, an infrared light camera and a visible light camera, are used to shoot at the same time.
  • the two sets of cameras are connected to the same processor, and infrared light and visible light are respectively obtained through the two sets of cameras Under the image, the image obtained under infrared light and the image obtained under visible light are then fused by the processor to obtain a monitoring picture under low illumination.
  • the focus of the focus will be different when passing through the lens. During the process, there will be visible light entering the infrared camera and infrared light entering the visible camera. Due to the different focus positions of infrared light and visible light , Resulting in chromatic aberration in the infrared camera and visible light camera during the shooting process, making the monitoring screen with a certain color spot or halo, resulting in blurred images.
  • the embodiments of the present application provide a camera and an electronic device, a wavelength cutoff device is provided between the lens and the sensor, so that the light entering the sensor can be filtered, and only light of a specific wavelength is allowed to pass, so that the lens is at this wavelength It can accurately focus on the shooting picture, and then the processor uses the image fusion algorithm to fuse the picture obtained at each wavelength to obtain a clear picture, thereby solving the unclear picture caused by the non-confocal light of different wavelengths
  • the problem is to improve the clarity of the shooting picture under low illumination.
  • the image fusion algorithm executed by the processor is a technology existing in the prior art, and this application does not limit it.
  • the camera may be a binocular camera, a monocular camera or a multi-camera camera, which will be described separately below.
  • FIG. 1 is a schematic structural diagram of a camera provided by an embodiment of the present application.
  • the first objective of the camera binocular camera provided by an embodiment of the present application is used to capture a picture under light of a first wavelength
  • the second objective is used to capture a picture under a second wavelength
  • the first wavelength and the second The wavelengths are different, and the first and second heads simultaneously shoot the photographed scene, and then the processor fuses the images obtained by the above two heads according to the image fusion algorithm to obtain a clear image.
  • the binocular camera includes: a first lens 10, a first wavelength cut-off device (not shown in the figure), and a first sensor 20 that are sequentially arranged along the light incident direction; and a second lens that is sequentially disposed along the light incident direction
  • the first sensor 20 and the second sensor 40 are connected to the processor 50.
  • the first wavelength cut-off device and the second wavelength cut-off device are used to cut off light of different wavelengths, for example, the first wavelength cut-off device is used to cut off infrared light, and the second wavelength cut-off device is used to cut off visible light.
  • the situation is not limited.
  • the first lens 10 and the second lens 30 focus on the light of this wavelength respectively, so that the first sensor 20 and the second sensor A clear image is formed in 40, and then the first sensor 20 and the second sensor 40 respectively send the image to the processor 50, and the processor 50 enters the images obtained by the first sensor 20 and the second sensor 40 through the image fusion algorithm.
  • Image fusion which overcomes the problem of non-confocal due to different wavelengths, and obtains a clear image in low-illumination scenes.
  • the wavelength cut-off device may be a filter or a multi-filter switch.
  • the following is a filter set for the binocular camera for wavelength cutoff, and binocular
  • the camera is equipped with a multi-filter switch to perform wavelength cut-off.
  • Binocular camera sets filter to cut off wavelength.
  • the first eye of the binocular camera is used to take pictures under visible light
  • the second eye is used to take pictures under infrared light
  • the first eye includes the first A lens 10, a first filter 60 and a first sensor 20
  • the second eye includes a second lens 30, a second filter 70 and a second sensor 40
  • the first sensor 20 and the second sensor 40 are respectively processed ⁇ 50 ⁇ 50 connected.
  • the light emitting end of the first lens 10 is provided with a groove 11 surrounding the inside of the first lens 10
  • the first filter 60 is provided in the groove 11
  • the second filter 70 is connected to the second lens 30.
  • the first filter 60 only cuts off infrared light, so that the light in the visible light band enters the first sensor 20, thereby eliminating the phenomenon of chromatic aberration caused by non-confocal visible light and infrared light. Obtain a color image with clear focus under visible light.
  • the first filter 60 is a band-pass filter.
  • the band-pass filter is a filter that is adjacent to the cut-off band on both sides of the transmission band of the spectral characteristic curve.
  • the band-pass filter only allows 450 to The light in the middle band of 950nm passes through, which can not only cut off infrared light, but also prevent the influence of ultraviolet light and other light on the sharpness of the image focus under visible light.
  • the second filter 70 completely cuts off the visible light, so that the light in the infrared band enters the second sensor 40, thereby eliminating the chromatic aberration caused by the non-confocal infrared light and the visible light. Obtain a black and white image with clear focus under infrared light.
  • the second filter 70 cuts off most of the visible light, leaving part of the visible light to pass; in the example, it can cut off different wavelengths according to the actual infrared confocal degree of influence, for example, when the visible light wavelength around 600nm and infrared light are out of focus
  • the filter is used as the wavelength cut-off device.
  • the infrared light entering the first target is cut off, and the visible light entering the second target is cut off, thereby obtaining in the first eye
  • a picture that is clearly focused under infrared light, and a picture that is clearly focused under visible light that is drawn in the second eye and then the first sensor 20 and the second sensor 40 send the above two pictures to the processor 50, and the processor 50 uses
  • the image fusion algorithm performs image fusion on the above two pictures to obtain a clear picture, which excludes the influence of chromatic aberration. Due to the light and thin volume of the filter, the working effect is stable, and the cost is low. In the case of little change in lighting conditions (such as a street where the light changes only day and night), the ideal working effect can be obtained.
  • the cutoff wavelengths of the first filter 60 and the second filter 70 can also be adjusted to other ranges, which all fall within the protection scope of the present application.
  • this application provides a working method in which the binocular camera sets a multi-filter switch to cut off the wavelength.
  • the binocular camera is equipped with a multi-filter switch to cut off the wavelength.
  • the multi-filter switch includes a composite filter 110 integrated with a plurality of filters that respectively cut off different wavelengths.
  • the specific method of the composite filter 110 may be: a plurality of cut-offs are arranged on a fully transparent substrate Coatings with different wavelengths, so that multiple filters with different cut-off wavelengths are multiple coatings with different cut-off wavelengths, each of which forms a filter, and the above composite filter 110 is driven by the drive mechanism 120, In this way, one filter in the composite filter 110 is moved to a position opposite to the lens to realize switching of different cut-off wavelengths, wherein the number of filters arranged in the composite filter 110 may be 2 It may be two or more, and this embodiment is not limited.
  • the first eye of the binocular camera is used to take pictures under visible light, and the first eye is used to take pictures under infrared light.
  • the second objective includes a second sequentially arranged along the light incident direction
  • the lens 30, the second mounting bracket 90 and the second sensor 40, wherein the second mounting bracket 90 is provided with a second multi-filter switch 200, the first sensor 20 and the second sensor 40 are respectively connected to the processor 50 connection.
  • FIG. 5 is a side view of the first mounting bracket 80
  • FIG. 6 is a front view of the first mounting bracket 80
  • the first mounting bracket 80 includes: a base 81 and a The connecting portion 82 above the base 81 is provided with a reinforcing rib 83 at the connection between the base 81 and the connecting portion 82, wherein the base 81 is in contact with the first sensor 20, and the top of the connecting portion 82 is provided with a first lens A bayonet 82A with 10 snap connections, a slot 84 for mounting a first multi-filter switching device is provided between the connecting portion 82 and the base 81, and one side of the slot 84 is provided with a first multi-filter
  • the plug 85 fixed by the chip switcher 100 is provided with a first through hole 82B, and the first through hole 82B is directly opposite to the first lens 10.
  • FIG. 7 is an exploded view of the side view of the first multi-filter switch 100
  • FIG. 8 is a front view of the first multi-filter switch 100
  • FIG. 9 is a first multi-filter Bottom view of the switch 100
  • the first multi-filter switch 100 includes: a composite filter 110, a driving mechanism 120, and a housing 130, wherein the composite filter 110 and the driving mechanism 120, the composite filter 110 and the driving mechanism 120 are disposed inside the housing 130; as shown in FIG. 8, the housing 130 is provided with a second through hole 131, the composite filter 110 has different cut-off wavelengths
  • the optical filter moves to the position of the second through hole 131 under the driving of the driving mechanism 120; as shown in FIG. 9, one side of the housing 130 is provided with a hook 132 for fixing with the first mounting bracket 80 .
  • FIG. 10 is a front view of the first multi-filter switch 100 installed in the first mounting bracket 80
  • FIG. 11 is a first multi-filter switch 100 installed in the first mounting bracket 80
  • Side view of FIG. 10 when the first multi-filter switch 100 is inserted into the first mounting bracket 80, the position of the second through hole 131 and the first through hole 82B are directly opposite; as shown in FIG.
  • the plug 85 is inserted into the hook 132 to realize the first multi-filter switch 100 and the first mounting bracket 80 It is fixed to prevent the first multi-filter switch 100 from being loosely dropped from the first mounting bracket 80.
  • the second multi-filter switch 200 and the second mounting bracket 90 are installed in the same manner as the first multi-filter switch 100 and the first mounting bracket 80 described above.
  • the first object includes the first lens 10, the first multi-filter switch 100 and the first sensor 20; wherein, the first multi-filter switch 100 is specifically a first dual-filter switch,
  • the composite filter 110 of the first dual filter switch includes a fully transparent lens and an infrared cut-off filter.
  • the infrared cut-off filter may be infrared cut-off only
  • the light filter may be a bandpass filter that only allows visible light to pass through.
  • the second object includes the second lens 30, the second multi-filter switch 200 and the second sensor 40; wherein, the second multi-filter switch 200 is specifically a second double-filter switch,
  • the composite filter 110 of the second dual-filter switcher includes a fully transparent lens and a filter that cuts off visible light.
  • the filter that cuts off visible light may be a filter that cuts off visible light completely.
  • the film may also be a filter that cuts off most visible light and retains part of the visible light.
  • the shooting environment of the binocular camera is a street that changes day and night.
  • both the first and second eyes shoot the picture under visible light; at this time, the first double filter switch and the second double filter switch both switch to full light transmission
  • the lenses work, and the visible light passes through the first lens 10 and the first double filter switch in turn to generate the first visible light picture in the first sensor 20; meanwhile, the visible light is sequentially switched through the second lens 30 and the second double filter
  • the second sensor 40 generates a second visible light picture.
  • the first sensor 20 and the second sensor 40 respectively send the first visible light picture and the second visible light picture to the processor 50.
  • the processor 50 uses an image fusion algorithm to One visible light picture and the second visible light picture are merged into one picture.
  • the binocular lens has a larger amount of light input than the monocular lens, and can shoot a clearer picture.
  • the first eye takes pictures under visible light
  • the second eye takes pictures under infrared light
  • the processor 50 fuses the two pictures to obtain a clear picture
  • a pair of filter switchers that cut off infrared light filters are working on the first lens 10
  • the second double filter switches that switch off visible light filters are working on the second lens 30
  • a lens 10 focuses at a wavelength of visible light, and the infrared light filtered by the first dual filter switch enters the first sensor 20, thereby obtaining a clearly focused visible light image. Because the illumination is weak, only part of the visible light image is recorded.
  • the color information of the second lens 30 is focused at the infrared wavelength, and the light of the visible light filtered by the second double filter switch enters the second sensor 40, thereby obtaining a clearly focused infrared light picture;
  • the infrared light picture records Black and white outline information;
  • the first sensor 20 and the second sensor 40 respectively send the visible light image and the infrared light image to the processor 50, and the processor 50 passes the image
  • the fusion algorithm fuses the visible light image and the infrared light image to obtain a clear shooting image under the condition of low illumination at night.
  • the workflow of a binocular camera equipped with a double filter switch is introduced.
  • the above-mentioned driving mechanism 120 can be divided into stepper motor drives according to different driving principles
  • the mechanism, solenoid valve drive mechanism, gear drive mechanism and pulley drive mechanism are four cases.
  • the above four drive conditions are applicable to different shooting environments, which will be described in order below.
  • the stepping motor driving mechanism includes a stepping motor 121, and the power output shaft 121A of the stepping motor 121 is connected to the composite filter 110.
  • the stepping motor drives the power output shaft to provide a line Displacement, so as to drive a filter in the composite filter 110 to the position corresponding to the lens
  • the stepper motor drive mechanism works stably, the drive speed can be adjusted according to the different stepper motor models, and can be suitable for different jobs Scenes.
  • the solenoid valve driving mechanism includes a pair of opposed electromagnets 122, and a metal piece 123 provided on the composite filter 110 that can be attracted by the electromagnet 122.
  • the electromagnets 122 Between the electromagnets 122; during specific operation, the electromagnet 122 on the side is energized to generate magnetic force, and the electromagnet 122 on the side is de-energized without magnetic force.
  • the electromagnet 122 on the side attracts the metal piece 123 to move to the side, thereby driving
  • the composite filter 110 moves to the local side; on the contrary, the opposite side electromagnet 122 is energized to generate a magnetic force, and the local side electromagnet 122 is deenergized without magnetic force.
  • the opposite side electromagnet 122 attracts the metal piece 123 to move to the opposite side, thereby driving
  • the composite filter 110 moves to the opposite side.
  • the metal pieces 123 are attracted from opposite sides by a set of electromagnets 122 arranged oppositely to drive the filters of different cut-off wavelengths in the composite filter 110 to the position corresponding to the lens.
  • the solenoid valve driving mechanism has a faster driving speed, and it can switch the filter in time for the shooting environment where the light and dark conditions change suddenly, and has strong maneuverability.
  • the gear drive mechanism includes a first motor 124, a gear 125 disposed on the output shaft of the first motor 124 for transmission, and a rack 125A disposed on the composite filter 110 to mesh with the gear 125;
  • the first motor 124 works, and the gear 125 is driven to rotate through the output shaft.
  • the gear 125 drives the composite filter 110 to move through the rack 125A.
  • the first motor 124 rotates forward, the composite The filter 110 moves to one side, and when the first motor 124 is reversed, the composite filter 110 moves to the other side, thereby driving one filter of the composite filter 110 to move to the lens Corresponding location.
  • the gear drive mechanism moves more smoothly, can reduce the mechanical vibration in the process of switching the filter, and is beneficial to protect the equipment.
  • the pulley driving mechanism includes a second motor 126, a first pulley 127, a second pulley 128, and a belt 129, wherein the first pulley 127 is disposed on the output shaft of the second motor 126, and the first pulley 127 is
  • the second pulley 128 is connected by a belt 129
  • the belt 129 and the composite filter 110 are connected by a connecting member 129A
  • the connecting member is a cylinder
  • one end of the cylinder is connected to the belt 129
  • the other end is connected to the composite filter 110 is connected
  • the second motor 126 rotates forward
  • the first pulley 127 drives the belt 129 to move to one side, so that the composite filter 110 is driven to move to one side by the connecting piece 129A.
  • the second motor 126 reverses During rotation, the composite filter 110 moves to the other side, thereby driving one of the composite filters 110 to the position corresponding to the lens in this way.
  • the driving method of the pulley can effectively protect the composite filter 110, and prevent the drive mechanism from forcibly driving the composite filter 110 to become broken when the composite filter 110 is stuck.
  • An infrared lamp 300 for providing infrared light illumination is provided on the second mesh.
  • the infrared lamp 300 includes the following U-shaped lamp board 310.
  • the U-shaped lamp board 310 is provided with a plurality of sets of infrared lamp beads 320 for providing infrared illumination.
  • the infrared lamp 300 is connected to the second sensor 40.
  • the infrared lamp 300 is activated to illuminate the scene with infrared light, so as to achieve supplementary light and obtain a clear infrared light image.
  • the above introduces the various situations of using a filter and a multi-filter switch to cut off the wavelength in a binocular camera.
  • the binocular camera can obtain visible light and infrared light for the same shooting scene under low illumination conditions.
  • the screen is for the processor 50 to perform image fusion.
  • the binocular lens occupies a larger volume, and the binocular setting also increases the cost of the device.
  • the embodiments of the present application also provide an implementation of a monocular camera.
  • the monocular camera in this case includes a third lens 400, a third mounting bracket 500, a third sensor 600, and a processor 50 that are sequentially arranged along the light incident direction.
  • the third mounting bracket 500 is provided with a third lens.
  • the driving mechanism of the third multi-filter may be any one of the above-mentioned stepping motor driving mechanism, solenoid valve driving mechanism, gear driving mechanism or pulley driving mechanism, which will not be repeated here.
  • the third multi-filter switcher switches the fully transparent lens to shoot the street, and the light passes through the third lens 400 and the fully-transparent lens of the third multi-filter switcher in turn.
  • the generated image of the third sensor 600 is sent to the processor 50, and the monitoring screen can be obtained directly.
  • the third multi-filter switcher At night, when the shooting ambient light is weak, the third multi-filter switcher first switches the infrared cut-off filter to filter the light entering the third sensor 600, and the third sensor 600 obtains a focused visible light image and sends it to Processor 50; after that, the third multi-filter switcher switches the visible light cut-off filter to filter the light entering the third sensor 600, and the third sensor 600 obtains the focused infrared light image and sends it to the processor 50 for processing
  • the device 50 uses an image fusion algorithm to fuse the visible light image and the infrared light image to obtain a clear frame of the picture. Repeat the above operation.
  • the third multi-filter switcher switches between the infrared light cut filter and the visible light cut filter. Switch back and forth between the light sheets to obtain a continuous frame number of shooting pictures, so that under low lighting conditions, only a monocular camera can realize the image fusion algorithm of the visible light picture and the infrared light picture.
  • the monocular camera is also provided with an infrared lamp 300 for supplementary light connected to the third sensor 600.
  • the infrared lamp 300 is installed in the same way as the above binocular
  • the setting mode of the infrared lamp 300 on the second eye in the camera is the same, and will not be repeated here.
  • the above describes the implementation of the embodiment of the present application under a monocular camera.
  • the monocular camera is light in size and low in cost, and can be competent for fusion shooting of infrared light and visible light in the case of low illumination.
  • the working mode of the monocular camera can not meet the needs of high-speed continuous shooting. Way of working.
  • the multi-camera camera includes more than two cameras, each of which is used to obtain a clearly focused image at different wavelengths, and then sent to the same processor 50 for image fusion, so that it is more accurate to obtain focus than a monocular camera and a binocular camera.
  • Image in the specific implementation process, each eye of the multi-camera camera can be used to cut off the wavelength through the filter, or it can be a multi-filter switch, the specific setting method and working principle are the same as any of the above binocular The working principles of the cameras are the same, and will not be repeated here.
  • the present application also provides an electronic device.
  • the electronic device may be a monitoring device, a video recorder, or a DV machine.
  • the electronic device further includes a camera.
  • a camera For the specific structure of the camera, refer to the foregoing embodiment, and details are not described herein.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Blocking Light For Cameras (AREA)
  • Studio Devices (AREA)

Abstract

本申请公开了一种摄像机,包括镜头、波长截止装置、传感器及处理器,其中,波长截止装置的第一侧面与镜头相对设置,波长截止装置的第二侧面与传感器相对设置,传感器与处理器连接设置,以使光线依次经由镜头以及波长截止装置射入至传感器,波长截止装置用于对光线进行过滤;本申请实施例还提供了包括该摄像机的电子设备。本申请技术方案用于通过波长截止装置对进入传感器的光线进行过滤,从而解决由于光线中不同波长对焦点不同而产生的色像差问题,之后通过处理器按照图像融合算法对各个波长下得到的图像进行融合,从而在低照明度条件下得到对焦精确、无色像差的图像,提升了低照明度下摄像的清晰度。

Description

一种摄像机及电子设备 技术领域
本实用新型涉及光学技术领域,具体涉及一种摄像机及电子设备。
背景技术
视频监控(cameras and surveillance)作为安全防范系统的重要组成部分,正渐渐地在商用和民用方面普及,视频监控系统包括包括前端的监控摄像机、传输线缆及视频监控平台,其中,监控摄像机广泛地应用在各个领域,为社会治安保驾护航;在安防领域,例如道路交通方面,微弱光线下监控摄像机的低照效果一直是用户关心的重点,随着安防领域技术的发展,目前用户要求的是需要微光下彩色图像,主要在偏僻无光的道路上用作监控。
现有技术中,存在一种红外光及可见光融合摄像机,包括一组红外光摄像头及一组可见光摄像头,针对同一画面分别拍摄红外光和可见光下的图像,再通过图像融合系统,将上述两个图像融合,从而在低照明度下得到监控画面;但是由于不同波长的光折射率不同,不同波长的光通过镜头后会形成色像差(chromatic aberration),因为存在色像差,会导致可见光与红外光经过镜头后的光电会聚点位置不一样,产生红外光和可见光不共焦的问题,使得在任何位置观察,都带有一定的色斑或者晕环,使得像模糊不清,从而影响了低照明度下监控摄像机的成像清晰度。
因此,现有技术中所存在的上述问题还有待于改进。
发明内容
本实用新型实施例提供一种摄像机及电子设备,能够以红外光及可见光融合摄像机为基础,对红外光摄像头和可见光摄像头所获取到的光线分别进行滤光,从而避免了因红外光和可见光不共焦产生的色像差问题,提升低照度下摄像画面的清晰度。
有鉴于此,本申请第一方面提供一种摄像机,包括镜头、波长截止装置、传感器及处理器,其中,该波长截止装置的第一侧面与该镜头相对设置,该波长截止装置的第二侧面与该传感器相对设置,该传感器与该处理器连接设置,以使光线依次经由该镜头以及该波长截止装置射入至该传感器,该波长截止装置用于对该光线进行过滤。其中,该摄像机的数量可以是一组,也可以是多组,该镜头可以是红外与可见光共焦的镜头、也可以是红外与可见光不共焦镜头、可以是定焦镜头、也可以是电动变焦镜头,该传感器可以是彩色传感器,也可以是黑白传感器。从上述第一方面可以看出,沿光线射入方向依次设置有镜头、波长截止装置、传感器及处理器;光线从镜头进入传感器的过程中,被该波长截止装置过滤掉特定波长的光线,解决了可见光和红外光因不共焦所导致的色像差问题,之后该处理器对分别在可见光和红外光下所获得的对焦准确的图像进行图像融合,从而获得清晰的图像画面。
结合第一方面,在第一种可能的实现方式中,该波长截止装置为滤光片,该镜头设置有凹槽,该滤光片嵌入设置在该凹槽内。其中,该滤光片可以是完全截止可见光的滤光片或者保留部分可见光的滤光片,也可以是截止除可见光以外波长的滤光片或者带通滤光片。由上述第一种可能的实现方式可见,使用滤光片作为波长截止装置对穿过镜头的光线进行过滤,通过选择截止不同波长的滤光片,来控制进入传感器光线的波段,从而杜绝因光线中存在不同波长的光线而产生的画面不共焦问题,防止画面产生色像差。
结合第一方面,在第二种可能的实现方式中,该波长截止装置包括多个截止波长不同的滤光片。其中,该波长截止装置可以是双滤光片切换器,也可以是多滤光片切换器。由上述第二种可能的实现方式可见,波长截止装置内包括多个分别用于截止不同波长的滤光片,在工作过程中,能够根据光线的情况切换不同的滤光片,以符合滤光的需求,以使得该波长截止装置能够在各种光线环境下工作。
结合第一方面第二种可能的实现方式,在第三种可能的实现方式中,该波长截止装置包括一块全透光的基片,该基片上排列设置有多个截止波长不同的镀层,该多个截止波长不同的滤光片为该多个截止波长不同的镀层。其中,该基片可以是透明的玻璃基片,也可以是透明的高分子聚合物基片。由上述第三种可能的实现方式可见,在一块基片上,排列设置用于截止不同波长的镀层,从而在一块基片上获得具有多个截止波长的复合滤光片。
结合第一方面第二种可能的实现方式或第一方面第三种可能的实现方式,在第四种可能的实现方式中,该波长截止装置还包括驱动机构,该驱动机构用于驱动该多个截止波长不同的滤光片中的一个滤光片运动至与该镜头相对的位置。其中,该驱动机构可以包括马达及传动设备。由上述第四种可能的实现方式可见,通过驱动机构来带动不同的滤光片运动至与该镜头相对的位置,提高了波长截止装置的机动性。
结合第一方面第四种可能的实现方式,在第五种可能的实现方式中,该驱动机构为步进电机,该步进电机的输出轴与该滤光片连接。其中,该步进电机可以是反应式步进电机、永磁式步进电机或混合式步进电机。由上述第五种可能的实现方式可见,通过步进电机的输出轴与滤光片连接,能够使步进电机直接驱动不同的滤光片运动至与该镜头相对的位置,且步进电机成本较低,便于维修替换。
结合第一方面第四种可能的实现方式,在第六种可能的实现方式中,该驱动机构包括一对相对设置的电磁铁,该滤光片上设置有金属件,该金属件位于该电磁铁之间。其中,该金属件可以是铁块,也可以是铁片。由上述第六种可能的实现方式可见,滤光片上的金属块设置在一对相对设置的电磁铁之间,通过控制两个电磁铁交替吸附该金属件,驱动不同的滤光片运动至与该镜头相对的位置,通过上述电磁阀式的驱动方式,能够使得滤光片之间具有较快的切换速度。
结合第一方面第四种可能的实现方式,在第七种可能的实现方式中,该驱动机构为第一马达,该第一马达的输出轴上设置有齿轮,该滤光片设置有与该齿轮咬合的齿条。其中,该齿轮可以是直齿轮,也可以是斜齿轮或人字齿轮。由上述第七种可能的实现方式可见,设置在第一马达输出轴上的齿轮用于传动,该滤光片上设置有与该齿轮向咬合的齿条,当该第一马达工作时,输出轴带动齿轮转动,齿轮转动过程中驱动与之咬合的齿条运动,从而驱动不同的滤光片运动至与该镜头相对的位置,通过齿轮驱动齿条的运动方式,能够使得滤光片之间平稳地切换,在摄像机工作的过程中减少设备抖动。
结合第一方面第四种可能的实现方式,在第八种可能的实现方式中,该驱动机构包括第二马达、第一皮带轮、第二皮带轮及皮带,该第二马达的输出轴与该第一皮带轮连接,该第一皮带轮与该第二皮带轮通过该皮带连接,该皮带与该滤光片连接。其中,该皮带与该滤光片之间可以通过连接件连接,也可以直接连接。由上述第八种可能的实现方式可见,第一马达带动第一皮带轮转动,从而使得该皮带绕第一皮带轮和第二皮带轮转动,由于该滤光片与该皮带连接,因此在该皮带绕第一皮带轮和第二皮带轮转动的过程中,滤光片随 之运动,从而驱动不同的滤光片运动至与该镜头相对的位置。皮带轮驱动的方式能够有效地保护滤光片,防止滤光片被卡死时驱动机构强行驱动造成滤光片碎裂。
结合第一方面第二至第八任意一种可能的实现方式,在第九种可能的实现方式中,该摄像机包括多个截止波长不同的波长截止装置。其中,该波长截止装置可以是两组,一组用于截止可见光,另一组用于截止红外光。由上述第九种可能的实现方式可见,上述多组波长截止装置分别对应设置有各自的镜头及传感器,每一波长截止装置分别截止特定的波长,使得每个传感器在该波长下获得对焦清晰的图片,之后通过处理器将每个传感器获得的图片融合为一个画面,从而解决了不共焦造成的图像清晰度下降的问题。
结合第一方面第九种实现方式,在第十种实现方式中,该摄像机还包括红外线灯,该红外线灯与该传感器连接。其中,该红外线灯可以是一个环绕该镜头设置的U形灯板,该U形灯板上设置有红外线灯珠。由上述第十种可能的实现方式可见,红外线灯与传感器连接,在红外光波段下,当传感器判断当前环境的红外光条件无法提供清晰的图像时,启动该红外线灯进行补光。通过红外线灯照射被摄物提升红外光的反射,从而在红外光波段下获得清晰的图像。
本实用新型第二方面提供一种电子设备,该电子设备包括上述第一方面以及第一方面任一可能的实现方式所描述的摄像机。基于同一发明构思,由于该电子设备的原理以及有益效果可以参见上述第一方面和第一方面的各可能的实施方式以及所带来的有益效果,因此该电子设备的实施可以参见上述第一方面的实施,重复之处不再赘述。
从以上技术方案可以看出,本申请实施例具有以下优点:
本实用新型实施例中,提供了一种摄像机及电子设备,分别获取同一画面在红外光和可见光下的画面,在此过程中,对红外光画面进行滤光处理,滤去可见光,从而形成对焦清晰的红外光黑白画面;同时对可见光画面进行滤光处理,滤去红外光,从而得到对焦清晰的可见光彩色画面,之后通过处理器对该红外光黑白画面和该可见光彩色画面进行融合,从而在低照明度下得到改善色像差、对焦精确、画面清晰的摄像画面,解决了现有技术中混合光画面下图像融合效果模糊的问题。
附图说明
图1为本申请实施例中双目摄像机的示意图;
图2为本申请实施例中搭载滤光片的双目摄像机的爆炸图;
图3为本申请实施例中第一镜头与第一滤光片的安装示意图;
图4为本申请实施例中搭载多滤光片切换器的双目摄像机的爆炸图;
图5为本申请实施例中第一安装托的侧视图;
图6为本申请实施例中第一安装托的主视图;
图7为本申请实施例中第一多滤光片切换器侧视图的爆炸图;
图8为本申请实施例中第一多滤光片切换器的主视图;
图9为本申请实施例中第一多滤光片切换器的仰视图;
图10为本申请实施例中第一多滤光片切换器安装在第一安装托中的主视图;
图11为本申请实施例中第一多滤光片切换器安装在第一安装托中的侧视图;
图12为本申请实施例中步进电机驱动机构的结构示意图;
图13为本申请实施例中电磁阀驱动机构的结构示意图;
图14为本申请实施例中齿轮驱动机构的结构示意图;
图15为本申请实施例中皮带轮驱动机构的结构示意图;
图16为本申请实施例中双目摄像机的俯视图;
图17为本申请实施例中单目摄像机的示意图。
具体实施方式
本实用新型实施例提供一种摄像机及电子设备,能够通过滤光,在不同的波长下分别获得对焦清晰的图像,之后通过处理器进行图像融合,从而在低照明度的情况下获得清晰的画面,解决了红外光和可见光不共焦产生的色像差问题。
为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分的实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本申请保护的范围。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含。
在低照明度的条件下,为了获得清晰的监控画面,使用红外光摄像头和可见光摄像头两组摄像头同时进行拍摄,该两组摄像机与同一个处理器连接,通过两组摄像机分别获取红外光和可见光下的图像,然后通过处理器将红外光下获得的图像和可见光下获得的图像进行图像融合,从而在低照明度下获得监控画面。
由于不同波长的光折射率不同,通过镜头时对焦的焦点就会不一样,在工作过程中,会有可见光进入红外光摄像头,也有红外光进入可见光摄像头,由于红外光和可见光对焦点的位置不同,从而导致红外光摄像头与可见光摄像头在拍摄的过程中产生色像差,使得监控画面带有一定的色斑或者晕环,导致图像模糊不清。
需要说明的是,上述因为波长不同所导致的不共焦问题不止发生在红外光和可见光之间,不同波长的光线之间均会发生该问题,本申请实施例所提供的摄像机及电子设备对于所截止光线的具体波长并不做限定。
为了克服上述问题,本申请实施例提供一种摄像机及电子设备,在镜头和传感器之间设置波长截止装置,使得进入传感器的光线能够被过滤,只允许特定波长的光线通过,从而镜头在该波长下能够对拍摄画面进行准确的对焦,之后由处理器通过图像融合算法,来对各个波长下获得的画面进行图像融合,得到清晰画面,从而解决因不同波长的光线不共焦导致的画面不清晰的问题,提高低照明度下拍摄画面的清晰度。
其中,对于该处理器所执行的图像融合算法,为现有技术中存在的技术,本申请并不对其进行限定。
为实现本申请所提供的技术方案,本申请所提供的方案中,摄像机可以为双目摄像机,单目摄像机或多目摄像机三种情况,以下分别进行说明。
一、双目摄像机。
图1是本申请实施例提供的摄像机的一种结构示意图。
参见图1,本申请实施例提供的摄像机双目摄像机的第一目用于拍摄第一波长光线下的画面,第二目用于拍摄第二波长下的画面,该第一波长与该第二波长不相同,第一目和第二目同时对被摄场景进行拍摄,之后由处理器根据图像融合算法,对上述两目所获得的画面进行图像融合,从而获得清晰的图像。具体地,该双目摄像机包括:沿光线射入方向依次设置的第一镜头10、第一波长截止装置(图中未标出)以及第一传感器20;沿光线射入方向依次设置的第二镜头30、第二波长截止装置(图中未标出)以及第二传感器40。该第一传感器20及该第二传感器40与处理器50连接。其中,该第一波长截止装置和该第二波长截止装置分别用于截止不同波长的光线,例如第一波长截止装置用于截止红外光,第二波长截止装置用于截止可见光,对此本种情况并不进行限定,经过第一波长截止装置和第二波长截止装置的过滤,第一镜头10和第二镜头30分别在该波长的光线下进行对焦,从而在第一传感器20和第二传感器40中分别形成清晰的图像,之后第一传感器20和第二传感器40分别将图像发送给处理器50,处理器50通过图像融合算法,对第一传感器20和第二传感器40所获得的图像进入图像融合,从而克服了由于波长不同导致的不共焦问题,在低照明度场景下获得了清晰的图像。
需要说明的是,本申请实施例中所提供的双目摄像机中,波长截止装置可以为滤光片或者多滤光片切换器,以下针对双目摄像机设置滤光片进行波长截止,以及双目摄像机设置多滤光片切换器进行波长截止两种情况分别进行说明。
1、双目摄像机设置滤光片进行波长截止。
参见图2,本情况下,双目摄像机的第一目用于拍摄可见光下的画面,第二目用于拍摄红外光下的画面,其中,第一目包括沿光线射入方向依次设置的第一镜头10、第一滤光片60及第一传感器20;第二目包括第二镜头30,第二滤光片70及第二传感器40,该第一传感器20与第二传感器40分别与处理器50连接。其中,请参阅图3,第一镜头10中光线射出的一端设置有凹槽11,该凹槽11环绕设置在所述第一镜头10的内侧,第一滤光片60设置在凹槽11中,第二滤光片70以相同方式与第二镜头30连接。具体工作时,对于第一滤光片60,有以下两种实施方式:
(1)、第一滤光片60只截止红外光,以使得可见光波段的光线进入第一传感器20,从而杜绝了可见光与红外光由于不共焦产生的色像差现象,在第一传感器20上获得可见光下对焦清晰的彩色图像。
(2)、第一滤光片60为带通滤光片,带通滤光片是光谱特性曲线透射带两侧邻接截止带的滤光片,例如,该带通滤光片只允许450至950nm中间一段波段的光线通过,从而不仅能够截止红外光,还能杜绝紫外光等其他光线对可见光下画面对焦清晰度的影响。
该对于第二滤光片70,有以下两种实施方式:
(1)、第二滤光片70完全截止可见光,以使得红外线波段的光线进入第二传感器40,从而杜绝了红外光与可见光由于不共焦产生的色像差现象,在第二传感器40上获得红外光下对焦清晰的黑白图像。
(2)、第二滤光片70截止大部分可见光,保留部分可见光通过;实例中可以根据实际红外共焦的影响程度,对不同波长进行截止,例如当600nm左右的可见光波长与红外光离焦不大时,可选择560nm截止的滤光片进行波长截止,以获得部分的彩色纹理及轮廓信息,从而在后续的图像融合操作时,在不产生色像差的情况下获得细节更加丰富的图像。
本种情况下,在双目摄像机中,以滤光片作为波长截止装置,通过上述方式,对进入第一目的红外光进行截止,对进入第二目的可见光进行截止,从而在第一目中获得在红外光下对焦清晰的画面,在第二目中画的在可见光下对焦清晰的画面,之后第一传感器20和第二传感器40将上述两个画面分别发送给处理器50,处理器50使用图像融合算法对上述两个画面进行图像融合,从而得到清晰的画面,该画面排除了色像差的影响。由于滤光片体积轻薄,工作效果稳定,成本较低,在照明条件变化不大的情况下(例如光线变化仅为昼夜更替的街道),能够取得理想的工作效果。
需要说明的是,根据实际工作的需要,还可以调整第一滤光片60和第二滤光片70所截止波长为其他的范围,均属于本申请的保护范围。
需要进一步说明的是,上述使用滤光片的设置方式,一旦设定了滤光片的截止波长范围,就无法更改,对于照明条件变化较大的拍摄场景,滤光片无法根据实时照明情况调整,以对不同波长的光线进行有效截止,针对该问题,本申请提供了一种双目摄像机设置多滤光片切换器进行波长截止的工作方式。
2、双目摄像机设置多滤光片切换器进行波长截止。
首先对搭载有多滤光片切换器的双目摄像机的具体结构进行说明。
多滤光片切换器包括一个集成有多个分别截止不同波长滤光片的复合滤光片110,该复合滤光片110的具体方式可以为:在全透光的基片上排列设置多个截止波长不同的镀层,从而多个截止波长不同的滤光片即为多个截止波长不同的镀层,每一该镀层构成一个滤光片,上述复合滤光片110在驱动机构120的驱动下运动,以使得复合滤光片110中的一个滤光片运动至与镜头相对的位置,从而实现不同截止波长的切换,其中,该复合滤光片110中所排列设置的滤光片数量可以是2个,也可以是2个以上,本实施例并不限定。
参见图4,本情况下,双目摄像机的第一目用于拍摄可见光下的画面,第一目用于拍摄红外光下的画面,其中,第一目包括沿光线射入方向依次设置的第一镜头10、第一安装托80及第一传感器20,其中,该第一安装托80上设置有第一多滤光片切换器100;第二目包括沿光线射入方向依次设置的第二镜头30、第二安装托90及第二传感器40,其中,该第二安装托90上设置有第二多滤光片切换器200,该第一传感器20和第二传感器40分别与处理器50连接。
参见图5及图6,图5为第一安装托80的侧视图,图6为第一安装托80的主视图;如图5所示,该第一安装托80包括:底座81及设置在该底座81上方的连接部82,该底座81与该连接部82的连接处设置有加强筋83,其中,底座81与第一传感器20相抵触,连接部82的顶部设置有用于与第一镜头10卡接的卡口82A,连接部82与底座81之间设置有用于安装第一多滤光片切换装置的插槽84,该插槽84的一侧设置有用于与该第一多滤光片切换器100固定的插销85,如图6所示,该连接部82上设置有第一通孔82B,该第一通孔82B与该第一镜头10位置正对。
参见图7至图9,图7为第一多滤光片切换器100侧视图的爆炸图,图8为第一多滤光片切换器100的主视图,图9为第一多滤光片切换器100的仰视图;如图7所示,该第一多滤光片切换器100包括:复合滤光片110、驱动机构120及外壳130,其中,该复合滤光片110与该驱动机构120连接,该复合滤光片110与该驱动机构120设置在该外壳130的内部;如图8所示,该外壳130上设置有第二通孔131,该复合滤光片110中不同截止波长的滤光片在该驱动机构 120的驱动下运动至该第二通孔131所在的位置;如图9所示,该外壳130的一侧设置有用于与上述第一安装托80固定的挂钩132。
参见图10至图11,图10为第一多滤光片切换器100安装在第一安装托80中的主视图,图11为第一多滤光片切换器100安装在第一安装托80中的侧视图;如图10所示,当第一多滤光片切换器100插入第一安装托80时,该第二通孔131与该第一通孔82B位置正对;如图11所示,当第一多滤光片切换器100通过插槽84插入第一安装托80时,该插销85插入该挂钩132中,实现第一多滤光片切换器100与第一安装托80的固定,防止第一多滤光片切换器100从第一安装托80中松脱掉落。
需要说明的是,该第二多滤光片切换器200及第二安装托90的设置方式与上述第一多滤光片切换器100及第一安装托80的设置方式相同。
以下举出一个例子,对搭载有多滤光片切换器的双目摄像机的工作过程说明如下。
第一目包括上述第一镜头10、上述第一多滤光片切换器100及上述第一传感器20;其中,该第一多滤光片切换器100具体为第一双滤光片切换器,该第一双滤光片切换器的复合滤光片110包含一个全透光镜片和一个截止红外光的滤光片,如前所述,该截止红外光的滤光片,可以是只截止红外光的滤光片,也可以是只允许可见光通过的带通滤光片。
第二目包括上述第二镜头30、上述第二多滤光片切换器200及上述第二传感器40;其中,该第二多滤光片切换器200具体为第二双滤光片切换器,该第二双滤光片切换器的复合滤光片110包含一个全透光镜片和一个截止可见光的滤光片,如前所述,该截止可见光的滤光片可以是完全截止可见光的滤光片,也可以是截止大部分可见光,保留部分可见光通过的滤光片。
假设该双目摄像机的拍摄环境为昼夜更替的街道。
在白天,由于拍摄环境光照充分,第一目及第二目均拍摄可见光下的画面;此时,该第一双滤光片切换器和该第二双滤光片切换器均切换全透光镜片进行工作,可见光依次通过第一镜头10及第一双滤光片切换器,在第一传感器20中生成第一可见光画面;同时,可见光依次通过第二镜头30及第二双滤光片切换器,在第二传感器40中生成第二可见光画面,该第一传感器20和第二传感器40分别将第一可见光画面和第二可见光画面发送给处理器50,处理器50使用图像融合算法将第一可见光画面及第二可见光画面融合为一个画面。在白天只拍摄可见光的情况下,双目镜头相较于单目镜头具有更大的进光量,能够拍摄到更加清晰的画面。
在夜晚,由于拍摄环境光线较弱,第一目拍摄可见光下的画面,第二目拍摄红外光下的画面,之后由处理器50对两个画面进行图像融合得到清晰的画面;此时该第一双滤光片切换器切换截止红外光的滤光片正对第一镜头10进行工作,该第二双滤光片切换器切换截止可见光的滤光片正对第二镜头30进行工作;第一镜头10在可见光波长下进行对焦,被第一双滤光片切换器滤去红外光的光线进入第一传感器20,从而得到对焦清晰的可见光画面,由于光照微弱,该可见光画面只记录了部分的彩色信息;第二镜头30在红外线波长下进行对焦,被第二双滤光片切换器滤去可见光的光线进入第二传感器40,从而得到对焦清晰的红外光画面;该红外光画面记录了黑白轮廓信息;第一传感器20与第二传感器40分别将可见光画面和红外光画面发送给处理器50,处理器50通过图像融合算法,将该可见光画面和该红外光画面进行融合,从而在夜晚低照明度的条件下得到了清晰的拍摄画面。
上述以昼夜更替的街道为例,对搭载双滤光片切换器的双目摄像机的工作流程进行了介绍,需要说明的是,上述驱动机构120根据驱动原理的不同,可以分为步进电机驱动机构、电磁阀驱动机构、齿轮驱动机构及皮带轮驱动机构四种情况,上述四种驱动情况适用于不同的拍摄环境,以下依次进行说明。
(1)步进电机驱动机构。
参见图12,步进电机驱动机构包括步进电机121,该步进电机121的动力输出轴121A与复合滤光片110连接,当步进电机工作时,步进电机驱动该动力输出轴提供线位移,从而驱动复合滤光片110中的一个滤光片运动到镜头所对应的位置,步进电机驱动机构工作稳定,驱动速度可随步进电机型号的不同而调节,能够适用于不同的工作场景。
(2)、电磁阀驱动机构。
参见图13,电磁阀驱动机构包括一对相对设置的电磁铁122,以及设置在复合滤光片110上的可被该电磁铁122吸附的金属件123,该金属件123位于相对设置的两个该电磁铁122之间;具体工作时,本侧的电磁铁122通电产生磁力,对侧电磁铁122断电无磁力,此时本侧电磁铁122吸附该金属件123向本侧运动,从而带动复合滤光片110向本侧运动;相反,对侧电磁铁122通电产生磁力,本侧电磁铁122断电无磁力,此时对侧电磁铁122吸附该金属件123向对侧运动,从而带动复合滤光片110向对侧运动。通过相对设置的一组电磁铁122从两侧吸附该金属件123,驱动复合滤光片110中不同截止波长的滤光片运动到镜头所对应的位置。电磁阀驱动机构具有较快的驱动速度,对于明暗条件变化突然的拍摄环境,能够及时切换滤光片,具有较强的机动性。
(3)、齿轮驱动机构。
参见图14,齿轮驱动机构包括第一马达124、设置在该第一马达124输出轴上用于传动的齿轮125,以及设置在复合滤光片110上与该齿轮125相咬合的齿条125A;具体工作时,第一马达124工作,通过输出轴带动该齿轮125转动,齿轮125在转动的过程中,通过齿条125A,带动复合滤光片110运动,当第一马达124正转时,复合滤光片110向一侧运动,当第一马达124反转时,复合滤光片110向另一侧运动,从而通过这种方式驱动复合滤光片110中的一个滤光片运动到镜头所对应的位置。齿轮驱动机构运动较为平稳,能够减少切换滤光片过程中的机械振动,有利于保护设备。
(4)、皮带轮驱动机构。
参见图15,皮带轮驱动机构包括第二马达126,第一皮带轮127、第二皮带轮128及皮带129,其中,该第一皮带轮127设置在第二马达126的输出轴上,该第一皮带轮127与该第二皮带轮128通过皮带129连接,该皮带129与复合滤光片110通过连接件129A连接,该连接件为一柱体,该柱体的一端与皮带129连接,另一端与复合滤光片110连接,具体工作时,第二马达126正转,第一皮带轮127驱动皮带129向一侧运动,从而通过连接件129A带动复合滤光片110向一侧运动,同理,第二马达126反转时,复合滤光片110向另一侧运动,从而通过这种方式驱动复合滤光片110中的一个滤光片运动到镜头所对应的位置。皮带轮驱动的方式能够有效地保护复合滤光片110,防止复合滤光片110被卡死时驱动机构强行驱动造成滤光片碎裂。
需要说明的是,在低照明度情况下,上述第二目在拍摄红外光画面时,由于光线较弱,红外光的光线强度也不充足,影响了红外光图像的清晰度,对此,在第二目上设置有用于 提供红外光照明的红外线灯300,参见图16,图16是本申请所提供双目摄像机的俯视图,如图16所示,红外线灯300包括以下U形灯板310,该U形灯板310上设置有多组用于提供红外线照明的红外线灯珠320,该红外线灯300与第二传感器40连接,在工作过程中,若第二传感器40判断所接收到的红外光不足时,启动该红外线灯300,对被摄场景进行红外光照明,从而实现补光,获得清晰的红外光图像。
上述介绍了双目摄像机中,使用滤光片和多滤光片切换器进行波长截止的各种情况,双目摄像机能够在低照明度条件下,针对同一拍摄场景,同时获得可见光画面和红外光画面供处理器50进行图像融合,在拍摄视频时,能够在预定时间内获得更多的帧数,实现高速拍摄。同时,双目镜头占用了较大的体积,双目的设置也提升了设备的成本,对此,本申请实施例还提供一种单目摄像机的实施方式。
二、单目摄像机。
参见图17,本情况中的单目摄像机包括沿光线射入方向依次设置的第三镜头400、第三安装托500、第三传感器600及处理器50,该第三安装托500上设置有第三多滤光片切换器。其中,该第三安装托500及该第三多滤光片切换器的设置方式与上述第一安装托80及第一多滤光片切换器100的设置方式相同,此处不再赘述,该第三多滤光片的驱动机构可以为上述步进电机驱动机构、电磁阀驱动机构、齿轮驱动机构或皮带轮驱动机构的任意一种,此处不再赘述。
以下依然以拍摄环境为昼夜更替的街道为例,对单目摄像机的工作情况进行说明。
在白天,由于拍摄环境光照充分,第三多滤光片切换器切换全透光镜片对街道进行拍摄,光线依次经过第三镜头400及第三多滤光片切换器的全透光镜片,在第三传感器600出生成图像发送给处理器50,即可直接获得监控画面。
在夜晚,拍摄环境光线较弱,第三多滤光片切换器首先切换红外光截止滤光片,对进入第三传感器600的光线进行过滤,第三传感器600获得对焦精准的可见光画面并发送给处理器50;之后第三多滤光片切换器切换可见光截止滤光片,对进入第三传感器600的光线进行过滤,第三传感器600获得对焦精准的红外光画面并发送给处理器50,处理器50使用图像融合算法,将上述可见光画面和红外光画面进行图像融合,得到一帧清晰的拍摄画面,重复上述操作,第三多滤光片切换器在红外光截止滤光片和可见光截止滤光片之间来回切换,得到连续帧数的拍摄画面,从而在低照明度的条件下仅通过单目摄像机即可实现可见光画面和红外光画面的图像融合算法。
具体工作时,为了克服低照明度情况下红外光的不足,单目摄像机上也设置有与第三传感器600连接的用于补光的红外线灯300,该红外线灯300的设置方式与上述双目摄像机中第二目上红外线灯300的设置方式相同,此处不再赘述。
上述介绍了本申请实施例在单目摄像机下的实现方式,单目摄像机体积轻便,成本较低,能够在低照度的情况下胜任红外光和可见光的融合拍摄。然而,由于第三多滤光片切换器切换速度的限值,单目摄像机的工作方式不能满足高速连拍的需求,在对设备体积要求不严格,成本不敏感时,可以采用多目摄像机的工作方式。
三、多目摄像机。
多目摄像机包含两目以上的摄像机,每一目分别用于获取不同波长下对焦清晰的画面,之后发送给同一个处理器50进行图像融合,从而相对于单目摄像机和双目摄像机获取对焦 更加精确的图像,具体实施的过程中,多目摄像机的每一目可以是通过滤光片来进行波长截止,也可以是多滤光片切换器,具体的设置方式及工作原理与上述任意一种双目摄像机的工作原理相同,此处不再赘述。
本申请还提供一种电子设备,所述电子设备可为监控设备、录影机或DV机,该电子设备还包括摄像机,该摄像机的具体结构可参见上述实施例所示,此处不再赘述。
以上对本实用新型实施例所提供的摄像机及电子设备进行了详细介绍,本文中应用了具体个例对本实用新型的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本实用新型的方法及其核心思想;同时,对于本领域的一般技术人员,依据本实用新型的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本实用新型的限制。

Claims (12)

  1. 一种摄像机,其特征在于,包括镜头、波长截止装置、传感器及处理器,其中,所述波长截止装置的第一侧面与所述镜头相对设置,所述波长截止装置的第二侧面与所述传感器相对设置,所述传感器与所述处理器连接设置,以使光线依次经由所述镜头以及所述波长截止装置射入至所述传感器,所述波长截止装置用于对所述光线进行过滤。
  2. 根据权利要求1所述的摄像机,其特征在于,所述波长截止装置为滤光片,所述镜头设置有凹槽,所述滤光片嵌入设置在所述凹槽内。
  3. 根据权利要求1所述的摄像机,其特征在于,所述波长截止装置包括多个截止波长不同的滤光片。
  4. 根据权利要求3所述的摄像机,其特征在于,所述波长截止装置包括一块全透光的基片,所述基片上排列设置有多个截止波长不同的镀层,所述多个截止波长不同的滤光片为所述多个截止波长不同的镀层。
  5. 根据权利要求3或4所述的摄像机,其特征在于,所述波长截止装置还包括驱动机构,所述驱动机构用于驱动所述多个截止波长不同的滤光片中的一个滤光片运动至与所述镜头相对的位置。
  6. 根据权利要求5所述的摄像机,其特征在于,所述驱动机构为步进电机,所述步进电机的输出轴与所述滤光片连接。
  7. 根据权利要求5所述的摄像机,其特征在于,所述驱动机构包括一对相对设置的电磁铁,所述滤光片上设置有金属件,所述金属件位于所述电磁铁之间。
  8. 根据权利要求5所述的摄像机,其特征在于,所述驱动机构为第一马达,所述第一马达的输出轴上设置有齿轮,所述滤光片设置有与所述齿轮咬合的齿条。
  9. 根据权利要求5所述的摄像机,其特征在于,所述驱动机构包括第二马达、第一皮带轮、第二皮带轮及皮带,所述第二马达的输出轴与所述第一皮带轮连接,所述第一皮带轮与所述第二皮带轮通过所述皮带连接,所述皮带与所述滤光片连接。
  10. 根据权利要求1至9任一项所述的摄像机,其特征在于,所述摄像机包括多个截止波长不同的波长截止装置。
  11. 根据权利要求10所述的摄像机,其特征在于,所述摄像机还包括红外线灯,所述红外线灯与所述传感器连接。
  12. 一种电子设备,所述电子设备包括如权利要求1至11任一项所述的摄像机。
PCT/CN2019/090286 2018-11-05 2019-06-06 一种摄像机及电子设备 WO2020093693A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201821812070.7 2018-11-05
CN201821812070.7U CN209390111U (zh) 2018-11-05 2018-11-05 一种摄像机及电子设备

Publications (1)

Publication Number Publication Date
WO2020093693A1 true WO2020093693A1 (zh) 2020-05-14

Family

ID=67867931

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/090286 WO2020093693A1 (zh) 2018-11-05 2019-06-06 一种摄像机及电子设备

Country Status (2)

Country Link
CN (2) CN211457203U (zh)
WO (1) WO2020093693A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114500816A (zh) * 2022-03-24 2022-05-13 杭州普维云技术有限公司 一种双联座ir-cut和摄像头模组

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN212064118U (zh) * 2020-02-19 2020-12-01 浙江大华技术股份有限公司 双目摄像机支架及具有其的双目摄像机
CN112449095A (zh) * 2020-11-12 2021-03-05 Oppo广东移动通信有限公司 图像处理方法和装置、电子设备、可读存储介质
CN113542546A (zh) * 2021-05-31 2021-10-22 浙江大华技术股份有限公司 一种摄像装置、摄像方法、设备以及装置
CN114594646A (zh) * 2022-01-27 2022-06-07 浙江大华技术股份有限公司 镜头机芯装置、光学仪器及相机

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090159799A1 (en) * 2007-12-19 2009-06-25 Spectral Instruments, Inc. Color infrared light sensor, camera, and method for capturing images
CN104661008A (zh) * 2013-11-18 2015-05-27 深圳中兴力维技术有限公司 低照度条件下彩色图像质量提升的处理方法和装置
CN105187726A (zh) * 2015-06-17 2015-12-23 广州市巽腾信息科技有限公司 一种多功能移动图像处理装置、处理方法及用途
CN106060364A (zh) * 2016-07-28 2016-10-26 浙江宇视科技有限公司 光学透雾彩色图像采集方法及摄像机
CN108427945A (zh) * 2017-03-06 2018-08-21 新多集团有限公司 一种多光谱自适应掌纹掌静脉采集设备及采集方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090159799A1 (en) * 2007-12-19 2009-06-25 Spectral Instruments, Inc. Color infrared light sensor, camera, and method for capturing images
CN104661008A (zh) * 2013-11-18 2015-05-27 深圳中兴力维技术有限公司 低照度条件下彩色图像质量提升的处理方法和装置
CN105187726A (zh) * 2015-06-17 2015-12-23 广州市巽腾信息科技有限公司 一种多功能移动图像处理装置、处理方法及用途
CN106060364A (zh) * 2016-07-28 2016-10-26 浙江宇视科技有限公司 光学透雾彩色图像采集方法及摄像机
CN108427945A (zh) * 2017-03-06 2018-08-21 新多集团有限公司 一种多光谱自适应掌纹掌静脉采集设备及采集方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114500816A (zh) * 2022-03-24 2022-05-13 杭州普维云技术有限公司 一种双联座ir-cut和摄像头模组

Also Published As

Publication number Publication date
CN211457203U (zh) 2020-09-08
CN209390111U (zh) 2019-09-13

Similar Documents

Publication Publication Date Title
WO2020093693A1 (zh) 一种摄像机及电子设备
CN106791337B (zh) 一种双镜头光学倍数拓展的变焦摄像机及其工作方法
CN102236245B (zh) 单透镜2d/3d数字照相机
CN110365878B (zh) 一种摄像装置和方法
JPH03292067A (ja) ファインダ
CN1126014A (zh) 二维、三维成像装置
NL8003063A (nl) Zoeker voor een tv-camera.
KR100819728B1 (ko) 입체카메라용 셔터장치 및 촬상장치
CN111487836A (zh) 摄像结构及电子设备
WO2021083082A1 (zh) 一种光路切换方法和监控模组
WO2021258880A1 (zh) 滤光结构、镜头、传感器、摄像机、电子设备和控制方法
CN201837775U (zh) 远距离激光夜视仪
CN211209783U (zh) 一种防逆光摄像装置
CN204859348U (zh) 镜头、摄像机以及包裹检测系统
CN208675366U (zh) 双色摄像头
US20210067761A1 (en) Dual lens imaging module and capturing method thereof
CN115567767A (zh) 摄像头和电子装置
CN1258107C (zh) 三维影像摄影设备和三维影像摄影机
JP2013057698A (ja) 鏡筒アダプタ、レンズ鏡筒およびそれを用いた撮像装置
CN108769501A (zh) 双色摄像头
CN101950077B (zh) 远距离激光夜视仪
CN201035289Y (zh) 一种带图像预处理镜的摄像机
CN201126518Y (zh) 一种多功能照相摄像机
CN110225234A (zh) 用于智能影像识别的带有示廓光源的摄像装置
CN2371577Y (zh) 一种双目立体摄相机及其对应的虚像叠加立体观相器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19882582

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19882582

Country of ref document: EP

Kind code of ref document: A1