WO2018228278A1 - 全景细节摄像机 - Google Patents

全景细节摄像机 Download PDF

Info

Publication number
WO2018228278A1
WO2018228278A1 PCT/CN2018/090371 CN2018090371W WO2018228278A1 WO 2018228278 A1 WO2018228278 A1 WO 2018228278A1 CN 2018090371 W CN2018090371 W CN 2018090371W WO 2018228278 A1 WO2018228278 A1 WO 2018228278A1
Authority
WO
WIPO (PCT)
Prior art keywords
camera
plane mirror
lens group
axis
light
Prior art date
Application number
PCT/CN2018/090371
Other languages
English (en)
French (fr)
Inventor
陈艳婷
刘建康
刘志宇
孙明东
Original Assignee
杭州海康威视数字技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201710447625.6A external-priority patent/CN109089019A/zh
Priority claimed from CN201720688305.5U external-priority patent/CN207166624U/zh
Application filed by 杭州海康威视数字技术股份有限公司 filed Critical 杭州海康威视数字技术股份有限公司
Publication of WO2018228278A1 publication Critical patent/WO2018228278A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/18Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors
    • G02B7/182Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors
    • G02B7/198Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors with means for adjusting the mirror relative to its support
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof

Definitions

  • the present application relates to the field of security monitoring, and in particular to a panoramic detail camera.
  • the panoramic detail camera is a surveillance camera that meets the needs of large viewing angle monitoring.
  • the panoramic detail camera may include: a first camera and a second camera, the first camera may be a telephoto camera, and the second camera may be a wide-angle camera.
  • a plurality of second cameras can be generally set, each second camera monitors a certain monitoring range, and splicing each second camera monitoring screen into one picture, thereby expanding the monitoring range of the panoramic detail camera;
  • a camera is used to monitor objects farther away from the panoramic camera, so that the monitored image containing the object has a better display effect.
  • the panoramic detail camera also needs to be provided with a rotating component such that the first camera can capture an image of any of the images acquired by the second camera.
  • the rotating component needs to drive the first camera to rotate, which results in a large driving quality of the rotating component, and the rotating component is difficult to realize the accurate positional rotation of the first camera, so the driving precision of the rotating component is low, thereby leading to the panoramic view.
  • the reliability of the detail camera is low.
  • the present application provides a panoramic detail camera that can solve the problem of low reliability of current panoramic detail cameras.
  • the technical solution is as follows:
  • a panoramic detail camera comprising:
  • the first camera comprising a first lens group
  • the first camera faces a reflecting surface of the plane mirror, and the plane mirror is configured to reflect external light into the first lens group to enable the first camera to acquire an image of the first region;
  • Rotating assembly the rotating component is fixedly connected to the plane mirror, and the rotating component is configured to drive the plane mirror to rotate about the first axis;
  • the rotating driving structure is fixedly connected to a bottom surface of the plane mirror, and a bottom surface of the plane mirror is a side facing away from the reflecting surface for driving the plane mirror to rotate about a second axis, the first axis and The second axis is vertical;
  • a second camera wherein the second camera is configured to acquire an image of the second area, and a focal length of the second camera is smaller than a focal length of the first camera.
  • the first axis is perpendicular to a plane of the first lens group, the surface of the first lens group is perpendicular to an optical axis of the first lens group; and the first camera is first
  • the optical axis of the lens group is a first optical axis, the first optical axis coincides with the first axis, and the first optical axis is perpendicular to the second axis.
  • an angle between a reflecting surface of the plane mirror and a surface of the first lens group is an acute angle
  • the rotating driving structure is configured to change a reflecting surface of the plane mirror and a surface of the first lens group
  • the first camera further includes: a first housing, the first lens group is disposed in the first housing;
  • the first housing is movably coupled to the rotating assembly.
  • the first camera further includes: a second housing and a second lens group, wherein the second lens group is disposed in the second housing;
  • the plane mirror and the rotating assembly are disposed between the second lens group and the first lens group, and the second housing is fixedly coupled to the plane mirror.
  • an optical axis of the second lens group of the first camera is a second optical axis, and an intersection of the second optical axis and the first optical axis is located on a reflective surface of the plane mirror, and The normal of the reflecting surface of the plane mirror is symmetrical.
  • the first camera further includes: a reflective component
  • the reflective component includes: n prisms and/or m plane mirrors, wherein n and the m are integers greater than or equal to 1;
  • the reflective component is disposed in the first housing and located between the first lens group and the rotating component, and the reflective component is configured to convert an optical path between the planar mirror and the image processing lens set .
  • the panoramic detail camera further includes: a third housing, the third housing is fastened outside the plane mirror, and the third housing is provided with a first opening and a second opening, and the light can be Injecting from the first opening to the plane mirror, and being reflected by the plane mirror and transmitted to the first camera through the second opening;
  • the rotating assembly is disposed around the second opening and is fixedly coupled to an outer portion of the third housing, and an inner portion of the third housing is fixedly coupled to the plane mirror.
  • the first axis is parallel to a surface of the first lens group, and a surface of the first lens group is perpendicular to an optical axis of the first lens group;
  • the optical axis passes through an intersection of the first axis and the second axis.
  • the orientation of the first camera is perpendicular to the orientation of the second camera
  • the first camera is a telephoto camera or a zoom camera
  • the second camera is a wide-angle camera.
  • the rotary driving structure includes: a rotating shaft and a first driving motor
  • the rotating shaft is fixedly connected to a bottom surface of the plane mirror, and an axis of the rotating shaft coincides with the second axis;
  • the first driving motor is coupled to at least one end of the rotating shaft for driving the rotating shaft to rotate.
  • the rotating component comprises: a second driving motor, and an output shaft of the second driving motor is fixedly connected to the plane mirror.
  • the panoramic detail camera further includes: a fill light component
  • the fill light assembly includes: a first fill light and a second fill light, wherein a fill light range of the first fill light is greater than or equal to a monitoring range of the first image head, and the second fill light The fill light range is greater than or equal to the monitoring range of the second camera;
  • the first fill light is an infrared light having a wavelength of 730 nm
  • the second fill light is an infrared light having a wavelength of 850 nm.
  • the first camera is provided with a first filter component
  • the second camera is provided with a second filter component
  • the first filter assembly is configured to filter infrared light for a preset period of time
  • the second filter component is configured to filter infrared light during the preset time period, and filter the light emitted by the first fill light outside the preset time period, the ambient light in the preset time period It is stronger than the ambient light intensity outside the preset time period.
  • an orthographic projection of the reflective surface of the plane mirror on a surface of the first lens group covers a surface of the first lens group, and a surface of the first lens group is perpendicular to the first surface The optical axis of the lens set.
  • another panoramic detail camera including:
  • the first camera comprising a first lens group
  • the first camera faces a reflective surface of the prism, and the prism is configured to reflect external light into the first lens group to enable the first camera to acquire an image of the first region;
  • Rotating assembly the rotating assembly is fixedly coupled to the prism, the rotating assembly is configured to drive the prism to rotate about a first axis;
  • a second camera wherein the second camera is configured to acquire an image of the second area, and a focal length of the second camera is smaller than a focal length of the first camera.
  • an angle between a reflecting surface of the prism and a surface of the first lens group is an acute angle, and a surface of the first lens group is perpendicular to an optical axis of the first lens group.
  • the prism is a triangular prism
  • a top angle of the triangular prism is a right angle
  • a bottom surface of the triangular prism is the reflective surface
  • the first axis is perpendicular to the second axis
  • the plane mirror is used for reflecting external light into the first lens group, when When the plane mirror rotates, the first camera can capture images at different positions, and since the rotating component and the rotary driving structure only drive the plane mirror to rotate, the driving quality of the rotating component and the rotating driving structure can be effectively reduced, so that the rotating component and the rotating driving structure are The accurate positional rotation of the plane mirror can be realized, thereby effectively improving the driving precision of the rotating component and the rotary driving structure, thereby improving the reliability of the panoramic detail camera.
  • FIG. 1 is a schematic structural diagram of a panoramic detail camera provided by an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of another panoramic detail camera provided by an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of still another panoramic detail camera according to an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of still another panoramic detail camera provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a panoramic detail camera according to another embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of another panoramic detail camera according to another embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of still another panoramic detail camera according to another embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of still another panoramic detail camera according to another embodiment of the present application.
  • FIG. 9 is a flowchart of a method for controlling a panoramic detail camera according to an embodiment of the present application.
  • FIG. 10 is an effect diagram of an image of a second area collected by a second camera in the panoramic detail camera provided by the embodiment of the present application;
  • FIG. 11 is an effect diagram of determining a target image in an image of a second region provided by an embodiment of the present application.
  • FIG. 12 is an effect diagram of an image of a first area captured by a first camera in a panoramic detail camera according to an embodiment of the present application.
  • FIG. 1 is a schematic structural diagram of a panoramic detail camera according to an embodiment of the present application.
  • the panoramic detail camera may include:
  • the first camera 10, the plane mirror 20, the rotating assembly 30, the rotary drive structure 40 and the second camera (not shown in Fig. 1).
  • the first camera 10 can include a first lens set 11.
  • the plane mirror 20 has a reflecting surface A1, and the first camera 10 faces the reflecting surface A1 of the plane mirror 20 for reflecting external light into the first lens group 11.
  • the first camera 10 may further include an image sensor 12, which can condense the incident light and transmit it to the image sensor 12, and the image sensor 12 can The light received by the first lens group 11 is converted into an electrical signal, thereby enabling the first camera 10 to acquire an image of the first region.
  • the rotating assembly 10 is fixedly coupled to the plane mirror 20 for driving the plane mirror 20 to rotate about the first axis L1.
  • the rotation driving structure 40 is fixedly connected to the bottom surface A2 of the plane mirror 20.
  • the bottom surface A2 of the plane mirror 20 is a side facing away from the reflecting surface A1.
  • the rotating driving structure 40 is used to drive the plane mirror 20 to rotate about the second axis L2. It is perpendicular to the second axis L2.
  • the second camera is configured to acquire an image of the second area, and a focal length of the second camera is smaller than a focal length of the first camera 10.
  • a plurality of second cameras may be disposed in the panoramic detail camera in the embodiment of the present application, and the monitoring images of each second camera are spliced into one picture, so that the panoramic detail camera can be The monitoring range becomes 360 degrees.
  • the imaging principle of the camera when the focal length of the camera is larger, the viewing angle of the camera is smaller, that is, the monitoring range of the camera is smaller; when the focal length of the camera is smaller, the angle of view of the camera is larger, that is, the camera is The greater the scope of monitoring. Since the focal length of the first camera 10 is greater than the focal length of the second camera, the monitoring range of the first camera 10 is smaller than the monitoring range of the second camera, so that the first region is located in the second region.
  • the reflecting surface A1 can reflect the image at different positions in the first direction x, therefore, The first camera 10 can capture images at different locations in the first direction x.
  • the rotating assembly 30 can drive the plane mirror 20 to rotate 360 degrees about the first axis L1. Therefore, the first camera 10 can achieve a 360-degree monitoring range in the first direction x.
  • the rotary drive structure 40 can drive the plane mirror 20 to rotate 180 degrees about the second axis L2. Therefore, the first camera 10 can achieve a monitoring range of 180 degrees in the second direction y.
  • the panoramic detail camera rotates the plane mirror about the first axis by rotating the component, and rotates the plane mirror to rotate about the second axis by the rotation driving structure.
  • the first axis is perpendicular to the second axis
  • the plane mirror is perpendicular to the second axis.
  • the utility model is configured to reflect external light into the first lens group.
  • the first camera can capture images at different positions. Since the rotating component and the rotary driving structure only drive the mirror rotation, the rotating component can be effectively reduced. And the driving quality of the rotary driving structure, the rotating component and the rotating driving structure can realize the accurate positional rotation of the plane mirror, thereby effectively improving the driving precision of the rotating component and the rotating driving structure, thereby improving the reliability of the panoramic detail camera.
  • the relative positional relationship between the plane mirror and the first camera has various achievable manners.
  • the first axis may be perpendicular to the plane of the first lens group, and the surface of the first lens group
  • the optical axis of the first lens group is perpendicular to the optical lens of the first lens group.
  • the first axis is also parallel to the surface of the first lens group.
  • the optical axis of the first lens group 11 in the first camera 10 is the first optical axis L3.
  • the first optical axis L3 may coincide with the first axis L1, and the first optical axis L3 is also perpendicular to the second axis L2.
  • the angle between the reflecting surface A1 of the plane mirror 20 and the surface B of the first lens group 11 is an acute angle
  • the rotating driving structure 40 can drive the plane mirror 20 to rotate about the second axis L2.
  • the angle between the reflecting surface A2 of the plane mirror 20 and the surface B of the first lens group 11 is changed, so that the first camera 10 can capture images at different positions in the second direction y.
  • the second axis L2 is parallel to the face B of the first lens group 11 and is parallel to the reflection surface A2.
  • the first camera 10 may further include: a first housing 13 , the first lens group 11 may be disposed in the first housing 13 , and the first housing 13 may be rotated Component 30 is actively connected.
  • the rotating assembly 30 drives the plane mirror 20 to rotate, the first housing 13 can be moved relative to the plane mirror 20, so that the first camera 10 can capture images at different positions in the first direction x.
  • the first camera may further include a third housing 50, and the third housing 50 may be buckled outside the plane mirror 20, the first The first housing 51 and the second opening 52 are disposed on the three housings 50.
  • the area of each opening may be less than or equal to the area of the housing wall to which the opening belongs.
  • Light can be incident from the first opening 51 to the plane mirror 20, and the plane mirror is The reflection 20 is transmitted to the first camera 10 through the second opening 52.
  • the rotating assembly 30 is disposed around the second opening 52 and is fixedly connected to the outside of the third housing 50.
  • the inside of the third housing 50 is fixedly connected to the plane mirror 20, and in FIG.
  • the inside of the third housing 20 and the plane mirror 20 are The fixed connection is made by the rotary drive structure 40, thereby realizing the fixed connection between the plane mirror 20 and the rotating assembly 30 under the premise that the mirror 20 can rotate about the axis L2.
  • the third housing 50 can also reduce the influence of the external environment, such as dust or rain, on the first camera 10 or the plane mirror 20, so that the first camera 10 acquires The image is displayed well.
  • the first camera 10 may further include: a second housing 14 and a second lens group 15 , and the second lens group 15 may be disposed in the second housing 14 .
  • the plane mirror 20 and the rotating assembly 30 may be disposed between the second lens group 15 and the first lens group 11, and the second housing 14 may be fixedly coupled to the plane mirror 20.
  • the second housing 14 can also be fixedly connected to the rotating driving structure 40, which is not specifically limited in this embodiment of the present application.
  • the second lens group 15 can condense the incident light and then hit the reflective surface A1 of the plane mirror 20.
  • the second housing 14 Since the second housing 14 is fixedly coupled to the plane mirror 20 (or the rotary driving structure 40), while the rotary driving structure 40 drives the plane mirror 20 to rotate about the second axis L2, or the rotating assembly 30 drives the plane mirror 20 to rotate about the first axis L1. At the same time, the second housing 14 also rotates, so that the second lens group 15 can rotate with the rotation of the plane mirror 20.
  • FIG. 3 is an example of an example in which the angle between the reflecting surface A1 of the plane mirror 20 and the surface B of the first lens group 11 is 45 degrees.
  • the reflecting surface A1 of the plane mirror 20 is rotated to an angle of 60 degrees with respect to the face B of the first lens group 11, the positional relationship between the second lens group 15 and the plane mirror 22 is as shown in FIG.
  • the first camera 10 may further include a reflective component 16, which may include n prisms and/or m plane mirrors, n and m are greater than or equal to 1
  • the reflective component 16 can also be disposed in the first housing 13 between the first lens group 11 and the rotating assembly 30 for turning the plane mirror 20 and the second lens group 15 The light path between.
  • the second reflection assembly 16 includes a prism 161.
  • the second reflection assembly 16 includes a plane mirror 162.
  • the optical axis of the second lens group 15 of the first camera 10 is the second optical axis L4, and the first optical axis L3 and the second optical axis L4 are the most Adjacent to the two optical axes of the plane mirror 20, the intersection of the second optical axis L4 and the first optical axis L1 is located on the reflecting surface A1 of the plane mirror 10, and is symmetrical with respect to the normal to the reflecting surface A1 of the plane mirror 10.
  • FIG. 3 to FIG. 6 are each illustrated by taking the first axis L1 and the first optical axis L3 as an example.
  • the optical axis L3 may not be overlapped, which is not limited by the embodiment of the present application.
  • the optical axis L0 of the first camera 10 can pass through the first axis L1 and the second axis L2. The intersection.
  • the plane mirror 20 may be an axisymmetric structure.
  • the plane mirror 20 is a rectangular plane mirror or a circular plane mirror, and the second axis L2 may coincide with the axis of symmetry of the plane mirror 20.
  • FIG. 2 and FIG. 7 are schematic diagrams in which the second axis L2 is the symmetry axis of the plane mirror 20 and the second axis L2 intersects the first axis L1.
  • the second The axis may not coincide with the axis of symmetry of the plane mirror, or the second axis does not intersect the first axis.
  • the second axis L2 may be on the end of the plane mirror near the rotating component 30. There is no limit to this.
  • the rotary driving structure 40 may include: a rotating shaft (not labeled in FIGS. 2 to 7 ) and a first driving motor (not labeled in FIGS. 2 to 7 ), the rotation The shaft is fixedly coupled to the bottom surface A2 of the plane mirror 20, and the axis of the rotation shaft coincides with the second axis L2.
  • the first driving motor is coupled to at least one end of the rotating shaft for driving the rotating shaft to rotate, thereby enabling the plane mirror 20 to automatically rotate about the second axis L2.
  • the rotating component 30 may include a second driving motor 31 (not labeled in FIGS. 2 to 6 ), and an output shaft of the second driving motor 31 may be fixedly connected to the plane mirror 20 .
  • the output shaft of the second driving motor can be fixedly connected with the third housing 50 , so that a fixed connection between the output shaft of the second motor and the plane mirror 20 can be realized;
  • the rotating component 30 can further include a connecting rod 32.
  • One end of the connecting rod 32 can be fixedly connected to the plane mirror 20.
  • the other end of the connecting rod 32 can be fixedly connected with the output shaft of the second driving motor 31, so that the second can be realized.
  • the panoramic detail camera may further include: a fill light component.
  • the fill light component 70 may include a first fill light 71 and a second fill light 72.
  • the fill light range of the light 71 is greater than or equal to the monitoring range of the first camera 10
  • the fill light range of the second fill light 72 is greater than or equal to the monitoring range of the second camera 80. Since the fill light range of the two fill lamps in the fill light assembly 70 is greater than or equal to the monitoring range of the corresponding camera, the light efficiency utilization of the fill light assembly 70 is effectively improved.
  • the first fill light can be an infrared light having a wavelength of 730 nanometers
  • the second fill light can be an infrared light having a wavelength of 850 nanometers.
  • a first filter component may be disposed on the first camera, and a second filter component may be disposed on the second camera.
  • the first filter component and the second filter component may both be dual filter switches, and the dual filter
  • the light sheet switcher may include two kinds of filters.
  • the first filter assembly may include: an infrared filter
  • the second filter assembly may include: an infrared filter and a filter.
  • a filter for the light emitted by the fill light, the filter for filtering the light emitted by the first fill light may be a filter for filtering infrared light having a wavelength of less than 850 nm.
  • the timer set in the panoramic detail camera may determine that the current time is within a preset time period or the current time is outside a preset time period, and the preset time period is based on an external environment.
  • the ambient light in the preset time is stronger than the ambient light intensity outside the preset time period, so the preset time period may be the corresponding time period of the day, for example, 7:00-19:00
  • the preset time period may be a time period corresponding to the night, for example, 00:00-7:00 and 19:00-24:00.
  • the first filter component and the second filter component can automatically load the infrared filter on the corresponding camera, thereby avoiding the infrared light to the panoramic view.
  • the detail camera captures the influence of the image, thereby avoiding the phenomenon that the panoramic detail camera acquires a red circle in the image.
  • the first filter component can automatically remove the infrared filter on the first camera, so that the first camera can obtain more light;
  • the filter assembly can automatically remove the infrared filter on the second camera and load a filter for filtering the light emitted by the first fill light, so that the second camera can obtain more light and avoid the flashlight phenomenon.
  • the flashlight phenomenon is a phenomenon in which a part of the image is irradiated with a strong light, and the flashlight is generated because the emission angle of the infrared light is much smaller than the shooting angle of the camera corresponding to the infrared light.
  • the image captured by the second camera is effectively prevented from generating a flashlight.
  • the manner in which the first filter component and the second filter component load different filters for the corresponding camera is determined by a timer.
  • the light intensity of the ambient light can also be obtained.
  • the brightness of the image is determined comprehensively, which is not limited by the embodiment of the present application.
  • the edges of the light-emitting surfaces of the first fill light and the second fill light are provided with foam, which can effectively avoid direct light refraction from the edge of the light-emitting surface of the fill light assembly.
  • foam In the first camera or the second camera, light pollution in the first camera and the second camera is avoided, so that the image obtained by the panoramic detail camera is better.
  • the image obtained by the panoramic detail camera can be displayed better at night or in the case of dim light.
  • the light-filling component can also be other structures.
  • the light-filling component can include: two white light fill lamps, and the light intensity of the two white light fill lamps can be the same, thereby effectively avoiding the first The image obtained by a camera or a second camera generates a flashlight phenomenon.
  • the structure of the fill light component is not limited in the embodiment of the present application.
  • the first camera 10 is oriented perpendicular to the orientation of the second camera 80; the first camera 10 may be a telephoto camera or a zoom camera, and the second camera 80 may be a wide-angle camera. .
  • the orthographic projection of the reflecting surface A1 of the plane mirror 20 on the surface B of the first lens group 11 covers the surface B of the first lens group 11 so that the first camera 10
  • the monitoring range is not greater than the reflection range of the reflection surface A1 of the plane mirror 20, so that the images that the first camera 10 can monitor are images reflected by the reflection surface B of the plane mirror 20, thereby avoiding the image collected by the first camera 10.
  • black corners There is a problem with black corners.
  • the rotating component in the panoramic detail camera drives the first camera to rotate, so the driving quality of the rotating component is large. Because the driving quality is large, the rotating component drives the first camera to rotate to a specified position, which takes a long time, so the driving efficiency of the rotating component is low; and because the driving quality is large, the inertia is large, and the first camera stops rotating. At this time, jitter may occur, which may result in poor display of images captured by the panoramic detail camera.
  • the rotating component since the rotating component only drives the mirror to rotate, the driving quality is effectively reduced. Since the driving quality is small, the time required for the rotating component to drive the plane mirror to the designated position is short, thereby effectively improving the driving efficiency of the rotating component; and because the driving quality is small, the inertia is small, and the plane mirror is generated when the rotation is stopped. The probability of jitter is low, which in turn makes the display of the image captured by the first camera better.
  • the panoramic detail camera rotates the plane mirror about the first axis by rotating the component, and rotates the plane mirror to rotate about the second axis by the rotation driving structure.
  • the first axis is perpendicular to the second axis
  • the plane mirror is perpendicular to the second axis.
  • the utility model is configured to reflect external light into the first lens group.
  • the first camera can capture images at different positions. Since the rotating component and the rotary driving structure only drive the mirror rotation, the rotating component can be effectively reduced. And the driving quality of the rotary driving structure, the rotating component and the rotating driving structure can realize the accurate positional rotation of the plane mirror, thereby effectively improving the driving precision of the rotating component and the rotating driving structure, thereby improving the reliability of the panoramic detail camera.
  • the panoramic detail camera may include:
  • the first camera 10, the prism 90, the rotating assembly 30 and the second camera (not shown in Fig. 1).
  • the first camera 10 can include a first lens set 11.
  • the prism 90 has a reflecting surface A3, and the first camera 10 faces the reflecting surface A3 of the prism 90, and the prism 90 is used for reflecting external light into the first lens group 11, so that the first camera 10 can acquire the first region. image.
  • the rotating assembly 10 is fixedly coupled to the prism 90 for rotating the prism 90 about the first axis L1.
  • the second camera is configured to acquire an image of the second area, and a focal length of the second camera is smaller than a focal length of the first camera 10.
  • the monitoring range of the first camera 10 is smaller than the monitoring range of the second camera such that the first area is located in the second area.
  • the reflection surface A3 of the prism 90 may be at an acute angle with the surface B of the first lens group 11 , and the surface B of the first lens group 11 is disposed on the first lens group.
  • the reflecting surface A3 in order to prevent the light from being refracted by the reflecting surface A3 of the prism 90, the reflecting surface A3 may be provided with a reflecting film 91. At this time, the light passing through the reflecting surface A3 of the prism 90 may be totally reflected. .
  • the prism 90 may be a triangular prism whose top angle is a right angle, and the reflecting surface A3 of the prism 90 is the bottom surface of the triangular prism.
  • the angle between the reflecting surface A3 of the prism 90 and the surface of the first lens group 11 can be selected according to actual needs. For example, when the monitoring range of the first camera 10 in the second direction y is determined, it can be determined. The angle between the reflecting surface A3 of the prism 21 and the surface B of the first lens group 11 is taken out.
  • the first axis is perpendicular to the plane of the first lens group, the surface of the first lens group is perpendicular to the optical axis of the first lens group; and the optical axis of the first lens group of the first camera is the first light a shaft, the first optical axis coincides with a first axis, the first optical axis being perpendicular to the second axis.
  • the first camera further includes: a first housing, the first lens group is disposed in the first housing; and the first housing is movably connected to the rotating component.
  • the first camera further includes: a reflective component; the reflective component includes: n prisms and/or m plane mirrors, n and m are integers greater than or equal to 1; the reflective component is disposed in the first housing, and Located between the first lens group and the rotating assembly, the reflective assembly is used for the optical path between the turning prism and the image processing lens set.
  • a reflective component includes: n prisms and/or m plane mirrors, n and m are integers greater than or equal to 1; the reflective component is disposed in the first housing, and Located between the first lens group and the rotating assembly, the reflective assembly is used for the optical path between the turning prism and the image processing lens set.
  • the orientation of the first camera is perpendicular to the orientation of the second camera; the first camera is a telephoto camera or a zoom camera, and the second camera is a wide-angle camera.
  • the rotating component comprises: a second driving motor, and an output shaft of the second driving motor is fixedly connected to the prism.
  • the panoramic detail camera further includes: a fill light component; the fill light component includes: a first fill light and a second fill light, and the fill light range of the first fill light is greater than or equal to the monitoring of the first image head Range, the fill light range of the second fill light is greater than or equal to the monitoring range of the second camera; the first fill light is an infrared light having a wavelength of 730 nm, and the second fill light is an infrared light having a wavelength of 850 nm.
  • the fill light component includes: a first fill light and a second fill light
  • the fill light range of the first fill light is greater than or equal to the monitoring of the first image head Range
  • the fill light range of the second fill light is greater than or equal to the monitoring range of the second camera
  • the first fill light is an infrared light having a wavelength of 730 nm
  • the second fill light is an infrared light having a wavelength of 850 nm.
  • the first camera is provided with a first filter component
  • the second camera is provided with a second filter component
  • the first filter component is configured to filter infrared light in a preset time period
  • the second filter The component is configured to filter the infrared light in a preset time period, and filter the light emitted by the first fill light outside the preset time period, and the ambient light in the preset time is stronger than the ambient light intensity outside the preset time period.
  • the orthographic projection of the reflective surface of the prism on the surface of the first lens group covers the surface of the first lens group, and the surface of the first lens group is perpendicular to the optical axis of the first lens group.
  • the working principle of the panoramic detail camera may refer to the corresponding content when the panoramic detail camera includes the plane mirror, which is not described herein again.
  • the panoramic detail camera rotates the prism around the first axis by rotating the component, and the prism is used to reflect external light into the first lens group.
  • the prism rotates, the first camera The image at different positions can be collected. Since the rotating component only drives the rotation of the prism, the driving quality of the rotating component can be effectively reduced, so that the rotating component can realize the accurate positional rotation of the prism, thereby effectively improving the driving precision of the rotating component. Thereby improving the reliability of the panoramic detail camera.
  • FIG. 9 is a flowchart of a method for controlling a panoramic detail camera according to an embodiment of the present application.
  • the method may be applied to the panoramic detail camera shown in FIG. 1 to FIG. 7, and the method may include the following step:
  • Step 901 Acquire an image of the second area by using the second camera.
  • the panoramic detail camera in the embodiment of the present application can realize a 360-degree monitoring range.
  • FIG. 10 is an effect diagram of an image of a second area captured by a second camera in the panoramic detail camera provided by the embodiment of the present application.
  • the image 01 of the second area may be collected by the panoramic detail camera.
  • the image 01 of the second region in FIG. 10 is only a partial image captured by the second camera in the panoramic detail camera.
  • Step 902 Determine a location of the target image that needs to be acquired in the image of the second region.
  • FIG. 11 is an effect diagram of determining a target image in an image of a second region provided by an embodiment of the present application. Since the vehicle 001 is far from the panoramic detail camera, the vehicle 002 is closer to the complete set of the detailed camera. The area in which the vehicle 001 in the image 01 of the second area is located may be determined as the target image 02.
  • Step 903 Determine a rotation angle of the plane mirror according to the position of the target image.
  • an angle of rotation of the plane mirror about the first axis and an angle of rotation about the second axis may be determined, so that the first lens group in the first camera may pass through the reflective surface of the plane mirror.
  • the reflected light captures the target image.
  • Step 904 controlling the rotating component and rotating the driving structure to rotate the plane mirror to enable the first camera to acquire the target image.
  • FIG. 12 is an effect diagram of an image of a first area captured by a first camera in a panoramic detail camera according to an embodiment of the present disclosure, which can control a rotating component to drive a plane mirror to rotate a specified position, and then pass the first camera.
  • the image 03 of the first area is collected, and the target image is located in the image 03 of the first area, and the display effect of the captured image 03 of the first area is better by the zoom function of the first camera itself, thereby making the target image The display is better.

Abstract

本申请提供了一种全景细节摄像机,涉及领域安全监控。该全景细节摄像机包括:第一摄像头,第一摄像头包括第一镜片组;平面镜,第一摄像头朝向平面镜的反射面,平面镜用于将外界光线反射至第一镜片组中,以使第一摄像头能够获取第一区域的图像;转动组件,转动组件与平面镜固定连接,转动组件用于带动平面镜绕第一轴线转动;旋转驱动结构,旋转驱动结构与平面镜的底面固定连接,平面镜的底面为背离反射面的一面,用于带动平面镜绕第二轴线转动,第一轴线与第二轴线垂直;第二摄像头,第二摄像头用于获取第二区域的图像,第二摄像头的焦距小于第一摄像头的焦距。通过驱动组件以及旋转驱动结构带动平面镜转动,提高了全景细节摄像机的可靠性。

Description

全景细节摄像机
本申请要求于2017年06月14日提交中国国家知识产权局,申请号为201710447625.6、发明名称为“细节摄像头及全景细节摄像机”,以及申请号为201720688305.5、发明名称为“抓拍装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及安全监控领域,特别涉及一种全景细节摄像机。
背景技术
随着电子通讯技术的飞速发展,监控范围可调节的监控摄像机及配套系统已经在各行各业有了广泛的应用,能够为场景提供实时监控以及录像,为后续的场景再现需求提供实现基础。
全景细节摄像机是一种满足大视角监控需求的监控摄像机,该全景细节摄像机可以包括:第一摄像头和第二摄像头,该第一摄像头可以为长焦摄像头,该第二摄像头可以为广角摄像头。在全景细节摄像机中通常可以设置多个第二摄像头,每个第二摄像头监控一定的监控范围,将每个第二摄像头监控画面拼接成一个画面,从而扩大了该全景细节摄像机的监控范围;第一摄像头用于监控距离全景细节摄像机较远的物体,使监控到的包含该物体的图像显示效果较好。该全景细节摄像机还需要设置转动组件,使得第一摄像头可以采集到第二摄像头所采集到的图像中的任一区域的图像。
目前的全景细节摄像机中转动组件需要带动第一摄像头转动,导致转动组件的驱动质量较大,转动组件很难实现第一摄像头准确的位置转动,因此转动组件的驱动精度较低,进而导致了全景细节摄像机的可靠性较低。
发明内容
本申请提供了一种全景细节摄像机,能够解决目前的全景细节摄像机的可靠性较低的问题。所述技术方案如下:
第一方面,提供了一种全景细节摄像机,包括:
第一摄像头,所述第一摄像头包括第一镜片组;
平面镜,所述第一摄像头朝向所述平面镜的反射面,所述平面镜用于将外界光线反射至所述第一镜片组中,以使所述第一摄像头能够获取第一区域的图像;
转动组件,所述转动组件与所述平面镜固定连接,所述转动组件用于带动所述平面镜绕第一轴线转动;
旋转驱动结构,所述旋转驱动结构与所述平面镜的底面固定连接,所述平面镜的底面为背离所述反射面的一面,用于带动所述平面镜绕第二轴线转动,所述第一轴线与所述第二轴线垂直;
第二摄像头,所述第二摄像头用于获取第二区域的图像,所述第二摄像头的焦距小于所述第一摄像头的焦距。
可选的,所述第一轴线垂直于所述第一镜片组的所在面,所述第一镜片组的所在面垂直于所述第一镜片组的光轴;所述第一摄像头的第一镜片组的光轴为第一光轴,所述第一光轴与所述第一轴线重合,所述第一光轴与所述第二轴线垂直。
可选的,所述平面镜的反射面与所述第一镜片组的所在面的夹角为锐角,所述旋转驱动结构用于改变所述平面镜的反射面与所述第一镜片组的所在面的夹角,所述第二轴线平行于所述第一镜片组的所在面,且平行于所述反射面。
可选的,所述第一摄像头还包括:第一壳体,所述第一镜片组设置在所述第一壳体中;
所述第一壳体与所述转动组件活动连接。
可选的,所述第一摄像头还包括:第二壳体和第二镜片组,所述第二镜片组设置在所述第二壳体中;
所述平面镜和所述转动组件设置在所述第二镜片组与所述第一镜片组之间,所述第二壳体与所述平面镜固定连接。
可选的,所述第一摄像头的第二镜片组的光轴为第二光轴,所述第二光轴与所述第一光轴的交点位于所述平面镜的反射面上,且关于所述平面镜的反射面的法线对称。
可选的,所述第一摄像头还包括:反射组件;
所述反射组件包括:n个棱镜和/或m个平面镜,所述n和所述m均为大于或等于1的整数;
所述反射组件设置在所述第一壳体内,且位于所述第一镜片组与所述转动组件之间,所述反射组件用于转折所述平面镜与所述图像处理镜片组之间的光路。
可选的,所述全景细节摄像机还包括:第三壳体,所述第三壳体扣置在所述平面镜外部,所述第三壳体上设置有第一开口和第二开口,光线能够从所述第一开口入射至所述平面镜,并由所述平面镜反射后通过所述第二开口传输至所述第一摄像头中;
所述转动组件设置在所述第二开口周围,与所述第三壳体的外部固定连接,所述第三壳体的内部与所述平面镜固定连接。
可选的,所述所述第一轴线平行于所述所述第一镜片组的所在面,所述第一镜片组的所在面垂直于所述第一镜片组的光轴;第一摄像头的光轴穿过所述第一轴线与所述第二轴线的交点。
可选的,所述第一摄像头的朝向与所述第二摄像头的朝向垂直;
所述第一摄像头为长焦摄像头或变焦摄像头,所述第二摄像头为广角摄像头。
可选的,所述旋转驱动结构包括:旋转轴和第一驱动电机;
所述旋转轴与所述平面镜的底面固定连接,所述旋转轴的轴线与所述第二轴线重合;
所述第一驱动电机与所述旋转轴的至少一端连接,用于驱动所述旋转轴转动。
可选的,所述转动组件包括:第二驱动电机,所述第二驱动电机的输出轴与所述平面镜固定连接。
可选的,所述全景细节摄像机还包括:补光组件;
所述补光组件包括:第一补光灯和第二补光灯,所述第一补光灯的补光范围大于或等于所述第一像头的监控范围,所述第二补光灯的补光范围大于或等于所述第二摄像头的监控范围;
所述第一补光灯为波长为730纳米的红外灯,所述第二补光灯为波长为850纳米的红外灯。
可选的,所述第一摄像头上设置有第一滤光组件,所述第二摄像头上设置有第二滤光组件,
所述第一滤光组件用于在预设时间段内过滤红外光,
所述第二滤光组件用于在所述预设时间段内过滤红外光,在所述预设时间段外过滤所述第一补光灯发出的光线,所述预设时间内的环境光强大于所述预设时间段外的环境光强。
可选的,所述平面镜的反射面在所述第一镜片组的所在面上的正投影覆盖所述第一镜片组的所在面,所述第一镜片组的所在面垂直于所述第一镜片组的光轴。
第二方面,提供了另一种全景细节摄像机,包括:
第一摄像头,所述第一摄像头包括第一镜片组;
棱镜,所述第一摄像头朝向所述棱镜的反射面,所述棱镜用于将外界光线反射至所述第一镜片组中,以使所述第一摄像头能够获取第一区域的图像;
转动组件,所述转动组件与所述棱镜固定连接,所述转动组件用于带动所述棱镜绕第一轴线转动;
第二摄像头,所述第二摄像头用于获取第二区域的图像,所述第二摄像头的焦距小于所述第一摄像头的焦距。
可选的,所述棱镜的反射面与所述第一镜片组的所在面的夹角为锐角,所述第一镜片组的所在面垂直于所述第一镜片组的光轴。
可选的,所述棱镜为三棱镜,所述三棱镜的顶角为直角,所述三棱镜的底面为所述反射面。
本申请提供的技术方案的有益效果至少包括:
通过转动组件带动平面镜绕第一轴线转动,通过旋转驱动结构带动平面镜绕第二轴线转动,该第一轴线与第二轴线垂直,该平面镜用于将外界的光线反射至第一镜片组中,当平面镜转动时,第一摄像头可以采集不同位置处的图像,由于转动组件以及旋转驱动结构仅驱动平面镜转动,因此可以有效的减小转动组件以及旋转驱动结构的驱动质量,使得转动组件以及旋转驱动结构可以实现平面镜准确的位置转动,进而有效的提高了转动组件以及旋转驱动结构的驱动精度,从而提高了全景细节摄像机的可靠性。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的一种全景细节摄像机的结构示意图;
图2是本申请实施例提供的另一种全景细节摄像机的结构示意图;
图3是本申请实施例提供的又一种全景细节摄像机的结构示意图;
图4是本申请实施例提供的再一种全景细节摄像机的结构示意图;
图5是本申请另一实施例提供的一种全景细节摄像机的结构示意图;
图6是本申请另一实施例提供的另一种全景细节摄像机的结构示意图;
图7是本申请另一实施例提供的又一种全景细节摄像机的结构示意图;
图8是本申请另一实施例提供的再一种全景细节摄像机的结构示意图;
图9是本申请实施例提供的一种全景细节摄像机的控制方法的流程图;
图10是本申请实施例提供的全景细节摄像机中第二摄像头采集的第二区域的图像的效果图;
图11是本申请实施例提供的第二区域的图像中确定目标图像的效果图;
图12是本申请实施例提供的全景细节摄像机中第一摄像头采集的第一区域的图像的效果图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
本申请实施例提供一种全景细节摄像机,请参考图1,图1是本申请实施例提供的一种全景细节摄像机的结构示意图,该全景细节摄像机可以包括:
第一摄像头10、平面镜20、转动组件30、旋转驱动结构40和第二摄像头(图1中未画出)。
该第一摄像头10可以包括第一镜片组11。
该平面镜20具有反射面A1,第一摄像头10朝向该平面镜20的反射面A1,该平面镜20用于将外界的光线反射至第一镜片组11中。在本申请实施例中,该第一摄像头10还可以包括图像传感器12,该第一镜片组11可以对入射的光线起到了聚光作用,再传输到图像传感器12上,该图像传感器12可以将第一镜片组11接收的光线转换为电信号,从而使得第一摄像头10能够获取第一区域的图像。
该转动组件10与平面镜20固定连接,该转动组件10用于带动平面镜20 绕第一轴线L1转动。
该旋转驱动结构40与平面镜20的底面A2固定连接,该平面镜20的底面A2为背离反射面A1的一面,该旋转驱动结构40用于带动平面镜20绕第二轴线L2转动,该第一轴线L1与第二轴线L2垂直。
该第二摄像头用于获取第二区域的图像,该第二摄像头的焦距小于第一摄像头10的焦距。在一种可选的实现方式中,本申请实施例中的全景细节摄像机中可以设置多个第二摄像头,将每个第二摄像头的监控画面拼接成一个画面,便可以使得该全景细节摄像机的监控范围变成360度。根据摄像头的成像原理,当摄像头的焦距越大时,该摄像头的视角越小,也即该摄像头的监控范围越小;当摄像头的焦距越小时,该摄像头的视角越大,也即该摄像头的监控范围越大。由于第一摄像头10的焦距大于第二摄像头的焦距,因此第一摄像头10的监控范围小于第二摄像头的监控范围,进而使得第一区域位于第二区域内。
在本申请实施例中,当平面镜20在转动组件30的带动下绕第一轴线L1顺时针或逆时针转动时,反射面A1可以反射在第一方向x上的不同位置处的图像,因此,该第一摄像头10可以采集在第一方向x上不同位置处的图像。在一种可选的实现方式中,转动组件30可以带动平面镜20绕第一轴线L1转动360度,因此,第一摄像头10可以实现在第一方向x上的360度的监控范围。
当平面镜20在旋转驱动结构40的带动下绕第二轴线L2转动时,反射面A1可以反射在第二方向y上的不同位置出的图像,因此,第一摄像头10可以采集第二方向y上不同位置处的图像。在一种可选的实现方式中,旋转驱动结构40可以带动平面镜20绕第二轴线L2转动180度,因此,第一摄像头10可以实现在第二方向y上的180度的监控范围。
综上所述,本申请实施例提供的全景细节摄像机,通过转动组件带动平面镜绕第一轴线转动,通过旋转驱动结构带动平面镜绕第二轴线转动,该第一轴线与第二轴线垂直,该平面镜用于将外界的光线反射至第一镜片组中,当平面镜转动时,第一摄像头可以采集不同位置处的图像,由于转动组件以及旋转驱动结构仅驱动平面镜转动,因此可以有效的减小转动组件以及旋转驱动结构的驱动质量,使得转动组件以及旋转驱动结构可以实现平面镜准确的位置转动,进而有效的提高了转动组件以及旋转驱动结构的驱动精度,从而提高了全景细 节摄像机的可靠性。
在本申请实施例中,平面镜与第一摄像头之间的相对位置关系有多种可实现方式,示例的,第一轴线可以垂直于第一镜片组的所在面,该第一镜片组的所在面垂直于该第一镜片组的光轴,该第一轴线也可以平行于第一镜片组的所在面,本申请实施例以以下两种可实现方式为例进行示意性说明:
在第一种可实现方式中,当第一轴线垂直于第一镜片组的所在面时,请参考图2,该第一摄像头10中的第一镜片组11的光轴为第一光轴L3,该第一光轴L3可以与第一轴线L1重合,该第一光轴L3也与第二轴线L2垂直。
在本申请实施例中,如图2所示,平面镜20的反射面A1与第一镜片组11的所在面B的夹角为锐角,旋转驱动结构40可以带动平面镜20绕第二轴线L2转动,以改变平面镜20的反射面A2与第一镜片组11的所在面B的夹角,使得第一摄像头10可以采集第二方向y上不同位置处的图像。该第二轴线L2平行于第一镜片组11的所在面B,且平行于反射面A2。
可选的,如图2所示,该第一摄像头10还可以包括:第一壳体13,第一镜片组11可以设置在该第一壳体13中,该第一壳体13可以与转动组件30活动连接。在转动组件30带动平面镜20转动时,该第一壳体13可以与平面镜20之间能够产生相对运动,使得第一摄像头10可以采集在第一方向x上不同位置处的图像。
在一种可选的实现方式中,在图2示出的全景细节摄像机中,该第一摄像头还可以包括第三壳体50,该第三壳体50可以扣置在平面镜20外部,该第三壳体50上设置有第一开口51和第二开口52,每个开口的面积可以小于或等于该开口所属壳壁的面积,光线能够从第一开口51入射至平面镜20,并由该平面镜20反射后通过第二开口52传输至第一摄像头10中。转动组件30设置在第二开口52周围,且与第三壳体50外部固定连接,该第三壳体50内部与平面镜20固定连接,在图2中,第三壳体20内部与平面镜20之间通过旋转驱动结构40固定连接,进而实现了平面镜20在自身能够绕轴线L2转动的前提下,与转动组件30之间的固定连接。在另一种可选的实现方式中,也可以通过该第三壳体50来减少外界环境,如灰尘或雨水等,对第一摄像头10或平面镜20的影响,使得该第一摄像头10获取到的图像的显示效果较好。
可选的,如图3所示,第一摄像头10还可以包括:第二壳体14和第二镜片组15,该第二镜片组15可以设置在第二壳体14中。平面镜20和转动组件 30可以设置在第二镜片组15与第一镜片组11之间,该第二壳体14可以与平面镜20固定连接。在另一种可选的实现方式中,该第二壳体14还可以与旋转驱动结构40固定连接,本申请实施例对此不做具体限定。该第二镜片组15可以对入射的光线起到了聚光作用,再射到平面镜20的反射面A1上。由于第二壳体14与平面镜20(或旋转驱动结构40)固定连接,当旋转驱动结构40带动平面镜20绕第二轴线L2转动的同时,或转动组件30带动平面镜20绕第一轴线L1转动的同时,第二壳体14也会随之转动,进而使得第二镜片组15可以随着平面镜20的转动而转动。
需要说的是,第二壳体14和第三壳体50之间可能存在缝隙,为了防止该缝隙处透光,可以在第二壳体14和第三壳体50之间设置柔性遮光结构53,该柔性遮光结构53可以遮挡光线从第一开口51射入,同时不会影响第二壳体14和第二镜片组15的转动。还需要说明的是,图3是以平面镜20的反射面A1与第一镜片组11的所在面B的夹角为45度为例进行示意性说明的,在一种可选的实现方式中,当平面镜20的反射面A1转动到与第一镜片组11的所在面B的夹角为60度时,第二镜片组15与平面镜22的位置关系如图4所示。
可选的,如图5和图6所示,该第一摄像头10还可以包括反射组件16,该反射组件16可以包括n个棱镜和/或m个平面镜,n和m均为大于或等于1的整数;该反射组件16也可以设置在第一壳体13内,该反射组件16位于第一镜片组11与转动组件30之间,该反射组件16用于转折平面镜20与第二镜片组15之间的光路。需要说明的是,图5示出的全景细节摄像机中,第二反射组件16包括一个棱镜161,图6示出的全景细节摄像机中,第二反射组件16包括一个平面镜162。
在本申请实施例中,如图3至图6所示,该第一摄像头10的第二镜片组15的光轴为第二光轴L4,第一光轴L3和第二光轴L4为最靠近平面镜20的两个光轴,该第二光轴L4与第一光轴L1的交点位于平面镜10的反射面A1上,且关于平面镜10的反射面A1的法线对称。需要说明的是,图3至图6均是以第一轴线L1与第一光轴L3重合为例进行示意性说明的,在一种可选的实现方式中,该第一轴线L1与第一光轴L3还可以不重合,本申请实施例对此不做限定。
在第二种可实现方式中,当第一轴线与第一镜片组的所在面平行时,请参考图7,该第一摄像头10的光轴L0可以穿过第一轴线L1与第二轴线L2的交 点。
在本申请实施例中,如图2或图7所示,平面镜20可以为轴对称结构,例如,该平面镜20为矩形平面镜或圆形平面镜,第二轴线L2可以与该平面镜20的对称轴重合。需要说明的是,图2与图7是以第二轴线L2为平面镜20的对称轴重合,且第二轴线L2与第一轴线L1相交为例进行示意性说明的,实际应用中,该第二轴线可以不与平面镜的对称轴重合,或该第二轴线不与第一轴线相交,例如,如图1所示,该第二轴线L2可以在平面镜靠近转动组件30的一端上,本申请实施例对此不做限定。
可选的,如图2至图7所示,旋转驱动结构40可以包括:旋转轴(图2至图7中未标注)和第一驱动电机(图2至图7中未标注),该旋转轴与平面镜20的底面A2固定连接,该旋转轴的轴线与第二轴线L2重合。该第一驱动电机与旋转轴的至少一端连接,用于驱动旋转轴转动,进而实现了平面镜20能够绕第二轴线L2自动旋转。
可选的,如图2至图7所示,该转动组件30可以包括第二驱动电机31(图2至图6中未标注),该第二驱动电机31的输出轴可以与平面镜20固定连接。示例的,在图2至图6中,该第二驱动电机的输出轴可以与第三壳体50固定连接,从而可以实现第二电机的输出轴与平面镜20之间的固定连接;在图7中,转动组件30还可以包括连接杆32,该连接杆32的一端可以与平面镜20固定连接,该连接杆32的另一端可以与第二驱动电机31的输出轴固定连接,从而可以实现第二电机31的输出轴与平面镜20之间的固定连接。
可选的,该全景细节摄像机还可以包括:补光组件,示例的,如图7所示,该补光组件70可以包括第一补光灯71和第二补光灯72,该第一补光灯71的补光范围大于或等于第一摄像头10的监控范围,第二补光灯72的补光范围大于或等于第二摄像头80的监控范围。由于补光组件70中的两个补光灯的补光范围均大于或等于与其对应的摄像头的监控范围,因此有效的提高了补光组件70的光效利用率。
示例的,该第一补光灯可以为波长为730纳米的红外灯,第二补光灯可以为波长为850纳米的红外灯。第一摄像头上可以设置有第一滤光组件,第二摄像头上可以设置第二滤光组件,该第一滤光组件和第二滤光组件可以均为双滤光片切换器,该双滤光片切换器可以包括两种滤光片,在本申请实施例中,该第一滤光组件可以包括:红外滤光片,第二滤光组件可以包括:红外滤光片和 用于过滤第一补光灯发出的光线的滤光片,该用于过滤第一补光灯发出的光线的滤光片可以为用于过滤波长小于850纳米的红外光的滤光片。
在一种可选的实现方式中,可以通过设置在全景细节摄像机中的计时器确定出当前时刻处于预设时间段内或当前时刻处于预设时间段外,该预设时间段是基于外界环境来预先设置的,通常,预设时间内的环境光强大于预设时间段外的环境光强,因此该预设时间段内可以为白天对应的时间段,例如,7:00~19:00,该预设时间段外可以为夜晚对应的时间段,例如,00:00~7:00及19:00~24:00。
示例的,当当前时刻处于预设时间段内(也即在白天)时,第一滤光组件和第二滤光组件可以自动在对应的摄像头上装载红外滤光片,避免了红外光对全景细节摄像机获取到图像的影响,进而避免了全景细节摄像机获取到图像中出现红圈的现象。当当前时刻处于预设时间段外(也即在夜晚)时,第一滤光组件可以自动在第一摄像头上去除红外滤光片,进而使得第一摄像头可以获取到更多的光线;第二滤光组件可以自动在第二摄像头上去除红外滤光片,并装载用于过滤第一补光灯发出的光线的滤光片,进而使得第二摄像头获取到更多的光线同时可以避免手电筒现象,该手电筒现象是指获取到图像的某部分光线照射较强的现象,产生手电筒现象的原因是由于红外灯的发射角远小于该红外灯对应的摄像头的拍摄角度,在本申请实施例中,由于第一补光灯发出的光线不会进入第二摄像头,进而有效的避免了第二摄像头获取到的图像产生手电筒现象。
需要说明的是,上述第一滤光组件和第二滤光组件为对应摄像头加载不同的滤光片的方式是通过定时器确定的,实际应用中,还可以根据环境光线的光强和获取到图像的亮度综合确定,本申请实施例对此不做限定。
在一种可选的实现方式中,第一补光灯和第二补光灯的出光面的边缘处均设置有泡棉,可以有效的避免补光组件的出光面的边缘发出的光线直接折射到第一摄像头或第二摄像头中,进而避免了第一摄像头和第二摄像头中的光污染,使得该全景细节摄像机获取到的图像显示效果更好。采用上述结构的补光组件,在夜晚或光线较暗的情况下,可以使得全景细节摄像机获取到的图像的显示效果较好。
需要说明的是,补光组件还可以为其他结构,例如该补光组件可以包括:两个白光补光灯,此时该两个白光补光灯的光强可以相同,进而有效的避免了 第一摄像头或第二摄像头获取到的图像产生手电筒现象,本申请实施例对补光组件的结构不做限定。
在本申请实施例中,如图7所示,第一摄像头10朝向与第二摄像头80的朝向垂直;该第一摄像头10可以为长焦摄像头或变焦摄像头,该第二摄像头80可以为广角摄像头。
可选的,如图2至图7所示,平面镜20的反射面A1在第一镜片组11的所在面B上的正投影覆盖该第一镜片组11的所在面B,使得第一摄像头10的监控范围不大于平面镜20的反射面A1的反射范围,从而使得第一摄像头10能够监控的图像均为平面镜20的反射面B所反射的图像,进而避免了第一摄像头10采集到的图像中出现黑角的问题。
在相关技术中,全景细节摄像机中的转动组件带动第一摄像头转动,因此转动组件的驱动质量较大。由于驱动质量较大,转动组件驱动第一摄像头转动到指定位置时的耗时较长,因此转动组件的驱动效率较低;又由于驱动质量较大,导致了惯性较大,第一摄像头停止转动时可能会产生抖动,进而导致全景细节摄像机采集图像的显示效果较差。
而在本申请实施例中,由于转动组件只驱动平面镜转动,因此有效减小了驱动质量。由于驱动质量较小,转动组件驱动平面镜转动到指定位置时的耗时较短,进而有效的提高了转动组件的驱动效率;又由于驱动质量较小,使得惯性较小,平面镜在停止转动时产生抖动的概率较低,进而使得第一摄像头采集到图像的显示效果较好。
综上所述,本申请实施例提供的全景细节摄像机,通过转动组件带动平面镜绕第一轴线转动,通过旋转驱动结构带动平面镜绕第二轴线转动,该第一轴线与第二轴线垂直,该平面镜用于将外界的光线反射至第一镜片组中,当平面镜转动时,第一摄像头可以采集不同位置处的图像,由于转动组件以及旋转驱动结构仅驱动平面镜转动,因此可以有效的减小转动组件以及旋转驱动结构的驱动质量,使得转动组件以及旋转驱动结构可以实现平面镜准确的位置转动,进而有效的提高了转动组件以及旋转驱动结构的驱动精度,从而提高了全景细节摄像机的可靠性。
本申请实施例提供另一种全景细节摄像机,如图8所述,该全景细节摄像机可以包括:
第一摄像头10、棱镜90、转动组件30和第二摄像头(图1中未画出)。
该第一摄像头10可以包括第一镜片组11。
该棱镜90具有反射面A3,第一摄像头10朝向该棱镜90的反射面A3,该棱镜90用于将外界的光线反射至第一镜片组11中,使得第一摄像头10能够获取第一区域的图像。
该转动组件10与棱镜90固定连接,该转动组件10用于带动棱镜90绕第一轴线L1转动。
该第二摄像头用于获取第二区域的图像,该第二摄像头的焦距小于第一摄像头10的焦距。该第一摄像头10的监控范围小于第二摄像头的监控范围,使得第一区域位于第二区域内。
可选的,如图8所示,该棱镜90的反射面A3可以与第一镜片组11的所在面B的夹角为锐角,该第一镜片组11的所在面B处置于第一镜片组11的光轴。在本申请实施例中,为了避免光线经过棱镜90的反射面A3发生折射的现象,该反射面A3上可以设置有反射膜91,此时可以使经过棱镜90的反射面A3的光线全部被反射。
示例的,该棱镜90可以为三棱镜,该三棱镜的顶角为直角,此时该棱镜90的反射面A3为三棱镜的底面。
需要说明的是,棱镜90的反射面A3与第一镜片组11的所在面的夹角可以根据实际需要选取,例如,当第一摄像头10在第二方向y上的监控范围确定时,可以确定出棱镜21的反射面A3与第一镜片组11的所在面B的夹角。
可选的,第一轴线垂直于第一镜片组的所在面,该第一镜片组的所在面垂直于第一镜片组的光轴;第一摄像头的第一镜片组的光轴为第一光轴,该第一光轴与第一轴线重合,该第一光轴与第二轴线垂直。
可选的,该第一摄像头还包括:第一壳体,第一镜片组设置在第一壳体中;该第一壳体与转动组件活动连接。
可选的,该第一摄像头还包括:反射组件;反射组件包括:n个棱镜和/或m个平面镜,n和m均为大于或等于1的整数;反射组件设置在第一壳体内,且位于第一镜片组与转动组件之间,反射组件用于转折棱镜与图像处理镜片组之间的光路。
可选的,该第一摄像头的朝向与第二摄像头的朝向垂直;该第一摄像头为长焦摄像头或变焦摄像头,第二摄像头为广角摄像头。
可选的,该转动组件包括:第二驱动电机,第二驱动电机的输出轴与棱镜固定连接。
可选的,该全景细节摄像机还包括:补光组件;补光组件包括:第一补光灯和第二补光灯,第一补光灯的补光范围大于或等于第一像头的监控范围,第二补光灯的补光范围大于或等于第二摄像头的监控范围;第一补光灯为波长为730纳米的红外灯,第二补光灯为波长为850纳米的红外灯。
可选的,该第一摄像头上设置有第一滤光组件,第二摄像头上设置有第二滤光组件,第一滤光组件用于在预设时间段内过滤红外光,第二滤光组件用于在预设时间段内过滤红外光,在预设时间段外过滤第一补光灯发出的光线,预设时间内的环境光强大于预设时间段外的环境光强。
可选的,棱镜的反射面在第一镜片组的所在面上的正投影覆盖第一镜片组的所在面,第一镜片组的所在面垂直于第一镜片组的光轴。
需要说明的是,当全景细节摄像机包括棱镜时,该全景细节摄像机的工作原理可以参考前述当全景细节摄像机包括平面镜时对应的内容,本申请实施例在此不再赘述。
综上所述,本申请实施例提供的全景细节摄像机,通过转动组件带动棱镜绕第一轴线转动,该棱镜用于将外界的光线反射至第一镜片组中,当棱镜转动时,第一摄像头可以采集不同位置处的图像,由于转动组件仅驱动棱镜转动,因此可以有效的减小转动组件的驱动质量,使得转动组件可以实现棱镜准确的位置转动,进而有效的提高了转动组件的驱动精度,从而提高了全景细节摄像机的可靠性。
请参考图9,图9是本申请实施例提供的一种全景细节摄像机的控制方法的流程图,该方法可以应用于图1至图7示出的全景细节摄像机,该方法可以包括如下几个步骤:
步骤901、通过第二摄像头采集第二区域的图像。
可选的,当该第二摄像头的监控范围为120度时,若本申请实施例中的全景细节摄像机包括三个第二摄像头,该全景细节摄像机可实现360度的监控范围。示例的,请参考图10,图10是本申请实施例提供的全景细节摄像机中第二摄像头采集的第二区域的图像的效果图,第二区域的图像01可以为以全景细节摄像机为中心采集周围360度图像,需要说的是,图10中的第二区域的 图像01仅为全景细节摄像机中第二摄像头所采集到的部分图像。
步骤902、确定第二区域的图像中需要采集的目标图像的位置。
示例的,请参考图11,图11是本申请实施例提供的第二区域的图像中确定目标图像的效果图,由于车辆001距离全景细节摄像机较远,车辆002距离全集细节摄像机较近,因此可以将第二区域的图像01中的车辆001所在区域确定为目标图像02。
步骤903、根据目标图像的位置,确定平面镜的旋转角度。
示例的,当确定出目标图像的位置时,可以确定出平面镜绕第一轴线旋转的角度以及绕第二轴线旋转的角度,进而可以使得第一摄像头中的第一镜片组通过平面镜的反射面所反射的光线采集目标图像。
步骤904、控制转动组件以及旋转驱动结构带动平面镜转动,以使第一摄像头采集目标图像。
示例的,请参考图12,图12是本申请实施例提供的全景细节摄像机中第一摄像头采集的第一区域的图像的效果图,可以控制转动组件带动平面镜转动指定位置后,通过第一摄像头中采集第一区域的图像03,目标图像位于该第一区域的图像03内,并通过第一摄像头自身的变焦功能使得采集到的第一区域的图像03的显示效果较好,从而使得目标图像的显示效果较好。
需要说明的是,本申请实施例提供的全景细节摄像机的控制方法步骤的先后顺序可以进行适当调整,步骤也可以根据情况进行相应增减,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化的方法,都应涵盖在本申请的保护范围之内,因此不再赘述。
以上所述仅为本申请的较佳实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (18)

  1. 一种全景细节摄像机,包括:
    第一摄像头,所述第一摄像头包括第一镜片组;
    平面镜,所述第一摄像头朝向所述平面镜的反射面,所述平面镜用于将外界光线反射至所述第一镜片组中,以使所述第一摄像头能够获取第一区域的图像;
    转动组件,所述转动组件与所述平面镜固定连接,所述转动组件用于带动所述平面镜绕第一轴线转动;
    旋转驱动结构,所述旋转驱动结构与所述平面镜的底面固定连接,所述平面镜的底面为背离所述反射面的一面,用于带动所述平面镜绕第二轴线转动,所述第一轴线与所述第二轴线垂直;
    第二摄像头,所述第二摄像头用于获取第二区域的图像,所述第二摄像头的焦距小于所述第一摄像头的焦距。
  2. 根据权利要求1所述的全景细节摄像机,
    所述第一轴线垂直于所述第一镜片组的所在面,所述第一镜片组的所在面垂直于所述第一镜片组的光轴;所述第一摄像头的第一镜片组的光轴为第一光轴,所述第一光轴与所述第一轴线重合,所述第一光轴与所述第二轴线垂直。
  3. 根据权利要求2所述的全景细节摄像机,
    所述平面镜的反射面与所述第一镜片组的所在面的夹角为锐角,所述旋转驱动结构用于改变所述平面镜的反射面与所述第一镜片组的所在面的夹角,所述第二轴线平行于所述第一镜片组的所在面,且平行于所述反射面。
  4. 根据权利要求2所述的全景细节摄像机,
    所述第一摄像头还包括:第一壳体,所述第一镜片组设置在所述第一壳体中;
    所述第一壳体与所述转动组件活动连接。
  5. 根据权利要求4所述的全景细节摄像机,
    所述第一摄像头还包括:第二壳体和第二镜片组,所述第二镜片组设置在所述第二壳体中;
    所述平面镜和所述转动组件设置在所述第二镜片组与所述第一镜片组之间,所述第二壳体与所述平面镜固定连接。
  6. 根据权利要求5所述的全景细节摄像机,
    所述第一摄像头的第二镜片组的光轴为第二光轴,所述第二光轴与所述第一光轴的交点位于所述平面镜的反射面上,且关于所述平面镜的反射面的法线对称。
  7. 根据权利要求5所述的全景细节摄像机,
    所述第一摄像头还包括:反射组件;
    所述反射组件包括:n个棱镜和/或m个平面镜,所述n和所述m均为大于或等于1的整数;
    所述反射组件设置在所述第一壳体内,且位于所述第一镜片组与所述转动组件之间,所述反射组件用于转折所述平面镜与所述图像处理镜片组之间的光路。
  8. 根据权利要求2所述的全景细节摄像机,
    所述全景细节摄像机还包括:第三壳体,所述第三壳体扣置在所述平面镜外部,所述第三壳体上设置有第一开口和第二开口,光线能够从所述第一开口入射至所述平面镜,并由所述平面镜反射后通过所述第二开口传输至所述第一摄像头中;
    所述转动组件设置在所述第二开口周围,与所述第三壳体的外部固定连接,所述第三壳体的内部与所述平面镜固定连接。
  9. 根据权利要求1所述的全景细节摄像机,
    所述所述第一轴线平行于所述所述第一镜片组的所在面,所述第一镜片组的所在面垂直于所述第一镜片组的光轴;第一摄像头的光轴穿过所述第一轴线与所述第二轴线的交点。
  10. 根据权利要求1至9任一所述的全景细节摄像机,
    所述第一摄像头的朝向与所述第二摄像头的朝向垂直;
    所述第一摄像头为长焦摄像头或变焦摄像头,所述第二摄像头为广角摄像头。
  11. 根据权利要求1至9任一所述的全景细节摄像机,
    所述旋转驱动结构包括:旋转轴和第一驱动电机;
    所述旋转轴与所述平面镜的底面固定连接,所述旋转轴的轴线与所述第二轴线重合;
    所述第一驱动电机与所述旋转轴的至少一端连接,用于驱动所述旋转轴转动。
  12. 根据权利要求1至9任一所述的全景细节摄像机,
    所述转动组件包括:第二驱动电机,所述第二驱动电机的输出轴与所述平面镜固定连接。
  13. 根据权利要求1至9任一所述的全景细节摄像机,
    所述全景细节摄像机还包括:补光组件;
    所述补光组件包括:第一补光灯和第二补光灯,所述第一补光灯的补光范围大于或等于所述第一像头的监控范围,所述第二补光灯的补光范围大于或等于所述第二摄像头的监控范围;
    所述第一补光灯为波长为730纳米的红外灯,所述第二补光灯为波长为850纳米的红外灯。
  14. 根据权利要求9所述的全景细节摄像机,
    所述第一摄像头上设置有第一滤光组件,所述第二摄像头上设置有第二滤光组件,
    所述第一滤光组件用于在预设时间段内过滤红外光,
    所述第二滤光组件用于在所述预设时间段内过滤红外光,在所述预设时间段外过滤所述第一补光灯发出的光线,所述预设时间内的环境光强大于所述预设时间段外的环境光强。
  15. 根据权利要求1至9任一所述的全景细节摄像机,
    所述平面镜的反射面在所述第一镜片组的所在面上的正投影覆盖所述第一镜片组的所在面,所述第一镜片组的所在面垂直于所述第一镜片组的光轴。
  16. 一种全景细节摄像机,包括:
    第一摄像头,所述第一摄像头包括第一镜片组;
    棱镜,所述第一摄像头朝向所述棱镜的反射面,所述棱镜用于将外界光线反射至所述第一镜片组中,以使所述第一摄像头能够获取第一区域的图像;
    转动组件,所述转动组件与所述棱镜固定连接,所述转动组件用于带动所述棱镜绕第一轴线转动;
    第二摄像头,所述第二摄像头用于获取第二区域的图像,所述第二摄像头的焦距小于所述第一摄像头的焦距。
  17. 根据权利要求16所述的全景细节摄像机,
    所述棱镜的反射面与所述第一镜片组的所在面的夹角为锐角,所述第一镜片组的所在面垂直于所述第一镜片组的光轴。
  18. 根据权利要求16所述的全景细节摄像机,
    所述棱镜为三棱镜,所述三棱镜的顶角为直角,所述三棱镜的底面为所述反射面。
PCT/CN2018/090371 2017-06-14 2018-06-08 全景细节摄像机 WO2018228278A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201710447625.6A CN109089019A (zh) 2017-06-14 2017-06-14 细节摄像头及全景细节摄像机
CN201720688305.5 2017-06-14
CN201710447625.6 2017-06-14
CN201720688305.5U CN207166624U (zh) 2017-06-14 2017-06-14 抓拍装置

Publications (1)

Publication Number Publication Date
WO2018228278A1 true WO2018228278A1 (zh) 2018-12-20

Family

ID=64659986

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/090371 WO2018228278A1 (zh) 2017-06-14 2018-06-08 全景细节摄像机

Country Status (1)

Country Link
WO (1) WO2018228278A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112099306A (zh) * 2020-09-23 2020-12-18 成都极米科技股份有限公司 全景无定向投影系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070200933A1 (en) * 2006-02-28 2007-08-30 Sanyo Electric Co., Ltd. Image capturing system and image capturing method
CN102981350A (zh) * 2012-10-11 2013-03-20 广东欧珀移动通信有限公司 一种双向成像装置及电子设备
CN105872475A (zh) * 2016-05-20 2016-08-17 北京格灵深瞳信息技术有限公司 一种监控摄像装置
CN105933660A (zh) * 2016-05-20 2016-09-07 北京格灵深瞳信息技术有限公司 一种监控摄像装置
CN106791419A (zh) * 2016-12-30 2017-05-31 大连海事大学 一种融合全景与细节的监控装置及方法
CN207166624U (zh) * 2017-06-14 2018-03-30 杭州海康威视数字技术股份有限公司 抓拍装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070200933A1 (en) * 2006-02-28 2007-08-30 Sanyo Electric Co., Ltd. Image capturing system and image capturing method
CN102981350A (zh) * 2012-10-11 2013-03-20 广东欧珀移动通信有限公司 一种双向成像装置及电子设备
CN105872475A (zh) * 2016-05-20 2016-08-17 北京格灵深瞳信息技术有限公司 一种监控摄像装置
CN105933660A (zh) * 2016-05-20 2016-09-07 北京格灵深瞳信息技术有限公司 一种监控摄像装置
CN106791419A (zh) * 2016-12-30 2017-05-31 大连海事大学 一种融合全景与细节的监控装置及方法
CN207166624U (zh) * 2017-06-14 2018-03-30 杭州海康威视数字技术股份有限公司 抓拍装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112099306A (zh) * 2020-09-23 2020-12-18 成都极米科技股份有限公司 全景无定向投影系统

Similar Documents

Publication Publication Date Title
CN109089019A (zh) 细节摄像头及全景细节摄像机
US9936112B2 (en) Monitoring camera
JPH06153190A (ja) 画像表示/撮像装置
JP2008040389A (ja) 一眼レフレツクスカメラ
US10739667B2 (en) Projector, optical engine, and pixel offset device
WO2021258880A1 (zh) 滤光结构、镜头、传感器、摄像机、电子设备和控制方法
JP2020511701A (ja) 顕微鏡用の光学アダプタおよび光学画像の方向を調整するための方法
WO2018228278A1 (zh) 全景细节摄像机
US9560279B2 (en) Camera device and projector device having protective lens
TWI457687B (zh) 影像投影及擷取系統與方法
WO2023227116A1 (zh) 摄像模组、摄像机和摄像产品
US8885086B2 (en) Camera device and projector device having protective lens
CN107395941B (zh) 一种摄像装置
JP2001166360A (ja) 画像記録システムの合焦装置
JPS5825624A (ja) 電子式映画カメラ
US20110141279A1 (en) Surveillance camera system and method
CN110596996B (zh) 一种投影机及自动几何校正方法
JPH04111585A (ja) 投射型テレビジョン受像機
WO2021249024A1 (zh) 变焦镜组、镜头组件、摄像装置、电子设备及变焦方法
CN201345025Y (zh) 长焦高空航空相机
CN108710261B (zh) 一种摄像模组
JP2005057541A (ja) 分光カメラヘッド
CN220440789U (zh) 一种折反射分光式双传感器相机
CN213522086U (zh) 一种基于360度全景摄像机的智能监控系统
JP2616079B2 (ja) プロジェクションテレビ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18817628

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18817628

Country of ref document: EP

Kind code of ref document: A1