WO2020091045A1 - 医療支援システム - Google Patents

医療支援システム Download PDF

Info

Publication number
WO2020091045A1
WO2020091045A1 PCT/JP2019/043042 JP2019043042W WO2020091045A1 WO 2020091045 A1 WO2020091045 A1 WO 2020091045A1 JP 2019043042 W JP2019043042 W JP 2019043042W WO 2020091045 A1 WO2020091045 A1 WO 2020091045A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
transmission
wave
reflector
transmitted
Prior art date
Application number
PCT/JP2019/043042
Other languages
English (en)
French (fr)
Inventor
滝沢 賢一
史秀 児島
寛敏 石田
努 梅澤
竹鼻 健司
Original Assignee
国立研究開発法人情報通信研究機構
Eaファーマ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人情報通信研究機構, Eaファーマ株式会社 filed Critical 国立研究開発法人情報通信研究機構
Priority to EP19880663.0A priority Critical patent/EP3875019A4/en
Priority to CN201980072590.XA priority patent/CN112969397A/zh
Priority to JP2020554983A priority patent/JPWO2020091045A1/ja
Priority to US17/288,917 priority patent/US20210393159A1/en
Priority to KR1020217013641A priority patent/KR20210087948A/ko
Publication of WO2020091045A1 publication Critical patent/WO2020091045A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00011Operational features of endoscopes characterised by signal transmission
    • A61B1/00016Operational features of endoscopes characterised by signal transmission using wireless means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00025Operational features of endoscopes characterised by power management
    • A61B1/00027Operational features of endoscopes characterised by power management characterised by power supply
    • A61B1/00029Operational features of endoscopes characterised by power management characterised by power supply externally powered, e.g. wireless
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00064Constructional details of the endoscope body
    • A61B1/00108Constructional details of the endoscope body characterised by self-sufficient functionality for stand-alone use
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/06Devices, other than using radiation, for detecting or locating foreign bodies ; determining position of probes within or on the body of the patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/06Devices, other than using radiation, for detecting or locating foreign bodies ; determining position of probes within or on the body of the patient
    • A61B5/061Determining position of a probe within the body employing means separate from the probe, e.g. sensing internal probe position employing impedance electrodes on the surface of the body
    • A61B5/062Determining position of a probe within the body employing means separate from the probe, e.g. sensing internal probe position employing impedance electrodes on the surface of the body using magnetic field
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/07Endoradiosondes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/041Capsule endoscopes for imaging

Definitions

  • the present invention relates to a medical support system capable of estimating a passage in a body, a range of movement of a reflector, and a direction of movement by a transmitting antenna and a receiving antenna attached to a body surface and a reflector that can exist inside the body. Is.
  • a visualization method a method is adopted in which a plurality of radiopaque rings are swallowed, the positions thereof are imaged a plurality of times with X-rays at certain intervals, and a diagnosis is made from the distribution of ring positions.
  • a position estimation method of an in-vivo terminal a position estimation method using a radio wave or a magnetic field has been proposed for a capsule endoscope. By adopting this method, the problem of X-ray exposure can be solved and the activity of the digestive organs can be visualized.
  • an internal position estimation method using a capsule endoscope for example, a method of receiving radio waves emitted from the capsule endoscope by a plurality of antennas attached to the body surface and estimating the internal position from the signals is known. It is disclosed (for example, see Patent Document 1).
  • Patent Document 1 With the technology disclosed in Patent Document 1, it is necessary to equip the in-body terminal with a battery because the in-body terminal needs to continue to actively emit radio waves, making it difficult to reduce the size and weight of the in-body terminal. Further, in the technique disclosed in Patent Document 2, it is necessary to supply power from the outside and it is necessary to arrange the subject under a controlled magnetic field. Therefore, the position estimation in the body under a medical examination environment such as a general medical facility is required. Was difficult.
  • an object of the present invention is to reduce the size and weight of an in-vivo terminal, so that the internal body can be easily used even in an environment such as a general medical facility.
  • An object of the present invention is to provide a medical support system capable of estimating the passage, movement range, and movement direction of a vehicle.
  • a medical support system is a medical support system that estimates passage of a reflector passing through a body, transmits a transmission wave at least at time t and time t + ⁇ t, and can be attached to at least a body surface.
  • a position estimation unit for estimating passage wherein the first reception antenna receives the transmission wave transmitted by the first transmission antenna and a reflected wave of the transmission wave reflected by the reflector,
  • the position estimating unit changes the phase of each of the transmission wave received by the first receiving antenna and the reflected wave received by the first receiving antenna at time t and time t + ⁇ t.
  • the passing of the reflector through the body is estimated based on the conversion.
  • a medical support system is a medical support system that estimates movement of a reflector moving inside a body, and transmits a transmission wave at least at time t and time t + ⁇ t, and can be attached to at least a body surface.
  • a first transmitting antenna, a first receiving antenna and a second receiving antenna that can be attached to at least the body surface, a reflector that reflects the transmitted wave transmitted by the first transmitting antenna, and a reflector that can exist in the body;
  • a position estimation unit that estimates a range of movement and a direction of movement of the body in the body, wherein the first reception antenna reflects the transmission wave transmitted by the first transmission antenna and the reflection by the reflector.
  • a reflected wave of the transmitted wave, and the second receiving antenna receives the transmitted wave transmitted by the first transmitting antenna and a reflected wave of the transmitted wave reflected by the reflector.
  • the position estimation unit changes the phase at time t and at time t + ⁇ t of each of the transmission wave received by the first reception antenna and the reflected wave received by the first reception antenna, and
  • the inside of the reflector is based on the phase change at time t and time t + ⁇ t of each of the transmitted wave received by the two receiving antennas and the reflected wave received by the second receiving antenna. It is characterized by estimating the range of movement and the direction of movement.
  • a medical support system is a medical support system that estimates movement of a reflector moving inside a body, and transmits a transmission wave at least at time t and time t + ⁇ t, and can be attached to at least a body surface.
  • the second transmission wave transmitted by the second transmission antenna the first reflection wave of the first transmission wave reflected by the reflector, and the second transmission wave.
  • Two reflected waves respectively, and the position estimating unit receives the first transmitted wave and the first reflected wave received by the first receiving antenna, and the second transmitted wave and the second reflected wave.
  • the range and direction of movement of the reflector inside the body are estimated based on the change in phase at time t and time t + ⁇ t.
  • a medical support system is a medical support system that estimates movement of a reflector moving inside a body, which transmits a transmission wave at least at time t and time t + ⁇ t, and is attachable to at least a body surface.
  • a position estimation unit that estimates the range and direction of movement of the reflector in the body, the first reception antenna reflecting the second transmitted wave.
  • the second estimating unit receives the second transmitted wave, the first reflected wave of the first transmitted wave reflected by the reflector, and the second reflected wave of the second transmitted wave, and the position estimating unit receives the second reflected wave.
  • the first transmitting antenna, the first receiving antenna, and the reflector are provided. Therefore, the first receiving antenna can receive the transmitted wave at the time t and the time t + ⁇ t transmitted from the first transmitting antenna and the reflected wave reflected by the reflector. This makes it possible to easily estimate the passage of the reflector inside the body even under the environment of general medical equipment.
  • the reflector reflects the first transmission wave transmitted by the first transmission antenna. Therefore, the reflector can reflect the transmission wave transmitted by the first transmitting antenna through the body. As a result, the reflector does not need to include a battery, and can be made smaller and lighter.
  • the position estimation unit estimates the passage of the reflector. Therefore, the position estimation unit can obtain the change in the phase of each of the transmitted wave received by the first receiving antenna and the reflected wave received by the first receiving antenna at time t and time t + ⁇ t. This makes it possible to easily estimate the passage of the reflector inside the body even under the environment of general medical equipment.
  • the second invention it is provided with a first transmitting antenna, a first receiving antenna, a second receiving antenna, and a reflector. Therefore, the first reception antenna and the second reception antenna can respectively receive the transmission wave transmitted from the first transmission antenna and the reflected wave reflected by the reflector. This makes it possible to easily accurately estimate the range and direction of movement of the reflector in the body even in an environment such as general medical equipment.
  • the reflector reflects the first transmission wave transmitted by the first transmission antenna. Therefore, each of the first reception antenna and the second reception antenna can receive the first transmission wave transmitted by the first transmission antenna and the reflected wave reflected by the reflector. As a result, the reflector does not need to have a battery and can be made smaller and lighter.
  • the position measuring unit estimates the range and direction of movement of the reflector. Therefore, the range of movement of the reflector inside the body is based on the first transmission wave and the reflected wave received by the first reception antenna and the second reception antenna, and the change in the phase at time t and time t + ⁇ t of the reflected wave. And the direction of movement can be estimated. This makes it possible to easily estimate the movement range and movement direction of the reflector in the body even under the environment of general medical equipment, and to grasp the movement in the body.
  • the third invention it is provided with the first transmitting antenna, the second transmitting antenna, the first receiving antenna, and the reflector. Therefore, the first reception antenna can receive the transmission waves transmitted from the first transmission antenna and the second transmission antenna, and the reflection waves reflected by the reflector. This makes it possible to easily accurately estimate the range and direction of movement of the reflector in the body even in an environment such as general medical equipment.
  • the reflector reflects the transmission waves transmitted by the first transmitting antenna and the second transmitting antenna, respectively. Therefore, the reflector can move and reflect the first transmission wave transmitted by the first transmission antenna and the second transmission wave transmitted by the second transmission antenna by moving inside the body. As a result, the reflector does not need to have a battery and can be made smaller and lighter.
  • the position measuring unit estimates the range and direction of movement of the reflector. Therefore, the position estimation unit determines the phase at time t and time t + ⁇ t of each of the first transmission wave and the first reflected wave and the second transmission wave and the second reflected wave received by the first receiving antenna. You can ask for change. This makes it possible to easily estimate the movement range and movement direction of the reflector in the body even under the environment of general medical equipment, and to grasp the movement in the body.
  • the first transmission antenna, the second transmission antenna, the first reception antenna, the second reception antenna, and the reflector are provided. Therefore, the first reception antenna and the second reception antenna can respectively receive the transmission wave transmitted from the first transmission antenna and the reflected wave reflected by the reflector. This makes it possible to more accurately estimate the range and direction of movement of the reflector inside the body, even in an environment such as general medical equipment.
  • the reflector reflects the transmitted waves transmitted by the first transmitting antenna and the second transmitting antenna, respectively. Therefore, the reflector can move the transmission waves transmitted by the first transmitting antenna and the second transmitting antenna in the body and reflect them. As a result, the reflector does not need to have a battery and can be made smaller and lighter.
  • the position measuring unit estimates the moving range and the moving direction of the reflector. For this reason, the position estimation unit calculates the time t of each of the first transmission wave and the first reflection wave, and the second transmission wave and the second reflection wave, which are received by the first reception antenna and the second reception antenna, respectively. And the change in phase at time t + ⁇ t can be obtained. This makes it possible to more accurately estimate the range and direction of movement of the reflector in the body, even under the environment of general medical equipment, and to grasp the movement in the body. ..
  • FIG. 1 is a schematic diagram showing an example of a medical support system to which the present invention is applied.
  • FIG. 2 is a block diagram showing an example of the configuration of a medical support system to which the present invention is applied.
  • FIG. 3A is a schematic diagram showing an example of measurement of the reflector at time t of the medical support system according to the first embodiment.
  • FIG. 3B is a schematic diagram showing an example of measurement of the reflector at time t + ⁇ t in the medical support system according to the first embodiment.
  • FIG. 4 is a schematic diagram showing an example of measurement of the first antenna pair in the first embodiment.
  • FIG. 5 is a schematic diagram which shows an example of the measurement result of the 1st antenna pair in 1st Embodiment.
  • FIG. 5 is a schematic diagram which shows an example of the measurement result of the 1st antenna pair in 1st Embodiment.
  • FIG. 6 is a schematic diagram showing an example of measurement of the first to fourth antenna pairs in another embodiment.
  • FIG. 7A is a schematic diagram showing an example of the measurement result of the first antenna pair in another embodiment.
  • FIG. 7B is a schematic diagram showing an example of the measurement result of the second antenna pair in another embodiment.
  • FIG. 7C is a schematic diagram showing an example of the measurement result of the third antenna pair in another embodiment.
  • FIG. 7D is a schematic diagram showing an example of the measurement result of the fourth antenna pair in another embodiment.
  • FIG. 8 is a schematic diagram showing an example of combining the measurement results of the first to fourth antenna pairs.
  • FIG. 9 is a flowchart showing an example of the operation of the reflector measurement according to the embodiment.
  • FIG. 9 is a flowchart showing an example of the operation of the reflector measurement according to the embodiment.
  • FIG. 10A is a schematic diagram showing the estimation of the movement of the reflector in the first antenna pair in the first embodiment.
  • FIG. 10B is a schematic diagram showing estimation of passage of the reflector through the antenna pair in the first antenna pair according to the first embodiment.
  • FIG. 11 is a schematic diagram showing estimation of passage of a reflector in the fourth embodiment.
  • FIG. 1 is a schematic diagram showing an example of a medical support system to which the invention in this embodiment is applied.
  • the medical support system 1 is connected to a database 3 and a public communication network 6 (network) by a position estimation device 2, for example.
  • the position estimation device 2 is connected to the transmission / reception device 4 via the public communication network 6.
  • the transmitter / receiver 4 is connected to a plurality of transmitting antennas 40 and receiving antennas 41.
  • the pair of transmitting antenna 40 and receiving antenna 41 is configured as an antenna pair 42.
  • the transmitting antenna 40 and the receiving antenna 41 are attached to the body surface 10 of a subject (not shown).
  • the reflector 5 moves inside the body 11 of the subject.
  • the reflector 5 may have a configuration that reflects the radio wave from the transmitting antenna.
  • the reflector 5 may have, for example, an antenna having a predetermined load, or an RFID (Radio Frequency Identifier) function.
  • the position estimation device 2 is connected to the transmission / reception device 4 via the public communication network 6, for example, and estimates the range and the direction of movement of the reflector 5 existing in the body 11 of the subject (not shown) or the movement range. I do.
  • the position estimation device 2 also includes a database 3.
  • the database 3 includes, for example, information about a subject and information such as measurement results, a baseband waveform of a received wave or a reflected wave received, an algorithm for estimating the position of the reflector 5, and past measurements for performing position estimation. Data, MRI images and CT images of subjects, which are useful data for position estimation, and various logs are stored.
  • the transmission / reception device 4 performs transmission / reception control for selecting a plurality of transmission antennas 40 and reception antennas 41 attached to the body surface 10 of the subject.
  • the transceiver 4 is connected to, for example, the first transmitting antenna 40a, the first receiving antenna 41a, the second transmitting antenna 40b, and the second receiving antenna 41b.
  • the transmission / reception device 4 may be connected to another transmission antenna 40 or another reception antenna 41, and is connected by wire or wirelessly.
  • the transmission / reception device 4 combines, for example, a pair (one set) of the transmission antenna 40 and the reception antenna 41 depending on the frequency band set by the transmission antenna 40 and the reception antenna 41, output, arrangement position, and the like.
  • a plurality of pairs of the transmitting antenna 40 and the receiving antenna 41 may be combined in the same frequency band, for example.
  • the combination of the transmitting antenna 40 and the receiving antenna 41 may be stored in the memory of the transmitting / receiving device 4 or the database 3.
  • the transmission / reception device 4 may monitor the radio wave conditions of the plurality of connected transmission antennas 40 and reception antennas 41 and switch to another transmission antenna 40 or reception antenna 41. Further, the transmission / reception device 4 converts the reception wave received by the first reception antenna 41a and the second reception antenna 41b into a baseband signal waveform for position estimation in the position estimation device 2.
  • the first transmission antenna 40a and the second transmission antenna 40b are controlled by the transmission / reception device 4, and, for example, transmit radio waves in a predetermined frequency band to the first reception antenna 41a and the second reception antenna 41b and the reflector 5 ( Fire).
  • the first transmission antenna 40a and the second transmission antenna 40b are the first transmission antenna 40a and the second transmission antenna 40b, but a plurality of other transmission antennas may be connected.
  • the radio waves transmitted from the first transmission antenna 40a and the second transmission antenna 40b may be radio waves in the same frequency band or radio waves in different frequency bands.
  • the first transmitting antenna 40a and the second transmitting antenna 40b transmit the radio waves to be transmitted, for example, if the frequency bands are the same, the transmission time is changed, and if the radio waves have different frequency bands, the respective frequency bands are transmitted. You may transmit simultaneously from the transmitting antenna 40 which has.
  • the first transmitting antenna 40a and the second transmitting antenna 40b are attached to the body surface 10 of the subject and transmit radio waves to the surroundings.
  • the radio waves transmitted from the first transmitting antenna 40a and the second transmitting antenna 40b may have directivity, for example.
  • the directivity of the radio wave may be determined, for example, by the antenna angle or the antenna shape of the first transmitting antenna 40a and the second transmitting antenna 40b.
  • the first reception antenna 41a and the second reception antenna 41b are controlled by the transmission / reception device 4 and receive, for example, radio waves in a predetermined frequency band.
  • the first reception antenna 41a and the second reception antenna 41b are, for example, the first reception antenna 41a and the second reception antenna 41b in the present embodiment, but there may be a plurality of reception antennas 41 in addition.
  • the first reception antenna 41a and the second reception antenna 41b are attached to the body surface 10 of the subject and receive radio waves in the frequency band corresponding to the first reception antenna 41a and the second reception antenna 41b.
  • the first reception antenna 41a and the second reception antenna 41b receive the reflected wave from the reflector 5 in addition to the first transmission antenna 40a and the second transmission antenna 40b.
  • the antenna pair 42 is set as a pair (set) of the transmitting antenna 40 and the receiving antenna 41 or the reflector 5.
  • the first antenna pair 42a is composed of, for example, the first transmitting antenna 40a and the first receiving antenna 41a.
  • the second antenna pair 42b includes, for example, the second transmitting antenna 40b and the second receiving antenna 41b.
  • Each antenna pair 42 is attached to the body surface of the subject with a space therebetween.
  • Each antenna pair 42 is, for example, attached to the body surface of the subject so as to be parallel to or sandwiched between digestive organs in the body, and estimates the movement of the reflector 5 moving in the digestive organs. It can be seen that the antenna pair 42 moves when it is attached parallel to the digestive organs in the body, while it passes through the sandwiched portion when it is attached so as to be sandwiched.
  • the antenna pair 42 may be directly attached to the body surface 10 of the subject.
  • the antenna pair 42 may be attached to, for example, the surface of clothes or the like as long as the first transmission antenna 40a of the reflector 5 can receive the first transmission wave.
  • the antenna pair 42 may be attached to the transmission / reception device 4 integrally or separately, and may be connected to the transmission / reception device 4 by wire connection or wireless connection.
  • the antenna pair 42 is, for example, a third antenna pair 42c, a fourth antenna, which is a combination of the first transmitting antenna 40a, the first receiving antenna 41a, the second transmitting antenna 40b, and the second receiving antenna 41b.
  • the antenna pair 42d is constructed.
  • the third antenna pair 42c is composed of, for example, a first transmitting antenna 40a and a second receiving antenna 41b.
  • the fourth antenna pair 42d is composed of, for example, the second transmitting antenna 40b and the first receiving antenna 41a.
  • the reflector 5 Since the reflector 5 is taken by a subject, for example, it is desirable that the reflector 5 be small and lightweight. Therefore, the reflector 5 may have, for example, a tablet size and a smooth surface so as not to damage the digestive organs. Further, the reflector 5 may be, for example, enveloped in sugar coating or embedded in a tablet. As another shape, the reflector 5 may be enclosed in a capsule or in stick packaging of granules or tablets.
  • the reflector 5 does not have a battery inside because the reflector 5 has a structure capable of having a reflection antenna or an RFID function, for example.
  • the reflector 5 generates a magnetic field by a transmission wave transmitted from a transmission antenna, for example, by an inductive coil provided inside, generates electric power by the generated magnetic field, and reflects a radio wave in a predetermined frequency band. To send as.
  • the respective reflectors 5 may have different frequency bands.
  • FIG. 2 is a block diagram showing an example of the configuration of a medical support system to which the present invention is applied.
  • a CPU (Central Processing Unit) 20 controls the entire medical support system 1.
  • the ROM (Read Only Memory) 21 stores the operation code of the CPU 20 in the memory of the ROM 21.
  • a RAM (Random Access Memory) 22 is a work area used when the CPU 20 operates.
  • the storage unit 23 for example, a data storage device such as an SSD (solid state drive) is used in addition to an HDD (Hard Disk Drive), and the position estimation device 2 and the transmission / reception device 4 of the first antenna pair 42a and the first transmission antenna are used.
  • 40a various setting information for executing the first receiving antenna 41a, a program for processing position estimation, and the like are stored.
  • the position estimation device 2 may include a GPU (Graphics Processing Unit) not shown.
  • the I / F 24 is an interface for transmitting and receiving various kinds of information to and from the transmitting / receiving device 4 of the first antenna pair 42a, another higher-level system, and the like via the public communication network 6.
  • the I / F 25 is an interface for transmitting / receiving information to / from the input / output unit 29 and the transmitting / receiving unit 30.
  • the input / output unit 29 for example, a keyboard or other device for performing input / output is used.
  • the I / F 26 is an interface for transmitting and receiving various information to and from the display unit 28 such as a display. It is the internal bus 27.
  • each application and various setting information for estimating the range of movement or the movement direction of the reflector 5 existing in the body of the subject or the like are stored in association with each other.
  • the functions of the respective configurations shown in FIGS. 1 and 2 are the transmission and reception of radio waves at the transmission antenna 40 and the reception antenna 41, which will be described later, the passage of the reflector 5 in the position estimation device 2, or the range of movement and the direction of movement.
  • the process related to the estimation is realized by the CPU 20 executing a program stored in the storage unit 23 or the like using the RAM 22 as a work area.
  • FIG. 3A is a schematic diagram showing an example of measurement of the reflector 5 at time t of the medical support system 1 according to the first embodiment.
  • the body of the subject is simulated by a cylindrical container filled with a liquid phantom.
  • the first transmission antenna 40a is attached to the body surface 10 of the subject, and transmits the first transmission wave under the control of the transmission / reception device 4.
  • the reflector 5 previously taken by the subject is present in the digestive organs of the body.
  • the first transmission antenna 40a transmits the first transmission wave at time t, for example, at the transmission point that transmits the radio wave.
  • the transmission wave transmitted from the transmission point of the first transmission antenna 40a is always a radio wave of the same frequency band and output.
  • the first transmission antenna 40a transmits the first transmission at time t + ⁇ t from the transmission point of the first transmission antenna 40a.
  • the transmission timing of the first transmission wave transmitted from the first transmission antenna 40a is controlled by the transmission / reception device 4. For example, assuming that the moving speed of the reflector 5 in the body is 50 mm / sec or less, the estimation is performed 10 times or more / sec. If, the estimation error due to the phase jump ( ⁇ indefiniteness) does not occur.
  • the radio waves transmitted by the first transmitting antenna 40a are transmitted, for example, at time t and time t + ⁇ t, respectively, and are received as a radio wave (direct wave S d ) that directly reaches and a reflected wave (reflected wave S r ) from the reflector 5. To be done.
  • FIG. 3B is a schematic diagram showing an example of measurement of the reflector 5 at time t + ⁇ t in the medical support system 1 according to the first embodiment. Also in FIG. 3B, it is assumed that the first antenna pair 42a is attached to the body surface 10 of the subject as in the case of FIG. 3A described above.
  • the first reception antenna 41a receives the direct wave S d from the first transmission antenna 40a and the reflected wave S r from the reflector 5 as the reflector 5 moves.
  • the transmitter / receiver 4 receives a combined wave in which the direct wave S d t and the reflected wave S r t received by the first receiving antenna 41 a are the direct wave S d t + the reflected wave S r t.
  • the first receiving antenna 41a receives the radio wave (direct wave S d ) that directly arrives from the first receiving antenna 41a at the time t + ⁇ t as well as the time when the first transmitting wave is received at the time t, and the reflector.
  • the reflected wave (reflected wave S r ) from 5 is received.
  • the first receiving antenna 41a receives the direct wave S d and the reflected wave S r at the time t + ⁇ t according to the movement of the reflector 5 at the time t + ⁇ t.
  • the reflector 5 receives the first transmission wave transmitted from the first transmission antenna 40a, and is transmitted inside the body as a reflected wave by the reflector 5.
  • the transmission of the reflected wave of the reflector 5 may be performed by the RFID function of the reflector 5.
  • the reflector 5 estimates the amount of movement within the body of the subject, for example, based on the position inside the body at time t, during the subsequent time t + ⁇ t.
  • the reflector 5 receives the first transmission wave transmitted at the time t + ⁇ t by the first transmission antenna 40a following the first transmission wave transmitted at the time t from the first transmission antenna 40a, and at this time, the time t
  • the amount of movement ( ⁇ l) of the reflector 5 is calculated by the following equation, where ⁇ is the phase change amount of the reflected wave S r .
  • is the wavelength in the medium of the cylindrical container filled with the liquid phantom.
  • is angular frequency
  • is magnetic permeability
  • ⁇ r is relative permittivity
  • ⁇ c is conductivity.
  • is 4 ⁇ ⁇ 10 ⁇ 7 , which is the same as that in the air, because the living tissue is a non-magnetic material.
  • the wavelength ( ⁇ ) in the liquid phantom simulating the internal tissue is 4.4 cm according to the above formula. It is applied to the position estimation of the reflector 5 in the digestive organ using this principle, and the movement of the reflector 5 existing in the body is estimated.
  • FIG. 4 is a schematic diagram showing an example of measurement of the first antenna pair 42a in the first embodiment.
  • the reflector 5 is used as a terminal in the digestive organ.
  • the first transmission antenna 40a transmits the first transmission wave from the transmission point.
  • the first transmitting antenna 40a is set to "ANT0"
  • the first receiving antenna 41a is set to "ANT1”
  • the range of the body tissue is a radius of 150 mm.
  • the log likelihood L (with respect to the terminal candidate position (x, y) x, y) is calculated by the following formula.
  • a i, j is the amplitude value of the received signal
  • ⁇ n is the standard deviation of noise.
  • ⁇ n a value observed using a no-signal section is used.
  • FIG. 5 is a schematic diagram showing an example of the measurement result of the first antenna pair 42a in the first embodiment, and the likelihood distribution regarding the position of the reflector 5 obtained from the transmission / reception between the pair of antennas is The positions having the same likelihood are distributed in an elliptical shape. Thereby, the estimated position after movement at time t + ⁇ t can be confirmed with the position of the reflector 5 at time t before movement as a reference.
  • FIG. 6 is a schematic diagram showing an example of measurement of the first to fourth antenna pairs 42 in another embodiment.
  • FIG. 6 shows an example of a case where a plurality of transmitting antennas 40 and receiving antennas 41 are formed into an antenna array and attached to the body surface of a subject.
  • the antenna pair 42 including the transmitting antenna 40 and the receiving antenna 41 is configured.
  • “ANT0” (first transmitting antenna 40a) and “ANT1” (first receiving antenna 41a) are paired as the first antenna pair 42a.
  • the configuration of the second antenna pair 42b includes "ANT0 (first transmitting antenna 40a)" and "ANT2 (second receiving antenna 41b)". To do.
  • FIG. 7 shows an example of each measurement result of the first to fourth antenna pairs 42 in another embodiment.
  • FIG. 7A is a schematic diagram showing an example of measurement results of the first antenna pair 42a (“ANT0” and “ANT1”) in another embodiment.
  • FIG. 7B is a schematic diagram showing an example of the measurement result of the second antenna pair 42b (“ANT0” and “ANT2”) in another embodiment.
  • FIG. 7C is a schematic diagram showing an example of measurement results of the third antenna pair 42c (“ANT1” and “ANT3”) in another embodiment.
  • FIG. 7D shows an example of the measurement result of the fourth antenna pair 42d (“ANT2” and “ANT3”) in another embodiment.
  • L s (x, y) is a terminal which is the reflector 5 with respect to the phase change amount ⁇ i, j by observation of the antennas (i, j, i ⁇ j) in each of the antenna pairs 42 described above.
  • the log-likelihood Li, j (x, y) for the candidate position (x, y) is obtained.
  • the L s (x, y) calculated here is combined to estimate the position of the reflector 5 having the highest likelihood inside the body.
  • the position estimation method up to now has been the measurement in the two-dimensional space attached to the body surface 10 of the subject, but the same calculation can be performed to enable the three-dimensional position measurement.
  • the log likelihood L s (x, y, x) can be obtained.
  • the position where the log-likelihood L s (x, y, x) is maximum is obtained as the measurement result.
  • the range (space) of L s (x, y, z) to be calculated is set so that the phase change amount ⁇ falls within the range of [ ⁇ , + ⁇ ]. That is, the range of the movement amount ⁇ l handled by the medical support system 1 has an upper limit of ⁇ / ⁇ .
  • FIG. 8 shows an example of combining likelihood distributions of the first to fourth antenna pairs.
  • FIG. 9 is a flowchart showing an example of the operation of the medical support system 1 according to this embodiment.
  • the medical support system 1 includes a transmission step 100, a reflection step 101, a reception step 102, and a position estimation step 103.
  • the medical support system 1 can exist in at least a first antenna pair 42a including at least a first transmitting antenna 40a attachable to the body surface and a first receiving antenna 41a attachable to the body surface. And the reflector 5.
  • the medical support system 1 includes a first reception antenna 41a that can be attached to the body surface 10, a reflector 5 that reflects the first transmission wave transmitted by the first transmission antenna 40a, and can be present in the body 11, and a position estimation device. 2, a position estimation unit that estimates passage of the reflector 5 in the body 11 is provided.
  • the first embodiment is composed of a pair of antennas 42 including one transmitting antenna 40 and one receiving antenna 41.
  • the first transmission antenna 40a and the first reception antenna 41a configure a first antenna pair 42a
  • the first reception antenna 41a includes the first transmission wave transmitted by the first transmission antenna 40a.
  • the position estimation unit of the position estimation device 2 causes the reflector 5 to pass through the body 11 based on the first transmission wave received by the first reception antenna 41a and the phase change of the reflected wave at time t and time t + ⁇ t. , Perform the following steps.
  • the first transmitting antenna 40a transmits the first transmitting wave at time t and time t + ⁇ t.
  • the first transmission wave is transmitted toward the body 11 of the subject.
  • ⁇ Reflection step S101>
  • the reflector 5 reflects the first transmission wave transmitted by the first transmission antenna 40a at time t and time t + ⁇ t.
  • the first reception antenna 41a receives the first transmission wave transmitted by the first transmission antenna 40a and the reflection wave reflected by the reflector 5 at time t and time t + ⁇ t.
  • FIG. 10A shows the estimation of the movement of the reflector in the first antenna pair 42a in the first embodiment.
  • FIG. 10B shows estimation of passage of the reflector in the first antenna pair 42a in the first embodiment.
  • FIG. 10A is a schematic diagram in which the first antenna pair 42a is attached to the digestive organ in a straight line in order to estimate the movement of the reflector 5 in the body 11 of the subject (for example, in the digestive organ). is there.
  • the reflector 5 exists, for example, at the position inside the body indicated by the dotted line at time t, but moves to the position indicated by the solid line at time t + ⁇ t.
  • the first antenna pair 42a is attached to the arrangement as shown in FIG. 10A, for example, to estimate the movement of the reflector 5 in the body from the likelihood distribution of the first antenna pair 42a. Is possible.
  • FIG. 10 (b) is a schematic diagram in which the first antenna pair 42 a is attached so as to intersect the digestive organ in order to estimate passage of the reflector 5 in the body 11 of the subject (for example, in the digestive organ).
  • the reflector 5 exists at the position inside the body indicated by the dotted line at time t, but moves to the position indicated by the solid line at time t + ⁇ t.
  • the phase at the time t and the time t + ⁇ t of the reflected wave when the reflector 5 passes through the first antenna pair 42a It is possible to estimate that the reflector 5 has passed over the line antenna from the likelihood distribution of the change of.
  • the second embodiment is composed of two antenna pairs 42 each including one transmitting antenna 40 and two receiving antennas 41.
  • operations of the first antenna pair 42a (first transmitting antenna 40a and first receiving antenna 41a) and the second antenna pair 42b (first transmitting antenna 40a and second receiving antenna 41b) will be described. ..
  • the difference between the first embodiment and the second embodiment described above is that the first transmission antenna 40a, the first reception antenna 41a, and the second reception antenna 41b are provided.
  • the first transmitting antenna 40a and the first receiving antenna 41a form a first antenna pair 42a
  • the first transmitting antenna 40a and the second receiving antenna 41b form a second antenna pair 42b.
  • the description of the same configuration as the above-described embodiment will be omitted.
  • the medical support system 1 includes at least a first receiving antenna 41a, a first transmitting antenna 40a that can be attached to the body surface, a first transmitting antenna 40a, and a second receiving antenna 41b. And a second antenna pair 42b.
  • the first transmitting antenna 40a transmits the first transmitting wave at time t and at time t + ⁇ t, respectively.
  • the first transmission wave is transmitted toward the body 11 of the subject.
  • ⁇ Reflection step S101>
  • the reflector 5 reflects the first transmission wave transmitted by the first transmission antenna 40a at time t and time t + ⁇ t.
  • the first receiving antenna 41a receives the first transmitted wave transmitted by the first transmitting antenna 40a and the reflected wave reflected by the reflector 5 at time t and time t + ⁇ t. To do.
  • the second reception antenna 41b receives the first transmission wave transmitted by the first transmission antenna 40a and the reflected wave reflected by the reflector 5.
  • the position estimation unit of the position estimation device 2 causes the first transmission wave received by the first reception antenna 41a, the reflection wave reflected by the reflector 5 and the first transmission wave received by the second reception antenna 41b. Based on the wave and the reflected wave reflected by the reflector 5, by combining the likelihood distributions for the combinations of the antenna pairs 42, based on the time t and the phase change at the time t + ⁇ t, Estimate the range of movement and the direction of movement.
  • the third embodiment is composed of two pairs of antennas 42 each including two transmitting antennas 40 and one receiving antenna 41.
  • the operation of the first antenna pair 42a (first transmitting antenna 40a and first receiving antenna 41a) and the third antenna pair 42c (second transmitting antenna 40b and second receiving antenna 41a) will be described. ..
  • the difference between the first and second embodiments described above and the third embodiment is that the first transmission antenna 40a, the second transmission antenna 40b, and the first reception antenna 41a that can be attached to the body surface are provided.
  • the first transmitting antenna 40a and the first receiving antenna 41a form a first antenna pair 42a
  • the second transmitting antenna 40b and the first receiving antenna 41a form a second antenna pair 42b.
  • the description of the same configuration as the above-described embodiment will be omitted.
  • the first transmitting antenna 40a, the second transmitting antenna 40b, and the first receiving antenna 41a are provided. Therefore, the first reception antenna 41a can receive the transmission waves transmitted from the first transmission antenna 40a and the second transmission antenna 40b and the reflection waves reflected by the reflector 5, respectively. it can. This makes it possible to easily accurately estimate the range and direction of movement of the reflector in the body even in an environment such as general medical equipment.
  • the fourth embodiment is composed of four antenna pairs 42 each including two transmitting antennas 40 and two receiving antennas 41.
  • the operation of each of the first to fourth antenna pairs 42 by the four pairs of transmitting antennas 40 and receiving antennas 41 will be described.
  • the difference between the first to third embodiments described above and the fourth embodiment is that two transmitting antennas 40 and two receiving antennas 41 are provided. Note that the description of the same configuration as the above-described embodiment will be omitted.
  • At least a first transmission antenna 40a and a first reception antenna 41a (first antenna pair 42a) that can be attached to the body surface, a second transmission antenna 40b and a second reception antenna 41b (second antenna pair) are attached. 42b), the first transmitting antenna 40a and the second receiving antenna 41b (third antenna pair 42c), and the second transmitting antenna 40b and the first receiving antenna 41a (fourth antenna pair 42d).
  • the first transmitting antenna 40a and the second transmitting antenna 40b transmit the first transmitting wave and the second transmitting wave at time t and time t + ⁇ t, respectively.
  • the first transmission wave and the second transmission wave are transmitted toward the body 11 of the subject, for example.
  • the reflector 5 reflects the first transmission wave transmitted by the first transmission antenna 40a and the second transmission wave transmitted by the second transmission antenna 40b at the time t and the time t + ⁇ t.
  • the first receiving antenna 41a detects that the first transmitting wave transmitted by the first transmitting antenna 40a, the second transmitting wave transmitted by the second transmitting antenna 40b, and the reflector 5 at time t and time t + ⁇ t. The reflected waves reflected by each are received.
  • ⁇ Position estimation step: S103> By the position estimation step 103, the first transmitted wave received by the first receiving antenna 41a and the reflected wave reflected by the reflector 5, and the second transmitted wave received by the second receiving antenna 41b and the reflected wave reflected by the reflector 5 Based on the above, by combining the likelihood distributions for the combinations of the antenna pairs 42, based on the time t of the reflected wave and the phase change at the time t + ⁇ t, the range and direction of movement of the reflector 5 in the body are calculated. To estimate.
  • FIG. 11 shows the estimation of the movement range and movement direction of the reflector in the fourth embodiment.
  • FIG. 11 is a schematic diagram for estimating the movement range and the movement direction of the reflector 5 existing in the body 11 by attaching the antenna pairs 42 to the front and back body surfaces of the body of the subject, for example.
  • the reflector 5 moves inside the body 11 of the subject at time t, time t + ⁇ t, and time t + ⁇ t ′, for example.
  • the plurality of antenna pairs 42 may be composed of, for example, a plurality of transmitting antennas 40 and receiving antennas 41.
  • the first transmitting antenna 40a and the first receiving antenna 41a are configured as a first antenna pair 42a
  • the first transmitting antenna 40a and the second receiving antenna 41b are provided on the body surface 10 on the surface of the subject.
  • the second transmitting antenna 40b and the first receiving antenna 41a are configured as a third antenna pair 42c
  • the second transmitting antenna 40b and the second receiving antenna 41b are configured as a fourth antenna pair 42d. It may be configured.
  • the pair of 41 may further configure the corresponding fifth to eighth antenna pairs 42 (not shown).
  • the movement of the reflector 5 from time t to time t + ⁇ t ′ is measured, and the reception antennas 41 receive from the combinations of the antenna pairs 42 described above.
  • Likelihood distributions are combined based on the transmitted and reflected waves and the respective phase changes of the reflected waves from time t to time t + ⁇ t ′. This makes it possible to estimate the range and direction of movement of the reflector 5 in the three-dimensional space within the body from time t to time t + ⁇ t '.
  • the fourth embodiment it is possible to estimate the moving direction and the distance of the reflector 5 moving in the body 11 in detail.
  • the first modification even if the body 11 of the subject is, for example, the small intestine to the large intestine, by measuring the movement of the reflector 5 in a fine time series, a more detailed movement can be obtained from the movement locus. It is possible to estimate the range and the direction of movement.
  • the reflector 5 receives radio waves from outside the body and reflects the received radio waves. Therefore, no battery is required inside the reflector 5, and a response is made only when necessary. Thereby, for example, the range and the direction of movement of the inside of the body or movement by the reflector 5 can be measured only at the time of examination.
  • the transmission / reception device 4 may switch the radio wave output of the transmission antenna 40 or the type of antenna to respond. For this reason, the transmission / reception device 4 can receive and adjust the radio waves according to, for example, the diagnosis site of the digestive organs of the subject. As a result, the position estimation device 2 can measure the reflector 5 according to the diagnosis location of the subject. Further, even when a plurality of reflectors 5 exist as different frequency bands in the body of the subject, the transmitter / receiver 4 switches the frequency band of the transmitter / receiver 4 to immediately pass another reflector 5, or It is possible to measure the range of movement and the direction of movement. As a result, different symptoms and digestive organs can be diagnosed at the same time.
  • the transmission / reception device 4, the transmission antenna 40, and the reception antenna 41 may be wearable, for example. Therefore, the transmitting antenna 40 and the receiving antenna 41 can be attached to the body surface as the antenna pair 42. As a result, the subject can diagnose, for example, the exercise ability of the digestive organs in the environment of everyday life.
  • the transmission / reception device 4 may include a memory. Therefore, the log of the movement of the reflector 5 can be temporarily recorded in the memory in the transmission / reception device 4. Accordingly, for example, even while the position estimation device 2 is not connected, the measurement of the range and the direction of movement of the reflector 5 in the body of the subject or the movement can be continuously recorded.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Human Computer Interaction (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

体表面に貼付された第1送信アンテナ(40a)により第1送信波を発信し、体内に存在する反射体(5)は第1送信アンテナ(40a)が送信した第1送信波を反射し、体表面に貼付された第1受信アンテナ(41a)は、第1送信アンテナ(40a)が送信した第1送信波と反射体(5)が反射した反射波とを受信し、位置推定装置(2)は、第1受信アンテナ(41a)が受信した第1送信波と、反射波の時刻t及び時刻t+Δtにおける位相の変化とに基づいて、反射体(5)の体内における通過を推定する。

Description

医療支援システム
 本発明は、体表面に貼付した送信アンテナと受信アンテナと、体内に存在可能な反射体により、体内における通過、反射体の移動の範囲及び移動の方向の推定を可能とする医療支援システムに関するものである。
 近年、消化器疾患等の診断に際しては、消化器官の活動を可視化が重要な診断材料となる。可視化方法としては、放射線不透過の複数リングを飲みこみ、その位置をX線で一定時間をあけて複数回撮影し、リング位置の分布から診断を行う方法が採用されている。
 また、X線による診断では、X線被爆の問題があることから、被験者に負担の少ない可視化技術が必要とされている。例えば、体内端末の位置推定方法としてカプセル内視鏡では電波や磁界を利用した位置推定方法が提案されている。この方法を採用することで、X線被爆の問題を解消し、消化器官の活動を可視化することが可能となる。
 従来から、カプセル内視鏡を使った体内位置推定方法としては、例えば、カプセル内視鏡から発射される電波を体表に貼付した複数アンテナで受信し、その信号から体内位置を推定する方法が開示されている(例えば、特許文献1参照)。
 また、体内位置を推定する方法としては、体外で発生した磁界内に、カプセル内視鏡を飲み込んだ被験者を配置し、カプセル内視鏡のコイルによって生じる磁界変動量を体外コイルで計測することが知られている(例えば、特許文献2参照)。
特許第5351356号公報 特開2008-284303号公報
 特許文献1に開示の技術では、体内端末がアクティブに電波を出し続ける必要があるため、体内端末にバッテリーを具備する必要があり、体内端末の小型化、軽量化が困難であった。また、特許文献2に開示の技術では、外部からの電力供給を必要とし、管理された磁界下に被験者を配置する必要があり、一般的な医療施設等の診察環境下での体内の位置推定が困難であった。
 そこで本発明は、上述した問題点に鑑みて案出されたものであり、その目的とするところは、体内端末の小型化、軽量化を図り、一般の医療施設等の環境下でも容易に体内の通過、移動の範囲及び移動の方向の推定を行うことが可能となる医療支援システムを提供することにある。
 第1発明に係る医療支援システムは、体内を通過する反射体の通過を推定する医療支援システムであって、少なくとも時刻tと、時刻t+Δtとに送信波を送信する、少なくとも体表面に貼付可能な第1送信アンテナと、少なくとも体表面に貼付可能な第1受信アンテナと、前記第1送信アンテナが送信した前記送信波を反射し、体内に存在可能な反射体と、前記反射体の前記体内における通過を推定する位置推定部と、を備え、前記第1受信アンテナは、前記第1送信アンテナが送信した前記送信波と、前記反射体が反射した前記送信波の反射波と、を受信し、前記位置推定部は、前記第1受信アンテナが受信した前記送信波、及び前記第1受信アンテナが受信した前記反射波、のそれぞれの、時刻tと、時刻t+Δtとにおける位相の変化に基づいて、前記反射体の前記体内の通過を推定することを特徴とする。
 第2発明に係る医療支援システムは、体内を移動する反射体の移動を推定する医療支援システムであって、少なくとも時刻tと、時刻t+Δtとに送信波を送信する、少なくとも体表面に貼付可能な第1送信アンテナと、少なくとも体表面に貼付可能な第1受信アンテナ及び第2受信アンテナと、前記第1送信アンテナが送信した前記送信波を反射し、体内に存在可能な反射体と、前記反射体の前記体内における移動の範囲及び移動の方向を推定する位置推定部と、を備え、前記第1受信アンテナは、前記第1送信アンテナが送信した前記送信波と、前記反射体が反射した前記送信波の反射波と、を受信し、前記第2受信アンテナは、前記第1送信アンテナが送信した前記送信波と、前記反射体が反射した前記送信波の反射波と、を受信し、前記位置推定部は、前記第1受信アンテナが受信した前記送信波、及び前記第1受信アンテナが受信した前記反射波、のそれぞれの、時刻tと、時刻t+Δtとにおける位相の変化と、前記第2受信アンテナが受信した前記送信波、及び前記第2受信アンテナが受信した前記反射波、のそれぞれの、時刻tと、時刻t+Δtとにおける位相の変化と、に基づいて、前記反射体の前記体内の移動の範囲及び移動の方向を推定することを特徴とする。
 第3発明に係る医療支援システムは、体内を移動する反射体の移動を推定する医療支援システムであって、少なくとも時刻tと、時刻t+Δtとに送信波を送信する、少なくとも体表面に貼付可能な第1送信アンテナ及び第2送信アンテナと、少なくとも体表面に貼付可能な第1受信アンテナと、前記第1送信アンテナが送信した第1送信波、及び前記第2送信アンテナが送信した第2送信波を反射する、体内に存在可能な反射体と、前記反射体の前記体内における移動の範囲及び移動の方向を推定する位置推定部と、を備え、前記第1受信アンテナは、前記第1送信アンテナが送信した前記第1送信波、及び前記第2送信アンテナが送信した前記第2送信波と、前記反射体が反射した前記第1送信波の第1反射波、及び前記第2送信波の第2反射波と、をそれぞれに受信し、前記位置推定部は、前記第1受信アンテナが受信した前記第1送信波と前記第1反射波、及び前記第2送信波と前記第2反射波、のそれぞれの、時刻tと、時刻t+Δtとにおける位相の変化に基づいて、前記反射体の前記体内の移動の範囲及び移動の方向を推定することを特徴とする。
 第4発明に係る医療支援システムは、体内を移動する反射体の移動を推定する医療支援システムであって、少なくとも時刻tと、時刻t+Δtとに送信波を送信する、少なくとも体表面に貼付可能な第1送信アンテナ及び第2送信アンテナと、少なくとも体表面に貼付可能な第1受信アンテナ及び第2受信アンテナと、前記第1送信アンテナが送信した第1送信波、及び前記第2送信アンテナが送信した第2送信波を反射する、体内に存在可能な反射体と、前記反射体の前記体内における移動の範囲及び移動の方向を推定する位置推定部と、を備え、前記第1受信アンテナは、前記第1送信アンテナが送信した前記第1送信波、及び前記第2送信アンテナが送信した前記第2送信波と、前記反射体が反射した前記第1送信波の第1反射波、及び前記第2送信波の第2反射波と、をそれぞれに受信し、前記第2受信アンテナは、前記第1送信アンテナが送信した前記第1送信波、及び前記第2送信アンテナが送信した前記第2送信波と、前記反射体が反射した前記第1送信波の第1反射波、及び前記第2送信波の第2反射波と、をそれぞれに受信し、前記位置推定部は、前記第1受信アンテナが受信した前記第1送信波と前記第1反射波、及び前記第2送信波と前記第2反射波、のそれぞれの、時刻tと、時刻t+Δtとにおける位相の変化と、前記第2受信アンテナが受信した前記第1送信波と前記第1反射波、及び前記第2送信波と前記第2反射波、のそれぞれの、時刻tと、時刻t+Δtとにおける位相の変化と、に基づいて、前記反射体の前記体内の移動の範囲及び移動の方向を推定することを特徴とする。
 第1発明によれば、第1送信アンテナと、第1受信アンテナと、反射体と、を備える。このため、第1受信アンテナは、第1送信アンテナから送信された時刻t及び時刻t+Δtにおける送信波と、反射体によって反射された反射波とを受信することができる。これにより、一般の医療設備等の環境下でも容易に体内における反射体の通過の推定が可能となる。
 特に、第1発明によれば、反射体は、第1送信アンテナが送信した第1送信波を反射する。このため、反射体は、第1送信アンテナが送信した送信波を、体内を通過して反射することができる。これにより、反射体は、バッテリーを具備する必要とせず、小型化、軽量化を図ることができる。
 特に、第1発明によれば、位置推定部は、反射体の通過を推測する。このため、位置推定部は、第1受信アンテナが受信した送信波、及び第1受信アンテナが受信した反射波、のそれぞれの、時刻tと、時刻t+Δtとにおける位相の変化を求めることができる。これにより、一般の医療設備等の環境下でも容易に、体内における反射体の通過の推定が可能となる。
 第2発明によれば、第1送信アンテナと、第1受信アンテナと、第2受信アンテナと、反射体と、を備える。このため、第1受信アンテナ及び第2受信アンテナは、第1送信アンテナから送信された送信波と、反射体によって反射された反射波と、をそれぞれに受信することができる。これにより、一般の医療設備等の環境下でも容易に、体内における反射体の移動の範囲及び移動の方向を正確に推定することが可能となる。
 特に、第2発明によれば、反射体は、第1送信アンテナが送信した第1送信波を反射する。このため、第1受信アンテナ及び第2受信アンテナのそれぞれは、第1送信アンテナが送信した第1送信波と、反射体が反射した反射波とを受信することができる。これにより、反射体はバッテリーを具備する必要とせず、小型化、軽量化を図ることができる。
 特に、第2発明によれば、位置測定部は、反射体の移動の範囲及び移動の方向を推測する。このため、第1受信アンテナ及び第2受信アンテナのそれぞれが受信した第1送信波と反射波と反射波の時刻t及び時刻t+Δtにおける位相の変化とに基づいて、反射体の体内における移動の範囲及び移動の方向を推定することができる。これにより、一般の医療設備等の環境下でも容易に、体内における反射体の移動の範囲及び移動の方向を推定でき、体内での移動を把握することが可能となる。
 第3発明によれば、第1送信アンテナと、第2送信アンテナと、第1受信アンテナと、反射体と、を備える。このため、第1受信アンテナは、第1送信アンテナと第2送信アンテナからそれぞれ送信された送信波と、反射体によって反射されたそれぞれの反射波と、をそれぞれに受信することができる。これにより、一般の医療設備等の環境下でも容易に、体内における反射体の移動の範囲及び移動の方向を正確に推定することが可能となる。
 特に、第3発明によれば、反射体は、第1送信アンテナと第2送信アンテナがそれぞれに送信した送信波を反射する。このため、反射体は、第1送信アンテナが送信した第1送信波、及び第2送信アンテナが送信した第2送信波を、体内を移動して反射することができる。これにより、反射体はバッテリーを具備する必要とせず、小型化、軽量化を図ることができる。
 特に、第3発明によれば、位置測定部は、反射体の移動の範囲及び移動の方向を推測する。このため、位置推定部は、第1受信アンテナが受信した第1送信波と第1反射波、及び第2送信波と第2反射波、のそれぞれの、時刻tと、時刻t+Δtとにおける位相の変化を求めることができる。これにより、一般の医療設備等の環境下でも容易に、体内における反射体の移動の範囲及び移動の方向を推定でき、体内での移動を把握することが可能となる。
 第4発明によれば、第1送信アンテナと、第2送信アンテナと、第1受信アンテナと、第2受信アンテナと、反射体と、を備える。このため、第1受信アンテナ及び第2受信アンテナは、第1送信アンテナから送信された送信波と、反射体によって反射された反射波と、をそれぞれに受信することができる。これにより、一般の医療設備等の環境下でも容易に、体内における反射体の移動の範囲と移動の方向を、より正確に推定することが可能となる。
 特に、第4発明によれば、反射体は、第1送信アンテナと第2送信アンテナがそれぞれに送信した送信波を反射する。このため、反射体は、第1送信アンテナ及び第2送信アンテナのそれぞれが送信した送信波を、体内を移動して反射することができる。これにより、反射体はバッテリーを具備する必要とせず、小型化、軽量化を図ることができる。
 特に、第4発明によれば、位置測定部は、反射体の移動の範囲と移動の方向を推測する。このため、位置推定部は、第1受信アンテナ及び第2受信アンテナのそれぞれが受信した、第1送信波と第1反射波、及び第2送信波と第2反射波、のそれぞれの、時刻tと、時刻t+Δtとにおける位相の変化を求めることができる。これにより、一般の医療設備等の環境下でも容易に、体内における反射体の移動の範囲と移動の方向を、より正確に推定することができ、体内での移動を把握することが可能となる。
図1は、本発明が適用される医療支援システムの一例を示す模式図である。 図2は、本発明が適用される医療支援システムの構成の一例を示すブロック図である。 図3(a)は、第1実施形態における医療支援システムの時刻tでの反射体の測定の一例を示す模式図である。図3(b)は、第1実施形態における医療支援システムの時刻t+Δtでの反射体の測定の一例を示す模式図である。 図4は、第1実施形態における第1のアンテナ対の測定の一例を示す模式図である。 図5は、第1実施形態における第1のアンテナ対の測定結果の一例を示す模式図である。 図6は、他の実施形態における第1~第4のアンテナ対の測定の一例を示す模式図である。 図7(a)は、他の実施形態における第1のアンテナ対の測定結果の一例を示す模式図である。図7(b)は、他の実施形態における第2のアンテナ対の測定結果の一例を示す模式図である。図7(c)は、他の実施形態における第3のアンテナ対の測定結果の一例を示す模式図である。図7(d)は、他の実施形態における第4のアンテナ対の測定結果の一例を示す模式図である。 図8は、第1~第4のアンテナ対の測定結果の合成の一例を示す模式図である。 図9は、実施形態における反射体測定の動作の一例を示すフローチャートである。 図10(a)は、第1実施形態における第1のアンテナ対における反射体の移動の推定を示す模式図である。図10(b)は、第1実施形態における第1のアンテナ対における反射体のアンテナ対の通過の推定を示す模式図である。 図11は、第4実施形態における反射体の通過の推定を示す模式図である。
 以下、本発明の実施形態における医療支援システム及び医療支援方法の一例について、図面を参照しながら説明する。
 図1は、本実施形態における発明が適用される医療支援システムの一例を示す模式図である。
 本実施形態の医療支援システムは、図1に示すように、医療支援システム1は、例えば、位置推定装置2によりデータベース3と公衆通信網6(ネットワーク)に接続される。位置推定装置2は、公衆通信網6を介して、送受信装置4に接続される。送受信装置4は、複数の送信アンテナ40と受信アンテナ41と接続される。一対の送信アンテナ40と受信アンテナ41はアンテナ対42として構成される。送信アンテナ40及び受信アンテナ41は、被験者(図示せず)の体表面10に貼付される。反射体5は、被験者の体内11を移動する。反射体5は、送信アンテナからの電波を反射する構成を備えていればよい。反射体5は、例えば、所定の負荷を有するアンテナ、又はRFID(Radio Frequency Identifier)機能を備えていてもよい。
 <位置推定装置2>
 位置推定装置2は、例えば、公衆通信網6を介して送受信装置4と接続され、被験者(図示せず)の体内11に存在する反射体5の通過、又は移動の範囲及び移動の方向の推定を行う。また、位置推定装置2は、データベース3を備える。
 <データベース3>
 データベース3は、例えば、被験者に関する情報や測定結果等の情報の他に、受信した受信波又は反射波のベースバンド波形や、反射体5の位置推定に関するアルゴリズム、位置推定を行うための過去の測定データ、位置推定に有益なデータとなる、被験者のMRI画像やCT画像、各種のログ等が記憶される。
 <送受信装置4>
 送受信装置4は、被験者の体表面10に貼付される複数の送信アンテナ40、受信アンテナ41の選択の送受信制御を行う。送受信装置4は、例えば、第1送信アンテナ40a、第1受信アンテナ41a、第2送信アンテナ40b、第2受信アンテナ41bとそれぞれ接続する。送受信装置4は、他の送信アンテナ40、受信アンテナ41と接続されてもよく、有線又は無線にて接続される。送受信装置4は、例えば、送信アンテナ40と受信アンテナ41で設定される周波数帯、出力、配置位置などにより、1対(1組)の送信アンテナ40及び受信アンテナ41を組み合わせる。
 送信アンテナ40及び受信アンテナ41の対は、例えば、同一周波数帯であれば、複数を組み合わせてもよい。これらの送信アンテナ40と受信アンテナ41の組み合わせは、送受信装置4のメモリ、又はデータベース3に記憶されてもよい。送受信装置4は、接続されている複数の送信アンテナ40及び受信アンテナ41の電波状況等を監視し、他の送信アンテナ40又は受信アンテナ41に切り換えてもよい。さらに、送受信装置4は、第1受信アンテナ41a及び第2受信アンテナ41bによって受信した受信波を、位置推定装置2における位置推定のためベースバンド信号波形に変換する。
 <送信アンテナ40>
 第1送信アンテナ40a及び第2送信アンテナ40bは、送受信装置4によって制御され、例えば、第1受信アンテナ41a及び第2受信アンテナ41b、反射体5に対して、所定の周波帯の電波を送信(発射)する。第1送信アンテナ40a及び第2送信アンテナ40bは、本実施形態では、第1送信アンテナ40a及び第2送信アンテナ40bとしているが、他に複数の送信アンテナが接続されてもよい。第1送信アンテナ40a及び第2送信アンテナ40bから送信される電波は、同一の周波数帯の電波でも、異なる周波数帯の電波であってもよい。
 第1送信アンテナ40a及び第2送信アンテナ40bは、送信する電波を、例えば、周波数帯が同一であれば、送信する時間を変えて送信し、異なる周波数帯の電波であれば、それぞれの周波数帯を持つ送信アンテナ40から同時に送信してもよい。第1送信アンテナ40a及び第2送信アンテナ40bは、被験者の体表面10に貼付され、周辺に対して電波を送信する。第1送信アンテナ40a及び第2送信アンテナ40bから送信される電波に、例えば、指向性があってもよい。電波の指向性は、例えば、第1送信アンテナ40a及び第2送信アンテナ40bのアンテナ角やアンテナ形状等により決められてもよい。
 <受信アンテナ41>
 第1受信アンテナ41a及び第2受信アンテナ41bは、送受信装置4によって制御され、例えば、所定の周波帯の電波を受信する。第1受信アンテナ41a及び第2受信アンテナ41bは、例えば、本実施形態では、第1受信アンテナ41a及び第2受信アンテナ41bとしているが、他に複数の受信アンテナ41があってもよい。第1受信アンテナ41a及び第2受信アンテナ41bは、被験者の体表面10に貼付され、第1受信アンテナ41a及び第2受信アンテナ41bに対応する周波数帯の電波を受信する。第1受信アンテナ41a及び第2受信アンテナ41bは、本実施形態では、第1送信アンテナ40a及び第2送信アンテナ40bの他に、反射体5からの反射波も受信する。
 <アンテナ対42>
 アンテナ対42は、送信アンテナ40と、受信アンテナ41又は反射体5の対(組み)として設定される。本実施形態では、第1のアンテナ対42aは、例えば、第1送信アンテナ40aと第1受信アンテナ41aとにより構成される。第2のアンテナ対42bは、例えば、第2送信アンテナ40bと第2受信アンテナ41bとにより構成される。それぞれのアンテナ対42は、被験者の体表面に離間して貼付される。それぞれのアンテナ対42は、例えば、被験者の体表面に、体内の消化器官に平行、又は挟むように貼付され、消化器官を移動する反射体5の移動を推定する。アンテナ対42は、体内の消化器官に平行に貼付される場合は、移動がわかり、一方、挟むように貼付された場合は、挟んだ箇所を通過することがわかる。
 なお、アンテナ対42は、被験者の体表面10に直接に貼付されてもよい。アンテナ対42は、反射体5での第1送信アンテナ40aによる第1送信波の受信が可能であれば、例えば、衣類等の表面に貼付されてもよい。また、アンテナ対42は、送受信装置4と一体、又は、分離して貼付され、送受信装置4とは有線接続、又は無線接続により接続されてもよい。また、アンテナ対42は、他の対として、第1送信アンテナ40a、第1受信アンテナ41a、第2送信アンテナ40b、第2受信アンテナ41bの組み合わせにより、例えば、第3のアンテナ対42c、第4のアンテナ対42dが構成される。第3のアンテナ対42cは、例えば、第1送信アンテナ40aと第2受信アンテナ41bとにより構成される。第4のアンテナ対42dは、例えば、第2送信アンテナ40bと第1受信アンテナ41aとにより構成される。
 <反射体5>
 反射体5は、例えば、被験者により服用されるため、小型で軽量が望ましい。そのため、反射体5は、例えば、錠剤程度の大きさで、消化器官を傷つけないように、滑らかな表面であってもよい。また、反射体5は、例えば、糖衣に包む、又は錠剤に埋め込めてもよく、他の形状としては、カプセルへの封入、顆粒や錠剤のスティック包装内に封入するようにしてもよい。
 さらに反射体5は、例えば、反射アンテナ又はRFID機能を備えることが可能な構造のため、内部にバッテリーを備えない。反射体5は、送信アンテナから送信される送信波により、例えば、内部に備わる誘電コイルにより磁界を発生させ、発生させた磁界により電力を発生させ、予め決められている周波数帯の電波を反射波として送信する。反射体5は、被験者の体内に複数が存在する場合は、それぞれの反射体5で異なる周波数帯でもよい。
 図2は、本発明が適用される医療支援システムの構成の一例を示すブロック図である。
 図2は、CPU(Central Processing Unit)20は、医療支援システム1の全体を制御する。ROM(Read Only Memory)21は、ROM21のメモリにCPU20の動作コードを格納する。RAM(Random Access Memory)22は、CPU20の動作時に使用される作業領域である。記憶部23は、例えばHDD(Hard Disk Drive)の他、SSD(solid state drive)等のデータ保存装置が用いられ、位置推定装置2及び第1のアンテナ対42aの送受信装置4、第1送信アンテナ40a、第1受信アンテナ41aを実行させる各種設定情報や位置推定を処理するプログラム等が記憶される。なお、例えば位置推定装置2は、図示しないGPU(Graphics Processing Unit)を有してもよい。GPUを有することで、通常よりも高速演算処理が可能となる。I/F24は、公衆通信網6を介して、第1のアンテナ対42aの送受信装置4、他の上位システム等との各種情報の送受信を行うためのインターフェースである。
 I/F25は、入出力部29及び送受信部30との情報の送受信を行うためのインターフェースである。入出力部29は、例えばキーボードや他の入出力を行うためのデバイス等が用いられる。I/F26は、ディスプレイ等の表示部28との各種情報の送受信を行うためのインターフェースである。内部バス27である。また、記憶部23には、例えば、位置推定装置2のデータベース3に記憶されている通過、又は移動の範囲及び移動の方向の検出や通過、又は移動の範囲及び移動の方向の推定等のアルゴリズムや、被験者の体内に存在する反射体5情報等の通過、又は移動の範囲及び移動の方向を推定するための各アプリケーションや各種の設定情報が、各々対応付けて記憶される。
 なお、図1及び図2に示した各構成における機能は、後述する送信アンテナ40、受信アンテナ41における電波の送受信、位置推定装置2における反射体5の通過、又は移動の範囲及び移動の方向の推定に関する処理は、CPU20が、RAM22を作業領域として、記憶部23等に記憶されたプログラムを実行することにより実現される。
 図3(a)は、第1実施形態における医療支援システム1の時刻tでの反射体5の測定の一例を示す模式図である。ここで、被験者の体内は、液体ファントムを満たした円筒容器で模擬するものとする。液体ファントムの電気定数は、915MHzにおいて比誘導率Εr=54.8、導電率σ=1.05としている。
 <時刻tにおける送受信>
 第1送信アンテナ40aは、被験者の体表面10に貼付され、送受信装置4による制御に基づいて、第1送信波を送信する。ここで、被験者の体内11は、被験者により予め服用された反射体5が体内の消化器官に存在しているものとする。
 第1送信アンテナ40aは、電波を送信する送信点により、例えば、時刻tに第1送信波を送信する。ここで、第1送信アンテナ40aの送信点から送信される送信波は、常に同一の周波数帯及び出力の電波とする。その後、第1送信アンテナ40aは、第1送信アンテナ40aの送信点から、時刻t+Δtに第1送信を送信する。第1送信アンテナ40aから送信される第1送信波の送信のタイミングは、送受信装置4によって制御され、例えば、体内における反射体5の移動速度を毎秒50mm以下と仮定すると、毎秒10回以上の推定を行えば、位相とび(π不定性)による推定誤りは生じない。第1送信アンテナ40aによって送信された電波は、例えば、時刻t及び時刻t+Δtにそれぞれ送信され、直接に届く電波(直接波Sd)と反射体5からの反射波(反射波Sr)として受信される。
 <時刻t+Δtにおける送受信>
 図3(b)は、第1実施形態における医療支援システム1の時刻t+Δtでの反射体5の測定の一例を示す模式図である。図3(b)についても、前述の図3(a)と同様に被験者の体表面10に第1のアンテナ対42aが貼付されているものとする。
 第1受信アンテナ41aは、反射体5の移動で、第1送信アンテナ40aからの直接波Sdと、反射体5からの反射波Srの電波をそれぞれ受信する。送受信装置4は、第1受信アンテナ41aで受信した直接波Sdtと反射波Srtを、直接波Sdt+反射波Srtとした合成波を受信する。その後、第1受信アンテナ41aは、前述の時刻tにおける第1送信波の受信時と同様に、時刻t+Δtにおいても、第1受信アンテナ41aから直接に届く電波(直接波Sd)と、反射体5からの反射波(反射波Sr)を受信する。第1受信アンテナ41aは、時刻t+Δtにおける反射体5の移動に応じて、時刻t+Δtでの直接波Sdと反射波Srを受信する。
 <反射体5の移動の推定>
 反射体5は、第1送信アンテナ40aから送信された第1送信波を受信し、反射体5によって、反射波として体内に送信される。反射体5の反射波の送信は、反射体5が備えるRFID機能によって行われてもよい。反射体5は、被験者の体内を、例えば、時刻tにおける体内の位置を基準とし、その後の時刻t+Δtの間に移動した移動量を推定する。
 反射体5は、第1送信アンテナ40aから時刻tに送信された第1送信波に続いて、第1送信アンテナ40aにより時刻t+Δtに送信された第1送信波を受信し、このとき、時刻tから時刻t+Δtの間に反射体5が移動すると、反射波Srの位相変化量をΔθとすると、反射体5の移動量(Δl)は、次式で求める。
Figure JPOXMLDOC01-appb-M000001
 ここで、λは、液体ファントムを満たした円筒容器の媒体内における波長である。λは、媒体内の位相定数をβとすると、λ=2π/βとして与えられる。これにより、反射体5の移動量(Δl)は、Δθ/βから求めることができる。定数βは、次式で与えられる。
Figure JPOXMLDOC01-appb-M000002
 ここで、ωは角周波数、μは透磁率、εrは比誘電率、σcは導電率とする。なお、μは、生体組織は非磁性体であることから、空気中と同じ4π×10-7となる。送受信装置4は、送信、受信する電波に915MHz帯を使用する場合、体内組織を模擬する液体ファントム中における波長(λ)は、上式により4.4cmとなる。この原理を用いた消化器官内にある反射体5の位置推定に適用させ、体内に存在する反射体5の移動を推定する。
 図4は、第1実施形態における第1のアンテナ対42aの測定の一例を示す模式図である。図4は、図3に説明の構成において、反射体5を消化器官内の端末としている。第1送信アンテナ40aは、送信点から第1送信波を送信する。送信された第1送信波は、第1送信アンテナ40a以外で受信する場合、第1送信アンテナ40aを『ANT0』、そして、第1受信アンテナ41aを『ANT1』とし、体内組織の範囲は半径150mmとする。このとき、第1のアンテナ対42aの各アンテナ間(i,j,i≠j)の観測による位相変化量Δθi,jに対して、端末候補位置(x,y)に対する対数尤度L(x,y)を、次の式により求める。
Figure JPOXMLDOC01-appb-M000003
 ここで、Ai,jは受信信号の振幅値、σnは雑音の標準偏差とする。雑音の標準偏差σnは、無信号区間を利用して観測した値を用いるものとする。上式により、Ai,j及びσnを用いた尤度計算を行うことで、受信信号電力が高く観測された位相変化量は尤度が高く重み付けられることになる。ΔΘi,j(x,y)は、推定位置(x,y)に対する位相変化量の期待値であり、前述の移動量(Δl)により、下記により求められる。
Figure JPOXMLDOC01-appb-M000004
 ここで(x0,0)は、移動量(Δl)を求める際の参照点座標となる。この尤度分布を図5に示す。
 図5は、第1実施形態における第1のアンテナ対42aの測定結果の一例を示す模式図であり、1対のアンテナ間の送信・受信から得られる反射体5の位置に関する尤度分布は、同じ尤度を持つ位置は、楕円状に分布する。これにより、移動前の時刻tの反射体5の位置を基準とし、時刻t+Δtにおける移動後の推定位置を確認することができる。
 図6は、他の実施形態における第1~第4のアンテナ対42の測定の一例を示す模式図である。
 図6は、複数の送信アンテナ40、受信アンテナ41を被験者の体表面にアンテナアレイ化して貼付した場合の一例である。ここで、送信アンテナ40と受信アンテナ41からなるアンテナ対42を構成する。例えば、第1のアンテナ対42aとして『ANT0』(第1送信アンテナ40a)及び『ANT1』(第1受信アンテナ41a)を対とする。この場合、その他の送信アンテナ40と受信アンテナ41の対として、例えば、第2のアンテナ対42bの構成は、『ANT0(第1送信アンテナ40a)』と『ANT2(第2受信アンテナ41b)』とする。同様に、例えば、第3のアンテナ対42cの構成として、『ANT3(第2送信アンテナ40b)』及び『ANT1(第1受信アンテナ41a)』、さらに、第4のアンテナ対42dの構成として、『ANT3(第2送信アンテナ40b)』及び『ANT2(第2受信アンテナ41b)』の対としてそれぞれ割り当ててもよい。このようなそれぞれの送信アンテナ40及び受信アンテナ41のアンテナ対42として、例えば、アンテナアレイ化されたアンテナ対42の構成の場合の推定結果を、図7及び図8に示す。
 図7に、他の実施形態における第1~第4のアンテナ対42の各測定結果の一例を示す。
 図7(a)は、他の実施形態における第1のアンテナ対42a(『ANT0』と『ANT1』)の測定結果の一例を示す模式図である。図7(b)は、他の実施形態における第2のアンテナ対42b(『ANT0』と『ANT2』)の測定結果の一例を示す模式図である。図7(c)は、他の実施形態における第3のアンテナ対42c(『ANT1』と『ANT3』)の測定結果の一例を示す模式図である。図7(d)は、他の実施形態における第4のアンテナ対42d(『ANT2』と『ANT3』)の測定結果の一例を示す。
 次に、図8に、図7(a)~(d)で測定された第1~第4のアンテナ対42のそれぞれの対数尤度を、次式にて合成を行うことで、最も尤度が高い位置を推定する。
Figure JPOXMLDOC01-appb-M000005
 ここで、Ls(x,y)は、前述のそれぞれの各アンテナ対42におけるアンテナ間(i,j,i≠j)の観測による位相変化量Δθi,jに対する、反射体5である端末候補位置(x,y)に対する対数尤度Li,j(x,y)となる。ここで算出されたLs(x,y)を合成し、体内に存在する反射体5の最も尤度が高い位置を推定する。
 なお、これまでの位置推定方法は、被験者の体表面10に貼付した2次元空間での測定であったが、同じ計算を行うことで、3次元の位置測定も可能となる。
Figure JPOXMLDOC01-appb-M000006
 ここで、座標(x,y,z)に反射体5が存在すると、対数尤度Ls(x,y,x)を求めることが可能となる。
Figure JPOXMLDOC01-appb-M000007
 ここで、対数尤度Ls(x,y,x)が最大となる位置を測定結果として得る。なお、尤度計算を行う場合、計算対象とするLs(x,y,z)の範囲(空間)は、位相変化量Δθが[-π,+π]の範囲となるように設定する。すなわち、医療支援システム1が扱う移動量Δlの範囲はπ/βを上限とする。
 図8は、第1~第4のアンテナ対の尤度分布の合成の一例を示す。移動前の時刻tにおける反射体5の位置を基準とし、移動後の時刻t+Δtにおけるそれぞれのアンテナ対42における組み合せの尤度分布を合成することで、体内に存在する反射体5の移動の範囲及び移動の方向を正確に推定することが可能となる。
(第1実施形態)
 本実施形態における医療支援システム1の動作について説明する。図9は、本実施形態における医療支援システム1の動作の一例を示すフローチャートである。
 医療支援システム1は、送信ステップ100と、反射ステップ101と、受信ステップ102と、位置推定ステップ103を備える。医療支援システム1は、少なくとも体表面に貼付可能な第1送信アンテナ40aと、少なくとも体表面に貼付可能な第1受信アンテナ41aと、を含む第1のアンテナ対42aと、少なくとも体内に存在可能な反射体5とにより構成される。
 医療支援システム1は、体表面10に貼付可能な第1受信アンテナ41aと、第1送信アンテナ40aが送信した第1送信波を反射し、体内11に存在可能な反射体5と、位置推定装置2により、反射体5の体内11における通過を推定する位置推定部とを備える。
 第1実施形態は、1つの送信アンテナ40及び1つの受信アンテナ41による1組のアンテナ対42により構成される。第1実施形態では、第1送信アンテナ40aと、第1受信アンテナ41aとは、第1のアンテナ対42aを構成し、第1受信アンテナ41aは、第1送信アンテナ40aが送信した第1送信波と、反射体5が反射した第1送信波の反射波とを受信する。位置推定装置2の位置推定部は、第1受信アンテナ41aが受信した第1送信波と、反射波の時刻t及び時刻t+Δtにおける位相の変化とに基づいて、反射体5の体内11の通過を、以下のステップにより実行する。
 <送信ステップ:S100>
 送信ステップ100により、第1送信アンテナ40aは、時刻tと時刻t+Δtにおいて、第1送信波を送信する。第1送信波は、被験者の体内11に向け送信される。
 <反射ステップ:S101>
 反射ステップ101により、反射体5は、時刻tと時刻t+Δtにおいて、第1送信アンテナ40aが送信した第1送信波を反射する。
 <受信ステップ:S102>
 受信ステップ102により、第1受信アンテナ41aは、時刻tと時刻t+Δtにおいて、第1送信アンテナ40aが送信した第1送信波と、反射体5が反射した反射波とを受信する。
 <位置推定ステップ:S103>
 位置推定ステップ103により、第1受信アンテナ41aが受信した第1送信波と反射体5が反射した反射波に基づいて、時刻tと時刻t+Δtにおける位相の変化とに基づいて反射体5の体内での通過を推定する。
 これにより、第1実施形態における医療支援システム1の動作が終了する。
 次に、図10(a)に、第1実施形態における第1のアンテナ対42aにおける反射体の移動の推定を示す。また、図10(b)に、第1実施形態における第1のアンテナ対42aにおける反射体の通過の推定を示す。
 図10(a)は、被験者の体内11(例えば、消化器官内)の反射体5の移動を推定するために、第1のアンテナ対42aを消化器官に対して一直線上に貼付した模式図である。反射体5は、例えば、時刻tにおいて、点線で示される体内の位置に存在するが、時刻t+Δtにおいて、実線で示される位置に移動する。第1のアンテナ対42aは、例えば、図10(a)に示されるような配置に貼付することで、第1のアンテナ対42aにおける尤度分布により、体内における反射体5の移動を推定することが可能となる。
 図10(b)は、被験者の体内11(例えば、消化器官内)の反射体5の通過を推定するために、第1のアンテナ対42aを消化器官に対して交差するように貼付した模式図である。反射体5は、時刻tにおいて、点線で示される体内の位置に存在するが、時刻t+Δtにおいて、実線で示される位置に移動する。第1のアンテナ対42aは、図10(a)に示されるような配置に貼付することで、反射体5が第1のアンテナ対42aを通過する際の反射波の時刻tと時刻t+Δtにおける位相の変化の尤度分布により、反射体5がラインアンテナ上を通過したということを推定できる。
(第2実施形態)
 第2実施形態は、1つの送信アンテナ40及び2つの受信アンテナ41による2組のアンテナ対42により構成される。第2実施形態では、第1のアンテナ対42a(第1送信アンテナ40aと第1受信アンテナ41a)、第2のアンテナ対42b(第1送信アンテナ40aと第2受信アンテナ41b)の動作について説明する。
 上述した第1実施形態と、第2実施形態との違いは、第1送信アンテナ40a、第1受信アンテナ41a、第2受信アンテナ41bを備える点である。第1送信アンテナ40aと第1受信アンテナ41aが第1のアンテナ対42aを形成し、第1送信アンテナ40aと第2受信アンテナ41bが第2のアンテナ対42bを形成する。上述した実施形態と同様の構成については、説明を省略する。
 なお、第2実施形態では、医療支援システム1は、少なくとも体表面に貼付可能な第1受信アンテナ41aと第1送信アンテナ40aと、第1送信アンテナ40aと第2受信アンテナ41bとにより構成される第2のアンテナ対42bとを備える。
 <送信ステップ:S100>
 送信ステップ100により、第1送信アンテナ40aは、時刻tと時刻t+Δtにおいて、それぞれ第1送信波を送信する。第1送信波は、被験者の体内11に向け送信される。
 <反射ステップ:S101>
 反射ステップ101により、反射体5は、時刻tと時刻t+Δtにおいて、第1送信アンテナ40aが送信した第1送信波を反射する。
 <受信ステップ:S102>
 受信ステップ102により、第1のアンテナ対42aでは、第1受信アンテナ41aは、時刻tと時刻t+Δtにおいて、第1送信アンテナ40aが送信した第1送信波と反射体5が反射した反射波を受信する。第2のアンテナ対42bでは、第2受信アンテナ41bは、第1送信アンテナ40aが送信した第1送信波と反射体5が反射した反射波を受信する。
 <位置推定ステップ:S103>
 位置推定ステップ103により、位置推定装置2の位置推定部は、第1受信アンテナ41aが受信した第1送信波と反射体5が反射した反射波と、第2受信アンテナ41bが受信した第1送信波と反射体5が反射した反射波とに基づいて、各アンテナ対42の組み合わせに対する尤度分布の合成により、時刻tと時刻t+Δtにおける位相の変化とに基づいて、反射体5の体内での移動の範囲及び移動の方向を推定する。
 これにより、第2実施形態における医療支援システム1の動作が終了する。
(第3実施形態)
 第3実施形態は、2つの送信アンテナ40及び1つの受信アンテナ41による2組のアンテナ対42により構成される。第3実施形態では、第1のアンテナ対42a(第1送信アンテナ40aと第1受信アンテナ41a)、第3のアンテナ対42c(第2送信アンテナ40bと第2受信アンテナ41a)の動作について説明する。
 上述した第1~2実施形態と、第3実施形態との違いは、体表面に貼付可能な第1送信アンテナ40a、第2送信アンテナ40b、及び第1受信アンテナ41aを備える点である。第1送信アンテナ40aと第1受信アンテナ41aが第1のアンテナ対42aを形成し、第2送信アンテナ40bと第1受信アンテナ41aが第2のアンテナ対42bを形成する。上述した実施形態と同様の構成については、説明を省略する。
 第3実施形態によれば、第1送信アンテナ40aと、第2送信アンテナ40bと、第1受信アンテナ41aを備える。このため、第1受信アンテナ41aは、第1送信アンテナ40a及び第2送信アンテナ40bからそれぞれ送信された送信波と、反射体5によって反射されたそれぞれの反射波と、をそれぞれに受信することができる。これにより、一般の医療設備等の環境下でも容易に、体内における反射体の移動の範囲及び移動の方向を正確に推定することが可能となる。
(第4実施形態)
 第4実施形態は、2つの送信アンテナ40及び2つの受信アンテナ41による4組のアンテナ対42により構成される。第4実施形態では、4対の送信アンテナ40及び受信アンテナ41による第1~第4のそれぞれのアンテナ対42の動作について説明する。
 上述した第1~3実施形態と、第4実施形態との違いは、2つの送信アンテナ40及び2つの受信アンテナ41を備える点である。なお、上述した実施形態と同様の構成については、説明を省略する。
 第4実施形態では、少なくとも体表面に貼付可能な第1送信アンテナ40aと第1受信アンテナ41a(第1のアンテナ対42a)、第2送信アンテナ40bと第2受信アンテナ41b(第2のアンテナ対42b)、第1送信アンテナ40aと第2受信アンテナ41b(第3のアンテナ対42c)、そして、第2送信アンテナ40bと第1受信アンテナ41a(第4のアンテナ対42d)により構成される。
 <送信ステップ:S100>
 送信ステップ100により、第1送信アンテナ40a、第2送信アンテナ40bは、時刻tと時刻t+Δtにおいて、それぞれ第1送信波、第2送信波を送信する。第1送信波、第2送信波は、例えば、被験者の体内11に向け送信される。
 <反射ステップ:S101>
 反射ステップ101により、反射体5は、時刻tと時刻t+Δtにおいて、第1送信アンテナ40aが送信した第1送信波と第2送信アンテナ40bが送信した第2送信波を反射する。
 <受信ステップ:S102>
 受信ステップ102により、第1受信アンテナ41aは、時刻tと時刻t+Δtにおいて、第1送信アンテナ40aが送信した第1送信波と第2送信アンテナ40bが送信した第2送信波と、反射体5がそれぞれ反射した反射波を受信する。
 <位置推定ステップ:S103>
 位置推定ステップ103により、第1受信アンテナ41aが受信した第1送信波と反射体5が反射した反射波と、第2受信アンテナ41bが受信した第2送信波と反射体5が反射した反射波とに基づいて、各アンテナ対42の組み合わせに対する尤度分布の合成により、反射波の時刻tと時刻t+Δtにおける位相の変化とに基づいて、反射体5の体内での移動の範囲及び移動の方向を推定する。
 これにより、第4実施形態における医療支援システム1の動作が終了する。
 次に、図11に、第4実施形態における反射体の移動の範囲及び移動の方向の推定を示す。第11図は、例えば、被験者の身体の表裏の体表面にそれぞれのアンテナ対42を貼付し、体内11に存在する反射体5の移動の範囲及び移動の方向を推定する模式図である。反射体5は、例えば、時刻t、時刻t+Δt、時刻t+Δt'において、被験者の体内11を移動する。
 複数のアンテナ対42は、例えば、複数の送信アンテナ40及び受信アンテナ41により構成してもよい。例えば、被験者の身体の表の体表面10に、第1送信アンテナ40aと第1受信アンテナ41aとが第1のアンテナ対42aとして構成され、第1送信アンテナ40aと第2受信アンテナ41bとが第2のアンテナ対42bとして構成され、第2送信アンテナ40bと第1受信アンテナ41aが第3のアンテナ対42cとして構成され、第2送信アンテナ40bと第2受信アンテナ41bが第4のアンテナ対42dとして構成されるようにしてもよい。
 また、被験者の身体の裏側の体表面10も同様であり、例えば、第3送信アンテナ40c、第3受信アンテナ41c、第4送信アンテナ40d、第4受信アンテナ41dの各々の送信アンテナ40と受信アンテナ41の対により、対応する第5~第8のアンテナ対42をさらに構成するようにしてもよい(図示せず)。このような複数のアンテナ対42による構成とすることで、例えば、反射体5の時刻t~時刻t+Δt’における移動を測定し、前述の各アンテナ対42の組み合わせから、それぞれの受信アンテナ41で受信した送信波と反射波と、反射波の時刻t~時刻t+Δt’におけるそれぞれの位相の変化とに基づき、尤度分布が合成される。これにより、時刻t~時刻t+Δt’における反射体5の体内での3次元空間の移動の範囲及び移動の方向の推定が可能となる。
 第4実施形態によれば、体内11を移動する反射体5の移動の方向、距離を詳細に推定することが可能となる。第1変形例によれば、例えば、被験者の体内11が小腸~大腸等の場合であっても、反射体5の移動を細かい時系列で測定することで、その移動軌跡から、より詳細な移動の範囲及び移動の方向の推定が可能となる。
 また、本実施形態によれば、反射体5は、体外からの電波を受信に、受信した電波を反射する。このため、反射体5の内部にバッテリーを必要とせず、必要な場合だけ応答する。これにより、例えば、診察時のみ反射体5による体内の通過、又は移動の範囲及び移動の方向を測定することができる。
 また、本実施形態によれば、送受信装置4は、送信アンテナ40の電波出力又は応答させるアンテナ種類を切り換えてもよい。このため、送受信装置4は、例えば、被験者の消化器官の診断箇所に応じた電波の受信や調整が可能となる。これにより、位置推定装置2は、被験者の診断箇所に応じて反射体5の測定が可能となる。さらに、送受信装置4は、反射体5が被験者の体内に異なる周波数帯として複数が存在する場合であっても、送受信装置4の周波数帯の切り換えにより、即時に別の反射体5の通過、又は移動の範囲及び移動の方向の測定が可能となる。これにより、異なる症状や消化器官の診断を同時に行うことができる。
 また、本実施形態によれば、送受信装置4、送信アンテナ40、及び受信アンテナ41は、例えば、ウェラブル装着としてもよい。このため、送信アンテナ40及び受信アンテナ41を、アンテナ対42として体表面に貼付させておくことが可能となる。これにより、被験者は、例えば、普段の生活の環境下で、消化器官の運動能力の診断などが可能となる。
 また、本実施形態によれば、例えば、送受信装置4はメモリを備えてもよい。このため、反射体5の移動のログを一時的に送受信装置4内のメモリに記録することができる。これにより、例えば、位置推定装置2と接続していない間であっても、被験者の体内の反射体5の通過、又は移動の範囲及び移動の方向の測定を継続して記録できる。
 本発明の実施形態を説明したが、各実施形態は例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
1       :医療支援システム
10     :体表面
11     :体内
2       :位置推定装置
20     :CPU
21     :ROM
22     :RAM
23     :記憶部
24     :I/F
25     :I/F
26     :I/F
27     :内部バス
28     :表示部
29     :入出力部
3       :データベース
30     :送受信部
4       :送受信装置
40     :送信アンテナ
40a   :第1送信アンテナ
40b   :第2送信アンテナ
40c   :第3送信アンテナ
40d   :第4送信アンテナ
41     :受信アンテナ
41a   :第1受信アンテナ
41b   :第2受信アンテナ
41c   :第3受信アンテナ
41d   :第4受信アンテナ
42     :アンテナ対
42a   :第1のアンテナ対
42b   :第2のアンテナ対
42c   :第3のアンテナ対
42d   :第4のアンテナ対
5       :反射体
6       :公衆通信網
d      :直接波
r      :反射波

Claims (4)

  1.  体内を通過する反射体の通過を推定する医療支援システムであって、
     少なくとも時刻tと、時刻t+Δtとに送信波を送信する、少なくとも体表面に貼付可能な第1送信アンテナと、
     少なくとも体表面に貼付可能な第1受信アンテナと、
     前記第1送信アンテナが送信した前記送信波を反射し、体内に存在可能な反射体と、
     前記反射体の前記体内における通過を推定する位置推定部と、
    を備え、
     前記第1受信アンテナは、
      前記第1送信アンテナが送信した前記送信波と、
      前記反射体が反射した前記送信波の反射波と、を受信し、
     前記位置推定部は、
      前記第1受信アンテナが受信した前記送信波、及び前記第1受信アンテナが受信した前記反射波、のそれぞれの、時刻tと、時刻t+Δtとにおける位相の変化に基づいて、
     前記反射体の前記体内の通過を推定すること、
     を特徴とする医療支援システム。
  2.  体内を移動する反射体の移動を推定する医療支援システムであって、
     少なくとも時刻tと、時刻t+Δtとに送信波を送信する、少なくとも体表面に貼付可能な第1送信アンテナと、
     少なくとも体表面に貼付可能な第1受信アンテナ及び第2受信アンテナと、
     前記第1送信アンテナが送信した前記送信波を反射し、体内に存在可能な反射体と、
     前記反射体の前記体内における移動の範囲及び移動の方向を推定する位置推定部と、
    を備え、
     前記第1受信アンテナは、
      前記第1送信アンテナが送信した前記送信波と、
      前記反射体が反射した前記送信波の反射波と、を受信し、
     前記第2受信アンテナは、
      前記第1送信アンテナが送信した前記送信波と、
      前記反射体が反射した前記送信波の反射波と、を受信し、
     前記位置推定部は、
      前記第1受信アンテナが受信した前記送信波、及び前記第1受信アンテナが受信した前記反射波、のそれぞれの、時刻tと、時刻t+Δtとにおける位相の変化と、
      前記第2受信アンテナが受信した前記送信波、及び前記第2受信アンテナが受信した前記反射波、のそれぞれの、時刻tと、時刻t+Δtとにおける位相の変化と、に基づいて、前記反射体の前記体内の移動の範囲及び移動の方向を推定すること、
     を特徴とする医療支援システム。
  3.  体内を移動する反射体の移動を推定する医療支援システムであって、
     少なくとも時刻tと、時刻t+Δtとに送信波を送信する、少なくとも体表面に貼付可能な第1送信アンテナ及び第2送信アンテナと、
     少なくとも体表面に貼付可能な第1受信アンテナと、
     前記第1送信アンテナが送信した第1送信波、及び前記第2送信アンテナが送信した第2送信波を反射する、体内に存在可能な反射体と、
     前記反射体の前記体内における移動の範囲及び移動の方向を推定する位置推定部と、
    を備え、
     前記第1受信アンテナは、
      前記第1送信アンテナが送信した前記第1送信波、及び前記第2送信アンテナが送信した前記第2送信波と、前記反射体が反射した前記第1送信波の第1反射波、及び前記第2送信波の第2反射波と、をそれぞれに受信し、
     前記位置推定部は、
      前記第1受信アンテナが受信した前記第1送信波と前記第1反射波、及び前記第2送信波と前記第2反射波、のそれぞれの、時刻tと、時刻t+Δtとにおける位相の変化に基づいて、
     前記反射体の前記体内の移動の範囲及び移動の方向を推定すること、
     を特徴とする医療支援システム。
  4.  体内を移動する反射体の移動を推定する医療支援システムであって、
     少なくとも時刻tと、時刻t+Δtとに送信波を送信する、少なくとも体表面に貼付可能な第1送信アンテナ及び第2送信アンテナと、
     少なくとも体表面に貼付可能な第1受信アンテナ及び第2受信アンテナと、
     前記第1送信アンテナが送信した第1送信波、及び前記第2送信アンテナが送信した第2送信波を反射する、体内に存在可能な反射体と、
     前記反射体の前記体内における移動の範囲及び移動の方向を推定する位置推定部と、
    を備え、
     前記第1受信アンテナは、
      前記第1送信アンテナが送信した前記第1送信波、及び前記第2送信アンテナが送信した前記第2送信波と、前記反射体が反射した前記第1送信波の第1反射波、及び前記第2送信波の第2反射波と、をそれぞれに受信し、
    前記第2受信アンテナは、
     前記第1送信アンテナが送信した前記第1送信波、及び前記第2送信アンテナが送信した前記第2送信波と、前記反射体が反射した前記第1送信波の第1反射波、及び前記第2送信波の第2反射波と、をそれぞれに受信し、
     前記位置推定部は、
      前記第1受信アンテナが受信した前記第1送信波と前記第1反射波、及び前記第2送信波と前記第2反射波、のそれぞれの、時刻tと、時刻t+Δtとにおける位相の変化と、
     前記第2受信アンテナが受信した前記第1送信波と前記第1反射波、及び前記第2送信波と前記第2反射波、のそれぞれの、時刻tと、時刻t+Δtとにおける位相の変化と、
    に基づいて、前記反射体の前記体内の移動の範囲及び移動の方向を推定すること、
     を特徴とする医療支援システム。
PCT/JP2019/043042 2018-11-02 2019-11-01 医療支援システム WO2020091045A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP19880663.0A EP3875019A4 (en) 2018-11-02 2019-11-01 MEDICAL ASSISTANCE SYSTEM
CN201980072590.XA CN112969397A (zh) 2018-11-02 2019-11-01 医疗辅助系统
JP2020554983A JPWO2020091045A1 (ja) 2018-11-02 2019-11-01 医療支援システム
US17/288,917 US20210393159A1 (en) 2018-11-02 2019-11-01 Medical support system
KR1020217013641A KR20210087948A (ko) 2018-11-02 2019-11-01 의료 지원 시스템

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-207252 2018-11-02
JP2018207252 2018-11-02

Publications (1)

Publication Number Publication Date
WO2020091045A1 true WO2020091045A1 (ja) 2020-05-07

Family

ID=70462109

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/043042 WO2020091045A1 (ja) 2018-11-02 2019-11-01 医療支援システム

Country Status (6)

Country Link
US (1) US20210393159A1 (ja)
EP (1) EP3875019A4 (ja)
JP (1) JPWO2020091045A1 (ja)
KR (1) KR20210087948A (ja)
CN (1) CN112969397A (ja)
WO (1) WO2020091045A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004219329A (ja) * 2003-01-16 2004-08-05 Ntt Docomo Inc 位置測定方法、位置測定システム、位置測定装置及び生体内無線装置
JP2008284303A (ja) 2007-05-21 2008-11-27 Olympus Corp 位置検出システムおよび位置検出方法
JP2011509106A (ja) * 2008-01-02 2011-03-24 シーメンス アクチエンゲゼルシヤフト 位相差測定によって行われる、人体中の医療機器の位置のコントロール
JP5351356B2 (ja) 2011-03-02 2013-11-27 オリンパスメディカルシステムズ株式会社 カプセル型内視鏡の位置検出装置、カプセル型内視鏡システムおよびカプセル型内視鏡の位置決定プログラム
JP2016539676A (ja) * 2013-10-22 2016-12-22 ロック ウエスト メディカル デバイス, エルエルシー 3つの送信要素を有する飲み込み可能な錠剤センサーの位置を特定するシステム

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5351356Y2 (ja) 1974-02-04 1978-12-08
US7039453B2 (en) * 2000-02-08 2006-05-02 Tarun Mullick Miniature ingestible capsule
JP4985313B2 (ja) * 2007-10-26 2012-07-25 三菱電機株式会社 パッシブレーダ装置
JP5165161B2 (ja) * 2011-02-23 2013-03-21 オリンパスメディカルシステムズ株式会社 位置情報推定システム
US8688140B2 (en) * 2011-04-26 2014-04-01 Microchip Technology Incorporated Radio frequency tag location system and method
US11246507B2 (en) * 2016-08-18 2022-02-15 Sigmasense, Llc. Wireless in-shoe physical activity monitoring apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004219329A (ja) * 2003-01-16 2004-08-05 Ntt Docomo Inc 位置測定方法、位置測定システム、位置測定装置及び生体内無線装置
JP2008284303A (ja) 2007-05-21 2008-11-27 Olympus Corp 位置検出システムおよび位置検出方法
JP2011509106A (ja) * 2008-01-02 2011-03-24 シーメンス アクチエンゲゼルシヤフト 位相差測定によって行われる、人体中の医療機器の位置のコントロール
JP5351356B2 (ja) 2011-03-02 2013-11-27 オリンパスメディカルシステムズ株式会社 カプセル型内視鏡の位置検出装置、カプセル型内視鏡システムおよびカプセル型内視鏡の位置決定プログラム
JP2016539676A (ja) * 2013-10-22 2016-12-22 ロック ウエスト メディカル デバイス, エルエルシー 3つの送信要素を有する飲み込み可能な錠剤センサーの位置を特定するシステム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3875019A4

Also Published As

Publication number Publication date
CN112969397A (zh) 2021-06-15
JPWO2020091045A1 (ja) 2021-09-30
US20210393159A1 (en) 2021-12-23
EP3875019A1 (en) 2021-09-08
KR20210087948A (ko) 2021-07-13
EP3875019A4 (en) 2022-08-03

Similar Documents

Publication Publication Date Title
EP1440659B1 (en) System for measuring the position of an in vivo radio device
AU766240B2 (en) Cardiac monitoring system and method with multiple implanted transponders
KR102518170B1 (ko) 전자 장치에서 신체 조직층을 분석하기 위한 장치 및 방법
JP6353929B2 (ja) 超音波診断装置、及び弾性評価方法
Wang et al. Performance bounds for RF positioning of endoscopy camera capsules
US10512445B2 (en) Multi-mode ultrasound device and method for assessing a bone of a subject with coupler sensing configurations of probes
JP5165161B2 (ja) 位置情報推定システム
US20200000366A1 (en) In-body backscatter communication and localization
WO2010020939A2 (en) Wireless ultrasound monitoring device
JP5579077B2 (ja) 位相差測定によって行われる、人体中の医療機器の位置のコントロール
WO2020091045A1 (ja) 医療支援システム
Arab et al. Investigation of radar localization system accuracy for human gastro intestine (GI) tract
JP6651012B2 (ja) 対象体の内部構造を探査するシステムにおいてフィット状態を評価するための方法、装置、およびコンピュータ可読媒体
Ara et al. Investigation of radar approach for localization of gastro intestinal endoscopic capsule
KR100884712B1 (ko) 근접점 방법을 이용한 캡슐형 내시경의 위치측정 방법 및시스템
Ladic et al. A study of capsule endoscopy orientation estimation using received signal strength
CN110477842B (zh) 体内检测系统和方法
Ara et al. Antenna performance for localization of capsule endoscope
KR20170093338A (ko) 초음파 진단장치 및 그 제어방법
Ara et al. Investigation of in-body path loss in different human subjects for localization of capsule endoscope
US20090043207A1 (en) Ultrasound diagnostic apparatus
CN104814736A (zh) 实时监测人体组织介电特性的设备及获得人体组织介电特性参数的方法
KR101083007B1 (ko) 캡슐 형태의 전자파 발생기를 이용한 의료용 이미징 장치 및 그 방법
EP4279951A1 (en) Ultrasound image processing method, and ultrasound apparatus using the same
KR102117226B1 (ko) 초음파 도플러를 이용한 혈류 측정 장치 및 그 동작 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19880663

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020554983

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019880663

Country of ref document: EP

Effective date: 20210602