WO2020093687A1 - 一种复合型抗震耐火建筑用钢及其制造方法 - Google Patents

一种复合型抗震耐火建筑用钢及其制造方法 Download PDF

Info

Publication number
WO2020093687A1
WO2020093687A1 PCT/CN2019/089332 CN2019089332W WO2020093687A1 WO 2020093687 A1 WO2020093687 A1 WO 2020093687A1 CN 2019089332 W CN2019089332 W CN 2019089332W WO 2020093687 A1 WO2020093687 A1 WO 2020093687A1
Authority
WO
WIPO (PCT)
Prior art keywords
rolling
steel
temperature
composite
refractory
Prior art date
Application number
PCT/CN2019/089332
Other languages
English (en)
French (fr)
Inventor
邓伟
李昭东
崔强
陈林恒
李恒坤
Original Assignee
南京钢铁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京钢铁股份有限公司 filed Critical 南京钢铁股份有限公司
Priority to SG11202104379TA priority Critical patent/SG11202104379TA/en
Publication of WO2020093687A1 publication Critical patent/WO2020093687A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Definitions

  • the invention relates to a composite anti-seismic and refractory building steel and a manufacturing method thereof, belonging to the field of low alloy steel manufacturing.
  • High-rise, large-span, high safety, environmental protection and saving are the development trend of modern large-scale buildings.
  • the steel structure has light weight, fast construction, large space, comfortable and beautiful, good seismic resistance, and can be recycled. It is used in high-rise buildings and large-scale public places. The application is more and more, but the fire resistance of ordinary construction steel is very poor.
  • the thick refractory coating protects the steel structure. Spraying the refractory coating doubles the cost of the steel structure construction and prolongs the construction period. The splashing of the spraying operation also causes environmental pollution. Reducing or not using the refractory coating has become the development of refractory steel. Driving force.
  • Mo is an effective alloying element to improve high-temperature strength
  • Japan since the 1980s, Japan has been the first to develop and introduce Mo-based commercial refractory steel plates.
  • the high-temperature yield strength of refractory steel at 600 ° C must not be less than 2/3 of the standard yield strength at room temperature.
  • the system is mainly based on the Mo-Nb system and the Mo-Nb-Cr system. It mainly uses the strong high-temperature solid solution strengthening effect of Mo to ensure the high-temperature strength below 600 °C, usually adding 0.5wt.% Mo and using about 0.01-0.06 wt.% of Nb microalloyed.
  • the technical problem to be solved by the present invention is to provide an economical seismic refractory steel with high strength, high toughness, excellent weldability and intelligent refractory performance that can reduce the use cost of the alloy in view of the above existing shortcomings in the prior art And its manufacturing method.
  • the technical solution for solving the above technical problems of the present invention is: a composite anti-seismic and refractory building steel whose weight percentage chemical composition is: C: 0.08-0.16%, Si: 0.15-0.55%, Mn: 0.50-1.80%, Mo : 0.10-0.50%, Nb: 0.02-0.15%, V: 0.00-0.12%, Ti: 0.01-0.020%, and the balance is Fe and inevitable impurities.
  • the anti-seismic refractory steel in the present invention is designed with a low carbon content and the carbon content range is 0.08-0.16%, which effectively solves the problem that the higher carbon content is unfavorable for the impact toughness of the steel, especially the impact energy of the upper platform, and significantly damages the welding performance. technical problem;
  • the silicon content of the steel of the present invention is in the range of 0.15-0.55%.
  • the composition uses Si to improve the strength, and effectively prevents the excess Si from deteriorating the toughness and weldability of the steel;
  • the Mn content range of the steel of the present invention is: 0.50-1.80%, which not only expands the solid solubility product of microalloy carbonitrides in austenite, but also avoids excessive deformation induction of microalloy carbonitrides during rolling Precipitation, while preventing the tendency of segregation in the slab to increase and cause adverse effects on welding performance;
  • Molybdenum The content of Mo in the present invention is precisely controlled in the range of 0.10-0.50%. In addition to significantly improving the hardenability of the steel, suppressing the segregation of P, S and other impurity elements at the grain boundary and reducing the temper brittleness, in the refractory steel It mainly plays the role of high temperature solid solution strengthening and precipitation strengthening; when the Mo content is less than 0.10%, the above effect is not obvious, and the fire resistance is not good. When it exceeds 0.50wt.%, The cost is higher;
  • Niobium In the present invention, the Nb content should be controlled at 0.02-0.15%.
  • Nb solid-dissolved in austenite during the rolling process and deformation-induced precipitation of niobium carbonitride particles significantly increase the austenite unrecrystallized temperature and obtain a pancake shape Austenitic helps to refine the structure of ferrite and bainite.
  • Nb solid dissolved in austenite can also improve the hardenability.
  • Nb solid dissolved in ferrite and bainite improves the high temperature Strength also plays a significant role;
  • Vanadium The content of V in the present invention does not exceed 0.12%. Since V has a low total solution temperature, it is almost completely dissolved during soaking. The V dissolved in the rolling process can effectively improve the hardenability and improve recrystallization The temperature has the function of intelligent ignition precipitation similar to Nb, which is added as a forming element of the MC phase;
  • Titanium A small amount of Ti is added to the steel of the present invention to form nano-sized TiN particles and TiO x particles, which can refine the austenite grains during the heating of the slab and prevent the grain coarsening of the heat affected zone during the welding process , Improve the resistance to large line energy welding performance.
  • Ti content is controlled in the range of 0.01-0.020%, the amount of TiN and TiO x formed below 0.01% is small, the effect of grain refinement is very small, and the welding line energy is low; above 0.020% will form a micron-sized liquid precipitation TiN can not only play the role of grain refinement, low welding line energy, but also harmful to the toughness of the steel plate;
  • the Nb content of the present invention should be controlled at 0.02-0.15%, and through the faster cooling rate after hot rolling, the precipitation of Nb is suppressed, so that the yield strength will not be too high, and the lower yield ratio at room temperature Favorable, but unprecipitated Nb will separate from ferrite and bainite during redness, or compound precipitated with V and Mo to form a nano-second phase to make up for steel softening caused by matrix softening at high temperature The strength of the product is reduced, and the fire resistance is improved;
  • the Mo content of the present invention is controlled to 0.10-0.50%, and in conjunction with the rolling process of the present invention, the solid solubility product of microalloy carbonitrides in austenite can be expanded to avoid excessive microalloy carbonitrides in rolling Deformation-induced precipitation during the manufacturing process; in addition, the present invention can be combined with V, Nb, Ti micro-alloying elements during the heating process through the combination of Mo and V, Nb, Ti micro-alloying elements, which can increase the amount of precipitation while improving The thermal stability of the precipitates, thereby steadily improving and ensuring the fire resistance of the steel at high temperatures.
  • the invention further defines the scheme:
  • the aforementioned chemical composition by weight percentage is: C: 0.08%, Si: 0.37%, Mn: 1.35%, Mo: 0.30%, Nb: 0.025%, V: 0.010%, Ti: 0.018%, the rest is Fe and inevitable Of impurities.
  • the aforementioned chemical composition by weight percentage is: C: 0.16%, Si: 0.15%, Mn: 1.75%, Mo: 0.10%, Nb: 0.08%, V: 0.04%, Ti: 0.010%, the rest is Fe and inevitable Of impurities.
  • the aforementioned chemical composition by weight percentage is: C: 0.12%, Si: 0.55%, Mn: 0.50%, Mo: 0.45%, Nb: 0.13%, V: 0.001%, Ti: 0.015%, the rest is Fe and inevitable Of impurities.
  • the invention also provides a method for manufacturing a composite seismic and fire-resistant building steel, which specifically includes the following steps:
  • molten steel smelting molten steel is smelted according to the target chemical composition of the steel plate, silicon manganese is added to the ladle for alloying when tapping, and the alloy addition sequence is precisely controlled during the LF refining process, and Ti, Mo, Nb are added in sequence And V, adjust the composition of molten steel to the target composition;
  • Hot rolling A two-stage rolling process is used, specifically:
  • Rough rolling 3-5 passes of rough rolling, the final rolling temperature of rough rolling is 1020-1150 °C, so that the austenite is refined by repeated recrystallization inside the steel;
  • finishing rolling 5-10 passes, finishing rolling open rolling temperature 880-980 °C, final rolling temperature 830-920 °C, pancake-like austenite structure is obtained after rolling; after rolling Laminar cooling with a cooling rate of 5-15 ° C / s, which suppresses the precipitation of Nb.
  • the final cold redness temperature is 500-700 ° C. Unprecipitated Nb separates from ferrite and bainite during redness. Or precipitated with V and Mo to form a nano-second phase, and obtain fine-grained ferrite and granular bainite structure, and then air-cooled to room temperature.
  • the present invention adopts the appropriate amount of Nb, low Mo, low V, micro-Ti multi-component composite micro-alloying and low carbon composition design, through the smelting process oxide metallurgy process to obtain favorable inclusions, improve the resistance to large line energy welding performance;
  • Control heating stage temperature adopt two-stage controlled rolling process, control laminar cooling rate, and control final cooling temperature process to produce seismic refractory steel with fine grain ferrite / granular bainite structure or granular bainite structure, fine grain iron
  • the element body / granular bainite structure or granular bainite structure guarantees high room temperature strength and low yield ratio.
  • the fine-grained structure and a large number of micro-alloy second phases are intelligently precipitated during the ignition process to ensure high temperature strength and have shock resistance And intelligent fire resistance; low carbon content and carbon equivalent design, adding a small amount of Nb and V, reducing more Mo, reducing alloy cost, obtaining fine-grained structure through controlled rolling and controlled cooling, with high strength, high toughness and Excellent weldability
  • the order of alloy addition is precisely controlled, and Ti, Mo, Nb, and V are added in sequence to adjust the composition of the molten steel to the target composition; the purpose is to control the type, size, and number of inclusions in the steel.
  • the number of inclusions of Ti-containing oxides of 0.2 ⁇ 5 ⁇ m is 1800 ⁇ 2200 pieces / mm 2 ; the number of inclusions of Ti-containing nitrides with size of 10 ⁇ 300nm is more than 4 ⁇ 10 6 pieces / mm 2 ; In the process, these inclusions are beneficial for pinning austenite grains and refining the intragranular structure, improving the low temperature toughness of the welding heat affected zone;
  • the microstructure of the steel plate prepared by the present invention is: ferrite + granular bainite; pre-eutectoid ferrite is distributed at the austenite grain boundary in the welding heat affected zone, and the average grain size is less than 50 ⁇ m, accounting for The area fraction is less than 40%, the inside of the original austenite grains is fine acicular ferrite, and the area fraction is greater than 60%;
  • Nb, V and other microalloy elements are solid-dissolved in the matrix at room temperature, and have the characteristics of high strength, high toughness, and low yield ratio.
  • Mo, Nb, V Intelligent precipitation of nano-composite precipitates to compensate for the loss of matrix strength and ensure high temperature fire resistance;
  • This embodiment provides a composite anti-seismic and fire-resistant building steel, whose weight percentage chemical composition is: C: 0.08%, Si: 0.37%, Mn: 1.35%, Mo: 0.30%, Nb: 0.025%, V: 0.010% , Ti: 0.018%, the rest is Fe and inevitable impurities.
  • This embodiment also provides a method for manufacturing a composite earthquake-resistant and fire-resistant building steel, which is prepared by setting three different sets of process parameters, specifically:
  • molten steel smelting molten steel is smelted according to the target chemical composition of the steel plate, silicon manganese is added to the ladle for alloying when tapping, and the order of alloy addition is precisely controlled during the LF refining process, and Ti, Mo, Nb are added in sequence And V, adjust the composition of molten steel to the target composition;
  • S3 Reheating the slab: heat the three continuous casting slabs A1, A2 and A3 respectively, and the temperature is respectively heated to 1220 °C, 1150 °C and 1250 °C, the furnace time is 8min / cm; control austenitization The temperature is higher than the total solid solution temperature of the microalloy elements Nb and V, but lower than the temperature at which TiN is dissolved back and the austenite grows abnormally. The effect of solid precipitation TiN is used to prevent the growth of austenite grains. To obtain fine and uniform original austenite structure;
  • Hot rolling A1, A2 and A3 all adopt a two-stage rolling process, specifically:
  • Rough rolling A1, A2 and A3 rough rolling are all 3 passes, so that the austenite is refined by repeated recrystallization inside the steel, and the final rolling temperature of A1, A2 and A3 is 1055 respectively °C, 1038 °C and 1100 °C;
  • A1, A2 and A3 finish rolling 5 passes, of which A1, A2 and A3 finish rolling open rolling temperature is 950 °C, 920 °C and 980 °C respectively, the corresponding final rolling temperature is At 913 °C, 840 °C and 920 °C, pancake austenite structure is obtained after rolling; after rolling, A1, A2 and A3 are cooled by laminar flow, and the cooling rate is 15 °C / s, 10 °C / s and 5 °C / s, The precipitation of Nb is suppressed.
  • the redness temperatures of A1, A2, and A3 are 500 °C, 510 °C, and 670 °C, respectively.
  • the unprecipitated Nb separates from ferrite and bainite during the redness process, or V and Mo composite precipitated to form a nanometer second phase, and obtained fine-grained ferrite and granular bainite structure, and then air-cooled to room temperature.
  • This embodiment provides a composite seismic and refractory steel for construction, whose weight percentage chemical composition is: C: 0.16%, Si: 0.15%, Mn: 1.75%, Mo: 0.10%, Nb: 0.08%, V: 0.04% , Ti: 0.010%, the rest is Fe and inevitable impurities.
  • This embodiment also provides a method for manufacturing a composite earthquake-resistant and fire-resistant building steel, which is prepared by setting three different sets of process parameters, specifically:
  • molten steel smelting molten steel is smelted according to the target chemical composition of the steel plate, silicon manganese is added to the ladle for alloying when tapping, and the order of alloy addition is precisely controlled during the LF refining process, and Ti, Mo, Nb are added in sequence And V, adjust the composition of molten steel to the target composition;
  • S3 Reheating of the slab: heating the three continuous casting slabs B1, B2 and B3 respectively, the temperature is heated to 1180 °C, 1200 °C and 1280 °C respectively, the furnace time is 10min / cm; control austenitization The temperature is higher than the total solid solution temperature of the microalloy elements Nb and V, but lower than the temperature at which TiN is dissolved back and the austenite grows abnormally. The effect of solid precipitation TiN is used to prevent the growth of austenite grains. To obtain fine and uniform original austenite structure;
  • B1, B2 and B3 rough rolling are all 4 passes, so that the austenite is refined by repeated recrystallization inside the steel, and the final rolling temperature of B1, B2 and B3 are 1045 respectively °C, 1060 °C and 1150 °C;
  • B1, B2 and B3 finish rolling 8 passes, of which B1, B2 and B3 finish rolling open rolling temperature is 890 °C, 880 °C and 940 °C respectively, the corresponding final rolling temperature is At 830 °C, 856 °C and 885 °C, pancake-shaped austenite structure is obtained after rolling; after rolling, B1, B2 and B3 are cooled by laminar flow, and the cooling rates are 14 °C / s, 5 °C / s and 8 °C / s, respectively. The precipitation of Nb is suppressed.
  • the redness temperatures of B1, B2, and B3 are 580 °C, 660 °C, and 540 °C, respectively.
  • the unprecipitated Nb separates from ferrite and bainite during redness, or V and Mo composite precipitated to form a nanometer second phase, and obtained fine-grained ferrite and granular bainite structure, and then air-cooled to room temperature.
  • This embodiment provides a composite anti-seismic and refractory building steel, the chemical composition of which is: C: 0.12%, Si: 0.55%, Mn: 0.50%, Mo: 0.45%, Nb: 0.13%, V: 0.001% , Ti: 0.015%, the rest is Fe and inevitable impurities.
  • This embodiment also provides a method for manufacturing a composite earthquake-resistant and fire-resistant building steel, which is prepared by setting three different sets of process parameters, specifically:
  • molten steel smelting molten steel is smelted according to the target chemical composition of the steel plate, silicon manganese is added to the ladle for alloying when tapping, and the order of alloy addition is precisely controlled during the LF refining process, and Ti, Mo, Nb are added in sequence And V, adjust the composition of molten steel to the target composition;
  • S3 Reheating of the slab: heat the three continuous casting slabs C1, C2 and C3 respectively, and the temperature is respectively heated to 1200 °C, 1210 °C and 1100 °C, the furnace time is 12min / cm; control austenitization The temperature is higher than the total solid solution temperature of the microalloy elements Nb and V, but lower than the temperature at which TiN is dissolved back and the austenite grows abnormally. The effect of solid precipitation TiN is used to prevent the growth of austenite grains. To obtain fine and uniform original austenite structure;
  • Rough rolling C1, C2 and C3 rough rolling are all 5 passes, so that the austenite is refined by repeated recrystallization inside the steel, and the final rolling temperature of C1, C2 and C3 is 1062 respectively °C, 1050 °C and 1020 °C;
  • C1, C2 and C3 finish rolling 10 passes, of which C1, C2 and C3 finish rolling open rolling temperature is 910 °C, 940 °C and 910 °C respectively, the corresponding final rolling temperature is At 841 °C, 906 °C and 868 °C, pancake austenite structure is obtained after rolling; after rolling, C1, C2 and C3 are cooled by laminar flow, and the cooling rates are 7 °C / s, 10 °C / s and 13 °C / s respectively. The precipitation of Nb is suppressed, and the redness temperatures of C1, C2, and C3 are 700 °C, 570 °C, and 590 °C, respectively.
  • the unprecipitated Nb separates from ferrite and bainite during redness, or V and Mo composite precipitated to form a nanometer second phase, and obtained fine-grained ferrite and granular bainite structure, and then air-cooled to room temperature.
  • the present invention may have other embodiments. All technical solutions formed by equivalent replacement or equivalent transformation fall within the scope of protection required by the present invention.

Abstract

本发明公开了一种复合型抗震耐火建筑用钢,其重量百分比化学成分为:C:0.08-0.16%,Si:0.15-0.55%,Mn:0.50-1.80%,Mo:0.10-0.50%,Nb:0.02-0.15%、V:0.00-0.12%,Ti:0.01-0.020%,其余为Fe和不可避免的杂质,本发明还设计了一种复合型抗震耐火建筑用钢及其制造方法;本发明所设计的一种复合型抗震耐火建筑用钢及其制造方法能够降低合金使用成本,具有高强度、高韧性、抗震、智能耐火及抗大线能量焊接等复合性能。

Description

一种复合型抗震耐火建筑用钢及其制造方法 技术领域
本发明涉及一种复合型抗震耐火建筑用钢及其制造方法,属于低合金钢制造领域。
背景技术
高层、大跨度、安全性高、节约环保是现代大型建筑的发展趋势,钢结构重量轻、施工快、空间大、舒适美观、抗震性好、可循环利用,在高层建筑和大型公共场所建筑中应用越来越多,但是普通建筑用钢的耐火性能很差,随着温度的上升,其屈服强度下降较快,特别是在350℃以上高温时陡降,不具备承重能力,因此必须喷涂很厚的耐火涂层对钢结构进行保护,喷涂耐火涂层使钢结构建筑成本成倍增加,且延长工期,喷涂作业的飞溅还造成环境污染,减少使用或不使用耐火涂层成为开发耐火钢的驱动力。
由于Mo是提高高温强度的有效合金元素,20世纪80年代以来,日本率先研制并推出Mo系商用耐火钢板,耐火钢600℃的高温屈服强度必须不低于室温标准屈服强度的2/3,成分体系以Mo-Nb系和Mo-Nb-Cr系两种为主,主要利用Mo强烈的高温固溶强化作用,保证600℃以下的高温强度,通常添加0.5wt.%Mo和采用约0.01-0.06wt.%的Nb微合金化。
韩国与中国国内耐火钢也大多添加Mo或Mo+Nb,为降低合金成本,Mo含量有所下降,但仍然在0.3wt.%左右,如“一种耐火钢及其制备方法”(申请号:200810179362.6)、“一种高性能建筑结构用耐火钢板及其制造方法”(申请号:200910011963.0)、“低成本高强高韧抗震耐火钢及其制备工艺”(申请号:201110080774.6)等申请专利中的Mo含量为0.2-0.4wt.%,其中“一种耐火钢及其制备方法”还添加了0.05-0.12wt.%V,但是该专利主要通过控制终冷温度为550-650℃,并保温1-2小时,以控制耐火钢的组织组成,同时还可以促使V在缓慢冷却或保温过程中析出增强耐火钢的室温性能;这些专利涉及的耐火钢合金成本高,只关注常温或高温性能,不考虑抗大线能量焊接性能,不具有高强、高韧、抗震、耐火、易焊接等复合性能特征。
发明内容
本发明所要解决的技术问题是,针对以上现有技术存在的缺点,提供一种能够降低合金使用成本,具有高强度、高韧性、优异的焊接性及智能耐火性能的经济型建筑用抗震耐火钢及其制造方法。
本发明解决以上技术问题的技术方案是:一种复合型抗震耐火建筑用钢,其重量百分比化学成分为:C:0.08-0.16%,Si:0.15-0.55%,Mn:0.50-1.80%,Mo:0.10-0.50%,Nb:0.02-0.15%、V:0.00-0.12%,Ti:0.01-0.020%,其余为Fe和不可避免的杂质。
碳:本发明中的抗震耐火钢采用低碳成分设计,碳含量范围为0.08-0.16%,有效解决了碳含量较高对钢的冲击韧性尤其是上平台冲击功不利、明显损害焊接性能这一技术问题;
硅:本发明钢的硅含量范围为0.15-0.55%,成分利用Si对强度的提升,并有效防止了过量的Si对于钢的韧性及焊接性能的恶化;
锰:本发明钢Mn含量范围为:0.50-1.80%,不仅扩大了微合金碳氮化物在奥氏体中的固溶度积,避免过多的微合金碳氮化物在轧制过程中形变诱导析出,同时防止在铸坯中的偏析倾向增加而对焊接性能造成的不利;
钼:本发明中Mo的含量精确控制,范围为0.10-0.50%,除了显著提高钢的淬透性,抑制P、S等杂质元素在晶界的偏聚而降低回火脆性外,在耐火钢中主要是起到高温固溶强化和析出强化作用;Mo含量低于0.10%时,上述作用效果不明显,耐火性不佳,超过0.50wt.%时,成本较高;
铌:本发明中Nb含量应控制在0.02-0.15%,轧制过程中固溶于奥氏体中的Nb和形变诱导析出碳氮化铌粒子显著提高奥氏体未再结晶温度,获得薄饼状奥氏体,有助于细化铁素体和贝氏体组织,固溶于奥氏体中的Nb还能够提高淬透性,固溶于铁素体和贝氏体中的Nb对提高高温强度也有显著作用;
钒:本发明中V的含量不超过0.12%,由于V具有较低的全固溶温度,均热时基本全部固溶,轧制过程中固溶的V能有效提高淬透性和提高再结晶温度,具有与Nb类似的着火智能析出作用,作为MC相的形成元素辅助添加;
钛:本发明钢中加入少量Ti是为了形成纳米级尺寸的TiN粒子和TiO x粒子,可以细化铸坯加热过程中奥氏体晶粒,并在焊接过程中阻止热影响区晶粒粗化,提高抗大线能量焊接性能。Ti含量控制在0.01-0.020%范围内,低于0.01%所形成TiN和TiO x数量较少,细化晶粒作用很小,焊接线能量低;高于0.020%将形成微米级尺寸的液析TiN,不仅不能起到细化晶粒作用,焊接线能量低,而且对钢板韧性有害;
本发明Nb含量应控制在0.02-0.15%,并通过在热轧后较快的冷速配合下,Nb的析出被 抑制,以至于屈服强度不会过高,对室温下较低的屈强比有利,但未析出的Nb将在返红过程中会从铁素体和贝氏体中单独析出,或与V、Mo复合析出,形成纳米第二相,弥补钢在高温下因基体软化而造成的强度降低,提高耐火性能;
本发明的Mo含量控制为0.10-0.50%,并配合本发明的轧制工艺,可以扩大微合金碳氮化物在奥氏体中的固溶度积,避免过多的微合金碳氮化物在轧制过程中形变诱导析出;另外,本发明通过Mo与V、Nb、Ti微合金元素的配合,在加热火过程中可以与V、Nb、Ti微合金元素复合析出,增加析出量的同时能够提高析出物的热稳定性,从而稳定提高和保证钢在高温时的耐火性能。
本发明进一步限定方案:
前述的其重量百分比化学成分为:C:0.08%、Si:0.37%、Mn:1.35%、Mo:0.30%、Nb:0.025%、V:0.010%、Ti:0.018%,其余为Fe和不可避免的杂质。
前述的其重量百分比化学成分为:C:0.16%、Si:0.15%、Mn:1.75%、Mo:0.10%、Nb:0.08%、V:0.04%、Ti:0.010%,其余为Fe和不可避免的杂质。
前述的其重量百分比化学成分为:C:0.12%、Si:0.55%、Mn:0.50%、Mo:0.45%、Nb:0.13%、V:0.001%、Ti:0.015%,其余为Fe和不可避免的杂质。
本发明还提供一种复合型抗震耐火建筑用钢的制造方法,具体包括以下步骤:
S1:钢水冶炼:按所述钢板的目标化学成分进行钢水冶炼,出钢时往钢包中先加入硅锰进行合金化,并在LF精炼过程中精确控制合金添加顺序,依次添加Ti、Mo、Nb和V,调整钢水成分至目标成分;
S2:连铸:将冶炼的钢水浇铸成连铸坯,连铸坯厚度≥100mm,保证不小于3倍压缩比;
S3:铸坯再加热:连铸坯加热至1100~1250℃,在炉时间8~12min/cm;
S4:热轧:采用两阶段轧制工艺,具体为:
(1)粗轧轧制:粗轧轧制3-5道次,粗轧终轧温度为1020-1150℃,使得钢内部通过反复再结晶细化奥氏体;
(2)精轧轧制:精轧轧制5-10道次,精轧开轧温度880-980℃,终轧温度为830-920℃,轧后获得薄饼状奥氏体组织;轧后经层流冷却,冷速5-15℃/s,使Nb的析出被抑制,终冷返红温度500-700℃,未析出的Nb在返红过程中从铁素体和贝氏体中单独析出,或与V、Mo复合析出,形成纳米第二相,并获得细晶铁素体和粒状贝氏体组织,随后空冷至室温。
本发明的有益效果是:
(1)本发明采用适量Nb、低Mo、低V、微Ti多元复合微合金化和低碳成分设计,通过冶炼过程氧化物冶金工艺获得有利夹杂物,提高了抗大线能量焊接性能;通过控制加热阶段温度、采用两阶段控轧工艺、控制层流冷却速度、控制终冷温度工艺生产具有细晶铁素体/粒状贝氏体组织或粒状贝氏体组织的抗震耐火钢,细晶铁素体/粒状贝氏体组织或粒状贝氏体组织保证了高的室温强度和低屈强比,细晶组织和大量微合金第二相在着火过程中智能析出,保证高温强度,具有抗震性和智能型耐火性;低的碳含量和碳当量设计,添加少量的Nb、V,降低较多的Mo,降低了合金成本,通过控轧控冷获得细晶组织,具有高强度、高韧性和优异的焊接性
(2)本发明在LF精炼过程中精确控制合金添加顺序,依次添加Ti、Mo、Nb和V,调整钢水成分至目标成分;目的是控制钢中夹杂物的类型、尺寸及数量,获得尺寸为0.2~5μm的含Ti氧化物的夹杂物数量为1800~2200个/mm 2;尺寸为10~300nm的含Ti氮化物的夹杂物数量大于4×10 6个/mm 2;在大线能量焊接过程中,这些夹杂物有利于钉扎奥氏体晶粒并细化晶内组织,提高焊接热影响区低温韧性;
(2)本发明制得的钢板组织特征为:铁素体+粒状贝氏体;焊接热影响区奥氏体晶界处分布着先共析铁素体,平均晶粒尺寸小于50μm,所占面积分数小于40%,原奥氏体晶粒内部为微细针状铁素体,所占面积分数大于60%;
(3)本发明制得的钢板常温时Nb、V等微合金元素固溶在基体中,具有高强度、高韧性、低屈强比的性能特征,高温着火过程中,Mo、Nb、V的纳米复合析出物智能析出,补偿基体强度的损失,保证高温耐火性能;
(4)综上所述,本发明通过控制生产工艺条件,生成的大量细小弥散分布的含Ti氧化物、氮化物的复合夹杂物,钢板在大热输入焊接时,靠近熔合线的1400℃高温部位,形成大量的晶内针状铁素体,同时在温度低于1400℃的远离熔合线部位组织中,钉扎原奥氏体晶粒并细化晶内组织。二者共同作用的综合效果使焊接热影响区的韧性大幅度提高,使钢具有良好的焊接性能,可抗大线能量焊接;
(5)综合以上效果,钢板常温拉伸屈服强度ReL:≥345MPa,抗拉强度Rm:≥490MPa,屈强比YR:≤0.80,断后伸长率A:≥22%,-40℃夏比冲击功KV2:≥150J;600℃高温耐火系数I[(常温屈服强度-高温屈服强度)/常温屈服强度],满足:I≥0.33;经50~200kJ/cm大热输入焊接后,焊接接头热影响区-40℃冲击功平均值大于50J。
具体实施方式
实施例1
本实施例提供一种复合型抗震耐火建筑用钢,其重量百分比化学成分为:C:0.08%、Si:0.37%、Mn:1.35%、Mo:0.30%、Nb:0.025%、V:0.010%、Ti:0.018%,其余为Fe和不可避免的杂质。
本实施例还提供一种复合型抗震耐火建筑用钢的制造方法,分别各设置三组不同的工艺参数进行制备,具体为:
S1:钢水冶炼:按所述钢板的目标化学成分进行钢水冶炼,出钢时往钢包中先加入硅锰进行合金化,并在LF精炼过程中精确控制合金添加顺序,依次添加Ti、Mo、Nb和V,调整钢水成分至目标成分;
S2:连铸:将冶炼的钢水浇铸成3块相同的连铸坯A1、A2和A3,连铸坯的厚度都为220mm,且压缩比都保证4倍;
S3:铸坯再加热:将A1、A2和A3这3块连铸坯分别进行加热,温度分别加热至1220℃、1150℃和1250℃,在炉时间都为8min/cm;控制奥氏体化温度,高于微合金元素Nb、V的全固溶温度,但低于TiN回溶和奥氏体发生反常晶粒长大的温度,充分利用固析TiN阻止奥氏体晶粒长大的作用,获得细小均匀的原始奥氏体组织;
S4:热轧:将A1、A2和A3都采用两阶段轧制工艺,具体为:
(1)粗轧轧制:A1、A2和A3粗轧轧制都为3道次,使得钢内部通过反复再结晶细化奥氏体,并且A1、A2和A3粗轧终轧温度分别为1055℃、1038℃和1100℃;
(2)精轧轧制:A1、A2和A3精轧轧制5道次,其中A1、A2和A3精轧开轧温度分别为950℃、920℃和980℃,对应的终轧温度分别为913℃、840℃和920℃,轧后获得薄饼状奥氏体组织;轧后A1、A2和A3经层流冷却,冷速分别为15℃/s、10℃/s和5℃/s,使Nb的析出被抑制,A1、A2和A3的返红温度分别为500℃、510℃和670℃,未析出的Nb在返红过程中从铁素体和贝氏体中单独析出,或与V、Mo复合析出,形成纳米第二相,并获得细晶铁素体和粒状贝氏体组织,随后空冷至室温。
实施例2
本实施例提供一种复合型抗震耐火建筑用钢,其重量百分比化学成分为:C:0.16%、Si:0.15%、Mn:1.75%、Mo:0.10%、Nb:0.08%、V:0.04%、Ti:0.010%,其余为Fe和不可避免的杂质。
本实施例还提供一种复合型抗震耐火建筑用钢的制造方法,分别各设置三组不同的工艺参数进行制备,具体为:
S1:钢水冶炼:按所述钢板的目标化学成分进行钢水冶炼,出钢时往钢包中先加入硅锰进行合金化,并在LF精炼过程中精确控制合金添加顺序,依次添加Ti、Mo、Nb和V,调整钢水成分至目标成分;
S2:连铸:将冶炼的钢水浇铸成3块相同的连铸坯B1、B2和B3,连铸坯的厚度都为150mm,且压缩比都保证5倍;
S3:铸坯再加热:将B1、B2和B3这3块连铸坯分别进行加热,温度分别加热至1180℃、1200℃和1280℃,在炉时间都为10min/cm;控制奥氏体化温度,高于微合金元素Nb、V的全固溶温度,但低于TiN回溶和奥氏体发生反常晶粒长大的温度,充分利用固析TiN阻止奥氏体晶粒长大的作用,获得细小均匀的原始奥氏体组织;
S4:热轧:将B1、B2和B3都采用两阶段轧制工艺,具体为:
(1)粗轧轧制:B1、B2和B3粗轧轧制都为4道次,使得钢内部通过反复再结晶细化奥氏体,并且B1、B2和B3粗轧终轧温度分别为1045℃、1060℃和1150℃;
(2)精轧轧制:B1、B2和B3精轧轧制8道次,其中B1、B2和B3精轧开轧温度分别为890℃、880℃和940℃,对应的终轧温度分别为830℃、856℃和885℃,轧后获得薄饼状奥氏体组织;轧后B1、B2和B3经层流冷却,冷速分别为14℃/s、5℃/s和8℃/s,使Nb的析出被抑制,B1、B2和B3的返红温度分别为580℃、660℃和540℃,未析出的Nb在返红过程中从铁素体和贝氏体中单独析出,或与V、Mo复合析出,形成纳米第二相,并获得细晶铁素体和粒状贝氏体组织,随后空冷至室温。
实施例3
本实施例提供一种复合型抗震耐火建筑用钢,其重量百分比化学成分为:C:0.12%、Si:0.55%、Mn:0.50%、Mo:0.45%、Nb:0.13%、V:0.001%、Ti:0.015%,其余为Fe和不可避免的杂质。
本实施例还提供一种复合型抗震耐火建筑用钢的制造方法,分别各设置三组不同的工艺参数进行制备,具体为:
S1:钢水冶炼:按所述钢板的目标化学成分进行钢水冶炼,出钢时往钢包中先加入硅锰进行合金化,并在LF精炼过程中精确控制合金添加顺序,依次添加Ti、Mo、Nb和V,调整钢水成分至目标成分;
S2:连铸:将冶炼的钢水浇铸成3块相同的连铸坯C1、C2和C3,连铸坯的厚度都为260mm,且压缩比都保证6倍;
S3:铸坯再加热:将C1、C2和C3这3块连铸坯分别进行加热,温度分别加热至1200℃、1210℃和1100℃,在炉时间都为12min/cm;控制奥氏体化温度,高于微合金元素Nb、V的全固溶温度,但低于TiN回溶和奥氏体发生反常晶粒长大的温度,充分利用固析TiN阻止奥氏体晶粒长大的作用,获得细小均匀的原始奥氏体组织;
S4:热轧:将C1、C2和C3都采用两阶段轧制工艺,具体为:
(1)粗轧轧制:C1、C2和C3粗轧轧制都为5道次,使得钢内部通过反复再结晶细化奥氏体,并且C1、C2和C3粗轧终轧温度分别为1062℃、1050℃和1020℃;
(2)精轧轧制:C1、C2和C3精轧轧制10道次,其中C1、C2和C3精轧开轧温度分别为910℃、940℃和910℃,对应的终轧温度分别为841℃、906℃和868℃,轧后获得薄饼状奥氏体组织;轧后C1、C2和C3经层流冷却,冷速分别为7℃/s、10℃/s和13℃/s,使Nb的析出被抑制,C1、C2和C3的返红温度分别为700℃、570℃和590℃,未析出的Nb在返红过程中从铁素体和贝氏体中单独析出,或与V、Mo复合析出,形成纳米第二相,并获得细晶铁素体和粒状贝氏体组织,随后空冷至室温。
上述实施例1-3共制造了9块复合型抗震耐火建筑用钢,该9块复合型抗震耐火建筑用钢横向拉伸性能、-40℃纵向冲击功如下表1所示;
表1 复合型抗震耐火建筑用钢的力学性能
Figure PCTCN2019089332-appb-000001
Figure PCTCN2019089332-appb-000002
除上述实施例外,本发明还可以有其他实施方式。凡采用等同替换或等效变换形成的技术方案,均落在本发明要求的保护范围。

Claims (5)

  1. 一种复合型抗震耐火建筑用钢,一种复合型抗震耐火建筑用钢,其特征在于,其重量百分比化学成分为:C:0.08-0.16%,Si:0.15-0.55%,Mn:0.50-1.80%,Mo:0.10-0.50%,Nb:0.02-0.15%、V:0.00-0.12%,Ti:0.008-0.020%,其余为Fe和不可避免的杂质。
  2. 如权利要求1所述的复合型抗震耐火建筑用钢,其特征在于:其重量百分比化学成分为:C:0.08%、Si:0.37%、Mn:1.35%、Mo:0.30%、Nb:0.025%、V:0.010%、Ti:0.018%,其余为Fe和不可避免的杂质。
  3. 如权利要求1所述的复合型抗震耐火建筑用钢,其特征在于:其重量百分比化学成分为:C:0.16%、Si:0.15%、Mn:1.75%、Mo:0.10%、Nb:0.08%、V:0.04%、Ti:0.010%,其余为Fe和不可避免的杂质。
  4. 根据权利要求1所述的复合型抗震耐火建筑用钢,其特征在于,其重量百分比化学成分为:C:0.12%、Si:0.55%、Mn:0.50%、Mo:0.45%、Nb:0.13%、V:0.001%、Ti:0.015%,其余为Fe和不可避免的杂质。
  5. 如权利要求1-3任意所述的复合型抗震耐火建筑用钢的制造方法,其特征在于:具体包括以下步骤:
    S1:钢水冶炼:按所述钢板的目标化学成分进行钢水冶炼,出钢时往钢包中先加入硅锰进行合金化,并在LF精炼过程中精确控制合金添加顺序,依次添加Ti、Mo、Nb和V,调整钢水成分至目标成分;
    S2:连铸:将冶炼的钢水浇铸成连铸坯,连铸坯厚度≥100mm,保证不小于3倍压缩比;
    S3:铸坯再加热:连铸坯加热至1100~1250℃,在炉时间8~12min/cm;
    S4:热轧:采用两阶段轧制工艺,具体为:
    (1)粗轧轧制:粗轧轧制3-5道次,粗轧终轧温度为1020-1150℃,使得钢内部通过反复再结晶细化奥氏体;
    (2)精轧轧制:精轧轧制5-10道次,精轧开轧温度880-980℃,终轧温度为830-920℃,轧后获得薄饼状奥氏体组织;轧后经层流冷却,冷速5-15℃/s,使Nb的析出被抑制,终冷返红温度500-700℃,未析出的Nb在返红过程中从铁素体和贝氏体中单独析出,或与V、Mo复合析出,形成纳米第二相,并获得细晶铁素体和粒状贝氏体组织,随后空冷至室温。
PCT/CN2019/089332 2018-11-08 2019-05-30 一种复合型抗震耐火建筑用钢及其制造方法 WO2020093687A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SG11202104379TA SG11202104379TA (en) 2018-11-08 2019-05-30 Composite antiseismic fireproof building steel and preparation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811326139.X 2018-11-08
CN201811326139.XA CN109182701A (zh) 2018-11-08 2018-11-08 一种复合型抗震耐火建筑用钢及其制造方法

Publications (1)

Publication Number Publication Date
WO2020093687A1 true WO2020093687A1 (zh) 2020-05-14

Family

ID=64938564

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/089332 WO2020093687A1 (zh) 2018-11-08 2019-05-30 一种复合型抗震耐火建筑用钢及其制造方法

Country Status (3)

Country Link
CN (1) CN109182701A (zh)
SG (1) SG11202104379TA (zh)
WO (1) WO2020093687A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109182701A (zh) * 2018-11-08 2019-01-11 南京钢铁股份有限公司 一种复合型抗震耐火建筑用钢及其制造方法
CN110172639A (zh) * 2019-05-22 2019-08-27 南京钢铁股份有限公司 一种290Mpa级抗震用低屈服强度钢及其制造方法
CN110218938A (zh) * 2019-06-13 2019-09-10 南京钢铁股份有限公司 一种焊接高热输入抗震耐火钢板及其制造方法
CN112676343A (zh) * 2020-11-27 2021-04-20 南京钢铁股份有限公司 采用连续轧制及卷轧保温生产薄规格抗震耐火钢的方法
CN113215499A (zh) * 2021-05-12 2021-08-06 南京钢铁股份有限公司 屈服强度390MPa级特厚抗震耐火钢板及其制造方法
CN113637906B (zh) * 2021-07-29 2022-07-29 钢铁研究总院 一种460MPa级建筑结构用H型钢及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006225741A (ja) * 2005-02-21 2006-08-31 Sumitomo Metal Ind Ltd 歯車
CN101787489A (zh) * 2010-03-11 2010-07-28 燕山大学 一种易焊接低碳贝氏体钢及制造方法
CN102952994A (zh) * 2011-08-25 2013-03-06 宝山钢铁股份有限公司 耐火抗震建筑用钢及其生产方法
CN104328356A (zh) * 2014-09-29 2015-02-04 南京钢铁股份有限公司 一种炉卷轧机生产薄规格高强结构钢板的制造方法
CN109182701A (zh) * 2018-11-08 2019-01-11 南京钢铁股份有限公司 一种复合型抗震耐火建筑用钢及其制造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102181792B (zh) * 2011-04-01 2013-06-12 江苏省沙钢钢铁研究院有限公司 低成本高强高韧抗震耐火钢及其制备工艺
CN103710633A (zh) * 2013-12-20 2014-04-09 钢铁研究总院 一种V微合金化节Mo抗震耐火钢及其制造方法
CN103882318A (zh) * 2014-03-03 2014-06-25 南京钢铁股份有限公司 一种节钼型多元复合微合金抗震耐火钢及其制造方法
CN103866188B (zh) * 2014-03-31 2016-01-20 武汉钢铁(集团)公司 屈服强度为460MPa级耐火耐腐蚀抗震建筑用钢及生产方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006225741A (ja) * 2005-02-21 2006-08-31 Sumitomo Metal Ind Ltd 歯車
CN101787489A (zh) * 2010-03-11 2010-07-28 燕山大学 一种易焊接低碳贝氏体钢及制造方法
CN102952994A (zh) * 2011-08-25 2013-03-06 宝山钢铁股份有限公司 耐火抗震建筑用钢及其生产方法
CN104328356A (zh) * 2014-09-29 2015-02-04 南京钢铁股份有限公司 一种炉卷轧机生产薄规格高强结构钢板的制造方法
CN109182701A (zh) * 2018-11-08 2019-01-11 南京钢铁股份有限公司 一种复合型抗震耐火建筑用钢及其制造方法

Also Published As

Publication number Publication date
SG11202104379TA (en) 2021-05-28
CN109182701A (zh) 2019-01-11

Similar Documents

Publication Publication Date Title
WO2020093687A1 (zh) 一种复合型抗震耐火建筑用钢及其制造方法
CN103361569B (zh) 一种超低温耐候结构钢板及其生产方法
US20220411907A1 (en) 690 mpa-grade medium manganese steel medium thick steel with high strength and low yield ratio and manufacturing method therefor
WO2020232818A1 (zh) 高强钢筋及其生产方法
CN102400043B (zh) 一种大厚度海洋工程用钢板
WO2009056055A1 (fr) Tôle d'acier à limite d'élasticité de grade 800 mpa et faible sensibilité à la fissuration de soudure, et son procédé de fabrication
CN103710633A (zh) 一种V微合金化节Mo抗震耐火钢及其制造方法
WO2020228232A1 (zh) TMCP型屈服370MPa高性能桥梁钢板及生产方法
CN109161671B (zh) 一种大线能量焊接用高强度eh36钢板及其制造方法
CN105063509A (zh) 屈服强度500MPa级桥梁用结构钢及其生产方法
CN111926245B (zh) 屈服强度345MPa级薄规格抗震耐火钢板及制备方法
CN111663085B (zh) 一种超高强度和塑性的热轧奥氏体低密度钢及生产方法
CN108796370A (zh) 一种屈服强度≥690MPa的焊接结构用耐火耐候钢及其生产方法
WO2014114111A1 (zh) 一种500MPa级低屈强比直缝焊钢管及其制造方法
CN111172459A (zh) 一种hrb600e钒钛微合金化高强抗震热轧钢筋
CN104846277A (zh) 屈服强度≥460MPa且抗层状撕裂性能建筑用钢及其制造方法
CN102400062B (zh) 低屈强比超高强度x130管线钢
WO2020206744A1 (zh) 一种焊接性良好的高强度螺纹钢筋及其制造方法
CN111187977B (zh) 一种690MPa级抗震耐蚀耐火中厚板钢及其制造方法
CN110042315A (zh) 一种低成本q355b结构钢板及其生产方法
WO2014114158A1 (zh) 一种高强度钢板及其制造方法
CN105695869A (zh) 屈服强度450MPa级桥梁用热轧钢板及其制造方法
CN112501500B (zh) 一种100mm特厚规格屈服强度345MPa级抗震耐火钢及其制备方法
CN104561825A (zh) 一种低成本x80管线用钢及其制造方法
CN110592472A (zh) 一种高强耐火抗震钢筋及生产方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19882044

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19882044

Country of ref document: EP

Kind code of ref document: A1