WO2021258880A1 - 滤光结构、镜头、传感器、摄像机、电子设备和控制方法 - Google Patents

滤光结构、镜头、传感器、摄像机、电子设备和控制方法 Download PDF

Info

Publication number
WO2021258880A1
WO2021258880A1 PCT/CN2021/092888 CN2021092888W WO2021258880A1 WO 2021258880 A1 WO2021258880 A1 WO 2021258880A1 CN 2021092888 W CN2021092888 W CN 2021092888W WO 2021258880 A1 WO2021258880 A1 WO 2021258880A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
filter
filter structure
lens
state
Prior art date
Application number
PCT/CN2021/092888
Other languages
English (en)
French (fr)
Inventor
殷贵超
石拓
杨昆
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2021258880A1 publication Critical patent/WO2021258880A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/10Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/52Elements optimising image sensor operation, e.g. for electromagnetic interference [EMI] protection or temperature control by heat transfer or cooling elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/64Circuits for processing colour signals

Definitions

  • This application relates to the technical field of electronic equipment, and in particular to a filter structure, a switching filter lens, a switching filter sensor, a camera, an electronic device, and a camera control method.
  • infrared light in the environment can be used for imaging.
  • an optical fog filter can be added to the imaging light path of the camera to filter out the infrared light in the imaging light path.
  • Other lights outside, such as visible light and ultraviolet light only make infrared light enter the light-receiving surface of the imaging sensor, thereby obtaining an infrared light image. Since infrared rays are less affected by aerosols during propagation, they can penetrate a certain concentration of haze and reach the imaging sensor of the camera, so that a clearer image can be obtained.
  • infrared light belongs to invisible light, this type of invisible light does not have a corresponding visible light color map, so current cameras with fog penetration function can only present black and white fog penetration images.
  • the embodiments of the present application provide a filter structure, a switching filter lens, a switching filter sensor, a camera, an electronic device, and a camera control method, which can enable the camera to output color images in haze weather.
  • some embodiments of the present application provide a filter structure for setting in the imaging light path of a camera.
  • the filter structure can be switched between a first state and a second state.
  • the filter structure In the state, the filter structure allows the visible light in the imaging optical path to pass.
  • the filter structure When the filter structure is in the second state, the filter structure only allows the infrared light in the imaging optical path to pass.
  • the filter structure When the filter structure provided by the embodiment of the present application is applied to a camera, the filter structure can be switched between the first state and the second state at a high speed in the haze weather.
  • the filter structure When the filter structure is in the first state, the filter structure allows the visible light in the imaging light path to pass. Therefore, at this time, the image can be collected by the imaging sensor and the color frame exposure of the image can be performed to obtain the color information. Visible light image.
  • the filter structure When the filter structure is in the second state, the filter structure only allows infrared light in the imaging light path to pass. Therefore, at this time, the image can be collected by the imaging sensor and the image can be exposed to black and white frames to obtain clear details. Through the fog image. In this way, the visible light image representing the color information and the fog-through image with clear details can be obtained at two adjacent times before and after, and after the visible light image and the fog-through image are registered and merged, a color fog-through image can be output.
  • the filter structure includes a first filter part and a second filter part, the first filter part allows visible light to pass through, and the second filter part allows only infrared light to pass through; when the filter structure is in the first state, The first filter part is located in the imaging optical path, and when the filter structure is in the second state, the second filter part is located in the imaging optical path.
  • This structure is simple and easy to implement.
  • the first filter part also prevents infrared light from passing through.
  • the infrared light enters the imaging sensor along with the visible light, causing the visible light image collected by the imaging sensor to appear color cast, thereby causing the color cast through the fog image obtained by the camera to appear color cast. This enables the camera to output a true color fog-through image.
  • the first filter part includes a first light-transmitting substrate and a first filter film disposed on a light-incident surface or a light-emitting surface of the first light-transmitting substrate, the first filter film can transmit visible light, and the first light-transmitting substrate
  • the optical substrate supports the first filter film, and the material of the first transparent substrate is optical glass. This structure is simple and easy to implement.
  • the second filter part includes a second light-transmitting substrate and a second filter film disposed on the light-incident surface or the light-emitting surface of the second light-transmitting substrate, the second filter film only allows infrared light to pass through,
  • the two light-transmitting substrates support the second light filter film, and the material of the second light-transmitting substrate is optical glass. This structure is simple and easy to implement.
  • the first light-transmitting substrate and the second light-transmitting substrate are integrally formed.
  • the structure of the filter structure is simple and easy to assemble.
  • the filter structure is a circular filter; the first filter part is a first fan-shaped part on the filter structure; and the second filter part is a second fan-shaped part on the filter structure.
  • the filter structure has a structure similar to a color wheel. This structure is simple, easy to implement, and can save installation space.
  • the filter structure can be eccentrically installed in the imaging light path of the camera
  • a rotary drive device is used to drive the filter structure to rotate, thereby driving the filter structure to switch between the first state and the second state.
  • the light filtering structure further includes a light shielding part for shielding part of the light; the light shielding part is a third fan-shaped part on the light filter structure.
  • the filter structure can be driven to rotate to the third state by the rotating drive device, so that the light-shielding part is located in the imaging light path of the camera, thereby Block part of the light to prevent overexposure of the captured image.
  • the light-shielding part includes a third light-transmitting substrate and a black semi-transparent light-shielding film, and the black semi-transparent light-shielding film is disposed on the light-incident surface or the light-exit surface of the third light-transparent substrate.
  • This structure is simple and easy to implement.
  • the filter structure further includes a fully transparent portion that allows all light to pass through; the fully transparent portion is a fourth fan-shaped portion on the filter structure.
  • the filter structure can be driven to rotate to the fourth state by the rotary drive device, so that the fully transparent part is located in the camera In the imaging optical path, the filter structure is thus prevented from interfering with the imaging optical path.
  • the fully transparent part is a vacant part or transparent glass.
  • the filter structure is an electronically controlled light-absorbing material.
  • the electrically controlled light-absorbing material includes, but is not limited to, organic color-changing materials and liquid crystal materials.
  • the filter structure can be switched between the first state and the second state, and when the light-filtering structure is in the first state, the electrically controlled light-absorbing material allows visible light to pass through, When the filter structure is in the second state, the electrically controlled light-absorbing material only allows infrared light to pass through and absorbs other light except infrared light.
  • some embodiments of the present application provide a switching filter lens
  • the switching filter lens includes a lens barrel, an optical lens group, a filter structure, and a driving device
  • the lens barrel includes a first lens barrel arranged along its own axis Section and a second barrel section
  • the optical lens group includes at least one optical lens
  • the optical lens group is installed in the first barrel section
  • the filter structure is the filter structure as described in any of the above technical solutions, the filter structure Installed in the second lens barrel section and located in the imaging light path in the lens barrel
  • the driving device is connected with the filter structure, and the driving device is used to drive the filter structure to switch between the first state and the second state.
  • the switching filter lens provided by the embodiment of the present application integrates the filter structure in the housing of the lens, which can ensure the stability of the relative position between the filter structure and the optical lens group, and at the same time ensure that the filter structure and the optical lens group are stable. The accuracy of the optical path.
  • the filter structure used in the switching filter lens of the embodiment of the present application is the same as the filter structure described in any one of the technical solutions in the first aspect, the two can solve the same technical problems and achieve the same The expected effect.
  • the second lens barrel section is located on the image side of the first lens barrel section.
  • the first lens barrel section includes a first lens barrel subsection and a second lens barrel section, and the first lens barrel section and the second lens barrel section are respectively located on opposite sides of the second lens barrel section; optics
  • the lens group includes a plurality of optical lenses, a part of the number of optical lenses in the plurality of optical lenses is installed in the first sub-barrel section, and another part of the number of optical lenses in the plurality of optical lenses is installed in the second sub-barrel section .
  • the second lens barrel section includes a lens barrel section body and a cover; the lens barrel section body is connected to the first lens barrel section, and the lens barrel section body is provided with an opening, and the filter structure can be installed on the lens barrel section through the opening In the main body, a cover body is arranged at the opening, and the cover body is detachably connected with the main body of the lens barrel section. In this way, it is convenient to install and disassemble the filter structure in the second lens barrel section, so as to facilitate the maintenance or replacement of the filter structure.
  • some embodiments of the present application provide a switching filter sensor, which includes a sensor housing, an imaging sensor, a filter structure, and a driving device; the sensor housing is provided with a light entrance; the imaging sensor is arranged at In the sensor housing, the photosensitive surface of the imaging sensor is opposite to the light entrance; the filter structure is the light filter structure as described in any of the above technical solutions, and the filter structure is installed in the sensor housing and is located between the light entrance and the imaging sensor.
  • the driving device is connected to the filter structure, and the driving device is used to drive the filter structure to switch between the first state and the second state.
  • the switching filter sensor provided in the embodiment of the present application integrates the filter structure and the imaging sensor, which can ensure the stability of the relative position between the filter structure and the imaging sensor, and ensure the accuracy of the optical path between the filter structure and the imaging sensor sex.
  • the filter structure and the imaging sensor can be protected against water and dust through the sensor housing.
  • the filter structure used in the switching filter sensor of the embodiment of the present application is the same as the filter structure described in any one of the technical solutions in the first aspect, the two can solve the same technical problems and achieve the same The expected effect.
  • some embodiments of the present application provide a camera including a lens, an imaging sensor, a filter structure, and a driving device; the imaging sensor is arranged on the image side of the lens; the filter structure is as described in any of the above technical solutions
  • the filter structure is located in the imaging light path of the camera, and the filter structure is located at the object side end of the lens, or between the lens and the imaging sensor;
  • the driving device is connected to the filter structure, and the driving device is used for driving
  • the filter structure is switched between the first state and the second state.
  • the filter structure used in the camera of the embodiment of the present application is the same as the filter structure described in any one of the technical solutions in the first aspect, the two can solve the same technical problem and achieve the same expected effect.
  • the present application provides a camera, which is characterized in that it includes a switching filter lens and an imaging sensor; the switching filter lens is the switching filter lens as described in any of the technical solutions in the second aspect; the imaging sensor is arranged at The image side of the switching filter lens, and the photosensitive surface of the imaging sensor is opposite to the image side of the switching filter lens.
  • the switching filter lens used in the camera of the embodiment of the present application is the same as the switching filter lens described in any of the technical solutions in the second aspect, the two can solve the same technical problems and achieve the same expected effects .
  • some embodiments of the present application provide a camera including a lens and a switching filter sensor; the switching filter sensor is the switching filter sensor described in the third aspect above, and the lens is located on the sensor of the switching filter sensor. Outside the housing, the image side end of the lens is connected to the edge of the light entrance of the sensor housing one round, and the image side of the lens is opposite to the light entrance.
  • the switching filter sensor used in the camera of the embodiment of the present application is the same as the switching filter sensor described in any one of the technical solutions in the third aspect, the two can solve the same technical problems and achieve the same expected effects .
  • some embodiments of the present application provide an electronic device, which includes the camera as described in any one of the above fourth, fifth, and sixth aspects.
  • the camera used in the electronic device of the embodiment of the present application is the same as the camera described in any one of the technical solutions of the fourth, fifth, and sixth aspects, the two can solve the same technical problems and achieve the same The expected effect.
  • some embodiments of the present application provide a method for controlling a camera.
  • the camera includes a filter structure arranged in the imaging light path.
  • the filter structure can be switched between a first state and a second state. When in the first state, the filter structure allows visible light in the imaging optical path to pass. When the filter structure is in the second state, the filter structure only allows infrared light in the imaging optical path to pass.
  • the control method includes: controlling the filter structure Switch between the first state and the second state; through the imaging sensor in the imaging optical path, the color frame exposure is performed when the filter structure is in the first state to obtain a visible light image, and the imaging sensor in the imaging optical path is in the filter structure In the second state, black-and-white frame exposure is performed to obtain a fog-through image; the visible light image and the fog-through image are registered and merged to obtain a colorful fog-through image.
  • the filter structure can be controlled to switch between the first state and the second state. Since the filter structure allows visible light in the imaging light path to pass when the filter structure is in the first state, at this time, a visible light image representing color information can be obtained. When the filter structure is in the second state, the filter structure only allows the infrared light in the imaging light path to pass, therefore, at this time, a clear fog-through image can be obtained. By registering and fusing the visible light image and the fog-through image, a clear color fog-through image can be output.
  • Figure 1 is a structural block diagram of a camera involved in this application
  • FIG. 2 is a schematic structural diagram of an electronic device provided by some embodiments of the application.
  • FIG. 3 is a schematic structural diagram of a camera provided by some embodiments of the application.
  • FIG. 4 is a schematic structural diagram of a filter structure provided by some embodiments of the application.
  • Fig. 5 is a schematic structural diagram of the camera shown in Fig. 3 when the filter structure is in a second state;
  • Fig. 6 is a front view of the filter structure shown in Fig. 4;
  • FIG. 7 is a schematic cross-sectional structure diagram of the filter structure shown in FIG. 6 along the C-C direction;
  • FIG. 8 is a schematic structural diagram of a filter structure provided by still other embodiments of the application.
  • FIG. 9 is a schematic structural diagram of a filter structure provided by still other embodiments of the application.
  • FIG. 10 is a schematic structural diagram of a filter structure provided by still other embodiments of the application.
  • FIG. 11 is a schematic diagram of a first position of a position detection device in a camera provided by some embodiments of this application;
  • FIG. 12 is a schematic diagram of a second position of a position detection device in a camera provided by some embodiments of the application.
  • FIG. 13 is a perspective view of a switching filter lens provided by some embodiments of the application.
  • FIG. 14 is an exploded view of the switching filter lens shown in FIG. 13;
  • FIG. 15 is a perspective view of a switching filter lens provided by still other embodiments of the application.
  • Fig. 16 is an exploded view of the switching filter lens shown in Fig. 15;
  • FIG. 17 is a perspective view of a switching filter sensor provided by some embodiments of the application.
  • Figure 18 is an exploded view of the switching filter sensor shown in Figure 17;
  • FIG. 19 is an assembly diagram of the switching filter sensor and the lens shown in FIG. 17;
  • FIG. 20 is a flowchart of a camera control method provided by some embodiments of the application.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Therefore, the features defined with “first” and “second” may explicitly or implicitly include one or more of these features.
  • the imaging light path of the camera refers to the entire light transmission path where the light reflected by the subject is transmitted from the subject to the lens, and after being focused by the lens, it is transmitted to the imaging sensor to form an image.
  • the lens and imaging sensor are both located in the imaging of the camera. In the light path.
  • Image side refers to the side close to the image formed in the camera, and the structure in the camera used to form images of the scene is the imaging sensor, so the image side usually refers to the side close to the imaging sensor.
  • the image side end refers to the end close to the image formed in the camera, and the structure in the camera used to form images of the scene is the imaging sensor, so the image side end usually refers to the end close to the imaging sensor.
  • Object side refers to the side close to the scene within the coverage of the camera, that is, the side away from the imaging sensor.
  • the object-side end refers to the end close to the scene within the coverage of the camera, that is, the end away from the imaging sensor.
  • the mover of the driving device refers to the part of the driving device that moves with the object when the driving device drives the object to move.
  • the stator of the driving device refers to the part of the driving device that is relatively stationary with the structure that fixedly supports the driving device when the driving device is driving the object to move.
  • Fig. 1 is a structural block diagram of a camera involved in this application.
  • the camera includes two camera modules arranged side by side, and each camera module includes a lens and a sensor.
  • one camera module is used to collect visible light images, which represent color information of the image
  • the other camera module is used to collect fog-permeable images formed only by infrared light
  • the fog-permeable images can represent detailed information of the image.
  • the visible light image and the fog-through image collected by the two camera modules can be registered and fused after noise reduction and other image processing respectively to generate a color fog-through image.
  • this application provides an electronic device, which includes, but is not limited to, a mobile phone terminal, a vehicle-mounted terminal, a monitor, and a smart wearable device.
  • the electronic device includes a camera, and the camera is used to output color images in haze weather.
  • FIG. 2 is a schematic structural diagram of an electronic device provided by some embodiments of the application, and the electronic device is a mobile phone.
  • the mobile phone includes a mobile phone body 1 and a camera 2.
  • the mobile phone body 1 is provided with a mounting slot 11, the camera 2 is installed in the mounting slot 11, and the lens orientation of the camera 2 is consistent with the opening of the mounting slot 11.
  • the imaging sensor of the camera 2 is electrically connected to the main control board in the mobile phone body 1. Connect to control the imaging sensor to collect images and perform image processing on the collected images.
  • the camera 2 may be a front camera on the mobile phone or a rear camera on the mobile phone, which is not specifically limited here.
  • the present application also provides a camera, which is the camera in the above electronic device, and the camera is used to output color images in haze weather.
  • FIG. 3 is a schematic structural diagram of a camera provided by some embodiments of the application, and the camera is the camera 2 in the electronic device shown in FIG. 2.
  • the camera 2 includes a lens 21 and an imaging sensor 22.
  • the lens 21 and the imaging sensor 22 are located in the imaging light path of the camera 2.
  • the lens 21 is used to focus the light reflected by the subject
  • the imaging sensor 22 is located on the image side of the lens 21, and the imaging sensor 22 is used to image the light after the lens 21 is focused. .
  • the camera 2 further includes a filter structure 231, which can switch between a first state and a second state.
  • the filter structure 231 When the filter structure 231 is in the first state, the filter structure 231 allows visible light in the imaging light path to pass.
  • the filter structure 231 When the filter structure 231 is in the second state, the filter structure 231 only allows the infrared light in the imaging light path to pass.
  • the filter structure 231 only allows the infrared light in the imaging light path to pass, which means that the filter structure 231 allows the infrared light in the imaging light path to pass, and prevents other light (such as visible light, ultraviolet light, etc.) except infrared light. Light) passes, or only a small amount of other light is allowed to pass, the transmittance of the other light is much smaller than the transmittance of infrared light, and is basically negligible.
  • the filter structure 231 can be switched between the first state and the second state at a high speed.
  • the filter structure 231 allows the visible light in the imaging light path to pass. Therefore, at this time, an image can be captured by the imaging sensor 22, and the image can be subjected to color frame exposure to obtain a representation Visible light image of color information.
  • the filter structure 231 is in the second state, the filter structure 231 only allows the infrared light in the imaging light path to pass. Therefore, at this time, an image can be captured by the imaging sensor 22, and the image can be exposed in black and white frames to obtain Clear fog image with clear details.
  • the camera provided by the embodiment of the present application uses a lens 21 and an imaging sensor 22 to form an imaging optical path, and a filter structure 231 is arranged in the imaging optical path, and the filter structure 231 is in the first state and the second state. Switch between, you can obtain the visible light image representing the color information and the fog-through image with clear details at two adjacent times. Because the visible light that generates the visible light image and the infrared light that generates the fog-through image are both along the lens 21 and imaging The imaging light path formed by the sensor 22 is transmitted, so under the premise that the position of the camera does not move, it can ensure that the field of view of the visible light image is consistent with the field of view of the fog through image, so that the visible light image is matched with the fog through image. After collimation and fusion, high-quality color through fog images can be output.
  • the specific structure of the filter structure 231 is not limited, as long as the filter structure 231 can be switched between the first state and the second state, and the filter structure 231 can allow the imaging light path when the filter structure 231 is in the first state. In the second state, only the infrared light in the imaging light path can pass through.
  • the specific structure of the filter structure 231 may include the following two optional implementation manners:
  • the filter structure 231 is an electrically-controlled light-absorbing material, and the electrically-controlled light-absorbing material includes, but is not limited to, an organic color-changing material and a liquid crystal material.
  • the filter structure 231 can be switched between the first state and the second state, and when the light-filtering structure 231 is in the first state, the electrically controlled light-absorbing material allows visible light Pass, when the filter structure 231 is in the second state, the electrically controlled light-absorbing material only allows infrared light to pass through and absorb other light except infrared light.
  • FIG. 4 is a schematic structural diagram of a filter structure provided by some embodiments of the application, and the filter structure is the filter structure 231 in the camera shown in FIG. 3.
  • the filter structure 231 includes a first filter part 231a and a second filter part 231b.
  • the first filter part 231a allows visible light to pass through
  • the second filter part 231b only allows infrared light to pass through.
  • Figure 3 shows that the filter structure in the camera is in the first state.
  • the first filter portion 231a is located in the imaging light path. At this time, the visible light in the imaging light path is transparent.
  • Fig. 5 is a schematic structural diagram of the camera shown in Fig. 3 when the filter structure is in a second state. As shown in FIG. 5, when the filter structure 231 is in the second state, the second filter portion 231b is located in the imaging light path. At this time, only infrared light or a small amount of other light in the imaging light path is incident on the imaging sensor by the filter structure 231. In 22, the imaging sensor 22 can obtain a fog-through image with clear details. This structure is simple and easy to implement.
  • the first filter part 231a can also allow light of other wavelengths to pass.
  • the portion 231a is a vacant portion.
  • the first filter portion 231a may allow light of all wavelengths including visible light to pass.
  • the first filter portion 231a can also allow visible light to pass through but prevent other (such as infrared light) or multiple types of light from passing.
  • the structure of the first filter portion 231a can be made of a light-transmitting substrate (such as Glass) and light-absorbing/reflecting particles doped in the light-transmitting substrate.
  • the light-absorbing/reflecting particles can absorb or reflect one or more kinds of light other than visible light.
  • the structure can also be composed of a light-transmitting substrate (such as optical glass, ordinary glass, acrylic, etc.) and a filter film arranged on the surface of the light-transmitting substrate.
  • the filter film can absorb or reflect other than visible light Or multiple types of light and transmit visible light, which are not specifically limited here.
  • the first filter portion 231a may be a bandpass filter, a cutoff filter, or a reflective filter, which is not specifically limited here, as long as the first filter portion 231a allows visible light to pass through.
  • the structure of the first filter portion 231a can also be designed in accordance with the national standard "GB-T15488-2010-Filter Glass".
  • FIG. 6 is a front view of the filter structure shown in FIG. 4, and FIG. 7 is a schematic cross-sectional structure diagram of the filter structure shown in FIG. 6 along the C-C direction.
  • the first filter portion 231a includes a first transparent substrate a and a first filter film b disposed on the surface of the first transparent substrate a.
  • the first filter film b can transmit visible light.
  • a transparent substrate a supports the first filter film b, and the material of the first transparent substrate a is optical glass. This structure is simple and easy to implement.
  • the first filter film b may be disposed on the light incident surface and/or the light exit surface of the first light-transmitting substrate a, which is not specifically limited herein.
  • FIG. 7 only shows an example in which the first light filter film b is disposed on the light incident surface of the first light-transmitting substrate a, and it should not be considered as a limitation on the composition of the present application.
  • the first filter film b can be directly fabricated on the surface of the first light-transmitting substrate a by spraying, deposition, or other processes, or it can be glued to the surface of the first light-transmitting substrate a, which is not specifically limited herein.
  • the first filter film b is glued to the surface of the first transparent substrate a.
  • the first filter film b needs to be replaced, so the operation is convenient and the cost is low.
  • the first filter portion 231a may also include an anti-reflection film disposed on the light-incident surface or the light-exit surface of the first light-transmitting substrate a On top, and the antireflection coating can increase the transmittance of visible light.
  • the first filter portion 231a allows visible light to pass through while blocking infrared light from passing through. In this way, it can be avoided that the infrared light enters the imaging sensor 22 together with the visible light, which causes the visible light image collected by the imaging sensor 22 to appear color cast, so that the camera can output a true color fog-through image.
  • the structure of the second filter portion 231b can be composed of a light-transmitting substrate (such as optical glass, ordinary glass, acrylic, etc.) and light-absorbing/reflecting particles doped in the light-transmitting substrate. It is constituted that the light-absorbing/reflecting particles can absorb or reflect other light except infrared light, and allow infrared light to pass through.
  • the structure of the second filter portion 231b can also be composed of a light-transmitting substrate (such as optical glass, ordinary glass, acrylic, etc.) and a filter film disposed on the surface of the light-transmitting substrate. The filter film can absorb or reflect Lights other than infrared light and transmit infrared light are not specifically limited here.
  • the second filter portion 231b can be a bandpass filter, a cut filter, or a reflective filter, which is not specifically limited here, as long as the second filter portion 231b only allows the infrared in the imaging light path Just pass through.
  • the structure of the second filter portion 231b can also be designed in accordance with the national standard "GB-T15488-2010-Filter Glass".
  • the second filter portion 231b includes a second transparent substrate c and a second filter film d disposed on the surface of the second transparent substrate c.
  • the second filter film d allows only infrared light to pass through, the second light-transmitting substrate c supports the second filter film d, and the material of the second light-transmitting substrate c is optical glass. This structure is simple and easy to implement.
  • the second filter film d may be disposed on the light incident surface and/or the light exit surface of the second light-transmitting substrate c, which is not specifically limited herein.
  • FIG. 7 only shows an example in which the second light filter film d is disposed on the light incident surface of the second light-transmitting substrate c, and it should not be considered as a limitation on the composition of the present application.
  • the second light filter film d can be directly fabricated on the surface of the second light-transmitting substrate c by spraying, deposition or other processes, or it can be glued to the surface of the second light-transmitting substrate c, which is not specifically limited herein.
  • the second filter film d is glued to the surface of the second transparent substrate c.
  • the second filter part 231b is repaired and replaced, only the second filter film d needs to be replaced, so the operation is convenient and the cost is low.
  • the second filter portion 231b may also include an anti-reflection film disposed on the light-incident surface or the light-exit surface of the second light-transmitting substrate c On top, and the anti-reflection coating can increase the transmittance of infrared light.
  • the first light-transmitting substrate a and the second light-transmitting substrate c are integrally formed. In this way, the structure of the filter structure 231 is simple and easy to assemble.
  • the arrangement of the first filter portion 231a and the second filter portion 231b on the filter structure 231 can be arranged along a straight line or along a circular line, which is not specifically limited here.
  • FIG. 4 only shows the arrangement of the first filter portion 231a and the second filter portion 231b on the filter structure 231 along a circular line, and it should not be considered as a limitation on the composition of the present application.
  • the filter structure 231 is a circular filter
  • the first filter portion 231a is a first fan-shaped portion on the filter structure 231
  • the second filter portion 231b is on the filter structure 231.
  • the second fan-shaped part, the first fan-shaped part and the second fan-shaped part are arranged along the circumferential direction of the filter structure 231, that is, are arranged along the ring line.
  • the filter structure 231 has a structure similar to a color wheel. This structure is simple, easy to implement, and can save installation space.
  • the filter structure 231 can be eccentrically mounted on the camera.
  • the rotating drive device 232 is used to drive the filter structure 231 to rotate, thereby driving the filter structure 231 to switch between the first state and the second state.
  • the rotation driving device 232 may be a rotating electric machine.
  • FIG. 8 is a schematic structural diagram of a filter structure provided in some other embodiments of this application.
  • the filter structure 231 is a rectangular filter
  • the first filter portion 231a and the second filter portion 231b are respectively two rectangular portions arranged along the length direction of the rectangular filter.
  • the first filter portion 231a and the second filter portion 231b are arranged in a straight line.
  • This structure is simple and easy to implement.
  • the linear drive device can be used to drive the filter structure 231 along itself.
  • the reciprocating movement in the length direction can drive the filter structure 231 to switch between the first state and the second state.
  • the linear drive device may be a linear motor.
  • the camera 2 further includes a driving device.
  • the driving device is connected to the filter structure 231, and the driving device is used to drive the filter structure 231 to switch between the first state and the second state.
  • the driving device can be designed as a circuit connected to the electronically controlled light-absorbing material; when the filter structure 231 is a structure similar to the color wheel shown in FIG.
  • the device can be designed as the rotary drive device 232 shown in FIG. 3; when the filter structure 231 is the rectangular filter shown in FIG. 8, the drive device can be designed as a linear drive device, which is not specifically limited here.
  • FIG. 9 is a schematic structural diagram of the filter structure provided by some other embodiments of the application, such as
  • the filter structure 231 further includes a light-shielding portion 231c, which is used to shield part of light.
  • the light that the light-shielding portion 231c can shield includes all colors of visible light and invisible light, and the light-shielding portion 231c is the filter structure 231 The third sector on the top. In this way, after the filter structure 231 is applied to the camera 2 shown in FIG.
  • the filter structure 231 in a scene with excessive light, can be driven to rotate to the third state by the rotation driving device 232, so that the light shielding portion 231c Located in the imaging light path of the camera, which blocks part of the light to prevent overexposure of the captured image.
  • the light-shielding portion 231c may be composed of a light-transmitting substrate (such as glass) and black light-absorbing particles doped in the light-transmitting substrate, or may be composed of a light-transmitting substrate and a transparent substrate disposed on the light-transmitting substrate.
  • the composition of the black translucent light-shielding film on the surface is not specifically limited here.
  • the light-shielding portion 231c includes a third light-transmitting substrate and a black semi-transparent light-shielding film disposed on the surface of the third light-transmitting substrate. This structure is simple and easy to implement.
  • the black translucent light-shielding film may be disposed on the light-incident surface and/or the light-emitting surface of the third light-transmitting substrate, which is not specifically limited here.
  • the black translucent light-shielding film can be directly fabricated on the surface of the third light-transmitting substrate by spraying, deposition, or other processes, or it can be glued to the surface of the third light-transmitting substrate, which is not specifically limited herein.
  • the black translucent light-shielding film is glued to the surface of the third light-transmitting substrate.
  • the black translucent light-shielding film needs to be removed, so the operation is convenient and the cost is low.
  • the first transparent substrate a, the second transparent substrate c, and the third transparent substrate are integrally formed. In this way, the structure of the filter structure 231 is simple and easy to install.
  • the camera 2 installed with the filter structure 231 shown in FIG. 9 can work in both haze and haze scenarios.
  • the camera 2 is in the first position.
  • Working mode in the first working mode, the rotary driving device 232 drives the filter structure 231 to switch between the first state and the second state, so as to collect a color through fog image in a haze weather.
  • the camera 2 drives the filter structure 231 to rotate to the third state through the rotation driving device 232 to switch to the second working mode.
  • the light shielding portion 231c Located in the imaging light path, the light shielding portion 231c can shield part of the light to prevent overexposure of the captured image.
  • FIG. 10 is a filter structure provided by other embodiments of this application.
  • the schematic diagram of the structure, as shown in FIG. 10, the filter structure 231 also includes a fully transparent portion 231d, which allows all light to pass through, and the fully transparent portion 231d can be notched or transparent glass.
  • FIG. 10 only The embodiment in which the fully transparent portion 231d is a notch is shown, and it should not be considered as a limitation on the composition of the present application.
  • the fully transparent portion 231d is the fourth fan-shaped portion on the filter structure 231. In this way, after the filter structure 231 is applied to the camera 2 shown in FIG.
  • the filter structure 231 in a daytime environment with less haze and moderate light, can be driven to rotate to the fourth state by the rotation driving device 232.
  • the fully transparent part 231d is located in the imaging optical path of the camera, thereby avoiding the interference of the filter structure 231 on the imaging optical path.
  • the camera 2 can not only work in the first working mode and the second working mode, but also in an environment with less haze and moderate light, by rotating the drive device 232 drives the filter structure 231 to rotate to the fourth state to switch to the third operating mode.
  • the fully transparent portion 231d is located in the imaging optical path of the camera, thereby preventing the filter structure 231 from affecting the imaging optical path. Cause interference.
  • the camera further includes a controller, an imaging sensor 22 and The rotation driving device 232 is electrically connected to the controller.
  • the controller can control the rotation driving device 232 to switch to the first working mode, the second working mode, or the third working mode according to the intensity of the ambient light detected by the imaging sensor 22. In this way, automatic switching between different working modes of the camera 2 can be realized.
  • the filter structure 231 may also include other filter parts, such as white light plates, polarizers, etc., so that the filter structure 231 can work in other working modes, which is not specifically limited here.
  • the driving device drives the filter structure 231 to switch between the first state and the second state.
  • the driving device can drive the filter structure 231 to switch between the first state and the second state.
  • the imaging sensor can collect an image and perform a color frame exposure and a black and white frame exposure to A frame of visible light image and a frame of fog-through image are obtained. After the visible light image and the fog-through image are registered and fused, a color fog-through image can be output, thereby realizing the "photographing" function of the camera.
  • the driving device can also drive the filter structure 231 to perform high-speed cyclic switching between the first state and the second state.
  • the imaging sensor 22 can collect images and alternately perform color frame exposure and black and white frames over time. Exposure to obtain visible light image frames and fog-through image frames alternately over time. Two adjacent frames of visible light image and fog-through image are registered and merged into one frame of color fog-through image. In this way, multiple frames can be output in sequence over time Color through fog image, which can realize the "video" function of the camera.
  • the filter structure 231 may be located between the lens 21 and the imaging sensor 22, may also be located between a plurality of optical lenses in the lens 21, or may be located on the object side of the lens 21, which is not specifically limited here.
  • FIG. 3 only shows an example in which the filter structure 231 is located between the lens 21 and the imaging sensor 22, and it should not be considered as limiting the application.
  • the filter structure 231 can be integrated in the housing of the lens 21, can also be integrated in the housing of the imaging sensor 22, or can be arranged in a separate housing to form an independent switching filter module, and the switching filter module is connected to The object side end of the lens 21 or is connected between the image side end of the lens 21 and the imaging sensor 22.
  • the arrangement position and connection manner of the filter structure 231 may include the following two embodiments:
  • FIG. 13 is a perspective view of a switching filter lens provided by some embodiments of the application
  • FIG. 14 is an exploded view of the switching filter lens shown in FIG. 13.
  • the lens 21 includes a lens barrel 211 and an optical lens group.
  • the material of the lens barrel 211 includes but is not limited to metal and plastic.
  • the optical lens group includes at least one optical lens 212.
  • the lens barrel 211 includes a first lens barrel section 2111 and a second lens barrel section 2112 arranged in the axial direction of the lens barrel.
  • the maximum cross-sectional width of the second lens barrel section 2112 is greater than the maximum cross-sectional width of the first lens barrel section 2111, and the second lens barrel section 2112 is connected to the first lens barrel section 2111.
  • the optical lens group is installed in the first lens barrel section 2111, and the filter structure 231 is installed in the second lens barrel section 2112.
  • the filter structure 231 is integrated in the housing of the lens 21 to form a switching filter lens, which can ensure the stability of the relative position between the filter structure 231 and the optical lens group, and ensure that the filter structure 231 and the optical lens group are stable.
  • the cross section of the second lens barrel section 2112 and the cross section of the first lens barrel section 2111 both refer to a plane perpendicular to the axial direction of the lens barrel 211.
  • the second lens barrel section 2112 may be located on the image side of the first lens barrel section 2111, or may be located at the middle of the first lens barrel section 2111 in the axial direction, or may be located at the center of the first lens barrel section 2111.
  • the object side is not specifically limited here. 13 and FIG. 14 only show an example in which the second lens barrel section 2112 is located on the image side of the first lens barrel section 2111, and should not be considered as limiting the application.
  • FIG. 15 is a perspective view of a switching filter lens provided by still other embodiments of the application
  • FIG. 16 is an exploded view of the switching filter lens shown in FIG. 15.
  • the first lens barrel section 2111 includes a first sub lens barrel section 2111a and a second sub lens barrel section 2111b.
  • the first lens barrel section 2111a and the second lens barrel section 2111b are located on opposite sides of the second lens barrel section 2112, respectively.
  • the optical lens group includes a plurality of optical lenses 212, a part of the number of optical lenses in the plurality of optical lenses 212 is installed in the first sub-barrel section 2111a, and another part of the number of optical lenses in the plurality of optical lenses 212 is installed in Inside the second sub-barrel section 2111b.
  • the second lens barrel section 2112 is arranged in the middle of the first lens barrel section 2111 in the axial direction, and the filter structure 231 is located between the plurality of optical lenses in the lens 21. This structure is simple and easy to implement.
  • the portion of the second lens barrel section 2112 located on the imaging light path is provided with a first light opening 21123 and a second light opening 21124 (not shown in the camera shown in FIG. ). This avoids blocking the imaging light path.
  • the imaging sensor is connected to the image side end surface of the switching filter lens, and the photosensitive surface of the imaging sensor is opposite to the light exit port on the image side end surface of the switching filter lens.
  • the connection relationship between the imaging sensor and the switching filter lens may be: the imaging sensor is directly bonded to the end surface of the switching filter lens on the image side through foam glue, or the imaging sensor is packaged in an independent housing , And is connected to the image side end of the switching filter lens through a clamping structure or a threaded connection structure provided on the housing, which is not specifically limited here.
  • the inner wall of the second lens barrel section 2112 is provided with a receiving groove 21125, and at least part of the driving device is received in the receiving groove 21125.
  • at least a part of the driving device is embedded in the wall plate of the second lens barrel section 2112 to prevent the part of the driving device from occupying the internal space of the second lens barrel section 2112, which is beneficial to reduce the volume of the second lens barrel section 2112.
  • the second lens barrel section 2112 includes a lens barrel section main body 21121 and a first cover 21122.
  • the lens barrel section main body 21121 is connected with the first lens barrel section 2111, the lens barrel section main body 21121 is provided with an opening 21123, the filter structure 231 can be installed in the lens barrel section main body 21121 through the opening 21123, and the first cover body 21122 is covered with At the opening 21123, the first cover 21122 is detachably connected to the lens barrel section main body 21121. In this way, it is convenient to install and disassemble the filter structure 231 in the second lens barrel section 2112, so as to facilitate the maintenance or replacement of the filter structure 231.
  • FIG. 17 is a perspective view of a switching filter sensor provided by some embodiments of the application.
  • the camera 2 further includes a sensor housing 24, which can be made of plastic.
  • FIG. 18 is an exploded view of the switching filter sensor shown in FIG. 17.
  • the imaging sensor 22 is disposed in the sensor housing 24.
  • FIG. 19 is an assembly diagram of the switching filter sensor and the lens shown in FIG. 17.
  • the lens 21 is disposed outside the sensor housing 24.
  • the sensor housing 24 is provided with a light entrance 25, the photosensitive surface of the imaging sensor 22 is opposite to the light entrance 25, the image side end of the lens 21 is connected to the edge of the sensor housing 24 at the light entrance 25, and The image side surface of the lens 21 is opposite to the light entrance 25.
  • the filter structure 231 is installed in the sensor housing 24 and located in the imaging light path between the light entrance 25 and the imaging sensor 22. In this way, integrating the filter structure 231 and the imaging sensor 22 to form a switching filter sensor can ensure the stability of the relative position between the filter structure 231 and the imaging sensor 22, and ensure that the filter structure 231 and the imaging sensor 22 are stable. The accuracy of the optical path between. At the same time, the filter structure 231 and the imaging sensor 22 can be protected against water and dust through the sensor housing 24.
  • the image side end of the lens 21 and the edge of the sensor housing 24 at the light entrance 25 can be connected through a C interface, a CS interface, or an F interface.
  • the integrated structure of the filter structure 231 and the imaging sensor 22 can be matched and connected with the existing lens, so there is no need to redesign the lens, thereby saving the production cost of the camera.
  • the sensor housing 24 includes a main housing 241 and a second cover 242. One end is provided with an opening 243, the imaging sensor 22 and the filter structure 231 can be installed in the main housing 241 through the opening 243, and the second cover 242 is disposed at the opening 243 and is detachably connected to the main housing 241. In this way, the installation and disassembly of the filter structure 231 in the sensor housing 24 is facilitated, and the replacement or maintenance of the filter structure 231 is facilitated.
  • the present application also provides a camera control method, which is used to control the camera as described in any of the above embodiments.
  • the camera includes a filter structure 231 arranged in the imaging light path, and the filter structure 231 can Switch between the first state and the second state. When the filter structure 231 is in the first state, the filter structure 231 allows visible light in the imaging light path to pass, and when the filter structure 231 is in the second state, the filter structure 231 only allows The infrared light in the imaging light path passes through.
  • FIG. 20 is a flowchart of a camera control method provided by some embodiments of the application. As shown in FIG. 20, the control method includes:
  • S200 Perform color frame exposure through the imaging sensor 22 in the imaging light path when the filter structure 231 is in the first state to obtain a visible light image, and perform black and white through the imaging sensor 22 in the imaging light path when the filter structure 231 is in the second state. Frame exposure to obtain fog-through images;
  • S300 Register and merge the visible light image and the fog-through image to obtain a colorful fog-through image.
  • the filter structure 231 can be controlled to switch between the first state and the second state. Since the filter structure 231 allows the visible light in the imaging light path to pass when the filter structure 231 is in the first state, at this time, a visible light image representing color information can be obtained. When the filter structure 231 is in the second state, the filter structure 231 only allows the infrared light in the imaging light path to pass, therefore, at this time, a clear fog-through image can be obtained. By registering and fusing the visible light image and the fog-through image, a clear color fog-through image can be output.
  • the imaging sensor 22 determines the color frame exposure time and the black and white frame exposure time according to the state of the filter structure 231. Specifically, when the filter structure 231 is in the first state, the imaging sensor 22 acquires an image, and Perform color frame exposure on the image to obtain a visible light image; when the filter structure 231 is in the second state, the imaging sensor 22 obtains the image, and performs black and white frame exposure on the image to obtain a fog-through image. By registering and fusing the visible light image and the fog-through image, a colorful fog-through image can be obtained. In order to determine the color frame exposure time and the black and white frame exposure time of the imaging sensor 22, it is necessary to know the state of the filter structure 231.
  • the filter structure 231 is an electronically controlled light-absorbing material
  • the filter structure 231 can be synchronously controlled by the controller to perform state switching, and the imaging sensor 22 can perform color frame exposure or black and white frame exposure. This control process is simple and will not be repeated here.
  • the filter structure 231 When the filter structure 231 includes the first filter portion 231a and the second filter portion 231b, the filter structure 231 needs to be moved to realize the switching between the first state and the second state. At this time, in order to determine the color frame exposure time and the black and white frame exposure time of the imaging sensor 22, it is necessary to know the movement position of the filter structure 231. In order to obtain the movement position of the filter structure 231, and determine the color frame exposure time and the black and white frame exposure time of the imaging sensor 22 according to the movement position of the filter structure 231, in some embodiments, as shown in FIG. 11, the camera 2 It also includes a position detection device 26 and a controller 27.
  • the position detecting device 26 is used to detect the moving position of the filter structure 231.
  • the position detection device 26 may be a photoelectric position sensor, a Hall type position sensor, etc., which is not specifically limited herein.
  • the controller 27 is connected to the position detection device 26 and the imaging sensor 22.
  • the controller 27 is used to determine the exposure time of the color frame and the exposure time of the black and white frame according to the detection result of the position detection device 26, and control the imaging sensor 22 in the color frame
  • the exposure time is for color frame exposure
  • the black and white frame exposure is for the black and white frame exposure time to realize the automatic control of color frame exposure and black and white frame exposure.
  • the position detection device 26 is a photocoupler, and the photocoupler is one of the photoelectric position sensors.
  • the photocoupler includes a light emitting source and a light receiver that do not interfere with each other.
  • the light emitting source is a light emitting diode
  • the light receiver is a photodiode, a photosensitive triode, and the like.
  • the light source emits light to illuminate the measured object. After the light is reflected by the measured object, it can be received by the light receiver, which converts the received light into electrical signal output.
  • the photocoupler When the photocoupler is used to detect the movement position of the filter structure 231, the photocoupler and the imaging sensor 22 are relatively fixed, and the light source of the photocoupler continuously emits light to the mover of the driving device, and the mover can reflect the light.
  • the receiver continues to receive light.
  • the mover of the driving device 232 is provided with a shield 28 at a certain position.
  • the shield 28 can move with the mover, and the reflectivity of the shield 28 to the light emitted by the light-emitting source is equal to that of the mover to the light emitted by the light-emitting source.
  • the reflectivity is different.
  • the shield 28 moves to a position opposite to the light-emitting surface of the light-emitting source.
  • the controller 27 can determine the time for the filter structure 231 to move to the first state according to the starting position, the relative position between the shield 28 and the first filter portion 231a, and the movement track and speed of the mover.
  • the time when the filter structure 231 moves to the first state is also the exposure time of the color frame, and thus the exposure time of the color frame can be determined.
  • the controller 27 can determine that the filter structure 231 is in the second position according to the starting position, the relative position between the shield 28 and the second filter portion 231b, and the movement track and speed of the mover of the driving device 232.
  • the time of the state, the time that the filter structure 231 is in the second state is also the time of the black and white frame exposure, so that the time of the black and white frame exposure can be determined.
  • the color of the shield 28 can be black, white, etc., which is not specifically limited here. As long as the reflectivity of the shield 28 to the light emitted by the light-emitting source is different from the reflectivity of the mover to the light emitted from the light-emitting source.
  • the light-emitting source of the photocoupler can also continuously emit light to the filter structure 231, and the light receiver of the photocoupler continuously receives light, and a certain position of the filter structure 231 is provided
  • the shield 28 can move with the filter structure 231, and the reflectivity of the shield 28 to the light emitted by the light source is different from the reflectivity of the filter structure 231 to the light emitted from the light source.
  • the filter structure 231 moves to the first preset position
  • the shield 28 moves to a position opposite to the light-emitting surface of the light-emitting source. At this time, the intensity of the light signal received by the light receiver changes, so that the filter can be obtained.
  • the current position of the structure 231 is recorded as the starting position.
  • the color of the shield 28 can be black, white, etc., which is not specifically limited here. As long as the reflectivity of the shield 28 to the light emitted by the light-emitting source is different from the reflectivity of the filter structure 231 to the light emitted from the light-emitting source.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Blocking Light For Cameras (AREA)

Abstract

本申请提供一种滤光结构、切换滤光镜头、切换滤光传感器、摄像机、电子设备和摄像机的控制方法,涉及电子设备技术领域,能够使摄像机在雾霾天气输出彩色图像。其中,滤光结构能够在第一状态与第二状态之间切换,当滤光结构处于该第一状态时,滤光结构允许成像光路中的可见光通过,当滤光结构处于该第二状态时,滤光结构仅允许成像光路中的红外光通过且阻止除红外光之外的其他光通过。本申请提供的滤光结构用于摄像机的成像光路中。

Description

滤光结构、镜头、传感器、摄像机、电子设备和控制方法
本申请要求于2020年06月22日提交中国专利局、申请号为202010575505.6、发明名称为“滤光结构、镜头、传感器、摄像机、电子设备和控制方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电子设备技术领域,尤其涉及一种滤光结构、切换滤光镜头、切换滤光传感器、摄像机、电子设备和摄像机的控制方法。
背景技术
在雾霾天气,由于空气中的雾气、烟尘等微小颗粒对光线有阻挡作用,使得光线反射而无法通过镜头,从而影响摄像机的成像。由于雾霾的影响,摄像机所采集的图像的对比度会随着雾霾的严重程度增加而呈急剧下降的趋势,由此会造成一些关键监控目标的细节信息被雾霾所掩盖,导致视频监控系统的功能发挥受到限制。
为了在雾霾天气,获取细节清晰的图像,可以利用环境中的红外光进行成像,具体地,可以在摄像机的成像光路中增加光学透雾滤光片,以滤除成像光路中除红外光之外的其他光,比如可见光、紫外光,仅使红外光进入成像传感器的受光面,由此获得红外光图像。由于红外线在传播时受气溶胶的影响较小,可穿透一定浓度的雾霾到达摄像机的成像传感器,从而能够获得较为清晰的图像画面。但是,由于红外光属于不可见光,这类不可见光没有对应的可见光色彩图,故当前具有透雾功能的摄像机只能呈现黑白的透雾图像。
发明内容
本申请的实施例提供一种滤光结构、切换滤光镜头、切换滤光传感器、摄像机、电子设备和摄像机的控制方法,能够使摄像机在雾霾天气输出彩色图像。
为达到上述目的,本申请的实施例采用如下技术方案:
第一方面,本申请一些实施例提供一种滤光结构,用于设置于摄像机的成像光路中,该滤光结构能够在第一状态与第二状态之间切换,当滤光结构处于第一状态时,该滤光结构允许成像光路中的可见光通过,当滤光结构处于第二状态时,滤光结构仅允许成像光路中的红外光通过。
在将本申请实施例提供的滤光结构应用于摄像机内时,在雾霾天气,可以使滤光结构在第一状态与第二状态之间高速切换。由于当滤光结构处于第一状态时,该滤光结构允许成像光路中的可见光通过,因此,此时,可以通过成像传感器采集图像,并对该图像进行彩色帧曝光,以获得表示色彩信息的可见光图像。由于当滤光结构处于第二状态时,滤光结构仅允许成像光路中的红外光通过,因此,此时,可以通过成像传感器采集图像,并对该图像进行黑白帧曝光,以获得细节清晰的透雾图像。这样,可以在前后相邻两个时间分别获得表示色彩信息的可见光图像和细节清晰的透雾图像,将该可见光图像与该透雾图像配准并融合后,可以输出彩色透雾图像。
可选地,滤光结构包括第一滤光部分和第二滤光部分,第一滤光部分允许可见光通 过,第二滤光部分仅允许红外光通过;当滤光结构处于第一状态时,第一滤光部分位于成像光路中,当滤光结构处于第二状态时,第二滤光部分位于成像光路中。此结构简单,容易实现。
可选地,第一滤光部分还阻止红外光通过。这样,可以避免红外光随着可见光一起进入成像传感器而导致成像传感器采集的可见光图像出现偏色,从而使摄像机获得的彩色透雾图像出现偏色。由此使得摄像机能够输出颜色真实的彩色透雾图像。
可选地,第一滤光部分包括第一透光基板以及设置于该第一透光基板的入光面或出光面的第一滤光膜,第一滤光膜能够透射可见光,第一透光基板对第一滤光膜起到支撑作用,第一透光基板的材料为光学玻璃。此结构简单,容易实现。
可选地,第二滤光部分包括第二透光基板以及设置于该第二透光基板的入光面或出光面的第二滤光膜,第二滤光膜仅允许红外光通过,第二透光基板对第二滤光膜起到支撑作用,第二透光基板的材料为光学玻璃。此结构简单,容易实现。
可选地,第一透光基板和第二透光基板一体成型。这样,滤光结构的结构组成简单,装配方便。
可选地,滤光结构为圆形滤光片;第一滤光部分为滤光结构上的第一扇形部分;第二滤光部分为滤光结构上的第二扇形部分。这样,滤光结构呈类似于色轮的结构,此结构简单,容易实现,能够节省安装空间,在将该滤光结构应用于摄像机内时,可以将该滤光结构偏心安装于摄像机的成像光路中,并采用旋转驱动装置驱动该滤光结构旋转,由此可以带动滤光结构在第一状态与第二状态之间的切换。
可选地,滤光结构还包括遮光部分,遮光部分用于遮挡部分光;遮光部分为滤光结构上的第三扇形部分。这样,在将该滤光结构应用于摄像机内之后,在光线过强的场景下,可以通过旋转驱动装置驱动滤光结构旋转至第三状态,以使遮光部分位于摄像机的成像光路中,由此遮挡部分光线,以防止采集图像过度曝光。
可选地,遮光部分包括第三透光基板和黑色半透明遮光膜,黑色半透明遮光膜设置于第三透光基板的入光面或者出光面。此结构简单,容易实现。
可选地,滤光结构还包括全透光部分,该全透光部分允许所有光线通过;全透光部分为滤光结构上的第四扇形部分。这样,在将该滤光结构应用于摄像机内之后,在雾霾较少且光线适中的白天环境中,可以通过旋转驱动装置驱动滤光结构旋转至第四状态,以使全透光部分位于摄像机的成像光路中,由此避免滤光结构对成像光路造成干扰。
可选地,全透光部分为空缺部分或者透明玻璃。
可选地,滤光结构为电控吸光材料。该电控吸光材料包括但不限于有机变色材料、液晶材料。通过控制施加至电控吸光材料上的电压的大小,可以使得滤光结构在第一状态与第二状态之间切换,且当滤光结构处于第一状态时,电控吸光材料允许可见光通过,当滤光结构处于第二状态时,电控吸光材料仅允许红外光通过并吸收除红外光之外的其他光。
第二方面,本申请一些实施例提供一种切换滤光镜头,该切换滤光镜头包括镜筒、光学镜片组、滤光结构和驱动装置;镜筒包括沿自身轴向排列的第一镜筒段和第二镜筒段;光学镜片组包括至少一个光学镜片,该光学镜片组安装于第一镜筒段内;滤光结构为如上任一技术方案所述的滤光结构,该滤光结构安装于第二镜筒段内,并位于镜筒内 的成像光路中;驱动装置与滤光结构连接,该驱动装置用于驱动滤光结构在第一状态与第二状态之间切换。
本申请实施例提供的切换滤光镜头,将滤光结构集成在镜头的壳体内,能够保证滤光结构与光学镜片组之间的相对位置的稳定,同时保证滤光结构与光学镜片组之间的光路准确性。同时,由于在本申请实施例的切换滤光镜头中使用的滤光结构与如上第一方面中任一技术方案所述的滤光结构相同,因此二者能够解决相同的技术问题,并达到相同的预期效果。
可选地,第二镜筒段位于第一镜筒段的像侧。
可选地,第一镜筒段包括第一子镜筒段和第二子镜筒段,第一子镜筒段和第二子镜筒段分别位于第二镜筒段的相对两侧;光学镜片组包括多个光学镜片,多个光学镜片中的一部分数量的光学镜片安装于第一子镜筒段内,多个光学镜片中的另一部分数量的光学镜片安装于第二子镜筒段内。
可选地,第二镜筒段包括镜筒段主体和盖体;镜筒段主体与第一镜筒段连接,镜筒段主体上设有开口,滤光结构能够由开口安装于镜筒段主体内,盖体盖设于开口处,且盖体与镜筒段主体可拆卸连接。这样,便于滤光结构在第二镜筒段内的安装和拆卸,以利于滤光结构的维修或更换。
第三方面,本申请一些实施例提供一种切换滤光传感器,该切换滤光传感器包括传感器壳体、成像传感器、滤光结构和驱动装置;传感器壳体设有入光口;成像传感器设置于传感器壳体内,成像传感器的感光面与入光口相对;滤光结构为如上任一技术方案所述的滤光结构,该滤光结构安装于传感器壳体内,并位于入光口与成像传感器之间的成像光路中;驱动装置与滤光结构连接,该驱动装置用于驱动滤光结构在第一状态与第二状态之间切换。
本申请实施例提供的切换滤光传感器,将滤光结构与成像传感器集成在一起,能够保证滤光结构与成像传感器之间的相对位置的稳定,保证滤光结构与成像传感器之间的光路准确性。同时能够通过传感器壳体对滤光结构和成像传感器进行防水、防尘保护。同时,由于在本申请实施例的切换滤光传感器中使用的滤光结构与如上第一方面中任一技术方案所述的滤光结构相同,因此二者能够解决相同的技术问题,并达到相同的预期效果。
第四方面,本申请一些实施例提供一种摄像机,该摄像机包括镜头、成像传感器、滤光结构和驱动装置;成像传感器设置于镜头的像侧;滤光结构为如上任一技术方案所述的滤光结构,该滤光结构位于摄像机的成像光路中,且该滤光结构位于镜头的物侧端,或者位于镜头与成像传感器之间;驱动装置与滤光结构连接,该驱动装置用于驱动滤光结构在第一状态与第二状态之间切换。
由于在本申请实施例的摄像机中使用的滤光结构与如上第一方面中任一技术方案所述的滤光结构相同,因此二者能够解决相同的技术问题,并达到相同的预期效果。
第五方面,本申请提供一种摄像机,其特征在于,包括切换滤光镜头和成像传感器;切换滤光镜头为如上第二方面中任一技术方案所述的切换滤光镜头;成像传感器设置于该切换滤光镜头的像侧,且成像传感器的感光面与该切换滤光镜头的像侧面相对。
由于在本申请实施例的摄像机中使用的切换滤光镜头与如上第二方面中任一技术 方案所述的切换滤光镜头相同,因此二者能够解决相同的技术问题,并达到相同的预期效果。
第六方面,本申请一些实施例提供一种摄像机,该摄像机包括镜头和切换滤光传感器;切换滤光传感器为如上第三方面所述的切换滤光传感器,镜头位于该切换滤光传感器的传感器壳体外,镜头的像侧端与传感器壳体的入光口的边沿一周连接,镜头的像侧面与入光口相对。
由于在本申请实施例的摄像机中使用的切换滤光传感器与如上第三方面中任一技术方案所述的切换滤光传感器相同,因此二者能够解决相同的技术问题,并达到相同的预期效果。
第七方面,本申请一些实施例提供一种电子设备,该电子设备包括如上第四方面、第五方面、第六方面中任一技术方案所述的摄像机。
由于在本申请实施例的电子设备中使用的摄像机与如上第四方面、第五方面、第六方面中任一技术方案所述的摄像机相同,因此二者能够解决相同的技术问题,并达到相同的预期效果。
第八方面,本申请一些实施例提供一种摄像机的控制方法,摄像机包括设置于成像光路中的滤光结构,该滤光结构能够在第一状态与第二状态之间切换,当滤光结构处于第一状态时,该滤光结构允许成像光路中的可见光通过,当滤光结构处于第二状态时,滤光结构仅允许成像光路中的红外光通过,该控制方法包括:控制滤光结构在第一状态与第二状态之间切换;通过成像光路中的成像传感器在滤光结构处于第一状态时进行彩色帧曝光,以获得可见光图像,通过成像光路中的成像传感器在滤光结构处于第二状态时进行黑白帧曝光,以获得透雾图像;配准并融合可见光图像和透雾图像,以获得彩色的透雾图像。
这样,在雾霾天气,可以控制滤光结构在第一状态与第二状态之间切换。由于当滤光结构处于第一状态时,该滤光结构允许成像光路中的可见光通过,因此,此时,可以获得表示色彩信息的可见光图像。由于当滤光结构处于第二状态时,滤光结构仅允许成像光路中的红外光通过,因此,此时,可以获得细节清晰的透雾图像。通过配准并融合可见光图像与透雾图像,可以输出细节清晰的彩色透雾图像。
附图说明
图1为本申请涉及的一种摄像机的结构框图;
图2为本申请一些实施例提供的电子设备的结构示意图;
图3为本申请一些实施例提供的摄像机的结构示意图;
图4为本申请一些实施例提供的滤光结构的结构示意图;
图5为图3所示摄像机中滤光结构处于第二状态时的结构示意图;
图6为图4所示滤光结构的主视图;
图7为图6所示滤光结构沿C-C向的剖面结构示意图;
图8为本申请又一些实施例提供的滤光结构的结构示意图;
图9为本申请又一些实施例提供的滤光结构的结构示意图;
图10为本申请又一些实施例提供的滤光结构的结构示意图;
图11为本申请一些实施例提供的摄像机中位置检测装置的第一种位置示意图;
图12为本申请一些实施例提供的摄像机中位置检测装置的第二种位置示意图;
图13为本申请一些实施例提供的切换滤光镜头的立体图;
图14为图13所示切换滤光镜头的爆炸图;
图15为本申请又一些实施例提供的切换滤光镜头的立体图;
图16为图15所示切换滤光镜头的爆炸图;
图17为本申请一些实施例提供的切换滤光传感器的立体图;
图18为图17所示切换滤光传感器的爆炸图;
图19为图17所示切换滤光传感器与镜头的装配图;
图20为本申请一些实施例提供的摄像机的控制方法的流程图。
附图标记:
1-手机主体;11-安装槽;2-摄像机;21-镜头;211-镜筒;2111-第一镜筒段;2111a-第一镜筒段;2111b-第二镜筒段;2112-第二镜筒段;21121-镜筒段主体;21122-第一盖体;21123-第一通光口;21124-第二通光口;21125-容纳凹槽;212-光学镜片;22-成像传感器;231-滤光结构;232-旋转驱动装置;231a-第一滤光部分;231b-第二滤光部分;231c-遮光部分;231d-全透光部分;24-传感器壳体;241-主壳体;242-第二盖体;25-入光口;26-位置检测装置;27-控制器;28-遮挡物。
具体实施方式
在本申请实施例中,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。
在本申请的描述中,“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本申请涉及摄像机、电子设备和摄像机的控制方法,以下对本申请涉及到的概念进行简单说明:
摄像机的成像光路:是指被摄景物反射的光线由被摄景物传输至镜头,并被镜头聚焦后,传输至成像传感器以形成影像的整条光传输路径,镜头和成像传感器均位于摄像机的成像光路中。
像侧:是指靠近摄像机内所形成的影像的一侧,而摄像机内用于对景物形成影像的结构为成像传感器,因此像侧通常是指靠近成像传感器的一侧。
像侧端,是指靠近摄像机内所形成的影像的一端,而摄像机内用于对景物形成影像的结构为成像传感器,因此像侧端通常是指靠近成像传感器的一端。
物侧:是指靠近摄像机的覆盖范围内的景物的一侧,也即是背离成像传感器的一侧。
物侧端,是指靠近摄像机的覆盖范围内的景物的一端,也即是背离成像传感器的一端。
驱动装置的动子,是指驱动装置在驱动物体运动时,驱动装置中与该物体一起运动的部分。与之对应的为驱动装置的定子,驱动装置的定子是指驱动装置在驱动物体运动时,驱动装置中与固定支撑该驱动装置的结构相对静止的部分。
为了在雾霾天气下,获得彩色图像,示例的,图1为本申请涉及的一种摄像机的结 构框图。如图1所示,摄像机包括两个并排布置的摄像机模块,每个摄像机模块包括一个镜头和一个传感器。其中,一个摄像机模块用于采集可见光图像,该可见光图像表示图像的色彩信息,另一个摄像机模块用于采集仅由红外光形成的透雾图像,该透雾图像能够表示图像的细节信息。两个摄像机模块采集到的可见光图像和透雾图像在各自经过降噪以及其他图像处理后,可以进行配准并融合,以生成彩色的透雾图像。但是由于两个摄像机模块的位置不可能完全重合,两个摄像机模块的采集视场不一致,导致可见光图像和透雾图像之间不能完全配准,色彩信息和细节特征不能完全匹配,因此不能得到高质量的彩色透雾图像。
为了获得高质量的彩色透雾图像,本申请提供了一种电子设备,该电子设备包括但不限于手机终端、车载终端、监控器和智能穿戴设备。该电子设备包括摄像机,该摄像机用于在雾霾天气下输出彩色图像。
图2为本申请一些实施例提供的电子设备的结构示意图,该电子设备为手机。如图2所示,该手机包括手机主体1和摄像机2。手机主体1上设有安装槽11,摄像机2安装于该安装槽11内,且摄像机2的镜头朝向与安装槽11的开口朝向一致,摄像机2的成像传感器与手机主体1内的主控板电连接,以控制成像传感器采集图像,并对采集的图像进行图像处理。其中,摄像机2可以为手机上的前置摄像机,也可以为手机上的后置摄像机,在此不做具体限定。
本申请还提供了一种摄像机,该摄像机为上述电子设备中的摄像机,该摄像机用于在雾霾天气输出彩色图像。
图3为本申请一些实施例提供的摄像机的结构示意图,该摄像机为图2所示电子设备中的摄像机2。如图3所示,摄像机2包括镜头21和成像传感器22。镜头21和成像传感器22位于摄像机2的成像光路中,镜头21用于聚焦被摄景物反射的光线,成像传感器22位于镜头21的像侧,成像传感器22用于对镜头21聚焦后的光线进行成像。
如图3所示,摄像机2还包括滤光结构231,该滤光结构231能够在第一状态与第二状态之间切换。当该滤光结构231处于第一状态时,该滤光结构231允许成像光路中的可见光通过。当滤光结构231处于第二状态时,滤光结构231仅允许成像光路中的红外光通过。
可以知道的是,滤光结构231仅允许成像光路中的红外光通过,是指:滤光结构231允许成像光路中的红外光通过,并阻止除红外光之外的其他光(比如可见光、紫外光)通过,或者只允许少量的其他光通过,该其他光的透过率远小于红外光的透过率,基本可以忽略不计。
这样,在雾霾天气,可以使滤光结构231在第一状态与第二状态之间高速切换。由于当滤光结构231处于第一状态时,该滤光结构231允许成像光路中的可见光通过,因此,此时,可以通过成像传感器22采集图像,并对该图像进行彩色帧曝光,以获得表示色彩信息的可见光图像。由于当滤光结构231处于第二状态时,滤光结构231仅允许成像光路中的红外光通过,因此,此时,可以通过成像传感器22采集图像,并对该图像进行黑白帧曝光,以获得细节清晰的透雾图像。由此,本申请实施例提供的摄像机采用一个镜头21和一个成像传感器22形成一条成像光路,并在该成像光路中设置滤光结构231,通过该滤光结构231在第一状态与第二状态之间切换,可以在前后相邻两个时 间分别获得表示色彩信息的可见光图像和细节清晰的透雾图像,由于生成可见光图像的可见光和生成透雾图像的红外光均是沿上述镜头21和成像传感器22形成的成像光路传输的,因此在摄像机的位置未发生移动的前提下,能够保证该可见光图像的采集视场和透雾图像的采集视场一致,由此使得可见光图像与透雾图像配准并融合后,可以输出高质量的彩色透雾图像。
在上述实施例中,对滤光结构231的具体结构不做限定,只要滤光结构231能够在第一状态与第二状态之间切换,且滤光结构231在第一状态时能够允许成像光路中的可见光通过,在第二状态时能够仅允许成像光路中的红外光通过即可。示例的,滤光结构231的具体结构可以包括以下两种可选实现方式:
第一种可选实现方式:滤光结构231为电控吸光材料,该电控吸光材料包括但不限于有机变色材料、液晶材料。通过控制施加至电控吸光材料上的电压的大小,可以使得滤光结构231在第一状态与第二状态之间切换,且当滤光结构231处于第一状态时,电控吸光材料允许可见光通过,当滤光结构231处于第二状态时,电控吸光材料仅允许红外光通过并吸收除红外光之外的其他光。
第二种可选实现方式:图4为本申请一些实施例提供的滤光结构的结构示意图,该滤光结构为图3所示摄像机中的滤光结构231。如图4所示,滤光结构231包括第一滤光部分231a和第二滤光部分231b,第一滤光部分231a允许可见光通过,第二滤光部分231b仅允许红外光通过。图3显示摄像机中滤光结构处于第一状态,如图3所示,当滤光结构231处于第一状态时,第一滤光部分231a位于成像光路中,此时,成像光路中的可见光透过滤光结构231射入成像传感器22中,成像传感器22获得表示色彩信息的可见光图像。图5为图3所示摄像机中滤光结构处于第二状态时的结构示意图。如图5所示,当滤光结构231处于第二状态时,第二滤光部分231b位于成像光路中,此时,成像光路中仅红外光或者少量其他光透过滤光结构231射入成像传感器22中,成像传感器22能够获得细节清晰的透雾图像。此结构简单,容易实现。
其中,如图4所示,第一滤光部分231a在允许可见光通过的同时,也可以允许其他波长的光通过,比如第一滤光部分231a为全透明的光学玻璃,又比如第一滤光部分231a为空缺部分,此时,第一滤光部分231a可以允许包括可见光在内的所有波长的光通过。当然,第一滤光部分231a也可以允许可见光通过而阻止其他一种(比如红外光)或者多种光通过,在此情况下,第一滤光部分231a的结构可以由透光基材(比如玻璃)以及掺杂于该透光基材内的光吸收/反射粒子构成,该光吸收/反射粒子能够吸收或者反射除可见光之外的其他一种或者多种光,第一滤光部分231a的结构也可以由透光基板(比如光学玻璃、普通玻璃、亚克力等等)以及设置于该透光基板的表面的滤光膜组成,该滤光膜可以吸收或者反射除可见光之外的其他一种或者多种光,并透射可见光,在此不做具体限定。第一滤光部分231a可以为带通滤光片,也可以为截止滤光片,还可以为反射滤光片,在此不作具体限定,只要第一滤光部分231a允许可见光通过即可。具体地,第一滤光部分231a的结构也可以按照国家标准《GB-T15488-2010-滤光玻璃》进行设计。
在一些实施例中,图6为图4所示滤光结构的主视图,图7为图6所示滤光结构沿C-C向的剖面结构示意图。如图7所示,第一滤光部分231a包括第一透光基板a以及 设置于该第一透光基板a的表面的第一滤光膜b,第一滤光膜b能够透射可见光,第一透光基板a对第一滤光膜b起到支撑作用,第一透光基板a的材料为光学玻璃。此结构简单,容易实现。
其中,第一滤光膜b可以设置于第一透光基板a的入光面和/或出光面上,在此不做具体限定。图7仅示出了第一滤光膜b设置于第一透光基板a的入光面的示例,并不能认为是对本申请构成的限定。
第一滤光膜b可以采用喷涂、沉积等工艺直接制作于第一透光基板a的表面,也可以采用胶粘于第一透光基板a的表面,在此不作具体限定。
可选地,第一滤光膜b采用胶粘于第一透光基板a的表面。这样,在维修更换该第一滤光部分231a时,只需要更换第一滤光膜b即可,因此操作方便,成本较低。
第一滤光部分231a除了包括第一透光基板a和第一滤光膜b之外,还可以包括增透膜,该增透膜设置于第一透光基板a的入光面或者出光面上,且该增透膜能够增加可见光的透过率。
在一些实施例中,第一滤光部分231a在允许可见光通过的同时,阻止红外光通过。这样,可以避免红外光随着可见光一起进入成像传感器22而导致成像传感器22采集的可见光图像出现偏色,从而使得摄像机能够输出颜色真实的彩色透雾图像。
另外,如图4所示,第二滤光部分231b的结构可以由透光基材(比如光学玻璃、普通玻璃、亚克力等等)以及掺杂于该透光基材内的光吸收/反射粒子构成,该光吸收/反射粒子能够吸收或者反射除红外光之外的其他光,允许红外光通过。第二滤光部分231b的结构也可以由透光基板(比如光学玻璃、普通玻璃、亚克力等等)以及设置于该透光基板的表面的滤光膜组成,该滤光膜可以吸收或者反射除红外光之外的其他光,并透射红外光,在此不做具体限定。第二滤光部分231b可以为带通滤光片,也可以为截止滤光片,还可以为反射滤光片,在此不作具体限定,只要第二滤光部分231b仅允许成像光路中的红外光通过即可。具体地,第二滤光部分231b的结构也可以按照国家标准《GB-T15488-2010-滤光玻璃》进行设计。
在一些实施例中,如图7所示,第二滤光部分231b包括第二透光基板c以及设置于该第二透光基板c的表面的第二滤光膜d,第二滤光膜d仅允许红外光通过,第二透光基板c对第二滤光膜d起到支撑作用,第二透光基板c的材料为光学玻璃。此结构简单,容易实现。
其中,第二滤光膜d可以设置于第二透光基板c的入光面和/或出光面上,在此不做具体限定。图7仅给出了第二滤光膜d设置于第二透光基板c的入光面的示例,并不能认为是对本申请构成的限定。
第二滤光膜d可以采用喷涂、沉积等工艺直接制作于第二透光基板c的表面,也可以采用胶粘于第二透光基板c的表面,在此不作具体限定。
可选地,第二滤光膜d采用胶粘于第二透光基板c的表面。这样,在维修更换该第二滤光部分231b时,只需要更换第二滤光膜d即可,因此操作方便,成本较低。
第二滤光部分231b除了包括第二透光基板c和第二滤光膜d之外,还可以包括增透膜,该增透膜设置于第二透光基板c的入光面或者出光面上,且该增透膜能够增加红外光的透过率。
在一些实施例中,如图7所示,第一透光基板a和第二透光基板c一体成型。这样,滤光结构231的结构组成简单,装配方便。
第一滤光部分231a、第二滤光部分231b在滤光结构231上的排列方式可以沿直线排列,也可以沿环线排列,在此不做具体限定。图4仅给出了第一滤光部分231a、第二滤光部分231b在滤光结构231上沿环线排列的方式,并不能认为是对本申请构成的限定。
具体地,如图4所示,滤光结构231为圆形滤光片,第一滤光部分231a为滤光结构231上的第一扇形部分,第二滤光部分231b为滤光结构231上的第二扇形部分,该第一扇形部分、该第二扇形部分沿滤光结构231的周向排列,也即是沿环线排列。这样,滤光结构231呈类似于色轮的结构,此结构简单,容易实现,能够节省安装空间,在将该滤光结构231应用于摄像机内时,可以将该滤光结构231偏心安装于摄像机2的成像光路中(如图3所示),并采用旋转驱动装置232驱动该滤光结构231旋转,由此可以带动滤光结构231在第一状态与第二状态之间的切换。其中,旋转驱动装置232可以为旋转电机。
在另一些实施例中,图8为本申请又一些实施例提供的滤光结构的结构示意图。如图8所示,滤光结构231为矩形滤光片,第一滤光部分231a和第二滤光部分231b分别为沿该矩形滤光片的长度方向排列的两个矩形部分。此时,第一滤光部分231a、第二滤光部分231b沿直线排列。此结构简单,容易实现,在将该滤光结构231应用于摄像机内时,可以使矩形滤光片的长度方向与摄像机2的成像光路垂直,并采用直线驱动装置驱动该滤光结构231沿自身长度方向往复移动,由此可以带动滤光结构231在第一状态与第二状态之间的切换。其中,直线驱动装置可以为直线马达。
为了驱动滤光结构231在第一状态与第二状态之间切换,摄像机2还包括驱动装置。该驱动装置与滤光结构231连接,驱动装置用于驱动滤光结构231在第一状态与第二状态之间切换。
在上述实施例中,驱动装置的结构形式有多种,具体可以根据滤光结构231的结构形式进行设计。比如,当滤光结构231为电控吸光材料时,驱动装置可以被设计为连接于该电控吸光材料上的电路;当滤光结构231为图4所示类似于色轮的结构时,驱动装置可以被设计为图3所示的旋转驱动装置232;当滤光结构231为图8所示矩形滤光片时,驱动装置可以被设计为直线驱动装置,在此不做具体限定。
为了使摄像机2除了用在雾霾天气之外,还能够用在光线过强场景下,以扩大摄像机2的应用范围,图9为本申请又一些实施例提供的滤光结构的结构示意图,如图9所示,滤光结构231还包括遮光部分231c,该遮光部分231c用于遮挡部分光,遮光部分231c所能够遮挡的光包括全部颜色的可见光和不可见光,遮光部分231c为滤光结构231上的第三扇形部分。这样,在将该滤光结构231应用于图3所示摄像机2内之后,在光线过强的场景下,可以通过旋转驱动装置232驱动滤光结构231旋转至第三状态,以使遮光部分231c位于摄像机的成像光路中,由此遮挡部分光线,以防止采集图像过度曝光。
在上述实施例中,遮光部分231c可以由透光基材(比如玻璃)以及掺杂于该透光基材内的黑色的吸光粒子构成,也可以由透光基板以及设置于该透光基板的表面的黑色 半透明遮光膜组成,在此不做具体限定。
在一些实施例中,遮光部分231c包括第三透光基板以及设置于该第三透光基板的表面的黑色半透明遮光膜。此结构简单,容易实现。
其中,黑色半透明遮光膜可以设置于第三透光基板的入光面和/或出光面上,在此不做具体限定。黑色半透明遮光膜可以采用喷涂、沉积等工艺直接制作于第三透光基板的表面,也可以采用胶粘于第三透光基板的表面,在此不作具体限定。
可选地,黑色半透明遮光膜采用胶粘于第三透光基板的表面。这样,在维修更换该遮光部分231c时,只需要去除黑色半透明遮光膜即可,因此操作方便,成本较低。
在一些实施例中,第一透光基板a、第二透光基板c、第三透光基板一体成型。这样,滤光结构231的结构组成简单,安装方便。
根据以上描述,安装有图9所示滤光结构231的摄像机2可以工作于雾霾天气和光线过强两种场景下,当该摄像机2工作于雾霾天气场景下时,摄像机2处于第一工作模式,在该第一工作模式下,旋转驱动装置232驱动滤光结构231在第一状态与第二状态之间切换,以在雾霾天气采集彩色的透雾图像。当摄像机2工作于光线过强的场景下时,摄像机2通过旋转驱动装置232驱动滤光结构231旋转至第三状态,以切换至第二工作模式,在该第二工作模式下,遮光部分231c位于成像光路中,遮光部分231c可以遮挡部分光线,以防止采集图像过度曝光。
为了使摄像机2除了用在雾霾天气之外,还能够用在雾霾较少且光线适中的白天环境中,在一些实施例中,图10为本申请又一些实施例提供的滤光结构的结构示意图,如图10所示,滤光结构231还包括全透光部分231d,该全透光部分231d允许所有光线通过,该全透光部分231d可以为缺口也可以为透明玻璃,图10仅示出了该全透光部分231d为缺口的实施例,并不能认为是对本申请构成的限定。全透光部分231d为滤光结构231上的第四扇形部分。这样,在将该滤光结构231应用于图3所示摄像机2内之后,在雾霾较少且光线适中的白天环境中,可以通过旋转驱动装置232驱动滤光结构231旋转至第四状态,以使全透光部分231d位于摄像机的成像光路中,由此避免滤光结构231对成像光路造成干扰。
当滤光结构231为图10所示结构时,摄像机2除了可以工作在第一工作模式、第二工作模式下之外,还可以在雾霾较少且光线适中的环境下,通过旋转驱动装置232驱动滤光结构231旋转至第四状态,以切换至第三工作模式,在该第三工作模式下,全透光部分231d位于摄像机的成像光路中,由此避免滤光结构231对成像光路造成干扰。
为了实现包括图10所示滤光结构的摄像机2在第一工作模式、第二工作模式和第三工作模式之间的自动切换,在一些实施例中,摄像机还包括控制器,成像传感器22和旋转驱动装置232均与该控制器电连接。该控制器能够根据成像传感器22检测到的环境光线强弱,控制旋转驱动装置232切换至第一工作模式、第二工作模式或者第三工作模式。这样,可以实现摄像机2的不同工作模式之间的自动切换。
需要知道的是,滤光结构231还可以包括其他滤光部分,比如白光片、偏振片等等,以使滤光结构231能够工作在其他工作模式下,在此不做具体限定。
摄像机2在上述第一工作模式下,驱动装置驱动滤光结构231在第一状态与第二状态之间切换。具体地,驱动装置可以驱动滤光结构231在第一状态与第二状态之间进行 一次切换,在该次切换过程中,成像传感器可以采集图像并进行一次彩色帧曝光和一次黑白帧曝光,以获得一帧可见光图像和一帧透雾图像,该可见光图像和该透雾图像配准并融合后,可以输出一张彩色透雾图像,由此可以实现摄像机的“照相”功能。驱动装置也可以驱动滤光结构231在第一状态与第二状态之间进行高速循环切换,在该高速循环切换过程中,成像传感器22可以采集图像并随着时间交替进行彩色帧曝光和黑白帧曝光,以随着时间交替获得可见光图像帧和透雾图像帧,前后相邻两帧可见光图像和透雾图像配准并融合成一帧彩色透雾图像,这样,就可以随着时间依次输出多帧彩色透雾图像,由此可以实现摄像机的“录像”功能。
滤光结构231可以位于镜头21与成像传感器22之间,也可以位于镜头21内的多个光学镜片之间,还可以位于镜头21的物侧,在此不做具体限定。图3仅给出了滤光结构231位于镜头21与成像传感器22之间的一种示例,并不能认为对本申请构成限定。滤光结构231可以集成在镜头21的壳体内,也可以集成在成像传感器22的壳体内,还可以设置于单独的壳体内以形成独立的切换滤光模块,并使该切换滤光模块连接于镜头21的物侧端,或者连接于镜头21的像侧端与成像传感器22之间。示例的,滤光结构231的设置位置及连接方式可以包括以下两种实施例:
实施例一:图13为本申请一些实施例提供的切换滤光镜头的立体图,图14为图13所示切换滤光镜头的爆炸图。如图13和图14所示,镜头21包括镜筒211和光学镜片组,镜筒211的材料包括但不限于金属和塑胶,光学镜片组包括至少一个光学镜片212。镜筒211包括沿自身轴向排列的第一镜筒段2111和第二镜筒段2112。第二镜筒段2112的截面最大宽度大于第一镜筒段2111的截面最大宽度,且第二镜筒段2112与第一镜筒段2111连接。光学镜片组安装于第一镜筒段2111内,滤光结构231安装于第二镜筒段2112内。这样,将滤光结构231集成在镜头21的壳体内,以形成切换滤光镜头,能够保证滤光结构231与光学镜片组之间的相对位置的稳定,保证滤光结构231与光学镜片组之间的光路准确性。其中,第二镜筒段2112的截面和第一镜筒段2111的截面均是指与镜筒211的轴向垂直的面。
在上述实施例中,第二镜筒段2112可以位于第一镜筒段2111的像侧,也可以位于第一镜筒段2111沿轴向上的中部,还可以位于第一镜筒段2111的物侧,在此不做具体限定。图13和图14仅给出了第二镜筒段2112位于第一镜筒段2111的像侧的示例,并不能认为对本申请构成限定。
图15为本申请又一些实施例提供的切换滤光镜头的立体图,图16为图15所示切换滤光镜头的爆炸图。如图15和图16所示,第一镜筒段2111包括第一子镜筒段2111a和第二子镜筒段2111b。第一子镜筒段2111a和第二子镜筒段2111b分别位于第二镜筒段2112的相对两侧。光学镜片组包括多个光学镜片212,该多个光学镜片212中的一部分数量的光学镜片安装于第一子镜筒段2111a内,该多个光学镜片212中的另一部分数量的光学镜片安装于第二子镜筒段2111b内。这样,就将第二镜筒段2112设置在了第一镜筒段2111沿轴向上的中部,且使得滤光结构231位于镜头21内的多个光学镜片之间。此结构简单,容易实现。
在图14或图16所示的摄像机中,第二镜筒段2112的位于成像光路上的部分设有第一通光口21123和第二通光口21124(图16所示摄像机中未示出)。由此避免对成像 光路产生遮挡。
在图14或图16所示的摄像机中,成像传感器连接于切换滤光镜头的像侧端端面上,且成像传感器的感光面与切换滤光镜头的像侧端端面上的出光口相对。具体地,成像传感器与切换滤光镜头之间的连接关系可以为:成像传感器通过泡棉胶直接粘接于切换滤光镜头的像侧端端面上,或者,成像传感器封装于一个独立的壳体内,并通过设置于该壳体上的卡接结构或者螺纹连接结构与切换滤光镜头的像侧端连接,在此不做具体限定。
在一些实施例中,如图14或图16所示,第二镜筒段2112的内壁设有容纳凹槽21125,驱动装置的至少部分容纳于该容纳凹槽21125内。这样,驱动装置的至少部分嵌入到第二镜筒段2112的壁板内,避免该部分驱动装置占用第二镜筒段2112的内部空间,因此有利于减小第二镜筒段2112体积。
在一些实施例中,如图14或图16所示,第二镜筒段2112包括镜筒段主体21121和第一盖体21122。镜筒段主体21121与第一镜筒段2111连接,镜筒段主体21121上设有开口21123,滤光结构231能够由该开口21123安装于镜筒段主体21121内,第一盖体21122盖设于该开口21123处,且第一盖体21122与镜筒段主体21121可拆卸连接。这样,便于滤光结构231在第二镜筒段2112内的安装和拆卸,以利于滤光结构231的维修或更换。
实施例二:图17为本申请一些实施例提供的切换滤光传感器的立体图,如图17所示,摄像机2还包括传感器壳体24,传感器壳体24可以由塑胶制作。图18为图17所示切换滤光传感器的爆炸图,如图18所示,成像传感器22设置于该传感器壳体24内。图19为图17所示切换滤光传感器与镜头的装配图,如图19所示,镜头21设置于传感器壳体24外。传感器壳体24上设有入光口25,成像传感器22的感光面与该入光口25相对,镜头21的像侧端与该入光口25处的传感器壳体24的边沿一周连接,且镜头21的像侧面与该入光口25相对。滤光结构231安装于传感器壳体24内,并位于入光口25与成像传感器22之间的成像光路中。这样,将滤光结构231与成像传感器22集成在一起,以形成切换滤光传感器,能够保证滤光结构231与成像传感器22之间的相对位置的稳定,保证滤光结构231与成像传感器22之间的光路准确性。同时能够通过传感器壳体24对滤光结构231和成像传感器22进行防水、防尘保护。
在一些实施例中,镜头21的像侧端与入光口25处的传感器壳体24的边沿一周之间可以通过C接口、CS接口或者F接口连接。这样,滤光结构231和成像传感器22集成后的结构可以与现有的镜头匹配连接,因此无需重新设计镜头,从而节省了摄像机的制作成本。
为了便于滤光结构231在传感器壳体24内的安装与拆卸,在一些实施例中,如图18所示,传感器壳体24包括主壳体241和第二盖体242,主壳体241的一端设有开口243,成像传感器22和滤光结构231可以由该开口243安装于主壳体241内,第二盖体242盖设于该开口243处并与主壳体241可拆卸连接。这样,便于滤光结构231在传感器壳体24内的安装与拆卸,以利于滤光结构231的更换或维修。
本申请还提供了一种摄像机的控制方法,该控制方法用于控制如上任一实施例所述的摄像机,该摄像机包括设置于成像光路中的滤光结构231,该滤光结构231能够在第 一状态与第二状态之间切换,当滤光结构231处于第一状态时,滤光结构231允许成像光路中的可见光通过,当滤光结构231处于第二状态时,滤光结构231仅允许成像光路中的红外光通过。图20为本申请一些实施例提供的摄像机的控制方法的流程图,如图20所示,该控制方法包括:
S100:控制滤光结构231在第一状态与第二状态之间切换;
S200:通过成像光路中的成像传感器22在滤光结构231处于第一状态时进行彩色帧曝光,以获得可见光图像,通过成像光路中的成像传感器22在滤光结构231处于第二状态时进行黑白帧曝光,以获得透雾图像;
S300:配准并融合该可见光图像和该透雾图像,以获得彩色的透雾图像。
这样,在雾霾天气,可以控制滤光结构231在第一状态与第二状态之间切换。由于当滤光结构231处于第一状态时,该滤光结构231允许成像光路中的可见光通过,因此,此时,可以获得表示色彩信息的可见光图像。由于当滤光结构231处于第二状态时,滤光结构231仅允许成像光路中的红外光通过,因此,此时,可以获得细节清晰的透雾图像。通过配准并融合可见光图像与透雾图像,可以输出细节清晰的彩色透雾图像。
在上述实施例中,成像传感器22根据滤光结构231的状态确定彩色帧曝光的时间和黑白帧曝光的时间,具体地,当滤光结构231处于第一状态时,成像传感器22获取图像,并对该图像进行彩色帧曝光,以得到可见光图像;当滤光结构231处于第二状态时,成像传感器22获取图像,并对该图像进行黑白帧曝光,以得到透雾图像。配准并融合该可见光图像和透雾图像,可以获得彩色的透雾图像。为了确定成像传感器22的彩色帧曝光的时间和黑白帧曝光的时间,就需要知道滤光结构231所处的状态。
当滤光结构231为电控吸光材料时,可以通过控制器同步控制滤光结构231进行状态切换、以及成像传感器22进行彩色帧曝光或者黑白帧曝光,此控制过程简单,在此不赘述。
当滤光结构231包括第一滤光部分231a和第二滤光部分231b时,滤光结构231需要运动才能实现第一状态与第二状态之间的切换。此时,为了确定成像传感器22的彩色帧曝光的时间和黑白帧曝光的时间,就需要知道滤光结构231的运动位置。为了获取滤光结构231的运动位置,并根据滤光结构231的运动位置确定成像传感器22的彩色帧曝光的时间和黑白帧曝光的时间,在一些实施例中,如图11所示,摄像机2还包括位置检测装置26和控制器27。
位置检测装置26用于检测滤光结构231的运动位置。位置检测装置26可以为光电式位置传感器、霍尔式位置传感器等等,在此不做具体限定。控制器27与位置检测装置26、成像传感器22均连接,控制器27用于根据位置检测装置26的检测结果,确定彩色帧曝光的时间和黑白帧曝光的时间,并控制成像传感器22在彩色帧曝光的时间进行彩色帧曝光,在黑白帧曝光的时间进行黑白帧曝光,以实现彩色帧曝光和黑白帧曝光的自动化控制。
在一些实施例中,如图11所示,位置检测装置26为光电耦合器,光电耦合器为光电式位置传感器中的一种。光电耦合器包括互不干扰的发光源和受光器,可选地,发光源为发光二极管,受光器为光敏二极管、光敏三极管等等。在工作时,发光源发出光线以照射被测物体,该光线被被测物体反射后,能够被受光器接收,受光器将接收到的光 线转换成电信号输出。
在采用光电耦合器检测滤光结构231的运动位置时,光电耦合器与成像传感器22相对固定,光电耦合器的发光源持续向驱动装置的动子发射光线,动子能够反射光线,光电耦合器的受光器持续接收光线。驱动装置232的动子的某一位置上设有遮挡物28,遮挡物28能够随着动子运动,且遮挡物28对发光源发出的光线的反射率与动子对发光源发出的光线的反射率不同。当动子运动至第一预设位置时,遮挡物28运动至与发光源的出光面相对的位置,此时,受光器接收到光信号的强度产生变化,由此,可以获取滤光结构231当前所处的位置,并记录为起始位置。控制器27根据该起始位置、遮挡物28与第一滤光部分231a之间的相对位置、以及动子的运动轨迹和运动速度,可以确定滤光结构231移动至第一状态的时间,该滤光结构231移动至第一状态的时间也即是彩色帧曝光的时间,由此能够确定彩色帧曝光的时间。同样地,控制器27根据起始位置、遮挡物28与第二滤光部分231b之间的相对位置、以及驱动装置232的动子的运动轨迹和运动速度,可以确定滤光结构231处于第二状态的时间,该滤光结构231处于第二状态的时间也即是黑白帧曝光的时间,由此能够确定黑白帧曝光的时间。其中,遮挡物28的颜色可以为黑色、白色等等,在此不做具体限定。只要遮挡物28对发光源发出的光线的反射率与动子对发光源发出的光线的反射率不同即可。
在一些实施例中,如图12所示,光电耦合器的发光源也可以持续向滤光结构231发射光线,光电耦合器的受光器持续接收光,滤光结构231的某一位置上设有遮挡物28,遮挡物28能够随着滤光结构231运动,且遮挡物28对发光源发出的光线的反射率与滤光结构231对发光源发出的光线的反射率不同。当滤光结构231运动至第一预设位置时,遮挡物28运动至与发光源的出光面相对的位置,此时,受光器接收到光信号的强度产生变化,由此,可以获取滤光结构231当前所处的位置,并记录为起始位置。其中,遮挡物28的颜色可以为黑色、白色等等,在此不做具体限定。只要遮挡物28对发光源发出的光线的反射率与滤光结构231对发光源发出的光线的反射率不同即可。
在本说明书的描述中,具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (21)

  1. 一种滤光结构,用于设置于摄像机的成像光路中,其特征在于,所述滤光结构能够在第一状态与第二状态之间切换,当所述滤光结构处于所述第一状态时,所述滤光结构允许所述成像光路中的可见光通过,当所述滤光结构处于所述第二状态时,所述滤光结构仅允许所述成像光路中的红外光通过。
  2. 根据权利要求1所述的滤光结构,其特征在于,所述滤光结构包括第一滤光部分和第二滤光部分,所述第一滤光部分允许可见光通过,所述第二滤光部分仅允许红外光通过;
    当所述滤光结构处于所述第一状态时,所述第一滤光部分位于所述成像光路中,当所述滤光结构处于所述第二状态时,所述第二滤光部分位于所述成像光路中。
  3. 根据权利要求2所述的滤光结构,其特征在于,所述第一滤光部分还阻止红外光通过。
  4. 根据权利要求2或3所述的滤光结构,其特征在于,所述滤光结构为圆形滤光片;
    所述第一滤光部分为所述滤光结构上的第一扇形部分;
    所述第二滤光部分为所述滤光结构上的第二扇形部分。
  5. 根据权利要求4所述的滤光结构,其特征在于,所述第一滤光部分包括第一透光基板和第一滤光膜,所述第一滤光膜设置于所述第一透光基板的入光面或者出光面,所述第一滤光膜允许可见光通过。
  6. 根据权利要求5所述的滤光结构,其特征在于,所述第二滤光部分包括第二透光基板和第二滤光膜,所述第二滤光膜设置于所述第二透光基板的入光面或者出光面,所述第二滤光膜仅允许红外光通过。
  7. 根据权利要求6所述的滤光结构,其特征在于,所述第一透光基板与所述第二透光基板一体成型。
  8. 根据权利要求4~7中任一项所述的滤光结构,其特征在于,所述滤光结构还包括遮光部分,所述遮光部分用于遮挡部分光;
    所述遮光部分为所述滤光结构上的第三扇形部分。
  9. 根据权利要求8所述的滤光结构,其特征在于,所述遮光部分包括第三透光基板和黑色半透明遮光膜,所述黑色半透明遮光膜设置于所述第三透光基板的入光面或者出光面。
  10. 根据权利要求4~9中任一项所述的滤光结构,其特征在于,所述滤光结构还包括全透光部分,所述全透光部分允许所有光线通过;
    所述全透光部分为所述滤光结构上的第四扇形部分。
  11. 根据权利要求10所述的滤光结构,其特征在于,所述全透光部分为透明玻璃。
  12. 一种切换滤光镜头,其特征在于,包括:
    镜筒,包括沿自身轴向排列的第一镜筒段和第二镜筒段;
    光学镜片组,包括至少一个光学镜片,所述光学镜片组安装于所述第一镜筒段内;
    滤光结构,为权利要求1~11中任一项所述的滤光结构,所述滤光结构安装于所述第二镜筒段内,并位于所述镜筒内的成像光路中;
    驱动装置,与所述滤光结构连接,所述驱动装置用于驱动所述滤光结构在第一状态与所述第二状态之间切换。
  13. 根据权利要求12所述的切换滤光镜头,其特征在于,所述第二镜筒段位于所述第一镜筒段的像侧。
  14. 根据权利要求12所述的切换滤光镜头,其特征在于,所述第一镜筒段包括第一子镜筒段和第二子镜筒段,所述第一子镜筒段和所述第二子镜筒段分别位于所述第二镜筒段的相对两侧;
    所述光学镜片组包括多个光学镜片,所述多个光学镜片中的一部分数量的光学镜片安装于所述第一子镜筒段内,所述多个光学镜片中的另一部分数量的光学镜片安装于所述第二子镜筒段内。
  15. 根据权利要求12~14中任一项所述的切换滤光镜头,其特征在于,所述第二镜筒段包括镜筒段主体和盖体;
    所述镜筒段主体与所述第一镜筒段连接,所述镜筒段主体上设有开口,所述滤光结构能够由所述开口安装于所述镜筒段主体内,所述盖体盖设于所述开口处,且所述盖体与所述镜筒段主体可拆卸连接。
  16. 一种切换滤光传感器,其特征在于,包括:
    传感器壳体,设有入光口;
    成像传感器,设置于所述传感器壳体内,所述成像传感器的感光面与所述入光口相对;
    滤光结构,为权利要求1~11中任一项所述的滤光结构,所述滤光结构安装于所述传感器壳体内,并位于所述入光口与所述成像传感器之间的成像光路中;
    驱动装置,与所述滤光结构连接,所述驱动装置用于驱动所述滤光结构在第一状态与所述第二状态之间切换。
  17. 一种摄像机,其特征在于,包括:
    镜头;
    成像传感器,设置于所述镜头的像侧;
    滤光结构,为权利要求1~11中任一项所述的滤光结构,所述滤光结构位于所述摄像机的成像光路中,且所述滤光结构位于所述镜头的物侧端,或者位于所述镜头与所述成像传感器之间;
    驱动装置,与所述滤光结构连接,所述驱动装置用于驱动所述滤光结构在第一状态与所述第二状态之间切换。
  18. 一种摄像机,其特征在于,包括:
    切换滤光镜头,为权利要求12~15中任一项所述的切换滤光镜头;
    成像传感器,设置于所述切换滤光镜头的像侧,且所述成像传感器的感光面与所述切换滤光镜头的像侧面相对。
  19. 一种摄像机,其特征在于,包括:
    镜头;
    切换滤光传感器,为权利要求16所述的切换滤光传感器,所述镜头位于所述切换滤光传感器的传感器壳体外,所述镜头的像侧端与所述传感器壳体的入光口的边沿一周 连接,所述镜头的像侧面与所述入光口相对。
  20. 一种电子设备,其特征在于,包括权利要求17~19中任一项所述的摄像机。
  21. 一种摄像机的控制方法,其特征在于,所述摄像机包括设置于成像光路中的滤光结构,所述滤光结构能够在第一状态与第二状态之间切换,当所述滤光结构处于所述第一状态时,所述滤光结构允许所述成像光路中的可见光通过,当所述滤光结构处于所述第二状态时,所述滤光结构仅允许所述成像光路中的红外光通过,所述控制方法包括:
    控制所述滤光结构在所述第一状态与所述第二状态之间切换;
    通过所述成像光路中的成像传感器在所述滤光结构处于所述第一状态时进行彩色帧曝光,以获得可见光图像,通过所述成像光路中的成像传感器在所述滤光结构处于所述第二状态时进行黑白帧曝光,以获得透雾图像;
    配准并融合所述可见光图像和所述透雾图像,以获得彩色的透雾图像。
PCT/CN2021/092888 2020-06-22 2021-05-10 滤光结构、镜头、传感器、摄像机、电子设备和控制方法 WO2021258880A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010575505.6A CN113905149A (zh) 2020-06-22 2020-06-22 滤光结构、镜头、传感器、摄像机、电子设备和控制方法
CN202010575505.6 2020-06-22

Publications (1)

Publication Number Publication Date
WO2021258880A1 true WO2021258880A1 (zh) 2021-12-30

Family

ID=79186420

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/092888 WO2021258880A1 (zh) 2020-06-22 2021-05-10 滤光结构、镜头、传感器、摄像机、电子设备和控制方法

Country Status (2)

Country Link
CN (1) CN113905149A (zh)
WO (1) WO2021258880A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115297250A (zh) * 2022-09-30 2022-11-04 北京市农林科学院信息技术研究中心 图像采集装置、方法、电子设备及存储介质

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114650359A (zh) * 2022-03-22 2022-06-21 维沃移动通信有限公司 摄像模组以及电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4974076A (en) * 1986-11-29 1990-11-27 Olympus Optical Co., Ltd. Imaging apparatus and endoscope apparatus using the same
TW200935025A (en) * 2008-02-05 2009-08-16 Asia Optical Co Inc Image-capturing system and method of capturing marked image
CN203788357U (zh) * 2013-12-27 2014-08-20 东莞市远峰科技有限公司 一种摄像头
CN109716758A (zh) * 2016-09-21 2019-05-03 Esca(创意联盟电子安全)株式会社 使用对能见度状态的改变具有鲁棒性的复合滤波法的监控相机和采用其的视频监控系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101556365A (zh) * 2008-04-11 2009-10-14 鸿富锦精密工业(深圳)有限公司 镜头模组
CN105678215A (zh) * 2015-12-28 2016-06-15 北京天诚盛业科技有限公司 成像模组、成像装置和移动终端
CN210093336U (zh) * 2019-07-05 2020-02-18 杭州海康威视数字技术股份有限公司 摄像机的滤光装置及摄像机
CN111175965B (zh) * 2020-02-28 2023-05-09 中国科学院上海技术物理研究所 一种基于滤光片轮转动成像的红外成像系统及成像方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4974076A (en) * 1986-11-29 1990-11-27 Olympus Optical Co., Ltd. Imaging apparatus and endoscope apparatus using the same
TW200935025A (en) * 2008-02-05 2009-08-16 Asia Optical Co Inc Image-capturing system and method of capturing marked image
CN203788357U (zh) * 2013-12-27 2014-08-20 东莞市远峰科技有限公司 一种摄像头
CN109716758A (zh) * 2016-09-21 2019-05-03 Esca(创意联盟电子安全)株式会社 使用对能见度状态的改变具有鲁棒性的复合滤波法的监控相机和采用其的视频监控系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115297250A (zh) * 2022-09-30 2022-11-04 北京市农林科学院信息技术研究中心 图像采集装置、方法、电子设备及存储介质

Also Published As

Publication number Publication date
CN113905149A (zh) 2022-01-07

Similar Documents

Publication Publication Date Title
WO2021258880A1 (zh) 滤光结构、镜头、传感器、摄像机、电子设备和控制方法
CN206650741U (zh) 一种共轴图像融合装置
KR100493490B1 (ko) 비디오카메라
CN201672917U (zh) 水下光学云台扫描成像观测装置
US20150277000A1 (en) Domed surveillance camera including means for blocking scattered reflection and stray light
WO2017008693A1 (zh) 一种摄像装置及其保护罩
CN208369689U (zh) 一种分光摄像装置
CN109089019A (zh) 细节摄像头及全景细节摄像机
CN211457203U (zh) 一种双目摄像机
CN104849829A (zh) 一种镜头及拍摄设备
KR100360322B1 (ko) 다방향 촬영카메라장치
CN211209783U (zh) 一种防逆光摄像装置
CN113031367A (zh) 一种多光谱镜头和多光谱摄像机
CN204859348U (zh) 镜头、摄像机以及包裹检测系统
CN204613497U (zh) 一种镜头及拍摄设备
CN107682599A (zh) 一种双模式摄像模组
JP2007121738A (ja) 位置検出装置およびこれを備えたレンズ鏡筒
CN216531542U (zh) 一种转镜式图像采集装置
CN201345025Y (zh) 长焦高空航空相机
CN110381231A (zh) 一种分光摄像装置
WO2022147926A1 (zh) 一种杂散光遮蔽结构、包含其的超微距成像模块
WO2018228278A1 (zh) 全景细节摄像机
CN113079290A (zh) 摄像头模组及电子设备
CN220440789U (zh) 一种折反射分光式双传感器相机
CN213126152U (zh) 光路改变组件、感光组件、镜头组件、摄像模组及终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21828403

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21828403

Country of ref document: EP

Kind code of ref document: A1