WO2020093648A1 - 一种具有补汽结构的汽轮机及其运行方法 - Google Patents

一种具有补汽结构的汽轮机及其运行方法 Download PDF

Info

Publication number
WO2020093648A1
WO2020093648A1 PCT/CN2019/081015 CN2019081015W WO2020093648A1 WO 2020093648 A1 WO2020093648 A1 WO 2020093648A1 CN 2019081015 W CN2019081015 W CN 2019081015W WO 2020093648 A1 WO2020093648 A1 WO 2020093648A1
Authority
WO
WIPO (PCT)
Prior art keywords
steam
inner cylinder
chamber
rotor
supplement
Prior art date
Application number
PCT/CN2019/081015
Other languages
English (en)
French (fr)
Inventor
胡怡丰
陈钢
叶兴柱
程凯
Original Assignee
上海电气电站设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海电气电站设备有限公司 filed Critical 上海电气电站设备有限公司
Priority to EP19881794.2A priority Critical patent/EP3879077A4/en
Priority to US17/288,391 priority patent/US11572802B2/en
Publication of WO2020093648A1 publication Critical patent/WO2020093648A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • F01D25/12Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/04Antivibration arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • F01D25/14Casings modified therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings
    • F01D25/26Double casings; Measures against temperature strain in casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D3/00Machines or engines with axial-thrust balancing effected by working-fluid
    • F01D3/04Machines or engines with axial-thrust balancing effected by working-fluid axial thrust being compensated by thrust-balancing dummy piston or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/31Application in turbines in steam turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/232Heat transfer, e.g. cooling characterized by the cooling medium
    • F05D2260/2322Heat transfer, e.g. cooling characterized by the cooling medium steam

Definitions

  • the invention relates to a steam turbine with a steam supplement structure and its operation method.
  • a steam turbine is a rotary steam power plant that usually includes a bladed, rotatably supported rotor, which is arranged inside a casing jacket. As the heated and under-pressure steam flow passes through the flow space formed by the housing sleeve, the steam puts the rotor in rotation through the blades.
  • Patent CN200580033477.9 discloses a steam turbine, as shown in FIG. 1, including an outer cylinder 2 and an inner cylinder 3, the outer cylinder 2 and the inner cylinder 3 form a new steam input channel 10, and one has a thrust balance piston 4 and a rotor 5 including a plurality of working blades 7 is rotatably mounted inside the inner cylinder 3, and a plurality of guide blades 8 are provided on the inner cylinder 3 in such a manner that a plurality of blade stages are formed along the flow direction 11
  • the flow channel 9 of steam after a blade stage, the steam flows into a chamber 15 between the inner cylinder 3 and the outer cylinder 2 through a feedback channel 14 in the inner cylinder 3, from there through a
  • the input channel 16 flows into a thrust balance piston chamber 12 provided between the thrust balance piston 4 and the inner cylinder 3 along the axial direction 17; the steam in the thrust balance piston chamber 12 achieves thrust balance.
  • the arrow 13 symbolically represents the new steam input; most of the fresh steam flowing into the fresh steam input channel 10 flows into the flow channel 9 along the flow direction, and the smaller part flows into the one between the rotor 5 and the inner cylinder 3 as a leaked steam Seam 18
  • the steam leakage basically flows in the reverse direction 19.
  • the steam in the sealed chamber 18 flows into an inflow chamber 26 provided after a blade stage through a cross feedback channel 20 provided in the inner cylinder 3, and marks 21 and 22 indicate two turns of the cross feedback channel 20; Steam flows into the inflow chamber 26 through a load introduction pipe 23 passing through the outer cylinder 2 and the inner cylinder 3.
  • the feedback channel 14 is connected to the flow channel 9 after a feedback blade stage 24, the cross feedback channel 20 is connected to the flow channel 9 after a cross feedback blade stage 25, and the cross feedback blade stage 25 is along The flow direction 11 of the flow channel 9 is arranged after the feedback blade stage 24.
  • the steam supplementing pipe 24 ′ and the cross feedback channel 20 ′ are connected through a steam supplementing chamber 27 ′ in the inner cylinder 3 ′, and at the same time pass through the pipe 23 ′ Input steam and cooling steam in the stream.
  • Such a structure often produces a large vibration problem in actual operation.
  • the steam turbine supplemental steam enters the inner cylinder 3 'supplemental steam via the cannula through the two sides of the steam turbine through the supplemental pipeline 24'; due to the split surface structure in the inner cylinder, the two routes of supplemental steam enter the interior respectively Two independent supplemental steam chambers 27 'of the cylinder 3'.
  • Patent CN201480046503.0 discloses the cause of this vibration problem and provides a solution.
  • the patent provides a solution for adding a regulating valve and a vibration detection probe to the steam supply lines on both sides.
  • the two steam supply lines 35 and 36 of the steam turbine 32 are respectively provided with a first valve 33 and a second valve 34.
  • the first valve 33 and / or the second valve 34 vibrates, the first valve The valve 33 is adjusted toward the closing direction, and the second valve 34 is adjusted toward the opening direction.
  • the purpose of the present invention is to provide a steam turbine with a steam supplement structure and an operation method thereof.
  • a technical solution of the present invention is to provide a steam turbine with a steam supplement structure, which includes an outer cylinder and an inner cylinder, and a rotor with a thrust balance piston is rotatably mounted inside the inner cylinder.
  • a steam flow channel is formed between the inner cylinder and the rotor, wherein a plurality of working blades of the rotor and a plurality of guide blades of the inner cylinder are alternately arranged to form a multi-stage blade unit, and steam supply is formed between the inner cylinder and the outer cylinder Circulating interlayer; the interlayer between the inner cylinder and the outer cylinder contains a steam supplement chamber, which is connected to a multi-channel steam supplement pipeline that conveys steam supplement to the steam turbine; between the steam supplement chamber and the flow channel There is a connecting pipe for steam circulation.
  • the steam supplement chamber is an annular steam supplement chamber.
  • the multi-stage blade unit includes a first setting blade unit and a second setting blade unit; a sealed chamber is provided between the rotor and the inner cylinder;
  • the steam turbine is provided with a first steam channel inside the inner cylinder to communicate the flow after the first set blade unit with a thrust balance piston chamber formed between the thrust balance piston and the inner cylinder;
  • the steam turbine is also provided with a second steam channel, including: a pipeline that connects the sealed chamber to the inner and outer cylinders between the interlayer, the interlayer and its steam supplement chamber, and the interlayer and the Secondly, setting the communicating tube for flow communication after the blade unit.
  • the second setting blade group is downstream of the first setting blade group in the flow channel.
  • the first set blade group corresponds to a fourth blade stage in the flow channel
  • the second specified blade unit corresponds to a fifth blade stage in the flow channel
  • the first steam passage in the inner cylinder first extends substantially perpendicular to the axial direction of the rotor, extends substantially parallel to the axial direction after the first turn, and extends substantially perpendicular to the axial direction after the second turn;
  • a pipeline communicating the interlayer between the sealed chamber and the inner and outer cylinders extends substantially perpendicular to the axis of the rotor, and connects the interlayer to the through flow of the second set blade unit
  • the communicating tube extends substantially perpendicular to the axis.
  • multiple steam supplement pipes respectively penetrate the outer cylinder and communicate with the steam supplement chamber.
  • Another technical solution of the present invention is to provide a method for operating a steam turbine, which is applicable to any of the above-mentioned steam turbines with a steam supplement structure:
  • the inner and outer cylinders of the steam turbine have a new steam input channel that sends fresh steam into the inner steam inlet cavity of the inner cylinder. From the inlet steam cavity, fresh steam enters the flow channel between the inner cylinder and the rotor, and flows around each The stage blade unit expands and cools to release the thermal energy to drive the rotor to rotate;
  • the steam is sent from the through-flow point behind the first designated blade unit in the multi-stage blade unit to the thrust balance piston located between the thrust balance piston of the inner cylinder and the rotor Chamber to produce an opposing force that counteracts the thrust of the rotor;
  • the steam is sent from the sealed chamber between the rotor and the inner cylinder to the steam supplement chamber located in the interlayer between the inner cylinder and the outer cylinder, through the multi-channel steam supplement pipeline with the outside
  • the supplemental steam mixture fed into the supplemental steam chamber is returned to the flow path after the second designated blade unit via the communication tube provided in the inner cylinder to continue to work.
  • the steam turbine with a steam supplement structure and its operating method of the present invention have the following advantages:
  • the present invention reverses the steam flow direction in the cooling structure:
  • the design in the existing cooling structure is that the first-stage blades flow through the pipeline through the inner and outer cylinder interlayers into the balancing piston, and then return from the inner cylinder inner pipeline through the balancing piston
  • the second-stage blades flow through;
  • the invention is that the first-stage blades flow through the inner cylinder pipeline to the balancing piston, and then the circuit passes through the inner and outer cylinder interlayers to reach the latter stage blades.
  • the invention cancels the steam supplementing chamber and the steam inlet pipe of the steam supplementing valve pipeline originally arranged in the inner cylinder, and instead sets up a proper steam supplementing chamber (such as an annular steam supplementing chamber) in the interlayer of the inner and outer cylinders.
  • a proper steam supplementing chamber such as an annular steam supplementing chamber
  • the existing steam supplement structure allows the steam supplement to flow from the steam supplement valve into the cylinder in two ways. Due to the split surface structure in the inner cylinder, the two steam supplements enter the two independent steam supplement chambers of the inner cylinder respectively. Steam has a flow and pressure difference, causing vibration problems.
  • the present invention enables the supplemental steam to be mixed between the inner and outer cylinders, eliminating the flow rate and pressure difference, and solving the vibration problem when the supplemental steam valve is opened.
  • the present invention does not require high-temperature regulating valves and vibration detection probes, and the cost is lower; the present invention also does not require the design of special regulating logic and methods, and is simple to implement.
  • the existing high temperature control valve has problems such as jamming failure, etc., and the new solution provided by the present invention is more safe and reliable.
  • Figure 1 is a partial cross-sectional view of a conventional steam turbine
  • FIG. 3 is a schematic radial cross-sectional view of the inner cylinder in the steam supplement structure shown in FIG. 2;
  • FIG. 6 is a schematic view of the radial cross section of the steam inlet channel on the flow side of the present invention.
  • the present invention provides a steam turbine with a steam supplement structure and an operation method thereof.
  • the steam turbine is provided with an outer cylinder 110 and an inner cylinder 120, and a rotor (130) having a thrust balance piston 140 is rotatably mounted inside the inner cylinder 120.
  • a flow channel of a medium (such as steam) is formed between the inner cylinder 120 and the rotor (130), which is basically arranged along the axial direction of the rotor (130).
  • the flow channels are alternately arranged with rotor blades 130 and guide blades 160 of the inner cylinder 120 to form a multi-stage blade unit.
  • Fresh steam is sent into the steam inlet chamber 350 through a fresh steam input channel (not shown) provided in the inner cylinder 120 and the outer cylinder 110, thereby entering the flow channel and circling downstream at all stages of the blade unit, with the fresh steam Expansion and cooling release heat energy to drive the rotor (130) to rotate.
  • a fresh steam input channel not shown
  • the present invention provides a first steam passage so that steam can flow from the through-flow 330 into a thrust balance piston chamber 340 between the thrust balance piston 140 and the inner cylinder 120 when flowing through the flow passage to produce a reaction
  • the opposing force of the rotor thrust force achieves thrust balance, and realizes cooling of the thrust balance piston 140.
  • the present invention also provides a second steam passage so that steam (such as a small part of steam leakage from fresh steam) can enter into the sealed chamber 310 between the rotor (130) and the inner cylinder 120 (steam seal).
  • a supplemental steam chamber 220 between the inner cylinder 120 and the outer cylinder 110 is mixed with the supplemental steam fed into the supplemental steam chamber 220 through the supplemental steam pipeline, and the supplementary steam is balanced in the supplemental steam chamber 220 from
  • the flow and pressure difference of the two-way steam supply pipeline when entering the steam turbine, after eliminating vibration excitation, the blade stage group after introducing the flow 330 through the communication pipe 230 distributed uniformly on the circumference of the inner cylinder 120 continues to work to solve the vibration of the steam supply valve opening problem.
  • the supplemental steam chamber 220 is arranged around the outer side of the inner cylinder 120, and may be a spatial structure of any shape, which is defined by the shape of the cylinder block where the outer cylinder 110 and the inner cylinder 120 are located.
  • the preferred steam supplement chamber 220 is an annular steam supplement chamber. In this example, a part of the area in the inner and outer cylinder interlayers where steam can circulate is formed as the steam supplement chamber 220.
  • an arrow 210 is used to symbolically indicate that one of the steam supplementing pipes is connected to the interlayer area where the steam supplementing chamber 220 is located to feed the steam supplement.
  • the exemplary steam supplementing chamber 220 is located at the rear section of the interlayer, that is, the side closer to the communication tube 230, and the volume of the steam supplementing chamber 220 is closer to this side. It is shown in FIG. 5 that the closer to the communication pipe 230, the larger the ring width of the cross section of the makeup chamber 220. For example, by changing the structural design outside the inner cylinder 120 so that the inner diameter of the inner cylinder portion corresponding to the position of the makeup chamber 220 is gradually reduced.
  • the first steam passage is provided with a corresponding pipeline in the inner cylinder 120, so that the steam can start after a blade unit corresponding to the through-flow 330 (referred to as a first designated blade unit), which is substantially perpendicular to Axial extension (schematically indicated by arrow 411), extending substantially parallel to the axial direction after the first turn (schematically indicated by arrow 412), and then extending substantially perpendicular to the axial direction after the second turn (Represented schematically by arrow 413) until the thrust balance piston chamber 340 is entered.
  • a blade unit corresponding to the through-flow 330 referred to as a first designated blade unit
  • the second steam channel includes a pipeline connecting the sealed chamber 310 and the inner and outer cylinder interlayer, the inner and outer cylinder interlayer and the steam supplement chamber 220 formed therein, and a pipeline (including The communication pipe 230).
  • the arrow 511 schematically indicates that the steam starts from the sealed chamber 310 and extends substantially perpendicular to the axial direction and enters the inner and outer cylinder interlayer;
  • the arrow 512 schematically indicates that the steam extends axially in the front section of the inner and outer cylinder interlayer and passes through the rear section
  • the supplemental steam chamber 220 is mixed with the supplemental steam (indicated by arrow 210) which is input into it, and continues to extend until it enters the communication pipe 230;
  • the arrow 513 schematically represents that the steam extends substantially perpendicular to the axial direction along the communication pipe 230 Until it reaches the flow channel and connects to the flow 320 after another blade unit (referred to as the second designated blade unit).
  • the second designated blade unit in this example is located downstream of the first designated blade unit, and is a blade stage after the first designated blade unit.
  • the first designated blade group corresponds to the fourth blade stage of the flow channel
  • the second designated blade group corresponds to the fifth blade stage of the flow channel.
  • the present invention does not limit the structural adjustment according to the actual application of the steam turbine, such as changing the shape / size / diversion / flow rate of the respective pipelines of the first and second steam channels, and changing the respective designation of the first and second designated blade units Corresponding blade stage, adjust the number of blade stages between the first and second designated blade units, or adjust the input port of the first steam channel (corresponding to the flow 330) to the output port of the second steam channel (corresponding to the Downstream of stream 320), etc.
  • the steam turbine with a steam supplement structure and its operating method of the present invention change the steam flow direction in the cooling structure, and a suitable annular steam supplement chamber is provided between the inner and outer cylinders, so that the steam supplement can be both inside and outside.
  • the mixing between the cylinders eliminates the flow and pressure difference when inputting two-way steam compensation, and effectively solves the vibration problem after the steam compensation valve is opened when the steam turbine is running.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Control Of Turbines (AREA)

Abstract

一种具有补汽结构的汽轮机,包含外缸(110)和内缸(120),一个有推力平衡活塞(140)的转子(130)旋转支承地装在所述内缸(120)的内部,所述内缸(120)与转子(130)之间形成有蒸汽的流动通道,交替地布置转子(130)的多个工作叶片(150)和内缸(120)的多个导向叶片(160),形成多级叶片机组;内缸(120)和外缸(110)之间形成有供蒸汽流通的夹层,该夹层包含补汽腔室(220),能接收来自转子(130)和内缸(120)之间一密封腔室(310)的蒸汽,与外部通过多路补汽管道送入该补汽腔室(220)的补汽混合,消除多路补汽输入时的流量和压力差,有效解决补汽阀开启振动的问题。还公开了一种汽轮机的运行方法。

Description

一种具有补汽结构的汽轮机及其运行方法 技术领域
本发明涉及一种具有补汽结构的汽轮机及其运行方法。
背景技术
汽轮机是一种旋转式蒸汽动力装置,通常包括配有叶片的、可转动地支承的转子,该转子布置在壳体套内部。在经过加热的且处于压力之下的蒸汽流经由所述壳体套形成的流动空间时,所述蒸汽通过叶片将所述转子置于旋转之中。
出于效率的原因,汽轮机的运行参数(如蒸汽的压力及温度)越来越高,受强度和材料限制,为了使汽轮机在特别高的温度下仍能够可靠运行,需要对汽轮机的各构件进行冷却。因为这些构件的耐热强度都是有限的。若在温度提高时不能获得有效的冷却,则需要用非常昂贵的材料(例如镍基合金)来制造。
按迄今已知的尤其用于形式上为汽轮机汽缸或转子的汽轮机构件的冷却方法,可分为主动冷却和被动冷却。按主动冷却,冷却通过一种独立于汽轮机构件,亦即除工质之外附加输入冷却剂的方式实现。反之,被动冷却仅通过恰当导引或利用工质进行。迄今汽轮机构件优选使用被动冷却。
专利CN 200580033477.9公开了一种汽轮机,如图1所示,包括一个外缸2和一个内缸3,所述外缸2和内缸3形成有一个新汽输入通道10,一个具有一推力平衡活塞4并包括多个工作叶片7的转子5旋转支承地装在内缸3的内部,在内缸3上以这样的方式设置多个导向叶片8,沿流动方向11构成一个包括多个叶片级的蒸汽的流动通道9;蒸汽在一个叶片级后经过一个处于内缸3内的反馈通道14流入内缸3与外缸2之间的一腔室15内,从那里经过一个处于内缸3内的输入通道16流入一个沿轴向17设在推力平衡活塞4与内缸3之间的推力平衡活塞腔室12内;通过推力平衡活塞腔室12内的蒸汽达到推力平衡。
用箭头13象征性地表示新汽输入;流入新汽输入通道10的新蒸汽绝大部分沿流动方向流入流动通道9,较小的部分作为漏汽流入一个处于转子5与内缸3之间的密封腔18。在这里,漏汽基本上沿反方向19流动。在密封腔18中的蒸汽,经过内缸3设置的一交叉反馈通道20流入一个设在一个叶片级后的流入腔26内,标记21、22表示交叉反馈通道20的两次转向;同时,补汽经过一个穿过外缸2与内缸3的负荷引入管23流入所述流入腔26内。所述反馈通道14在一个反馈叶片级24后与所述流动通道9连接,所述交叉反馈通道20在一个交叉反馈叶片级25后与所述流动通道9连接,所述交叉反馈叶片级25沿流动通道9的流动方向11设在所述反馈叶片级24之后。
具有上述冷却结构的汽轮机在实际应用中,如图2所示,补汽管道24’与交叉反馈通道20’在内缸3’内通过一个补汽腔27’相连,同时通过管道23’向通流内输入补汽和冷却汽。这样的结构在实际运行中往往产生很大的振动问题。如图3所示,汽轮机补汽通过补汽管道24’,由汽轮机两侧分两路经插管直接进入内缸3’补汽;由于内缸中分面结构,两路补汽分别进入内缸3’的两个独立的补汽腔27’。由于补汽阀的球腔结构和两侧管路设计的不同,两股补汽存在流量和压力差,补汽时会在两侧的管道23’和通流中产生激励和补汽流量不均的情况,从而导致汽轮机振动问题。
专利CN201480046503.0公开了该振动问题的原因,并提供一种解决方案。该专利提供了一种在两侧补汽管路分别加装调节阀和振动检测探头的方案。如图5所示,汽轮机32的两个蒸汽供给管路35、36中分别设置第一阀33和第二阀34,当第一阀33和/或第二阀34出现振动时,使第一阀33朝关闭的方向调节,第二阀34朝打开的方向调节。
发明的公开
本发明的目的在于提供一种具有补汽结构的汽轮机及其运行方法,通过优化内缸内部冷却管路及补汽结构,以全新的方式来解决汽轮机运行时补汽阀开启后的振动问题。
为了达到上述目的,本发明的一个技术方案是提供一种具有补汽结构的汽轮机,包含外缸和内缸,一个有推力平衡活塞的转子旋转支承地装在所述内缸的内部,所述内缸与转子之间形成有蒸汽的流动通道,其中交替 地布置转子的多个工作叶片和内缸的多个导向叶片形成多级叶片机组,所述内缸和外缸之间形成有供蒸汽流通的夹层;所述内缸和外缸之间的夹层包含补汽腔室,其与输送补汽到汽轮机的多路补汽管道相连通;所述补汽腔室与所述流动通道之间设有供蒸汽流通的连通管。
可选地,所述补汽腔室为环状补汽腔。
可选地,所述补汽腔室中越接近连通管的部位,对蒸汽的容纳空间越大。
可选地,所述多级叶片机组包含第一设定叶片机组和第二设定叶片机组;所述转子和内缸之间设有密封腔室;
所述汽轮机在内缸内部设有第一蒸汽通道,将第一设定叶片机组之后的通流,与形成在所述推力平衡活塞和内缸之间的一推力平衡活塞腔室连通;
所述汽轮机还设有第二蒸汽通道,包含:将所述密封腔室与所述内缸和外缸之间夹层连通的管路,所述夹层及其补汽腔室,以及将夹层与第二设定叶片机组之后的通流连通的所述连通管。
可选地,所述第二设定叶片机组在流动通道中处于第一设定叶片机组的下游。
可选地,所述第一设定叶片机组对应流动通道中的第四叶片级,所述第二指定叶片机组对应流动通道中的第五叶片级。
可选地,若干路所述连通管分布于内缸圆周。
可选地,所述第一蒸汽通道在内缸中,先基本垂直于转子的轴向延伸,第一次转向后基本平行于轴向延伸,第二次转向后基本又垂直于轴向延伸;
所述第二蒸汽通道中,将所述密封腔室与所述内缸和外缸之间夹层连通的管路基本垂直于转子的轴线延伸,将夹层与第二设定叶片机组之后的通流连通的连通管基本垂直于轴线延伸。
可选地,多路所述补汽管道分别贯穿外缸,与所述补汽腔室连通。
本发明的另一个技术方案是提供一种汽轮机的运行方法,适用于上述任意一种具有补汽结构的汽轮机:
汽轮机的内缸和外缸具有的一个新汽输入通道,将新鲜蒸汽送入内缸内部的进汽腔,新鲜蒸汽从进汽腔出发进入内缸和转子之间的流动通道, 并绕流各级叶片机组进行膨胀及冷却,以释放热能来带动转子旋转;
通过汽轮机的内缸内设置的第一蒸汽通道,将蒸汽从多级叶片机组中的第一指定叶片机组之后的通流处,送到位于内缸与转子的推力平衡活塞之间的推力平衡活塞腔室,以产生一个反作用于转子推力的对向力;
通过汽轮机设置的第二蒸汽通道,将蒸汽从转子和内缸之间的密封腔室,送到位于内缸和外缸之间夹层中的补汽腔室,来与外部通过多路补汽管道送入到所述补汽腔室的补汽混合,再经由设置于内缸的连通管返回到第二指定叶片机组之后的通流处继续做功。
与现有技术相比,本发明所述具有补汽结构的汽轮机及其运行方法,具有以下优点:
本发明使冷却结构中的蒸汽流向反向:现有冷却结构中的设计是从前一级叶片通流通过管路经内外缸夹层流进平衡活塞,然后经平衡活塞从内缸内部管路回到后一级叶片通流;本发明是从前一级叶片通流通过内缸内管路流进平衡活塞,然后回路经过内外缸夹层到达后一级叶片通流。
本发明取消了原先设置在内缸内的补汽腔室和补汽阀管道进汽插管,改为在内外缸的夹层设置合适的补汽腔室(如环状补汽腔)。现有的补汽结构使补汽从补汽阀分两路流入汽缸通流,由于内缸中分面结构,两路补汽分别进入内缸的两个独立的补汽腔,这两股补汽存在流量和压力差,造成振动问题。而本发明使得补汽能够在内外缸之间混合,消除了流量和压力差,解决了补汽阀开启时的振动问题。
相比于现有的补汽阀管路改造方案,本发明不需要高温调节阀和振动检测探头,成本更低;本发明也不需要设计专门的调节逻辑和方法,实施简单。现有的高温调节阀存在卡涩失效等问题,本发明提供的新方案更安全可靠。
附图的简要说明
图1是现有汽轮机的局部剖面图;
图2是现有汽轮机实际应用时补汽结构对应的局部剖面图;
图3是图2所示的补汽结构中内缸的径向截面示意图;
图4是现有汽轮机中解决振动问题时补汽结构的实施示意图;
图5是本发明中汽轮机的局部剖面图;
图6是本发明中通流侧蒸汽输入通道的径向截面示意图。
实现本发明的最佳方式
为了解决现有汽轮机结构运行过程中出现补汽阀开启时机组振动过大的问题,本发明提供一种具有补汽结构的汽轮机及其运行方法。
如图5、图6所示,汽轮机设有外缸110和内缸120,一个有推力平衡活塞140的转子(130)旋转支承地装在内缸120的内部。所述内缸120与转子(130)之间形成有介质(如蒸汽)的流动通道,其基本上沿转子(130)的轴向布置。所述流动通道交替地布置有转子(130)的工作叶片150和内缸120的导向叶片160,形成多级叶片机组。新鲜蒸汽通过内缸120和外缸110具有的一个新汽输入通道(图未示出)送入进汽腔350,由此进入流动通道并在下游绕流各级叶片机组,随着新鲜蒸汽的膨胀及冷却,释放热能以带动转子(130)旋转。
本发明通过设置一第一蒸汽通道,使蒸汽可以在流经流动通道时,从通流330处进入到推力平衡活塞140与内缸120之间的一推力平衡活塞腔室340,以产生一个反作用于转子推力的对向力,达到推力平衡,并实现推力平衡活塞140的冷却。
本发明还通过设置一第二蒸汽通道,使蒸汽(如来自新鲜蒸汽的一小部分漏汽)可以从转子(130)和内缸120(汽封)之间的一密封腔室310,进入到内缸120和外缸110之间的一补汽腔室220,与外部通过补汽管道送入到所述补汽腔室220的补汽混合,在该补汽腔室220中平衡补汽从两路补汽管道进入汽轮机时的流量和压力差,消除振动激励后,通过均布于内缸120圆周的连通管230引入通流330之后的叶片级组继续做功,解决补汽阀开启振动的问题。
所述补汽腔室220环绕内缸120外侧布置,可以是任意形状的空间结构,由外缸110和内缸120各自在该处的缸体形状界定。优选的补汽腔室220为环状补汽腔。本例中,可供蒸汽流通的内外缸夹层中的一部分区域,形成为所述补汽腔室220。图5中用箭头210,象征性地表示其中一路补汽管道接入补汽腔室220所在的夹层区域以送入补汽。
示例的补汽腔室220位于夹层的后段,即更靠近连通管230的一侧,且越靠近这一侧补汽腔室220的容积越大。图5中表现为越接近连通管 230,补汽腔室220截面的环宽越大。例如,通过改变内缸120外侧的结构设计,使得对应于补汽腔室220位置的内缸部位的内径逐渐减小而实现。
其中,诸如补汽腔室的形状/尺寸设计,补汽腔室在内外缸夹层中的所处位置,补汽管道到补汽腔室的接入位置/补汽流量等,都可以根据本发明汽轮机实际的应用情况进行调整,上述示例中的描述不作为限制。
示例地,所述第一蒸汽通道在内缸120中设有相应的管路,使蒸汽能够在对应通流330的一叶片机组(称为第一指定叶片机组)之后出发,先基本上垂直于轴向地延伸(以箭头411示意表示),经过第一次转向后基本上平行于轴向地延伸(以箭头412示意表示),再在第二次转向后基本上又垂直于轴向地延伸(以箭头413示意表示),直至进入推力平衡活塞腔室340。
示例地,所述第二蒸汽通道,包含连通密封腔室310与内外缸夹层的管路,内外缸夹层及其中形成的补汽腔室220,以及连通内外缸夹层与流动通道的管路(含连通管230)。以箭头511示意地表示蒸汽从密封腔室310出发,基本上垂直于轴向地延伸并进入内外缸夹层;以箭头512示意地表示蒸汽沿轴向在内外缸夹层的前段延伸,经过后段的补汽腔室220时与另外输入其中的补汽(箭头210示意表示)混合,并继续延伸直至进入连通管230;以箭头513示意地表示蒸汽沿连通管230基本上又垂直于轴向地延伸,直至到达流动通道,接入另一叶片机组(称为第二指定叶片机组)之后的通流320。
本例中的第二指定叶片机组位于第一指定叶片机组的下游,是第一指定叶片机组之后的一个叶片级。优选的示例中,所述第一指定叶片机组对应流动通道的第四叶片级,所述第二指定叶片机组对应流动通道的第五叶片级。
然而,本发明并不限制根据汽轮机的实际应用情况进行结构的调整,诸如改变第一、第二蒸汽通道各自管路的形状/尺寸/转向/流量等,改变第一、第二指定叶片机组各自对应的叶片级,调整第一、第二指定叶片机组之间间隔的叶片级数量,或者将第一蒸汽通道的输入口(对应通流330处)调整到第二蒸汽通道的输出口(对应通流320处)的下游,等等。
综上所述,本发明所述具有补汽结构的汽轮机及其运行方法,改变了 冷却结构中的蒸汽流向,还在内外缸间设置了合适的环状补汽腔,使补汽可以在内外缸之间混合,消除了输入两路补汽时的流量和压力差,有效地解决汽轮机运行时补汽阀开启后的振动问题。
尽管本发明的内容已经通过上述优选实施例作了详细介绍,但应当认识到上述的描述不应被认为是对本发明的限制。在本领域技术人员阅读了上述内容后,对于本发明的多种修改和替代都将是显而易见的。因此,本发明的保护范围应由所附的权利要求来限定。

Claims (9)

  1. 一种具有补汽结构的汽轮机,包含外缸(110)和内缸(120),一个有推力平衡活塞(140)的转子(130)旋转支承地装在所述内缸(120)的内部,所述内缸(120)与转子(130)之间形成有蒸汽的流动通道,其中交替地布置转子(130)的多个工作叶片(150)和内缸(120)的多个导向叶片(160)形成多级叶片机组,所述内缸(120)和外缸(110)之间形成有供蒸汽流通的夹层,其特征在于:
    所述内缸(120)和外缸(110)之间的夹层包含补汽腔室(220),其与输送补汽到汽轮机的多路补汽管道相连通;所述补汽腔室(220)与所述流动通道之间设有供蒸汽流通的连通管(230)。
  2. 如权利要求1所述具有补汽结构的汽轮机,其特征在于,
    所述补汽腔室(220)为环状补汽腔。
  3. 如权利要求1或2所述具有补汽结构的汽轮机,其特征在于,
    所述多级叶片机组包含第一设定叶片机组和第二设定叶片机组;所述转子(130)和内缸(120)之间设有密封腔室(310);
    所述汽轮机在内缸(120)内部设有第一蒸汽通道,将第一设定叶片机组之后的通流,与形成在所述推力平衡活塞(140)和内缸(120)之间的一推力平衡活塞腔室(340)连通;
    所述汽轮机还设有第二蒸汽通道,包含:将所述密封腔室(310)与所述内缸(120)和外缸(110)之间夹层连通的管路,所述夹层及其补汽腔室(220),以及将夹层与第二设定叶片机组之后的通流连通的所述连通管(230)。
  4. 如权利要求3所述具有补汽结构的汽轮机,其特征在于,
    所述第二设定叶片机组在流动通道中处于第一设定叶片机组的下游。
  5. 如权利要求3所述具有补汽结构的汽轮机,其特征在于,
    所述第一设定叶片机组对应流动通道中的第四叶片级,所述第二指定叶片机组对应流动通道中的第五叶片级。
  6. 如权利要求3所述具有补汽结构的汽轮机,其特征在于,
    若干路所述连通管(230)分布于内缸(120)圆周。
  7. 如权利要求3所述具有补汽结构的汽轮机,其特征在于,
    所述第一蒸汽通道在内缸(120)中,先基本垂直于转子的轴向延伸,第一次转向后基本平行于轴向延伸,第二次转向后基本又垂直于轴向延伸;
    所述第二蒸汽通道中,将所述密封腔室(310)与所述内缸(120)和外缸(110)之间夹层连通的管路基本垂直于转子的轴线延伸,将夹层与第二设定叶片机组之后的通流连通的连通管(230)基本垂直于轴线延伸。
  8. 如权利要求3所述具有补汽结构的汽轮机,其特征在于,
    多路所述补汽管道分别贯穿外缸(110),与所述补汽腔室(220)连通。
  9. 一种汽轮机的运行方法,适用于权利要求1-8中任意一项所述具有补汽结构的汽轮机,其特征在于,
    汽轮机的内缸(120)和外缸(110)具有的一个新汽输入通道,将新鲜蒸汽送入内缸(120)内部的进汽腔(350),新鲜蒸汽从进汽腔(350)出发进入内缸(120)和转子(130)之间的流动通道,并绕流各级叶片机组进行膨胀及冷却,以释放热能来带动转子(130)旋转;
    通过汽轮机的内缸(120)内设置的第一蒸汽通道,将蒸汽从多级叶片机组中的第一指定叶片机组之后的通流(330)处,送到位于内缸(120)与转子(130)的推力平衡活塞(140)之间的推力平衡活塞腔室(340),以产生一个反作用于转子推力的对向力;
    通过汽轮机设置的第二蒸汽通道,将蒸汽从转子(130)和内缸(120) 之间的密封腔室(310),送到位于内缸(120)和外缸(110)之间夹层中的补汽腔室(220),来与外部通过多路补汽管道送入到所述补汽腔室(220)的补汽混合,再经由设置于内缸(120)的连通管(230)返回到第二指定叶片机组之后的通流(320)处继续做功。
PCT/CN2019/081015 2018-11-06 2019-04-02 一种具有补汽结构的汽轮机及其运行方法 WO2020093648A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19881794.2A EP3879077A4 (en) 2018-11-06 2019-04-02 STEAM TURBINE WITH STEAM ADDITIONAL STRUCTURE AND OPERATING METHOD THEREOF
US17/288,391 US11572802B2 (en) 2018-11-06 2019-04-02 Steam turbine having a steam supplementing structure and operating method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811313093.8 2018-11-06
CN201811313093.8A CN109184823B (zh) 2018-11-06 2018-11-06 一种具有补汽结构的汽轮机及其运行方法

Publications (1)

Publication Number Publication Date
WO2020093648A1 true WO2020093648A1 (zh) 2020-05-14

Family

ID=64942150

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/081015 WO2020093648A1 (zh) 2018-11-06 2019-04-02 一种具有补汽结构的汽轮机及其运行方法

Country Status (4)

Country Link
US (1) US11572802B2 (zh)
EP (1) EP3879077A4 (zh)
CN (1) CN109184823B (zh)
WO (1) WO2020093648A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109184823B (zh) * 2018-11-06 2024-03-19 上海电气电站设备有限公司 一种具有补汽结构的汽轮机及其运行方法
CN109736905A (zh) * 2019-03-21 2019-05-10 上海电气电站设备有限公司 汽轮机多级汽缸间联合冷却系统
CN113047911B (zh) * 2021-03-10 2022-01-14 东方电气集团东方汽轮机有限公司 一种推力平衡结构
CN113685236B (zh) * 2021-08-23 2022-10-14 华能铜川照金煤电有限公司 一种用于单缸、单列复速级背压汽轮机的平衡活塞装置
CN114508393B (zh) * 2021-12-27 2023-07-18 东方电气集团东方汽轮机有限公司 甩负荷时轴向推力为零的汽缸、一次及二次再热汽轮机

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2796231A (en) * 1954-03-24 1957-06-18 Westinghouse Electric Corp High pressure steam turbine casing structure
US3614255A (en) * 1969-11-13 1971-10-19 Gen Electric Thrust balancing arrangement for steam turbine
CN101052782A (zh) * 2004-08-02 2007-10-10 西门子公司 汽轮机和汽轮机运行方法
CN109184823A (zh) * 2018-11-06 2019-01-11 上海电气电站设备有限公司 一种具有补汽结构的汽轮机及其运行方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2823891A (en) * 1953-05-20 1958-02-18 Westinghouse Electric Corp Steam turbine
US2905434A (en) * 1954-07-08 1959-09-22 Westinghouse Electric Corp Turbine apparatus
CN100378296C (zh) * 2006-07-19 2008-04-02 上海汽轮机有限公司 一种汽轮机高压内缸冷却方法
EP2192266A1 (en) * 2008-11-26 2010-06-02 Siemens Aktiengesellschaft Rotor device for a steam turbine and steam turbine
EP2412937A1 (de) * 2010-07-30 2012-02-01 Siemens Aktiengesellschaft Dampfturbine sowie Verfahren zum Kühlen einer solchen
CN103422916B (zh) * 2013-08-30 2015-09-30 上海电气电站设备有限公司 汽轮机的抽、补汽通道结构
CN109162772B (zh) * 2018-11-06 2024-03-19 上海电气电站设备有限公司 一种汽轮机及其内冷却方法
CN209494598U (zh) * 2018-11-06 2019-10-15 上海电气电站设备有限公司 一种具有补汽结构的汽轮机

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2796231A (en) * 1954-03-24 1957-06-18 Westinghouse Electric Corp High pressure steam turbine casing structure
US3614255A (en) * 1969-11-13 1971-10-19 Gen Electric Thrust balancing arrangement for steam turbine
CN101052782A (zh) * 2004-08-02 2007-10-10 西门子公司 汽轮机和汽轮机运行方法
CN109184823A (zh) * 2018-11-06 2019-01-11 上海电气电站设备有限公司 一种具有补汽结构的汽轮机及其运行方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3879077A4

Also Published As

Publication number Publication date
EP3879077A4 (en) 2022-08-31
EP3879077A1 (en) 2021-09-15
CN109184823B (zh) 2024-03-19
US20210381395A1 (en) 2021-12-09
US11572802B2 (en) 2023-02-07
CN109184823A (zh) 2019-01-11

Similar Documents

Publication Publication Date Title
WO2020093648A1 (zh) 一种具有补汽结构的汽轮机及其运行方法
JP4662562B2 (ja) 蒸気タービンおよびその運転方法
US10024238B2 (en) Cooling system with a bearing compartment bypass
WO2020093649A1 (zh) 一种汽轮机及其内冷却方法
EP2151547B1 (en) Steam turbine and steam turbine plant system
JP5692966B2 (ja) 蒸気タービン内部の回転部品を冷却するための方法及び装置
US20210388730A1 (en) Compressor module
JP2000511257A (ja) タービン軸およびタービン軸の冷却方法
JP4990365B2 (ja) 流体機械用ロータ
JPS644042B2 (zh)
CN209212320U (zh) 一种汽轮机
JP6639514B2 (ja) 軸流タービン
CN209494598U (zh) 一种具有补汽结构的汽轮机
JP2016125355A (ja) タービン冷却装置
EP3864257B1 (en) Turbine module
KR20170043590A (ko) 증기 터빈 및 증기 터빈 동작 방법
CN103052768B (zh) 蒸汽轮机以及用于冷却这种蒸汽轮机的方法
JP3784808B2 (ja) 流体機械とその冷却方法
JP2015158190A (ja) 蒸気タービンシステム
JP4334142B2 (ja) ガス・タービン構造
EP3205817A1 (en) Fluid cooled rotor for a gas turbine
CN113153455B (zh) 径流透平轴向力自适应调控方法
WO2017068615A1 (ja) 軸流タービン
JPH03233140A (ja) ガスタービン動翼冷却用空気通路
TW202110530A (zh) 混煉用轉子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19881794

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019881794

Country of ref document: EP

Effective date: 20210607