WO2020093665A1 - 一种发动机电动辅助增压控制方法及系统 - Google Patents

一种发动机电动辅助增压控制方法及系统 Download PDF

Info

Publication number
WO2020093665A1
WO2020093665A1 PCT/CN2019/084925 CN2019084925W WO2020093665A1 WO 2020093665 A1 WO2020093665 A1 WO 2020093665A1 CN 2019084925 W CN2019084925 W CN 2019084925W WO 2020093665 A1 WO2020093665 A1 WO 2020093665A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
speed
pressure
intake
auxiliary
Prior art date
Application number
PCT/CN2019/084925
Other languages
English (en)
French (fr)
Inventor
陈俊红
林铁坚
胡国强
杜宇
黄永鹏
叶宇
桑海浪
吴可
Original Assignee
广西玉柴机器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广西玉柴机器股份有限公司 filed Critical 广西玉柴机器股份有限公司
Priority to EP19883173.7A priority Critical patent/EP3828398B1/en
Publication of WO2020093665A1 publication Critical patent/WO2020093665A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/04Engines with exhaust drive and other drive of pumps, e.g. with exhaust-driven pump and mechanically-driven second pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/14Control of the alternation between or the operation of exhaust drive and other drive of a pump, e.g. dependent on speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/16Control of the pumps by bypassing charging air
    • F02B37/162Control of the pumps by bypassing charging air by bypassing, e.g. partially, intake air from pump inlet to pump outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
    • F02B39/16Other safety measures for, or other control of, pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0007Controlling intake air for control of turbo-charged or super-charged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/1015Air intakes; Induction systems characterised by the engine type
    • F02M35/10157Supercharged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10242Devices or means connected to or integrated into air intakes; Air intakes combined with other engine or vehicle parts
    • F02M35/10255Arrangements of valves; Multi-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
    • F02B39/02Drives of pumps; Varying pump drive gear ratio
    • F02B39/08Non-mechanical drives, e.g. fluid drives having variable gear ratio
    • F02B39/10Non-mechanical drives, e.g. fluid drives having variable gear ratio electric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/021Engine temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0406Intake manifold pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/101Engine speed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to the technical field of engine supercharging control, and more specifically, it relates to a method and system for engine electric auxiliary supercharging control.
  • the traditional turbocharger uses the exhaust energy from the engine to push the turbine.
  • the turbine drives the coaxial compressor impeller.
  • the impeller compresses the air passing through the air filter and sends the compressed air to the engine cylinder.
  • the exhaust gas discharged by the engine accelerates the operation of the turbine.
  • the compressor impeller also accelerates synchronously to compress more air into the cylinder.
  • the greater the air pressure into the cylinder the greater the density of the air in the cylinder, and the oxygen content will also increase, so that more fuel can be fully burned, and more combustion energy can increase the output power of the engine. .
  • the current common method is to add an electric auxiliary supercharger between the exhaust gas turbocharger and the engine.
  • the auxiliary compressor of the electric auxiliary supercharger and the exhaust gas compressor of the exhaust gas turbocharger are on the same intake path.
  • the pressure value in the intake passage controls the operation of the auxiliary compressor. When the pressure value is lower than the predetermined pressure value, the auxiliary compressor is started. When the pressure value reaches the predetermined pressure value, the auxiliary compressor is stopped.
  • This method has the following disadvantages: because the auxiliary compressor and the exhaust turbocharger compressor are on the same intake path, the compressed air of the exhaust turbocharger will push the impeller to rotate when passing through the auxiliary compressor impeller, so the auxiliary
  • the design life of the compressor needs to be consistent with the design life of the exhaust gas turbocharger, and the cost of design and use is high; the auxiliary compressor may produce sudden pressure changes at the moment of starting or stopping, which affects the performance of the engine.
  • the technical problem to be solved by the present invention is to address the above-mentioned deficiencies of the prior art.
  • the first purpose of the present invention is to provide a way to prevent the impeller of the auxiliary compressor from being driven by compressed air, reduce the design and use cost of the auxiliary compressor, and ensure the engine Working performance of the engine electric auxiliary boost control method.
  • the second objective of the present invention is to provide an electric auxiliary boost control system for an engine which can prevent compressed air from pushing the impeller of the auxiliary compressor to reduce the design and use cost of the auxiliary compressor and ensure the working performance of the engine.
  • the present invention provides a method for electrically assisting supercharging control of an engine.
  • the intake branch is connected in parallel, and the auxiliary compressor is set on the intake branch, and the auxiliary compressor is controlled to run at a smoothly changing speed according to actual engine parameters.
  • the engine parameters include rotation speed, fuel injection amount, coolant temperature, and intake pressure.
  • Pressure pulses are generated based on the rotation speed and fuel injection amount.
  • Fluid temperature correction curves are generated based on the coolant temperature. Create an air pressure correction curve, query the pressure pulse spectrum, liquid temperature correction curve, and air pressure correction curve through the speed, fuel injection amount, coolant temperature, and intake pressure, and calculate the pressure target value, according to the pressure target value-the pressure of the intake pressure.
  • the difference and the speed make the speed pulse spectrum, and the control of the operation of the auxiliary compressor includes the following steps.
  • step S1 detect the engine speed, fuel injection amount, coolant temperature, intake pressure, if the speed is less than the preset auxiliary boost speed or the auxiliary compressor is running, then proceed to step S2; otherwise continue to step S1;
  • step S3 Query the speed pulse spectrum according to the speed and pressure difference to obtain the supercharged speed base value, and perform PID closed-loop adjustment according to the pressure difference to obtain the PID adjusted value.
  • the supercharged speed base value plus the PID adjusted value to obtain a smoothly changing speed target value, Control the operation of the auxiliary compressor according to the target speed value, and proceed to step S1.
  • step S1 the auxiliary supercharging speed is 30% ⁇ maximum engine speed to 50% ⁇ maximum engine speed.
  • step S1 the intake pressure is the gas pressure in the intake manifold of the engine.
  • step S3 when the target rotational speed value is less than the preset minimum supercharging rotational speed, the operation of the auxiliary compressor is stopped.
  • the present invention provides an engine electric auxiliary supercharging control system, including an exhaust gas compressor and an exhaust gas turbine.
  • the exhaust gas compressor is connected to the intake manifold of the engine through an intake passage, and the exhaust gas turbine is connected through an exhaust passage
  • the exhaust manifold of the engine, the intake passage between the exhaust gas compressor and the intake manifold is provided with a check valve and an intake branch parallel to the check valve, the intake An auxiliary compressor and a motor driving the auxiliary compressor are provided on the branch road, and the control end of the motor is connected to the ECU.
  • it also includes a rotation speed detection unit, an injection amount detection unit, a coolant temperature detection unit, and an intake pressure detection unit connected to the ECU, respectively.
  • the output shaft of the motor and the drive shaft of the auxiliary compressor are the same shaft.
  • the motor is a 24V DC motor, and the power end of the motor can be connected to the 24V power supply of the car.
  • the intake pressure detection unit is located in the intake manifold of the engine.
  • the present invention has the following advantages:
  • auxiliary compressor By setting the auxiliary compressor on the intake branch, when the exhaust gas compressor completely replaces the auxiliary compressor for supercharging, all compressed air enters the intake manifold through the one-way valve, and the auxiliary compressor is completely stopped to avoid compression
  • the impeller of the auxiliary compressor is driven by air, and the design service life of the auxiliary compressor can be appropriately adjusted according to the actual situation, reducing the design and use cost of the auxiliary compressor;
  • Figure 1 is a schematic structural view of the present invention
  • FIG. 2 is a block diagram of calculating a pressure target value in the present invention
  • FIG. 3 is a block diagram of calculating the target value of the rotational speed in the present invention.
  • 1- exhaust gas compressor 2- intake manifold, 3- intake passage, 4- check valve, 5- intake branch, 6- auxiliary compressor, 7- exhaust turbine, 8- engine, 9 -Exhaust passage, 10-Exhaust manifold, 11-Motor, 12-ECU, 13-Speed detection unit, 14-Injection amount detection unit, 15-Coolant temperature detection unit, 16-Intake pressure detection unit, 17-24V power supply, 18-air filter, 19-post-processing device.
  • a method for electrically assisting supercharging control of an engine is to provide a check valve 4 and a check valve on an intake passage 3 between an exhaust gas compressor 1 and an intake manifold 2 4.
  • the intake branch 5 connected in parallel, and the auxiliary compressor 6 is set on the intake branch 5, and the auxiliary compressor 6 is controlled to run at a smoothly changing speed according to actual engine parameters; by setting the auxiliary compressor 6 at On the intake branch 5, when the exhaust gas compressor 1 completely replaces the auxiliary compressor 6 for pressurization, all compressed air enters the intake manifold 2 through the check valve 4 and the auxiliary compressor 6 is completely stopped, which can prevent the compressed air from pushing
  • the rotation of the impeller of the auxiliary compressor 6 can appropriately adjust the design service life of the auxiliary compressor 6 according to the actual situation, and reduce the design and use cost of the auxiliary compressor 6.
  • Engine parameters include speed, fuel injection quantity, coolant temperature, intake pressure, pressure pulse map MAP1 based on speed and fuel injection, liquid temperature correction curve CUR1 based on coolant temperature, and air pressure correction curve CUR2 based on intake pressure.
  • Query pressure pulse map MAP1, liquid temperature correction curve CUR1, and air pressure correction curve CUR2 through rotation speed, fuel injection amount, coolant temperature, and intake pressure, and calculate the pressure target value, according to the pressure target value-the pressure difference of the intake pressure 1.
  • the speed makes the speed map MAP2, and the control of the operation of the auxiliary compressor 6 includes the following steps.
  • step S1 detect the engine speed, fuel injection amount, coolant temperature, intake pressure, if the speed is less than the preset auxiliary boost speed or the auxiliary compressor 6 is running, then proceed to step S2; otherwise continue to step S1;
  • the value is sequentially multiplied by the liquid temperature correction factor and the air pressure correction factor to obtain the pressure target value; when the coolant temperature is too low, the lubrication state of the engine 8 is not good, and when the coolant temperature is too high, the cooling state of the engine 8 is not good, the coolant temperature Too fast boosting the engine 8 when it is too low or too high may cause damage to the engine 8.
  • the liquid temperature correction factor can effectively correct the pressure base value, thereby protecting the engine 8, and the air pressure correction factor can improve the accuracy of the pressure target value and make the pressure target The value is more in line with the current operating conditions of the engine 8;
  • step S3 Query the speed map MAP2 according to the speed and pressure difference to obtain the supercharged speed base value, and perform PID closed-loop adjustment according to the pressure difference to obtain the PID adjusted value.
  • the target value controls the operation of the auxiliary compressor 6 and proceeds to step S1;
  • PID closed-loop adjustment has high real-time performance and high control accuracy, and can well adapt to various transient or sudden operating conditions of the engine to meet the actual operating conditions of the engine.
  • the auxiliary supercharging speed is 30% ⁇ maximum engine speed ⁇ 50% ⁇ maximum engine speed, to ensure that the engine 8 is supplied with sufficient compressed air; for example, the maximum speed of a common diesel engine is 2300 ⁇ 2500 rpm, when When the speed is less than 1000 rpm, the diesel engine needs to be boosted to ensure the performance of the diesel engine; the intake pressure is the gas pressure in the intake manifold 2 of the engine, the pressure of the compressed air that can best enter the cylinder, Ensure the accuracy of control.
  • step S3 when the target speed value is less than the preset minimum boost speed, the operation of the auxiliary compressor 6 is stopped; since the exhaust gas compressor 1 and the auxiliary compressor 6 work at the same time, when the compressed air of the exhaust gas compressor 1 is opened
  • the valve 4 When the valve 4 is in operation, the higher the rotational speed of the exhaust gas compressor 1 is, the smaller the calculated rotational speed target value is.
  • the rotational speed target value is smaller, the contribution of the auxiliary compressor 6 to the compressed air is small and can be ignored.
  • the auxiliary compressor is stopped
  • the operation of the engine 6 can save electric energy, and can also extend the working life of the auxiliary compressor 6.
  • the minimum supercharging speed is 0 to 5% ⁇ the maximum engine speed.
  • the pressure map MAP1 is obtained through the engine bench test
  • the liquid temperature correction curve CUR1 is obtained through the engine bench test based on the engine running according to the pressure pulse map MAP1
  • the air pressure correction curve CUR2 is based on the engine pressure map MAP1
  • liquid The temperature correction curve CUR1 is obtained based on the engine bench test.
  • the speed pulse map MAP2 is obtained through the engine bench test based on the operation of the engine according to the pressure pulse map MAP1, the liquid temperature correction curve CUR1, and the air pressure correction curve CUR2.
  • the auxiliary compressor 6 runs at the target speed value, which can avoid sudden pressure changes, effectively meet the actual operating conditions of the engine, ensure the engine performance, and prevent the coolant temperature from being too low or too high. Engine damage.
  • An engine electric auxiliary boost control system includes an exhaust gas compressor 1, an exhaust gas turbine 7, the exhaust gas compressor 1 is connected to the intake manifold 2 of the engine 8 through an intake passage 3, and the exhaust gas turbine 7 is connected to the engine 8 through an exhaust passage 9
  • the exhaust manifold 10, the intake passage 3 between the exhaust gas compressor 1 and the intake manifold 2 are provided with a check valve 4 and an intake branch 5 parallel to the check valve 4, the intake branch
  • the road 5 is provided with an auxiliary compressor 6 and a motor 11 driving the auxiliary compressor 6.
  • the control end of the motor 11 is connected to the ECU 12 for controlling the motor 11 to drive the auxiliary compressor 6 to work; it also includes a speed detection unit 13 connected to the ECU 12 respectively , Fuel injection amount detection unit 14, coolant temperature detection unit 15, intake pressure detection unit 16, used to detect the speed of the engine 8, fuel injection amount, coolant temperature, intake pressure; ECU12 is used to save the pressure spectrum MAP1, liquid temperature correction curve CUR1, air pressure correction curve CUR2, speed map MAP2, query and calculate the speed target value according to the obtained engine speed, fuel injection amount, coolant temperature, intake pressure, and control according to the speed target value Help run the compressor 6.
  • the output shaft of the motor 11 and the drive shaft of the auxiliary compressor 6 are the same shaft.
  • the motor 11 is required to output a large speed or torque in a short time, the real-time response of the auxiliary compressor 6 can be effectively guaranteed, which overcomes the traditional
  • the use of electromagnetic clutches in the technical solution has the disadvantage of not transmitting torque in a timely manner, eliminating the risk of slipping of the electromagnetic clutch;
  • the motor 11 is a 24V DC motor, and the power end of the motor 11 can be connected to the 24V power supply 17 of the car, which realizes the universality of the motor 11
  • the design and use cost of the battery are also reduced;
  • the intake pressure detection unit 16 is located in the intake manifold 2 of the engine 8 and can effectively detect the intake pressure and has high detection stability.
  • the system has a simple structure and high reliability, and the torque control of the auxiliary compressor 6 is more direct and the working efficiency is high.
  • Fresh air first passes through the air filter 18, and then flows through the exhaust gas compressor 1;
  • the ECU 12 controls the motor 11 to drive the auxiliary compressor 6, and the exhaust gas compressor 1 also rotates. Due to insufficient exhaust gas energy, the compressed air will mainly pass through the auxiliary The compressor 6 enters the intake manifold 2 of the engine 8, and at the same time, because the pressure difference between the two ends of the check valve 4 will occur, the check valve 4 is closed;
  • the exhaust gas generated after combustion will reach the exhaust gas turbine 7 through the exhaust manifold 10 of the engine 8 and push the exhaust gas turbine 7 to work, and finally the exhaust gas will be treated by the after-treatment device 19 and discharged into the atmosphere.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

一种发动机电动辅助增压控制方法,该方法是在废气压气机(1)与进气歧管(2)之间的进气通路(3)上设置一单向阀(4)和与该单向阀(4)并接的进气支路(5),并将辅助压气机(6)设于进气支路(5)上,根据实际的发动机参数控制辅助压气机(6)以平滑变化的转速运行。还公开了一种发动机电动辅助增压控制系统。能避免压缩空气推动辅助压气机的叶轮转动、降低辅助压气机的设计和使用成本、保证发动机工作性能。

Description

一种发动机电动辅助增压控制方法及系统 技术领域
本发明涉及发动机增压控制技术领域,更具体地说,它涉及一种发动机电动辅助增压控制方法及系统。
背景技术
传统的涡轮增压器利用发动机排出的废气能量推动涡轮,涡轮带动同轴的压气机叶轮,叶轮将经过空气滤清器的空气进行压缩,并将压缩后的空气送入发动机气缸。当发动机转速提升时,发动机排出的废气加速推动涡轮的运转,此时,压气机叶轮也同步加速,以压缩更多的空气进入气缸。进入气缸内的空气压力越大,意味着气缸内的空气密度越大,氧含量也随之增加,从而可以使更多的燃料进行充分的燃烧,而更多的燃烧能量能增加发动机的输出功率。但是当发动机处于低速工况时,由于废气的能量较低,无法推动涡轮进行及时增压,从而使驾驶者有一种油门响应不及时的感觉,这就是传统废气涡轮增压器特有的低速段响应迟滞问题。
目前常用方法的是在废气涡轮增压器与发动机之间增加电动辅助增压器,电动辅助增压器的辅助压气机与废气涡轮增压器的废气压气机在同一条进气通路上,根据进气通路内的压力值控制辅助压气机工作,当压力值低于预定的压力值时,启动辅助压气机工作,当压力值达到预定的压力值时,停止辅助压气机工作。这种方法有以下缺点:由于辅助压气机与废气涡轮增压器的压气机在同一条进气通路上,废气涡轮增压器的压缩空气经过辅助压气机的叶轮时会推动叶轮转动,因此辅助压气机的设计使用寿命需要与废气涡轮增压器的设计使用寿命相一致,设计和使用成本高;辅助压气机在启动或停止瞬间可能会产生压力突变,影响发动机性能。
发明内容
本发明要解决的技术问题是针对现有技术的上述不足,本发明的目的一是提供了一种能避免压缩空气推动辅助压气机的叶轮转动、降低辅助压气机的设计和使用成本、保证发动机工作性能的发动机电动辅助增压控制方法。
本发明的目的二是提供了一种能避免压缩空气推动辅助压气机的叶轮转动、降低辅助压气机的设计和使用成本、保证发动机工作性能的发动机电动辅助增压控制系统。
为实现上述目的一,本发明提供了一种发动机电动辅助增压控制方法,该方法是在废气压气机与进气歧管之间的进气通路上设置一单向阀和与该单向阀并接的进气支路,并将辅助压气机设于进气支路上,根据实际的发动机参数控制辅助压气机以平滑变化的转速运行。
作为进一步地改进,所述的发动机参数包括转速、喷油量、冷却液温度、进气压力,根据转速、喷油量制作压力脉谱,根据冷却液温度制作液温修正曲线,根据进气压力制作气压修正曲线,通过转速、喷油量、冷却液温度、进气压力分别查询压力脉谱、液温修正曲线、气压修正曲线并计算得到压力目标值,根据压力目标值-进气压力的压力差值、转速制作转速脉谱,控制辅助压气机运行包括步骤如下,
S1、检测发动机的转速、喷油量、冷却液温度、进气压力,若转速小于预设的辅助增压转速或辅助压气机正在运行,则进行步骤S2;否则继续进行步骤S1;
S2、根据转速、喷油量查询压力脉谱得到压力基础值,根据冷却液温度查询液温修正曲线得到液温修正因子,根据进气压力查询气压修正曲线得到气压修正因子,压力基础值依次乘以液温修正因子、气压修正因子得到压力目标值;
S3、根据转速、压力差值查询转速脉谱得到增压转速基础值,根据压力差值进行PID闭环调节得到PID调节值,增压转速基础值加上PID调节值得到平滑变化的转速目标值,根据转速目标值控制辅助压气机运行,进行步骤S1。
进一步地,在步骤S1中,所述的辅助增压转速为30%·发动机最大转速~50%·发动机最大转速。
进一步地,在步骤S1中,所述的进气压力为发动机的进气歧管内的气体压力。
进一步地,在步骤S3中,当所述的转速目标值小于预设的最低增压转速时,停止辅助压气机运行。
为实现上述目的二,本发明提供了一种发动机电动辅助增压控制系统,包括废气压气机、废气涡轮机,废气压气机通过进气通路连接发动机的进气歧管,废气涡轮机通过排气通路连接发动机的排气歧管,所述废气压气机与进气歧管之间的进气通路上分别设有单向阀、与所述单向阀并接的进气支路,所述的进气支路上设有辅助压气机和驱动所述辅助压气机的电机,所述电机的控制端连接ECU。
作为进一步地改进,还包括分别与所述ECU连接的转速检测单元、喷油量检测单元、冷却液温度检测单元、进气压力检测单元。
进一步地,所述电机的输出轴与所述辅助压气机的驱动轴为同一轴。
进一步地,所述的电机为24V直流电机,所述电机的电源端可与汽车的24V电源连接。
进一步地,所述的进气压力检测单元位于所述发动机的进气歧管内。
有益效果
本发明与现有技术相比,具有的优点为:
1、通过将辅助压气机设置在进气支路上,当废气压气机完全取代辅助压气机进行增压后,压缩空气全部通过单向阀进入进气歧管,辅助压气机完全停止,能避免压缩空气推动辅助压气机的叶轮转动,可根据实际情况适当调整辅助压气机的设计使用寿命,降低辅助压气机的设计和使用成本;
2、通过转速、喷油量查询压力脉谱得到压力基础值,压力基础值经液温修正因子、气压修正因子得到压力目标值,再通过转速、压力差值查询转速脉谱和进行PID调节修正得到平滑变化的转速目标值,辅助压气机以转速目标值运行,能避免出现压力突变,能有效满足发动机实际的运行工况,保证发动机工作性能,提高发动机工作稳定性,防止冷却液温度过低或过高时造成发动机损伤。
附图说明
图1为本发明的结构示意图;
图2为本发明中计算压力目标值的方框图;
图3为本发明中计算转速目标值的方框图。
其中,1-废气压气机、2-进气歧管、3-进气通路、4-单向阀、5-进气支路、6-辅助压气机、7-废气涡轮机、8-发动机、9-排气通路、10-排气歧管、11-电机、12-ECU、13-转速检测单元、14-喷油量检测单元、15-冷却液温度检测单元、16-进气压力检测单元、17-24V电源、18-空气滤清器、19-后处理装置。
具体实施方式
下面结合附图中的具体实施例对本发明做进一步的说明。
参阅图1-3,一种发动机电动辅助增压控制方法,该方法是在废气压气机1与进气歧管2之间的进气通路3上设置一单向阀4和与该单向阀4并接的进气支路5,并将辅助压气机6设于进气支路5上,根据实际的发动机参数控制辅助压气机6以平滑变化的转速运行;通过将辅助压气机6设置在进气支路5上,当废气压气机1完全取代辅助压气机6进行增压后,压缩空气全部通过单向阀4进入进气歧管2,辅助压气机6完全停止,能避免压缩空气推动辅助压气机6的叶轮转动,可根据实际情况适当调整辅助压气机6的设计使用寿命,降低辅助压气机6的设计和使用成本。
发动机参数包括转速、喷油量、冷却液温度、进气压力,根据转速、喷油量制作压力脉谱MAP1,根据冷却液温度制作液温修正曲线CUR1,根据进气压力制作气压修正曲线CUR2,通过转速、喷油量、冷却液温度、进气压力分别查询压力脉谱MAP1、液温修正曲线CUR1、气压修正曲线CUR2并计算得到压力目标值,根据压力目标值-进气压力的压力差值、转速制作转速脉谱MAP2,控制辅助压气机6运行包括步骤如下,
S1、检测发动机的转速、喷油量、冷却液温度、进气压力,若转速小于预设的辅助增压转速或辅助压气机6正在运行,则进行步骤S2;否则继续进行步骤S1;
S2、根据转速、喷油量查询压力脉谱MAP1得到压力基础值,根据冷却液温度查询液温修正曲线CUR1得到液温修正因子,根据进气压力查询气压修正曲线CUR2得到气压修正因子,压力基础值依次乘以液温修正因子、气压修正因子得到压力目标值;冷却液温度过低时,发动机8的润滑状态不佳,冷却液温度过高时,发动机8的散热状态不佳,冷却液温度过低或过高时给发动机8快速增压可能造成发动机8损伤,液温修正因子可以有效对压力基础值进行修正,从而保护发动机8,气压修正因子可以提高压力目标值的精度,使压力目标值更符合当前发动机8的运行工况;
S3、根据转速、压力差值查询转速脉谱MAP2得到增压转速基础值,根据压力差值进行PID闭环调节得到PID调节值,增压转速基础值加上PID调节值得到转速目标值,根据转速目标值控制辅助压气机6运行,进行步骤S1;PID闭环调节实时性高,控制精度高,能很好地适应发动机各种瞬态或突变的工况,满足发动机实际的运行工况。
在步骤S1中,辅助增压转速为30%·发动机最大转速~50%·发动机最大转速,保证给发动机8供应充足的压缩空气;例如,普通的柴油机最大转速为2300~2500转/分,当转速小于1000转/分时,需要对柴油机进行辅助增压以保证柴油 机的工作性能;进气压力为发动机的进气歧管2内的气体压力,最能体表进入气缸的压缩空气的压力,保证控制的准确性。
在步骤S3中,当转速目标值小于预设的最低增压转速时,停止辅助压气机6运行;由于废气压气机1与辅助压气机6同时工作,当废气压气机1压缩的空气冲开单向阀4时,废气压气机1的转速越高,计算得到的转速目标值越小,当转速目标值较小时,辅助压气机6对压缩空气的贡献较小,可以忽略,此时停止辅助压气机6运行可以节省电能,还可以延长辅助压气机6的工作寿命,在本实施例中,最低增压转速为0~5%·发动机最大转速。
压力脉谱MAP1是通过发动机台架试验得到,液温修正曲线CUR1是在发动机根据压力脉谱MAP1运行的基础上通过发动机台架试验得到,气压修正曲线CUR2是在发动机根据压力脉谱MAP1、液温修正曲线CUR1运行的基础上通过发动机台架试验得到,转速脉谱MAP2是在发动机根据压力脉谱MAP1、液温修正曲线CUR1、气压修正曲线CUR2运行的基础上通过发动机台架试验得到。
通过转速、喷油量查询压力脉谱MAP1得到压力基础值,压力基础值经液温修正因子、气压修正因子得到压力目标值,再通过转速、压力差值查询转速脉谱MAP2和进行PID调节修正得到平滑变化的转速目标值,辅助压气机6以转速目标值运行,能避免出现压力突变,能有效满足发动机实际的运行工况,保证发动机工作性能,防止冷却液温度过低或过高时造成发动机损伤。
一种发动机电动辅助增压控制系统,包括废气压气机1、废气涡轮机7,废气压气机1通过进气通路3连接发动机8的进气歧管2,废气涡轮机7通过排气通路9连接发动机8的排气歧管10,废气压气机1与进气歧管2之间的进气通路3上分别设有单向阀4、与单向阀4并接的进气支路5,进气支路5上设有辅助压气机6和驱动辅助压气机6的电机11,电机11的控制端连接ECU12,用于控制电机11驱动辅助压气机6工作;还包括分别与ECU12连接的转速检测单元13、喷油量检测单元14、冷却液温度检测单元15、进气压力检测单元16,分别 用于检测发动机8的转速、喷油量、冷却液温度、进气压力;ECU12用于保存压力脉谱MAP1、液温修正曲线CUR1、气压修正曲线CUR2、转速脉谱MAP2,根据获取的发动机的转速、喷油量、冷却液温度、进气压力进行查询并计算得到转速目标值,根据转速目标值控制辅助压气机6运行。
电机11的输出轴与辅助压气机6的驱动轴为同一轴,当需要电机11在短时间内输出较大的转速或扭矩时,能有效地保证辅助压气机6的实时响应性,克服了传统技术方案中使用电磁离合器会出扭矩传递不及时的缺点,消除了电磁离合器打滑的风险;电机11为24V直流电机,电机11的电源端可与汽车的24V电源17连接,实现了电机11的通用化,也降低了蓄电池的设计和使用成本;进气压力检测单元16位于发动机8的进气歧管2内,能有效检测进气压力,检测稳定性高。
本系统结构简单,可靠性高,对辅助压气机6的扭矩控制更直接,工作效率高。
本系统具体的进气增压及排气过程的如下:
1、新鲜空气首先经过空气滤清器18,然后流过废气压气机1;
2、当发动机8的转速小于预设的辅助增压转速时,ECU12控制电机11驱动辅助压气机6运行,废气压气机1也一起转动,由于废气能量不足,因此被压缩的空气将主要通过辅助压气机6进入发动机8的进气歧管2,同时,因为单向阀4的两端会产生压力差,所以单向阀4处于关闭的状态;
3、当发动机8的转速大于预设的辅助增压转速时,废气能量逐渐增大,并能推动废气涡轮机7进行高速运转,此时,废气压气机1将逐渐介入进气的压缩过程,单向阀4被废气压气机1压缩的空气冲开,ECU12控制电机11减速运行,废气压气机1和辅助压气机6同时压缩空气,废气涡轮机7的转速越高,则电机11的转速越低,直至废气压气机1完全取代辅助压气机6,辅助压气机 6将停止运行,压缩的空气全部通过单向阀4进入发动机8的进气歧管2;
4、经过燃烧后产生的废气将经过发动机8的排气歧管10到达废气涡轮机7,并推动废气涡轮机7工作,最终废气将通过后处理装置19处理后排放到大气中。
以上所述的仅是本发明的优选实施方式,应当指出对于本领域的技术人员来说,在不脱离本发明结构的前提下,还可以作出若干变形和改进,这些都不会影响本发明实施的效果和专利的实用性。

Claims (10)

  1. 一种发动机电动辅助增压控制方法,其特征在于:该方法是在废气压气机(1)与进气歧管(2)之间的进气通路(3)上设置一单向阀(4)和与该单向阀(4)并接的进气支路(5),并将辅助压气机(6)设于进气支路(5)上,根据实际的发动机参数控制辅助压气机(6)以平滑变化的转速运行。
  2. 根据权利要求1所述的一种发动机电动辅助增压控制方法,其特征在于:所述的发动机参数包括转速、喷油量、冷却液温度、进气压力,根据转速、喷油量制作压力脉谱(MAP1),根据冷却液温度制作液温修正曲线(CUR1),根据进气压力制作气压修正曲线(CUR2),通过转速、喷油量、冷却液温度、进气压力分别查询压力脉谱(MAP1)、液温修正曲线(CUR1)、气压修正曲线(CUR2)并计算得到压力目标值,根据压力目标值-进气压力的压力差值、转速制作转速脉谱(MAP2),控制辅助压气机(6)运行包括步骤如下,
    S1、检测发动机的转速、喷油量、冷却液温度、进气压力,若转速小于预设的辅助增压转速或辅助压气机(6)正在运行,则进行步骤S2;否则继续进行步骤S1;
    S2、根据转速、喷油量查询压力脉谱(MAP1)得到压力基础值,根据冷却液温度查询液温修正曲线(CUR1)得到液温修正因子,根据进气压力查询气压修正曲线(CUR2)得到气压修正因子,压力基础值依次乘以液温修正因子、气压修正因子得到压力目标值;
    S3、根据转速、压力差值查询转速脉谱(MAP2)得到增压转速基础值,根据压力差值进行PID闭环调节得到PID调节值,增压转速基础值加上PID调节值得到转速目标值,根据转速目标值控制辅助压气机(6)运行,进行步骤S1。
  3. 根据权利要求2所述的一种发动机电动辅助增压控制方法,其特征在于:在步骤S1中,所述的辅助增压转速为30%·发动机最大转速~50%·发动机最大转速。
  4. 根据权利要求2所述的一种发动机电动辅助增压控制方法,其特征在于: 在步骤S1中,所述的进气压力为发动机的进气歧管(2)内的气体压力。
  5. 根据权利要求2所述的一种发动机电动辅助增压控制方法,其特征在于:在步骤S3中,当所述的转速目标值小于预设的最低增压转速时,停止辅助压气机(6)运行。
  6. 一种发动机电动辅助增压控制系统,包括废气压气机(1)、废气涡轮机(7),废气压气机(1)通过进气通路(3)连接发动机(8)的进气歧管(2),废气涡轮机(7)通过排气通路(9)连接发动机(8)的排气歧管(10),其特征在于:所述废气压气机(1)与进气歧管(2)之间的进气通路(3)上分别设有单向阀(4)、与所述单向阀(4)并接的进气支路(5),所述的进气支路(5)上设有辅助压气机(6)和驱动所述辅助压气机(6)的电机(11),所述电机(11)的控制端连接ECU(12)。
  7. 根据权利要求6所述的一种发动机电动辅助增压控制系统,其特征在于:还包括分别与所述ECU(12)连接的转速检测单元(13)、喷油量检测单元(14)、冷却液温度检测单元(15)、进气压力检测单元(16)。
  8. 根据权利要求6所述的一种发动机电动辅助增压控制系统,其特征在于:所述电机(11)的输出轴与所述辅助压气机(6)的驱动轴为同一轴。
  9. 根据权利要求6所述的一种发动机电动辅助增压控制系统,其特征在于:所述的电机(11)为24V直流电机,所述电机(11)的电源端可与汽车的24V电源(17)连接。
  10. 根据权利要求6所述的一种发动机电动辅助增压控制系统,其特征在于:所述的进气压力检测单元(16)位于所述发动机(8)的进气歧管(2)内。
PCT/CN2019/084925 2018-11-08 2019-04-29 一种发动机电动辅助增压控制方法及系统 WO2020093665A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP19883173.7A EP3828398B1 (en) 2018-11-08 2019-04-29 Electrically-assisted pressure boosting control method and system for engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811322895.5 2018-11-08
CN201811322895.5A CN109252942B (zh) 2018-11-08 2018-11-08 一种发动机电动辅助增压控制方法及系统

Publications (1)

Publication Number Publication Date
WO2020093665A1 true WO2020093665A1 (zh) 2020-05-14

Family

ID=65043262

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/084925 WO2020093665A1 (zh) 2018-11-08 2019-04-29 一种发动机电动辅助增压控制方法及系统

Country Status (3)

Country Link
EP (1) EP3828398B1 (zh)
CN (1) CN109252942B (zh)
WO (1) WO2020093665A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118499118A (zh) * 2024-07-22 2024-08-16 潍坊富源增压器有限公司 一种涡轮增压器的电辅助系统

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109252942B (zh) * 2018-11-08 2023-06-06 广西玉柴机器股份有限公司 一种发动机电动辅助增压控制方法及系统
CN112031925A (zh) * 2020-08-31 2020-12-04 东风商用车有限公司 发动机用电动增压前置的多级混合增压系统
CN112031929B (zh) * 2020-08-31 2022-06-28 东风商用车有限公司 发动机用双电压的多级增压系统
CN112377347B (zh) * 2020-10-28 2021-08-13 黄河交通学院 发动机压缩空气供给系统、发动机及发动机控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101761383A (zh) * 2010-01-01 2010-06-30 常州天大龙成节能环保科技有限公司 提前增压补气装置
JP2011007051A (ja) * 2009-06-23 2011-01-13 Hino Motors Ltd ディーゼルエンジン
GB2480240A (en) * 2010-05-10 2011-11-16 Gm Global Tech Operations Inc Turbocharged diesel engine with long-route EGR and an auxiliary intake compressor
CN106121878A (zh) * 2015-05-06 2016-11-16 博格华纳公司 用于内燃机增压系统的装置
CN106285917A (zh) * 2016-08-05 2017-01-04 同济大学 一种适用于高海拔地区的柴油机起动辅助系统及方法
CN109252942A (zh) * 2018-11-08 2019-01-22 广西玉柴机器股份有限公司 一种发动机电动辅助增压控制方法及系统

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6062026A (en) * 1997-05-30 2000-05-16 Turbodyne Systems, Inc. Turbocharging systems for internal combustion engines
CN204716385U (zh) * 2015-06-08 2015-10-21 山东艾磁驱动科技有限公司 发动机用辅助增压装置
DE102015214034B4 (de) * 2015-07-24 2019-08-01 Volkswagen Aktiengesellschaft Steuern einer Verbrennungskraftmaschine im transienten Betrieb
US9644548B2 (en) * 2015-10-02 2017-05-09 GM Global Technology Operations LLC Exhaust system pressure estimation systems and methods
DE102015220850A1 (de) * 2015-10-26 2017-04-27 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben einer Antriebsvorrichtung, Antriebsvorrichtung
KR101714265B1 (ko) * 2015-11-30 2017-03-23 현대자동차주식회사 수퍼차저가 장착된 엔진시스템의 제어방법
US10753269B2 (en) * 2016-03-07 2020-08-25 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Engine system, engine system control device, engine system control method, and program
US10393038B2 (en) * 2016-08-22 2019-08-27 GM Global Technology Operations LLC Method and apparatus for controlling a two-stage air charging system with mixed EGR
CN208982165U (zh) * 2018-11-08 2019-06-14 广西玉柴机器股份有限公司 一种发动机电动辅助增压控制系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011007051A (ja) * 2009-06-23 2011-01-13 Hino Motors Ltd ディーゼルエンジン
CN101761383A (zh) * 2010-01-01 2010-06-30 常州天大龙成节能环保科技有限公司 提前增压补气装置
GB2480240A (en) * 2010-05-10 2011-11-16 Gm Global Tech Operations Inc Turbocharged diesel engine with long-route EGR and an auxiliary intake compressor
CN106121878A (zh) * 2015-05-06 2016-11-16 博格华纳公司 用于内燃机增压系统的装置
CN106285917A (zh) * 2016-08-05 2017-01-04 同济大学 一种适用于高海拔地区的柴油机起动辅助系统及方法
CN109252942A (zh) * 2018-11-08 2019-01-22 广西玉柴机器股份有限公司 一种发动机电动辅助增压控制方法及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3828398A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118499118A (zh) * 2024-07-22 2024-08-16 潍坊富源增压器有限公司 一种涡轮增压器的电辅助系统

Also Published As

Publication number Publication date
CN109252942A (zh) 2019-01-22
EP3828398A4 (en) 2021-09-22
CN109252942B (zh) 2023-06-06
EP3828398B1 (en) 2022-08-24
EP3828398A1 (en) 2021-06-02

Similar Documents

Publication Publication Date Title
WO2020093665A1 (zh) 一种发动机电动辅助增压控制方法及系统
RU2579616C2 (ru) Способ запуска двигателя и система двигателя
KR101326972B1 (ko) 밀러 사이클엔진 시스템 및 제어방법
CN112211717A (zh) 发动机用带电动增压的多级增压柔性空气系统
CN204082306U (zh) 一种发动机的瞬态补气增压系统
JP5370243B2 (ja) ターボ過給機付きディーゼルエンジンの制御装置
RU2016140718A (ru) Способ (варианты) и система для регулирования частоты вращения двигателя
RU2014145814A (ru) Способ управления двигательной системой гибридного транспортного средства (варианты) и двигательная система гибридного транспортного средства
US8601810B2 (en) Internal combustion engine
JP2004169629A (ja) 電動機付ターボチャージャ制御装置
JP2012097604A (ja) 内燃機関の排気ブレーキ制御方法及び装置
CN102069788A (zh) 一种车辆制动能量气压回收和利用装置及控制方法
CN107013318B (zh) 混合增压系统及其控制方法、车辆
CN109356728B (zh) 一种集成电子节气门的气动增压装置及其控制方法
JPWO2005085612A1 (ja) 電動過給機付内燃機関の制御装置
CN101629493B (zh) 一种内燃-空气混合动力装置的喷射方法
WO2014107999A1 (zh) 发动机复合增压系统
CN203098040U (zh) 发动机复合增压系统
CN112031925A (zh) 发动机用电动增压前置的多级混合增压系统
CN201593460U (zh) 车辆提前增压补气装置
JP2015086811A (ja) 車両のガス蓄圧システム及び車両のガス蓄圧方法
CN208982165U (zh) 一种发动机电动辅助增压控制系统
CN101737150A (zh) 电动离心式补气装置
CN204552986U (zh) 一种适合重型柴油机起动工况的补气装置
JP5397291B2 (ja) ターボ過給機付きエンジンの始動制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19883173

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019883173

Country of ref document: EP

Effective date: 20210226

NENP Non-entry into the national phase

Ref country code: DE