WO2020090902A1 - Laser machining device and laser machining method - Google Patents
Laser machining device and laser machining method Download PDFInfo
- Publication number
- WO2020090902A1 WO2020090902A1 PCT/JP2019/042602 JP2019042602W WO2020090902A1 WO 2020090902 A1 WO2020090902 A1 WO 2020090902A1 JP 2019042602 W JP2019042602 W JP 2019042602W WO 2020090902 A1 WO2020090902 A1 WO 2020090902A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- processing
- laser
- state
- laser processing
- along
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 157
- 238000003754 machining Methods 0.000 title abstract description 64
- 230000007246 mechanism Effects 0.000 claims abstract description 76
- 238000003384 imaging method Methods 0.000 claims abstract description 54
- 230000001678 irradiating effect Effects 0.000 claims abstract description 32
- 238000007781 pre-processing Methods 0.000 claims abstract description 19
- 238000012545 processing Methods 0.000 claims description 1035
- 230000008569 process Effects 0.000 claims description 133
- 238000003672 processing method Methods 0.000 claims description 38
- 239000004065 semiconductor Substances 0.000 claims description 31
- 210000003128 head Anatomy 0.000 description 195
- 230000002093 peripheral effect Effects 0.000 description 114
- 230000003287 optical effect Effects 0.000 description 66
- 239000011295 pitch Substances 0.000 description 52
- 238000009966 trimming Methods 0.000 description 26
- 238000010586 diagram Methods 0.000 description 22
- 238000004519 manufacturing process Methods 0.000 description 18
- 238000005259 measurement Methods 0.000 description 18
- 238000012544 monitoring process Methods 0.000 description 17
- 238000002407 reforming Methods 0.000 description 15
- 238000012986 modification Methods 0.000 description 14
- 230000004048 modification Effects 0.000 description 14
- 230000035882 stress Effects 0.000 description 14
- 230000015572 biosynthetic process Effects 0.000 description 11
- 230000000694 effects Effects 0.000 description 11
- 239000013307 optical fiber Substances 0.000 description 10
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 9
- 229910052710 silicon Inorganic materials 0.000 description 9
- 239000010703 silicon Substances 0.000 description 9
- 239000013078 crystal Substances 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- 230000008859 change Effects 0.000 description 7
- 238000000926 separation method Methods 0.000 description 7
- 238000004891 communication Methods 0.000 description 6
- 238000005247 gettering Methods 0.000 description 6
- 230000009471 action Effects 0.000 description 4
- 238000006073 displacement reaction Methods 0.000 description 4
- 238000005530 etching Methods 0.000 description 4
- 230000006355 external stress Effects 0.000 description 4
- 238000005498 polishing Methods 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- WGTYBPLFGIVFAS-UHFFFAOYSA-M tetramethylammonium hydroxide Chemical compound [OH-].C[N+](C)(C)C WGTYBPLFGIVFAS-UHFFFAOYSA-M 0.000 description 4
- 201000009310 astigmatism Diseases 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- 239000004973 liquid crystal related substance Substances 0.000 description 3
- 230000010355 oscillation Effects 0.000 description 3
- 230000010287 polarization Effects 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- 238000002679 ablation Methods 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 229910001385 heavy metal Inorganic materials 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 2
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 238000013473 artificial intelligence Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000013135 deep learning Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000004299 exfoliation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 210000001747 pupil Anatomy 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/08—Devices involving relative movement between laser beam and workpiece
- B23K26/0823—Devices involving rotation of the workpiece
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
- H01L21/7806—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices involving the separation of the active layers from a substrate
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/50—Working by transmitting the laser beam through or within the workpiece
- B23K26/53—Working by transmitting the laser beam through or within the workpiece for modifying or reforming the material inside the workpiece, e.g. for producing break initiation cracks
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/0006—Working by laser beam, e.g. welding, cutting or boring taking account of the properties of the material involved
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/03—Observing, e.g. monitoring, the workpiece
- B23K26/032—Observing, e.g. monitoring, the workpiece using optical means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/06—Shaping the laser beam, e.g. by masks or multi-focusing
- B23K26/0604—Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/06—Shaping the laser beam, e.g. by masks or multi-focusing
- B23K26/062—Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
- B23K26/0622—Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/06—Shaping the laser beam, e.g. by masks or multi-focusing
- B23K26/0665—Shaping the laser beam, e.g. by masks or multi-focusing by beam condensation on the workpiece, e.g. for focusing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/08—Devices involving relative movement between laser beam and workpiece
- B23K26/083—Devices involving movement of the workpiece in at least one axial direction
- B23K26/0853—Devices involving movement of the workpiece in at least in two axial directions, e.g. in a plane
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/08—Devices involving relative movement between laser beam and workpiece
- B23K26/0869—Devices involving movement of the laser head in at least one axial direction
- B23K26/0876—Devices involving movement of the laser head in at least one axial direction in at least two axial directions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/08—Devices involving relative movement between laser beam and workpiece
- B23K26/0869—Devices involving movement of the laser head in at least one axial direction
- B23K26/0876—Devices involving movement of the laser head in at least one axial direction in at least two axial directions
- B23K26/0884—Devices involving movement of the laser head in at least one axial direction in at least two axial directions in at least in three axial directions, e.g. manipulators, robots
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/351—Working by laser beam, e.g. welding, cutting or boring for trimming or tuning of electrical components
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/36—Removing material
- B23K26/38—Removing material by boring or cutting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K37/00—Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups
- B23K37/02—Carriages for supporting the welding or cutting element
- B23K37/0211—Carriages for supporting the welding or cutting element travelling on a guide member, e.g. rail, track
- B23K37/0235—Carriages for supporting the welding or cutting element travelling on a guide member, e.g. rail, track the guide member forming part of a portal
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/304—Mechanical treatment, e.g. grinding, polishing, cutting
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67098—Apparatus for thermal treatment
- H01L21/67115—Apparatus for thermal treatment mainly by radiation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2101/00—Articles made by soldering, welding or cutting
- B23K2101/36—Electric or electronic devices
- B23K2101/40—Semiconductor devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2103/00—Materials to be soldered, welded or cut
- B23K2103/50—Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
- B23K2103/56—Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26 semiconducting
Definitions
- One aspect of the present invention relates to a laser processing apparatus and a laser processing method.
- Patent Document 1 describes a laser processing apparatus that includes a holding mechanism that holds a work, and a laser irradiation mechanism that irradiates the work held by the holding mechanism with laser light.
- a laser irradiation mechanism having a condenser lens is fixed to a base, and movement of a work along a direction perpendicular to the optical axis of the condenser lens is performed by a holding mechanism. Be implemented.
- a modified region may be formed along the virtual surface inside the object by irradiating the object with laser light.
- a part of the object is peeled off with the modified region extending over the virtual surface as a boundary.
- an object of one aspect of the present invention is to provide a laser processing apparatus and a laser processing method capable of reliably peeling an object.
- a laser processing apparatus is a laser processing apparatus that forms a modified region along a virtual surface inside an object by irradiating the object with laser light, and supports the object.
- a support unit an irradiation unit that irradiates the object supported by the support unit with laser light, and at least one of the support unit and the irradiation unit so that the position of the focal point of the laser light moves along the virtual surface.
- the control unit includes a moving mechanism for moving, a control unit for controlling the supporting unit, the irradiation unit, and the moving mechanism, and an image capturing unit for capturing an image of an object in a direction along the incident direction of the laser light.
- the object is irradiated with the laser light along the processing line having the plurality of parallel lines, and the first preprocessing for forming the modified region on the object is executed.
- the first preprocessing for forming the modified region on the object is executed.
- For machining with multiple parallel lines Acquiring a first image that reflects the processed state in the case of forming the modified region along the Inn.
- the first image showing the processing state when the modified region is formed along the processing line having the plurality of parallel lines is acquired. Based on this first image, the processing conditions can be set so that the object can be peeled off. Therefore, the object can be reliably peeled off.
- control unit performs the second pretreatment for forming the modified region on the target object by irradiating the target object with the laser light along one processing line.
- the image capturing unit may execute the second pre-processing to acquire the second image showing the processing state when the modified region is formed along the one processing line.
- the second image showing the processing state when the modified region is formed along one processing line is acquired. Based on this second image, the processing conditions can be set so that the object can be peeled off. It is possible to reliably peel off the object.
- control unit may determine the processing state shown in the second image, and change the processing conditions of the second preprocessing according to the determination result. In this case, the processing conditions of the second preprocessing can be automatically changed according to the second image.
- the control unit determines whether or not the processing state shown in the second image is the first slicing state, and when it is not the first slicing state, the processing conditions of the second pretreatment are set.
- the first slicing state may be a state in which cracks extending from a plurality of modified spots included in the modified region extend in a direction along a single processing line. It has been found that if the processing state when the modified region is formed along one processing line is not the first slicing state, it is difficult to peel off the object. Therefore, according to one aspect of the present invention, when the processing state shown in the second image is not the first slicing state, the processing conditions of the second pretreatment are changed. This makes it possible to set the processing conditions so that the object can be peeled off.
- control unit may determine the processing state shown in the first image and change the processing conditions of the first preprocessing according to the determination result.
- the processing conditions of the first preprocessing can be automatically changed according to the first image.
- a target object is irradiated with laser light along a processing line having a plurality of parallel lines arranged side by side.
- the modified region is formed on the object, the imaging unit acquires, as the first image, an image showing the processing state after the laser processing of the first specified amount, and the control unit, based on the first image, It is determined whether or not the machining state after the first prescribed amount of laser machining by the first pretreatment is the second slicing state, and if the second slicing state is not the first machining condition is changed, the second slicing state is
- the cracks extending from the plurality of modified spots included in the modified region may be in a state of extending and connecting to each other in a direction along the parallel lines and in a direction intersecting the parallel lines.
- the laser processing is performed so that the processing state after the laser processing of the first specified amount becomes the second slicing state It is found that it can be peeled off. Therefore, in one aspect of the present invention, it is determined based on the first image whether or not the processing state after the laser processing of the first specified amount is the second slicing state, and when the second slicing state is not the first processing condition. To change. As a result, it becomes possible to set the first processing condition that can surely peel off the object.
- the target object in the first pretreatment, is irradiated with laser light along a processing line having a plurality of parallel lines arranged side by side. Then, the modified region is formed on the object, and the imaging unit displays, as the first image, an image showing the processing state after laser processing of the first specified amount and the laser of the second specified amount larger than the first specified amount. An image showing the processed state after processing and a first specified amount by the first pre-processing based on the first image as an image showing the processed state after the laser processing of the first specified amount. It is determined whether the processing state after laser processing is the second slicing state.
- the second processing condition is changed and the first specified amount is changed.
- the processing state is not the second slicing state.
- the extending cracks may be in a state of extending and connecting with each other in a direction along the parallel lines and in a direction intersecting with the parallel lines.
- the tact becomes worse. It is found that the object can be peeled off while suppressing. Therefore, according to one aspect of the present invention, it is determined whether or not the processing state after the laser processing of the first specified amount is the second slicing state based on the first image, and when the second slicing state is set, the second processing condition is set. change. Based on the first image, it is determined whether or not the processing state after the second prescribed amount of laser processing is the second slicing state, and if the second slicing state is not the second processing condition is changed. As a result, it is possible to set the second processing condition that can peel off the object while suppressing the deterioration of the tact.
- the object may be a wafer for condition determination or a wafer for semiconductor device.
- the processing line can be set in any of the entire area of the wafer to determine the processing condition.
- a processing line can be set in an outer edge region that has little influence on the peeling quality of the wafer to determine the processing conditions.
- the wafer for condition determination is, for example, a practice wafer that does not finally become a semiconductor device (product).
- the semiconductor device wafer is, for example, a production wafer that will eventually become a semiconductor device.
- a laser processing method is a laser processing method in which a modified region is formed along a virtual surface inside an object by irradiating the object with laser light, and the laser processing method is arranged in a line.
- a plurality of parallel lines are formed by a first pre-process of irradiating the object with laser light to form the modified region on the object along the machining line having the plurality of parallel lines formed by the first pre-process.
- the first image showing the processing state when the modified region is formed along the processing line having a plurality of parallel lines in the first pre-process is acquired. Based on the acquired first image, it is possible to set the processing conditions so that the processing state is such that the object can be peeled off. Therefore, the object can be reliably peeled off.
- FIG. 1 is a perspective view of the laser processing apparatus according to the embodiment.
- FIG. 2 is a front view of a part of the laser processing apparatus shown in FIG.
- FIG. 3 is a front view of the laser processing head of the laser processing apparatus shown in FIG.
- FIG. 4 is a side view of the laser processing head shown in FIG.
- FIG. 5 is a configuration diagram of an optical system of the laser processing head shown in FIG.
- FIG. 6 is a configuration diagram of an optical system of a laser processing head of a modified example.
- FIG. 7 is a front view of a part of the laser processing apparatus of the modified example.
- FIG. 8 is a perspective view of a laser processing apparatus of a modified example.
- FIG. 9 is a plan view showing a schematic configuration of the laser processing apparatus according to the first embodiment.
- FIG. 9 is a plan view showing a schematic configuration of the laser processing apparatus according to the first embodiment.
- FIG. 10A is a plan view showing an example of the object.
- FIG. 10B is a side view of the object shown in FIG.
- FIG. 11A is a side view of the object for explaining the method for manufacturing the semiconductor device using the laser processing apparatus according to the first embodiment.
- FIG. 11B is a side view of the object showing the continuation of FIG. 11A.
- FIG. 12A is a side view of the object showing the continuation of FIG. 11B.
- FIG. 12B is a plan view of the object showing the continuation of FIG.
- FIG. 12C is a side view of the object shown in FIG.
- FIG. 13A is a side view of the object showing the continuation of FIG. 12B.
- FIG. 13B is a side view of the object showing the continuation of FIG. FIG.
- FIG. 14A is a plan view of an object that is a target of the peeling process according to the first embodiment.
- FIG. 14B is an enlarged side view showing a portion within a broken line frame of FIG. 14A.
- FIG. 15 is a plan view for explaining a plurality of modified spots formed in the peeling process according to the first embodiment.
- FIG. 16A is an image showing a slicing stealth state.
- FIG. 16B is an image showing a slicing half cut state.
- FIG. 17A is another image showing the slicing stealth state.
- FIG. 17B is another image showing the slicing half cut state.
- FIG. 18A is an image showing a slicing full-cut state in the processed state after the laser processing of the first specified amount.
- FIG. 18B is an image showing a slicing full-cut state after the second prescribed amount of laser processing.
- FIG. 19 is a flowchart showing the peeling process according to the first embodiment.
- FIG. 20A is a plan view of the object for explaining the peeling process according to the first embodiment.
- FIG. 20B is a plan view of the object showing the continuation of FIG.
- FIG. 21A is a plan view of the object showing the continuation of FIG. 20B.
- 21B is a plan view of the object showing the continuation of FIG.
- FIG. 22 is a plan view of an object for explaining a crack extending from the modified region.
- FIG. 23 is a diagram showing a result of observing cracks of the object of FIG. FIG.
- FIG. 24A is a plan view of the object for explaining the peeling process according to the modified example of the first embodiment.
- FIG. 24B is a plan view of the object showing the continuation of FIG.
- FIG. 25 is a diagram showing an example of a GUI setting screen.
- FIG. 26 is a diagram showing another example of the GUI setting screen.
- FIG. 27 is a diagram showing an example of the administrator mode of the GUI setting screen.
- FIG. 28 is a diagram showing an experimental result of investigating the optimum pulse energy in the peeling process.
- FIG. 29A is a plan view of an object for explaining the peeling process according to the second embodiment.
- FIG. 29 (b) is a plan view of the object showing the continuation of FIG. 29 (a).
- FIG. 30 is a flowchart showing the peeling process according to the second embodiment.
- FIG. 30 is a flowchart showing the peeling process according to the second embodiment.
- FIG. 31 is a flowchart showing the peeling process according to the modification of the second embodiment.
- FIG. 32 is a flowchart showing the peeling process according to the third embodiment.
- FIG. 33 is a flowchart showing an example of processing when determining the half-cut processing condition in the peeling processing according to the fourth embodiment.
- FIG. 34 is a flowchart showing an example of processing when determining the first processing condition in the peeling processing according to the fourth embodiment.
- FIG. 35 is a flowchart showing an example of processing in the case of determining the second processing condition in the peeling processing according to the fourth embodiment.
- FIG. 36A is a side view of the object for explaining the method for manufacturing the semiconductor device according to the modification.
- FIG. 36 (b) is a side view of the object showing the continuation of FIG. 36 (a).
- FIG. 37A is a side view of an object for explaining a method for manufacturing a semiconductor device according to another modification.
- FIG. 37 (b) is a side view of the object showing the continuation of FIG. 37 (a).
- FIG. 38A is a side view of an object for explaining a method for manufacturing a semiconductor device according to another modification.
- FIG. 38 (b) is a side view of the object showing the continuation of FIG. 38 (a).
- FIG. 39 is a plan view of an object to be peeled off according to the modification.
- FIG. 40 is a plan view of the laser processing apparatus of the modified example.
- FIG. 41 is a plan view showing an example of an object shown in FIG. 41 (a).
- FIG. 42 is a plan view of a laser processing apparatus for explaining a method of manufacturing a semiconductor device using the laser processing apparatus of the modified example.
- FIG. 43A is a side view of the object for explaining the method of manufacturing the semiconductor device using the laser processing apparatus of the modified example.
- 43 (b) is a side view of the object showing the continuation of FIG. 43 (a).
- FIG. 44 (a) is a side view of the object showing the continuation of FIG. 43 (b).
- FIG. 44 (b) is a plan view of the object showing the continuation of FIG. 44 (a).
- FIG. 44 (c) is a side view of the object shown in FIG. 44 (b).
- FIG. 45 is a plan view of the laser processing apparatus for explaining the method of manufacturing the semiconductor device using the laser processing apparatus of the modified example.
- FIG. 45 is a plan view of the laser processing apparatus for explaining the method of manufacturing the semiconductor device using the laser processing apparatus of the modified example.
- FIG. 46 is a side view of a part of the laser processing apparatus for explaining the method of manufacturing a semiconductor device using the laser processing apparatus of the modified example.
- FIG. 47 is a side view of the peripheral portion of the object showing the continuation of FIGS. 44 (b) and 44 (c).
- FIG. 48A is a side view of the object showing the continuation of FIG. 47.
- 48B is a side view of the object showing the continuation of FIG. 48A.
- FIG. 49A is a diagram showing a cross-sectional photograph of the peripheral portion of the object.
- FIG. 49B is a diagram showing a cross-sectional photograph in which a part of FIG. 49A is enlarged.
- FIG. 50 is a side view of a part of the laser processing apparatus for explaining the method of manufacturing a semiconductor device using the laser processing apparatus of the modified example.
- the laser processing apparatus 1 includes a plurality of moving mechanisms 5 and 6, a support 7, a pair of laser processing heads 10A and 10B, a light source unit 8, and a controller 9. I have it.
- the first direction will be referred to as the X direction
- the second direction perpendicular to the first direction will be referred to as the Y direction
- the third direction perpendicular to the first and second directions will be referred to as the Z direction.
- the X direction and the Y direction are horizontal directions
- the Z direction is a vertical direction.
- the moving mechanism 5 has a fixed portion 51, a moving portion 53, and a mounting portion 55.
- the fixed portion 51 is attached to the device frame 1a.
- the moving unit 53 is attached to a rail provided on the fixed unit 51, and can move along the Y direction.
- the attachment portion 55 is attached to a rail provided on the moving portion 53 and can move along the X direction.
- the moving mechanism 6 has a fixed portion 61, a pair of moving portions 63 and 64, and a pair of mounting portions 65 and 66.
- the fixed portion 61 is attached to the device frame 1a.
- Each of the pair of moving portions 63 and 64 is attached to a rail provided on the fixed portion 61, and each of them can move independently along the Y direction.
- the attachment portion 65 is attached to a rail provided on the moving portion 63 and can move along the Z direction.
- the attachment portion 66 is attached to a rail provided on the moving portion 64 and can move along the Z direction. That is, with respect to the device frame 1a, each of the pair of mounting portions 65 and 66 can move along the Y direction and the Z direction.
- Each of the moving units 63 and 64 constitutes a first and second horizontal moving mechanism (horizontal moving mechanism).
- Each of the mounting portions 65 and 66 constitutes a first and second vertical movement mechanism (vertical movement mechanism).
- the support portion 7 is attached to a rotary shaft provided on the attachment portion 55 of the moving mechanism 5, and can rotate about an axis parallel to the Z direction as a center line. That is, the support part 7 can move along each of the X direction and the Y direction, and can rotate about the axis parallel to the Z direction as the center line.
- the support part 7 supports the object 100.
- the object 100 is, for example, a wafer.
- the laser processing head 10A is attached to the attachment portion 65 of the moving mechanism 6.
- the laser processing head 10A irradiates the object 100 supported by the support 7 with the laser light L1 (also referred to as “first laser light L1”) while facing the support 7 in the Z direction.
- the laser processing head 10B is attached to the attachment portion 66 of the moving mechanism 6.
- the laser processing head 10B irradiates the object 100 supported by the support 7 with the laser light L2 (also referred to as “second laser light L2”) while facing the support 7 in the Z direction.
- the laser processing heads 10A and 10B form an irradiation unit.
- the light source unit 8 has a pair of light sources 81 and 82.
- the light source 81 outputs laser light L1.
- the laser light L1 is emitted from the emitting portion 81a of the light source 81 and guided to the laser processing head 10A by the optical fiber 2.
- the light source 82 outputs laser light L2.
- the laser light L2 is emitted from the emitting portion 82a of the light source 82, and is guided to the laser processing head 10B by another optical fiber 2.
- the control unit 9 controls each unit of the laser processing apparatus 1 (the supporting unit 7, the plurality of moving mechanisms 5, 6, the pair of laser processing heads 10A and 10B, the light source unit 8 and the like).
- the control unit 9 is configured as a computer device including a processor, a memory, a storage, a communication device, and the like.
- the software (program) read into the memory or the like is executed by the processor, and the reading and writing of data in the memory and the storage and the communication by the communication device are controlled by the processor. Thereby, the control unit 9 realizes various functions.
- An example of processing by the laser processing apparatus 1 configured as above will be described.
- An example of the processing is an example in which a modified region is formed inside the object 100 along a plurality of lines set in a grid pattern in order to cut the object 100, which is a wafer, into a plurality of chips.
- the moving mechanism 5 moves the supporting portion 7 along the X direction and the Y direction so that the supporting portion 7 supporting the object 100 faces the pair of laser processing heads 10A and 10B in the Z direction. To move. Then, the moving mechanism 5 rotates the support part 7 with the axis line parallel to the Z direction as the center line so that the plurality of lines extending in one direction on the object 100 are along the X direction.
- the moving mechanism 6 moves the laser processing head 10A along the Y direction so that the focus point (a part of the focus area) of the laser beam L1 is located on one line extending in one direction. To move. On the other hand, the moving mechanism 6 moves the laser processing head 10B along the Y direction so that the focal point of the laser light L2 is located on the other line extending in one direction. Then, the moving mechanism 6 moves the laser processing head 10A along the Z direction so that the focusing point of the laser beam L1 is located inside the object 100. On the other hand, the moving mechanism 6 moves the laser processing head 10B along the Z direction so that the focal point of the laser beam L2 is located inside the object 100.
- the light source 81 outputs the laser light L1 and the laser processing head 10A irradiates the object 100 with the laser light L1, and the light source 82 outputs the laser light L2 and the laser processing head 10B lasers the object 100.
- the light L2 is emitted.
- the focal point of the laser light L1 relatively moves along one line extending in one direction
- the focal point of the laser light L2 relatively moves along another line extending in one direction.
- the moving mechanism 5 moves the supporting portion 7 along the X direction so that the supporting portion 7 moves in the X direction. In this way, the laser processing apparatus 1 forms the modified region inside the object 100 along each of the plurality of lines extending in one direction on the object 100.
- the moving mechanism 5 rotates the support part 7 with the axis line parallel to the Z direction as the center line so that the plurality of lines extending in the other direction orthogonal to the one direction in the object 100 are along the X direction. ..
- the moving mechanism 6 moves the laser processing head 10A along the Y direction so that the focus point of the laser light L1 is located on one line extending in the other direction.
- the moving mechanism 6 moves the laser processing head 10B along the Y direction so that the focus point of the laser light L2 is located on another line extending in the other direction.
- the moving mechanism 6 moves the laser processing head 10A along the Z direction so that the focusing point of the laser beam L1 is located inside the object 100.
- the moving mechanism 6 moves the laser processing head 10B along the Z direction so that the focal point of the laser beam L2 is located inside the object 100.
- the light source 81 outputs the laser light L1 and the laser processing head 10A irradiates the object 100 with the laser light L1, and the light source 82 outputs the laser light L2 and the laser processing head 10B lasers the object 100.
- the light L2 is emitted.
- the focal point of the laser beam L1 moves relatively along one line extending in the other direction
- the focal point of the laser beam L2 moves relatively along the other line extending in the other direction.
- the moving mechanism 5 moves the supporting portion 7 along the X direction so that the supporting portion 7 moves in the X direction. In this way, the laser processing apparatus 1 forms the modified region inside the object 100 along each of the plurality of lines extending in the other direction orthogonal to the one direction in the object 100.
- the light source 81 outputs the laser light L1 that is transmissive to the target object 100, for example, by the pulse oscillation method, and the light source 82 outputs the laser light L1 to the target object 100, for example, by the pulse oscillation method.
- the laser beam L2 having transparency is output.
- the laser light is condensed inside the object 100, the laser light is particularly absorbed in a portion corresponding to the condensing point of the laser light, and a modified region is formed inside the object 100.
- the modified region is a region where the density, refractive index, mechanical strength, and other physical properties are different from the surrounding unmodified region.
- the modified region includes, for example, a melt-processed region, a crack region, a dielectric breakdown region, and a refractive index change region.
- a plurality of modified spots are lined up. Are formed so as to be lined up in a row along the line.
- One modified spot is formed by irradiation with one pulse of laser light.
- the one-row reforming region is a set of a plurality of reforming spots arranged in one row. Adjacent modified spots may be connected to each other or may be separated from each other depending on the relative moving speed of the condensing point of the laser light with respect to the object 100 and the repetition frequency of the laser light.
- the shape of the line to be set is not limited to the grid shape, and may be a ring shape, a straight line shape, a curved shape, or a shape in which at least one of these is combined. [Configuration of laser processing head]
- the laser processing head 10A includes a housing 11, an incident section 12, an adjusting section 13, and a condensing section 14.
- the housing 11 has a first wall portion 21 and a second wall portion 22, a third wall portion 23 and a fourth wall portion 24, and a fifth wall portion 25 and a sixth wall portion 26.
- the first wall portion 21 and the second wall portion 22 face each other in the X direction.
- the third wall portion 23 and the fourth wall portion 24 face each other in the Y direction.
- the fifth wall portion 25 and the sixth wall portion 26 face each other in the Z direction.
- the distance between the third wall portion 23 and the fourth wall portion 24 is smaller than the distance between the first wall portion 21 and the second wall portion 22.
- the distance between the first wall portion 21 and the second wall portion 22 is smaller than the distance between the fifth wall portion 25 and the sixth wall portion 26.
- the distance between the first wall portion 21 and the second wall portion 22 may be equal to the distance between the fifth wall portion 25 and the sixth wall portion 26, or alternatively, the fifth wall portion 25 and the sixth wall portion 26. It may be larger than the distance to the portion 26.
- the first wall portion 21 is located on the side opposite to the fixed portion 61 of the moving mechanism 6, and the second wall portion 22 is located on the fixed portion 61 side.
- the third wall portion 23 is located on the mounting portion 65 side of the moving mechanism 6, and the fourth wall portion 24 is located on the side opposite to the mounting portion 65 and on the laser processing head 10B side (FIG. 2).
- the fifth wall portion 25 is located on the side opposite to the support portion 7, and the sixth wall portion 26 is located on the support portion 7 side.
- the housing 11 is configured such that the housing 11 is attached to the mounting portion 65 with the third wall portion 23 arranged on the mounting portion 65 side of the moving mechanism 6. Specifically, it is as follows.
- the mounting portion 65 has a base plate 65a and a mounting plate 65b.
- the base plate 65a is attached to a rail provided on the moving unit 63 (see FIG. 2).
- the mounting plate 65b is erected on the end of the base plate 65a on the laser processing head 10B side (see FIG. 2).
- the casing 11 is attached to the attachment portion 65 by screwing the bolt 28 to the attachment plate 65b via the pedestal 27 while the third wall portion 23 is in contact with the attachment plate 65b.
- the pedestal 27 is provided on each of the first wall portion 21 and the second wall portion 22.
- the housing 11 is attachable to and detachable from the mounting portion 65.
- the incident part 12 is attached to the fifth wall part 25.
- the incident unit 12 causes the laser light L1 to enter the housing 11.
- the incident portion 12 is offset to the second wall portion 22 side (one wall portion side) in the X direction and is offset to the fourth wall portion 24 side in the Y direction. That is, the distance between the incident portion 12 and the second wall portion 22 in the X direction is smaller than the distance between the incident portion 12 and the first wall portion 21 in the X direction, and the incident portion 12 and the fourth wall portion 24 in the Y direction. Is smaller than the distance between the incident portion 12 and the third wall portion 23 in the X direction.
- the incident portion 12 is configured so that the connection end portion 2a of the optical fiber 2 can be connected.
- the connection end portion 2a of the optical fiber 2 is provided with a collimator lens that collimates the laser light L1 emitted from the emission end of the fiber, and is not provided with an isolator that suppresses return light.
- the isolator is provided in the middle of the fiber on the light source 81 side with respect to the connection end portion 2a. As a result, the connection end portion 2a is downsized, and the incident portion 12 is downsized.
- An isolator may be provided at the connection end 2a of the optical fiber 2.
- the adjusting unit 13 is arranged in the housing 11.
- the adjusting unit 13 adjusts the laser light L1 incident from the incident unit 12.
- Each component of the adjusting unit 13 is attached to an optical base 29 provided inside the housing 11.
- the optical base 29 is attached to the housing 11 so as to partition the area inside the housing 11 into an area on the third wall portion 23 side and an area on the fourth wall portion 24 side.
- the optical base 29 is integrated with the housing 11.
- the components included in the adjusting unit 13 are attached to the optical base 29 on the fourth wall 24 side. Details of each configuration of the adjustment unit 13 will be described later.
- the light collector 14 is arranged on the sixth wall 26. Specifically, the light collecting section 14 is arranged in the sixth wall section 26 while being inserted into the hole 26 a formed in the sixth wall section 26 (see FIG. 5).
- the condensing unit 14 condenses the laser light L1 adjusted by the adjusting unit 13 and emits it to the outside of the housing 11.
- the light collecting section 14 is offset to the second wall section 22 side (one wall section side) in the X direction and is biased to the fourth wall section 24 side in the Y direction. That is, the distance between the light collecting section 14 and the second wall section 22 in the X direction is smaller than the distance between the light collecting section 14 and the first wall section 21 in the X direction, and the light collecting section 14 and the fourth wall in the Y direction are fourth.
- the distance from the wall portion 24 is smaller than the distance between the light collecting portion 14 and the third wall portion 23 in the X direction.
- the adjusting unit 13 has an attenuator 31, a beam expander 32, and a mirror 33.
- the incident unit 12, the attenuator 31, the beam expander 32, and the mirror 33 of the adjusting unit 13 are arranged on a straight line (first straight line) A1 extending along the Z direction.
- the attenuator 31 and the beam expander 32 are arranged between the incident part 12 and the mirror 33 on the straight line A1.
- the attenuator 31 adjusts the output of the laser light L1 incident from the incident unit 12.
- the beam expander 32 expands the diameter of the laser light L1 whose output is adjusted by the attenuator 31.
- the mirror 33 reflects the laser light L1 whose diameter has been expanded by the beam expander 32.
- the adjusting unit 13 further includes a reflective spatial light modulator 34 and an image forming optical system 35.
- the reflective spatial light modulator 34 of the adjustment unit 13, the imaging optical system 35, and the condensing unit 14 are arranged on a straight line (second straight line) A2 extending along the Z direction.
- the reflective spatial light modulator 34 modulates the laser light L1 reflected by the mirror 33.
- the reflective spatial light modulator 34 is, for example, a reflective liquid crystal (LCOS: Liquid Crystal on Silicon) spatial light modulator (SLM: Spatial Light Modulator).
- the image forming optical system 35 constitutes a double-sided telecentric optical system in which the reflecting surface 34a of the reflective spatial light modulator 34 and the entrance pupil surface 14a of the condensing unit 14 are in an image forming relationship.
- the image forming optical system 35 is composed of three or more lenses.
- the straight line A1 and the straight line A2 are located on a plane perpendicular to the Y direction.
- the straight line A1 is located on the second wall portion 22 side (one wall portion side) with respect to the straight line A2.
- the laser beam L1 enters the housing 11 from the incident part 12, travels on the straight line A1, is sequentially reflected by the mirror 33 and the reflective spatial light modulator 34, and then the straight line A2.
- the light travels upward and is emitted from the light collecting unit 14 to the outside of the housing 11.
- the order of arrangement of the attenuator 31 and the beam expander 32 may be reversed.
- the attenuator 31 may be arranged between the mirror 33 and the reflective spatial light modulator 34.
- the adjusting unit 13 may have other optical components (for example, a steering mirror arranged in front of the beam expander 32).
- the laser processing head 10A further includes a dichroic mirror 15, a measurement unit 16, an observation unit 17, a drive unit 18, and a circuit unit 19.
- the dichroic mirror 15 is arranged on the straight line A2 between the imaging optical system 35 and the condensing unit 14. That is, the dichroic mirror 15 is arranged in the housing 11 between the adjusting unit 13 and the light collecting unit 14. The dichroic mirror 15 is attached to the optical base 29 on the side of the fourth wall portion 24. The dichroic mirror 15 transmits the laser light L1. From the viewpoint of suppressing astigmatism, the dichroic mirror 15 may be, for example, a cube type or two plate types arranged so as to have a twist relationship.
- the measuring unit 16 is arranged inside the housing 11 with respect to the adjusting unit 13 on the first wall 21 side (the side opposite to the one wall side).
- the measuring unit 16 is attached to the optical base 29 on the fourth wall 24 side.
- the measurement unit 16 outputs measurement light L10 for measuring the distance between the surface of the object 100 (for example, the surface on the side on which the laser light L1 is incident) and the light condensing unit 14, and through the light condensing unit 14.
- the measurement light L10 reflected by the surface of the object 100 is detected. That is, the measurement light L10 output from the measurement unit 16 is applied to the surface of the object 100 via the light condensing unit 14, and the measurement light L10 reflected on the surface of the object 100 passes through the light condensing unit 14. And is detected by the measuring unit 16.
- the measurement light L10 output from the measurement unit 16 is sequentially reflected by the beam splitter 20 and the dichroic mirror 15 attached to the optical base 29 on the side of the fourth wall 24, and then the light collection unit 14 outputs the light. It goes out of the housing 11.
- the measurement light L10 reflected on the surface of the object 100 enters the housing 11 from the light condensing unit 14, is sequentially reflected by the dichroic mirror 15 and the beam splitter 20, enters the measuring unit 16, and then the measuring unit 16 Detected in.
- the observing unit 17 is arranged in the housing 11 on the first wall 21 side (the side opposite to the one wall side) with respect to the adjusting unit 13.
- the observation section 17 is attached to the optical base 29 on the side of the fourth wall section 24.
- the observation unit 17 outputs the observation light L20 for observing the surface of the object 100 (for example, the surface on the side where the laser light L1 is incident), and is reflected by the surface of the object 100 via the light condensing unit 14.
- the observation light L20 thus generated is detected. That is, the observation light L20 output from the observation unit 17 is applied to the surface of the object 100 via the light condensing unit 14, and the observation light L20 reflected by the surface of the object 100 passes through the light condensing unit 14. And is detected by the observation unit 17.
- the observation light L20 output from the observation unit 17 passes through the beam splitter 20, is reflected by the dichroic mirror 15, and is emitted from the condensing unit 14 to the outside of the housing 11.
- the observation light L20 reflected on the surface of the object 100 enters the housing 11 from the light condensing unit 14, is reflected by the dichroic mirror 15, passes through the beam splitter 20, and enters the observation unit 17, Detected at 17.
- the wavelengths of the laser light L1, the measurement light L10, and the observation light L20 are different from each other (at least the respective central wavelengths are deviated from each other).
- the drive section 18 is attached to the optical base 29 on the side of the fourth wall section 24.
- the driving unit 18 moves the condensing unit 14 arranged on the sixth wall unit 26 along the Z direction by the driving force of the piezoelectric element, for example.
- the circuit portion 19 is arranged on the third wall portion 23 side with respect to the optical base 29 in the housing 11. That is, the circuit unit 19 is arranged on the third wall 23 side with respect to the adjustment unit 13, the measurement unit 16, and the observation unit 17 in the housing 11.
- the circuit unit 19 is, for example, a plurality of circuit boards.
- the circuit unit 19 processes the signal output from the measurement unit 16 and the signal input to the reflective spatial light modulator 34.
- the circuit unit 19 controls the drive unit 18 based on the signal output from the measurement unit 16.
- the circuit unit 19 maintains the distance between the surface of the object 100 and the light condensing unit 14 constant based on the signal output from the measurement unit 16 (that is, the surface of the object 100).
- the drive unit 18 is controlled so that the distance from the condensing point of the laser light L1 is kept constant).
- the housing 11 is provided with a connector (not shown) to which wiring for electrically connecting the circuit unit 19 to the control unit 9 (see FIG. 1) and the like is connected.
- the laser processing head 10B includes a housing 11, an incident section 12, an adjusting section 13, a condensing section 14, a dichroic mirror 15, a measuring section 16, and an observing section 17,
- the drive unit 18 and the circuit unit 19 are provided.
- each configuration of the laser processing head 10B is, as shown in FIG. 2, each configuration of the laser processing head 10A with respect to a virtual plane that passes through the midpoint between the pair of mounting portions 65 and 66 and is perpendicular to the Y direction. Are arranged so as to have a plane symmetry relationship with.
- the fourth wall portion 24 is located closer to the laser processing head 10B side than the third wall portion 23, and the sixth wall portion 26 is the fifth wall. It is attached to the attachment portion 65 so as to be located on the support portion 7 side with respect to the portion 25.
- the fourth wall portion 24 is located closer to the laser processing head 10A side than the third wall portion 23, and the sixth wall portion 26 is the second wall portion. It is attached to the attachment portion 66 so as to be located on the support portion 7 side with respect to the five wall portion 25.
- the housing 11 of the laser processing head 10B is configured such that the housing 11 is attached to the mounting portion 66 with the third wall portion 23 arranged on the mounting portion 66 side. Specifically, it is as follows.
- the mounting portion 66 has a base plate 66a and a mounting plate 66b.
- the base plate 66a is attached to a rail provided on the moving unit 63.
- the mounting plate 66b is erected at the end of the base plate 66a on the laser processing head 10A side.
- the housing 11 of the laser processing head 10B is attached to the attachment portion 66 with the third wall portion 23 in contact with the attachment plate 66b.
- the housing 11 of the laser processing head 10B can be attached to and detached from the mounting portion 66. [Action and effect]
- the housing 11 can be downsized. Further, in the housing 11, the distance between the third wall portion 23 and the fourth wall portion 24 is smaller than the distance between the first wall portion 21 and the second wall portion 22, and the collection disposed on the sixth wall portion 26.
- the light portion 14 is biased toward the fourth wall portion 24 side in the Y direction.
- another configuration for example, the laser processing head 10B
- the condensing unit 14 can be brought close to the other configuration. Therefore, the laser processing head 10A is suitable for moving the condensing unit 14 along the direction perpendicular to the optical axis thereof.
- the incident portion 12 is provided on the fifth wall portion 25 and is offset to the fourth wall portion 24 side in the Y direction.
- the region such as disposing another configuration (for example, the circuit unit 19) in a region on the third wall 23 side with respect to the adjustment unit 13 in the region inside the housing 11. it can.
- the condensing portion 14 is offset to the second wall portion 22 side in the X direction. Accordingly, when the housing 11 is moved along the direction perpendicular to the optical axis of the light condensing unit 14, for example, even if another configuration exists on the second wall 22 side, the other configuration is collected. The light unit 14 can be brought closer.
- the incident portion 12 is provided on the fifth wall portion 25 and is offset to the second wall portion 22 side in the X direction.
- other regions for example, the measuring unit 16 and the observing unit 17
- the measuring unit 16 and the observing unit 17 are arranged in the region on the first wall 21 side with respect to the adjusting unit 13 in the region inside the housing 11, and the circuit unit 19 is
- the dichroic mirror 15 is arranged on the side of the third wall portion 23 with respect to the adjustment unit 13 in the area inside the housing 11, and the dichroic mirror 15 is arranged between the adjustment unit 13 and the light collection unit 14 in the housing 11. ing. Thereby, the area in the housing 11 can be effectively used.
- the laser processing apparatus 1 can perform processing based on the measurement result of the distance between the surface of the object 100 and the light condensing unit 14. Further, the laser processing apparatus 1 can perform processing based on the observation result of the surface of the object 100.
- the circuit section 19 controls the drive section 18 based on the signal output from the measuring section 16. Thereby, the position of the condensing point of the laser beam L1 can be adjusted based on the measurement result of the distance between the surface of the object 100 and the condensing unit 14.
- the incident section 12, the attenuator 31, the beam expander 32, and the mirror 33 of the adjusting section 13 are arranged on the straight line A1 extending along the Z direction, and the adjusting section 13 is provided.
- the reflective spatial light modulator 34, the imaging optical system 35, the condensing unit 14, and the condensing unit 14 are arranged on a straight line A2 extending along the Z direction. Accordingly, the adjusting unit 13 including the attenuator 31, the beam expander 32, the reflective spatial light modulator 34, and the imaging optical system 35 can be configured compactly.
- the straight line A1 is located closer to the second wall portion 22 than the straight line A2.
- another optical system for example, the measuring unit 16 and the observing unit 17
- the light condensing unit 14 is provided in the region on the first wall 21 side with respect to the adjusting unit 13 in the region in the housing 11.
- the light condensing unit 14 of the laser processing head 10A is offset to the laser processing head 10B side in the housing 11 of the laser processing head 10A, and the light condensing unit 14 of the laser processing head 10B is The housing 11 of the processing head 10B is offset to the laser processing head 10A side.
- each of the pair of mounting portions 65 and 66 moves along each of the Y direction and the Z direction. Thereby, the object 100 can be processed more efficiently.
- the support portion 7 moves along each of the X direction and the Y direction, and rotates about an axis parallel to the Z direction as a center line. Thereby, the object 100 can be processed more efficiently.
- the incident section 12, the adjusting section 13, and the light condensing section 14 may be arranged on a straight line A extending along the Z direction.
- the adjusting unit 13 can be configured compactly.
- the adjusting unit 13 may not include the reflective spatial light modulator 34 and the imaging optical system 35.
- the adjusting unit 13 may include an attenuator 31 and a beam expander 32.
- the adjusting unit 13 including the attenuator 31 and the beam expander 32 can be configured compactly. The order of arrangement of the attenuator 31 and the beam expander 32 may be reversed.
- the housing 11 at least one of the first wall portion 21, the second wall portion 22, the third wall portion 23, and the fifth wall portion 25 is on the mounting portion 65 (or mounting portion 66) side of the laser processing apparatus 1. It suffices that the housing 11 is configured to be attached to the attachment portion 65 (or the attachment portion 66) in the arranged state. Further, the light collecting section 14 may be offset to the fourth wall section 24 side at least in the Y direction. According to these, when the housing 11 is moved along the Y direction, even if there is another configuration on the fourth wall 24 side, for example, the light collection unit 14 can be brought close to the other configuration. it can. Further, when the housing 11 is moved along the Z direction, for example, the light condensing unit 14 can be brought close to the object 100.
- the light collecting section 14 may be offset toward the first wall section 21 side in the X direction. According to this, when the housing 11 is moved along the direction perpendicular to the optical axis of the condensing unit 14, for example, even if there is another configuration on the first wall 21 side, the other configuration is present.
- the light condensing unit 14 can be brought close to. In that case, the incident portion 12 may be offset toward the first wall portion 21 side in the X direction.
- another region (for example, the measurement unit 16 and the observation unit 17) is arranged in the region on the second wall 22 side with respect to the adjustment unit 13 in the region inside the housing 11, and the region is adjusted. It can be used effectively.
- FIG. 7 is a front view of a part of the laser processing apparatus 1 in which the laser light L1 is guided by the mirror.
- the mirror 3 that reflects the laser light L1 moves so as to face the emitting portion 81a of the light source unit 8 in the Y direction and face the incident portion 12 of the laser processing head 10A in the Z direction. It is attached to the moving portion 63 of the mechanism 6.
- the mirror 3 may be attached to the moving unit 63 of the moving mechanism 6 so that at least one of the angle adjustment and the position adjustment can be performed. According to this, the laser light L1 emitted from the emission portion 81a of the light source unit 8 can be more reliably incident on the incidence portion 12 of the laser processing head 10A.
- the light source unit 8 may have one light source. In that case, the light source unit 8 may be configured so that a part of the laser light output from one light source is emitted from the emitting portion 81a and the rest of the laser light is emitted from the emitting portion 82b.
- the laser processing apparatus 1 may include one laser processing head 10A. Even in the laser processing apparatus 1 including one laser processing head 10A, when the housing 11 is moved along the Y direction perpendicular to the optical axis of the condensing unit 14, for example, another configuration is provided on the fourth wall 24 side. Even if there is, the condensing unit 14 can be brought close to the other configuration. Therefore, the object 100 can be efficiently processed even by the laser processing apparatus 1 including one laser processing head 10A. Further, in the laser processing apparatus 1 including one laser processing head 10A, if the attachment portion 65 moves along the Z direction, the object 100 can be processed more efficiently. Further, in the laser processing apparatus 1 including one laser processing head 10A, if the support portion 7 moves along the X direction and rotates about the axis parallel to the Z direction as the center line, the object 100 can be more efficiently processed. It can be processed.
- the laser processing apparatus 1 may include three or more laser processing heads.
- FIG. 8 is a perspective view of a laser processing apparatus 1 including two pairs of laser processing heads.
- the laser processing apparatus 1 shown in FIG. 8 includes a plurality of moving mechanisms 200, 300 and 400, a support 7, a pair of laser processing heads 10A and 10B, a pair of laser processing heads 10C and 10D, and a light source. And a unit (not shown).
- the moving mechanism 200 moves the support portion 7 along each of the X direction, the Y direction, and the Z direction, and rotates the support portion 7 with the axis parallel to the Z direction as the center line.
- the moving mechanism 300 has a fixed portion 301 and a pair of mounting portions (first mounting portion, second mounting portion) 305 and 306.
- the fixed portion 301 is attached to a device frame (not shown).
- Each of the pair of attachment portions 305 and 306 is attached to a rail provided on the fixed portion 301, and each of them can independently move along the Y direction.
- the moving mechanism 400 has a fixed portion 401 and a pair of mounting portions (first mounting portion, second mounting portion) 405, 406.
- the fixed portion 401 is attached to a device frame (not shown).
- Each of the pair of attachment portions 405 and 406 is attached to a rail provided on the fixed portion 401, and each of them can independently move along the X direction.
- the rails of the fixed portion 401 are arranged so as to three-dimensionally intersect the rails of the fixed portion 301.
- the laser processing head 10A is attached to the attachment portion 305 of the moving mechanism 300.
- the laser processing head 10A irradiates the object 100 supported by the support 7 with laser light while facing the support 7 in the Z direction.
- Laser light emitted from the laser processing head 10A is guided by an optical fiber 2 from a light source unit (not shown).
- the laser processing head 10B is attached to the attachment portion 306 of the moving mechanism 300.
- the laser processing head 10B irradiates the object 100 supported by the support 7 with laser light in a state of facing the support 7 in the Z direction.
- the laser light emitted from the laser processing head 10B is guided by the optical fiber 2 from a light source unit (not shown).
- the laser processing head 10C is attached to the attachment portion 405 of the moving mechanism 400.
- the laser processing head 10C irradiates the object 100 supported by the support 7 with laser light in a state of facing the support 7 in the Z direction.
- Laser light emitted from the laser processing head 10C is guided by an optical fiber 2 from a light source unit (not shown).
- the laser processing head 10D is attached to the attachment portion 406 of the moving mechanism 400.
- the laser processing head 10D irradiates the object 100 supported by the support 7 with laser light in a state of facing the support 7 in the Z direction.
- Laser light emitted from the laser processing head 10D is guided by an optical fiber 2 from a light source unit (not shown).
- the configuration of the pair of laser processing heads 10A and 10B in the laser processing apparatus 1 shown in FIG. 8 is the same as the configuration of the pair of laser processing heads 10A and 10B in the laser processing apparatus 1 shown in FIG.
- the configuration of the pair of laser processing heads 10C and 10D in the laser processing apparatus 1 shown in FIG. 8 is the same as that of the pair of laser processing heads 10A and 10B in the laser processing apparatus 1 shown in FIG.
- the configuration is the same as that of the pair of laser processing heads 10A and 10B when rotated by 90 ° as the center line.
- the fourth wall portion 24 is located on the laser processing head 10D side with respect to the third wall portion 23, and the sixth wall portion 26 is the fifth wall. It is attached to the attachment portion 65 so as to be located on the support portion 7 side with respect to the portion 25.
- the condensing portion 14 of the laser processing head 10C is offset to the fourth wall portion 24 side (that is, the laser processing head 10D side) in the Y direction.
- the fourth wall portion 24 is located on the laser processing head 10C side with respect to the third wall portion 23, and the sixth wall portion 26 is the fifth wall portion 25. It is attached to the attachment portion 66 so as to be located on the side of the support portion 7.
- the condensing portion 14 of the laser processing head 10D is offset to the fourth wall portion 24 side (that is, the laser processing head 10C side) in the Y direction.
- the condensing portion 14 of the laser processing head 10A and the laser processing head 10B are moved.
- the light condensing section 14 of the above can be brought close to each other.
- the condensing portion 14 of the laser processing head 10C and the condensing portion 14 of the laser processing head 10D can be brought close to each other. ..
- the laser processing head and the laser processing apparatus are not limited to those for forming the modified region inside the object 100, and may be those for performing other laser processing.
- the laser processing apparatus 101 shown in FIG. 9 forms a modified region on the target object 100 by irradiating the target object 100 with a focus point (at least a part of the focus region) and irradiating it with laser light.
- the laser processing apparatus 101 performs trimming processing and peeling processing on the object 100 to obtain (manufacture) a semiconductor device.
- the trimming process is a process for removing an unnecessary portion of the object 100.
- the peeling process is a process for peeling a part of the object 100.
- the object 100 includes, for example, a disc-shaped semiconductor wafer.
- the object is not particularly limited, and may be formed of various materials and may have various shapes.
- a functional element (not shown) is formed on the surface 100a of the object 100.
- the functional element is, for example, a light receiving element such as a photodiode, a light emitting element such as a laser diode, a circuit element such as a memory, or the like.
- an effective area R and a removal area E are set in the object 100.
- the effective region R is a portion corresponding to the semiconductor device to be acquired.
- the effective region R is a disc-shaped portion including the central portion when the object 100 is viewed from the thickness direction.
- the removal area E is an area outside the effective area R of the object 100.
- the removal area E is an outer edge portion of the object 100 other than the effective area R.
- the removal area E is an annular portion that surrounds the effective area R.
- the removal area E includes a peripheral edge portion (outer edge bevel portion) when the object 100 is viewed from the thickness direction.
- a virtual surface M1 as a planned separation surface is set on the object 100.
- the virtual surface M1 is a surface where the modified region is to be formed.
- the virtual surface M1 is a surface facing the back surface 100b which is the laser light incident surface of the object 100.
- the virtual surface M1 is a surface parallel to the back surface 100b and has, for example, a circular shape.
- the virtual surface M1 is a virtual area and is not limited to a flat surface, and may be a curved surface or a three-dimensional surface.
- the control unit 9 can set the effective area R, the removal area E, and the virtual surface M1.
- the effective area R, the removal area E, and the virtual surface M1 may have coordinates specified.
- the object 100 has a line M3 as a planned trimming line.
- the line M3 is a line which is scheduled to form the modified region.
- the line M3 extends annularly inside the outer edge of the object 100.
- the line M3 here extends in an annular shape.
- the line M3 is set at the boundary between the effective region R and the removal region E in a portion on the side opposite to the laser light incident surface with respect to the virtual surface M1 inside the object 100.
- the setting of the line M3 can be performed by the control unit 9.
- the line M3 is a virtual line, but may be an actually drawn line.
- the line M3 may have coordinates designated.
- the laser processing apparatus 101 includes a stage 107, a laser processing head 10A, a first Z-axis rail 106A, a Y-axis rail 108, an imaging unit 110, a GUI (Graphical User Interface) 111, and a control unit 9. Equipped with.
- the stage 107 is a support part on which the object 100 is placed.
- the stage 107 has the same structure as the supporting portion 7 (see FIG. 1).
- the target object 100 is placed with the back surface 100b of the target object 100 on the upper side which is the laser light incident surface side (the front surface 100a is on the lower side which is the stage 107 side).
- the stage 107 has a rotation axis C provided at the center thereof.
- the rotation axis C is an axis extending along the Z direction.
- the stage 107 can rotate around the rotation axis C.
- the stage 107 is rotationally driven by the driving force of a known driving device such as a motor.
- the laser processing head 10A irradiates the target object 100 placed on the stage 107 with the first laser light L1 (see FIG. 11A) along the Z direction, thereby forming a modified region inside the target object 100.
- the laser processing head 10A is attached to the first Z-axis rail 106A and the Y-axis rail 108.
- the laser processing head 10A is linearly movable in the Z direction along the first Z-axis rail 106A by the driving force of a known driving device such as a motor.
- the laser processing head 10A is linearly movable in the Y direction along the Y-axis rail 108 by the driving force of a known driving device such as a motor.
- the laser processing head 10A constitutes an irradiation unit.
- the laser processing head 10A includes the reflective spatial light modulator 34 as described above.
- the laser processing head 10A includes a distance measuring sensor 36.
- the distance measuring sensor 36 emits distance-measuring laser light to the laser light incident surface of the object 100 and detects the distance measuring light reflected by the laser light incident surface to detect the object 100.
- the displacement data of the laser light incident surface is acquired.
- a sensor of a triangulation distance measuring method, a laser confocal method, a white confocal method, a spectral interference method, an astigmatism method or the like is used. be able to.
- the distance measuring sensor 36 is a sensor coaxial with the first laser beam L1
- a sensor of an astigmatism type or the like can be used.
- the circuit unit 19 (see FIG. 3) of the laser processing head 10A drives the drive unit 18 (see FIG. 5) so that the condensing unit 14 follows the laser light incident surface based on the displacement data acquired by the distance measuring sensor 36. Drive.
- the light condensing unit 14 is based on the displacement data so that the distance between the laser light incident surface of the object 100 and the first light condensing point that is the light condensing point of the first laser light L1 is maintained constant. Move along the Z direction.
- the first Z-axis rail 106A is a rail extending along the Z direction.
- the first Z-axis rail 106A is attached to the laser processing head 10A via the attachment portion 65.
- the first Z-axis rail 106A moves the laser processing head 10A along the Z direction so that the first focus point of the first laser light L1 moves along the Z direction (direction intersecting with the virtual plane M1). ..
- the first Z-axis rail 106A corresponds to the rail of the moving mechanism 6 (see FIG. 1) or the moving mechanism 300 (see FIG. 8).
- the Y-axis rail 108 is a rail extending along the Y direction.
- the Y-axis rail 108 is attached to the first Z-axis rail 106A.
- the Y-axis rail 108 moves the laser processing head 10A along the Y direction so that the first focus point of the first laser light L1 moves along the Y direction (direction along the virtual plane M1).
- the Y-axis rail 108 corresponds to the rail of the moving mechanism 6 (see FIG. 1) or the moving mechanism 300 (see FIG. 8).
- the image capturing unit 110 captures an image of the object 100 from a direction along the incident direction of the first laser light L1.
- the image capturing section 110 includes an alignment camera AC and an image capturing unit IR.
- the alignment camera AC and the imaging unit IR are attached to the attachment portion 65 together with the laser processing head 10A.
- the alignment camera AC images, for example, a device pattern or the like using light that passes through the target object 100. The image obtained by this is used for alignment of the irradiation position of the first laser beam L1 with respect to the object 100.
- the image pickup unit IR picks up an image of the target object 100 with light that passes through the target object 100.
- the image pickup unit IR has a light source, an objective lens, and a photodetector.
- the light source outputs light that is transparent to the object 100.
- the light source includes, for example, a halogen lamp and a filter, and outputs light in the near infrared region, for example.
- the light output from the light source is guided by an optical system such as a mirror, passes through an objective lens, and is irradiated onto the object 100.
- the objective lens allows the light reflected by the surface of the object 100 opposite to the laser light incident surface to pass through. That is, the objective lens passes the light propagated (transmitted) through the object 100.
- the numerical aperture (NA) of the objective lens is, for example, 0.45 or more.
- the objective lens has a correction ring.
- the correction ring corrects the aberration generated in the light in the object 100 by adjusting the distances between the plurality of lenses forming the objective lens, for example.
- the light detector detects the light that has passed through the objective lens.
- the photodetector is composed of, for example, an InGaAs camera, and detects light in the near infrared region.
- the imaging unit IR can image at least one of the modified region formed inside the object 100 and the crack extending from the modified region.
- the imaging unit IR constitutes a processing state monitoring unit that monitors (internal monitoring) the processing state of laser processing inside the object 100.
- GUI111 displays various information.
- the GUI 111 includes, for example, a touch panel display.
- Various settings relating to the processing conditions are input to the GUI 111 by an operation such as a user touch.
- the GUI 111 constitutes an input unit that receives an input from the user.
- the control unit 9 is configured as a computer device including a processor, a memory, a storage, a communication device, and the like.
- the software (program) read into the memory or the like is executed by the processor, and the reading and writing of data in the memory and the storage and the communication by the communication device are controlled by the processor.
- the control unit 9 controls each unit of the laser processing apparatus 101 and realizes various functions.
- the control unit 9 controls at least the stage 107, the laser processing head 10A, and the moving mechanism 6 (see FIG. 1) or the moving mechanism 300 (see FIG. 1).
- the control unit 9 controls the rotation of the stage 107, the irradiation of the first laser light L1 from the laser processing head 10A, and the movement of the first focus point of the first laser light L1.
- the control unit 9 can execute various controls based on rotation information (hereinafter, also referred to as “ ⁇ information”) regarding the rotation amount of the stage 107.
- the ⁇ information may be acquired from the driving amount of the driving device that rotates the stage 107, or may be acquired by a separate sensor or the like.
- the ⁇ information can be acquired by various known methods.
- the ⁇ information here includes the rotation angle based on the state when the object 100 is located at the position in the 0 ° direction.
- the control unit 9 rotates the stage 107 and positions the first condensing point at a position along the line M3 (peripheral edge of the effective region R) on the object 100, while the laser machining head is based on the ⁇ information.
- a trimming process for forming a modified region along the peripheral edge of the effective region R is executed.
- the trimming process is a process of the control unit 9 that realizes the trimming process. In the trimming process of the present embodiment, before the peeling process (first processing process described later), along the line M3, a portion on the opposite side of the virtual light surface M1 inside the object 100 from the laser light incident surface.
- the first laser beam L1 is irradiated to form the modified region.
- the control unit 9 causes the laser processing head 10A to irradiate the first laser beam L1 while controlling the movement of the first focus point in the Y direction while rotating the stage 107, so that the virtual inside of the object 100 is obtained.
- a peeling process is performed to form the modified region along the surface M1.
- the peeling process is a process of the control unit 9 that realizes the peeling process.
- the control unit 9 controls the display of the GUI 111. Trimming processing and peeling processing are executed based on various settings input from the GUI 111.
- the formation of the reformed area and the switching of its stop can be realized as follows.
- the laser processing head 10A by starting and stopping (ON / OFF) the irradiation (output) of the first laser light L1, it is possible to switch between the formation of the modified region and the stop of the formation. ..
- ON / OFF of the Q switch AOM (acousto-optic modulator), EOM (electro-optic modulator), etc.
- the ON / OFF of the output of the semiconductor laser that constitutes the seed laser and the amplifier (for excitation) laser is switched to start and stop the irradiation of the first laser light L1.
- the ON / OFF of the irradiation of the first laser light L1 is turned on / off by switching the ON / OFF of the external modulation element (AOM, EOM, etc.) provided outside the resonator. Can be switched at high speed.
- the formation of the modified region and the switching of its stop may be realized as follows.
- the optical path of the first laser light L1 may be opened and closed by controlling a mechanical mechanism such as a shutter to switch the formation of the modified region and the stop of the formation.
- the formation of the modified region may be stopped by switching the first laser light L1 to CW light (continuous wave).
- CW light continuous wave
- the modified region of the modified region is displayed. The formation may be stopped.
- the formation of the modified region may be stopped by controlling the output adjusting unit such as an attenuator and lowering the output of the first laser beam L1 so that the modified region cannot be formed.
- the formation of the modified region may be stopped by switching the polarization direction.
- the formation of the modified region may be stopped by scattering (flying) the first laser light L1 in a direction other than the optical axis and cutting it.
- the manufacturing method described below is a method in which a removed portion (a portion that is not used as a semiconductor device in the target object 100) removed from the target object 100 by the trimming process and the peeling process can be reused.
- the target object 100 is placed on the stage 107 with the back surface 100b facing the laser light incident surface side.
- the surface 100a side of the object 100 on which the functional element is mounted is protected by a support substrate or a tape material adhered thereto.
- the stage 107 is rotated at a constant rotation speed while the first focus point P1 is located at the position on the line M3 of the object 100.
- the first laser beam L1 is emitted from the laser processing head 10A.
- the irradiation of the first laser light L1 is repeated by changing the position of the first focus point P1 in the Z direction. That is, as shown in FIGS. 10B and 11B, before the peeling process, along the line M3, on the side opposite to the laser light incident surface with respect to the virtual surface M1 inside the object 100.
- the modified region 43 is formed in the portion.
- peeling is performed. Specifically, as shown in FIG. 12A, while the stage 107 is rotating at a constant rotation speed, the laser processing head 10A irradiates the first laser beam L1 and the first focus point P1 changes.
- the laser processing head 10A is moved along the Y-axis rail 108 so as to move inward in the Y direction from the outer edge side of the virtual surface M1.
- FIGS. 12B and 12C a spiral shape (centered around the position of the rotation axis C (see FIG. 9)) along the virtual plane M1 inside the object 100 ( A modified region 4 extending along the involute curve is formed.
- the formed modified region 4 includes a plurality of modified spots. As a result, as shown in FIG.
- a part of the object 100 is peeled off with the crack extending from the modified region 4 and the modified spot of the modified region 4 across the virtual surface M1 as a boundary.
- the removal region E is removed with the cracks extending from the modified region 43 and the modified spots of the modified region 43 along the line M3 as boundaries.
- the peeling of the object 100 and the removal of the removal area E may be performed using, for example, a suction jig.
- the object 100 may be peeled off on the stage 107 or may be moved to an area dedicated to peeling.
- the object 100 may be peeled off by using an air blow or a tape material.
- the modified regions 4 and 43 may be selectively etched with an etching solution (KOH, TMAH, or the like) that reacts with the object 100. This makes it possible to easily peel off the object 100.
- the stage 107 is rotated at a constant rotation speed, the rotation speed may be changed.
- the rotation speed of the stage 107 may be changed so that the pitch of the reforming spots included in the reforming region 4 is constant.
- the separation surface 100h of the object 100 is subjected to finish grinding or polishing with an abrasive such as a grindstone.
- an abrasive such as a grindstone.
- a line (processing line) M11 is set in the target object 100 that is the target of peeling processing.
- the line M11 is a line for forming the modified region 4.
- the line M11 spirally extends inward from the peripheral side of the object 100. In other words, the line M11 extends in a spiral shape (involute curve) centered on the position of the rotation axis C (see FIG. 9) of the stage 107.
- the line M11 is a processing line having a plurality of parallel lines M11a arranged side by side. For example, one rounded portion in a spiral form one parallel line M11a.
- the line M11 is a virtual line, but may be an actually drawn line.
- the line M11 may have coordinates designated.
- the object 100 has a bevel portion (peripheral portion) BB having a side surface that intersects the back surface 100b that is the laser light incident surface.
- the bevel portion BB is, for example, a chamfered surface for improving strength.
- the bevel portion BB is formed by forming the corner of the peripheral edge of the object 100 into a curved surface (R surface).
- the bevel portion BB is, for example, a portion between the peripheral edge and the inner side of 200 to 300 ⁇ m in the object 100.
- the target object 100 is provided with an alignment target 100n.
- the alignment target 100n has a fixed relationship in the ⁇ direction (the rotation direction around the rotation axis C of the stage 107) with respect to the position of the target object 100 in the 0 ° direction.
- the position in the 0 ° direction is the position of the reference object 100 in the ⁇ direction.
- the alignment target 100n is a notch formed on the peripheral side of the target 100.
- the alignment target 100n is not particularly limited, and may be the orientation flat of the target 100 or the pattern of the functional element.
- the control unit 9 executes the first processing process of irradiating the bevel peripheral portion (first portion) 100X including the bevel portion BB with the first laser light L1 under the first processing condition. After the first processing, the control unit 9 causes the first laser to be provided on the inner peripheral portion (second portion) 100Y inside the bevel peripheral portion 100X in the object 100 under the second processing condition different from the first processing condition. The second processing process of irradiating the light L1 is executed. The first processing processing and the second processing processing are included in the peeling processing. The sizes of the bevel peripheral portion 100X and the inner peripheral portion 100Y in the object can be input via the GUI 111.
- the lines M11 are arranged in a line along an inclination direction C2 that is inclined with respect to an orthogonal direction orthogonal to the extending direction C1 (processing progress direction).
- the first laser light L1 is branched so that the plurality of modified spots SA are formed on the virtual surface M1.
- the branching of the first laser light L1 can be realized by using, for example, the reflective spatial light modulator 34 (see FIG. 5).
- the first laser light L1 is branched into four to form four modified spots SA.
- the spacing in the extending direction C1 of the line M11 is the branching pitch BPx
- the spacing in the direction orthogonal to the extending direction C1 is the branching pitch BPy.
- the interval in the extending direction C1 is the pulse pitch PP for the pair of modified spots SA formed by the irradiation of the continuous two pulses of the first laser light L1.
- the angle between the extending direction C1 and the inclination direction C2 is the branch angle ⁇ .
- the first laser beam L1 is irradiated onto the target object 100, and the position of the first focus point P1 is set along the spiral line M11 from the peripheral edge toward the inside.
- the modified region 4 is formed along the line M11. That is, in the first and second processing operations, the region forming the modified region 4 in the object 100 is changed in the first direction from the peripheral edge toward the inside.
- the first processing condition and the second processing condition are the processing state inside the object 100 (hereinafter, referred to as the processing state when the modified region 4 is formed by irradiating the first laser beam L1 along one processing line).
- the condition also simply referred to as a “processed state” is a condition in which a slicing half-cut state (first slicing state) described later is obtained.
- the first processing condition and the second processing condition are the case where the modified region 4 is formed by irradiating the first laser beam L1 along the line M11 which is a processing line having a plurality of parallel lines arranged side by side.
- it is a condition that the processing state becomes a slicing full cut state (second slicing state) described later.
- the first processing condition is a condition where the processing state after the laser processing of the first specified amount becomes the slicing full cut state.
- the second processing condition is a condition in which the processing state after the laser processing of the second specified amount larger than the first specified amount becomes the slicing full cut state.
- Specific parameters of the first processing condition and the second processing condition include the number of branches of the first laser beam L1, the branch pitches BPy and BPx, the pulse energy, the pulse pitch and the pulse width, and the processing speed.
- the processing condition that the processing state becomes the slicing half cut state is a processing condition in which parameters are appropriately set based on a known technique so that the processing state becomes the slicing half cut state.
- the processing condition that the processing state is the slicing full cut state is a processing condition in which the parameters are appropriately set based on a known technique so that the processing state is the slicing full cut state.
- the first processing condition is that the number of branches is 4, the branch pitch BPy is 20 ⁇ m, the branch pitch BPx is 30 ⁇ m, the pulse energy is 16.73 ⁇ J, the processing speed is 800 mm / s, the pulse pitch is 10 ⁇ m, and the pulse width is 700 ns.
- the second processing condition is the same as the first processing condition except that the branch pitch BPy is 30 ⁇ m.
- 16 (a) and 17 (a) are images showing a slicing stealth state.
- 16B and 17B are images showing a slicing half-cut state.
- FIG. 18A is an image showing a slicing full-cut state in the processed state after the laser processing of the first specified amount.
- FIG. 18B is an image showing a slicing full-cut state after the second prescribed amount of laser processing.
- FIGS. 16 (a) to 18 (b) are images at the position of the virtual plane M1 taken by the image pickup unit IR from the laser light incident surface.
- FIG. 16A and FIG. 16B show a processing state when the modified region 4 is formed by irradiating the first laser beam L1 along one processing line (parallel line).
- 17 (a) to 18 (b) show a processing state when the modified region 4 is formed by irradiating the first laser beam L1 along a plurality of processing lines.
- the processing line is set to extend linearly in the left and right directions in the drawing. As shown in FIGS. 16 (a) to 18 (b), it can be seen that the processing state changes in three stages depending on the pulse energy, the branch pitch, and the like.
- the slicing stealth state is a state in which only the modified spot SA can be observed. In the slicing stealth state, since there is no crack extension, the state does not change to the slicing full cut state even if the number of processing lines is increased.
- the slicing full cut (SFC) state is a state in which cracks extending from a plurality of modified spots SA included in the modified region 4 extend and are connected to each other in a direction along a plurality of processing lines and in a direction intersecting the processing lines.
- the slicing full cut state is a state in which a crack extending from the modified spot SA extends vertically and horizontally on the image and is connected across a plurality of processing lines. As shown in FIGS. 18A and 18B, in the slicing full-cut state, the modified spot SA cannot be confirmed on the image (the space or gap formed by the crack is confirmed).
- the slicing full-cut state is a state in which a crack is formed across a plurality of processing lines, so that the modified region 4 is irradiated with the first laser light L1 along one processing line. If formed, it cannot occur.
- the slicing full cut state includes the first slicing full cut state and the second slicing full cut state.
- the first slicing full-cut state is a slicing full-cut state that occurs after laser processing a first prescribed amount (see FIG. 18A).
- the second slicing full-cut state is a slicing full-cut state that occurs after laser processing of a second prescribed amount that is larger than the first prescribed amount (see FIG. 18A).
- the first prescribed amount of laser processing is, for example, the case where the modified region 4 is formed by irradiating the first laser light L1 along a plurality of parallel lines of less than 100 lines.
- the first prescribed amount of laser processing is, for example, the case where the width of the region forming the modified region 4 in the object 100 in the index direction is less than 12 mm.
- the index direction is a direction orthogonal to the extending direction of the processing line when viewed from the laser light incident surface.
- the second prescribed amount of laser processing is, for example, a case where the modified region 4 is formed by irradiating the first laser light L1 along a plurality of 100 or more processing lines.
- the second prescribed amount of laser processing is, for example, a case where the width of the region forming the modified region 4 in the object 100 in the index direction is 12 mm or more.
- the first specified amount and the second specified amount are not particularly limited and may be various parameter amounts.
- the first period fixed amount and the second specified amount may be, for example, processing time.
- the first-phase quantification and the second prescribed amount may be a combination of a plurality of parameter amounts.
- FIGS. 16 (a) to 18 (b) are images taken by the image pickup unit IR, the same images as in FIGS. 16 (a) to 18 (b) when taken by a normal IR camera. Is obtained.
- the results of FIGS. 16 (a) to 18 (b) are not particularly limited to the shape and size of the object 100, and even if the object 100 is a hole wafer or a small piece wafer, the results of FIGS. The same result as in FIG. 18B is obtained.
- the results of FIGS. 16A to 18B are the results of only the laser processing (the results performed on the assumption that no stress is applied). Even when the modified region 4 is formed by irradiating the first laser beam L1 along a plurality of processing lines of less than 100 lines, a slicing full cut state is obtained by applying stress to the object 100. There is.
- the control unit 9 sets the first processing condition and the second processing condition based on the input from the user via the GUI 111.
- the display and input of the GUI 111 will be described later.
- the control unit 9 causes the GUI 111 to display the imaging result of the imaging unit IR, that is, the processing state inside the object 100.
- the imaging unit IR monitors whether the processing state when the modified region 4 is formed along the spiral line M11 is the slicing half cut state.
- the imaging unit IR monitors whether the processing state after the laser processing of the first specified amount is the slicing full cut state (that is, whether the processing state is the first slicing full cut state).
- the imaging unit IR monitors whether the processing state after the laser processing of the second specified amount is the slicing full cut state (that is, the second slicing full cut state).
- Monitoring the state includes realizing an action of watching the state, and / or acquiring information (for example, image acquisition) that can determine the state.
- the control unit 9 determines whether or not the processing state after the laser processing of the first specified amount in the first processing is the second slicing full cut state, and whether the processing in the second processing is performed. 2 It is determined whether or not the processing state after the laser processing of the specified amount is the second slicing full cut state.
- the processing state can be determined using various known image processing methods.
- the processing state may be determined using a learned model (AI; artificial intelligence) obtained by deep learning. The same applies to other determinations in the control unit 9.
- the second processing process is performed to realize the peeling of the object 100.
- the control unit 9 controls each unit of the laser processing apparatus 101 and executes the following processes.
- the stage 107 is rotated and the laser processing head 10A is moved to the Y-axis rail 108 and the first position so that the alignment camera AC is positioned directly above the alignment target 100n of the target object 100 and the alignment target AC is in focus. It is moved along the 1Z-axis rail 106A.
- An image is taken by the alignment camera AC.
- the position of the object 100 in the 0 degree direction is acquired based on the image captured by the alignment camera AC.
- the diameter of the target object 100 is acquired based on the captured image of the alignment camera AC.
- the diameter of the target object 100 may be set by an input from the user.
- the stage 107 is rotated to position the object 100 at a position in the 0 degree direction.
- the laser processing head 10A is moved along the Y-axis rail 108 so that the first focus point P1 is located at the predetermined peeling start position in the Y direction.
- the laser processing head 10A is moved along the first Z-axis rail 106A so that the first focus point P1 is located on the virtual plane M1 in the Z direction.
- the peeling start predetermined position is a predetermined position farther from the object 100.
- the rotation of the stage 107 is started.
- the tracking of the back surface 100b by the distance measuring sensor is started. Before the tracking of the distance measuring sensor is started, it is confirmed in advance that the position of the first focus point P1 is within the range in which the distance measuring sensor can measure the length.
- the rotation speed of the stage 107 becomes constant (constant speed)
- irradiation of the first laser light L1 by the laser processing head 10A is started.
- the laser processing head 10A While irradiating the bevel peripheral portion 100X with the first laser light L1 under the first processing condition, the laser processing head 10A is moved to the Y-axis rail 108 so that the first focus point P1 moves to the inner peripheral side along the Y direction. It is moved along (step S1, first processing step).
- the region forming the modified region 4 in the object 100 is changed in the first direction E1 from the peripheral edge toward the inside.
- laser processing is performed with the index direction as the first direction E1.
- the first condensing point P1 is moved from the peripheral edge toward the inside along the spiral line M11 to form the modified region 4.
- the irradiation of the first laser light L1 may be started at a time when the optical axis of the first laser light L1 is still located outside the object 100, or it is located in the bevel peripheral portion 100X. It may be time.
- step S2 After the first prescribed amount of the first machining process, the rotation of the stage 107 and the irradiation of the first laser beam L1 are stopped, and the first machining process is stopped. Based on the image pickup result of the image pickup unit IR, it is determined whether or not the processing state after processing the first specified amount is the slicing full cut state (step S2). If Yes in step S2, the rotation of the stage 107, the irradiation of the first laser beam L1 and the like are restarted, and the first processing step is restarted (step S3). As a result, in the bevel peripheral portion 100X, the modified region 4 is formed along the spiral line M11, and the processing state becomes the slicing full cut state (see FIG. 20B).
- step S4 laser processing is performed with the index direction as the first direction E1.
- step S4 the modified region 4 is formed by moving the first condensing point P1 along the spiral line M11 from the peripheral edge toward the inside.
- step S5 After the second prescribed amount of the second machining process, the rotation of the stage 107 and the irradiation of the first laser beam L1 are stopped, and the second machining process is stopped. Based on the image pickup result of the image pickup unit IR, it is judged whether or not the processing state after the processing of the second specified amount is the slicing full cut state (step S5). In the case of Yes in the step S5, the rotation of the stage 107, the irradiation of the first laser beam L1 and the like are restarted, and the second processing step is restarted (step S6). As a result, in the inner peripheral portion 100Y, the modified region 4 is formed along the spiral line M11, and the processing state becomes the slicing full cut state (see FIG. 21B).
- the modified region 4 is formed along the line M11 in the entire virtual surface M1, and the processing is completed (step S7).
- the processing state after the processing is completed is the slicing full cut state in the entire virtual surface M1 (step S8).
- Yes in the above step S8 it is determined that the peeling process is normally completed, and the process is normally ended.
- No in step S2 No in step S5, or No in step S8
- the first processing condition and the second processing condition are reset by a separate process (for example, the process of the fourth embodiment described later).
- the bevel portion BB may warp during the second processing.
- the width of the bevel peripheral portion 100X in the index direction is larger than 35 mm, the bevel portion BB may be warped during the first processing.
- FIG. 22 is a plan view of the object 100 for explaining a crack extending from the modified region 4 formed along the virtual plane M1.
- FIG. 23 is a diagram showing a result of observing cracks in the object 100 of FIG. FIG. 22 shows a state in which the object 100 is viewed from the laser light incident surface.
- the modified region 4 is arranged along a plurality of linear processing lines arranged in parallel. Is formed.
- the horizontal direction is the scanning direction (extending direction of the processing line), and the vertical direction is the index direction.
- the number of branches of the first laser beam L1 is 4, the branch pitch BPy is 20 ⁇ m, the branch pitch BPx is 30 ⁇ m, the pulse energy is 16.73 ⁇ J, the processing speed is 800 mm / s, the pulse pitch is 10 ⁇ m, and the pulse width is 700 ns.
- the object 100 is a silicon wafer having a (100) plane as a main surface. The thickness of the object 100 is 775 ⁇ m.
- the crack extension amount on the front side in the index direction largely varies and does not depend on the number of processing lines.
- the crack extension amount increases as the number of processing lines increases. It can be seen that the crack extends in the direction opposite to the index direction (the rear side in the index direction). It can be seen that the crack extension amount of the crack depends on the number of processing lines. That is, when the modified region 4 is formed along the virtual surface M1, the extension direction of the crack extending from the modified region 4 along the virtual surface M1 is the transition of the region forming the modified region 4 in the object 100. It is found to make a significant contribution to the direction (index direction). Specifically, it is found that the crack is likely to stably spread in a direction opposite to the transition direction.
- the width of the modified area is the width in the index direction. “ ⁇ ” means No Good, “ ⁇ ” means Good, and “ ⁇ ” means Very Good.
- the experimental results are as follows.
- the experimental results are as follows.
- the width of the modified area is the width in the index direction. “ ⁇ ” means No Good, “ ⁇ ” means Good, and “ ⁇ ” means Very Good.
- the crack can reach the bevel portion BB when the modified area is in the slicing full cut state. It can be seen that it is difficult for the crack to reach the bevel portion BB when the modified area is processed in the slicing half-cut state. That is, in order to extend the crack in the bevel portion BB, at least the processing state of the modified area is required to be the slicing full cut state.
- the region forming the modified region 4 in the bevel peripheral portion 100X is changed to the first direction E1 inward from the peripheral edge. That is, the index direction of the first laser light L1 is the first direction E1.
- the crack is likely to stably spread in the direction from the inner side, which is the direction opposite to the first direction E1, toward the peripheral edge.
- the crack easily and stably spreads in the direction from the inner side of the modified region 4 opposite to the first direction E1 toward the peripheral edge.
- the crack can be formed even in the bevel portion BB, which is difficult to process, and the object 100 can be reliably peeled off.
- the inner peripheral portion 100Y which is inside the bevel peripheral portion 100X, it is possible to perform laser processing in which the desired processing condition is the second processing condition, and it is possible to perform laser processing according to various needs such as tact up.
- the modified region 4 is formed from the periphery to the inside along the line M11 that extends spirally inward from the periphery of the object 100. Or a plurality of modified regions 4 are formed in this order from the peripheral edge to the inner side along a plurality of linear parallel lines arranged inward from the peripheral edge in the object 100. Thereby, it is possible to specifically realize the transition of the region forming the modified region 4 in the bevel peripheral portion 100X including the bevel portion BB to the first direction E1 inward from the peripheral edge.
- the first processing condition and the second processing condition are such that the processing state is a slicing half when the modified region is formed by irradiating the laser light along one processing line. This is the condition for cutting. Under such processing conditions, the object 100 can be reliably peeled off.
- the first processing condition and the second processing condition are that the first laser is along a processing line (a spiral line M11 and a plurality of straight lines) having a plurality of parallel lines. This is a condition under which the processing state becomes the slicing full cut state when the modified region 4 is formed by irradiating the light L1. Under such processing conditions, the object 100 can be reliably peeled off.
- the first processing condition is a condition in which the processing state after the laser processing of the first specified amount becomes the slicing full cut state.
- the second processing condition is a condition in which the processing state after the laser processing of the second specified amount larger than the first specified amount becomes the slicing full cut state.
- the surface of the target object 100 is higher than the imaginary plane M1 along the line M3 extending annularly inside the peripheral edge of the target object 100.
- a trimming process (trimming process) for forming the modified region 43 is performed on the portion on the side of 100a.
- trimming processing for removing the peripheral portion of the line M3 can be realized. Since the trimming process can be performed before peeling the object 100, avoid irradiating the first laser beam L1 so as to pass through the crack generated by the peeling, as compared with the case where the trimming process is performed after the peeling. You can Further, the removed portion removed from the object 100 by the trimming process and the peeling process can be reused.
- the region of the target object 100 where the modified region 4 is formed is changed in the first direction E1. That is, the index direction of the first laser light L1 in the second processing process or the second processing process is the first direction E1. This makes it possible to reliably peel off the object 100.
- the laser processing apparatus 101 and the laser processing method monitor whether the processing state when the modified region 4 is formed along the line M11 is the slicing full cut state. According to the monitoring result, it becomes possible to easily grasp whether or not the object 100 can be peeled off.
- the first processing it is monitored whether the processing state after the laser processing of the first specified amount is the slicing full cut state.
- the second processing it is monitored whether the processing state after the laser processing of the second specified amount is the slicing full cut state. According to this, it is possible to easily understand whether or not the object 100 can be peeled off by the first processing process (first processing step). It is possible to easily grasp whether or not the target object 100 can be peeled off by the second processing process (second processing step).
- the control unit 9 determines, based on the monitoring result of the imaging unit IR, whether or not the processing state after the laser processing of the first specified amount in the first processing is the slicing full cut state, and the second. It is determined whether the processing state after the second prescribed amount of laser processing in the processing process is the slicing full cut state. In this case, the control unit 9 can automatically determine whether the processing state is the slicing full cut state based on the monitoring result.
- step S8 of determining whether the processing state is the slicing full-cut state after the completion of the processing and each processing related thereto can be omitted.
- the imaging unit IR may monitor whether the processing state when the modified region 4 is formed along one processing line is the slicing half cut state. For example, when the processing line includes a plurality of lines, the processing state when the modified region 4 is formed along any one of the lines may be monitored. Further, for example, in the case where the processing line is the spiral line M11, the processing state when the modified region 4 is formed along the line of the one circumference portion may be monitored.
- the control unit 9 determines, based on the monitoring result of the imaging unit IR, whether the processing state when the modified region 4 is formed along one processing line is the slicing half cut state. May be. This makes it possible to automatically determine whether the machining state is the slicing half-cut state based on the monitoring result. If the processing state when the modified region 4 is formed along one processing line is not the slicing half cut state (the slicing stealth state), it is determined that there is an error in the processing state, for example, the processing state. The error may be notified via the GUI 111, and the processing conditions may be reset separately.
- the first processing (first processing method) is performed on the bevel peripheral portion 100X, and the second processing (second processing) is performed on the inner peripheral portion 100Y.
- the first processing (first processing) may be performed on the entire area of the object 100 without performing the processing (second processing).
- the region forming the modified region 4 is changed to the second direction E2.
- the bevel peripheral portion 100X is subjected to laser processing with the index direction as the first direction E1
- the modified region 4 is provided on the bevel peripheral portion 100X along the line M11 from the spiral outer edge toward the inner periphery.
- the inner peripheral portion 100Y is subjected to laser processing with the index direction as the second direction E2, and the modified region 4 is formed in the inner peripheral portion 100Y along the line M11 from the spiral inner periphery toward the outer edge.
- the distance of the bevel peripheral portion 100X in the index direction may be less than or equal to a preset predetermined distance.
- the predetermined distance or less is, for example, a distance of 35 mm or less, specifically 20 mm. As a result, the object 100 can be peeled off without cracking.
- the order of the first machining process (first machining process) and the second machining process (second machining process) may be exchanged, and the first machining process may be performed after the second machining process.
- cracks are likely to occur during processing of the bevel peripheral portion 100X, but at least the bevel peripheral portion 100X can be peeled off.
- the index direction of the first machining process is the first direction E1
- other machining conditions the order of the first and second machining processes, the machining state of the first and second machining processes, etc.
- the input from the user can be accepted by the GUI 111, and at least one of the first processing condition and the second processing condition can be set by the control unit 9 based on the input of the GUI 111.
- the first processing condition and the second processing condition can be set as desired.
- the setting screen displayed on the GUI 111 will be exemplified below.
- FIG. 25 is a diagram showing an example of the setting screen of the GUI 111.
- the setting screen shown in FIG. 25 is used during mass production or when the user determines the processing conditions.
- a processing method selection button 201 for selecting any of a plurality of processing methods
- an input field 202 for setting the width of the bevel peripheral portion 100X
- a width of the inner peripheral portion 100Y are set. It includes an input field 203 and a detail button 204 for shifting to detailed settings.
- the plurality of processing methods differ in the index direction in the first processing, the index direction in the second processing, and the presence / absence of the second processing.
- the input field 202a has an option of "entire surface".
- FIG. 26 is a diagram showing another example of the setting screen of the GUI 111.
- the setting screen shown in FIG. 26 is a screen at the time of detailed setting when, for example, the detail button 204 (see FIG. 25) is touched by the user.
- the setting screen shown in FIG. 26 includes a processing condition selection button 211 for selecting a processing condition, a branch number column 212 for inputting or selecting the number of branches of the first laser beam L1, and a laser along one processing line.
- an index field 213 for inputting an index that is a moving distance to the next processing line, an image diagram 214 for inputting or displaying the number of branches and the index, and a position of the modified spot SA in the Z direction are input.
- a processing Z height field 215, a processing speed field 216 for inputting a processing speed, and a condition switching method button 217 for selecting a processing condition switching method are included.
- the processing condition selection button 211 it is possible to select which of the first processing condition and the second processing condition is to be set.
- the index column 213 when the number of branches is 1, the laser processing head 10A is automatically moved in the index direction by the input value.
- the number of branches is larger than 1, the laser processing head 10A is automatically moved in the index direction by the index based on the following calculation formula.
- Index (number of branches) x index input value
- the image diagram 214 includes an index input value display unit 214a and an output input field 214b for inputting the output of each modified spot SA.
- the machining speed column 216 may be the number of revolutions because the stage 107 actually rotates. In the processing speed column 216, the input processing speed may be automatically replaced with the rotation speed and displayed. With the condition switching method button 217, the second machining process is automatically continued when the first machining process is completed, or when the first machining process is completed, the apparatus is once stopped to monitor the state and then the first machining process is performed. Select whether to continue.
- FIG. 27 is a diagram showing an example of the administrator mode of the setting screen of the GUI 111.
- the setting screen shown in FIG. 27 includes a branch direction selection button 221 for selecting the branch direction of the first laser light L1, a branch number column 222 for inputting or selecting the number of branches of the first laser light L1, and a branch pitch BPx.
- a balance adjustment start button 229 is included.
- the distance of the optical axis is automatically calculated, and if the calculated value is a distance that causes an error due to the imaging optical system 35 (see FIG. 5), the GUI 111 is displayed. Display that effect. Information regarding the imaging optical system 35 may be input for the calculation.
- a plurality of branching pitches 227a may be hidden in the optical axis image diagram 227.
- the masses of the branch pitches 227a and 227b in the optical axis image diagram 227 may be increased or decreased depending on the number of branches.
- the input values of the branch pitch row number input field 224 and the branch pitch input field 225 are applied, but when each check box CK is checked, the branch pitch corresponding to the checked check box CK is checked.
- the distance between 227a and 227b can be changed.
- FIG. 28 is a diagram showing an example of investigating the optimum pulse energy in the peeling process.
- FIG. 28 shows a processing state when laser processing is performed along one processing line, and whether or not peeling is possible after laser processing is performed along a plurality of processing lines (parallel lines).
- the number of branches of the first laser light L1 is 4, the branch pitches BPx and BPy are both 30 ⁇ m, the processing speed is 800 mm / s, the pulse pitch is 10 ⁇ m, and the pulse width is 700 ns.
- “SST” in the figure means a slicing stealth state.
- SHC in the figure means a slicing half cut state. As shown in FIG.
- the optimum pulse energy generated in the slicing half-cut state is in the range of 9.08 to 56 ⁇ J. Further, it can be seen that peeling can be performed without any problem particularly when the pulse energy is 12.97 to 25 ⁇ J.
- the pulse pitch is larger than 10 ⁇ m, the optimum pulse energy tends to be higher than the experimental result in the figure.
- the pulse pitch is smaller than 10 ⁇ m, the optimum pulse energy tends to be smaller than the experimental result in the figure.
- the machining state is automatically determined by the control unit 9, but the user may determine the machining state based on the monitoring result of the imaging unit IR.
- the determination that the processing state is the slicing full-cut state corresponds to the determination that the processing state is neither the slicing half-cut state nor the slicing stealth state.
- a plurality of reforming spots SA included in the reforming region 4 to be formed are made to have a finer pitch, and the reforming spots SA are spread on the virtual plane M1 as a planned plane for peeling. 100 may be peeled off.
- the processing conditions are such that the cracks do not relatively extend from the modified spot SA (for example, the wavelength of the laser light is a short wavelength (1028 nm), the pulse width is 50 nsec, and the pulse pitch is 1 to 10 ⁇ m (particularly 1. 5 to 3.5 ⁇ m)) is selected.
- the processing condition the condition that the crack extends along the virtual plane M1 is selected.
- the wavelength of the first laser light L1 is selected to be a long wavelength (for example, 1099 nm) and the pulse width is 700 nsec. There is. As a result, new processing states (slicing half-cut state, slicing full-cut state, etc.) have been found.
- the control unit 9 executes a third processing process in which the bevel peripheral portion 100X is irradiated with the first laser light L1 under another processing condition different from the first processing condition, during the first processing process.
- the third processing step of irradiating the bevel peripheral portion 100X with the first laser light L1 under another processing condition different from the first processing condition may be performed during the first processing step.
- the other processing conditions are not particularly limited and may be various conditions. What are the other processing conditions? For example, it may be processing conditions when the processing state inside the object 100 becomes the slicing stealth state, the slicing half cut state, or the slicing full cut state. Even in this case, it is possible to reliably peel off the object 100.
- the spacing of the machining lines in the index direction in the third machining process (third machining process) may be wider than the spacing of the machining lines in the index direction in the first machining process (first machining process).
- the machining when switching between the first machining process (first machining process) and the second machining process (second machining process), the machining may be temporarily stopped and switched, or the machining may be switched without being stopped. May be.
- the processing when switching between the first processing process (first processing process) and the third processing process (third processing process), the processing may be temporarily stopped and switched, or the processing may be switched without stopping the processing. May be.
- the processing (processing) is switched without stopping the processing, the processing conditions may be switched gently. For example, when the difference between the first processing condition and the second processing condition is only the branch pitch BPy, when changing the branch pitch BPy from 20 ⁇ m to 30 ⁇ m, the processing is not stopped and switched, but the branch pitch BPy is gradually changed. (20 ⁇ m, 21 ⁇ m, 22 ⁇ m, 23 ⁇ m ... 30 ⁇ m in this order) may be changed without stopping the rotation of the stage 107.
- the peeling process is realized by the first and second processing processes, whereas in the present embodiment, the peeling process is realized by one processing process. That is, as shown in FIGS. 29A and 29B, in the present embodiment, laser processing is performed on the entire area of the object 100 including the bevel peripheral portion 100X and the inner peripheral portion 100Y under one processing condition. Therefore, it is different from the first embodiment.
- the control unit 9 executes a processing process of irradiating the entire area of the object 100 with the first laser light L1 under the second processing condition. Specifically, the target 100 is irradiated with the first laser light L1 under the second processing condition, and the position of the first focus point P1 is set along the spiral line M11 from the peripheral edge toward the inside. And the modified region 4 is formed along the line M11. That is, the region forming the modified region 4 in the object 100 is changed in the first direction E1 from the peripheral edge toward the inside.
- the control unit 9 operates so that the suction jig that sucks the object 100 after laser processing is twisted around the Z direction. As a result, external stress can be applied to the object 100 so that it peels off.
- control unit 9 controls each unit of the laser processing apparatus 101 and executes the following processes. That is, the rotation of the stage 107 is started. While irradiating the object 100 with the first laser light L1 under the second processing condition, the laser processing head 10A is moved along the Y-axis rail 108 so that the first focus point P1 moves to the inner peripheral side along the Y direction. And move (step S11, processing step).
- step S11 laser processing is performed with the index direction as the first direction E1.
- step S11 the modified region 4 is formed by moving the first focus point P1 from the peripheral edge toward the inside along the spiral line M11.
- the timing of starting the irradiation of the first laser light L1 may be when the optical axis of the first laser light L1 is still outside the target object 100, or is located in the bevel peripheral portion 100X. It may be time.
- step S12 it is determined whether or not the processing state after the processing of the second specified amount is the slicing full cut state (that is, whether the processing state is the second slicing full cut state) (step S12). In the case of Yes in the above step S12, the rotation of the stage 107, the irradiation of the first laser beam L1 and the like are restarted, and the processing step is restarted (step S13).
- the modified region 4 is formed along the spiral line M11, and the processing state becomes the slicing full cut state (see FIG. 29 (b)). As described above, the modified region 4 is formed along the line M11 over the entire virtual surface M1, and the processing is completed (step S14).
- step S15 Based on the image pickup result of the image pickup unit IR, it is determined whether or not the processing state after the processing is completed is the slicing full cut state in the entire virtual surface M1 (step S15). In the case of Yes in the above step S15, stress is applied so that a part of the object 100 is peeled off (step S16). In the step S16, the external stress may be applied to the target object 100, for example, by twisting the suction jig that sucks the target object 100 around the Z direction. After that, assuming that the peeling process is normally completed, the process is normally terminated.
- step S17 it is determined that there is an error in the machining state and, for example, an error in the machining state is notified via the GUI 111 (step S17).
- the second processing condition is reset by a separate process (for example, the process of the fourth embodiment described later).
- the same effect as that of the first embodiment can be obtained.
- the processing state can be set to the slicing full cut state only by laser processing, and the object 100 can be peeled off by applying stress.
- the processing condition may be a condition that the processing state is the slicing half cut state. Further, the processing condition may be a condition in which the processing state is the first slicing full cut state. Under the processing condition that the processing state is the first slicing full cut state, the step S16 of applying stress may be omitted.
- the method and structure for applying stress are not particularly limited.
- a physical stress may be applied (adsorption, pressurization, water pressure, or the like) to extend the crack and peel the crack.
- stress may be applied by laser preheating and ultrasonic waves to spread the cracks and peel off.
- FIG. 31 is a flowchart showing a peeling process according to a modified example of the second embodiment.
- laser processing and stress application are performed to separate the processed state into a slicing full cut state.
- the following processes shown in FIG. 31 are performed instead of the process shown in FIG. That is, while the rotation of the stage 107 is started and the first laser beam L1 is irradiated to the object 100 under the third processing condition, the laser is moved so that the first focus point P1 moves to the inner peripheral side along the Y direction.
- the processing head 10A is moved along the Y-axis rail 108 (step S21).
- the third processing condition is a condition that the processing state becomes a slicing half cut state when the modified region 4 is formed by irradiating the first laser beam L1 along one processing line, and the third processing condition should be lined up. This is a condition under which the slicing full cut state does not occur when the modified region 4 is formed by irradiating the first laser beam L1 along the processing line having the plurality of parallel lines arranged.
- Such a third processing condition is appropriately set with various parameters based on a known technique so that the processing state is a slicing half-cut state and not a slicing full-cut state.
- the modified region 4 is formed along the line M11 in the entire virtual surface M1 and the processing is completed (step S22).
- a stress is applied to the object 100 so that the processing state becomes the slicing full cut state (step S23).
- step S24 Based on the image pickup result of the image pickup unit IR, it is determined whether or not the processing state after the processing is completed is the slicing full cut state in the entire virtual surface M1 (step S24). In the case of Yes in the above step S24, it is determined that the peeling process is normally completed, and the process is normally ended. On the other hand, in the case of No in step S24, it is determined that there is an error in the machining state, and, for example, an error in the machining state is notified via the GUI 111 (step S25). Also in the laser processing apparatus and the laser processing method according to such a modified example, the same effects as the above can be obtained.
- the distance measuring sensor 36 (see FIG. 9) of the laser processing head 10A monitors the warp of the bevel portion BB by detecting the height (displacement) of the bevel portion BB.
- the control unit 9 controls each unit of the laser processing apparatus 101 to execute the following processes shown in FIG. 32.
- step S31 While irradiating the bevel peripheral portion 100X with the first laser light L1 under the first processing condition, the laser processing head 10A is moved to the Y-axis rail 108 so that the first focus point P1 moves inward along the Y direction. It is moved along (step S31). While irradiating the inner peripheral portion 100Y with the first laser light L1 under the first processing condition or the second processing condition, the laser processing head 10A is moved so that the first focus point P1 moves toward the inner peripheral side along the Y direction. It is moved along the Y-axis rail 108 (step S32). In steps S31 and S32, the modified region 4 is formed by moving the first focus point P1 from the peripheral edge toward the inside along the spiral line M11.
- step S33 when the height of the bevel portion BB detected by the distance measuring sensor 36 is equal to or higher than the predetermined height set in advance, it is determined that the bevel portion BB is warped.
- step S33 the rotation of the stage 107, the irradiation of the first laser beam L1 and the like are restarted, and the laser processing on the inner peripheral portion 100Y is restarted (step S34). After that, the modified region 4 is formed along the line M11 in the entire virtual surface M1, and the processing is completed (step S35).
- step S36 it is determined that there is an error in the processing state, and for example, an error in the processing state is notified via the GUI 111 (step S36).
- the first processing condition and the second processing condition are reset by a separate process (for example, the processing of the fourth embodiment described later).
- the same effect as that of the first embodiment can be obtained. Further, it is found that when the crack extends to the inside of the bevel portion BB along the virtual plane M1, the bevel portion BB is warped. From this, in the laser processing apparatus 101 and the laser processing method of this embodiment, the arrival of the crack in the bevel portion BB can be grasped by monitoring the warp of the bevel portion BB (monitoring the appearance).
- the amount of warp of the bevel portion BB is calculated from the detection result of the distance measuring sensor 36, and the amount of warp of the bevel portion BB is a predetermined value set in advance. If it is above, you may transfer to the process of the said step S36 which notifies an error.
- the bevel portion BB tends to warp. is there. If the laser processing is further performed after the laser processing with the second direction E2 from the inner circumference to the peripheral edge of the object 100 as the index direction, the object 100 may be cracked due to the stress of the warp. Therefore, in this case, it is possible to prevent cracking of the object 100 in advance by monitoring that the warpage has not occurred before performing the laser processing with the second direction E2 as the index direction.
- the distance measuring sensor 36 is used as the peripheral edge monitoring unit that monitors the warp of the bevel portion BB, but the present invention is not limited to this. If the outer appearance of the bevel portion BB can be monitored, various devices can be used as the peripheral edge monitoring portion, for example, an observation camera or a non-contact sensor. When the warp of the bevel portion BB is monitored using the non-contact sensor, the presence or absence of warp of the bevel portion BB and the warp amount can be monitored in real time without stopping the laser processing. In the present embodiment, the controller 9 determines the warp of the bevel portion BB, but the user may determine the warp of the bevel portion BB based on the detection result of the distance measuring sensor 36. This embodiment can be applied not only to the first embodiment but also to the second embodiment.
- a half-cut processing condition which is a processing condition when the processing state inside the target object 100 becomes a slicing half-cut state, is determined in advance before actually performing the laser processing on the target object 100. (Refine).
- the control unit 9 irradiates the object 100 with the first laser light L1 under the half-cut processing condition along one processing line to form the modified region 4 on the object 100 by one-line processing.
- (Second preprocessing) is executed.
- the imaging unit IR acquires a 1-line image (second image) showing the processing state when the modified region 4 is formed along one processing line by the 1-line processing.
- the control unit 9 determines the processing state shown in the one-line image, and changes the half-cut processing condition according to the determination result. Specifically, the control unit 9 determines whether or not the processing state shown in the one-line image is the slicing half-cut state, and changes the half-cut processing condition when it is not the slicing half-cut state.
- the half-cut processing condition is a condition that is a prerequisite of the above-described first and second processing conditions.
- the control unit 9 sets the half-cut processing condition (processing condition of the second preprocessing) based on the input of the GUI 111.
- FIG. 33 is a flow chart showing an example of processing when the half-cut processing condition is determined.
- the control unit 9 controls each unit of the laser processing apparatus 101 and executes the following processes illustrated in FIG. 33.
- the object 100 is irradiated with the first laser light L1 under a set half-cut processing condition along one processing line to form the modified region 4 on the object 100 (step S41, 1 line processing).
- a one-line image showing the processing state when the modified region 4 is formed in step S41 is acquired by the image pickup unit IR (step S42). Based on the 1-line image, it is determined whether the processing state is the slicing half cut state (step S43).
- step S44 the currently set half-cut processing condition is determined as the final processing condition (step S44).
- step S45 the half-cut processing condition is adjusted (step S45).
- step S45 for example, the pulse energy of the first laser light L1 is optimized (see FIG. 28) and / or the branch pitches BPy, BPx or the pulse pitch is narrowed.
- the process returns to step S41.
- the initial value of the half-cut processing condition in step S41 can be set by the user via the GUI 111.
- the first processing condition which is the processing condition when the processing state inside the object 100 becomes the first slicing full cut state, is set before the laser processing is actually performed on the object 100. Determine (determine) in advance.
- the control unit 9 irradiates the object 100 with the first laser light L1 under the first processing condition along the processing line having a plurality of lines (parallel lines) arranged side by side to modify the target object 100.
- Plural line processing (first pretreatment) for forming the region 4 on the object 100 is executed.
- the imaging unit IR acquires a multi-line image (first image) showing a processing state when the modified region 4 is formed by multi-line processing.
- the control unit 9 determines the processing state shown in the multi-line image, and changes the first processing condition according to the determination result.
- the control unit 9 sets the first processing condition based on the input of the GUI 111.
- the imaging unit IR acquires, as a multi-line image, a first multi-line image showing a processing state after laser processing a first specified amount.
- the control unit 9 determines whether the processing state after the laser processing of the first specified amount is the slicing full cut state (that is, whether the processing state is the first slicing full cut state) based on the first multiple line image.
- the control unit 9 changes the first processing condition when the processing state is not the first slicing full cut state.
- FIG. 34 is a flowchart showing an example of processing when the first processing condition is determined.
- the control unit 9 controls each unit of the laser processing apparatus 101 to execute the following processes illustrated in FIG. 34.
- Step S51 multi-line processing
- the imaging unit IR acquires a first plurality of line images, which is the processing state when the modified region 4 is formed in step S51 and reflects the processing state after the first prescribed amount of laser processing (step S52). Based on the first multiple line image, it is determined whether or not the processing state after the laser processing of the first specified amount is the slicing full cut state (first slicing full cut state) (step S53).
- step S53 the currently set first machining condition is determined as the final machining condition (step S54). If No in step S52, the first processing condition is adjusted (step S55). In step S55, for example, the pulse energy of the first laser light L1 is optimized (see FIG. 28) and / or the branch pitches BPy, BPx or the pulse pitch is narrowed. After step S55, the process returns to step S51.
- the initial value of the first processing condition in step S51 can be set by the user via the GUI 111.
- the second processing condition which is a processing condition when the processing state inside the object 100 becomes the second slicing full cut state is set before the laser processing is actually performed on the object 100. Determine (determine) in advance.
- the control unit 9 causes the target object 100 to be irradiated with the first laser light L1 under the second processing condition along the processing line having a plurality of lines (parallel lines) arranged side by side to modify the target object 100.
- Plural line processing (first pretreatment) for forming the region 4 on the object 100 is executed.
- the imaging unit IR acquires a multi-line image (first image) showing a processing state when the modified region 4 is formed by multi-line processing.
- the control unit 9 determines the processing state shown in the multi-line image, and changes the second processing condition according to the determination result.
- the control unit 9 sets the second processing condition based on the input of the GUI 111.
- the imaging unit IR acquires, as a multi-line image, a second multi-line image showing a processing state after laser processing a second specified amount and after applying stress.
- the stress application can be realized, for example, in the same manner as the stress application in step S16 (see FIG. 30).
- the control unit 9 determines whether or not the processing state after the laser processing of the second prescribed amount is the slicing full cut state (that is, whether or not the second slicing full cut state) based on the second multiple line image.
- the control unit 9 changes the second processing condition when the processing state is not the second slicing full cut state.
- the imaging unit IR acquires, as the multi-line image, the first multi-line image showing the processing state after the first prescribed amount of laser processing.
- the control unit 9 determines whether the processing state is the first slicing full cut state based on the first multiple line image. When the processing state is the first slicing full cut state, the control unit 9 changes the second processing condition.
- the imaging unit IR acquires, as the multiple line image, a second multiple line image showing the processed state after the laser processing of the second specified amount. The control unit 9 determines whether the processing state is the second slicing full cut state based on the second multiple line image. When the processing state is not the second slicing full cut state, the control unit 9 changes the second processing condition.
- FIG. 35 is a flow chart showing an example of processing when the second processing condition is determined.
- the control unit 9 controls each unit of the laser processing apparatus 101 and executes the following respective processes illustrated in FIG. 35.
- Step S61 multi-line processing
- the imaging unit IR acquires a first multiple line image showing the processing state after the laser processing of the first prescribed amount (step S62). Based on the first multiple line image, it is determined whether or not the processing state after the laser processing of the first specified amount is the slicing full cut state (first slicing full cut state) (step S63).
- step S63 If the result of step S63 is NO, that is, if the machining state is the slicing stealth state or the slicing half-cut state, the plural lines are continuously machined (step S64).
- a second plural line image showing the processing state after the laser processing of the second prescribed amount is acquired by the imaging unit IR (step S65). Based on the second multiple line image, it is determined whether or not the processing state after the laser processing of the second specified amount is the slicing full cut state (second slicing full cut state) (step S66).
- step S66 the currently set second machining condition is determined as the final machining condition (step S67). If YES in step S63, the second processing condition is adjusted (step S68). In step S68, for example, the branch pitches BPy, BPx or the pulse pitch is widened.
- step S69 the second processing condition is adjusted (step S69).
- step S69 for example, the pulse energy of the first laser light L1 is optimized (see FIG. 28) and / or the branch pitches BPy, BPx or the pulse pitch is narrowed.
- step S68 or step S69 the process returns to step S61.
- the initial value of the second processing condition in step S61 can be set by the user via the GUI 111.
- the same effect as that of the first embodiment can be obtained. Further, it is found that there is a correlation between the peeling of the object 100 and the processing state when the modified region 4 is formed along the processing line having a plurality of parallel lines. Therefore, in the laser processing apparatus 101 and the laser processing method of the present embodiment, a multi-line image showing the processing state when the modified region 4 is formed along the processing line having a plurality of parallel lines is acquired. Based on this multi-line image, it becomes possible to set the processing conditions so that the object 100 can be peeled off. Therefore, the object 100 can be reliably peeled off.
- the processing state shown in the one-line image is determined.
- the half-cut processing condition is changed according to the determination result.
- the half-cut processing condition can be automatically changed according to the one-line image.
- the half-cut processing condition is changed when the processing state shown in the one-line image is not the slicing half-cut state. This makes it possible to set the half-cut processing conditions so that the object 100 can be peeled off.
- the processing state reflected in a multi-line image is determined.
- the first and second processing conditions are changed according to the determination result.
- the first and second processing conditions can be automatically changed according to the first image.
- the target object 100 is obtained. It has been found that can be reliably peeled. Therefore, in the laser processing apparatus and the laser processing method of the present embodiment, it is determined whether the processing state after the laser processing of the first specified amount is the slicing full cut state based on the first multiple line image, and the slicing full cut state is determined. If not, the first processing condition is changed. As a result, it becomes possible to set the first processing condition that allows the object 100 to be reliably peeled off.
- the modified region 4 is formed along a processing line having a plurality of parallel lines, if the laser processing is performed so that the processing state after the second prescribed amount of laser processing becomes the slicing full cut state, the tact becomes worse. It is found that the object 100 can be peeled off while suppressing the above. Therefore, in the laser processing apparatus 101 and the laser processing method of the present embodiment, it is determined whether the processing state after the laser processing of the second specified amount is the slicing full cut state based on the second multiple line image, and the slicing full cut state is determined. If it is not in the state, the second processing condition is changed. As a result, it becomes possible to set the second processing condition that allows the object 100 to be peeled off while suppressing the deterioration of the tact.
- the half-cut processing condition, the first processing condition, and the second processing condition are determined, but at least one of these may be determined.
- the machining state is automatically determined by the control unit 9, but the user may determine the machining state based on the imaging result of the imaging unit IR.
- the steps S51 and S61 form a first pre-process, and the steps S52 and S62 form a first imaging process. This embodiment can be applied not only to the first embodiment but also to the second embodiment or the third embodiment.
- the object 100 used when determining the processing conditions in the present embodiment is, for example, a wafer for condition determination that is a practice wafer that does not finally become a semiconductor device (product) due to separation processing or the like, and for example, separation A semiconductor device wafer that is a production wafer that will eventually become a semiconductor device by processing or the like.
- a processing line may be set in any of the entire area of the wafer to determine the processing conditions.
- a processing line may be set in the outer edge region that has little influence on the peeling quality of the wafer, the processing conditions may be determined, and the peeling processing may be continuously performed under the determined processing conditions. ..
- the latter may be adopted, for example, when it is necessary to adjust the processing conditions for each wafer due to variations in the backside film of the wafer.
- the trimming process for forming the modified region 43 is performed before the object 100 is peeled by the peeling process.
- the peeling process is performed.
- the removal area E may be removed by trimming. Also in this case, the removed portion removed from the object 100 by the peeling process can be reused.
- the trimming process is performed.
- the removal area E may be removed.
- the object 100 may be peeled off by a peeling process after the removal region E is removed by a trimming process.
- the processing line is not limited to the spiral line M11, and processing lines of various shapes may be set on the object 100.
- a plurality of linear lines (parallel lines) M12 may be set on the object 100 so as to be arranged in a predetermined direction.
- the plurality of lines M12 are included in the line (processing line) M20.
- the line M12 is a virtual line, but may be an actually drawn line.
- the line M12 may have coordinates designated. A part or all of the plurality of lines M12 arranged so as to be aligned may be connected, or may not be connected.
- the above embodiment may include a plurality of laser processing heads as the irradiation unit.
- a plurality of laser processing heads are provided as the irradiation unit, the above-described first processing process (first processing process), second processing process (second processing process), first pre-processing (first pre-process) and second pre-processing
- laser processing may be performed using a plurality of laser processing heads.
- the reflective spatial light modulator 34 is adopted, but the spatial light modulator is not limited to the reflective type, and a transmissive spatial light modulator may be adopted.
- the type of the target object 100, the shape of the target object 100, the size of the target object 100, the number and direction of crystal orientations of the target object 100, and the plane orientation of the main surface of the target object 100 are not particularly limited. ..
- the back surface 100b of the object 100 is the laser light incident surface, but the front surface 100a of the object 100 may be the laser light incident surface.
- the modified region may be, for example, a crystal region, a recrystallized region, or a gettering region formed inside the object 100.
- the crystal region is a region in which the structure of the object 100 before processing is maintained.
- the recrystallized region is a region which is once solidified as a single crystal or a polycrystal when it is solidified again after being vaporized, turned into plasma or melted.
- the gettering region is a region that exhibits a gettering effect of collecting and trapping impurities such as heavy metals, and may be formed continuously or intermittently.
- the above embodiment may be applied to processing such as ablation.
- the pitch of the modified spots SA included in the modified region 4 may be blocked. Sex can occur. In this case, other processing conditions may be changed so that the pitch is constant.
- the laser processing apparatus 1 ⁇ / b> A includes an alignment camera AC and an imaging unit IR, and the laser processing head (first irradiation unit) 10 ⁇ / b> B is attached to the mounting portion 66 via the turning mechanism 67.
- the point of attachment is mainly different from the laser processing apparatus 1 described above.
- the laser processing apparatus 1A trims a target object 100 having a surface 100a (hereinafter also referred to as “first main surface 100a”) and a surface 100b (hereinafter also referred to as “second main surface 100b”). Then, a peeling process is performed to obtain (manufacture) a semiconductor device.
- the trimming process is a process for removing an unnecessary portion of the object 100.
- the peeling process is a process for peeling a part of the object 100.
- the configuration of the laser processing apparatus 1A will be described focusing on the differences from the laser processing apparatus 1 described above. Note that, in FIG. 40, the device frame 1a, the light source unit 8 and the like are omitted.
- the alignment camera AC and the imaging unit IR are attached to the attachment section 65 together with the laser processing head (second irradiation section) 10A.
- the alignment camera AC images, for example, a device pattern or the like using light that passes through the target object 100.
- alignment of the irradiation position of the laser light L1 with respect to the target object 100 is performed.
- the imaging unit IR images the object 100 with light that passes through the object 100. For example, when the object 100 is a wafer containing silicon, light in the near infrared region is used in the imaging unit IR. Based on the image obtained by the imaging unit IR, confirmation of the modified region formed inside the object 100 and the state of cracks extending from the modified region are performed.
- the laser processing head 10B is attached to the attachment portion 66 via the turning mechanism 67.
- the turning mechanism 67 is attached to the mounting portion 66 so as to turn about an axis parallel to the X direction as a center line.
- the moving mechanism 6 causes the optical axis of the condensing part (first condensing part) 14 of the laser processing head 10B to be parallel to the second main surface 100b of the object 100 in the Y direction (perpendicular to the surface of the object. So that the optical axis of the condensing part 14 of the laser processing head 10B is along the Z direction (second direction) perpendicular to the second main surface 100b.
- the direction of the laser processing head 10B can be changed.
- the state where the optical axis of the condensing unit 14 is along the first direction means a state in which the optical axis makes an angle of 10 ° or less with respect to the first direction.
- the state where the optical axis of the portion 14 is along the second direction means a state where the optical axis makes an angle of 10 ° or less with the second direction.
- the target object 100 includes, for example, a disc-shaped semiconductor wafer.
- the object 100 may be formed of various materials and may have various shapes.
- a functional element (not shown) is formed on the first main surface 100a of the object 100.
- the functional element is, for example, a light receiving element such as a photodiode, a light emitting element such as a laser diode, a circuit element such as a memory, or the like.
- an effective portion RR and a peripheral portion EE are set in the object 100.
- the effective portion RR is a portion corresponding to the semiconductor device to be acquired.
- the effective portion RR is, for example, a disk-shaped portion including a central portion when the object 100 is viewed from the thickness direction.
- the peripheral portion EE is a region outside the effective portion RR of the object 100.
- the peripheral edge portion EE is an outer edge portion of the object 100 other than the effective portion RR.
- the peripheral edge portion EE is, for example, an annular bevel portion (bevel portion) surrounding the effective portion RR.
- a virtual surface M1 as a planned separation surface is set on the object 100.
- the virtual surface M1 is a surface where the modified region is to be formed.
- the virtual surface M1 is a surface that faces the second main surface 100b that is the laser light incident surface of the object 100 (that is, a surface that faces the second main surface 100b).
- the virtual surface M1 includes a first area M1a and a second area M1b.
- the first region M1a is a region located in the effective portion RR of the virtual surface M1.
- the second area M1b is an area located on the peripheral edge portion EE of the virtual surface M1.
- the virtual surface M1 is a surface parallel to the second principal surface 100b and has, for example, a circular shape.
- the virtual surface M1 is a virtual area and is not limited to a flat surface, and may be a curved surface or a three-dimensional surface.
- the control unit 9 can set the effective portion RR, the peripheral portion EE, and the virtual surface M1.
- the effective portion RR, the peripheral portion EE, and the virtual surface M1 may have coordinate designations.
- the object 100 has a line M3 as a planned trimming line.
- the line M3 is a line which is scheduled to form the modified region.
- the line M3 extends annularly inside the outer edge of the object 100.
- the line M3 extends, for example, in an annular shape.
- the line M3 is set at the boundary between the effective portion RR and the peripheral edge portion EE at the portion inside the object 100 on the side opposite to the laser light incident surface with respect to the virtual surface M1.
- the setting of the line M3 can be performed by the control unit 9.
- the line M3 may have coordinates designated.
- the manufacturing method described below is a method in which a removed portion (a portion that is not used as a semiconductor device in the target object 100) removed from the target object 100 by the trimming process and the peeling process can be reused.
- the object 100 is supported by the support portion 7 with the second main surface 100b facing the laser light incident surface side.
- a substrate such as a support substrate is bonded or a tape material is attached to the first main surface 100a side of the object 100 on which the functional element is formed.
- the object 100 is trimmed.
- the condensing part (second condensing part) 14 of the laser processing head 10A is located above the line M3, and the first converging point P1 of the laser beam L1 is located at a position on the line M3.
- the moving mechanism 5 moves the support portion 7 and the moving mechanism 6 moves the laser processing head 10A so that the “focus point P1” is simply located.
- the moving mechanism 5 rotates the support portion 7 at a constant rotation speed with the rotation axis C (hereinafter, also referred to as “axis C”) as a center line, and at the position on the line M3, the focus point P1 of the laser light L1.
- axis C the rotation axis C
- Laser beam L1 is emitted from the laser processing head 10A in the state of being positioned. Such irradiation of the laser beam L1 is repeated by changing the position of the condensing point P1 in the Z direction.
- the line M3 is formed in the portion on the opposite side of the virtual surface M1 (see FIG. 41) inside the object 100 from the laser light incident surface.
- the modified region 43 is formed along the line (see FIG. 41).
- the optical axis of the light condensing unit 14 of the laser processing head 10A is along the Z direction, and the second main surface 100b of the object 100 is the incident surface of the laser beam L1.
- the moving mechanism 5 causes the laser processing head 10A to emit the laser beam L1 while rotating the support portion 7 around the axis C as the center line at a constant rotation speed, and at the same time, the first region M1a (of the virtual surface M1 ( In FIG. 41), the moving mechanism 6 moves the laser processing head 10A so that the focal point P1 moves from the outside to the inside along the Y direction.
- the reformed region 4 extending in a spiral shape (involute curve) inside the object 100 along the first region M1a (see FIG. 41).
- the optical axis of the condensing portion 14 of the laser processing head 10A is along the Z direction
- the second main surface 100b of the object 100 is the incident surface of the laser beam L1. Is.
- the control unit 9 places the first inside the effective portion RR in a state where the optical axis of the condensing unit 14 of the laser processing head 10A is along the Z direction.
- the support 7, the laser processing head 10A, and the plurality of moving mechanisms 5 and 6 are controlled so that the modified region 4 is formed along the region M1a.
- the peripheral edge portion EE of the object 100 is subjected to a peeling process.
- the moving mechanism 6 changes the direction of the laser processing head 10B so that the optical axis of the condensing portion 14 of the laser processing head 10B is in the Y direction, and is shown in FIGS. 41 and 47.
- the moving mechanism 5 moves the support portion 7 and the moving mechanism 6 moves the laser processing head 10B so that the focus point P2 of the laser light L2 is located at the position on the second area M1b of the virtual surface M1.
- the laser processing is performed with the focus point P2 of the laser light L2 positioned at the position on the second region M1b.
- the laser beam L2 is emitted from the head 10B.
- the modified region 4a is formed inside the peripheral portion EE along the second region M1b.
- the crack 4b extends from the modified region 4a to the inside (that is, the modified region 4 side along the first region M1a) and the outside (that is, the side face EE1 side of the object 100).
- the optical axis of the condensing part 14 of the laser processing head 10B is along the Y direction
- the side surface EE1 of the object 100 is the incident surface of the laser beam L2.
- the side surface EE1 is a surface perpendicular to the first main surface 100a and the second main surface 100b among the side surfaces intersecting the first main surface 100a and the second main surface 100b (first It is a surface perpendicular to the first main surface 100a and the second main surface 100b when viewed from a direction parallel to the main surface 100a and the second main surface 100b.
- the side surface EE2 is a chamfer formed between the first main surface 100a and the side surface EE1 and between the second main surface 100b and the side surface EE1 among the side surfaces intersecting the first main surface 100a and the second main surface 100b.
- the surface is, for example, a round shape that is convex outward.
- the side surface EE1 and the side surface EE2 are included in the peripheral edge portion EE. In this embodiment, the side faces EE1 and EE2 form a bevel portion.
- the control unit 9 changes the inside of the peripheral edge portion EE in a state where the optical axis of the condensing portion 14 of the laser processing head 10B is along the Y direction.
- the support portion 7, the laser processing head 10B, and the plurality of moving mechanisms 5 and 6 are controlled so that the quality region 4a is formed.
- the control unit 9 controls the support unit 7 with the axis C perpendicular to the second main surface 100b of the object 100 as a center line in a state where the optical axis of the light condensing unit 14 of the laser processing head 10B is along the Y direction.
- the moving mechanism 5 is controlled so as to rotate.
- the polarization direction of the laser light L2 emitted from the condensing part 14 of the laser processing head 10B is the condensing of the laser light L2.
- the point P2 is along the moving direction of the object 100.
- a part of the object 100 is peeled off with the modified region across the virtual plane M1 (see FIG. 41) and the crack extending from the modified region as boundaries.
- the peripheral edge portion EE is removed with the modified region along the line M3 (see FIG. 41) and the crack extending from the modified region as boundaries.
- the peeling of a part of the object 100 and the removal of the peripheral edge portion EE may be performed by using, for example, a suction jig.
- Part of the object 100 may be peeled off on the support portion 7 or may be moved to an area dedicated to peeling.
- a part of the object 100 may be peeled off by using an air blow or a tape material.
- the modified regions 4 and 43 may be selectively etched with an etching solution (KOH, TMAH, or the like) that reacts with the object 100. Thereby, the object 100 can be easily peeled off.
- an etching solution KOH, TMAH, or the like
- the support portion 7 is rotated at a constant rotation speed, the rotation speed may be changed.
- the rotation speed of the support portion 7 may be changed so that the pitch of the reforming spots included in the reforming region 4 is constant.
- the separation surface 100h of the object 100 is subjected to finish grinding or polishing with an abrasive such as a grindstone.
- an abrasive such as a grindstone.
- the pitch of a plurality of reforming spots included in the reforming region 4 to be formed is made dense, and the reforming spots are spread on the virtual plane M1 as the planned peeling surface, thereby reducing the target object. 100 may be peeled off.
- the processing conditions are such that the cracks do not relatively extend from the modified spot (for example, the wavelength of the laser light is a short wavelength (1028 nm), the pulse width is 50 nsec, and the pulse pitch is 1 to 10 ⁇ m (particularly, 1.5 ⁇ m). .About.3.5 ⁇ m)) is selected.
- the processing condition the condition that the crack extends along the virtual plane M1 is selected.
- the wavelength of the laser light L1 is selected to be a long wavelength (for example, 1099 nm) and the pulse width is 700 nsec.
- the laser processing head 10B collects light in a state where the optical axis of the condensing unit 14 of the laser processing head 10B is along the Y direction intersecting the direction perpendicular to the second main surface 100b of the object 100.
- the laser light L2 is condensed and emitted from the portion 14 to form the modified region 4a inside the peripheral edge portion EE of the object 100.
- the laser is provided inside the peripheral edge portion EE of the object 100 including the side surfaces EE1 and EE2.
- the light L2 can be condensed appropriately. Therefore, according to the laser processing apparatus 1A, the modified region 4a can be accurately formed inside the peripheral portion EE of the object 100.
- FIG. 49 (a) is a diagram showing a cross-sectional photograph of the peripheral portion of the object
- FIG. 49 (b) is a diagram showing a partially enlarged cross-sectional photograph of FIG. 49 (a).
- the object is a silicon wafer and the peripheral portion is a bevel portion.
- the width of the bevel portion in the horizontal direction (direction parallel to the main surface of the silicon wafer) is about 200 to 300 ⁇ m, and the vertical direction of the side surface of the bevel portion which is perpendicular to the main surface of the silicon wafer ( The width in the direction perpendicular to the main surface of the silicon wafer) was about 100 ⁇ m.
- the surface perpendicular to the main surface of the silicon wafer is the laser light incident surface, and the laser light is incident from the outside of the bevel portion to the inside of the bevel portion.
- the laser light was focused along the direction. As a result, a modified region and a crack extending horizontally inward and outward from the modified region were formed inside the peripheral portion.
- the extension amount of the crack was about 120 ⁇ m.
- the condensing unit 14 of the laser processing head 10A With the optical axis of the condensing unit 14 of the laser processing head 10A being along the Z direction perpendicular to the second main surface 100b of the object 100, the condensing unit 14 of the laser processing head 10A.
- the laser beam L1 is emitted while being collected from the target region 100, so that the modified region 4 is formed inside the effective portion RR of the object 100 along the virtual plane M1. Thereby, the modified region 4 can be accurately formed inside the effective portion RR of the object 100 along the virtual plane M1.
- the support portion 7 is rotated about the axis C perpendicular to the second main surface 100b as a center line.
- the modified region 4a is formed inside the peripheral portion EE of the object 100.
- the modified region 4a can be efficiently formed inside the peripheral portion EE of the object 100.
- the polarization direction of the laser light L2 emitted from the light condensing unit 14 of the laser processing head 10B is in the state where the optical axis of the light condensing unit 14 of the laser processing head 10B is along the Y direction.
- the condensing point P2 of the laser light L2 is along the direction in which it moves with respect to the object 100.
- the moving mechanisms 5 and 6 may be configured to move at least one of the support 7 and the laser processing head 10A. Similarly, the moving mechanisms 5 and 6 may be configured to move at least one of the support portion 7 and the laser processing head 10B.
- control unit 9 forms the modified region 4 along the virtual plane M1 inside the effective portion RR of the object 100 in a state where the optical axis of the condensing unit 14 of the laser processing head 10B is along the Z direction.
- the support 7, the laser processing head 10B, and the moving mechanisms 5 and 6 may be controlled. Thereby, the modified region 4 can be accurately formed along the virtual plane M1 inside the effective portion RR of the object 100 together with or instead of the laser processing head 10A.
- the laser processing head 10B is changed to the object 100 in both the state where the optical axis of the light condensing portion 14 is along the Z direction and the state where the optical axis of the light condensing portion 14 is along the Y direction.
- the laser processing apparatus 1A may not include the laser processing head 10A.
- the laser processing head 10B is dedicated to forming the modified region 4a in the peripheral edge portion EE of the object 100 with the optical axis of the condensing portion 14 along the Y direction. May be. Also in that case, when the laser processing apparatus 1A is dedicated to forming the modified region 4a on the peripheral edge portion EE of the object 100, the laser processing apparatus 1A includes the laser processing head 10A. You don't have to.
- the optical axis of the condensing portion 14 of the laser processing head 10B intersects the direction perpendicular to the second main surface 100b of the object 100 (that is, the Z direction).
- the laser beam L2 is emitted from the condensing part 14 of the laser processing head 10B so that the modified region 4a is formed inside the peripheral edge portion EE of the object 100 in a direction other than the Y direction among the directions. It may be emitted while being collected.
- the light of the light condensing portion 14 of the laser processing head 10B is appropriately focused so that the laser light L2 is focused inside the peripheral edge portion EE.
- the angle of the axis can be adjusted.
- the direction in which the optical axis of the condensing part 14 of the laser processing head 10B intersects the direction perpendicular to the second main surface 100b of the object 100 is: For example, a direction forming an angle of 10 to 90 ° with respect to a direction perpendicular to the second main surface 100b of the object 100, or a direction of 30 to 90 ° with respect to a direction perpendicular to the second main surface 100b of the object 100. It is a direction that forms an angle.
- the peripheral portion EE of the target object 100 is subjected to the release processing after the effective portion RR of the target object 100 is subjected to the release processing, but the peripheral edge portion EE of the target object 100 is subjected to the release processing. After that, the effective portion RR of the object 100 may be subjected to a peeling process.
- the second main surface 100b of the object 100 is the laser light incident surface, but the first main surface 100a of the object 100 may be the laser light incident surface.
- the laser processing device 1A may be applied to processing such as ablation.
- the type of the target object 100, the shape of the target object 100, the size of the target object 100, the number and direction of crystal orientations of the target object 100, and the plane orientation of the main surface of the target object 100 are not particularly limited.
- the modified region may be a crystal region, a recrystallization region, a gettering region, or the like formed inside the object 100.
- the crystal region is a region in which the structure of the object 100 before processing is maintained.
- the recrystallized region is a region which is solidified as a single crystal or a polycrystal when re-solidified after being evaporated, turned into plasma or melted.
- the gettering region is a region that exhibits a gettering effect of collecting and trapping impurities such as heavy metals.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Mechanical Engineering (AREA)
- Plasma & Fusion (AREA)
- Power Engineering (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Robotics (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Laser Beam Processing (AREA)
- Mechanical Treatment Of Semiconductor (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
- Rotary Pumps (AREA)
Abstract
This laser machining device comprises: a support unit; an irradiation unit; a movement mechanism; a control unit; and an imaging unit. The control unit executes first pre-processing in which a modified region is formed on a target by irradiating the target with laser light along a machining line having multiple parallel lines arranged side by side. The imaging unit acquires a first image that shows a machining state where, in the first pre-processing, the modified region is formed along the machining line having multiple parallel lines.
Description
本発明の一側面は、レーザ加工装置及びレーザ加工方法に関する。
One aspect of the present invention relates to a laser processing apparatus and a laser processing method.
特許文献1には、ワークを保持する保持機構と、保持機構に保持されたワークにレーザ光を照射するレーザ照射機構と、を備えるレーザ加工装置が記載されている。特許文献1に記載のレーザ加工装置では、集光レンズを有するレーザ照射機構が基台に対して固定されており、集光レンズの光軸に垂直な方向に沿ったワークの移動が保持機構によって実施される。
Patent Document 1 describes a laser processing apparatus that includes a holding mechanism that holds a work, and a laser irradiation mechanism that irradiates the work held by the holding mechanism with laser light. In the laser processing device described in Patent Document 1, a laser irradiation mechanism having a condenser lens is fixed to a base, and movement of a work along a direction perpendicular to the optical axis of the condenser lens is performed by a holding mechanism. Be implemented.
ところで、上述したようなレーザ加工装置では、対象物にレーザ光を照射することにより、対象物の内部において仮想面に沿って改質領域を形成する場合がある。この場合、仮想面に渡る改質領域を境界として、対象物の一部が剥離される。このような剥離加工では、例えば対象物にレーザ光を照射する際の加工条件によっては、対象物を剥離することが困難になるおそれがある。
By the way, in the laser processing apparatus as described above, a modified region may be formed along the virtual surface inside the object by irradiating the object with laser light. In this case, a part of the object is peeled off with the modified region extending over the virtual surface as a boundary. In such a peeling process, it may be difficult to peel the target object depending on the processing conditions when the target object is irradiated with the laser beam.
そこで、本発明の一側面は、対象物を確実に剥離することが可能なレーザ加工装置及びレーザ加工方法を提供することを課題とする。
Therefore, an object of one aspect of the present invention is to provide a laser processing apparatus and a laser processing method capable of reliably peeling an object.
本発明の一側面に係るレーザ加工装置は、対象物にレーザ光を照射することにより、対象物の内部において仮想面に沿って改質領域を形成するレーザ加工装置であって、対象物を支持する支持部と、支持部によって支持された対象物にレーザ光を照射する照射部と、レーザ光の集光点の位置が仮想面に沿って移動するように支持部及び照射部の少なくとも一方を移動させる移動機構と、支持部、照射部及び移動機構を制御する制御部と、レーザ光の入射方向に沿う方向から対象物を撮像する撮像部と、を備え、制御部は、並ぶように配された複数の並行ラインを有する加工用ラインに沿って、レーザ光を対象物に照射させて、改質領域を対象物に形成する第1前処理を実行し、撮像部は、第1前処理により複数の並行ラインを有する加工用ラインに沿って改質領域を形成した場合の加工状態を映す第1画像を取得する。
A laser processing apparatus according to one aspect of the present invention is a laser processing apparatus that forms a modified region along a virtual surface inside an object by irradiating the object with laser light, and supports the object. A support unit, an irradiation unit that irradiates the object supported by the support unit with laser light, and at least one of the support unit and the irradiation unit so that the position of the focal point of the laser light moves along the virtual surface. The control unit includes a moving mechanism for moving, a control unit for controlling the supporting unit, the irradiation unit, and the moving mechanism, and an image capturing unit for capturing an image of an object in a direction along the incident direction of the laser light. The object is irradiated with the laser light along the processing line having the plurality of parallel lines, and the first preprocessing for forming the modified region on the object is executed. For machining with multiple parallel lines Acquiring a first image that reflects the processed state in the case of forming the modified region along the Inn.
本発明者らは鋭意検討を重ねた結果、対象物の剥離と、複数の並行ラインを有する加工用ラインに沿って改質領域を形成した場合の加工状態と、の間には、相関があることを見出した。そこで、本発明の一側面に係るレーザ加工装置では、複数の並行ラインを有する加工用ラインに沿って改質領域を形成した場合の加工状態を映す第1画像を取得する。この第1画像に基づくことで、対象物を剥離できるように加工条件を策定することが可能となる。したがって、対象物を確実に剥離することが可能となる。
As a result of intensive studies by the present inventors, there is a correlation between the separation of the object and the processing state when the modified region is formed along the processing line having a plurality of parallel lines. I found that. Therefore, in the laser processing apparatus according to one aspect of the present invention, the first image showing the processing state when the modified region is formed along the processing line having the plurality of parallel lines is acquired. Based on this first image, the processing conditions can be set so that the object can be peeled off. Therefore, the object can be reliably peeled off.
本発明の一側面に係るレーザ加工装置では、制御部は、一本の加工用ラインに沿って、レーザ光を対象物に照射させて、改質領域を対象物に形成する第2前処理を実行し、撮像部は、第2前処理により一本の加工用ラインに沿って改質領域を形成した場合の加工状態を映す第2画像を取得してもよい。
In the laser processing apparatus according to one aspect of the present invention, the control unit performs the second pretreatment for forming the modified region on the target object by irradiating the target object with the laser light along one processing line. The image capturing unit may execute the second pre-processing to acquire the second image showing the processing state when the modified region is formed along the one processing line.
本発明者らは更に鋭意検討を重ねた結果、対象物の剥離と、一本の加工用ラインに沿って改質領域を形成した場合の加工状態と、の間には、相関があることを見出した。そこで、本発明の一側面に係るレーザ加工装置では、一本の加工用ラインに沿って改質領域を形成した場合の加工状態を映す第2画像を取得する。この第2画像に基づくことで、対象物を剥離できるように加工条件を策定することが可能となる。対象物を確実に剥離することが可能となる。
As a result of further intensive studies by the inventors, it was found that there is a correlation between the peeling of the object and the processing state when the modified region is formed along one processing line. I found it. Therefore, in the laser processing apparatus according to one aspect of the present invention, the second image showing the processing state when the modified region is formed along one processing line is acquired. Based on this second image, the processing conditions can be set so that the object can be peeled off. It is possible to reliably peel off the object.
本発明の一側面に係るレーザ加工装置では、制御部は、第2画像に映る加工状態を判定し、当該判定結果に応じて第2前処理の加工条件を変更してもよい。この場合、第2前処理の加工条件を、第2画像に応じて自動的に変更することができる。
In the laser processing device according to one aspect of the present invention, the control unit may determine the processing state shown in the second image, and change the processing conditions of the second preprocessing according to the determination result. In this case, the processing conditions of the second preprocessing can be automatically changed according to the second image.
本発明の一側面に係るレーザ加工装置では、制御部は、第2画像に映る加工状態が第1スライシング状態か否かを判定し、第1スライシング状態ではない場合に第2前処理の加工条件を変更し、第1スライシング状態は、改質領域に含まれる複数の改質スポットから延びる亀裂が、一本の加工用ラインに沿う方向に伸展する状態であってもよい。一本の加工用ラインに沿って改質領域を形成した場合の加工状態が第1スライシング状態でないと、対象物の剥離が困難になることが見出される。そこで、本発明の一側面では、第2画像に映る加工状態が第1スライシング状態ではない場合に、第2前処理の加工条件を変更する。これにより、対象物を剥離できるように加工条件を策定することが可能となる。
In the laser processing apparatus according to one aspect of the present invention, the control unit determines whether or not the processing state shown in the second image is the first slicing state, and when it is not the first slicing state, the processing conditions of the second pretreatment are set. Alternatively, the first slicing state may be a state in which cracks extending from a plurality of modified spots included in the modified region extend in a direction along a single processing line. It has been found that if the processing state when the modified region is formed along one processing line is not the first slicing state, it is difficult to peel off the object. Therefore, according to one aspect of the present invention, when the processing state shown in the second image is not the first slicing state, the processing conditions of the second pretreatment are changed. This makes it possible to set the processing conditions so that the object can be peeled off.
本発明の一側面に係るレーザ加工装置では、制御部は、第1画像に映る加工状態を判定し、当該判定結果に応じて第1前処理の加工条件を変更してもよい。この場合、第1前処理の加工条件を、第1画像に応じて自動的に変更することができる。
In the laser processing apparatus according to one aspect of the present invention, the control unit may determine the processing state shown in the first image and change the processing conditions of the first preprocessing according to the determination result. In this case, the processing conditions of the first preprocessing can be automatically changed according to the first image.
本発明の一側面に係るレーザ加工装置において、第1前処理では、並ぶように配された複数の並行ラインを有する加工用ラインに沿って、第1加工条件でレーザ光を対象物に照射させて、改質領域を対象物に形成し、撮像部は、第1画像として、第1規定量のレーザ加工後の加工状態を映す画像を取得し、制御部は、第1画像に基づいて、第1前処理による第1規定量のレーザ加工後の加工状態が第2スライシング状態か否かを判定し、第2スライシング状態ではない場合に第1加工条件を変更し、第2スライシング状態は、改質領域に含まれる複数の改質スポットから延びる亀裂が、並行ラインに沿う方向及び並行ラインと交差する方向に伸展して互いに繋がる状態であってもよい。
In the laser processing apparatus according to one aspect of the present invention, in the first pretreatment, a target object is irradiated with laser light along a processing line having a plurality of parallel lines arranged side by side. Then, the modified region is formed on the object, the imaging unit acquires, as the first image, an image showing the processing state after the laser processing of the first specified amount, and the control unit, based on the first image, It is determined whether or not the machining state after the first prescribed amount of laser machining by the first pretreatment is the second slicing state, and if the second slicing state is not the first machining condition is changed, the second slicing state is The cracks extending from the plurality of modified spots included in the modified region may be in a state of extending and connecting to each other in a direction along the parallel lines and in a direction intersecting the parallel lines.
複数の並行ラインを有する加工用ラインに沿って改質領域を形成する際、第1規定量のレーザ加工後の加工状態が第2スライシング状態となるようにレーザ加工を行うと、対象物を確実に剥離し得ることが見出される。そこで、本発明の一側面では、第1画像に基づいて第1規定量のレーザ加工後の加工状態が第2スライシング状態か否かを判定し、第2スライシング状態ではない場合に第1加工条件を変更する。これにより、対象物を確実に剥離し得る第1加工条件を策定することが可能となる。
When the modified region is formed along the processing line having a plurality of parallel lines, the laser processing is performed so that the processing state after the laser processing of the first specified amount becomes the second slicing state It is found that it can be peeled off. Therefore, in one aspect of the present invention, it is determined based on the first image whether or not the processing state after the laser processing of the first specified amount is the second slicing state, and when the second slicing state is not the first processing condition. To change. As a result, it becomes possible to set the first processing condition that can surely peel off the object.
本発明の一側面に係るレーザ加工装置において、第1前処理では、並ぶように配された複数の並行ラインを有する加工用ラインに沿って、第2加工条件でレーザ光を対象物に照射させて、改質領域を対象物に形成し、撮像部は、第1画像として、第1規定量のレーザ加工後の加工状態を映す画像と、第1規定量よりも多い第2規定量のレーザ加工後の加工状態を映す画像と、を取得し、制御部は、第1規定量のレーザ加工後の加工状態を映す画像としての第1画像に基づいて、第1前処理による第1規定量のレーザ加工後の加工状態が第2スライシング状態か否かを判定し、第1規定量のレーザ加工後の加工状態が第2スライシング状態の場合、第2加工条件を変更し、第1規定量のレーザ加工後の加工状態が第2スライシング状態ではない場合、第2規定量のレーザ加工後の加工状態を映す画像としての第1画像に基づいて、第1前処理による第2規定量のレーザ加工後の加工状態が第2スライシング状態か否かを判定し、第2規定量のレーザ加工後の加工状態が第2スライシング状態ではない場合に、第2加工条件を変更し、第2スライシング状態は、改質領域に含まれる複数の改質スポットから延びる亀裂が、並行ラインに沿う方向及び並行ラインと交差する方向に伸展して互いに繋がる状態であってもよい。
In the laser processing apparatus according to one aspect of the present invention, in the first pretreatment, the target object is irradiated with laser light along a processing line having a plurality of parallel lines arranged side by side. Then, the modified region is formed on the object, and the imaging unit displays, as the first image, an image showing the processing state after laser processing of the first specified amount and the laser of the second specified amount larger than the first specified amount. An image showing the processed state after processing and a first specified amount by the first pre-processing based on the first image as an image showing the processed state after the laser processing of the first specified amount. It is determined whether the processing state after laser processing is the second slicing state. If the processing state after the laser processing of the first specified amount is the second slicing state, the second processing condition is changed and the first specified amount is changed. After laser processing, the processing state is not the second slicing state. In this case, based on the first image as the image showing the machining state after the second prescribed amount of laser machining, it is determined whether the machining state after the second prescribed amount of laser machining by the first pretreatment is the second slicing state. If the processing state after the second prescribed amount of laser processing is not the second slicing state, the second processing condition is changed, and the second slicing state is changed from a plurality of modified spots included in the modified region. The extending cracks may be in a state of extending and connecting with each other in a direction along the parallel lines and in a direction intersecting with the parallel lines.
複数の並行ラインを有する加工用ラインに沿って改質領域を形成する際、第2規定量のレーザ加工後の加工状態が第2スライシング状態となるようにレーザ加工を行うと、タクトの悪化を抑えつつ対象物を剥離し得ることが見出される。そこで、本発明の一側面では、第1画像に基づいて第1規定量のレーザ加工後の加工状態が第2スライシング状態か否かを判定し、第2スライシング状態の場合に第2加工条件を変更する。第1画像に基づいて第2規定量のレーザ加工後の加工状態が第2スライシング状態か否かを判定し、第2スライシング状態ではない場合に第2加工条件を変更する。これにより、タクトの悪化を抑えつつ対象物を剥離し得る第2加工条件を策定することが可能となる。
When forming the modified region along the processing line having a plurality of parallel lines, if the laser processing is performed so that the processing state after the second prescribed amount of laser processing becomes the second slicing state, the tact becomes worse. It is found that the object can be peeled off while suppressing. Therefore, according to one aspect of the present invention, it is determined whether or not the processing state after the laser processing of the first specified amount is the second slicing state based on the first image, and when the second slicing state is set, the second processing condition is set. change. Based on the first image, it is determined whether or not the processing state after the second prescribed amount of laser processing is the second slicing state, and if the second slicing state is not the second processing condition is changed. As a result, it is possible to set the second processing condition that can peel off the object while suppressing the deterioration of the tact.
本発明の一側面に係るレーザ加工装置では、対象物は、条件決定用のウェハであってもよいし、半導体デバイス用のウェハであってもよい。対象物が条件決定用のウェハの場合には、ウェハの全体領域の何れかに加工用ラインを設定して、加工条件を決定できる。対象物が半導体デバイス用のウェハの場合には、ウェハにおける剥離品質に影響が少ない外縁領域に加工用ラインを設定して、加工条件を決定できる。条件決定用のウェハは、例えば最終的に半導体デバイス(製品)とはならないプラクティス用のウェハである。半導体デバイス用のウェハは、例えば最終的に半導体デバイスとなるプロダクション用のウェハである。
In the laser processing apparatus according to one aspect of the present invention, the object may be a wafer for condition determination or a wafer for semiconductor device. When the object is a wafer for condition determination, the processing line can be set in any of the entire area of the wafer to determine the processing condition. When the object is a semiconductor device wafer, a processing line can be set in an outer edge region that has little influence on the peeling quality of the wafer to determine the processing conditions. The wafer for condition determination is, for example, a practice wafer that does not finally become a semiconductor device (product). The semiconductor device wafer is, for example, a production wafer that will eventually become a semiconductor device.
本発明の一側面に係るレーザ加工方法は、対象物にレーザ光を照射することにより、対象物の内部において仮想面に沿って改質領域を形成するレーザ加工方法であって、並ぶように配された複数の並行ラインを有する加工用ラインに沿って、レーザ光を対象物に照射させて、改質領域を対象物に形成する第1前工程と、第1前工程により複数の並行ラインを有する加工用ラインに沿って改質領域を形成した場合の加工状態を映す第1画像を取得する第1撮像工程と、を備える。
A laser processing method according to one aspect of the present invention is a laser processing method in which a modified region is formed along a virtual surface inside an object by irradiating the object with laser light, and the laser processing method is arranged in a line. A plurality of parallel lines are formed by a first pre-process of irradiating the object with laser light to form the modified region on the object along the machining line having the plurality of parallel lines formed by the first pre-process. A first imaging step of obtaining a first image showing a processing state when the modified region is formed along the processing line.
このレーザ加工方法では、第1前工程により複数の並行ラインを有する加工用ラインに沿って改質領域を形成した場合の加工状態を映す第1画像を取得する。取得した第1画像に基づくことで、対象物を剥離できる加工状態となるように加工条件を策定することが可能となる。したがって、対象物を確実に剥離することが可能となる。
In this laser processing method, the first image showing the processing state when the modified region is formed along the processing line having a plurality of parallel lines in the first pre-process is acquired. Based on the acquired first image, it is possible to set the processing conditions so that the processing state is such that the object can be peeled off. Therefore, the object can be reliably peeled off.
本発明の一側面によれば、対象物を確実に剥離することが可能なレーザ加工装置及びレーザ加工方法を提供することができる。
According to one aspect of the present invention, it is possible to provide a laser processing apparatus and a laser processing method capable of reliably peeling an object.
以下、実施形態について、図面を参照して詳細に説明する。なお、各図において同一又は相当部分には同一符号を付し、重複する説明を省略する。
Hereinafter, embodiments will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts will be denoted by the same reference symbols and redundant description will be omitted.
まず、レーザ加工装置の基本的な構成、作用、効果及び変形例について説明する。
First, the basic configuration, operation, effect, and modification of the laser processing device will be described.
[レーザ加工装置の構成]
図1に示されるように、レーザ加工装置1は、複数の移動機構5,6と、支持部7と、1対のレーザ加工ヘッド10A,10Bと、光源ユニット8と、制御部9と、を備えている。以下、第1方向をX方向、第1方向に垂直な第2方向をY方向、第1方向及び第2方向に垂直な第3方向をZ方向という。本実施形態では、X方向及びY方向は水平方向であり、Z方向は鉛直方向である。 [Configuration of laser processing equipment]
As shown in FIG. 1, thelaser processing apparatus 1 includes a plurality of moving mechanisms 5 and 6, a support 7, a pair of laser processing heads 10A and 10B, a light source unit 8, and a controller 9. I have it. Hereinafter, the first direction will be referred to as the X direction, the second direction perpendicular to the first direction will be referred to as the Y direction, and the third direction perpendicular to the first and second directions will be referred to as the Z direction. In this embodiment, the X direction and the Y direction are horizontal directions, and the Z direction is a vertical direction.
図1に示されるように、レーザ加工装置1は、複数の移動機構5,6と、支持部7と、1対のレーザ加工ヘッド10A,10Bと、光源ユニット8と、制御部9と、を備えている。以下、第1方向をX方向、第1方向に垂直な第2方向をY方向、第1方向及び第2方向に垂直な第3方向をZ方向という。本実施形態では、X方向及びY方向は水平方向であり、Z方向は鉛直方向である。 [Configuration of laser processing equipment]
As shown in FIG. 1, the
移動機構5は、固定部51と、移動部53と、取付部55と、を有している。固定部51は、装置フレーム1aに取り付けられている。移動部53は、固定部51に設けられたレールに取り付けられており、Y方向に沿って移動することができる。取付部55は、移動部53に設けられたレールに取り付けられており、X方向に沿って移動することができる。
The moving mechanism 5 has a fixed portion 51, a moving portion 53, and a mounting portion 55. The fixed portion 51 is attached to the device frame 1a. The moving unit 53 is attached to a rail provided on the fixed unit 51, and can move along the Y direction. The attachment portion 55 is attached to a rail provided on the moving portion 53 and can move along the X direction.
移動機構6は、固定部61と、1対の移動部63,64と、1対の取付部65,66と、を有している。固定部61は、装置フレーム1aに取り付けられている。1対の移動部63,64のそれぞれは、固定部61に設けられたレールに取り付けられており、それぞれが独立して、Y方向に沿って移動することができる。取付部65は、移動部63に設けられたレールに取り付けられており、Z方向に沿って移動することができる。取付部66は、移動部64に設けられたレールに取り付けられており、Z方向に沿って移動することができる。つまり、装置フレーム1aに対しては、1対の取付部65,66のそれぞれが、Y方向及びZ方向のそれぞれに沿って移動することができる。移動部63,64のそれぞれは、第1及び第2水平移動機構(水平移動機構)をそれぞれ構成する。取付部65,66のそれぞれは、第1及び第2鉛直移動機構(鉛直移動機構)をそれぞれ構成する。
The moving mechanism 6 has a fixed portion 61, a pair of moving portions 63 and 64, and a pair of mounting portions 65 and 66. The fixed portion 61 is attached to the device frame 1a. Each of the pair of moving portions 63 and 64 is attached to a rail provided on the fixed portion 61, and each of them can move independently along the Y direction. The attachment portion 65 is attached to a rail provided on the moving portion 63 and can move along the Z direction. The attachment portion 66 is attached to a rail provided on the moving portion 64 and can move along the Z direction. That is, with respect to the device frame 1a, each of the pair of mounting portions 65 and 66 can move along the Y direction and the Z direction. Each of the moving units 63 and 64 constitutes a first and second horizontal moving mechanism (horizontal moving mechanism). Each of the mounting portions 65 and 66 constitutes a first and second vertical movement mechanism (vertical movement mechanism).
支持部7は、移動機構5の取付部55に設けられた回転軸に取り付けられており、Z方向に平行な軸線を中心線として回転することができる。つまり、支持部7は、X方向及びY方向のそれぞれに沿って移動することができ、Z方向に平行な軸線を中心線として回転することができる。支持部7は、対象物100を支持する。対象物100は、例えば、ウェハである。
The support portion 7 is attached to a rotary shaft provided on the attachment portion 55 of the moving mechanism 5, and can rotate about an axis parallel to the Z direction as a center line. That is, the support part 7 can move along each of the X direction and the Y direction, and can rotate about the axis parallel to the Z direction as the center line. The support part 7 supports the object 100. The object 100 is, for example, a wafer.
図1及び図2に示されるように、レーザ加工ヘッド10Aは、移動機構6の取付部65に取り付けられている。レーザ加工ヘッド10Aは、Z方向において支持部7と対向した状態で、支持部7に支持された対象物100にレーザ光L1(「第1レーザ光L1」とも称する)を照射する。レーザ加工ヘッド10Bは、移動機構6の取付部66に取り付けられている。レーザ加工ヘッド10Bは、Z方向において支持部7と対向した状態で、支持部7に支持された対象物100にレーザ光L2(「第2レーザ光L2」とも称する)を照射する。レーザ加工ヘッド10A,10Bは、照射部を構成する。
As shown in FIGS. 1 and 2, the laser processing head 10A is attached to the attachment portion 65 of the moving mechanism 6. The laser processing head 10A irradiates the object 100 supported by the support 7 with the laser light L1 (also referred to as “first laser light L1”) while facing the support 7 in the Z direction. The laser processing head 10B is attached to the attachment portion 66 of the moving mechanism 6. The laser processing head 10B irradiates the object 100 supported by the support 7 with the laser light L2 (also referred to as “second laser light L2”) while facing the support 7 in the Z direction. The laser processing heads 10A and 10B form an irradiation unit.
光源ユニット8は、1対の光源81,82を有している。光源81は、レーザ光L1を出力する。レーザ光L1は、光源81の出射部81aから出射され、光ファイバ2によってレーザ加工ヘッド10Aに導光される。光源82は、レーザ光L2を出力する。レーザ光L2は、光源82の出射部82aから出射され、別の光ファイバ2によってレーザ加工ヘッド10Bに導光される。
The light source unit 8 has a pair of light sources 81 and 82. The light source 81 outputs laser light L1. The laser light L1 is emitted from the emitting portion 81a of the light source 81 and guided to the laser processing head 10A by the optical fiber 2. The light source 82 outputs laser light L2. The laser light L2 is emitted from the emitting portion 82a of the light source 82, and is guided to the laser processing head 10B by another optical fiber 2.
制御部9は、レーザ加工装置1の各部(支持部7、複数の移動機構5,6、1対のレーザ加工ヘッド10A,10B、及び光源ユニット8等)を制御する。制御部9は、プロセッサ、メモリ、ストレージ及び通信デバイス等を含むコンピュータ装置として構成されている。制御部9では、メモリ等に読み込まれたソフトウェア(プログラム)が、プロセッサによって実行され、メモリ及びストレージにおけるデータの読み出し及び書き込み、並びに、通信デバイスによる通信が、プロセッサによって制御される。これにより、制御部9は、各種機能を実現する。
The control unit 9 controls each unit of the laser processing apparatus 1 (the supporting unit 7, the plurality of moving mechanisms 5, 6, the pair of laser processing heads 10A and 10B, the light source unit 8 and the like). The control unit 9 is configured as a computer device including a processor, a memory, a storage, a communication device, and the like. In the control unit 9, the software (program) read into the memory or the like is executed by the processor, and the reading and writing of data in the memory and the storage and the communication by the communication device are controlled by the processor. Thereby, the control unit 9 realizes various functions.
以上のように構成されたレーザ加工装置1による加工の一例について説明する。当該加工の一例は、ウェハである対象物100を複数のチップに切断するために、格子状に設定された複数のラインに沿って対象物100の内部に改質領域を形成する例である。
An example of processing by the laser processing apparatus 1 configured as above will be described. An example of the processing is an example in which a modified region is formed inside the object 100 along a plurality of lines set in a grid pattern in order to cut the object 100, which is a wafer, into a plurality of chips.
まず、対象物100を支持している支持部7がZ方向において1対のレーザ加工ヘッド10A,10Bと対向するように、移動機構5が、X方向及びY方向のそれぞれに沿って支持部7を移動させる。続いて、対象物100において一方向に延在する複数のラインがX方向に沿うように、移動機構5が、Z方向に平行な軸線を中心線として支持部7を回転させる。
First, the moving mechanism 5 moves the supporting portion 7 along the X direction and the Y direction so that the supporting portion 7 supporting the object 100 faces the pair of laser processing heads 10A and 10B in the Z direction. To move. Then, the moving mechanism 5 rotates the support part 7 with the axis line parallel to the Z direction as the center line so that the plurality of lines extending in one direction on the object 100 are along the X direction.
続いて、一方向に延在する一のライン上にレーザ光L1の集光点(集光領域の一部)が位置するように、移動機構6が、Y方向に沿ってレーザ加工ヘッド10Aを移動させる。その一方で、一方向に延在する他のライン上にレーザ光L2の集光点が位置するように、移動機構6が、Y方向に沿ってレーザ加工ヘッド10Bを移動させる。続いて、対象物100の内部にレーザ光L1の集光点が位置するように、移動機構6が、Z方向に沿ってレーザ加工ヘッド10Aを移動させる。その一方で、対象物100の内部にレーザ光L2の集光点が位置するように、移動機構6が、Z方向に沿ってレーザ加工ヘッド10Bを移動させる。
Then, the moving mechanism 6 moves the laser processing head 10A along the Y direction so that the focus point (a part of the focus area) of the laser beam L1 is located on one line extending in one direction. To move. On the other hand, the moving mechanism 6 moves the laser processing head 10B along the Y direction so that the focal point of the laser light L2 is located on the other line extending in one direction. Then, the moving mechanism 6 moves the laser processing head 10A along the Z direction so that the focusing point of the laser beam L1 is located inside the object 100. On the other hand, the moving mechanism 6 moves the laser processing head 10B along the Z direction so that the focal point of the laser beam L2 is located inside the object 100.
続いて、光源81がレーザ光L1を出力してレーザ加工ヘッド10Aが対象物100にレーザ光L1を照射すると共に、光源82がレーザ光L2を出力してレーザ加工ヘッド10Bが対象物100にレーザ光L2を照射する。それと同時に、一方向に延在する一のラインに沿ってレーザ光L1の集光点が相対的に移動し且つ一方向に延在する他のラインに沿ってレーザ光L2の集光点が相対的に移動するように、移動機構5が、X方向に沿って支持部7を移動させる。このようにして、レーザ加工装置1は、対象物100において一方向に延在する複数のラインのそれぞれに沿って、対象物100の内部に改質領域を形成する。
Subsequently, the light source 81 outputs the laser light L1 and the laser processing head 10A irradiates the object 100 with the laser light L1, and the light source 82 outputs the laser light L2 and the laser processing head 10B lasers the object 100. The light L2 is emitted. At the same time, the focal point of the laser light L1 relatively moves along one line extending in one direction, and the focal point of the laser light L2 relatively moves along another line extending in one direction. The moving mechanism 5 moves the supporting portion 7 along the X direction so that the supporting portion 7 moves in the X direction. In this way, the laser processing apparatus 1 forms the modified region inside the object 100 along each of the plurality of lines extending in one direction on the object 100.
続いて、対象物100において一方向と直交する他方向に延在する複数のラインがX方向に沿うように、移動機構5が、Z方向に平行な軸線を中心線として支持部7を回転させる。
Then, the moving mechanism 5 rotates the support part 7 with the axis line parallel to the Z direction as the center line so that the plurality of lines extending in the other direction orthogonal to the one direction in the object 100 are along the X direction. ..
続いて、他方向に延在する一のライン上にレーザ光L1の集光点が位置するように、移動機構6が、Y方向に沿ってレーザ加工ヘッド10Aを移動させる。その一方で、他方向に延在する他のライン上にレーザ光L2の集光点が位置するように、移動機構6が、Y方向に沿ってレーザ加工ヘッド10Bを移動させる。続いて、対象物100の内部にレーザ光L1の集光点が位置するように、移動機構6が、Z方向に沿ってレーザ加工ヘッド10Aを移動させる。その一方で、対象物100の内部にレーザ光L2の集光点が位置するように、移動機構6が、Z方向に沿ってレーザ加工ヘッド10Bを移動させる。
Subsequently, the moving mechanism 6 moves the laser processing head 10A along the Y direction so that the focus point of the laser light L1 is located on one line extending in the other direction. On the other hand, the moving mechanism 6 moves the laser processing head 10B along the Y direction so that the focus point of the laser light L2 is located on another line extending in the other direction. Then, the moving mechanism 6 moves the laser processing head 10A along the Z direction so that the focusing point of the laser beam L1 is located inside the object 100. On the other hand, the moving mechanism 6 moves the laser processing head 10B along the Z direction so that the focal point of the laser beam L2 is located inside the object 100.
続いて、光源81がレーザ光L1を出力してレーザ加工ヘッド10Aが対象物100にレーザ光L1を照射すると共に、光源82がレーザ光L2を出力してレーザ加工ヘッド10Bが対象物100にレーザ光L2を照射する。それと同時に、他方向に延在する一のラインに沿ってレーザ光L1の集光点が相対的に移動し且つ他方向に延在する他のラインに沿ってレーザ光L2の集光点が相対的に移動するように、移動機構5が、X方向に沿って支持部7を移動させる。このようにして、レーザ加工装置1は、対象物100において一方向と直交する他方向に延在する複数のラインのそれぞれに沿って、対象物100の内部に改質領域を形成する。
Subsequently, the light source 81 outputs the laser light L1 and the laser processing head 10A irradiates the object 100 with the laser light L1, and the light source 82 outputs the laser light L2 and the laser processing head 10B lasers the object 100. The light L2 is emitted. At the same time, the focal point of the laser beam L1 moves relatively along one line extending in the other direction, and the focal point of the laser beam L2 moves relatively along the other line extending in the other direction. The moving mechanism 5 moves the supporting portion 7 along the X direction so that the supporting portion 7 moves in the X direction. In this way, the laser processing apparatus 1 forms the modified region inside the object 100 along each of the plurality of lines extending in the other direction orthogonal to the one direction in the object 100.
なお、上述した加工の一例では、光源81は、例えばパルス発振方式によって、対象物100に対して透過性を有するレーザ光L1を出力し、光源82は、例えばパルス発振方式によって、対象物100に対して透過性を有するレーザ光L2を出力する。そのようなレーザ光が対象物100の内部に集光されると、レーザ光の集光点に対応する部分においてレーザ光が特に吸収され、対象物100の内部に改質領域が形成される。改質領域は、密度、屈折率、機械的強度、その他の物理的特性が周囲の非改質領域とは異なる領域である。改質領域としては、例えば、溶融処理領域、クラック領域、絶縁破壊領域、屈折率変化領域等がある。
In the example of the above-described processing, the light source 81 outputs the laser light L1 that is transmissive to the target object 100, for example, by the pulse oscillation method, and the light source 82 outputs the laser light L1 to the target object 100, for example, by the pulse oscillation method. On the other hand, the laser beam L2 having transparency is output. When such laser light is condensed inside the object 100, the laser light is particularly absorbed in a portion corresponding to the condensing point of the laser light, and a modified region is formed inside the object 100. The modified region is a region where the density, refractive index, mechanical strength, and other physical properties are different from the surrounding unmodified region. The modified region includes, for example, a melt-processed region, a crack region, a dielectric breakdown region, and a refractive index change region.
パルス発振方式によって出力されたレーザ光が対象物100に照射され、対象物100に設定されたラインに沿ってレーザ光の集光点が相対的に移動させられると、複数の改質スポットがラインに沿って1列に並ぶように形成される。1つの改質スポットは、1パルスのレーザ光の照射によって形成される。1列の改質領域は、1列に並んだ複数の改質スポットの集合である。隣り合う改質スポットは、対象物100に対するレーザ光の集光点の相対的な移動速度及びレーザ光の繰り返し周波数によって、互いに繋がる場合も、互いに離れる場合もある。設定されるラインの形状は、格子状に限定されず、環状、直線状、曲線状及びこれらの少なくとも何れかを組合せた形状であってもよい。
[レーザ加工ヘッドの構成] When theobject 100 is irradiated with the laser light output by the pulse oscillation method and the condensing point of the laser light is relatively moved along the line set on the object 100, a plurality of modified spots are lined up. Are formed so as to be lined up in a row along the line. One modified spot is formed by irradiation with one pulse of laser light. The one-row reforming region is a set of a plurality of reforming spots arranged in one row. Adjacent modified spots may be connected to each other or may be separated from each other depending on the relative moving speed of the condensing point of the laser light with respect to the object 100 and the repetition frequency of the laser light. The shape of the line to be set is not limited to the grid shape, and may be a ring shape, a straight line shape, a curved shape, or a shape in which at least one of these is combined.
[Configuration of laser processing head]
[レーザ加工ヘッドの構成] When the
[Configuration of laser processing head]
図3及び図4に示されるように、レーザ加工ヘッド10Aは、筐体11と、入射部12と、調整部13と、集光部14と、を備えている。
As shown in FIGS. 3 and 4, the laser processing head 10A includes a housing 11, an incident section 12, an adjusting section 13, and a condensing section 14.
筐体11は、第1壁部21及び第2壁部22、第3壁部23及び第4壁部24、並びに、第5壁部25及び第6壁部26を有している。第1壁部21及び第2壁部22は、X方向において互いに対向している。第3壁部23及び第4壁部24は、Y方向において互いに対向している。第5壁部25及び第6壁部26は、Z方向において互いに対向している。
The housing 11 has a first wall portion 21 and a second wall portion 22, a third wall portion 23 and a fourth wall portion 24, and a fifth wall portion 25 and a sixth wall portion 26. The first wall portion 21 and the second wall portion 22 face each other in the X direction. The third wall portion 23 and the fourth wall portion 24 face each other in the Y direction. The fifth wall portion 25 and the sixth wall portion 26 face each other in the Z direction.
第3壁部23と第4壁部24との距離は、第1壁部21と第2壁部22との距離よりも小さい。第1壁部21と第2壁部22との距離は、第5壁部25と第6壁部26との距離よりも小さい。なお、第1壁部21と第2壁部22との距離は、第5壁部25と第6壁部26との距離と等しくてもよいし、或いは、第5壁部25と第6壁部26との距離よりも大きくてもよい。
The distance between the third wall portion 23 and the fourth wall portion 24 is smaller than the distance between the first wall portion 21 and the second wall portion 22. The distance between the first wall portion 21 and the second wall portion 22 is smaller than the distance between the fifth wall portion 25 and the sixth wall portion 26. The distance between the first wall portion 21 and the second wall portion 22 may be equal to the distance between the fifth wall portion 25 and the sixth wall portion 26, or alternatively, the fifth wall portion 25 and the sixth wall portion 26. It may be larger than the distance to the portion 26.
レーザ加工ヘッド10Aでは、第1壁部21は、移動機構6の固定部61とは反対側に位置しており、第2壁部22は、固定部61側に位置している。第3壁部23は、移動機構6の取付部65側に位置しており、第4壁部24は、取付部65とは反対側であってレーザ加工ヘッド10B側に位置している(図2参照)。第5壁部25は、支持部7とは反対側に位置しており、第6壁部26は、支持部7側に位置している。
In the laser processing head 10A, the first wall portion 21 is located on the side opposite to the fixed portion 61 of the moving mechanism 6, and the second wall portion 22 is located on the fixed portion 61 side. The third wall portion 23 is located on the mounting portion 65 side of the moving mechanism 6, and the fourth wall portion 24 is located on the side opposite to the mounting portion 65 and on the laser processing head 10B side (FIG. 2). The fifth wall portion 25 is located on the side opposite to the support portion 7, and the sixth wall portion 26 is located on the support portion 7 side.
筐体11は、第3壁部23が移動機構6の取付部65側に配置された状態で筐体11が取付部65に取り付けられるように、構成されている。具体的には、次のとおりである。取付部65は、ベースプレート65aと、取付プレート65bと、を有している。ベースプレート65aは、移動部63に設けられたレールに取り付けられている(図2参照)。取付プレート65bは、ベースプレート65aにおけるレーザ加工ヘッド10B側の端部に立設されている(図2参照)。筐体11は、第3壁部23が取付プレート65bに接触した状態で、台座27を介してボルト28が取付プレート65bに螺合されることで、取付部65に取り付けられている。台座27は、第1壁部21及び第2壁部22のそれぞれに設けられている。筐体11は、取付部65に対して着脱可能である。
The housing 11 is configured such that the housing 11 is attached to the mounting portion 65 with the third wall portion 23 arranged on the mounting portion 65 side of the moving mechanism 6. Specifically, it is as follows. The mounting portion 65 has a base plate 65a and a mounting plate 65b. The base plate 65a is attached to a rail provided on the moving unit 63 (see FIG. 2). The mounting plate 65b is erected on the end of the base plate 65a on the laser processing head 10B side (see FIG. 2). The casing 11 is attached to the attachment portion 65 by screwing the bolt 28 to the attachment plate 65b via the pedestal 27 while the third wall portion 23 is in contact with the attachment plate 65b. The pedestal 27 is provided on each of the first wall portion 21 and the second wall portion 22. The housing 11 is attachable to and detachable from the mounting portion 65.
入射部12は、第5壁部25に取り付けられている。入射部12は、筐体11内にレーザ光L1を入射させる。入射部12は、X方向においては第2壁部22側(一方の壁部側)に片寄っており、Y方向においては第4壁部24側に片寄っている。つまり、X方向における入射部12と第2壁部22との距離は、X方向における入射部12と第1壁部21との距離よりも小さく、Y方向における入射部12と第4壁部24との距離は、X方向における入射部12と第3壁部23との距離よりも小さい。
The incident part 12 is attached to the fifth wall part 25. The incident unit 12 causes the laser light L1 to enter the housing 11. The incident portion 12 is offset to the second wall portion 22 side (one wall portion side) in the X direction and is offset to the fourth wall portion 24 side in the Y direction. That is, the distance between the incident portion 12 and the second wall portion 22 in the X direction is smaller than the distance between the incident portion 12 and the first wall portion 21 in the X direction, and the incident portion 12 and the fourth wall portion 24 in the Y direction. Is smaller than the distance between the incident portion 12 and the third wall portion 23 in the X direction.
入射部12は、光ファイバ2の接続端部2aが接続可能となるように構成されている。光ファイバ2の接続端部2aには、ファイバの出射端から出射されたレーザ光L1をコリメートするコリメータレンズが設けられており、戻り光を抑制するアイソレータが設けられていない。当該アイソレータは、接続端部2aよりも光源81側であるファイバの途中に設けられている。これにより、接続端部2aの小型化、延いては、入射部12の小型化が図られている。なお、光ファイバ2の接続端部2aにアイソレータが設けられていてもよい。
The incident portion 12 is configured so that the connection end portion 2a of the optical fiber 2 can be connected. The connection end portion 2a of the optical fiber 2 is provided with a collimator lens that collimates the laser light L1 emitted from the emission end of the fiber, and is not provided with an isolator that suppresses return light. The isolator is provided in the middle of the fiber on the light source 81 side with respect to the connection end portion 2a. As a result, the connection end portion 2a is downsized, and the incident portion 12 is downsized. An isolator may be provided at the connection end 2a of the optical fiber 2.
調整部13は、筐体11内に配置されている。調整部13は、入射部12から入射したレーザ光L1を調整する。調整部13が有する各構成は、筐体11内に設けられた光学ベース29に取り付けられている。光学ベース29は、筐体11内の領域を第3壁部23側の領域と第4壁部24側の領域とに仕切るように、筐体11に取り付けられている。光学ベース29は、筐体11と一体となっている。調整部13が有する各構成は、第4壁部24側において光学ベース29に取り付けられている。調整部13が有する各構成の詳細については後述する。
The adjusting unit 13 is arranged in the housing 11. The adjusting unit 13 adjusts the laser light L1 incident from the incident unit 12. Each component of the adjusting unit 13 is attached to an optical base 29 provided inside the housing 11. The optical base 29 is attached to the housing 11 so as to partition the area inside the housing 11 into an area on the third wall portion 23 side and an area on the fourth wall portion 24 side. The optical base 29 is integrated with the housing 11. The components included in the adjusting unit 13 are attached to the optical base 29 on the fourth wall 24 side. Details of each configuration of the adjustment unit 13 will be described later.
集光部14は、第6壁部26に配置されている。具体的には、集光部14は、第6壁部26に形成された孔26aに挿通された状態で(図5参照)、第6壁部26に配置されている。集光部14は、調整部13によって調整されたレーザ光L1を集光しつつ筐体11外に出射させる。集光部14は、X方向においては第2壁部22側(一方の壁部側)に片寄っており、Y方向においては第4壁部24側に片寄っている。つまり、X方向における集光部14と第2壁部22との距離は、X方向における集光部14と第1壁部21との距離よりも小さく、Y方向における集光部14と第4壁部24との距離は、X方向における集光部14と第3壁部23との距離よりも小さい。
The light collector 14 is arranged on the sixth wall 26. Specifically, the light collecting section 14 is arranged in the sixth wall section 26 while being inserted into the hole 26 a formed in the sixth wall section 26 (see FIG. 5). The condensing unit 14 condenses the laser light L1 adjusted by the adjusting unit 13 and emits it to the outside of the housing 11. The light collecting section 14 is offset to the second wall section 22 side (one wall section side) in the X direction and is biased to the fourth wall section 24 side in the Y direction. That is, the distance between the light collecting section 14 and the second wall section 22 in the X direction is smaller than the distance between the light collecting section 14 and the first wall section 21 in the X direction, and the light collecting section 14 and the fourth wall in the Y direction are fourth. The distance from the wall portion 24 is smaller than the distance between the light collecting portion 14 and the third wall portion 23 in the X direction.
図5に示されるように、調整部13は、アッテネータ31と、ビームエキスパンダ32と、ミラー33と、を有している。入射部12、並びに、調整部13のアッテネータ31、ビームエキスパンダ32及びミラー33は、Z方向に沿って延在する直線(第1直線)A1上に配置されている。アッテネータ31及びビームエキスパンダ32は、直線A1上において、入射部12とミラー33との間に配置されている。アッテネータ31は、入射部12から入射したレーザ光L1の出力を調整する。ビームエキスパンダ32は、アッテネータ31で出力が調整されたレーザ光L1の径を拡大する。ミラー33は、ビームエキスパンダ32で径が拡大されたレーザ光L1を反射する。
As shown in FIG. 5, the adjusting unit 13 has an attenuator 31, a beam expander 32, and a mirror 33. The incident unit 12, the attenuator 31, the beam expander 32, and the mirror 33 of the adjusting unit 13 are arranged on a straight line (first straight line) A1 extending along the Z direction. The attenuator 31 and the beam expander 32 are arranged between the incident part 12 and the mirror 33 on the straight line A1. The attenuator 31 adjusts the output of the laser light L1 incident from the incident unit 12. The beam expander 32 expands the diameter of the laser light L1 whose output is adjusted by the attenuator 31. The mirror 33 reflects the laser light L1 whose diameter has been expanded by the beam expander 32.
調整部13は、反射型空間光変調器34と、結像光学系35と、を更に有している。調整部13の反射型空間光変調器34及び結像光学系35、並びに、集光部14は、Z方向に沿って延在する直線(第2直線)A2上に配置されている。反射型空間光変調器34は、ミラー33で反射されたレーザ光L1を変調する。反射型空間光変調器34は、例えば、反射型液晶(LCOS:Liquid Crystal on Silicon)の空間光変調器(SLM:Spatial Light Modulator)である。結像光学系35は、反射型空間光変調器34の反射面34aと集光部14の入射瞳面14aとが結像関係にある両側テレセントリック光学系を構成している。結像光学系35は、3つ以上のレンズによって構成されている。
The adjusting unit 13 further includes a reflective spatial light modulator 34 and an image forming optical system 35. The reflective spatial light modulator 34 of the adjustment unit 13, the imaging optical system 35, and the condensing unit 14 are arranged on a straight line (second straight line) A2 extending along the Z direction. The reflective spatial light modulator 34 modulates the laser light L1 reflected by the mirror 33. The reflective spatial light modulator 34 is, for example, a reflective liquid crystal (LCOS: Liquid Crystal on Silicon) spatial light modulator (SLM: Spatial Light Modulator). The image forming optical system 35 constitutes a double-sided telecentric optical system in which the reflecting surface 34a of the reflective spatial light modulator 34 and the entrance pupil surface 14a of the condensing unit 14 are in an image forming relationship. The image forming optical system 35 is composed of three or more lenses.
直線A1及び直線A2は、Y方向に垂直な平面上に位置している。直線A1は、直線A2に対して第2壁部22側(一方の壁部側)に位置している。レーザ加工ヘッド10Aでは、レーザ光L1は、入射部12から筐体11内に入射して直線A1上を進行し、ミラー33及び反射型空間光変調器34で順次に反射された後、直線A2上を進行して集光部14から筐体11外に出射する。なお、アッテネータ31及びビームエキスパンダ32の配列の順序は、逆であってもよい。また、アッテネータ31は、ミラー33と反射型空間光変調器34との間に配置されていてもよい。また、調整部13は、他の光学部品(例えば、ビームエキスパンダ32の前に配置されるステアリングミラー等)を有していてもよい。
The straight line A1 and the straight line A2 are located on a plane perpendicular to the Y direction. The straight line A1 is located on the second wall portion 22 side (one wall portion side) with respect to the straight line A2. In the laser processing head 10A, the laser beam L1 enters the housing 11 from the incident part 12, travels on the straight line A1, is sequentially reflected by the mirror 33 and the reflective spatial light modulator 34, and then the straight line A2. The light travels upward and is emitted from the light collecting unit 14 to the outside of the housing 11. The order of arrangement of the attenuator 31 and the beam expander 32 may be reversed. Further, the attenuator 31 may be arranged between the mirror 33 and the reflective spatial light modulator 34. Further, the adjusting unit 13 may have other optical components (for example, a steering mirror arranged in front of the beam expander 32).
レーザ加工ヘッド10Aは、ダイクロイックミラー15と、測定部16と、観察部17と、駆動部18と、回路部19と、を更に備えている。
The laser processing head 10A further includes a dichroic mirror 15, a measurement unit 16, an observation unit 17, a drive unit 18, and a circuit unit 19.
ダイクロイックミラー15は、直線A2上において、結像光学系35と集光部14との間に配置されている。つまり、ダイクロイックミラー15は、筐体11内において、調整部13と集光部14との間に配置されている。ダイクロイックミラー15は、第4壁部24側において光学ベース29に取り付けられている。ダイクロイックミラー15は、レーザ光L1を透過させる。ダイクロイックミラー15は、非点収差を抑制する観点では、例えば、キューブ型、又は、ねじれの関係を有するように配置された2枚のプレート型であってもよい。
The dichroic mirror 15 is arranged on the straight line A2 between the imaging optical system 35 and the condensing unit 14. That is, the dichroic mirror 15 is arranged in the housing 11 between the adjusting unit 13 and the light collecting unit 14. The dichroic mirror 15 is attached to the optical base 29 on the side of the fourth wall portion 24. The dichroic mirror 15 transmits the laser light L1. From the viewpoint of suppressing astigmatism, the dichroic mirror 15 may be, for example, a cube type or two plate types arranged so as to have a twist relationship.
測定部16は、筐体11内において、調整部13に対して第1壁部21側(一方の壁部側とは反対側)に配置されている。測定部16は、第4壁部24側において光学ベース29に取り付けられている。測定部16は、対象物100の表面(例えば、レーザ光L1が入射する側の表面)と集光部14との距離を測定するための測定光L10を出力し、集光部14を介して、対象物100の表面で反射された測定光L10を検出する。つまり、測定部16から出力された測定光L10は、集光部14を介して対象物100の表面に照射され、対象物100の表面で反射された測定光L10は、集光部14を介して測定部16で検出される。
The measuring unit 16 is arranged inside the housing 11 with respect to the adjusting unit 13 on the first wall 21 side (the side opposite to the one wall side). The measuring unit 16 is attached to the optical base 29 on the fourth wall 24 side. The measurement unit 16 outputs measurement light L10 for measuring the distance between the surface of the object 100 (for example, the surface on the side on which the laser light L1 is incident) and the light condensing unit 14, and through the light condensing unit 14. The measurement light L10 reflected by the surface of the object 100 is detected. That is, the measurement light L10 output from the measurement unit 16 is applied to the surface of the object 100 via the light condensing unit 14, and the measurement light L10 reflected on the surface of the object 100 passes through the light condensing unit 14. And is detected by the measuring unit 16.
より具体的には、測定部16から出力された測定光L10は、第4壁部24側において光学ベース29に取り付けられたビームスプリッタ20及びダイクロイックミラー15で順次に反射され、集光部14から筐体11外に出射する。対象物100の表面で反射された測定光L10は、集光部14から筐体11内に入射してダイクロイックミラー15及びビームスプリッタ20で順次に反射され、測定部16に入射し、測定部16で検出される。
More specifically, the measurement light L10 output from the measurement unit 16 is sequentially reflected by the beam splitter 20 and the dichroic mirror 15 attached to the optical base 29 on the side of the fourth wall 24, and then the light collection unit 14 outputs the light. It goes out of the housing 11. The measurement light L10 reflected on the surface of the object 100 enters the housing 11 from the light condensing unit 14, is sequentially reflected by the dichroic mirror 15 and the beam splitter 20, enters the measuring unit 16, and then the measuring unit 16 Detected in.
観察部17は、筐体11内において、調整部13に対して第1壁部21側(一方の壁部側とは反対側)に配置されている。観察部17は、第4壁部24側において光学ベース29に取り付けられている。観察部17は、対象物100の表面(例えば、レーザ光L1が入射する側の表面)を観察するための観察光L20を出力し、集光部14を介して、対象物100の表面で反射された観察光L20を検出する。つまり、観察部17から出力された観察光L20は、集光部14を介して対象物100の表面に照射され、対象物100の表面で反射された観察光L20は、集光部14を介して観察部17で検出される。
The observing unit 17 is arranged in the housing 11 on the first wall 21 side (the side opposite to the one wall side) with respect to the adjusting unit 13. The observation section 17 is attached to the optical base 29 on the side of the fourth wall section 24. The observation unit 17 outputs the observation light L20 for observing the surface of the object 100 (for example, the surface on the side where the laser light L1 is incident), and is reflected by the surface of the object 100 via the light condensing unit 14. The observation light L20 thus generated is detected. That is, the observation light L20 output from the observation unit 17 is applied to the surface of the object 100 via the light condensing unit 14, and the observation light L20 reflected by the surface of the object 100 passes through the light condensing unit 14. And is detected by the observation unit 17.
より具体的には、観察部17から出力された観察光L20は、ビームスプリッタ20を透過してダイクロイックミラー15で反射され、集光部14から筐体11外に出射する。対象物100の表面で反射された観察光L20は、集光部14から筐体11内に入射してダイクロイックミラー15で反射され、ビームスプリッタ20を透過して観察部17に入射し、観察部17で検出される。なお、レーザ光L1、測定光L10及び観察光L20のそれぞれの波長は、互いに異なっている(少なくともそれぞれの中心波長が互いにずれている)。
More specifically, the observation light L20 output from the observation unit 17 passes through the beam splitter 20, is reflected by the dichroic mirror 15, and is emitted from the condensing unit 14 to the outside of the housing 11. The observation light L20 reflected on the surface of the object 100 enters the housing 11 from the light condensing unit 14, is reflected by the dichroic mirror 15, passes through the beam splitter 20, and enters the observation unit 17, Detected at 17. The wavelengths of the laser light L1, the measurement light L10, and the observation light L20 are different from each other (at least the respective central wavelengths are deviated from each other).
駆動部18は、第4壁部24側において光学ベース29に取り付けられている。駆動部18は、例えば圧電素子の駆動力によって、第6壁部26に配置された集光部14をZ方向に沿って移動させる。
The drive section 18 is attached to the optical base 29 on the side of the fourth wall section 24. The driving unit 18 moves the condensing unit 14 arranged on the sixth wall unit 26 along the Z direction by the driving force of the piezoelectric element, for example.
回路部19は、筐体11内において、光学ベース29に対して第3壁部23側に配置されている。つまり、回路部19は、筐体11内において、調整部13、測定部16及び観察部17に対して第3壁部23側に配置されている。回路部19は、例えば、複数の回路基板である。回路部19は、測定部16から出力された信号、及び反射型空間光変調器34に入力する信号を処理する。回路部19は、測定部16から出力された信号に基づいて駆動部18を制御する。一例として、回路部19は、測定部16から出力された信号に基づいて、対象物100の表面と集光部14との距離が一定に維持されるように(すなわち、対象物100の表面とレーザ光L1の集光点との距離が一定に維持されるように)、駆動部18を制御する。なお、筐体11には、回路部19を制御部9(図1参照)等に電気的に接続するための配線が接続されるコネクタ(図示省略)が設けられている。
The circuit portion 19 is arranged on the third wall portion 23 side with respect to the optical base 29 in the housing 11. That is, the circuit unit 19 is arranged on the third wall 23 side with respect to the adjustment unit 13, the measurement unit 16, and the observation unit 17 in the housing 11. The circuit unit 19 is, for example, a plurality of circuit boards. The circuit unit 19 processes the signal output from the measurement unit 16 and the signal input to the reflective spatial light modulator 34. The circuit unit 19 controls the drive unit 18 based on the signal output from the measurement unit 16. As an example, the circuit unit 19 maintains the distance between the surface of the object 100 and the light condensing unit 14 constant based on the signal output from the measurement unit 16 (that is, the surface of the object 100). The drive unit 18 is controlled so that the distance from the condensing point of the laser light L1 is kept constant). The housing 11 is provided with a connector (not shown) to which wiring for electrically connecting the circuit unit 19 to the control unit 9 (see FIG. 1) and the like is connected.
レーザ加工ヘッド10Bは、レーザ加工ヘッド10Aと同様に、筐体11と、入射部12と、調整部13と、集光部14と、ダイクロイックミラー15と、測定部16と、観察部17と、駆動部18と、回路部19と、を備えている。ただし、レーザ加工ヘッド10Bの各構成は、図2に示されるように、1対の取付部65,66間の中点を通り且つY方向に垂直な仮想平面に関して、レーザ加工ヘッド10Aの各構成と面対称の関係を有するように、配置されている。
Similar to the laser processing head 10A, the laser processing head 10B includes a housing 11, an incident section 12, an adjusting section 13, a condensing section 14, a dichroic mirror 15, a measuring section 16, and an observing section 17, The drive unit 18 and the circuit unit 19 are provided. However, each configuration of the laser processing head 10B is, as shown in FIG. 2, each configuration of the laser processing head 10A with respect to a virtual plane that passes through the midpoint between the pair of mounting portions 65 and 66 and is perpendicular to the Y direction. Are arranged so as to have a plane symmetry relationship with.
例えば、レーザ加工ヘッド10Aの筐体(第1筐体)11は、第4壁部24が第3壁部23に対してレーザ加工ヘッド10B側に位置し且つ第6壁部26が第5壁部25に対して支持部7側に位置するように、取付部65に取り付けられている。これに対し、レーザ加工ヘッド10Bの筐体(第2筐体)11は、第4壁部24が第3壁部23に対してレーザ加工ヘッド10A側に位置し且つ第6壁部26が第5壁部25に対して支持部7側に位置するように、取付部66に取り付けられている。
For example, in the housing (first housing) 11 of the laser processing head 10A, the fourth wall portion 24 is located closer to the laser processing head 10B side than the third wall portion 23, and the sixth wall portion 26 is the fifth wall. It is attached to the attachment portion 65 so as to be located on the support portion 7 side with respect to the portion 25. On the other hand, in the housing (second housing) 11 of the laser processing head 10B, the fourth wall portion 24 is located closer to the laser processing head 10A side than the third wall portion 23, and the sixth wall portion 26 is the second wall portion. It is attached to the attachment portion 66 so as to be located on the support portion 7 side with respect to the five wall portion 25.
レーザ加工ヘッド10Bの筐体11は、第3壁部23が取付部66側に配置された状態で筐体11が取付部66に取り付けられるように、構成されている。具体的には、次のとおりである。取付部66は、ベースプレート66aと、取付プレート66bと、を有している。ベースプレート66aは、移動部63に設けられたレールに取り付けられている。取付プレート66bは、ベースプレート66aにおけるレーザ加工ヘッド10A側の端部に立設されている。レーザ加工ヘッド10Bの筐体11は、第3壁部23が取付プレート66bに接触した状態で、取付部66に取り付けられている。レーザ加工ヘッド10Bの筐体11は、取付部66に対して着脱可能である。
[作用及び効果] Thehousing 11 of the laser processing head 10B is configured such that the housing 11 is attached to the mounting portion 66 with the third wall portion 23 arranged on the mounting portion 66 side. Specifically, it is as follows. The mounting portion 66 has a base plate 66a and a mounting plate 66b. The base plate 66a is attached to a rail provided on the moving unit 63. The mounting plate 66b is erected at the end of the base plate 66a on the laser processing head 10A side. The housing 11 of the laser processing head 10B is attached to the attachment portion 66 with the third wall portion 23 in contact with the attachment plate 66b. The housing 11 of the laser processing head 10B can be attached to and detached from the mounting portion 66.
[Action and effect]
[作用及び効果] The
[Action and effect]
レーザ加工ヘッド10Aでは、レーザ光L1を出力する光源が筐体11内に設けられていないため、筐体11の小型化を図ることができる。更に、筐体11において、第3壁部23と第4壁部24との距離が第1壁部21と第2壁部22との距離よりも小さく、第6壁部26に配置された集光部14がY方向において第4壁部24側に片寄っている。これにより、集光部14の光軸に垂直な方向に沿って筐体11を移動させる場合に、例えば、第4壁部24側に他の構成(例えば、レーザ加工ヘッド10B)が存在したとしても、当該他の構成に集光部14を近付けることができる。よって、レーザ加工ヘッド10Aは、集光部14をその光軸に垂直な方向に沿って移動させるのに好適である。
In the laser processing head 10A, since the light source that outputs the laser light L1 is not provided in the housing 11, the housing 11 can be downsized. Further, in the housing 11, the distance between the third wall portion 23 and the fourth wall portion 24 is smaller than the distance between the first wall portion 21 and the second wall portion 22, and the collection disposed on the sixth wall portion 26. The light portion 14 is biased toward the fourth wall portion 24 side in the Y direction. Thereby, when moving the housing 11 along the direction perpendicular to the optical axis of the light condensing unit 14, for example, it is assumed that another configuration (for example, the laser processing head 10B) is present on the fourth wall 24 side. Also, the condensing unit 14 can be brought close to the other configuration. Therefore, the laser processing head 10A is suitable for moving the condensing unit 14 along the direction perpendicular to the optical axis thereof.
また、レーザ加工ヘッド10Aでは、入射部12が、第5壁部25に設けられており、Y方向において第4壁部24側に片寄っている。これにより、筐体11内の領域のうち調整部13に対して第3壁部23側の領域に他の構成(例えば、回路部19)を配置する等、当該領域を有効に利用することができる。
Further, in the laser processing head 10A, the incident portion 12 is provided on the fifth wall portion 25 and is offset to the fourth wall portion 24 side in the Y direction. As a result, it is possible to effectively use the region such as disposing another configuration (for example, the circuit unit 19) in a region on the third wall 23 side with respect to the adjustment unit 13 in the region inside the housing 11. it can.
また、レーザ加工ヘッド10Aでは、集光部14が、X方向において第2壁部22側に片寄っている。これにより、集光部14の光軸に垂直な方向に沿って筐体11を移動させる場合に、例えば、第2壁部22側に他の構成が存在したとしても、当該他の構成に集光部14を近付けることができる。
Further, in the laser processing head 10A, the condensing portion 14 is offset to the second wall portion 22 side in the X direction. Accordingly, when the housing 11 is moved along the direction perpendicular to the optical axis of the light condensing unit 14, for example, even if another configuration exists on the second wall 22 side, the other configuration is collected. The light unit 14 can be brought closer.
また、レーザ加工ヘッド10Aでは、入射部12が、第5壁部25に設けられており、X方向において第2壁部22側に片寄っている。これにより、筐体11内の領域のうち調整部13に対して第1壁部21側の領域に他の構成(例えば、測定部16及び観察部17)を配置する等、当該領域を有効に利用することができる。
Further, in the laser processing head 10A, the incident portion 12 is provided on the fifth wall portion 25 and is offset to the second wall portion 22 side in the X direction. As a result, other regions (for example, the measuring unit 16 and the observing unit 17) are arranged in the region on the first wall 21 side with respect to the adjusting unit 13 in the region in the housing 11, and the region is effectively used. Can be used.
また、レーザ加工ヘッド10Aでは、測定部16及び観察部17が、筐体11内の領域のうち調整部13に対して第1壁部21側の領域に配置されており、回路部19が、筐体11内の領域のうち調整部13に対して第3壁部23側に配置されており、ダイクロイックミラー15が、筐体11内において調整部13と集光部14との間に配置されている。これにより、筐体11内の領域を有効に利用することができる。更に、レーザ加工装置1において、対象物100の表面と集光部14との距離の測定結果に基づいた加工が可能となる。また、レーザ加工装置1において、対象物100の表面の観察結果に基づいた加工が可能となる。
Further, in the laser processing head 10A, the measuring unit 16 and the observing unit 17 are arranged in the region on the first wall 21 side with respect to the adjusting unit 13 in the region inside the housing 11, and the circuit unit 19 is The dichroic mirror 15 is arranged on the side of the third wall portion 23 with respect to the adjustment unit 13 in the area inside the housing 11, and the dichroic mirror 15 is arranged between the adjustment unit 13 and the light collection unit 14 in the housing 11. ing. Thereby, the area in the housing 11 can be effectively used. Further, the laser processing apparatus 1 can perform processing based on the measurement result of the distance between the surface of the object 100 and the light condensing unit 14. Further, the laser processing apparatus 1 can perform processing based on the observation result of the surface of the object 100.
また、レーザ加工ヘッド10Aでは、回路部19が、測定部16から出力された信号に基づいて駆動部18を制御する。これにより、対象物100の表面と集光部14との距離の測定結果に基づいてレーザ光L1の集光点の位置を調整することができる。
In the laser processing head 10A, the circuit section 19 controls the drive section 18 based on the signal output from the measuring section 16. Thereby, the position of the condensing point of the laser beam L1 can be adjusted based on the measurement result of the distance between the surface of the object 100 and the condensing unit 14.
また、レーザ加工ヘッド10Aでは、入射部12、並びに、調整部13のアッテネータ31、ビームエキスパンダ32及びミラー33が、Z方向に沿って延在する直線A1上に配置されており、調整部13の反射型空間光変調器34、結像光学系35及び集光部14、並びに、集光部14が、Z方向に沿って延在する直線A2上に配置されている。これにより、アッテネータ31、ビームエキスパンダ32、反射型空間光変調器34及び結像光学系35を有する調整部13をコンパクトに構成することができる。
Further, in the laser processing head 10A, the incident section 12, the attenuator 31, the beam expander 32, and the mirror 33 of the adjusting section 13 are arranged on the straight line A1 extending along the Z direction, and the adjusting section 13 is provided. The reflective spatial light modulator 34, the imaging optical system 35, the condensing unit 14, and the condensing unit 14 are arranged on a straight line A2 extending along the Z direction. Accordingly, the adjusting unit 13 including the attenuator 31, the beam expander 32, the reflective spatial light modulator 34, and the imaging optical system 35 can be configured compactly.
また、レーザ加工ヘッド10Aでは、直線A1が、直線A2に対して第2壁部22側に位置している。これにより、筐体11内の領域のうち調整部13に対して第1壁部21側の領域において、集光部14を用いた他の光学系(例えば、測定部16及び観察部17)を構成する場合に、当該他の光学系の構成の自由度を向上させることができる。
Further, in the laser processing head 10A, the straight line A1 is located closer to the second wall portion 22 than the straight line A2. As a result, another optical system (for example, the measuring unit 16 and the observing unit 17) using the light condensing unit 14 is provided in the region on the first wall 21 side with respect to the adjusting unit 13 in the region in the housing 11. When configured, the degree of freedom in the configuration of the other optical system can be improved.
以上の作用及び効果は、レーザ加工ヘッド10Bによっても同様に奏される。
The above-described actions and effects are similarly exhibited by the laser processing head 10B.
また、レーザ加工装置1では、レーザ加工ヘッド10Aの集光部14が、レーザ加工ヘッド10Aの筐体11においてレーザ加工ヘッド10B側に片寄っており、レーザ加工ヘッド10Bの集光部14が、レーザ加工ヘッド10Bの筐体11においてレーザ加工ヘッド10A側に片寄っている。これにより、1対のレーザ加工ヘッド10A,10BのそれぞれをY方向に沿って移動させる場合に、レーザ加工ヘッド10Aの集光部14とレーザ加工ヘッド10Bの集光部14とを互いに近付けることができる。よって、レーザ加工装置1によれば、対象物100を効率良く加工することができる。
Further, in the laser processing apparatus 1, the light condensing unit 14 of the laser processing head 10A is offset to the laser processing head 10B side in the housing 11 of the laser processing head 10A, and the light condensing unit 14 of the laser processing head 10B is The housing 11 of the processing head 10B is offset to the laser processing head 10A side. Thereby, when each of the pair of laser processing heads 10A and 10B is moved along the Y direction, the condensing portion 14 of the laser processing head 10A and the condensing portion 14 of the laser processing head 10B can be brought close to each other. it can. Therefore, according to the laser processing apparatus 1, the object 100 can be efficiently processed.
また、レーザ加工装置1では、1対の取付部65,66のそれぞれが、Y方向及びZ方向のそれぞれに沿って移動する。これにより、対象物100をより効率良く加工することができる。
Further, in the laser processing apparatus 1, each of the pair of mounting portions 65 and 66 moves along each of the Y direction and the Z direction. Thereby, the object 100 can be processed more efficiently.
また、レーザ加工装置1では、支持部7が、X方向及びY方向のそれぞれに沿って移動し、Z方向に平行な軸線を中心線として回転する。これにより、対象物100をより効率良く加工することができる。
[変形例] Further, in thelaser processing device 1, the support portion 7 moves along each of the X direction and the Y direction, and rotates about an axis parallel to the Z direction as a center line. Thereby, the object 100 can be processed more efficiently.
[Modification]
[変形例] Further, in the
[Modification]
例えば、図6に示されるように、入射部12、調整部13及び集光部14は、Z方向に沿って延在する直線A上に配置されていてもよい。これによれば、調整部13をコンパクトに構成することができる。その場合、調整部13は、反射型空間光変調器34及び結像光学系35を有していなくてもよい。また、調整部13は、アッテネータ31及びビームエキスパンダ32を有していてもよい。これによれば、アッテネータ31及びビームエキスパンダ32を有する調整部13をコンパクトに構成することができる。なお、アッテネータ31及びビームエキスパンダ32の配列の順序は、逆であってもよい。
For example, as shown in FIG. 6, the incident section 12, the adjusting section 13, and the light condensing section 14 may be arranged on a straight line A extending along the Z direction. According to this, the adjusting unit 13 can be configured compactly. In that case, the adjusting unit 13 may not include the reflective spatial light modulator 34 and the imaging optical system 35. Further, the adjusting unit 13 may include an attenuator 31 and a beam expander 32. According to this, the adjusting unit 13 including the attenuator 31 and the beam expander 32 can be configured compactly. The order of arrangement of the attenuator 31 and the beam expander 32 may be reversed.
また、筐体11は、第1壁部21、第2壁部22、第3壁部23及び第5壁部25の少なくとも1つがレーザ加工装置1の取付部65(又は取付部66)側に配置された状態で筐体11が取付部65(又は取付部66)に取り付けられるように、構成されていればよい。また、集光部14は、少なくともY方向において第4壁部24側に片寄っていればよい。これらによれば、Y方向に沿って筐体11を移動させる場合に、例えば、第4壁部24側に他の構成が存在したとしても、当該他の構成に集光部14を近付けることができる。また、Z方向に沿って筐体11を移動させる場合に、例えば、対象物100に集光部14を近付けることができる。
Further, in the housing 11, at least one of the first wall portion 21, the second wall portion 22, the third wall portion 23, and the fifth wall portion 25 is on the mounting portion 65 (or mounting portion 66) side of the laser processing apparatus 1. It suffices that the housing 11 is configured to be attached to the attachment portion 65 (or the attachment portion 66) in the arranged state. Further, the light collecting section 14 may be offset to the fourth wall section 24 side at least in the Y direction. According to these, when the housing 11 is moved along the Y direction, even if there is another configuration on the fourth wall 24 side, for example, the light collection unit 14 can be brought close to the other configuration. it can. Further, when the housing 11 is moved along the Z direction, for example, the light condensing unit 14 can be brought close to the object 100.
また、集光部14は、X方向において第1壁部21側に片寄っていてもよい。これによれば、集光部14の光軸に垂直な方向に沿って筐体11を移動させる場合に、例えば、第1壁部21側に他の構成が存在したとしても、当該他の構成に集光部14を近付けることができる。その場合、入射部12は、X方向において第1壁部21側に片寄っていてもよい。これによれば、筐体11内の領域のうち調整部13に対して第2壁部22側の領域に他の構成(例えば、測定部16及び観察部17)を配置する等、当該領域を有効に利用することができる。
Further, the light collecting section 14 may be offset toward the first wall section 21 side in the X direction. According to this, when the housing 11 is moved along the direction perpendicular to the optical axis of the condensing unit 14, for example, even if there is another configuration on the first wall 21 side, the other configuration is present. The light condensing unit 14 can be brought close to. In that case, the incident portion 12 may be offset toward the first wall portion 21 side in the X direction. According to this, another region (for example, the measurement unit 16 and the observation unit 17) is arranged in the region on the second wall 22 side with respect to the adjustment unit 13 in the region inside the housing 11, and the region is adjusted. It can be used effectively.
また、光源ユニット8の出射部81aからレーザ加工ヘッド10Aの入射部12へのレーザ光L1の導光、及び光源ユニット8の出射部82aからレーザ加工ヘッド10Bの入射部12へのレーザ光L2の導光の少なくとも1つは、ミラーによって実施されてもよい。図7は、レーザ光L1がミラーによって導光されるレーザ加工装置1の一部分の正面図である。図7に示される構成では、レーザ光L1を反射するミラー3が、Y方向において光源ユニット8の出射部81aと対向し且つZ方向においてレーザ加工ヘッド10Aの入射部12と対向するように、移動機構6の移動部63に取り付けられている。
Further, the laser light L1 is guided from the emitting portion 81a of the light source unit 8 to the incident portion 12 of the laser processing head 10A, and the laser light L2 from the emitting portion 82a of the light source unit 8 to the incident portion 12 of the laser processing head 10B. At least one of the light guides may be implemented by a mirror. FIG. 7 is a front view of a part of the laser processing apparatus 1 in which the laser light L1 is guided by the mirror. In the configuration shown in FIG. 7, the mirror 3 that reflects the laser light L1 moves so as to face the emitting portion 81a of the light source unit 8 in the Y direction and face the incident portion 12 of the laser processing head 10A in the Z direction. It is attached to the moving portion 63 of the mechanism 6.
図7に示される構成では、移動機構6の移動部63をY方向に沿って移動させても、Y方向においてミラー3が光源ユニット8の出射部81aと対向する状態が維持される。また、移動機構6の取付部65をZ方向に沿って移動させても、Z方向においてミラー3がレーザ加工ヘッド10Aの入射部12と対向する状態が維持される。したがって、レーザ加工ヘッド10Aの位置によらず、光源ユニット8の出射部81aから出射されたレーザ光L1を、レーザ加工ヘッド10Aの入射部12に確実に入射させることができる。しかも、光ファイバ2による導光が困難な高出力長短パルスレーザ等の光源を利用することもできる。
In the configuration shown in FIG. 7, even if the moving unit 63 of the moving mechanism 6 is moved along the Y direction, the state in which the mirror 3 faces the emitting unit 81a of the light source unit 8 in the Y direction is maintained. Further, even if the mounting portion 65 of the moving mechanism 6 is moved along the Z direction, the state in which the mirror 3 faces the incident portion 12 of the laser processing head 10A in the Z direction is maintained. Therefore, regardless of the position of the laser processing head 10A, the laser light L1 emitted from the emitting portion 81a of the light source unit 8 can be reliably incident on the incident portion 12 of the laser processing head 10A. Moreover, it is possible to use a light source such as a high output long / short pulse laser, which is difficult to be guided by the optical fiber 2.
また、図7に示される構成では、ミラー3は、角度調整及び位置調整の少なくとも1つが可能となるように、移動機構6の移動部63に取り付けられていてもよい。これによれば、光源ユニット8の出射部81aから出射されたレーザ光L1を、レーザ加工ヘッド10Aの入射部12に、より確実に入射させることができる。
Further, in the configuration shown in FIG. 7, the mirror 3 may be attached to the moving unit 63 of the moving mechanism 6 so that at least one of the angle adjustment and the position adjustment can be performed. According to this, the laser light L1 emitted from the emission portion 81a of the light source unit 8 can be more reliably incident on the incidence portion 12 of the laser processing head 10A.
また、光源ユニット8は、1つの光源を有するものであってもよい。その場合、光源ユニット8は、1つの光源から出力されたレーザ光の一部を出射部81aから出射させ且つ当該レーザ光の残部を出射部82bから出射させるように、構成されていればよい。
The light source unit 8 may have one light source. In that case, the light source unit 8 may be configured so that a part of the laser light output from one light source is emitted from the emitting portion 81a and the rest of the laser light is emitted from the emitting portion 82b.
また、レーザ加工装置1は、1つのレーザ加工ヘッド10Aを備えていてもよい。1つのレーザ加工ヘッド10Aを備えるレーザ加工装置1でも、集光部14の光軸に垂直なY方向に沿って筐体11を移動させる場合に、例えば、第4壁部24側に他の構成が存在したとしても、当該他の構成に集光部14を近付けることができる。よって、1つのレーザ加工ヘッド10Aを備えるレーザ加工装置1によっても、対象物100を効率良く加工することができる。また、1つのレーザ加工ヘッド10Aを備えるレーザ加工装置1において、取付部65がZ方向に沿って移動すれば、対象物100をより効率良く加工することができる。また、1つのレーザ加工ヘッド10Aを備えるレーザ加工装置1において、支持部7が、X方向に沿って移動し、Z方向に平行な軸線を中心線として回転すれば、対象物100をより効率良く加工することができる。
Moreover, the laser processing apparatus 1 may include one laser processing head 10A. Even in the laser processing apparatus 1 including one laser processing head 10A, when the housing 11 is moved along the Y direction perpendicular to the optical axis of the condensing unit 14, for example, another configuration is provided on the fourth wall 24 side. Even if there is, the condensing unit 14 can be brought close to the other configuration. Therefore, the object 100 can be efficiently processed even by the laser processing apparatus 1 including one laser processing head 10A. Further, in the laser processing apparatus 1 including one laser processing head 10A, if the attachment portion 65 moves along the Z direction, the object 100 can be processed more efficiently. Further, in the laser processing apparatus 1 including one laser processing head 10A, if the support portion 7 moves along the X direction and rotates about the axis parallel to the Z direction as the center line, the object 100 can be more efficiently processed. It can be processed.
また、レーザ加工装置1は、3つ以上のレーザ加工ヘッドを備えていてもよい。図8は、2対のレーザ加工ヘッドを備えるレーザ加工装置1の斜視図である。図8に示されるレーザ加工装置1は、複数の移動機構200,300,400と、支持部7と、1対のレーザ加工ヘッド10A,10Bと、1対のレーザ加工ヘッド10C,10Dと、光源ユニット(図示省略)と、を備えている。
Also, the laser processing apparatus 1 may include three or more laser processing heads. FIG. 8 is a perspective view of a laser processing apparatus 1 including two pairs of laser processing heads. The laser processing apparatus 1 shown in FIG. 8 includes a plurality of moving mechanisms 200, 300 and 400, a support 7, a pair of laser processing heads 10A and 10B, a pair of laser processing heads 10C and 10D, and a light source. And a unit (not shown).
移動機構200は、X方向、Y方向及びZ方向のそれぞれの方向に沿って支持部7を移動させ、Z方向に平行な軸線を中心線として支持部7を回転させる。
The moving mechanism 200 moves the support portion 7 along each of the X direction, the Y direction, and the Z direction, and rotates the support portion 7 with the axis parallel to the Z direction as the center line.
移動機構300は、固定部301と、1対の取付部(第1取付部、第2取付部)305,306と、を有している。固定部301は、装置フレーム(図示省略)に取り付けられている。1対の取付部305,306のそれぞれは、固定部301に設けられたレールに取り付けられており、それぞれが独立して、Y方向に沿って移動することができる。
The moving mechanism 300 has a fixed portion 301 and a pair of mounting portions (first mounting portion, second mounting portion) 305 and 306. The fixed portion 301 is attached to a device frame (not shown). Each of the pair of attachment portions 305 and 306 is attached to a rail provided on the fixed portion 301, and each of them can independently move along the Y direction.
移動機構400は、固定部401と、1対の取付部(第1取付部、第2取付部)405,406と、を有している。固定部401は、装置フレーム(図示省略)に取り付けられている。1対の取付部405,406のそれぞれは、固定部401に設けられたレールに取り付けられており、それぞれが独立して、X方向に沿って移動することができる。なお、固定部401のレールは、固定部301のレールと立体的に交差するように配置されている。
The moving mechanism 400 has a fixed portion 401 and a pair of mounting portions (first mounting portion, second mounting portion) 405, 406. The fixed portion 401 is attached to a device frame (not shown). Each of the pair of attachment portions 405 and 406 is attached to a rail provided on the fixed portion 401, and each of them can independently move along the X direction. The rails of the fixed portion 401 are arranged so as to three-dimensionally intersect the rails of the fixed portion 301.
レーザ加工ヘッド10Aは、移動機構300の取付部305に取り付けられている。レーザ加工ヘッド10Aは、Z方向において支持部7と対向した状態で、支持部7に支持された対象物100にレーザ光を照射する。レーザ加工ヘッド10Aから出射されるレーザ光は、光源ユニット(図示省略)から光ファイバ2によって導光される。レーザ加工ヘッド10Bは、移動機構300の取付部306に取り付けられている。レーザ加工ヘッド10Bは、Z方向において支持部7と対向した状態で、支持部7に支持された対象物100にレーザ光を照射する。レーザ加工ヘッド10Bから出射されるレーザ光は、光源ユニット(図示省略)から光ファイバ2によって導光される。
The laser processing head 10A is attached to the attachment portion 305 of the moving mechanism 300. The laser processing head 10A irradiates the object 100 supported by the support 7 with laser light while facing the support 7 in the Z direction. Laser light emitted from the laser processing head 10A is guided by an optical fiber 2 from a light source unit (not shown). The laser processing head 10B is attached to the attachment portion 306 of the moving mechanism 300. The laser processing head 10B irradiates the object 100 supported by the support 7 with laser light in a state of facing the support 7 in the Z direction. The laser light emitted from the laser processing head 10B is guided by the optical fiber 2 from a light source unit (not shown).
レーザ加工ヘッド10Cは、移動機構400の取付部405に取り付けられている。レーザ加工ヘッド10Cは、Z方向において支持部7と対向した状態で、支持部7に支持された対象物100にレーザ光を照射する。レーザ加工ヘッド10Cから出射されるレーザ光は、光源ユニット(図示省略)から光ファイバ2によって導光される。レーザ加工ヘッド10Dは、移動機構400の取付部406に取り付けられている。レーザ加工ヘッド10Dは、Z方向において支持部7と対向した状態で、支持部7に支持された対象物100にレーザ光を照射する。レーザ加工ヘッド10Dから出射されるレーザ光は、光源ユニット(図示省略)から光ファイバ2によって導光される。
The laser processing head 10C is attached to the attachment portion 405 of the moving mechanism 400. The laser processing head 10C irradiates the object 100 supported by the support 7 with laser light in a state of facing the support 7 in the Z direction. Laser light emitted from the laser processing head 10C is guided by an optical fiber 2 from a light source unit (not shown). The laser processing head 10D is attached to the attachment portion 406 of the moving mechanism 400. The laser processing head 10D irradiates the object 100 supported by the support 7 with laser light in a state of facing the support 7 in the Z direction. Laser light emitted from the laser processing head 10D is guided by an optical fiber 2 from a light source unit (not shown).
図8に示されるレーザ加工装置1における1対のレーザ加工ヘッド10A,10Bの構成は、図1に示されるレーザ加工装置1における1対のレーザ加工ヘッド10A,10Bの構成と同様である。図8に示されるレーザ加工装置1における1対のレーザ加工ヘッド10C,10Dの構成は、図1に示されるレーザ加工装置1における1対のレーザ加工ヘッド10A,10BをZ方向に平行な軸線を中心線として90°回転した場合の1対のレーザ加工ヘッド10A,10Bの構成と同様である。
The configuration of the pair of laser processing heads 10A and 10B in the laser processing apparatus 1 shown in FIG. 8 is the same as the configuration of the pair of laser processing heads 10A and 10B in the laser processing apparatus 1 shown in FIG. The configuration of the pair of laser processing heads 10C and 10D in the laser processing apparatus 1 shown in FIG. 8 is the same as that of the pair of laser processing heads 10A and 10B in the laser processing apparatus 1 shown in FIG. The configuration is the same as that of the pair of laser processing heads 10A and 10B when rotated by 90 ° as the center line.
例えば、レーザ加工ヘッド10Cの筐体(第1筐体)11は、第4壁部24が第3壁部23に対してレーザ加工ヘッド10D側に位置し且つ第6壁部26が第5壁部25に対して支持部7側に位置するように、取付部65に取り付けられている。レーザ加工ヘッド10Cの集光部14は、Y方向において第4壁部24側(すなわち、レーザ加工ヘッド10D側)に片寄っている。
For example, in the housing (first housing) 11 of the laser processing head 10C, the fourth wall portion 24 is located on the laser processing head 10D side with respect to the third wall portion 23, and the sixth wall portion 26 is the fifth wall. It is attached to the attachment portion 65 so as to be located on the support portion 7 side with respect to the portion 25. The condensing portion 14 of the laser processing head 10C is offset to the fourth wall portion 24 side (that is, the laser processing head 10D side) in the Y direction.
レーザ加工ヘッド10Dの筐体(第2筐体)11は、第4壁部24が第3壁部23に対してレーザ加工ヘッド10C側に位置し且つ第6壁部26が第5壁部25に対して支持部7側に位置するように、取付部66に取り付けられている。レーザ加工ヘッド10Dの集光部14は、Y方向において第4壁部24側(すなわち、レーザ加工ヘッド10C側)に片寄っている。
In the housing (second housing) 11 of the laser processing head 10D, the fourth wall portion 24 is located on the laser processing head 10C side with respect to the third wall portion 23, and the sixth wall portion 26 is the fifth wall portion 25. It is attached to the attachment portion 66 so as to be located on the side of the support portion 7. The condensing portion 14 of the laser processing head 10D is offset to the fourth wall portion 24 side (that is, the laser processing head 10C side) in the Y direction.
以上により、図8に示されるレーザ加工装置1では、1対のレーザ加工ヘッド10A,10BのそれぞれをY方向に沿って移動させる場合に、レーザ加工ヘッド10Aの集光部14とレーザ加工ヘッド10Bの集光部14とを互いに近付けることができる。また、1対のレーザ加工ヘッド10C,10DのそれぞれをX方向に沿って移動させる場合に、レーザ加工ヘッド10Cの集光部14とレーザ加工ヘッド10Dの集光部14とを互いに近付けることができる。
As described above, in the laser processing apparatus 1 shown in FIG. 8, when each of the pair of laser processing heads 10A and 10B is moved along the Y direction, the condensing portion 14 of the laser processing head 10A and the laser processing head 10B are moved. The light condensing section 14 of the above can be brought close to each other. Further, when each of the pair of laser processing heads 10C and 10D is moved along the X direction, the condensing portion 14 of the laser processing head 10C and the condensing portion 14 of the laser processing head 10D can be brought close to each other. ..
また、レーザ加工ヘッド及びレーザ加工装置は、対象物100の内部に改質領域を形成するためのものに限定されず、他のレーザ加工を実施するためのものであってもよい。
Further, the laser processing head and the laser processing apparatus are not limited to those for forming the modified region inside the object 100, and may be those for performing other laser processing.
次に、各実施形態を説明する。以下、上述した実施形態と重複する説明は省略する。第1~第3実施形態は参考実施形態である。
Next, each embodiment will be described. Hereinafter, a description that overlaps with the above-described embodiment will be omitted. The first to third embodiments are reference embodiments.
[第1実施形態]
図9に示されるレーザ加工装置101は、対象物100に集光点(少なくとも集光領域の一部)を合わせてレーザ光を照射することにより、対象物100に改質領域を形成する。レーザ加工装置101は、対象物100にトリミング加工及び剥離加工を施し、半導体デバイスを取得(製造)する。トリミング加工は、対象物100において不要部分を除去するための加工である。剥離加工は、対象物100の一部分を剥離するための加工である。 [First Embodiment]
Thelaser processing apparatus 101 shown in FIG. 9 forms a modified region on the target object 100 by irradiating the target object 100 with a focus point (at least a part of the focus region) and irradiating it with laser light. The laser processing apparatus 101 performs trimming processing and peeling processing on the object 100 to obtain (manufacture) a semiconductor device. The trimming process is a process for removing an unnecessary portion of the object 100. The peeling process is a process for peeling a part of the object 100.
図9に示されるレーザ加工装置101は、対象物100に集光点(少なくとも集光領域の一部)を合わせてレーザ光を照射することにより、対象物100に改質領域を形成する。レーザ加工装置101は、対象物100にトリミング加工及び剥離加工を施し、半導体デバイスを取得(製造)する。トリミング加工は、対象物100において不要部分を除去するための加工である。剥離加工は、対象物100の一部分を剥離するための加工である。 [First Embodiment]
The
対象物100は、例えば円板状に形成された半導体ウェハを含む。対象物としては特に限定されず、種々の材料で形成されていてもよいし、種々の形状を呈していてもよい。対象物100の表面100aには、機能素子(不図示)が形成されている。機能素子は、例えば、フォトダイオード等の受光素子、レーザダイオード等の発光素子、メモリ等の回路素子等である。
The object 100 includes, for example, a disc-shaped semiconductor wafer. The object is not particularly limited, and may be formed of various materials and may have various shapes. A functional element (not shown) is formed on the surface 100a of the object 100. The functional element is, for example, a light receiving element such as a photodiode, a light emitting element such as a laser diode, a circuit element such as a memory, or the like.
図10(a)及び図10(b)に示されるように、対象物100には、有効領域R及び除去領域Eが設定されている。有効領域Rは、取得する半導体デバイスに対応する部分である。例えば有効領域Rは、対象物100を厚さ方向から見て中央部分を含む円板状の部分である。除去領域Eは、対象物100における有効領域Rよりも外側の領域である。除去領域Eは、対象物100において有効領域R以外の外縁部分である。例えば除去領域Eは、有効領域Rを囲う円環状の部分である。除去領域Eは、対象物100を厚さ方向から見て周縁部分(外縁のベベル部)を含む。
As shown in FIGS. 10A and 10B, an effective area R and a removal area E are set in the object 100. The effective region R is a portion corresponding to the semiconductor device to be acquired. For example, the effective region R is a disc-shaped portion including the central portion when the object 100 is viewed from the thickness direction. The removal area E is an area outside the effective area R of the object 100. The removal area E is an outer edge portion of the object 100 other than the effective area R. For example, the removal area E is an annular portion that surrounds the effective area R. The removal area E includes a peripheral edge portion (outer edge bevel portion) when the object 100 is viewed from the thickness direction.
対象物100には、剥離予定面としての仮想面M1が設定されている。仮想面M1は、改質領域の形成を予定する面である。仮想面M1は、対象物100のレーザ光入射面である裏面100bに対向する面である。仮想面M1は、裏面100bに平行な面であり、例えば円形状を呈している。仮想面M1は、仮想的な領域であり、平面に限定されず、曲面ないし3次元状の面であってもよい。有効領域R、除去領域E及び仮想面M1の設定は、制御部9において行うことができる。有効領域R、除去領域E及び仮想面M1は、座標指定されたものであってもよい。
A virtual surface M1 as a planned separation surface is set on the object 100. The virtual surface M1 is a surface where the modified region is to be formed. The virtual surface M1 is a surface facing the back surface 100b which is the laser light incident surface of the object 100. The virtual surface M1 is a surface parallel to the back surface 100b and has, for example, a circular shape. The virtual surface M1 is a virtual area and is not limited to a flat surface, and may be a curved surface or a three-dimensional surface. The control unit 9 can set the effective area R, the removal area E, and the virtual surface M1. The effective area R, the removal area E, and the virtual surface M1 may have coordinates specified.
対象物100には、トリミング予定ラインとしてのラインM3が設定されている。ラインM3は、改質領域の形成を予定するラインである。ラインM3は、対象物100の外縁の内側において環状に延在する。ここでのラインM3は、円環状に延在する。ラインM3は、対象物100の内部における仮想面M1よりもレーザ光入射面とは反対側の部分にて、有効領域Rと除去領域Eとの境界に設定されている。ラインM3の設定は、制御部9において行うことができる。ラインM3は、仮想的なラインであるが、実際に引かれたラインであってもよい。ラインM3は、座標指定されたものであってもよい。
The object 100 has a line M3 as a planned trimming line. The line M3 is a line which is scheduled to form the modified region. The line M3 extends annularly inside the outer edge of the object 100. The line M3 here extends in an annular shape. The line M3 is set at the boundary between the effective region R and the removal region E in a portion on the side opposite to the laser light incident surface with respect to the virtual surface M1 inside the object 100. The setting of the line M3 can be performed by the control unit 9. The line M3 is a virtual line, but may be an actually drawn line. The line M3 may have coordinates designated.
図9に示されるように、レーザ加工装置101は、ステージ107、レーザ加工ヘッド10A、第1Z軸レール106A、Y軸レール108、撮像部110、GUI(Graphical User Interface)111、及び、制御部9を備える。ステージ107は、対象物100が載置される支持部である。ステージ107は、上記支持部7(図1参照)と同様に構成されている。本実施形態のステージ107には、対象物100の裏面100bをレーザ光入射面側である上側にした状態(表面100aをステージ107側である下側にした状態)で、対象物100が載置される。ステージ107は、その中心に設けられた回転軸Cを有する。回転軸Cは、Z方向に沿って延びる軸である。ステージ107は、回転軸Cを中心に回転可能である。ステージ107は、モータ等の公知の駆動装置の駆動力により回転駆動される。
As shown in FIG. 9, the laser processing apparatus 101 includes a stage 107, a laser processing head 10A, a first Z-axis rail 106A, a Y-axis rail 108, an imaging unit 110, a GUI (Graphical User Interface) 111, and a control unit 9. Equipped with. The stage 107 is a support part on which the object 100 is placed. The stage 107 has the same structure as the supporting portion 7 (see FIG. 1). On the stage 107 of the present embodiment, the target object 100 is placed with the back surface 100b of the target object 100 on the upper side which is the laser light incident surface side (the front surface 100a is on the lower side which is the stage 107 side). To be done. The stage 107 has a rotation axis C provided at the center thereof. The rotation axis C is an axis extending along the Z direction. The stage 107 can rotate around the rotation axis C. The stage 107 is rotationally driven by the driving force of a known driving device such as a motor.
レーザ加工ヘッド10Aは、ステージ107に載置された対象物100に第1レーザ光L1(図11(a)参照)をZ方向に沿って照射し、当該対象物100の内部に改質領域を形成する。レーザ加工ヘッド10Aは、第1Z軸レール106A及びY軸レール108に取り付けられている。レーザ加工ヘッド10Aは、モータ等の公知の駆動装置の駆動力により、第1Z軸レール106Aに沿ってZ方向に直線的に移動可能である。レーザ加工ヘッド10Aは、モータ等の公知の駆動装置の駆動力により、Y軸レール108に沿ってY方向に直線的に移動可能である。レーザ加工ヘッド10Aは、照射部を構成する。
The laser processing head 10A irradiates the target object 100 placed on the stage 107 with the first laser light L1 (see FIG. 11A) along the Z direction, thereby forming a modified region inside the target object 100. Form. The laser processing head 10A is attached to the first Z-axis rail 106A and the Y-axis rail 108. The laser processing head 10A is linearly movable in the Z direction along the first Z-axis rail 106A by the driving force of a known driving device such as a motor. The laser processing head 10A is linearly movable in the Y direction along the Y-axis rail 108 by the driving force of a known driving device such as a motor. The laser processing head 10A constitutes an irradiation unit.
レーザ加工ヘッド10Aは、上述したように反射型空間光変調器34を備えている。レーザ加工ヘッド10Aは、測距センサ36を備えている。測距センサ36は、対象物100のレーザ光入射面に対して測距用レーザ光を出射し、当該レーザ光入射面によって反射された測距用の光を検出することで、対象物100のレーザ光入射面の変位データを取得する。測距センサ36としては、第1レーザ光L1と別軸のセンサである場合、三角測距方式、レーザ共焦点方式、白色共焦点方式、分光干渉方式、非点収差方式等のセンサを利用することができる。測距センサ36としては、第1レーザ光L1と同軸のセンサである場合、非点収差方式等のセンサを利用することができる。レーザ加工ヘッド10Aの回路部19(図3参照)は、測距センサ36で取得した変位データに基づいて、集光部14がレーザ光入射面に追従するように駆動部18(図5参照)を駆動させる。これにより、対象物100のレーザ光入射面と第1レーザ光L1の集光点である第1集光点との距離が一定に維持されるように、当該変位データに基づき集光部14がZ方向に沿って移動する。
The laser processing head 10A includes the reflective spatial light modulator 34 as described above. The laser processing head 10A includes a distance measuring sensor 36. The distance measuring sensor 36 emits distance-measuring laser light to the laser light incident surface of the object 100 and detects the distance measuring light reflected by the laser light incident surface to detect the object 100. The displacement data of the laser light incident surface is acquired. As the distance measuring sensor 36, when it is a sensor of a different axis from the first laser light L1, a sensor of a triangulation distance measuring method, a laser confocal method, a white confocal method, a spectral interference method, an astigmatism method or the like is used. be able to. When the distance measuring sensor 36 is a sensor coaxial with the first laser beam L1, a sensor of an astigmatism type or the like can be used. The circuit unit 19 (see FIG. 3) of the laser processing head 10A drives the drive unit 18 (see FIG. 5) so that the condensing unit 14 follows the laser light incident surface based on the displacement data acquired by the distance measuring sensor 36. Drive. As a result, the light condensing unit 14 is based on the displacement data so that the distance between the laser light incident surface of the object 100 and the first light condensing point that is the light condensing point of the first laser light L1 is maintained constant. Move along the Z direction.
第1Z軸レール106Aは、Z方向に沿って延びるレールである。第1Z軸レール106Aは、取付部65を介してレーザ加工ヘッド10Aに取り付けられている。第1Z軸レール106Aは、第1レーザ光L1の第1集光点がZ方向(仮想面M1と交差する方向)に沿って移動するように、レーザ加工ヘッド10AをZ方向に沿って移動させる。第1Z軸レール106Aは、上記移動機構6(図1参照)又は上記移動機構300(図8参照)のレールに対応する。
The first Z-axis rail 106A is a rail extending along the Z direction. The first Z-axis rail 106A is attached to the laser processing head 10A via the attachment portion 65. The first Z-axis rail 106A moves the laser processing head 10A along the Z direction so that the first focus point of the first laser light L1 moves along the Z direction (direction intersecting with the virtual plane M1). .. The first Z-axis rail 106A corresponds to the rail of the moving mechanism 6 (see FIG. 1) or the moving mechanism 300 (see FIG. 8).
Y軸レール108は、Y方向に沿って延びるレールである。Y軸レール108は、第1Z軸レール106Aに取り付けられている。Y軸レール108は、第1レーザ光L1の第1集光点がY方向(仮想面M1に沿う方向)に沿って移動するように、レーザ加工ヘッド10AをY方向に沿って移動させる。Y軸レール108は、上記移動機構6(図1参照)又は上記移動機構300(図8参照)のレールに対応する。
The Y-axis rail 108 is a rail extending along the Y direction. The Y-axis rail 108 is attached to the first Z-axis rail 106A. The Y-axis rail 108 moves the laser processing head 10A along the Y direction so that the first focus point of the first laser light L1 moves along the Y direction (direction along the virtual plane M1). The Y-axis rail 108 corresponds to the rail of the moving mechanism 6 (see FIG. 1) or the moving mechanism 300 (see FIG. 8).
撮像部110は、第1レーザ光L1の入射方向に沿う方向から対象物100を撮像する。撮像部110は、アライメントカメラAC及び撮像ユニットIRを含む。アライメントカメラAC及び撮像ユニットIRは、レーザ加工ヘッド10Aと共に取付部65に取り付けられている。アライメントカメラACは、例えば、対象物100を透過する光を用いてデバイスパターン等を撮像する。これにより得られる画像は、対象物100に対する第1レーザ光L1の照射位置のアライメントに供される。
The image capturing unit 110 captures an image of the object 100 from a direction along the incident direction of the first laser light L1. The image capturing section 110 includes an alignment camera AC and an image capturing unit IR. The alignment camera AC and the imaging unit IR are attached to the attachment portion 65 together with the laser processing head 10A. The alignment camera AC images, for example, a device pattern or the like using light that passes through the target object 100. The image obtained by this is used for alignment of the irradiation position of the first laser beam L1 with respect to the object 100.
撮像ユニットIRは、対象物100を透過する光により対象物100を撮像する。例えば、対象物100がシリコンを含むウェハである場合、撮像ユニットIRにおいては近赤外領域の光が用いられる。撮像ユニットIRは、光源と、対物レンズと、光検出部と、を有する。光源は、対象物100に対して透過性を有する光を出力する。光源は、例えば、ハロゲンランプ及びフィルタによって構成されており、例えば近赤外領域の光を出力する。光源から出力された光は、ミラー等の光学系によって導光されて対物レンズを通過し、対象物100に照射される。
The image pickup unit IR picks up an image of the target object 100 with light that passes through the target object 100. For example, when the object 100 is a wafer containing silicon, light in the near infrared region is used in the imaging unit IR. The image pickup unit IR has a light source, an objective lens, and a photodetector. The light source outputs light that is transparent to the object 100. The light source includes, for example, a halogen lamp and a filter, and outputs light in the near infrared region, for example. The light output from the light source is guided by an optical system such as a mirror, passes through an objective lens, and is irradiated onto the object 100.
対物レンズは、対象物100のレーザ光入射面とは反対側の面で反射された光を通過させる。つまり、対物レンズは、対象物100を伝搬(透過)した光を通過させる。対物レンズの開口数(NA)は、例えば0.45以上である。対物レンズは、補正環を有している。補正環は、例えば対物レンズを構成する複数のレンズにおける相互間の距離を調整することにより、対象物100内において光に生じる収差を補正する。光検出部は、対物レンズを通過した光を検出する。光検出部は、例えば、InGaAsカメラによって構成されており、近赤外領域の光を検出する。撮像ユニットIRは、対象物100の内部に形成された改質領域、及び、改質領域から延びる亀裂の少なくとも何れかを撮像することができる。つまり、レーザ加工装置101においては、撮像ユニットIRを用いて、非破壊にてレーザ加工の加工状態を確認できる。撮像ユニットIRは、対象物100の内部におけるレーザ加工の加工状態を監視(内部監視)する加工状態監視部を構成する。
The objective lens allows the light reflected by the surface of the object 100 opposite to the laser light incident surface to pass through. That is, the objective lens passes the light propagated (transmitted) through the object 100. The numerical aperture (NA) of the objective lens is, for example, 0.45 or more. The objective lens has a correction ring. The correction ring corrects the aberration generated in the light in the object 100 by adjusting the distances between the plurality of lenses forming the objective lens, for example. The light detector detects the light that has passed through the objective lens. The photodetector is composed of, for example, an InGaAs camera, and detects light in the near infrared region. The imaging unit IR can image at least one of the modified region formed inside the object 100 and the crack extending from the modified region. That is, in the laser processing apparatus 101, the processing state of laser processing can be confirmed nondestructively by using the imaging unit IR. The imaging unit IR constitutes a processing state monitoring unit that monitors (internal monitoring) the processing state of laser processing inside the object 100.
GUI111は、各種の情報を表示する。GUI111は、例えばタッチパネルディスプレイを含む。GUI111には、ユーザのタッチ等の操作により、加工条件に関する各種の設定が入力される。GUI111は、ユーザからの入力を受け付ける入力部を構成する。
GUI111 displays various information. The GUI 111 includes, for example, a touch panel display. Various settings relating to the processing conditions are input to the GUI 111 by an operation such as a user touch. The GUI 111 constitutes an input unit that receives an input from the user.
制御部9は、プロセッサ、メモリ、ストレージ及び通信デバイス等を含むコンピュータ装置として構成されている。制御部9では、メモリ等に読み込まれたソフトウェア(プログラム)が、プロセッサによって実行され、メモリ及びストレージにおけるデータの読み出し及び書き込み、並びに、通信デバイスによる通信が、プロセッサによって制御される。制御部9は、レーザ加工装置101の各部を制御し、各種機能を実現する。
The control unit 9 is configured as a computer device including a processor, a memory, a storage, a communication device, and the like. In the control unit 9, the software (program) read into the memory or the like is executed by the processor, and the reading and writing of data in the memory and the storage and the communication by the communication device are controlled by the processor. The control unit 9 controls each unit of the laser processing apparatus 101 and realizes various functions.
制御部9は、ステージ107と、レーザ加工ヘッド10Aと、上記移動機構6(図1参照)又は上記移動機構300(図1参照)と、を少なくとも制御する。制御部9は、ステージ107の回転、レーザ加工ヘッド10Aからの第1レーザ光L1の照射、及び、第1レーザ光L1の第1集光点の移動を制御する。制御部9は、ステージ107の回転量に関する回転情報(以下、「θ情報」ともいう)に基づいて、各種の制御を実行可能である。θ情報は、ステージ107を回転させる駆動装置の駆動量から取得されてもよいし、別途のセンサ等により取得されてもよい。θ情報は、公知の種々の手法により取得することができる。ここでのθ情報は、対象物100が0°方向の位置に位置するときの状態を基準にした回転角度を含む。
The control unit 9 controls at least the stage 107, the laser processing head 10A, and the moving mechanism 6 (see FIG. 1) or the moving mechanism 300 (see FIG. 1). The control unit 9 controls the rotation of the stage 107, the irradiation of the first laser light L1 from the laser processing head 10A, and the movement of the first focus point of the first laser light L1. The control unit 9 can execute various controls based on rotation information (hereinafter, also referred to as “θ information”) regarding the rotation amount of the stage 107. The θ information may be acquired from the driving amount of the driving device that rotates the stage 107, or may be acquired by a separate sensor or the like. The θ information can be acquired by various known methods. The θ information here includes the rotation angle based on the state when the object 100 is located at the position in the 0 ° direction.
制御部9は、ステージ107を回転させながら、対象物100におけるラインM3(有効領域Rの周縁)に沿った位置に第1集光点を位置させた状態で、θ情報に基づいてレーザ加工ヘッド10Aにおける第1レーザ光L1の照射の開始及び停止を制御することにより、有効領域Rの周縁に沿って改質領域を形成させるトリミング処理を実行する。トリミング処理は、トリミング加工を実現する制御部9の処理である。本実施形態のトリミング処理では、剥離処理(後述の第1加工処理)の前に、ラインM3に沿って、対象物100の内部における仮想面M1よりもレーザ光入射面とは反対側の部分に、第1レーザ光L1を照射して改質領域を形成する。
The control unit 9 rotates the stage 107 and positions the first condensing point at a position along the line M3 (peripheral edge of the effective region R) on the object 100, while the laser machining head is based on the θ information. By controlling the start and stop of the irradiation of the first laser light L1 in 10A, a trimming process for forming a modified region along the peripheral edge of the effective region R is executed. The trimming process is a process of the control unit 9 that realizes the trimming process. In the trimming process of the present embodiment, before the peeling process (first processing process described later), along the line M3, a portion on the opposite side of the virtual light surface M1 inside the object 100 from the laser light incident surface. The first laser beam L1 is irradiated to form the modified region.
制御部9は、ステージ107を回転させながら、レーザ加工ヘッド10Aから第1レーザ光L1を照射させると共に、第1集光点のY方向における移動を制御することにより、対象物100の内部において仮想面M1に沿って改質領域を形成させる剥離処理を実行する。剥離処理は、剥離加工を実現する制御部9の処理である。制御部9は、GUI111の表示を制御する。GUI111から入力された各種の設定に基づいて、トリミング処理及び剥離処理を実行する。
The control unit 9 causes the laser processing head 10A to irradiate the first laser beam L1 while controlling the movement of the first focus point in the Y direction while rotating the stage 107, so that the virtual inside of the object 100 is obtained. A peeling process is performed to form the modified region along the surface M1. The peeling process is a process of the control unit 9 that realizes the peeling process. The control unit 9 controls the display of the GUI 111. Trimming processing and peeling processing are executed based on various settings input from the GUI 111.
改質領域の形成及びその停止の切り替えは、次のようにして実現することができる。例えば、レーザ加工ヘッド10Aにおいて、第1レーザ光L1の照射(出力)の開始及び停止(ON/OFF)を切替えることで、改質領域の形成と当該形成の停止とを切り替えることが可能である。具体的には、レーザ発振器が固体レーザで構成されている場合、共振器内に設けられたQスイッチ(AOM(音響光学変調器)、EOM(電気光学変調器)等)のON/OFFが切り替えられることで、第1レーザ光L1の照射の開始及び停止が高速に切り替えられる。レーザ発振器がファイバレーザで構成されている場合、シードレーザ、アンプ(励起用)レーザを構成する半導体レーザの出力のON/OFFが切り替えられることで、第1レーザ光L1の照射の開始及び停止が高速に切り替えられる。レーザ発振器が外部変調素子を用いている場合、共振器外に設けられた外部変調素子(AOM、EOM等)のON/OFFが切り替えられることで、第1レーザ光L1の照射のON/OFFが高速に切り替えられる。
The formation of the reformed area and the switching of its stop can be realized as follows. For example, in the laser processing head 10A, by starting and stopping (ON / OFF) the irradiation (output) of the first laser light L1, it is possible to switch between the formation of the modified region and the stop of the formation. .. Specifically, when the laser oscillator is composed of a solid-state laser, ON / OFF of the Q switch (AOM (acousto-optic modulator), EOM (electro-optic modulator), etc.) provided in the resonator is switched. By doing so, the start and stop of the irradiation of the first laser light L1 can be switched at high speed. When the laser oscillator is composed of a fiber laser, the ON / OFF of the output of the semiconductor laser that constitutes the seed laser and the amplifier (for excitation) laser is switched to start and stop the irradiation of the first laser light L1. Can be switched at high speed. When the laser oscillator uses the external modulation element, the ON / OFF of the irradiation of the first laser light L1 is turned on / off by switching the ON / OFF of the external modulation element (AOM, EOM, etc.) provided outside the resonator. Can be switched at high speed.
或いは、改質領域の形成及びその停止の切り替えは、次のようにして実現してもよい。例えば、シャッタ等の機械式機構を制御するによって第1レーザ光L1の光路を開閉し、改質領域の形成と当該形成の停止とを切り替えてもよい。第1レーザ光L1をCW光(連続波)へ切り替えることで、改質領域の形成を停止させてもよい。反射型空間光変調器34の液晶層に、第1レーザ光L1の集光状態を改質できない状態とするパターン(例えば、レーザ散乱させる梨地模様のパターン)を表示することで、改質領域の形成を停止させてもよい。アッテネータ等の出力調整部を制御し、改質領域が形成できないように第1レーザ光L1の出力に低下させることで、改質領域の形成を停止させてもよい。偏光方向を切り替えることで、改質領域の形成を停止させてもよい。第1レーザ光L1を光軸以外の方向に散乱させて(飛ばして)カットすることで、改質領域の形成を停止させてもよい。
Alternatively, the formation of the modified region and the switching of its stop may be realized as follows. For example, the optical path of the first laser light L1 may be opened and closed by controlling a mechanical mechanism such as a shutter to switch the formation of the modified region and the stop of the formation. The formation of the modified region may be stopped by switching the first laser light L1 to CW light (continuous wave). By displaying on the liquid crystal layer of the reflective spatial light modulator 34 a pattern (for example, a satin pattern for laser scattering) that makes the condensed state of the first laser light L1 unmodifiable, the modified region of the modified region is displayed. The formation may be stopped. The formation of the modified region may be stopped by controlling the output adjusting unit such as an attenuator and lowering the output of the first laser beam L1 so that the modified region cannot be formed. The formation of the modified region may be stopped by switching the polarization direction. The formation of the modified region may be stopped by scattering (flying) the first laser light L1 in a direction other than the optical axis and cutting it.
次に、レーザ加工装置101を用いて、対象物100にトリミング加工及び剥離加工を施し、半導体デバイスを製造(取得)する方法の一例について、以下に説明する。以下に説明する製造方法は、トリミング加工及び剥離加工によって対象物100から取り除く除去部分(対象物100において半導体デバイスとして用いられない部分)について、リユース可能な方法である。
Next, an example of a method of manufacturing (acquiring) a semiconductor device by performing trimming processing and peeling processing on the object 100 using the laser processing apparatus 101 will be described below. The manufacturing method described below is a method in which a removed portion (a portion that is not used as a semiconductor device in the target object 100) removed from the target object 100 by the trimming process and the peeling process can be reused.
まず、裏面100bをレーザ光入射面側にした状態でステージ107上に対象物100を載置する。対象物100において機能素子が搭載された表面100a側は、支持基板ないしテープ材が接着されて保護されている。
First, the target object 100 is placed on the stage 107 with the back surface 100b facing the laser light incident surface side. The surface 100a side of the object 100 on which the functional element is mounted is protected by a support substrate or a tape material adhered thereto.
続いて、トリミング加工を実施する。具体的には、図11(a)に示されるように、ステージ107を一定の回転速度で回転しながら、対象物100のラインM3上の位置に第1集光点P1を位置させた状態で、レーザ加工ヘッド10Aにおける第1レーザ光L1を照射する。当該第1レーザ光L1の照射を、第1集光点P1のZ方向の位置を変えて繰り返し行う。つまり、図10(b)及び11(b)に示されるように、剥離処理の前に、ラインM3に沿って、対象物100の内部における仮想面M1よりもレーザ光入射面とは反対側の部分に改質領域43を形成する。
Next, carry out trimming processing. Specifically, as shown in FIG. 11A, the stage 107 is rotated at a constant rotation speed while the first focus point P1 is located at the position on the line M3 of the object 100. The first laser beam L1 is emitted from the laser processing head 10A. The irradiation of the first laser light L1 is repeated by changing the position of the first focus point P1 in the Z direction. That is, as shown in FIGS. 10B and 11B, before the peeling process, along the line M3, on the side opposite to the laser light incident surface with respect to the virtual surface M1 inside the object 100. The modified region 43 is formed in the portion.
続いて、剥離加工を実施する。具体的には、図12(a)に示されるように、ステージ107を一定の回転速度で回転させながら、レーザ加工ヘッド10Aから第1レーザ光L1を照射すると共に、第1集光点P1が仮想面M1の外縁側から内側にY方向に沿って移動するように、レーザ加工ヘッド10AをY軸レール108に沿って移動する。これにより、図12(b)及び図12(c)に示されるように、対象物100の内部において仮想面M1に沿って、回転軸C(図9参照)の位置を中心とする渦巻き状(インボリュート曲線)に延びる改質領域4を形成する。形成した改質領域4は、複数の改質スポットを含む。これにより、図13(a)に示されるように、仮想面M1に渡る改質領域4及び改質領域4の改質スポットから延びる亀裂を境界として、対象物100の一部を剥離する。これと共に、ラインM3に沿う改質領域43及び改質領域43の改質スポットから延びる亀裂を境界として、除去領域Eを取り除く。
Next, peeling is performed. Specifically, as shown in FIG. 12A, while the stage 107 is rotating at a constant rotation speed, the laser processing head 10A irradiates the first laser beam L1 and the first focus point P1 changes. The laser processing head 10A is moved along the Y-axis rail 108 so as to move inward in the Y direction from the outer edge side of the virtual surface M1. As a result, as shown in FIGS. 12B and 12C, a spiral shape (centered around the position of the rotation axis C (see FIG. 9)) along the virtual plane M1 inside the object 100 ( A modified region 4 extending along the involute curve is formed. The formed modified region 4 includes a plurality of modified spots. As a result, as shown in FIG. 13A, a part of the object 100 is peeled off with the crack extending from the modified region 4 and the modified spot of the modified region 4 across the virtual surface M1 as a boundary. At the same time, the removal region E is removed with the cracks extending from the modified region 43 and the modified spots of the modified region 43 along the line M3 as boundaries.
なお、対象物100の剥離及び除去領域Eの除去は、例えば吸着冶具を用いて行ってもよい。対象物100の剥離は、ステージ107上で実施してもよいし、剥離専用のエリアに移動させて実施してもよい。対象物100の剥離は、エアーブロー又はテープ材を利用して剥離してもよい。外部応力だけで対象物100を剥離できない場合には、対象物100に反応するエッチング液(KOH又はTMAH等)で改質領域4,43を選択的にエッチングしてもよい。これにより、対象物100を容易に剥離することが可能となる。ステージ107を一定の回転速度で回転させたが、当該回転速度は変化させてもよい。例えばステージ107の回転速度は、改質領域4に含まれる改質スポットのピッチが一定間隔となるように変化させてもよい。
Note that the peeling of the object 100 and the removal of the removal area E may be performed using, for example, a suction jig. The object 100 may be peeled off on the stage 107 or may be moved to an area dedicated to peeling. The object 100 may be peeled off by using an air blow or a tape material. When the object 100 cannot be peeled off only by the external stress, the modified regions 4 and 43 may be selectively etched with an etching solution (KOH, TMAH, or the like) that reacts with the object 100. This makes it possible to easily peel off the object 100. Although the stage 107 is rotated at a constant rotation speed, the rotation speed may be changed. For example, the rotation speed of the stage 107 may be changed so that the pitch of the reforming spots included in the reforming region 4 is constant.
続いて、図13(b)に示されるように、対象物100の剥離面100hに対して、仕上げの研削又は砥石等の研磨材による研磨を行う。エッチングにより対象物100を剥離している場合、当該研磨を簡略化することができる。以上の結果、半導体デバイス100kが取得される。
Subsequently, as shown in FIG. 13B, the separation surface 100h of the object 100 is subjected to finish grinding or polishing with an abrasive such as a grindstone. When the object 100 is peeled off by etching, the polishing can be simplified. As a result, the semiconductor device 100k is obtained.
次に、本実施形態の剥離加工に関して、より詳細に説明する。
Next, the peeling process of this embodiment will be described in more detail.
図14(a)に示されるように、剥離加工の対象となる対象物100には、ライン(加工用ライン)M11が設定されている。ラインM11は、改質領域4の形成を予定するラインである。ラインM11は、対象物100において周縁側から内側に向かって渦巻き状に延在する。換言すると、ラインM11は、ステージ107の回転軸C(図9参照)の位置を中心とする渦巻き状(インボリュート曲線)に延びる。ラインM11は、並ぶように配された複数の並行ラインM11aを有する加工用ラインである。例えば渦巻き状における一周部分が、1つの並行ラインM11aを構成する。ラインM11は、仮想的なラインであるが、実際に引かれたラインであってもよい。ラインM11は、座標指定されたものであってもよい。
As shown in FIG. 14A, a line (processing line) M11 is set in the target object 100 that is the target of peeling processing. The line M11 is a line for forming the modified region 4. The line M11 spirally extends inward from the peripheral side of the object 100. In other words, the line M11 extends in a spiral shape (involute curve) centered on the position of the rotation axis C (see FIG. 9) of the stage 107. The line M11 is a processing line having a plurality of parallel lines M11a arranged side by side. For example, one rounded portion in a spiral form one parallel line M11a. The line M11 is a virtual line, but may be an actually drawn line. The line M11 may have coordinates designated.
図14(a)及び図14(b)に示されるように、対象物100は、レーザ光入射面である裏面100bに対して交差する側面を有するベベル部(周縁部分)BBを有する。ベベル部BBは、例えば強度向上のための面取り面である。ベベル部BBは、対象物100の周縁の角が曲面(R面)にされて成る。ベベル部BBは、例えば、対象物100において周縁から200~300μm内側までの間の部分である。
As shown in FIGS. 14A and 14B, the object 100 has a bevel portion (peripheral portion) BB having a side surface that intersects the back surface 100b that is the laser light incident surface. The bevel portion BB is, for example, a chamfered surface for improving strength. The bevel portion BB is formed by forming the corner of the peripheral edge of the object 100 into a curved surface (R surface). The bevel portion BB is, for example, a portion between the peripheral edge and the inner side of 200 to 300 μm in the object 100.
対象物100には、アライメント対象100nが設けられている。例えばアライメント対象100nは、対象物100の0°方向の位置に対してθ方向(ステージ107の回転軸C回りの回転方向)に一定の関係を有する。0°方向の位置とは、θ方向において基準となる対象物100の位置である。例えばアライメント対象100nは、対象物100の周縁側に形成されたノッチである。なお、アライメント対象100nは、特に限定されず、対象物100のオリエンテーションフラットであってもよいし、機能素子のパターンであってもよい。
The target object 100 is provided with an alignment target 100n. For example, the alignment target 100n has a fixed relationship in the θ direction (the rotation direction around the rotation axis C of the stage 107) with respect to the position of the target object 100 in the 0 ° direction. The position in the 0 ° direction is the position of the reference object 100 in the θ direction. For example, the alignment target 100n is a notch formed on the peripheral side of the target 100. The alignment target 100n is not particularly limited, and may be the orientation flat of the target 100 or the pattern of the functional element.
制御部9は、ベベル部BBを含むベベル周辺部(第1部分)100Xに、第1加工条件で第1レーザ光L1を照射させる第1加工処理を実行する。制御部9は、第1加工処理の後、対象物100においてベベル周辺部100Xよりも内側の内周部(第2部分)100Yに、第1加工条件とは異なる第2加工条件で第1レーザ光L1を照射させる第2加工処理を実行する。第1加工処理及び第2加工処理は、剥離処理に含まれる。対象物におけるベベル周辺部100X及び内周部100Yの広さは、GUI111を介して入力することができる。
The control unit 9 executes the first processing process of irradiating the bevel peripheral portion (first portion) 100X including the bevel portion BB with the first laser light L1 under the first processing condition. After the first processing, the control unit 9 causes the first laser to be provided on the inner peripheral portion (second portion) 100Y inside the bevel peripheral portion 100X in the object 100 under the second processing condition different from the first processing condition. The second processing process of irradiating the light L1 is executed. The first processing processing and the second processing processing are included in the peeling processing. The sizes of the bevel peripheral portion 100X and the inner peripheral portion 100Y in the object can be input via the GUI 111.
第1加工処理及び第2加工処理では、図15に示されるように、ラインM11の延在方向C1(加工進行方向)と直交する直交方向に対して傾斜する傾斜方向C2に沿って一列に並ぶ複数の改質スポットSAが仮想面M1上に形成されるように、第1レーザ光L1が分岐される。第1レーザ光L1の分岐は、例えば反射型空間光変調器34(図5参照)を利用して実現することができる。
In the first processing process and the second processing process, as shown in FIG. 15, the lines M11 are arranged in a line along an inclination direction C2 that is inclined with respect to an orthogonal direction orthogonal to the extending direction C1 (processing progress direction). The first laser light L1 is branched so that the plurality of modified spots SA are formed on the virtual surface M1. The branching of the first laser light L1 can be realized by using, for example, the reflective spatial light modulator 34 (see FIG. 5).
図示される例では、第1レーザ光L1が4分岐され、4つの改質スポットSAが形成される。分岐された4つの改質スポットSAのうち隣接する一対の改質スポットSAについて、ラインM11の延在方向C1における間隔が分岐ピッチBPxであり、延在方向C1の直交方向における間隔が分岐ピッチBPyである。連続する2パルスの第1レーザ光L1の照射で形成される一対の改質スポットSAについて、延在方向C1における間隔がパルスピッチPPである。延在方向C1と傾斜方向C2と間の角度が分岐角度αである。
In the illustrated example, the first laser light L1 is branched into four to form four modified spots SA. Regarding a pair of adjacent reforming spots SA among the four branched reforming spots SA, the spacing in the extending direction C1 of the line M11 is the branching pitch BPx, and the spacing in the direction orthogonal to the extending direction C1 is the branching pitch BPy. Is. The interval in the extending direction C1 is the pulse pitch PP for the pair of modified spots SA formed by the irradiation of the continuous two pulses of the first laser light L1. The angle between the extending direction C1 and the inclination direction C2 is the branch angle α.
第1加工処理及び第2加工処理では、第1レーザ光L1を対象物100に照射させると共に、周縁から内側に向かって渦巻き状のラインM11に沿って第1集光点P1の位置を対象物100に対して相対的に移動させ、当該ラインM11に沿って改質領域4を形成する。つまり、第1及び第2加工処理では、対象物100において改質領域4を形成する領域を、周縁から内側へ向かう第1方向に変遷させる。
In the first processing process and the second processing process, the first laser beam L1 is irradiated onto the target object 100, and the position of the first focus point P1 is set along the spiral line M11 from the peripheral edge toward the inside. By moving it relative to 100, the modified region 4 is formed along the line M11. That is, in the first and second processing operations, the region forming the modified region 4 in the object 100 is changed in the first direction from the peripheral edge toward the inside.
第1加工条件及び第2加工条件は、一本の加工用ラインに沿って第1レーザ光L1を照射して改質領域4を形成した場合に、対象物100の内部の加工状態(以下、単に「加工状態」ともいう)が後述のスライシングハーフカット状態(第1スライシング状態)になる条件である。第1加工条件及び第2加工条件は、並ぶように配された複数の並行ラインを有する加工用ラインであるラインM11に沿って第1レーザ光L1を照射して改質領域4を形成した場合に、加工状態が後述のスライシングフルカット状態(第2スライシング状態)になる条件である。
The first processing condition and the second processing condition are the processing state inside the object 100 (hereinafter, referred to as the processing state when the modified region 4 is formed by irradiating the first laser beam L1 along one processing line). The condition (also simply referred to as a “processed state”) is a condition in which a slicing half-cut state (first slicing state) described later is obtained. The first processing condition and the second processing condition are the case where the modified region 4 is formed by irradiating the first laser beam L1 along the line M11 which is a processing line having a plurality of parallel lines arranged side by side. In addition, it is a condition that the processing state becomes a slicing full cut state (second slicing state) described later.
第1加工条件は、第1規定量のレーザ加工後の加工状態がスライシングフルカット状態になる条件である。第2加工条件は、第1規定量よりも多い第2規定量のレーザ加工後の加工状態がスライシングフルカット状態になる条件である。第1加工条件及び第2加工条件の具体的なパラメータとしては、第1レーザ光L1の分岐数、分岐ピッチBPy,BPx、パルスエネルギ、パルスピッチ及びパルス幅、並びに加工速度等が挙げられる。加工状態がスライシングハーフカット状態になる加工条件は、加工状態がスライシングハーフカット状態になるように公知技術に基づきパラメータが適宜設定された加工条件である。加工状態がスライシングフルカット状態になる加工条件は、加工状態がスライシングフルカット状態になるように公知技術に基づきパラメータが適宜設定された加工条件である。例えば第1加工条件は、分岐数は4、分岐ピッチBPyが20μm、分岐ピッチBPxが30μm、パルスエネルギは16.73μJ、加工速度は800mm/s、パルスピッチは10μm、パルス幅は700nsである。例えば第2加工条件は、分岐ピッチBPyが30μmである以外は第1加工条件と同じである。
The first processing condition is a condition where the processing state after the laser processing of the first specified amount becomes the slicing full cut state. The second processing condition is a condition in which the processing state after the laser processing of the second specified amount larger than the first specified amount becomes the slicing full cut state. Specific parameters of the first processing condition and the second processing condition include the number of branches of the first laser beam L1, the branch pitches BPy and BPx, the pulse energy, the pulse pitch and the pulse width, and the processing speed. The processing condition that the processing state becomes the slicing half cut state is a processing condition in which parameters are appropriately set based on a known technique so that the processing state becomes the slicing half cut state. The processing condition that the processing state is the slicing full cut state is a processing condition in which the parameters are appropriately set based on a known technique so that the processing state is the slicing full cut state. For example, the first processing condition is that the number of branches is 4, the branch pitch BPy is 20 μm, the branch pitch BPx is 30 μm, the pulse energy is 16.73 μJ, the processing speed is 800 mm / s, the pulse pitch is 10 μm, and the pulse width is 700 ns. For example, the second processing condition is the same as the first processing condition except that the branch pitch BPy is 30 μm.
ここで、剥離加工において見出された加工状態について、以下に説明する。
Here, the processing state found in the peeling processing will be described below.
図16(a)及び図17(a)は、スライシングステルス状態を示す画像である。図16(b)及び図17(b)は、スライシングハーフカット状態を示す画像である。図18(a)は、第1規定量のレーザ加工後の加工状態であってスライシングフルカット状態を示す画像である。図18(b)は、第2規定量のレーザ加工後の加工状態であってスライシングフルカット状態を示す画像である。
16 (a) and 17 (a) are images showing a slicing stealth state. 16B and 17B are images showing a slicing half-cut state. FIG. 18A is an image showing a slicing full-cut state in the processed state after the laser processing of the first specified amount. FIG. 18B is an image showing a slicing full-cut state after the second prescribed amount of laser processing.
図16(a)~図18(b)は、レーザ光入射面から撮像ユニットIRで撮像した、仮想面M1の位置における画像である。図16(a)及び図16(b)は、一本の加工用ライン(並行ライン)に沿って第1レーザ光L1を照射して改質領域4を形成した場合の加工状態である。図17(a)~図18(b)は、複数本の加工用ラインに沿って第1レーザ光L1を照射して改質領域4を形成した場合の加工状態である。加工用ラインは、図示において左右に直線状に延びるように設定されている。図16(a)~図18(b)に示されるように、加工状態は、パルスエネルギ及び分岐ピッチ等により、3段階に変化することがわかる。
FIGS. 16 (a) to 18 (b) are images at the position of the virtual plane M1 taken by the image pickup unit IR from the laser light incident surface. FIG. 16A and FIG. 16B show a processing state when the modified region 4 is formed by irradiating the first laser beam L1 along one processing line (parallel line). 17 (a) to 18 (b) show a processing state when the modified region 4 is formed by irradiating the first laser beam L1 along a plurality of processing lines. The processing line is set to extend linearly in the left and right directions in the drawing. As shown in FIGS. 16 (a) to 18 (b), it can be seen that the processing state changes in three stages depending on the pulse energy, the branch pitch, and the like.
図16(a)及び図17(a)に示されるように、スライシングステルス(SST)状態は、改質領域4に含まれる複数の改質スポット(打痕)SAから亀裂が伸展していない、又は、当該亀裂が繋がっていない状態である。スライシングステルス状態は、改質スポットSAのみが観察できる状態である。スライシングステルス状態では、亀裂の伸展がないため、加工用ラインの数を増加させてもスライシングフルカット状態へ状態変化することはない。
As shown in FIGS. 16A and 17A, in the slicing stealth (SST) state, cracks do not extend from a plurality of modified spots (dents) SA included in the modified region 4, Alternatively, the crack is not connected. The slicing stealth state is a state in which only the modified spot SA can be observed. In the slicing stealth state, since there is no crack extension, the state does not change to the slicing full cut state even if the number of processing lines is increased.
図16(b)及び図17(b)に示されるように、スライシングハーフカット(SHC)状態は、改質領域4に含まれる複数の改質スポットSAから延びる亀裂が、加工用ラインに沿う方向に伸展する状態である。画像において、スライシングハーフカット状態では、改質スポットSAと加工用ラインに沿った染みが確認できる。加工状態がスライシングハーフカット状態となるように加工用ラインの数を増加させることで、スライシングフルカット状態に変化するが、加工条件によってスライシングフルカット状態に変化する当該加工用ラインの数が変化する。また、スライシングフルカット状態を発生させるためには、一本の加工用ラインに沿って第1レーザ光L1を照射して改質領域4を形成した場合の加工状態として、スライシングハーフカット状態が必要不可欠となることがわかる。
As shown in FIGS. 16B and 17B, in the slicing half-cut (SHC) state, cracks extending from a plurality of modified spots SA included in the modified region 4 are in a direction along the processing line. It is in the state of extending to. In the image, in the slicing half-cut state, stains along the modified spot SA and the processing line can be confirmed. By increasing the number of processing lines so that the processing state becomes a slicing half cut state, it changes to the slicing full cut state, but the number of the processing lines that change to the slicing full cut state changes depending on the processing conditions. .. In order to generate the slicing full cut state, a slicing half cut state is required as a processing state when the modified region 4 is formed by irradiating the first laser beam L1 along one processing line. It turns out to be essential.
スライシングフルカット(SFC)状態は、改質領域4に含まれる複数の改質スポットSAから延びる亀裂が、複数の加工用ラインに沿う方向及び加工用ラインと交差する方向に伸展して互いに繋がる状態である。スライシングフルカット状態は、改質スポットSAから延びる亀裂が、画像上において左右上下に伸展し、複数の加工用ラインを跨いで繋がっている状態である。図18(a)及び図18(b)に示されるように、スライシングフルカット状態は、画像上において改質スポットSAが確認できない状態(当該亀裂により形成された空間ないし隙間が確認される状態)である。スライシングフルカット状態は、複数の加工用ラインの間を跨ぐ亀裂の繋がりによって発生する状態であることから、一本の加工用ラインに沿って第1レーザ光L1を照射して改質領域4を形成した場合には、発生し得ない。
The slicing full cut (SFC) state is a state in which cracks extending from a plurality of modified spots SA included in the modified region 4 extend and are connected to each other in a direction along a plurality of processing lines and in a direction intersecting the processing lines. Is. The slicing full cut state is a state in which a crack extending from the modified spot SA extends vertically and horizontally on the image and is connected across a plurality of processing lines. As shown in FIGS. 18A and 18B, in the slicing full-cut state, the modified spot SA cannot be confirmed on the image (the space or gap formed by the crack is confirmed). Is. The slicing full-cut state is a state in which a crack is formed across a plurality of processing lines, so that the modified region 4 is irradiated with the first laser light L1 along one processing line. If formed, it cannot occur.
スライシングフルカット状態とは、第1スライシングフルカット状態と、第2スライシングフルカット状態と、を含む。第1スライシングフルカット状態は、第1規定量のレーザ加工後に発生するスライシングフルカット状態である(図18(a)参照)。第2スライシングフルカット状態は、第1規定量よりも多い第2規定量のレーザ加工後に発生するスライシングフルカット状態である(図18(a)参照)。
The slicing full cut state includes the first slicing full cut state and the second slicing full cut state. The first slicing full-cut state is a slicing full-cut state that occurs after laser processing a first prescribed amount (see FIG. 18A). The second slicing full-cut state is a slicing full-cut state that occurs after laser processing of a second prescribed amount that is larger than the first prescribed amount (see FIG. 18A).
第1規定量のレーザ加工は、例えば100本未満の複数の並行ラインに沿って第1レーザ光L1を照射して改質領域4を形成した場合である。第1規定量のレーザ加工とは、例えば、対象物100における改質領域4を形成する領域のインデックス方向の幅が12mm未満の場合である。インデックス方向は、レーザ光入射面から見て加工用ラインの延在方向に直交する方向である。第2規定量のレーザ加工とは、例えば100本以上の複数の加工用ラインに沿って第1レーザ光L1を照射して改質領域4を形成した場合である。第2規定量のレーザ加工とは、例えば、対象物100における改質領域4を形成する領域のインデックス方向の幅が12mm以上の場合である。第1規定量及び第2規定量は特に限定されず、種々のパラメータ量であってもよい。第1期定量及び第2規定量は、例えば加工時間であってもよい。第1期定量及び第2規定量は、複数のパラメータ量の組合せであってもよい。
The first prescribed amount of laser processing is, for example, the case where the modified region 4 is formed by irradiating the first laser light L1 along a plurality of parallel lines of less than 100 lines. The first prescribed amount of laser processing is, for example, the case where the width of the region forming the modified region 4 in the object 100 in the index direction is less than 12 mm. The index direction is a direction orthogonal to the extending direction of the processing line when viewed from the laser light incident surface. The second prescribed amount of laser processing is, for example, a case where the modified region 4 is formed by irradiating the first laser light L1 along a plurality of 100 or more processing lines. The second prescribed amount of laser processing is, for example, a case where the width of the region forming the modified region 4 in the object 100 in the index direction is 12 mm or more. The first specified amount and the second specified amount are not particularly limited and may be various parameter amounts. The first period fixed amount and the second specified amount may be, for example, processing time. The first-phase quantification and the second prescribed amount may be a combination of a plurality of parameter amounts.
なお、図16(a)~図18(b)は撮像ユニットIRで撮像した画像であるが、通常のIRカメラで撮影した場合も、図16(a)~図18(b)と同様の画像が得られる。図16(a)~図18(b)の結果は、対象物100の形状及び大きさ等に特に限定されず、対象物100がホールウェハ又は小片ウェハであっても、図16(a)~図18(b)と同様の結果が得られる。図16(a)~図18(b)の結果はレーザ加工のみの結果(応力を加えないことを前提に実施した結果)である。100本未満の複数の加工用ラインに沿って第1レーザ光L1を照射して改質領域4を形成した場合であっても、対象物100に応力を加えることでスライシングフルカット状態となる場合がある。
16 (a) to 18 (b) are images taken by the image pickup unit IR, the same images as in FIGS. 16 (a) to 18 (b) when taken by a normal IR camera. Is obtained. The results of FIGS. 16 (a) to 18 (b) are not particularly limited to the shape and size of the object 100, and even if the object 100 is a hole wafer or a small piece wafer, the results of FIGS. The same result as in FIG. 18B is obtained. The results of FIGS. 16A to 18B are the results of only the laser processing (the results performed on the assumption that no stress is applied). Even when the modified region 4 is formed by irradiating the first laser beam L1 along a plurality of processing lines of less than 100 lines, a slicing full cut state is obtained by applying stress to the object 100. There is.
制御部9は、GUI111を介したユーザからの入力に基づいて、第1加工条件及び第2加工条件を設定する。GUI111の表示及び入力に関しては、後述する。制御部9は、撮像ユニットIRの撮像結果、すなわち対象物100の内部の加工状態を、GUI111に表示させる。
The control unit 9 sets the first processing condition and the second processing condition based on the input from the user via the GUI 111. The display and input of the GUI 111 will be described later. The control unit 9 causes the GUI 111 to display the imaging result of the imaging unit IR, that is, the processing state inside the object 100.
撮像ユニットIRは、渦巻き状のラインM11に沿って改質領域4が形成された場合の加工状態がスライシングハーフカット状態であるかを監視する。撮像ユニットIRは、第1加工処理において、第1規定量のレーザ加工後の加工状態がスライシングフルカット状態であるか(つまり、第1スライシングフルカット状態であるか)を監視する。撮像ユニットIRは、第2加工処理において、第2規定量のレーザ加工後の加工状態がスライシングフルカット状態であるか(つまり、第2スライシングフルカット状態であるか)を監視する。状態を監視することは、当該状態を見張るような作用を実現すること、及び/又は、当該状態を判別可能な情報を取得(例えば画像取得)すること、を含む。
The imaging unit IR monitors whether the processing state when the modified region 4 is formed along the spiral line M11 is the slicing half cut state. In the first processing, the imaging unit IR monitors whether the processing state after the laser processing of the first specified amount is the slicing full cut state (that is, whether the processing state is the first slicing full cut state). In the second processing, the imaging unit IR monitors whether the processing state after the laser processing of the second specified amount is the slicing full cut state (that is, the second slicing full cut state). Monitoring the state includes realizing an action of watching the state, and / or acquiring information (for example, image acquisition) that can determine the state.
制御部9は、撮像ユニットIRの監視結果に基づいて、第1加工処理における第1規定量のレーザ加工後の加工状態が第2スライシングフルカット状態か否か、及び、第2加工処理における第2規定量のレーザ加工後の加工状態が第2スライシングフルカット状態か否かを判定する。加工状態の判定は、公知の種々の画像処理手法を用いて行うことができる。加工状態の判定は、ディープラーニングによって得られる学習済みモデル(AI;人工知能)を利用して行ってもよい。これらについては、制御部9における他の判定について同様である。
Based on the monitoring result of the imaging unit IR, the control unit 9 determines whether or not the processing state after the laser processing of the first specified amount in the first processing is the second slicing full cut state, and whether the processing in the second processing is performed. 2 It is determined whether or not the processing state after the laser processing of the specified amount is the second slicing full cut state. The processing state can be determined using various known image processing methods. The processing state may be determined using a learned model (AI; artificial intelligence) obtained by deep learning. The same applies to other determinations in the control unit 9.
次に、上述した剥離加工について、図19のフローチャートを参照しつつ詳説する。
Next, the peeling process described above will be described in detail with reference to the flowchart in FIG.
本実施形態の剥離加工は、第1加工処理にて亀裂をベベル部BBに到達させた後に第2加工処理を行い、対象物100の剥離を実現する。具体的には、制御部9によりレーザ加工装置101の各部を制御し、以下の各処理を実行する。
In the peeling process of the present embodiment, after the crack reaches the bevel portion BB in the first processing process, the second processing process is performed to realize the peeling of the object 100. Specifically, the control unit 9 controls each unit of the laser processing apparatus 101 and executes the following processes.
まず、アライメントカメラACが対象物100のアライメント対象100nの直上に位置し且つアライメント対象100nにアライメントカメラACのピントが合うように、ステージ107を回転させると共にレーザ加工ヘッド10AをY軸レール108及び第1Z軸レール106Aに沿って移動させる。アライメントカメラACにより撮像を行う。アライメントカメラACの撮像画像に基づいて、対象物100の0度方向の位置を取得する。また、アライメントカメラACの撮像画像に基づいて、対象物100の直径を取得する。なお、対象物100の直径は、ユーザからの入力により設定されてもよい。
First, the stage 107 is rotated and the laser processing head 10A is moved to the Y-axis rail 108 and the first position so that the alignment camera AC is positioned directly above the alignment target 100n of the target object 100 and the alignment target AC is in focus. It is moved along the 1Z-axis rail 106A. An image is taken by the alignment camera AC. The position of the object 100 in the 0 degree direction is acquired based on the image captured by the alignment camera AC. Moreover, the diameter of the target object 100 is acquired based on the captured image of the alignment camera AC. The diameter of the target object 100 may be set by an input from the user.
続いて、図9及び図20(a)に示されるように、ステージ107を回転させ、対象物100を0度方向の位置に位置させる。Y方向において第1集光点P1が剥離開始所定位置に位置するように、レーザ加工ヘッド10AをY軸レール108に沿って移動させる。Z方向において第1集光点P1が仮想面M1に位置するように、レーザ加工ヘッド10Aを第1Z軸レール106Aに沿って移動させる。例えば剥離開始所定位置は、対象物100よりも離れた所定位置である。
Subsequently, as shown in FIGS. 9 and 20 (a), the stage 107 is rotated to position the object 100 at a position in the 0 degree direction. The laser processing head 10A is moved along the Y-axis rail 108 so that the first focus point P1 is located at the predetermined peeling start position in the Y direction. The laser processing head 10A is moved along the first Z-axis rail 106A so that the first focus point P1 is located on the virtual plane M1 in the Z direction. For example, the peeling start predetermined position is a predetermined position farther from the object 100.
続いて、ステージ107の回転を開始する。測距センサによる裏面100bの追従を開始する。なお、測距センサの追従開始の前に、第1集光点P1の位置が、測距センサの測長可能範囲内であることを予め確認する。ステージ107の回転速度が一定(等速)になった時点で、レーザ加工ヘッド10Aによる第1レーザ光L1の照射を開始する。
Next, the rotation of the stage 107 is started. The tracking of the back surface 100b by the distance measuring sensor is started. Before the tracking of the distance measuring sensor is started, it is confirmed in advance that the position of the first focus point P1 is within the range in which the distance measuring sensor can measure the length. When the rotation speed of the stage 107 becomes constant (constant speed), irradiation of the first laser light L1 by the laser processing head 10A is started.
ベベル周辺部100Xに第1加工条件で第1レーザ光L1を照射しながら、第1集光点P1がY方向に沿って内周側へ移動するようにレーザ加工ヘッド10AをY軸レール108に沿って移動させる(ステップS1,第1加工工程)。上記ステップS1では、対象物100において改質領域4を形成する領域を、周縁から内側へ向かう第1方向E1に変遷させる。上記ステップS1では、インデックス方向を第1方向E1としてレーザ加工を行う。上記ステップS1では、渦巻き状のラインM11に沿って、周縁から内側に向かうように第1集光点P1を移動させて改質領域4を形成する。上記ステップS1では、第1レーザ光L1の照射を開始するタイミングは、第1レーザ光L1の光軸が未だ対象物100外に位置するときであってもよいし、ベベル周辺部100Xに位置するときであってもよい。
While irradiating the bevel peripheral portion 100X with the first laser light L1 under the first processing condition, the laser processing head 10A is moved to the Y-axis rail 108 so that the first focus point P1 moves to the inner peripheral side along the Y direction. It is moved along (step S1, first processing step). In the step S1, the region forming the modified region 4 in the object 100 is changed in the first direction E1 from the peripheral edge toward the inside. In the step S1, laser processing is performed with the index direction as the first direction E1. In step S1, the first condensing point P1 is moved from the peripheral edge toward the inside along the spiral line M11 to form the modified region 4. In step S1, the irradiation of the first laser light L1 may be started at a time when the optical axis of the first laser light L1 is still located outside the object 100, or it is located in the bevel peripheral portion 100X. It may be time.
第1規定量の第1加工工程の加工後、ステージ107の回転及び第1レーザ光L1の照射等を停止し、第1加工工程を停止する。撮像ユニットIRの撮像結果に基づいて、第1規定量の加工後の加工状態がスライシングフルカット状態か否かを判定する(ステップS2)。上記ステップS2でYesの場合、ステージ107の回転及び第1レーザ光L1の照射等を再び開始し、第1加工工程を再開する(ステップS3)。これにより、ベベル周辺部100Xでは、改質領域4が渦巻き状のラインM11に沿って形成され、加工状態がスライシングフルカット状態となる(図20(b)参照)。
After the first prescribed amount of the first machining process, the rotation of the stage 107 and the irradiation of the first laser beam L1 are stopped, and the first machining process is stopped. Based on the image pickup result of the image pickup unit IR, it is determined whether or not the processing state after processing the first specified amount is the slicing full cut state (step S2). If Yes in step S2, the rotation of the stage 107, the irradiation of the first laser beam L1 and the like are restarted, and the first processing step is restarted (step S3). As a result, in the bevel peripheral portion 100X, the modified region 4 is formed along the spiral line M11, and the processing state becomes the slicing full cut state (see FIG. 20B).
続いて、図9及び図21(a)に示されるように、ステージ107を回転させた状態で、内周部100Yに第2加工条件で第1レーザ光L1を照射しながら、第1集光点P1がY方向に沿って内周側へ移動するようにレーザ加工ヘッド10AをY軸レール108に沿って移動させる(ステップS4,第2加工工程)。上記ステップS4では、インデックス方向を第1方向E1としてレーザ加工を行う。上記ステップS4では、渦巻き状のラインM11に沿って、周縁から内側に向かうように第1集光点P1を移動させて改質領域4を形成する。
Then, as shown in FIG. 9 and FIG. 21A, while the stage 107 is rotated, the first laser beam L1 is irradiated onto the inner peripheral portion 100Y under the second processing condition, and the first light condensing is performed. The laser processing head 10A is moved along the Y-axis rail 108 so that the point P1 moves inward in the Y direction (step S4, second processing step). In the step S4, laser processing is performed with the index direction as the first direction E1. In step S4, the modified region 4 is formed by moving the first condensing point P1 along the spiral line M11 from the peripheral edge toward the inside.
第2規定量の第2加工工程の加工後、ステージ107の回転及び第1レーザ光L1の照射等を停止し、第2加工工程を停止する。撮像ユニットIRの撮像結果に基づいて、第2規定量の加工後の加工状態がスライシングフルカット状態か否かを判定する(ステップS5)。上記ステップS5でYesの場合、ステージ107の回転及び第1レーザ光L1の照射等を再び開始し、第2加工工程を再開する(ステップS6)。これにより、内周部100Yでは、改質領域4が渦巻き状のラインM11に沿って形成され、加工状態がスライシングフルカット状態となる(図21(b)参照)。
After the second prescribed amount of the second machining process, the rotation of the stage 107 and the irradiation of the first laser beam L1 are stopped, and the second machining process is stopped. Based on the image pickup result of the image pickup unit IR, it is judged whether or not the processing state after the processing of the second specified amount is the slicing full cut state (step S5). In the case of Yes in the step S5, the rotation of the stage 107, the irradiation of the first laser beam L1 and the like are restarted, and the second processing step is restarted (step S6). As a result, in the inner peripheral portion 100Y, the modified region 4 is formed along the spiral line M11, and the processing state becomes the slicing full cut state (see FIG. 21B).
以上により、仮想面M1の全域に改質領域4がラインM11に沿って形成され、加工が完了する(ステップS7)。撮像ユニットIRの撮像結果に基づいて、加工完了後の加工状態が仮想面M1の全域でスライシングフルカット状態か否かを判定する(ステップS8)。上記ステップS8でYesの場合、剥離加工が正常に完了したとして、処理を正常終了する。一方、上記ステップS2でNo、上記ステップS5でNo、又は、上記ステップS8でNoの場合、加工状態にエラーがあると判定し、例えば加工状態のエラーをGUI111を介して報知する(ステップS9)。例えば上記ステップS9の後、別途の工程(例えば後述の第4実施形態の処理)によって、第1加工条件及び第2加工条件が再設定される。
As described above, the modified region 4 is formed along the line M11 in the entire virtual surface M1, and the processing is completed (step S7). Based on the image pickup result of the image pickup unit IR, it is determined whether or not the processing state after the processing is completed is the slicing full cut state in the entire virtual surface M1 (step S8). In the case of Yes in the above step S8, it is determined that the peeling process is normally completed, and the process is normally ended. On the other hand, in the case of No in step S2, No in step S5, or No in step S8, it is determined that there is an error in the machining state, and, for example, an error in the machining state is notified via the GUI 111 (step S9). .. For example, after the above step S9, the first processing condition and the second processing condition are reset by a separate process (for example, the process of the fourth embodiment described later).
なお、ベベル周辺部100Xのインデックス方向の幅が35mm以下の場合、第2加工処理時にベベル部BBの反りが発生する場合がある。ベベル周辺部100Xのインデックス方向の幅が35mmよりも大きい場合、第1加工処理時にベベル部BBの反りが発生する場合がある。
If the width of the bevel peripheral portion 100X in the index direction is 35 mm or less, the bevel portion BB may warp during the second processing. When the width of the bevel peripheral portion 100X in the index direction is larger than 35 mm, the bevel portion BB may be warped during the first processing.
図22は、仮想面M1に沿って形成された改質領域4から延びる亀裂を説明するための対象物100の平面図である。図23は、図22の対象物100の亀裂を観察した結果を示す図である。図22は、レーザ光入射面から対象物100を見た状態を示す。ここでの実験では、対象物100において、外周部100Gと、それよりも内周側の内周部100Fと、において、並設された複数の直線状の加工用ラインに沿って改質領域4を形成している。そして、内周部100Fのインデックス方向後側(外周部100G)の亀裂と、内周部100Fのインデックス方向前側の亀裂と、外周部100Gのインデックス方向前側の亀裂と、について、設定された加工用ラインの数である加工ライン数を変えて観察している。
22 is a plan view of the object 100 for explaining a crack extending from the modified region 4 formed along the virtual plane M1. FIG. 23 is a diagram showing a result of observing cracks in the object 100 of FIG. FIG. 22 shows a state in which the object 100 is viewed from the laser light incident surface. In the experiment here, in the object 100, in the outer peripheral portion 100G and the inner peripheral portion 100F on the inner peripheral side of the outer peripheral portion 100G, the modified region 4 is arranged along a plurality of linear processing lines arranged in parallel. Is formed. Then, for the processing set for the crack on the index direction rear side (outer peripheral portion 100G) of the inner peripheral portion 100F, the crack on the index direction front side of the inner peripheral portion 100F, and the crack on the index direction front side of the outer peripheral portion 100G, Observation is performed by changing the number of processing lines, which is the number of lines.
図中において、左右方向がスキャン方向(加工用ラインの延在方向)であり、上下方向がインデックス方向である。第1レーザ光L1の分岐数は4、分岐ピッチBPyは20μm、分岐ピッチBPxは30μm、パルスエネルギは16.73μJ、加工速度は800mm/s、パルスピッチは10μm、パルス幅は700nsである。対象物100は、(100)面を主面とするシリコンウェハである。対象物100の厚さは775μmである。
In the figure, the horizontal direction is the scanning direction (extending direction of the processing line), and the vertical direction is the index direction. The number of branches of the first laser beam L1 is 4, the branch pitch BPy is 20 μm, the branch pitch BPx is 30 μm, the pulse energy is 16.73 μJ, the processing speed is 800 mm / s, the pulse pitch is 10 μm, and the pulse width is 700 ns. The object 100 is a silicon wafer having a (100) plane as a main surface. The thickness of the object 100 is 775 μm.
図22及び図23に示されるように、インデックス方向前側では、亀裂伸展量にバラつきが大きく、加工ライン数に依存しない。インデックス方向後側では、加工ライン数の増加とともに亀裂伸展量も大きくなる。亀裂は、インデックス方向と逆方向(インデックス方向後側)に伸展することがわかる。当該亀裂の亀裂伸展量は、加工ライン数に依存することがわかる。すなわち、仮想面M1に沿って改質領域4を形成する場合、その改質領域4から仮想面M1に沿って延びる亀裂の伸展方向は、対象物100において改質領域4を形成する領域の変遷方向(インデックス方向)に大きく寄与することが見出される。具体的には、当該亀裂は、当該変遷方向とは逆方向に安定的に亀裂が伸展しやすいことが見出される。
As shown in FIG. 22 and FIG. 23, the crack extension amount on the front side in the index direction largely varies and does not depend on the number of processing lines. On the rear side in the index direction, the crack extension amount increases as the number of processing lines increases. It can be seen that the crack extends in the direction opposite to the index direction (the rear side in the index direction). It can be seen that the crack extension amount of the crack depends on the number of processing lines. That is, when the modified region 4 is formed along the virtual surface M1, the extension direction of the crack extending from the modified region 4 along the virtual surface M1 is the transition of the region forming the modified region 4 in the object 100. It is found to make a significant contribution to the direction (index direction). Specifically, it is found that the crack is likely to stably spread in a direction opposite to the transition direction.
また、加工条件Iを用いて、加工状態がスライシングフルカット状態となるように、ベベル部BBを有するウェハにレーザ加工を行った。実験結果は、以下の通りである。なお、改質エリアの幅は、そのインデックス方向における幅である。「×」はNo Good、「△」はGood、「○」はVery Goodをそれぞれ意味する。
<加工条件I>
分岐数4、分岐ピッチBPy20μm、分岐ピッチBPx30μm、加工速度800mm、周波数80kHz
<実験結果>
改質エリアの幅10mm(加工ライン数500本):ベベル部BBまでの亀裂到達×
改質エリアの幅20mm(加工ライン数1000本):ベベル部BBまでの亀裂到達×
改質エリアの幅25mm(加工ライン数1252本):ベベル部BBまでの亀裂到達×
改質エリアの幅30mm(加工ライン数1500本):ベベル部BBまでの亀裂到達△
改質エリアの幅35mm(加工ライン数1752本):ベベル部BBまでの亀裂到達○(反り量0.3mm) Further, using the processing condition I, laser processing was performed on the wafer having the bevel portion BB so that the processing state would be the slicing full cut state. The experimental results are as follows. The width of the modified area is the width in the index direction. “×” means No Good, “△” means Good, and “○” means Very Good.
<Processing condition I>
Number ofbranches 4, branch pitch BPy 20 μm, branch pitch BPx 30 μm, processing speed 800 mm, frequency 80 kHz
<Experimental results>
Width of modified area 10 mm (number of processing lines: 500): Crack reaches bevel BB ×
Width of modifiedarea 20 mm (number of processing lines: 1000): Crack reaches bevel BB ×
Width of modifiedarea 25 mm (the number of processing lines is 1252): Crack reaches the bevel BB ×
Width of modified area 30 mm (1500 processing lines): Crack reaches bevel BB △
Width of modifiedarea 35 mm (the number of processing lines is 1752): Crack reaches the bevel BB ○ (Warp amount 0.3 mm)
<加工条件I>
分岐数4、分岐ピッチBPy20μm、分岐ピッチBPx30μm、加工速度800mm、周波数80kHz
<実験結果>
改質エリアの幅10mm(加工ライン数500本):ベベル部BBまでの亀裂到達×
改質エリアの幅20mm(加工ライン数1000本):ベベル部BBまでの亀裂到達×
改質エリアの幅25mm(加工ライン数1252本):ベベル部BBまでの亀裂到達×
改質エリアの幅30mm(加工ライン数1500本):ベベル部BBまでの亀裂到達△
改質エリアの幅35mm(加工ライン数1752本):ベベル部BBまでの亀裂到達○(反り量0.3mm) Further, using the processing condition I, laser processing was performed on the wafer having the bevel portion BB so that the processing state would be the slicing full cut state. The experimental results are as follows. The width of the modified area is the width in the index direction. “×” means No Good, “△” means Good, and “○” means Very Good.
<Processing condition I>
Number of
<Experimental results>
Width of modified area 10 mm (number of processing lines: 500): Crack reaches bevel BB ×
Width of modified
Width of modified
Width of modified area 30 mm (1500 processing lines): Crack reaches bevel BB △
Width of modified
また、加工条件IIを用いて、加工状態がスライシングハーフカット状態となるように、ベベル部BBを有するウェハにレーザ加工を行った。実験結果は、以下の通りである。実験結果は、以下の通りである。なお、改質エリアの幅は、そのインデックス方向における幅である。「×」はNo Good、「△」はGood、「○」はVery Goodをそれぞれ意味する。
<加工条件II>
分岐数4、分岐ピッチBPy30μm、分岐ピッチBPx30μm、加工速度800mm、周波数80kHz
<実験結果>
改質エリアの幅10mm(加工ライン数333本):ベベル部BBまでの亀裂到達×
改質エリアの幅20mm(加工ライン数666本):ベベル部BBまでの亀裂到達×
改質エリアの幅25mm(加工ライン数833本):ベベル部BBまでの亀裂到達×
改質エリアの幅30mm(加工ライン数1000本):ベベル部BBまでの亀裂到達×
改質エリアの幅100mm(加工ライン数3333本):ベベル部BBまでの亀裂到達× Further, using the processing condition II, laser processing was performed on the wafer having the bevel portion BB so that the processing state was a slicing half cut state. The experimental results are as follows. The experimental results are as follows. The width of the modified area is the width in the index direction. “×” means No Good, “△” means Good, and “○” means Very Good.
<Processing condition II>
Number ofbranches 4, branch pitch BPy 30 μm, branch pitch BPx 30 μm, processing speed 800 mm, frequency 80 kHz
<Experimental results>
Width of modified area 10 mm (333 processing lines): Crack reaches the bevel BB ×
Width of modifiedarea 20 mm (the number of processing lines is 666): Crack reaches the bevel BB ×
Width of modifiedarea 25 mm (Number of processing lines: 833): Crack reaches to bevel BB ×
Width of modified area 30 mm (number of processing lines: 1000): Crack reaching to bevel BB ×
Width of modifiedarea 100 mm (number of processing lines: 3333): crack reaches bevel BB ×
<加工条件II>
分岐数4、分岐ピッチBPy30μm、分岐ピッチBPx30μm、加工速度800mm、周波数80kHz
<実験結果>
改質エリアの幅10mm(加工ライン数333本):ベベル部BBまでの亀裂到達×
改質エリアの幅20mm(加工ライン数666本):ベベル部BBまでの亀裂到達×
改質エリアの幅25mm(加工ライン数833本):ベベル部BBまでの亀裂到達×
改質エリアの幅30mm(加工ライン数1000本):ベベル部BBまでの亀裂到達×
改質エリアの幅100mm(加工ライン数3333本):ベベル部BBまでの亀裂到達× Further, using the processing condition II, laser processing was performed on the wafer having the bevel portion BB so that the processing state was a slicing half cut state. The experimental results are as follows. The experimental results are as follows. The width of the modified area is the width in the index direction. “×” means No Good, “△” means Good, and “○” means Very Good.
<Processing condition II>
Number of
<Experimental results>
Width of modified area 10 mm (333 processing lines): Crack reaches the bevel BB ×
Width of modified
Width of modified
Width of modified area 30 mm (number of processing lines: 1000): Crack reaching to bevel BB ×
Width of modified
これらの実験結果から、改質エリアの加工状態がスライシングフルカット状態であると、亀裂がベベル部BBまで到達できることがわかる。改質エリアの加工状態がスライシングハーフカット状態であると、亀裂がベベル部BBまで到達困難であることがわかる。すなわち、ベベル部BBに亀裂を伸展させるためには、少なくとも改質エリアの加工状態がスライシングフルカット状態であることが求められる。
From these experimental results, it can be seen that the crack can reach the bevel portion BB when the modified area is in the slicing full cut state. It can be seen that it is difficult for the crack to reach the bevel portion BB when the modified area is processed in the slicing half-cut state. That is, in order to extend the crack in the bevel portion BB, at least the processing state of the modified area is required to be the slicing full cut state.
以上、レーザ加工装置101及びレーザ加工方法では、ベベル周辺部100Xにおいて改質領域4を形成する領域を、周縁から内側へ向かう第1方向E1に変遷させる。つまり、第1レーザ光L1のインデックス方向を第1方向E1としている。これにより、第1方向E1とは逆方向である内側から周縁に向かう方向に当該亀裂が安定的に伸展しやすくなる。改質領域4における第1方向E1とは逆方向の内側から周縁に向かう方向に、当該亀裂が安定的に伸展しやすくなる。その結果、加工が困難なベベル部BBにおいても当該亀裂を形成することが可能となり、対象物100を確実に剥離することが可能となる。また、ベベル周辺部100Xよりも内側の内周部100Yでは、所望の加工条件を第2加工条件としたレーザ加工が可能となり、タクトアップ等々の種々のニーズに応じたレーザ加工が可能となる。
As described above, in the laser processing apparatus 101 and the laser processing method, the region forming the modified region 4 in the bevel peripheral portion 100X is changed to the first direction E1 inward from the peripheral edge. That is, the index direction of the first laser light L1 is the first direction E1. As a result, the crack is likely to stably spread in the direction from the inner side, which is the direction opposite to the first direction E1, toward the peripheral edge. The crack easily and stably spreads in the direction from the inner side of the modified region 4 opposite to the first direction E1 toward the peripheral edge. As a result, the crack can be formed even in the bevel portion BB, which is difficult to process, and the object 100 can be reliably peeled off. Further, in the inner peripheral portion 100Y, which is inside the bevel peripheral portion 100X, it is possible to perform laser processing in which the desired processing condition is the second processing condition, and it is possible to perform laser processing according to various needs such as tact up.
レーザ加工装置101の第1加工処理及びレーザ加工方法の第1加工工程では、対象物100において周縁から内側に向かって渦巻き状に延在するラインM11に沿って、改質領域4を周縁から内側に向かって形成する、又は、対象物100において周縁から内側に並ぶ直線状の複数の並行ラインに沿って、複数の改質領域4を周縁から内側の順に形成する。これにより、ベベル部BBを含むベベル周辺部100Xにおいて改質領域4を形成する領域を周縁から内側へ向かう第1方向E1に変遷させることを、具体的に実現できる。
In the first processing step of the laser processing apparatus 101 and the first processing step of the laser processing method, the modified region 4 is formed from the periphery to the inside along the line M11 that extends spirally inward from the periphery of the object 100. Or a plurality of modified regions 4 are formed in this order from the peripheral edge to the inner side along a plurality of linear parallel lines arranged inward from the peripheral edge in the object 100. Thereby, it is possible to specifically realize the transition of the region forming the modified region 4 in the bevel peripheral portion 100X including the bevel portion BB to the first direction E1 inward from the peripheral edge.
レーザ加工装置101及びレーザ加工方法では、第1加工条件及び第2加工条件は、一本の加工用ラインに沿ってレーザ光を照射して改質領域を形成した場合に、加工状態がスライシングハーフカット状態になる条件である。このような加工条件により、対象物100を確実に剥離することが可能となる。
In the laser processing apparatus 101 and the laser processing method, the first processing condition and the second processing condition are such that the processing state is a slicing half when the modified region is formed by irradiating the laser light along one processing line. This is the condition for cutting. Under such processing conditions, the object 100 can be reliably peeled off.
レーザ加工装置101及びレーザ加工方法では、第1加工条件及び第2加工条件は、複数の並行ラインを有する加工用ライン(渦巻き状のラインM11及び複数の直線状のライン)に沿って第1レーザ光L1を照射して改質領域4を形成した場合に、加工状態がスライシングフルカット状態になる条件である。このような加工条件により、対象物100を確実に剥離することが可能となる。
In the laser processing apparatus 101 and the laser processing method, the first processing condition and the second processing condition are that the first laser is along a processing line (a spiral line M11 and a plurality of straight lines) having a plurality of parallel lines. This is a condition under which the processing state becomes the slicing full cut state when the modified region 4 is formed by irradiating the light L1. Under such processing conditions, the object 100 can be reliably peeled off.
レーザ加工装置101及びレーザ加工方法では、第1加工条件は、第1規定量のレーザ加工後の加工状態がスライシングフルカット状態になる条件である。第2加工条件は、第1規定量よりも多い第2規定量のレーザ加工後の加工状態がスライシングフルカット状態になる条件である。この場合、第2加工条件によれば、第1加工条件に比べて、形成される改質領域4に含まれる複数の改質スポットSAを粗にして効率よくレーザ加工することが可能となる。タクトアップしたレーザ加工が可能となる。
In the laser processing apparatus 101 and the laser processing method, the first processing condition is a condition in which the processing state after the laser processing of the first specified amount becomes the slicing full cut state. The second processing condition is a condition in which the processing state after the laser processing of the second specified amount larger than the first specified amount becomes the slicing full cut state. In this case, according to the second processing conditions, it is possible to roughen the plurality of modified spots SA included in the modified region 4 to be formed and perform laser processing more efficiently than under the first processing conditions. Laser processing with improved takt time is possible.
レーザ加工装置101及びレーザ加工方法では、剥離加工(剥離処理)の前に、対象物100の周縁の内側に環状に延在するラインM3に沿って対象物100の内部における仮想面M1よりも表面100a側の部分に改質領域43を形成するトリミング加工(トリミング処理)を行う。これにより、ラインM3の周縁側の部分を除去するトリミング加工を実現できる。対象物100を剥離する前にトリミング加工を行うことができるため、剥離後にトリミング加工を行う場合に比べて、剥離により発生する亀裂を通過するように第1レーザ光L1を照射することを避けることができる。また、トリミング加工及び剥離加工によって対象物100から取り除く除去部分について、リユース可能である。
In the laser processing apparatus 101 and the laser processing method, before the peeling process (peeling process), the surface of the target object 100 is higher than the imaginary plane M1 along the line M3 extending annularly inside the peripheral edge of the target object 100. A trimming process (trimming process) for forming the modified region 43 is performed on the portion on the side of 100a. As a result, trimming processing for removing the peripheral portion of the line M3 can be realized. Since the trimming process can be performed before peeling the object 100, avoid irradiating the first laser beam L1 so as to pass through the crack generated by the peeling, as compared with the case where the trimming process is performed after the peeling. You can Further, the removed portion removed from the object 100 by the trimming process and the peeling process can be reused.
レーザ加工装置101の第2加工処理及びレーザ加工方法の第2加工工程では、対象物100において改質領域4を形成する領域を、第1方向E1に変遷させる。つまり、第2加工処理ないし第2加工工程の第1レーザ光L1のインデックス方向を、第1方向E1としている。これにより、対象物100を確実に剥離することが可能となる。
In the second processing process of the laser processing apparatus 101 and the second processing step of the laser processing method, the region of the target object 100 where the modified region 4 is formed is changed in the first direction E1. That is, the index direction of the first laser light L1 in the second processing process or the second processing process is the first direction E1. This makes it possible to reliably peel off the object 100.
上述したように、複数の並行ラインを有する加工用ラインに沿って改質領域4が形成された場合の加工状態がスライシングフルカット状態でないと、対象物100を剥離することが困難であることが見出される。そこで、レーザ加工装置101及びレーザ加工方法では、ラインM11に沿って改質領域4が形成された場合の加工状態がスライシングフルカット状態であるかを監視する。当該監視結果によれば、対象物100を剥離できるか否かを容易に把握することが可能となる。
As described above, if the processing state when the modified region 4 is formed along the processing line having the plurality of parallel lines is not the slicing full cut state, it may be difficult to peel the target object 100. Found. Therefore, the laser processing apparatus 101 and the laser processing method monitor whether the processing state when the modified region 4 is formed along the line M11 is the slicing full cut state. According to the monitoring result, it becomes possible to easily grasp whether or not the object 100 can be peeled off.
レーザ加工装置101及びレーザ加工方法では、第1加工処理(第1加工工程)において、第1規定量のレーザ加工後の加工状態がスライシングフルカット状態であるかを監視する。第2加工処理(第2加工工程)において、第2規定量のレーザ加工後の加工状態がスライシングフルカット状態であるかを監視する。これによれば、第1加工処理(第1加工工程)により対象物100を剥離できるか否かを容易に把握することができる。第2加工処理(第2加工工程)により対象物100を剥離できるか否かを容易に把握することができる。
With the laser processing apparatus 101 and the laser processing method, in the first processing (first processing step), it is monitored whether the processing state after the laser processing of the first specified amount is the slicing full cut state. In the second processing (second processing step), it is monitored whether the processing state after the laser processing of the second specified amount is the slicing full cut state. According to this, it is possible to easily understand whether or not the object 100 can be peeled off by the first processing process (first processing step). It is possible to easily grasp whether or not the target object 100 can be peeled off by the second processing process (second processing step).
レーザ加工装置101では、制御部9は、撮像ユニットIRの監視結果に基づいて、第1加工処理における第1規定量のレーザ加工後の加工状態がスライシングフルカット状態か否か、及び、第2加工処理における第2規定量のレーザ加工後の加工状態がスライシングフルカット状態か否かを判定する。この場合、制御部9により、監視結果から加工状態がスライシングフルカット状態か否かを自動で判定することができる。
In the laser processing apparatus 101, the control unit 9 determines, based on the monitoring result of the imaging unit IR, whether or not the processing state after the laser processing of the first specified amount in the first processing is the slicing full cut state, and the second. It is determined whether the processing state after the second prescribed amount of laser processing in the processing process is the slicing full cut state. In this case, the control unit 9 can automatically determine whether the processing state is the slicing full cut state based on the monitoring result.
レーザ加工装置101及びレーザ加工方法では、加工完了後の加工状態がスライシングフルカット状態であるかを更に監視する。これにより、加工完了後において、対象物100を剥離できることを把握することが可能となる。なお、加工完了後に加工状態がスライシングフルカット状態であるかを判定する上記ステップS8及びそれに関する各処理は、省略することもできる。
With the laser processing apparatus 101 and the laser processing method, it is further monitored whether the processing state after completion of processing is the slicing full cut state. This makes it possible to understand that the object 100 can be peeled off after the processing is completed. The above step S8 of determining whether the processing state is the slicing full-cut state after the completion of the processing and each processing related thereto can be omitted.
ちなみに、本実施形態では、撮像ユニットIRは、一本の加工用ラインに沿って改質領域4が形成された場合の加工状態がスライシングハーフカット状態であるかを監視してもよい。例えば、加工用ラインが複数のラインを含む場合、そのうちの何れか一本に沿って改質領域4が形成された場合の加工状態を監視してもよい。また例えば、加工用ラインが渦巻き状のラインM11である場合、そのうちの一周部分のラインに沿って改質領域4が形成された場合の加工状態を監視してもよい。
Incidentally, in the present embodiment, the imaging unit IR may monitor whether the processing state when the modified region 4 is formed along one processing line is the slicing half cut state. For example, when the processing line includes a plurality of lines, the processing state when the modified region 4 is formed along any one of the lines may be monitored. Further, for example, in the case where the processing line is the spiral line M11, the processing state when the modified region 4 is formed along the line of the one circumference portion may be monitored.
この場合、制御部9は、撮像ユニットIRの監視結果に基づいて、一本の加工用ラインに沿って改質領域4が形成された場合の加工状態がスライシングハーフカット状態か否かを判定してもよい。これにより、監視結果から加工状態がスライシングハーフカット状態か否かを自動で判定することができる。一本の加工用ラインに沿って改質領域4が形成された場合の加工状態がスライシングハーフカット状態では無い(スライシングステルス状態である)場合、加工状態にエラーがあると判定し、例えば加工状態のエラーをGUI111を介して報知すると共に、別途に加工条件を再設定してもよい。
In this case, the control unit 9 determines, based on the monitoring result of the imaging unit IR, whether the processing state when the modified region 4 is formed along one processing line is the slicing half cut state. May be. This makes it possible to automatically determine whether the machining state is the slicing half-cut state based on the monitoring result. If the processing state when the modified region 4 is formed along one processing line is not the slicing half cut state (the slicing stealth state), it is determined that there is an error in the processing state, for example, the processing state. The error may be notified via the GUI 111, and the processing conditions may be reset separately.
本実施形態では、ベベル周辺部100Xに対して第1加工処理(第1加工方法)を行い、内周部100Yに対して第2加工処理(第2加工処理)を行ったが、第2加工処理(第2加工処理)を行わずに、対象物100の全域に第1加工処理(第1加工処理)を行ってもよい。
In the present embodiment, the first processing (first processing method) is performed on the bevel peripheral portion 100X, and the second processing (second processing) is performed on the inner peripheral portion 100Y. The first processing (first processing) may be performed on the entire area of the object 100 without performing the processing (second processing).
本実施形態に係る第2加工処理(第2加工工程)では、図24(a)及び図24(b)に示されるように、改質領域4を形成する領域を、第2方向E2に変遷させてもよい。具体的には、インデックス方向を第1方向E1としてベベル周辺部100Xにレーザ加工を施し、ベベル周辺部100Xに改質領域4を、渦巻き状の外縁から内周に向かうようにラインM11に沿って形成する。その後、インデックス方向を第2方向E2として内周部100Yにレーザ加工を施し、渦巻き状の内周から外縁に向かうようにラインM11に沿って、内周部100Yに改質領域4を形成する。
In the second processing process (second processing step) according to the present embodiment, as shown in FIGS. 24A and 24B, the region forming the modified region 4 is changed to the second direction E2. You may let me. Specifically, the bevel peripheral portion 100X is subjected to laser processing with the index direction as the first direction E1, and the modified region 4 is provided on the bevel peripheral portion 100X along the line M11 from the spiral outer edge toward the inner periphery. Form. Then, the inner peripheral portion 100Y is subjected to laser processing with the index direction as the second direction E2, and the modified region 4 is formed in the inner peripheral portion 100Y along the line M11 from the spiral inner periphery toward the outer edge.
このように、第2加工処理(第2加工工程)の第1レーザ光L1のインデックス方向を第2方向E2とする場合でも、対象物100を確実に剥離することが可能となる。なお、この場合には、インデックス方向におけるベベル周辺部100Xの距離は、予め設定された所定距離以下であってもよい。所定距離以下は、例えば35mm以下の距離であり、具体的には20mmである。これにより、対象物100に割れを発生させずに剥離させることができる。
As described above, even when the index direction of the first laser beam L1 in the second processing (second processing step) is the second direction E2, the object 100 can be reliably peeled off. In this case, the distance of the bevel peripheral portion 100X in the index direction may be less than or equal to a preset predetermined distance. The predetermined distance or less is, for example, a distance of 35 mm or less, specifically 20 mm. As a result, the object 100 can be peeled off without cracking.
本実施形態では、第1加工処理(第1加工工程)と第2加工処理(第2加工工程)との順序を入れ替え、第2加工処理の後に第1加工処理を行ってもよい。この場合、ベベル周辺部100Xの加工中に割れが発生しやすいが、ベベル周辺部100Xは少なくとも剥離可能である。本実施形態では、第1加工処理のインデックス方向が第1方向E1であれば、その他の加工条件(第1及び第2加工処理の順序、並びに、第1及び第2加工処理の加工状態等)については特に限定されないが、以上に説明した加工条件であれば、確実に対象物100を剥離させることが可能となる。
In the present embodiment, the order of the first machining process (first machining process) and the second machining process (second machining process) may be exchanged, and the first machining process may be performed after the second machining process. In this case, cracks are likely to occur during processing of the bevel peripheral portion 100X, but at least the bevel peripheral portion 100X can be peeled off. In the present embodiment, if the index direction of the first machining process is the first direction E1, other machining conditions (the order of the first and second machining processes, the machining state of the first and second machining processes, etc.). However, it is possible to reliably peel off the object 100 under the processing conditions described above.
レーザ加工装置101及びレーザ加工方法では、ユーザからの入力をGUI111により受け付け、GUI111の入力に基づいて第1加工条件及び第2加工条件の少なくとも何れかを制御部9により設定することができる。第1加工条件及び第2加工条件を所望に設定することができる。以下、GUI111に表示する設定画面について、例示する。
In the laser processing apparatus 101 and the laser processing method, the input from the user can be accepted by the GUI 111, and at least one of the first processing condition and the second processing condition can be set by the control unit 9 based on the input of the GUI 111. The first processing condition and the second processing condition can be set as desired. The setting screen displayed on the GUI 111 will be exemplified below.
図25は、GUI111の設定画面の例を示す図である。図25に示される設定画面は、量産時又はユーザによる加工条件の決定時に使用される。図25に示される設定画面は、複数の加工方法から何れか選択する加工方法選択ボタン201と、ベベル周辺部100Xの広さを設定する入力欄202と、内周部100Yの広さを設定する入力欄203と、詳細設定へ移行する詳細ボタン204と、を含む。複数の加工方法は、第1加工処理におけるインデックス方向、第2加工処理におけるインデックス方向、及び、第2加工処理の有無、が異なる。第2加工処理が無い場合(つまり、第1加工処理で全面加工を行う場合)の入力欄202aには、全面という選択肢が用意されている。
FIG. 25 is a diagram showing an example of the setting screen of the GUI 111. The setting screen shown in FIG. 25 is used during mass production or when the user determines the processing conditions. In the setting screen shown in FIG. 25, a processing method selection button 201 for selecting any of a plurality of processing methods, an input field 202 for setting the width of the bevel peripheral portion 100X, and a width of the inner peripheral portion 100Y are set. It includes an input field 203 and a detail button 204 for shifting to detailed settings. The plurality of processing methods differ in the index direction in the first processing, the index direction in the second processing, and the presence / absence of the second processing. When there is no second processing (that is, when the entire surface is processed in the first processing), the input field 202a has an option of "entire surface".
図26は、GUI111の設定画面の他の例を示す図である。図26に示される設定画面は、例えば詳細ボタン204(図25参照)がユーザによりタッチされた場合の詳細設定時の画面である。図26に示される設定画面は、加工条件を選択する加工条件選択ボタン211と、第1レーザ光L1の分岐数を入力又は選択する分岐数欄212と、1本の加工用ラインに沿ったレーザ加工の後に次の加工用ラインまでの移動する距離であるインデックスを入力するインデックス欄213と、分岐数及びインデックスの入力又は表示を行うイメージ図214と、Z方向における改質スポットSAの位置を入力する加工Zハイト欄215と、加工速度を入力する加工速度欄216と、加工条件の切替方法を選択する条件切替方法ボタン217と、を含む。
FIG. 26 is a diagram showing another example of the setting screen of the GUI 111. The setting screen shown in FIG. 26 is a screen at the time of detailed setting when, for example, the detail button 204 (see FIG. 25) is touched by the user. The setting screen shown in FIG. 26 includes a processing condition selection button 211 for selecting a processing condition, a branch number column 212 for inputting or selecting the number of branches of the first laser beam L1, and a laser along one processing line. After the processing, an index field 213 for inputting an index that is a moving distance to the next processing line, an image diagram 214 for inputting or displaying the number of branches and the index, and a position of the modified spot SA in the Z direction are input. A processing Z height field 215, a processing speed field 216 for inputting a processing speed, and a condition switching method button 217 for selecting a processing condition switching method are included.
加工条件選択ボタン211では、第1加工条件及び第2加工条件の何れを設定するかを選択できる。インデックス欄213によれば、分岐数が1の場合には、その入力値分だけ自動でインデックス方向にレーザ加工ヘッド10Aを移動させる。分岐数を1よりも大きくした場合には、以下の計算式に基づくインデックスだけ、インデックス方向にレーザ加工ヘッド10Aを自動で移動させる。
インデックス=(分岐数)×インデックス入力値 With the processingcondition selection button 211, it is possible to select which of the first processing condition and the second processing condition is to be set. According to the index column 213, when the number of branches is 1, the laser processing head 10A is automatically moved in the index direction by the input value. When the number of branches is larger than 1, the laser processing head 10A is automatically moved in the index direction by the index based on the following calculation formula.
Index = (number of branches) x index input value
インデックス=(分岐数)×インデックス入力値 With the processing
Index = (number of branches) x index input value
イメージ図214は、インデックス入力値の表示部214aと、各改質スポットSAの出力を入力する出力入力欄214bと、を含む。加工速度欄216は、実際はステージ107が回転するため、回転数としてもよい。加工速度欄216では、入力された加工速度から自動で回転数に置き換えて表示してもよい。条件切替方法ボタン217では、第1加工処理の完了時に自動で第2加工処理を続行するか、第1加工処理の完了時に一度装置を停止して状態監視を実施してから第1加工処理を続行するかを選択する。
The image diagram 214 includes an index input value display unit 214a and an output input field 214b for inputting the output of each modified spot SA. The machining speed column 216 may be the number of revolutions because the stage 107 actually rotates. In the processing speed column 216, the input processing speed may be automatically replaced with the rotation speed and displayed. With the condition switching method button 217, the second machining process is automatically continued when the first machining process is completed, or when the first machining process is completed, the apparatus is once stopped to monitor the state and then the first machining process is performed. Select whether to continue.
図27は、GUI111の設定画面の管理者モードの例を示す図である。図27に示される設定画面は、第1レーザ光L1の分岐方向を選択する分岐方向選択ボタン221と、第1レーザ光L1の分岐数を入力又は選択する分岐数欄222と、分岐ピッチBPxを入力する分岐ピッチ入力欄223と、分岐ピッチBPxの列数を入力する分岐ピッチ列数入力欄224と、分岐ピッチBPyを入力する分岐ピッチ入力欄225と、インデックスを入力するインデックス欄226と、分岐数に基づく光軸イメージ図227と、第1レーザ光L1のスキャン方向が一方向(往路)か他方向(復路)かを選択する往路復路選択ボタン228と、各種の数値のバランスを自動で調整するバランス調整開始ボタン229と、を含む。
FIG. 27 is a diagram showing an example of the administrator mode of the setting screen of the GUI 111. The setting screen shown in FIG. 27 includes a branch direction selection button 221 for selecting the branch direction of the first laser light L1, a branch number column 222 for inputting or selecting the number of branches of the first laser light L1, and a branch pitch BPx. A branch pitch input field 223 to be input, a branch pitch column number input field 224 to input the number of columns of the branch pitch BPx, a branch pitch input field 225 to input the branch pitch BPy, an index field 226 to input an index, and a branch The optical axis image diagram 227 based on the number, the forward path return path selection button 228 for selecting whether the scanning direction of the first laser light L1 is one direction (outgoing path) or the other direction (return path), and the balance of various numerical values is automatically adjusted. A balance adjustment start button 229 is included.
分岐数及び分岐ピッチBPx,BPyが入力された時点で、光軸の距離を自動で計算し、計算値が結像光学系35(図5参照)の関係でエラーとなる距離の場合、GUI111にその旨を表示させる。当該計算のために、結像光学系35に関する情報を入力させてもよい。分岐方向選択ボタン221で分岐方向として垂直を選択した場合、光軸イメージ図227では、複数の分岐ピッチ227aは非表示としてもよい。分岐数の大小によって、光軸イメージ図227の分岐ピッチ227a,227bのマスを増減させてもよい。光軸イメージ図227では、分岐ピッチ列数入力欄224及び分岐ピッチ入力欄225の入力値が適応されるが、各チェック欄CKにチェックを入れると、チェックを入れたチェック欄CKに対応する分岐ピッチ227a,227bの距離を変更することができる。
When the number of branches and the branch pitches BPx and BPy are input, the distance of the optical axis is automatically calculated, and if the calculated value is a distance that causes an error due to the imaging optical system 35 (see FIG. 5), the GUI 111 is displayed. Display that effect. Information regarding the imaging optical system 35 may be input for the calculation. When vertical is selected as the branching direction with the branching direction selection button 221, a plurality of branching pitches 227a may be hidden in the optical axis image diagram 227. The masses of the branch pitches 227a and 227b in the optical axis image diagram 227 may be increased or decreased depending on the number of branches. In the optical axis image diagram 227, the input values of the branch pitch row number input field 224 and the branch pitch input field 225 are applied, but when each check box CK is checked, the branch pitch corresponding to the checked check box CK is checked. The distance between 227a and 227b can be changed.
図28は、剥離加工における最適なパルスエネルギの調査例を示す図である。図28では、一本の加工用ラインに沿ってレーザ加工した場合の加工状態と、複数の加工用ライン(並行ライン)に沿ってレーザ加工した後の剥離の可否と、を示す。第1レーザ光L1の分岐数は4、分岐ピッチBPx,BPyはともに30μm、加工速度は800mm/s、パルスピッチは10μm、パルス幅は700nsである。図中の「SST」は、スライシングステルス状態を意味する。図中の「SHC」は、スライシングハーフカット状態を意味する。図28に示されるように、スライシングハーフカット状態が発生する最適パルスエネルギは、9.08~56μJの範囲であることがわかる。また特に、パルスエネルギが12.97~25μJには、問題なく剥離が可能であることがわかる。なお、パルスピッチが10μmよりも大きい場合、最適パルスエネルギは図中の当該実験結果よりも高くなる傾向がある。パルスピッチが10μmよりも小さい場合、最適パルスエネルギは図中の当該実験結果よりも小さくなる傾向がある。
FIG. 28 is a diagram showing an example of investigating the optimum pulse energy in the peeling process. FIG. 28 shows a processing state when laser processing is performed along one processing line, and whether or not peeling is possible after laser processing is performed along a plurality of processing lines (parallel lines). The number of branches of the first laser light L1 is 4, the branch pitches BPx and BPy are both 30 μm, the processing speed is 800 mm / s, the pulse pitch is 10 μm, and the pulse width is 700 ns. “SST” in the figure means a slicing stealth state. "SHC" in the figure means a slicing half cut state. As shown in FIG. 28, it can be seen that the optimum pulse energy generated in the slicing half-cut state is in the range of 9.08 to 56 μJ. Further, it can be seen that peeling can be performed without any problem particularly when the pulse energy is 12.97 to 25 μJ. When the pulse pitch is larger than 10 μm, the optimum pulse energy tends to be higher than the experimental result in the figure. When the pulse pitch is smaller than 10 μm, the optimum pulse energy tends to be smaller than the experimental result in the figure.
本実施形態では、制御部9により加工状態を自動的に判定したが、撮像ユニットIRの監視結果に基づいてユーザが加工状態を判定してもよい。加工状態がスライシングフルカット状態であるとの判定は、加工状態がスライシングハーフカット状態及びスライシングステルス状態ではないとの判定に相当する。
In the present embodiment, the machining state is automatically determined by the control unit 9, but the user may determine the machining state based on the monitoring result of the imaging unit IR. The determination that the processing state is the slicing full-cut state corresponds to the determination that the processing state is neither the slicing half-cut state nor the slicing stealth state.
一般的な剥離加工においては、形成される改質領域4に含まれる複数の改質スポットSAのピッチを密にし、剥離予定面としての仮想面M1に改質スポットSAを敷き詰めることで、対象物100を剥離する場合がある。この場合、加工条件としては、改質スポットSAから亀裂が比較的伸びない条件(例えば、レーザ光の波長が短波長(1028nm)、パルス幅が50nsec、パルスピッチが1~10μm(特に、1.5~3.5μm))が選択される。これに対し、本実施形態では、加工条件として、仮想面M1に沿って亀裂が伸びる条件を選択している。例えば、仮想面M1に沿って改質領域4を形成するための第1レーザ光L1の加工条件として、第1レーザ光L1の波長が長波長(例えば1099nm)、パルス幅が700nsecを選択している。その結果、新たな加工状態(スライシングハーフカット状態及びスライシングフルカット等)を見出すことに至っている。
In a general peeling process, a plurality of reforming spots SA included in the reforming region 4 to be formed are made to have a finer pitch, and the reforming spots SA are spread on the virtual plane M1 as a planned plane for peeling. 100 may be peeled off. In this case, the processing conditions are such that the cracks do not relatively extend from the modified spot SA (for example, the wavelength of the laser light is a short wavelength (1028 nm), the pulse width is 50 nsec, and the pulse pitch is 1 to 10 μm (particularly 1. 5 to 3.5 μm)) is selected. On the other hand, in the present embodiment, as the processing condition, the condition that the crack extends along the virtual plane M1 is selected. For example, as the processing conditions of the first laser light L1 for forming the modified region 4 along the virtual surface M1, the wavelength of the first laser light L1 is selected to be a long wavelength (for example, 1099 nm) and the pulse width is 700 nsec. There is. As a result, new processing states (slicing half-cut state, slicing full-cut state, etc.) have been found.
本実施形板において、制御部9は、ベベル周辺部100Xに第1加工条件とは異なる他の加工条件で第1レーザ光L1を照射させる第3加工処理を、第1加工処理の途中に実行してもよい。換言すると、ベベル周辺部100Xに第1加工条件とは異なる他の加工条件で第1レーザ光L1を照射する第3加工工程を、第1加工工程の途中に実行してもよい。当該他の加工条件は、特に限定されず種々の条件であってもよい。当該他の加工条件は。例えば、対象物100の内部の加工状態がスライシングステルス状態、スライシングハーフカット状態又はスライシングフルカット状態となるときの加工条件であってもよい。この場合でも、対象物100を確実に剥離することは可能である。第3加工処理(第3加工工程)における加工用ラインのインデックス方向の間隔は、第1加工処理(第1加工工程)における加工用ラインのインデックス方向の間隔よりも広くてもよい。
In the present embodiment template, the control unit 9 executes a third processing process in which the bevel peripheral portion 100X is irradiated with the first laser light L1 under another processing condition different from the first processing condition, during the first processing process. You may. In other words, the third processing step of irradiating the bevel peripheral portion 100X with the first laser light L1 under another processing condition different from the first processing condition may be performed during the first processing step. The other processing conditions are not particularly limited and may be various conditions. What are the other processing conditions? For example, it may be processing conditions when the processing state inside the object 100 becomes the slicing stealth state, the slicing half cut state, or the slicing full cut state. Even in this case, it is possible to reliably peel off the object 100. The spacing of the machining lines in the index direction in the third machining process (third machining process) may be wider than the spacing of the machining lines in the index direction in the first machining process (first machining process).
本実施形態では、第1加工処理(第1加工工程)と第2加工処理(第2加工工程)とを切り替える際には、加工を一旦止めて切り替えてもよいし、加工を止めることなく切り替えてもよい。本実施形態では、第1加工処理(第1加工工程)と第3加工処理(第3加工工程)とを切り替える際には、加工を一旦止めて切り替えてもよいし、加工を止めることなく切り替えてもよい。加工を止めることなく加工処理(加工工程)を切り替える場合には、加工条件をゆるやかに切り替えてもよい。例えば、第1加工条件と第2加工条件との違いが分岐ピッチBPyだけであった場合、分岐ピッチBPyを20μmから30μmへ変更するに際して、加工を止めて切り替えるのではなく、分岐ピッチBPyを徐々に(20μm、21μm、22μm、23μm・・・30μmと順に)ステージ107の回転を止めることなく変更してもよい。
In the present embodiment, when switching between the first machining process (first machining process) and the second machining process (second machining process), the machining may be temporarily stopped and switched, or the machining may be switched without being stopped. May be. In the present embodiment, when switching between the first processing process (first processing process) and the third processing process (third processing process), the processing may be temporarily stopped and switched, or the processing may be switched without stopping the processing. May be. When the processing (processing) is switched without stopping the processing, the processing conditions may be switched gently. For example, when the difference between the first processing condition and the second processing condition is only the branch pitch BPy, when changing the branch pitch BPy from 20 μm to 30 μm, the processing is not stopped and switched, but the branch pitch BPy is gradually changed. (20 μm, 21 μm, 22 μm, 23 μm ... 30 μm in this order) may be changed without stopping the rotation of the stage 107.
[第2実施形態]
次に、第2実施形態について説明する。第2実施形態の説明では、第1実施形態と異なる点を説明し、第1実施形態と重複する説明を省略する。 [Second Embodiment]
Next, a second embodiment will be described. In the description of the second embodiment, the points different from the first embodiment will be described, and the description overlapping with the first embodiment will be omitted.
次に、第2実施形態について説明する。第2実施形態の説明では、第1実施形態と異なる点を説明し、第1実施形態と重複する説明を省略する。 [Second Embodiment]
Next, a second embodiment will be described. In the description of the second embodiment, the points different from the first embodiment will be described, and the description overlapping with the first embodiment will be omitted.
上記第1実施形態では、第1及び第2加工処理で剥離加工を実現するのに対して、本実施形態では、1つの加工処理で剥離加工を実現する。すなわち、図29(a)及び図29(b)に示されるように、本実施形態では、1つの加工条件でベベル周辺部100X及び内周部100Yを含む対象物100の全域をレーザ加工する点で上記第1実施形態と異なる。
In the first embodiment described above, the peeling process is realized by the first and second processing processes, whereas in the present embodiment, the peeling process is realized by one processing process. That is, as shown in FIGS. 29A and 29B, in the present embodiment, laser processing is performed on the entire area of the object 100 including the bevel peripheral portion 100X and the inner peripheral portion 100Y under one processing condition. Therefore, it is different from the first embodiment.
制御部9は、対象物100の全域に第2加工条件で第1レーザ光L1を照射させる加工処理を実行する。具体的には、第2加工条件で第1レーザ光L1を対象物100に照射させると共に、周縁から内側に向かって渦巻き状のラインM11に沿って第1集光点P1の位置を対象物100に対して相対的に移動させ、当該ラインM11に沿って改質領域4を形成する。つまり、対象物100において改質領域4を形成する領域を、周縁から内側へ向かう第1方向E1に変遷させる。
The control unit 9 executes a processing process of irradiating the entire area of the object 100 with the first laser light L1 under the second processing condition. Specifically, the target 100 is irradiated with the first laser light L1 under the second processing condition, and the position of the first focus point P1 is set along the spiral line M11 from the peripheral edge toward the inside. And the modified region 4 is formed along the line M11. That is, the region forming the modified region 4 in the object 100 is changed in the first direction E1 from the peripheral edge toward the inside.
制御部9は、レーザ加工後の対象物100を吸着する吸着冶具をZ方向回りにひねるように動作させる。これにより、対象物100に対して剥離するように外部応力を印加することができる。
The control unit 9 operates so that the suction jig that sucks the object 100 after laser processing is twisted around the Z direction. As a result, external stress can be applied to the object 100 so that it peels off.
次に、本実施形態の剥離加工について図30のフローチャートを参照しつつ詳説する。
Next, the peeling process of this embodiment will be described in detail with reference to the flowchart of FIG.
本実施形態の剥離加工では、制御部9によりレーザ加工装置101の各部を制御し、以下の各処理を実行する。すなわち、ステージ107の回転を開始する。第2加工条件で第1レーザ光L1を対象物100に照射しながら、第1集光点P1がY方向に沿って内周側へ移動するようにレーザ加工ヘッド10AをY軸レール108に沿って移動させる(ステップS11,加工工程)。
In the peeling process of this embodiment, the control unit 9 controls each unit of the laser processing apparatus 101 and executes the following processes. That is, the rotation of the stage 107 is started. While irradiating the object 100 with the first laser light L1 under the second processing condition, the laser processing head 10A is moved along the Y-axis rail 108 so that the first focus point P1 moves to the inner peripheral side along the Y direction. And move (step S11, processing step).
上記ステップS11では、インデックス方向を第1方向E1としてレーザ加工を行う。上記ステップS11では、渦巻き状のラインM11に沿って、周縁から内側に向かうように第1集光点P1を移動させて改質領域4を形成する。上記ステップS11において、第1レーザ光L1の照射を開始するタイミングは、第1レーザ光L1の光軸が未だ対象物100外に位置するときであってもよいし、ベベル周辺部100Xに位置するときであってもよい。
In the above step S11, laser processing is performed with the index direction as the first direction E1. In step S11, the modified region 4 is formed by moving the first focus point P1 from the peripheral edge toward the inside along the spiral line M11. In step S11, the timing of starting the irradiation of the first laser light L1 may be when the optical axis of the first laser light L1 is still outside the target object 100, or is located in the bevel peripheral portion 100X. It may be time.
第2規定量の加工工程の加工後、ステージ107の回転及び第1レーザ光L1の照射等を停止し、当該加工工程を停止する。撮像ユニットIRの撮像結果に基づいて、第2規定量の加工後の加工状態がスライシングフルカット状態か否か(つまり、第2スライシングフルカット状態か否か)を判定する(ステップS12)。上記ステップS12でYesの場合、ステージ107の回転及び第1レーザ光L1の照射等を再び開始し、当該加工工程を再開する(ステップS13)。これにより、対象物100では、改質領域4が渦巻き状のラインM11に沿って形成され、加工状態がスライシングフルカット状態となる(図29(b)参照)。以上により、仮想面M1の全域に改質領域4がラインM11に沿って形成され、加工が完了する(ステップS14)。
After the processing of the second specified amount of processing steps, the rotation of the stage 107, the irradiation of the first laser beam L1, etc. are stopped, and the processing steps are stopped. Based on the image pickup result of the image pickup unit IR, it is determined whether or not the processing state after the processing of the second specified amount is the slicing full cut state (that is, whether the processing state is the second slicing full cut state) (step S12). In the case of Yes in the above step S12, the rotation of the stage 107, the irradiation of the first laser beam L1 and the like are restarted, and the processing step is restarted (step S13). As a result, in the object 100, the modified region 4 is formed along the spiral line M11, and the processing state becomes the slicing full cut state (see FIG. 29 (b)). As described above, the modified region 4 is formed along the line M11 over the entire virtual surface M1, and the processing is completed (step S14).
撮像ユニットIRの撮像結果に基づいて、加工完了後の加工状態が仮想面M1の全域でスライシングフルカット状態か否かを判定する(ステップS15)。上記ステップS15でYesの場合、対象物100の一部が剥離するように応力を印加する(ステップS16)。上記ステップS16では、例えば対象物100を吸着している吸着冶具をZ方向回りにひねることで、当該対象物100に外部応力を印可してもよい。その後、剥離加工が正常に完了したとして、処理を正常終了する。一方、上記ステップS12でNo、又は、上記ステップS15でNoの場合、加工状態にエラーがあると判定し、例えば加工状態のエラーをGUI111を介して報知する(ステップS17)。例えば上記ステップS17の後には、別途の工程(例えば後述の第4実施形態の処理)によって、第2加工条件が再設定される。
Based on the image pickup result of the image pickup unit IR, it is determined whether or not the processing state after the processing is completed is the slicing full cut state in the entire virtual surface M1 (step S15). In the case of Yes in the above step S15, stress is applied so that a part of the object 100 is peeled off (step S16). In the step S16, the external stress may be applied to the target object 100, for example, by twisting the suction jig that sucks the target object 100 around the Z direction. After that, assuming that the peeling process is normally completed, the process is normally terminated. On the other hand, if No in the above step S12 or No in the above step S15, it is determined that there is an error in the machining state and, for example, an error in the machining state is notified via the GUI 111 (step S17). For example, after the step S17, the second processing condition is reset by a separate process (for example, the process of the fourth embodiment described later).
以上、本実施形態のレーザ加工装置101及びレーザ加工方法においても、上記第1実施形態と同様な効果を奏する。本実施形態のレーザ加工装置101及びレーザ加工方法では、レーザ加工のみで加工状態をスライシングフルカット状態とし、応力印加で対象物100を剥離させることができる。
As described above, also in the laser processing apparatus 101 and the laser processing method of this embodiment, the same effect as that of the first embodiment can be obtained. With the laser processing apparatus 101 and the laser processing method according to the present embodiment, the processing state can be set to the slicing full cut state only by laser processing, and the object 100 can be peeled off by applying stress.
なお、本実施形態では、加工状態がスライシングハーフカット状態となる条件を加工条件としてもよい。また、加工状態が第1スライシングフルカット状態となる条件を加工条件としてもよい。加工状態が第1スライシングフルカット状態となる加工条件では、応力を印加する上記ステップS16は省略してもよい。
In this embodiment, the processing condition may be a condition that the processing state is the slicing half cut state. Further, the processing condition may be a condition in which the processing state is the first slicing full cut state. Under the processing condition that the processing state is the first slicing full cut state, the step S16 of applying stress may be omitted.
本実施形態では、応力印加の手法及び構成は特に限定されない。例えば、物理的な応力印加(吸着、加圧又は水圧等)により、亀裂を伸展させて剥離してもよい。また例えば、レーザ予備加熱及び超音波等により応力を印加し、亀裂を伸展させて剥離してもよい。
In the present embodiment, the method and structure for applying stress are not particularly limited. For example, a physical stress may be applied (adsorption, pressurization, water pressure, or the like) to extend the crack and peel the crack. In addition, for example, stress may be applied by laser preheating and ultrasonic waves to spread the cracks and peel off.
図31は、第2実施形態の変形例に係る剥離加工を示すフローチャートである。変形例では、レーザ加工及び応力印加により加工状態をスライシングフルカット状態として剥離する。変形例では、図30に示す処理に代えて、図31に示す次の各処理を実施する。すなわち、ステージ107の回転を開始し、第3加工条件で第1レーザ光L1を対象物100に照射しながら、第1集光点P1がY方向に沿って内周側へ移動するようにレーザ加工ヘッド10AをY軸レール108に沿って移動させる(ステップS21)。第3加工条件は、一本の加工用ラインに沿って第1レーザ光L1を照射して改質領域4を形成した場合に加工状態がスライシングハーフカット状態になる条件であって、並ぶように配された複数の並行ラインを有する加工用ラインに沿って第1レーザ光L1を照射して改質領域4を形成した場合に加工状態がスライシングフルカット状態にならない条件である。このような第3加工条件は、加工状態がスライシングハーフカット状態になり且つスライシングフルカット状態にならないように公知技術に基づき各種のパラメータが適宜設定されて成る。これにより、仮想面M1の全域に改質領域4がラインM11に沿って形成され、加工が完了する(ステップS22)。加工状態がスライシングフルカット状態となるように対象物100に応力を印加する(ステップS23)。
FIG. 31 is a flowchart showing a peeling process according to a modified example of the second embodiment. In the modified example, laser processing and stress application are performed to separate the processed state into a slicing full cut state. In the modification, the following processes shown in FIG. 31 are performed instead of the process shown in FIG. That is, while the rotation of the stage 107 is started and the first laser beam L1 is irradiated to the object 100 under the third processing condition, the laser is moved so that the first focus point P1 moves to the inner peripheral side along the Y direction. The processing head 10A is moved along the Y-axis rail 108 (step S21). The third processing condition is a condition that the processing state becomes a slicing half cut state when the modified region 4 is formed by irradiating the first laser beam L1 along one processing line, and the third processing condition should be lined up. This is a condition under which the slicing full cut state does not occur when the modified region 4 is formed by irradiating the first laser beam L1 along the processing line having the plurality of parallel lines arranged. Such a third processing condition is appropriately set with various parameters based on a known technique so that the processing state is a slicing half-cut state and not a slicing full-cut state. As a result, the modified region 4 is formed along the line M11 in the entire virtual surface M1 and the processing is completed (step S22). A stress is applied to the object 100 so that the processing state becomes the slicing full cut state (step S23).
撮像ユニットIRの撮像結果に基づいて、加工完了後の加工状態が仮想面M1の全域でスライシングフルカット状態か否かを判定する(ステップS24)。上記ステップS24でYesの場合、剥離加工が正常に完了したとして、処理を正常終了する。一方、上記ステップS24でNoの場合、加工状態にエラーがあると判定し、例えば加工状態のエラーをGUI111を介して報知する(ステップS25)。このような変形例に係るレーザ加工装置及びレーザ加工方法においても、上記と同様な効果を奏する。
Based on the image pickup result of the image pickup unit IR, it is determined whether or not the processing state after the processing is completed is the slicing full cut state in the entire virtual surface M1 (step S24). In the case of Yes in the above step S24, it is determined that the peeling process is normally completed, and the process is normally ended. On the other hand, in the case of No in step S24, it is determined that there is an error in the machining state, and, for example, an error in the machining state is notified via the GUI 111 (step S25). Also in the laser processing apparatus and the laser processing method according to such a modified example, the same effects as the above can be obtained.
[第3実施形態]
次に、第3実施形態について説明する。第3実施形態の説明では、第1実施形態と異なる点を説明し、第1実施形態と重複する説明を省略する。 [Third Embodiment]
Next, a third embodiment will be described. In the description of the third embodiment, the points different from the first embodiment will be described, and the description overlapping with the first embodiment will be omitted.
次に、第3実施形態について説明する。第3実施形態の説明では、第1実施形態と異なる点を説明し、第1実施形態と重複する説明を省略する。 [Third Embodiment]
Next, a third embodiment will be described. In the description of the third embodiment, the points different from the first embodiment will be described, and the description overlapping with the first embodiment will be omitted.
本実施形態の剥離加工では、レーザ加工ヘッド10Aの測距センサ36(図9参照)は、ベベル部BBの高さ(変位)を検出することで、ベベル部BBの反りを監視する。本実施形態の剥離加工では、制御部9によりレーザ加工装置101の各部を制御し、図32に示す以下の各処理を実行する。
In the peeling processing of this embodiment, the distance measuring sensor 36 (see FIG. 9) of the laser processing head 10A monitors the warp of the bevel portion BB by detecting the height (displacement) of the bevel portion BB. In the peeling process of this embodiment, the control unit 9 controls each unit of the laser processing apparatus 101 to execute the following processes shown in FIG. 32.
ステージ107の回転を開始する。第1加工条件で第1レーザ光L1をベベル周辺部100Xに照射しながら、第1集光点P1がY方向に沿って内周側へ移動するようにレーザ加工ヘッド10AをY軸レール108に沿って移動させる(ステップS31)。第1加工条件又は第2加工条件で第1レーザ光L1を内周部100Yに照射しながら、第1集光点P1がY方向に沿って内周側へ移動するようにレーザ加工ヘッド10AをY軸レール108に沿って移動させる(ステップS32)。上記ステップS31,S32では、渦巻き状のラインM11に沿って、周縁から内側に向かうように第1集光点P1を移動させて改質領域4を形成する。
▽ Start rotating the stage 107. While irradiating the bevel peripheral portion 100X with the first laser light L1 under the first processing condition, the laser processing head 10A is moved to the Y-axis rail 108 so that the first focus point P1 moves inward along the Y direction. It is moved along (step S31). While irradiating the inner peripheral portion 100Y with the first laser light L1 under the first processing condition or the second processing condition, the laser processing head 10A is moved so that the first focus point P1 moves toward the inner peripheral side along the Y direction. It is moved along the Y-axis rail 108 (step S32). In steps S31 and S32, the modified region 4 is formed by moving the first focus point P1 from the peripheral edge toward the inside along the spiral line M11.
ステージ107の回転及び第1レーザ光L1の照射等を停止し、内周部100Yに対するレーザ加工を停止する。測距センサ36の検出結果に基づいて、ベベル部BBに反りが発生したか否かを判定する(ステップS33)。上記ステップS33では、測距センサ36で検出したベベル部BBの高さが、予め設定された所定高さ以上である場合、ベベル部BBに反りが発生したと判定する。
The rotation of the stage 107 and the irradiation of the first laser beam L1 are stopped, and the laser processing on the inner peripheral portion 100Y is stopped. Based on the detection result of the distance measuring sensor 36, it is determined whether or not the bevel portion BB is warped (step S33). In step S33, when the height of the bevel portion BB detected by the distance measuring sensor 36 is equal to or higher than the predetermined height set in advance, it is determined that the bevel portion BB is warped.
上記ステップS33でYesの場合、ステージ107の回転及び第1レーザ光L1の照射等を再び開始し、内周部100Yに対するレーザ加工を再開する(ステップS34)。その後、仮想面M1の全域に改質領域4がラインM11に沿って形成され、加工が完了する(ステップS35)。一方、上記ステップS33でNoの場合、加工状態にエラーがあると判定し、例えば加工状態のエラーをGUI111を介して報知する(ステップS36)。例えば上記ステップS36の後には、別途の工程(例えば後述の第4実施形態の処理)によって、第1加工条件及び第2加工条件が再設定される。
In the case of Yes in step S33, the rotation of the stage 107, the irradiation of the first laser beam L1 and the like are restarted, and the laser processing on the inner peripheral portion 100Y is restarted (step S34). After that, the modified region 4 is formed along the line M11 in the entire virtual surface M1, and the processing is completed (step S35). On the other hand, in the case of No in step S33, it is determined that there is an error in the processing state, and for example, an error in the processing state is notified via the GUI 111 (step S36). For example, after the step S36, the first processing condition and the second processing condition are reset by a separate process (for example, the processing of the fourth embodiment described later).
以上、本実施形態のレーザ加工装置及びレーザ加工方法においても、上記第1実施形態と同様な効果を奏する。また、ベベル部BBの内部まで亀裂が仮想面M1に沿って伸展すると、ベベル部BBに反りが生じることが見出される。このことから、本実施形態のレーザ加工装置101及びレーザ加工方法では、ベベル部BBの反りを監視(外観監視)することで、ベベル部BBにおける亀裂の到達を把握することができる。
As described above, also in the laser processing apparatus and the laser processing method of this embodiment, the same effect as that of the first embodiment can be obtained. Further, it is found that when the crack extends to the inside of the bevel portion BB along the virtual plane M1, the bevel portion BB is warped. From this, in the laser processing apparatus 101 and the laser processing method of this embodiment, the arrival of the crack in the bevel portion BB can be grasped by monitoring the warp of the bevel portion BB (monitoring the appearance).
なお、ベベル部BBの反りが顕著になると、レーザ加工装置1とベベル部BBとが接触してしまう可能性がある。よって、本実施形態では、上記ステップS33でYesの場合、ベベル部BBの反りの大きさを測距センサ36の検出結果から算出し、ベベル部BBの反りの大きさが予め設定された規定値以上であれば、エラーを報知する上記ステップS36の処理へ移行してもよい。
Note that if the bevel portion BB warps significantly, the laser processing device 1 and the bevel portion BB may come into contact with each other. Therefore, in the present embodiment, in the case of Yes in the above step S33, the amount of warp of the bevel portion BB is calculated from the detection result of the distance measuring sensor 36, and the amount of warp of the bevel portion BB is a predetermined value set in advance. If it is above, you may transfer to the process of the said step S36 which notifies an error.
ところで、対象物100における周縁から一定距離(例えば35mm)以上内側の位置までの部分に、加工状態が第1スライシングフルカット状態となるようにレーザ加工を施すと、ベベル部BBが反る傾向がある。当該レーザ加工の後、対象物100の内周から周縁に向かう第2方向E2をインデックス方向としてレーザ加工を更に施すと、対象物100が当該反りの応力によって割れてしまうおそれがある。そこでこの場合には、第2方向E2をインデックス方向としてレーザ加工を施す前に反りが発生していないことを監視することで、対象物100の割れを事前に防ぐことが可能となる。
By the way, when the laser processing is performed on a portion of the object 100 from the peripheral edge to a position inside a predetermined distance (for example, 35 mm) or more so that the processing state becomes the first slicing full cut state, the bevel portion BB tends to warp. is there. If the laser processing is further performed after the laser processing with the second direction E2 from the inner circumference to the peripheral edge of the object 100 as the index direction, the object 100 may be cracked due to the stress of the warp. Therefore, in this case, it is possible to prevent cracking of the object 100 in advance by monitoring that the warpage has not occurred before performing the laser processing with the second direction E2 as the index direction.
本実施形態では、ベベル部BBの反りを監視する周縁監視部として測距センサ36を用いたが、これに限定されない。ベベル部BBの外観を監視できれば周縁監視部として種々の装置を用いることができ、例えば観察カメラ又は非接触センサが挙げられる。非接触センサを用いてベベル部BBの反りを監視する場合には、レーザ加工を停止せずにリアルタイムで、ベベル部BBの反りの有無及び反り量をモニタリングできる。本実施形態では、制御部9によりベベル部BBの反りを判定したが、測距センサ36の検出結果に基づいてユーザがベベル部BBの反りを判定してもよい。本実施形態は、第1実施形態のみならず、第2実施形態にも適用することができる。
In the present embodiment, the distance measuring sensor 36 is used as the peripheral edge monitoring unit that monitors the warp of the bevel portion BB, but the present invention is not limited to this. If the outer appearance of the bevel portion BB can be monitored, various devices can be used as the peripheral edge monitoring portion, for example, an observation camera or a non-contact sensor. When the warp of the bevel portion BB is monitored using the non-contact sensor, the presence or absence of warp of the bevel portion BB and the warp amount can be monitored in real time without stopping the laser processing. In the present embodiment, the controller 9 determines the warp of the bevel portion BB, but the user may determine the warp of the bevel portion BB based on the detection result of the distance measuring sensor 36. This embodiment can be applied not only to the first embodiment but also to the second embodiment.
[第4実施形態]
次に、第4実施形態について説明する。第4実施形態の説明では、第1実施形態と異なる点を説明し、第1実施形態と重複する説明を省略する。 [Fourth Embodiment]
Next, a fourth embodiment will be described. In the description of the fourth embodiment, the points different from the first embodiment will be described, and the description overlapping with the first embodiment will be omitted.
次に、第4実施形態について説明する。第4実施形態の説明では、第1実施形態と異なる点を説明し、第1実施形態と重複する説明を省略する。 [Fourth Embodiment]
Next, a fourth embodiment will be described. In the description of the fourth embodiment, the points different from the first embodiment will be described, and the description overlapping with the first embodiment will be omitted.
本実施形態では、対象物100の内部の加工状態がスライシングハーフカット状態となるときの加工条件であるハーフカット加工条件を、実際に対象物100にレーザ加工を施すのに先立って事前に決定する(見極める)。
In the present embodiment, a half-cut processing condition, which is a processing condition when the processing state inside the target object 100 becomes a slicing half-cut state, is determined in advance before actually performing the laser processing on the target object 100. (Refine).
すなわち、制御部9は、一本の加工用ラインに沿って、ハーフカット加工条件で第1レーザ光L1を対象物100に照射させて、改質領域4を対象物100に形成する1ライン加工(第2前処理)を実行する。撮像ユニットIRは、1ライン加工により一本の加工用ラインに沿って改質領域4を形成した場合の加工状態を映す1ライン画像(第2画像)を取得する。制御部9は、1ライン画像に映る加工状態を判定し、当該判定結果に応じてハーフカット加工条件を変更する。具体的には、制御部9は、1ライン画像に映る加工状態がスライシングハーフカット状態か否かを判定し、スライシングハーフカット状態ではない場合にハーフカット加工条件を変更する。ハーフカット加工条件は、上述した第1及び第2加工条件の前提となる条件である。制御部9は、GUI111の入力に基づいて、ハーフカット加工条件(第2前処理の加工条件)を設定する。
That is, the control unit 9 irradiates the object 100 with the first laser light L1 under the half-cut processing condition along one processing line to form the modified region 4 on the object 100 by one-line processing. (Second preprocessing) is executed. The imaging unit IR acquires a 1-line image (second image) showing the processing state when the modified region 4 is formed along one processing line by the 1-line processing. The control unit 9 determines the processing state shown in the one-line image, and changes the half-cut processing condition according to the determination result. Specifically, the control unit 9 determines whether or not the processing state shown in the one-line image is the slicing half-cut state, and changes the half-cut processing condition when it is not the slicing half-cut state. The half-cut processing condition is a condition that is a prerequisite of the above-described first and second processing conditions. The control unit 9 sets the half-cut processing condition (processing condition of the second preprocessing) based on the input of the GUI 111.
図33は、ハーフカット加工条件を決定する場合の処理の例を示すフローチャートである。ハーフカット加工条件を決定する場合には、制御部9によりレーザ加工装置101の各部を制御し、図33に例示する以下の各処理を実行する。
FIG. 33 is a flow chart showing an example of processing when the half-cut processing condition is determined. When determining the half-cut processing conditions, the control unit 9 controls each unit of the laser processing apparatus 101 and executes the following processes illustrated in FIG. 33.
まず、一本の加工用ラインに沿って、設定されているハーフカット加工条件で第1レーザ光L1を対象物100に照射して、改質領域4を対象物100に形成する(ステップS41、1ライン加工)。上記ステップS41で改質領域4を形成した場合の加工状態を映す1ライン画像を、撮像ユニットIRにより取得する(ステップS42)。1ライン画像に基づいて、加工状態がスライシングハーフカット状態か否かを判定する(ステップS43)。
First, the object 100 is irradiated with the first laser light L1 under a set half-cut processing condition along one processing line to form the modified region 4 on the object 100 (step S41, 1 line processing). A one-line image showing the processing state when the modified region 4 is formed in step S41 is acquired by the image pickup unit IR (step S42). Based on the 1-line image, it is determined whether the processing state is the slicing half cut state (step S43).
上記ステップS43でYesの場合、現在設定されているハーフカット加工条件を最終的な加工条件として決定する(ステップS44)。上記ステップS43でNoの場合、ハーフカット加工条件を調整する(ステップS45)。上記ステップS45では、例えば、第1レーザ光L1のパルスエネルギを最適化(図28参照)、及び/又は、分岐ピッチBPy,BPxないしパルスピッチを狭める。上記ステップS45の後、上記ステップS41に戻る。なお、上記ステップS41のハーフカット加工条件の初期値は、GUI111を介してユーザが設定することができる。
If Yes in the above step S43, the currently set half-cut processing condition is determined as the final processing condition (step S44). In the case of No at step S43, the half-cut processing condition is adjusted (step S45). In step S45, for example, the pulse energy of the first laser light L1 is optimized (see FIG. 28) and / or the branch pitches BPy, BPx or the pulse pitch is narrowed. After step S45, the process returns to step S41. The initial value of the half-cut processing condition in step S41 can be set by the user via the GUI 111.
また、本実施形態では、対象物100の内部の加工状態が第1スライシングフルカット状態となるときの加工条件である第1加工条件を、実際に対象物100にレーザ加工を施すのに先立って事前に決定する(見極める)。
In addition, in the present embodiment, the first processing condition, which is the processing condition when the processing state inside the object 100 becomes the first slicing full cut state, is set before the laser processing is actually performed on the object 100. Determine (determine) in advance.
すなわち、制御部9は、並ぶように配された複数のライン(並行ライン)を有する加工用ラインに沿って、第1加工条件で第1レーザ光L1を対象物100に照射させて、改質領域4を対象物100に形成する複数ライン加工(第1前処理)を実行する。撮像ユニットIRは、複数ライン加工により改質領域4を形成した場合の加工状態を映す複数ライン画像(第1画像)を取得する。制御部9は、複数ライン画像に映る加工状態を判定し、当該判定結果に応じて第1加工条件を変更する。制御部9は、GUI111の入力に基づいて、第1加工条件を設定する。
That is, the control unit 9 irradiates the object 100 with the first laser light L1 under the first processing condition along the processing line having a plurality of lines (parallel lines) arranged side by side to modify the target object 100. Plural line processing (first pretreatment) for forming the region 4 on the object 100 is executed. The imaging unit IR acquires a multi-line image (first image) showing a processing state when the modified region 4 is formed by multi-line processing. The control unit 9 determines the processing state shown in the multi-line image, and changes the first processing condition according to the determination result. The control unit 9 sets the first processing condition based on the input of the GUI 111.
撮像ユニットIRは、複数ライン画像として、第1規定量のレーザ加工後の加工状態を映す第1複数ライン画像を取得する。制御部9は、第1複数ライン画像に基づいて、第1規定量のレーザ加工後の加工状態がスライシングフルカット状態か否か(つまり、第1スライシングフルカット状態か否か)を判定する。制御部9は、加工状態が第1スライシングフルカット状態ではない場合に、第1加工条件を変更する。
The imaging unit IR acquires, as a multi-line image, a first multi-line image showing a processing state after laser processing a first specified amount. The control unit 9 determines whether the processing state after the laser processing of the first specified amount is the slicing full cut state (that is, whether the processing state is the first slicing full cut state) based on the first multiple line image. The control unit 9 changes the first processing condition when the processing state is not the first slicing full cut state.
図34は、第1加工条件を決定する場合の処理の例を示すフローチャートである。第1加工条件を決定する場合には、制御部9によりレーザ加工装置101の各部を制御し、図34に例示する以下の各処理を実行する。
FIG. 34 is a flowchart showing an example of processing when the first processing condition is determined. When determining the first processing condition, the control unit 9 controls each unit of the laser processing apparatus 101 to execute the following processes illustrated in FIG. 34.
まず、並ぶように配された複数の並行ラインに沿って、設定されている第1加工条件で第1レーザ光L1を対象物100に照射して、改質領域4を対象物100に形成する(ステップS51、複数ライン加工)。上記ステップS51で改質領域4を形成した場合の加工状態であって第1規定量のレーザ加工後の加工状態を映す第1複数ライン画像を、撮像ユニットIRにより取得する(ステップS52)。第1複数ライン画像に基づいて、第1規定量のレーザ加工後の加工状態がスライシングフルカット状態(第1スライシングフルカット状態)か否かを判定する(ステップS53)。
First, the object 100 is irradiated with the first laser light L1 under the set first processing conditions along a plurality of parallel lines arranged side by side to form the modified region 4 on the object 100. (Step S51, multi-line processing). The imaging unit IR acquires a first plurality of line images, which is the processing state when the modified region 4 is formed in step S51 and reflects the processing state after the first prescribed amount of laser processing (step S52). Based on the first multiple line image, it is determined whether or not the processing state after the laser processing of the first specified amount is the slicing full cut state (first slicing full cut state) (step S53).
上記ステップS53でYesの場合、現在設定されている第1加工条件を最終的な加工条件として決定する(ステップS54)。上記ステップS52でNoの場合、第1加工条件を調整する(ステップS55)。上記ステップS55では、例えば、第1レーザ光L1のパルスエネルギを最適化(図28参照)、及び/又は、分岐ピッチBPy,BPxないしパルスピッチを狭める。上記ステップS55の後、上記ステップS51に戻る。なお、上記ステップS51の第1加工条件の初期値は、GUI111を介してユーザが設定することができる。
If Yes in the above step S53, the currently set first machining condition is determined as the final machining condition (step S54). If No in step S52, the first processing condition is adjusted (step S55). In step S55, for example, the pulse energy of the first laser light L1 is optimized (see FIG. 28) and / or the branch pitches BPy, BPx or the pulse pitch is narrowed. After step S55, the process returns to step S51. The initial value of the first processing condition in step S51 can be set by the user via the GUI 111.
また、本実施形態では、対象物100の内部の加工状態が第2スライシングフルカット状態となるときの加工条件である第2加工条件を、実際に対象物100にレーザ加工を施すのに先立って事前に決定する(見極める)。
Further, in the present embodiment, the second processing condition which is a processing condition when the processing state inside the object 100 becomes the second slicing full cut state is set before the laser processing is actually performed on the object 100. Determine (determine) in advance.
すなわち、制御部9は、並ぶように配された複数のライン(並行ライン)を有する加工用ラインに沿って、第2加工条件で第1レーザ光L1を対象物100に照射させて、改質領域4を対象物100に形成する複数ライン加工(第1前処理)を実行する。撮像ユニットIRは、複数ライン加工により改質領域4を形成した場合の加工状態を映す複数ライン画像(第1画像)を取得する。制御部9は、複数ライン画像に映る加工状態を判定し、当該判定結果に応じて第2加工条件を変更する。制御部9は、GUI111の入力に基づいて、第2加工条件を設定する。
That is, the control unit 9 causes the target object 100 to be irradiated with the first laser light L1 under the second processing condition along the processing line having a plurality of lines (parallel lines) arranged side by side to modify the target object 100. Plural line processing (first pretreatment) for forming the region 4 on the object 100 is executed. The imaging unit IR acquires a multi-line image (first image) showing a processing state when the modified region 4 is formed by multi-line processing. The control unit 9 determines the processing state shown in the multi-line image, and changes the second processing condition according to the determination result. The control unit 9 sets the second processing condition based on the input of the GUI 111.
撮像ユニットIRは、複数ライン画像として、第2規定量のレーザ加工後で且つ応力印加後の加工状態を映す第2複数ライン画像を取得する。応力印加は、例えば上記ステップS16(図30参照)の応力印加と同様にして実現できる。制御部9は、第2複数ライン画像に基づいて、第2規定量のレーザ加工後の加工状態がスライシングフルカット状態か否か(つまり、第2スライシングフルカット状態か否か)を判定する。制御部9は、加工状態が第2スライシングフルカット状態ではない場合に、第2加工条件を変更する。
The imaging unit IR acquires, as a multi-line image, a second multi-line image showing a processing state after laser processing a second specified amount and after applying stress. The stress application can be realized, for example, in the same manner as the stress application in step S16 (see FIG. 30). The control unit 9 determines whether or not the processing state after the laser processing of the second prescribed amount is the slicing full cut state (that is, whether or not the second slicing full cut state) based on the second multiple line image. The control unit 9 changes the second processing condition when the processing state is not the second slicing full cut state.
或いは、撮像ユニットIRは、複数ライン画像として、第1規定量のレーザ加工後の加工状態を映す第1複数ライン画像を取得する。制御部9は、第1複数ライン画像に基づいて、加工状態が第1スライシングフルカット状態か否かを判定する。加工状態が第1スライシングフルカット状態の場合、制御部9は第2加工条件を変更する。加工状態が第1スライシングフルカット状態ではない場合、撮像ユニットIRは、複数ライン画像として、第2規定量のレーザ加工後の加工状態を映す第2複数ライン画像を取得する。制御部9は、第2複数ライン画像に基づいて、加工状態が第2スライシングフルカット状態か否かを判定する。制御部9は、加工状態が第2スライシングフルカット状態ではない場合、第2加工条件を変更する。
Alternatively, the imaging unit IR acquires, as the multi-line image, the first multi-line image showing the processing state after the first prescribed amount of laser processing. The control unit 9 determines whether the processing state is the first slicing full cut state based on the first multiple line image. When the processing state is the first slicing full cut state, the control unit 9 changes the second processing condition. When the processing state is not the first slicing full cut state, the imaging unit IR acquires, as the multiple line image, a second multiple line image showing the processed state after the laser processing of the second specified amount. The control unit 9 determines whether the processing state is the second slicing full cut state based on the second multiple line image. When the processing state is not the second slicing full cut state, the control unit 9 changes the second processing condition.
図35は、第2加工条件を決定する場合の処理の例を示すフローチャートである。第2加工条件を決定する場合には、制御部9によりレーザ加工装置101の各部を制御し、図35に例示する以下の各処理を実行する。
FIG. 35 is a flow chart showing an example of processing when the second processing condition is determined. When determining the second processing condition, the control unit 9 controls each unit of the laser processing apparatus 101 and executes the following respective processes illustrated in FIG. 35.
まず、並ぶように配された複数の並行ラインに沿って、設定されている第2加工条件で第1レーザ光L1を対象物100に照射して、改質領域4を対象物100に形成する(ステップS61、複数ライン加工)。第1規定量のレーザ加工後の加工状態を映す第1複数ライン画像を、撮像ユニットIRにより取得する(ステップS62)。第1複数ライン画像に基づいて、第1規定量のレーザ加工後の加工状態がスライシングフルカット状態(第1スライシングフルカット状態)か否かを判定する(ステップS63)。
First, the object 100 is irradiated with the first laser beam L1 under the set second processing conditions along the plurality of parallel lines arranged side by side to form the modified region 4 on the object 100. (Step S61, multi-line processing). The imaging unit IR acquires a first multiple line image showing the processing state after the laser processing of the first prescribed amount (step S62). Based on the first multiple line image, it is determined whether or not the processing state after the laser processing of the first specified amount is the slicing full cut state (first slicing full cut state) (step S63).
上記ステップS63でNOの場合、つまり、加工状態がスライシングステルス状態又はスライシングハーフカット状態の場合、引き続き複数ライン加工を実施する(ステップS64)。第2規定量のレーザ加工後の加工状態を映す第2複数ライン画像を、撮像ユニットIRにより取得する(ステップS65)。第2複数ライン画像に基づいて、第2規定量のレーザ加工後の加工状態がスライシングフルカット状態(第2スライシングフルカット状態)か否かを判定する(ステップS66)。
If the result of step S63 is NO, that is, if the machining state is the slicing stealth state or the slicing half-cut state, the plural lines are continuously machined (step S64). A second plural line image showing the processing state after the laser processing of the second prescribed amount is acquired by the imaging unit IR (step S65). Based on the second multiple line image, it is determined whether or not the processing state after the laser processing of the second specified amount is the slicing full cut state (second slicing full cut state) (step S66).
上記ステップS66でYESの場合、現在設定されている第2加工条件を最終的な加工条件として決定する(ステップS67)。上記ステップS63でYESの場合、第2加工条件を調整する(ステップS68)。上記ステップS68では、例えば分岐ピッチBPy,BPxないしパルスピッチを広げる。
If YES in step S66, the currently set second machining condition is determined as the final machining condition (step S67). If YES in step S63, the second processing condition is adjusted (step S68). In step S68, for example, the branch pitches BPy, BPx or the pulse pitch is widened.
上記ステップS66でNOの場合、第2加工条件を調整する(ステップS69)。上記ステップS69では、例えば第1レーザ光L1のパルスエネルギを最適化(図28参照)、及び/又は、分岐ピッチBPy,BPxないしパルスピッチを狭める。上記ステップS68又は上記ステップS69の後、上記ステップS61に戻る。なお、上記ステップS61の第2加工条件の初期値は、GUI111を介してユーザが設定することができる。
If NO in step S66, the second processing condition is adjusted (step S69). In step S69, for example, the pulse energy of the first laser light L1 is optimized (see FIG. 28) and / or the branch pitches BPy, BPx or the pulse pitch is narrowed. After step S68 or step S69, the process returns to step S61. The initial value of the second processing condition in step S61 can be set by the user via the GUI 111.
以上、本実施形態のレーザ加工装置101及びレーザ加工方法においても、上記第1実施形態と同様な効果を奏する。また、対象物100の剥離と、複数の並行ラインを有する加工用ラインに沿って改質領域4を形成した場合の加工状態と、の間には、相関があることが見出される。そこで、本実施形態のレーザ加工装置101及びレーザ加工方法では、複数の並行ラインを有する加工用ラインに沿って改質領域4を形成した場合の加工状態を映す複数ライン画像を取得する。この複数ライン画像に基づくことで、対象物100を剥離できるように加工条件を策定することが可能となる。したがって、対象物100を確実に剥離することが可能となる。
As described above, also in the laser processing apparatus 101 and the laser processing method of this embodiment, the same effect as that of the first embodiment can be obtained. Further, it is found that there is a correlation between the peeling of the object 100 and the processing state when the modified region 4 is formed along the processing line having a plurality of parallel lines. Therefore, in the laser processing apparatus 101 and the laser processing method of the present embodiment, a multi-line image showing the processing state when the modified region 4 is formed along the processing line having a plurality of parallel lines is acquired. Based on this multi-line image, it becomes possible to set the processing conditions so that the object 100 can be peeled off. Therefore, the object 100 can be reliably peeled off.
対象物100の剥離と、一本の加工用ラインに沿って改質領域4を形成した場合の加工状態と、の間には、相関があることが見出される。そこで、本実施形態のレーザ加工装置101及びレーザ加工方法では、一本の加工用ラインに沿って改質領域4を形成した場合の加工状態を映す1ライン画像を取得する。この1ライン画像に基づくことで、対象物100を剥離できるようにハーフカット加工条件を策定することが可能となる。対象物100を確実に剥離することが可能となる。
It is found that there is a correlation between the exfoliation of the object 100 and the processing state when the modified region 4 is formed along one processing line. Therefore, in the laser processing apparatus 101 and the laser processing method of this embodiment, a one-line image showing the processing state when the modified region 4 is formed along one processing line is acquired. Based on this one-line image, it is possible to set the half-cut processing conditions so that the object 100 can be peeled off. The object 100 can be reliably peeled off.
本実施形態のレーザ加工装置101及びレーザ加工方法では、1ライン画像に映る加工状態を判定する。当該判定結果に応じてハーフカット加工条件を変更する。この場合、ハーフカット加工条件を、1ライン画像に応じて自動的に変更することができる。
With the laser processing apparatus 101 and the laser processing method of this embodiment, the processing state shown in the one-line image is determined. The half-cut processing condition is changed according to the determination result. In this case, the half-cut processing condition can be automatically changed according to the one-line image.
一本の加工用ラインに沿って改質領域4を形成した場合の加工状態がスライシングハーフ状態でないと、対象物100の剥離が困難になることが見出される。そこで、本実施形態のレーザ加工装置101及びレーザ加工方法では、1ライン画像に映る加工状態がスライシングハーフカット状態ではない場合に、ハーフカット加工条件を変更する。これにより、対象物100を剥離できるようにハーフカット加工条件を策定することが可能となる。
It is found that the peeling of the object 100 becomes difficult unless the processing state when the modified region 4 is formed along one processing line is the slicing half state. Therefore, in the laser processing apparatus 101 and the laser processing method of this embodiment, the half-cut processing condition is changed when the processing state shown in the one-line image is not the slicing half-cut state. This makes it possible to set the half-cut processing conditions so that the object 100 can be peeled off.
本実施形態のレーザ加工装置101及びレーザ加工方法では、複数ライン画像に映る加工状態を判定する。当該判定結果に応じて、第1及び第2加工条件を変更する。この場合、第1及び第2加工条件を、第1画像に応じて自動的に変更することができる。
With the laser processing apparatus 101 and the laser processing method according to the present embodiment, the processing state reflected in a multi-line image is determined. The first and second processing conditions are changed according to the determination result. In this case, the first and second processing conditions can be automatically changed according to the first image.
複数の並行ラインを有する加工用ラインに沿って改質領域4を形成する際、第1規定量のレーザ加工後の加工状態がスライシングフルカット状態となるようにレーザ加工を行うと、対象物100を確実に剥離し得ることが見出される。そこで、本実施形態のレーザ加工装置及びレーザ加工方法では、第1複数ライン画像に基づいて第1規定量のレーザ加工後の加工状態がスライシングフルカット状態か否かを判定し、スライシングフルカット状態ではない場合に第1加工条件を変更する。これにより、対象物100を確実に剥離し得る第1加工条件を策定することが可能となる。
When the modified region 4 is formed along the processing line having a plurality of parallel lines, when the laser processing is performed so that the processing state after the laser processing of the first specified amount becomes the slicing full cut state, the target object 100 is obtained. It has been found that can be reliably peeled. Therefore, in the laser processing apparatus and the laser processing method of the present embodiment, it is determined whether the processing state after the laser processing of the first specified amount is the slicing full cut state based on the first multiple line image, and the slicing full cut state is determined. If not, the first processing condition is changed. As a result, it becomes possible to set the first processing condition that allows the object 100 to be reliably peeled off.
複数の並行ラインを有する加工用ラインに沿って改質領域4を形成する際、第2規定量のレーザ加工後の加工状態がスライシングフルカット状態となるようにレーザ加工を行うと、タクトの悪化を抑えつつ対象物100を剥離し得ることが見出される。そこで、本実施形態のレーザ加工装置101及びレーザ加工方法では、第2複数ライン画像に基づいて第2規定量のレーザ加工後の加工状態がスライシングフルカット状態か否かを判定し、スライシングフルカット状態ではない場合に第2加工条件を変更する。これにより、タクトの悪化を抑えつつ対象物100を剥離し得る第2加工条件を策定することが可能となる。
When the modified region 4 is formed along a processing line having a plurality of parallel lines, if the laser processing is performed so that the processing state after the second prescribed amount of laser processing becomes the slicing full cut state, the tact becomes worse. It is found that the object 100 can be peeled off while suppressing the above. Therefore, in the laser processing apparatus 101 and the laser processing method of the present embodiment, it is determined whether the processing state after the laser processing of the second specified amount is the slicing full cut state based on the second multiple line image, and the slicing full cut state is determined. If it is not in the state, the second processing condition is changed. As a result, it becomes possible to set the second processing condition that allows the object 100 to be peeled off while suppressing the deterioration of the tact.
本実施形態では、ハーフカット加工条件、第1加工条件及び第2加工条件を決定したが、これらの少なくとも何れかを決定すればよい。例えば撮像ユニットIRでスライシングハーフカット状態を確認できない場合には、第1加工条件及び第2加工条件の少なくとも何れかのみを決定してもよい。本実施形態では、制御部9により加工状態を自動的に判定したが、撮像ユニットIRの撮像結果に基づいてユーザが加工状態を判定してもよい。上記ステップS51,S61が第1前工程を構成し、上記ステップS52,S62が第1撮像工程を構成する。本実施形態は、第1実施形態のみならず、第2実施形態又は第3実施形態にも適用することができる。
In the present embodiment, the half-cut processing condition, the first processing condition, and the second processing condition are determined, but at least one of these may be determined. For example, when the slicing half cut state cannot be confirmed by the imaging unit IR, only at least one of the first processing condition and the second processing condition may be determined. In the present embodiment, the machining state is automatically determined by the control unit 9, but the user may determine the machining state based on the imaging result of the imaging unit IR. The steps S51 and S61 form a first pre-process, and the steps S52 and S62 form a first imaging process. This embodiment can be applied not only to the first embodiment but also to the second embodiment or the third embodiment.
本実施形態において加工条件を決定する際に用いられる対象物100としては、例えば剥離加工等により最終的に半導体デバイス(製品)とはならないプラクティス用のウェハである条件決定用のウェハと、例えば剥離加工等により最終的に半導体デバイスとなるプロダクション用のウェハである半導体デバイス用のウェハと、が挙げられる。前者の場合には、ウェハの全体領域の何れかに加工用ラインを設定して、加工条件を決定してもよい。後者の場合には、ウェハにおける剥離品質に影響が少ない外縁領域に加工用ラインを設定して、加工条件を決定し、そのまま連続して、決定した当該加工条件で剥離加工を実施してもよい。後者は、例えば、ウェハの裏面膜がバラつく等のために1枚毎に加工条件を調整する必要がある場合に、採用してもよい。
The object 100 used when determining the processing conditions in the present embodiment is, for example, a wafer for condition determination that is a practice wafer that does not finally become a semiconductor device (product) due to separation processing or the like, and for example, separation A semiconductor device wafer that is a production wafer that will eventually become a semiconductor device by processing or the like. In the former case, a processing line may be set in any of the entire area of the wafer to determine the processing conditions. In the latter case, a processing line may be set in the outer edge region that has little influence on the peeling quality of the wafer, the processing conditions may be determined, and the peeling processing may be continuously performed under the determined processing conditions. .. The latter may be adopted, for example, when it is necessary to adjust the processing conditions for each wafer due to variations in the backside film of the wafer.
[変形例]
以上、本発明の一態様は、上述した実施形態に限定されない。 [Modification]
As described above, one aspect of the present invention is not limited to the above embodiment.
以上、本発明の一態様は、上述した実施形態に限定されない。 [Modification]
As described above, one aspect of the present invention is not limited to the above embodiment.
上記実施形態では、剥離加工により対象物100を剥離する前に、改質領域43を形成するトリミング加工を行ったが、図36(a)及び図36(b)に示されるように、剥離加工により対象物100を剥離した後に、トリミング加工により除去領域Eを除去してもよい。この場合においても、剥離加工によって対象物100から取り除く除去部分について、リユース可能である。
In the above embodiment, the trimming process for forming the modified region 43 is performed before the object 100 is peeled by the peeling process. However, as shown in FIGS. 36 (a) and 36 (b), the peeling process is performed. After the object 100 is peeled by the method, the removal area E may be removed by trimming. Also in this case, the removed portion removed from the object 100 by the peeling process can be reused.
また、図37(a)及び図37(b)に示されるように、剥離加工により対象物100の有効領域Rの内部に仮想面M1に沿って改質領域4を形成した後、トリミング加工で除去領域Eを除去してもよい。また、図38(a)及び図38(b)に示されるように、トリミング加工で除去領域Eを除去した後、剥離加工により対象物100を剥離してもよい。
Further, as shown in FIGS. 37 (a) and 37 (b), after the modified region 4 is formed along the virtual plane M1 inside the effective region R of the object 100 by the peeling process, the trimming process is performed. The removal area E may be removed. Further, as shown in FIGS. 38A and 38B, the object 100 may be peeled off by a peeling process after the removal region E is removed by a trimming process.
上記実施形態では、加工用ラインは渦巻き状のラインM11に限定されず、種々の形状の加工用ラインが対象物100に設定されていてもよい。例えば図39に示されるように、直線状の複数のライン(並行ライン)M12が、所定方向に並ぶように対象物100に設定されていてもよい。これらの複数のラインM12は、ライン(加工用ライン)M20に含まれる。ラインM12は、仮想的なラインであるが、実際に引かれたラインであってもよい。ラインM12は、座標指定されたものであってもよい。並ぶように配された複数のラインM12は、その一部又は全部が繋がっていてもよいし、繋がっていなくてもよい。
In the above embodiment, the processing line is not limited to the spiral line M11, and processing lines of various shapes may be set on the object 100. For example, as shown in FIG. 39, a plurality of linear lines (parallel lines) M12 may be set on the object 100 so as to be arranged in a predetermined direction. The plurality of lines M12 are included in the line (processing line) M20. The line M12 is a virtual line, but may be an actually drawn line. The line M12 may have coordinates designated. A part or all of the plurality of lines M12 arranged so as to be aligned may be connected, or may not be connected.
上記実施形態は、照射部として複数のレーザ加工ヘッドを備えていてもよい。照射部として複数のレーザ加工ヘッドを備える場合、上述の第1加工処理(第1加工工程)、第2加工処理(第2加工工程)、第1前処理(第1前工程)及び第2前処理(第2前工程)のそれぞれにおいて、複数のレーザ加工ヘッドを用いてレーザ加工を実施してもよい。
The above embodiment may include a plurality of laser processing heads as the irradiation unit. When a plurality of laser processing heads are provided as the irradiation unit, the above-described first processing process (first processing process), second processing process (second processing process), first pre-processing (first pre-process) and second pre-processing In each of the processes (second pre-process), laser processing may be performed using a plurality of laser processing heads.
上記実施形態では、反射型空間光変調器34を採用したが、空間光変調器は反射型のものに限定されず、透過型の空間光変調器を採用してもよい。上記実施形態では、対象物100の種類、対象物100の形状、対象物100のサイズ、対象物100が有する結晶方位の数及び方向、並びに、対象物100の主面の面方位は特に限定されない。
In the above embodiment, the reflective spatial light modulator 34 is adopted, but the spatial light modulator is not limited to the reflective type, and a transmissive spatial light modulator may be adopted. In the above embodiment, the type of the target object 100, the shape of the target object 100, the size of the target object 100, the number and direction of crystal orientations of the target object 100, and the plane orientation of the main surface of the target object 100 are not particularly limited. ..
上記実施形態では、対象物100の裏面100bをレーザ光入射面としたが、対象物100の表面100aをレーザ光入射面としてもよい。上記実施形態では、改質領域は、例えば対象物100の内部に形成された結晶領域、再結晶領域、又は、ゲッタリング領域であってもよい。結晶領域は、対象物100の加工前の構造を維持している領域である。再結晶領域は、一旦は蒸発、プラズマ化あるいは溶融した後、再凝固する際に単結晶あるいは多結晶として凝固した領域である。ゲッタリング領域は、重金属等の不純物を集めて捕獲するゲッタリング効果を発揮する領域であり、連続的に形成されていてもよいし、断続的に形成されていてもよい。上記実施形態は、アブレーション等の加工へ適用されてもよい。
In the above embodiment, the back surface 100b of the object 100 is the laser light incident surface, but the front surface 100a of the object 100 may be the laser light incident surface. In the above embodiment, the modified region may be, for example, a crystal region, a recrystallized region, or a gettering region formed inside the object 100. The crystal region is a region in which the structure of the object 100 before processing is maintained. The recrystallized region is a region which is once solidified as a single crystal or a polycrystal when it is solidified again after being vaporized, turned into plasma or melted. The gettering region is a region that exhibits a gettering effect of collecting and trapping impurities such as heavy metals, and may be formed continuously or intermittently. The above embodiment may be applied to processing such as ablation.
上記実施形態のレーザ加工において、第2加工処理では、装置の限界(ステージ107の回転速度が最大回転速度)に達してしまうと、改質領域4に含まれる改質スポットSAのピッチが詰まる可能性が生じ得る。この場合、当該ピッチが一定間隔となるように、その他の加工条件を変更してもよい。
In the laser processing of the above-described embodiment, if the limit of the apparatus (the rotation speed of the stage 107 reaches the maximum rotation speed) is reached in the second processing, the pitch of the modified spots SA included in the modified region 4 may be blocked. Sex can occur. In this case, other processing conditions may be changed so that the pitch is constant.
別の変形例について以下に説明する。
Another modification is explained below.
図40に示されるように、レーザ加工装置1Aは、アライメントカメラAC及び撮像ユニットIRを備えている点、並びに、レーザ加工ヘッド(第1照射部)10Bが旋回機構67を介して取付部66に取り付けられている点で、上述したレーザ加工装置1と主に相違している。本実施形態では、レーザ加工装置1Aは、表面100a(以下、「第1主面100a」ともいう)及び表面100b(以下、「第2主面100b」ともいう)を有する対象物100にトリミング加工及び剥離加工を施し、半導体デバイスを取得(製造)する。トリミング加工は、対象物100において不要部分を除去するための加工である。剥離加工は、対象物100の一部分を剥離するための加工である。まず、レーザ加工装置1Aの構成について、上述したレーザ加工装置1との相違点を中心に説明する。なお、図40においては、装置フレーム1a、光源ユニット8等の図示が省略されている。
As shown in FIG. 40, the laser processing apparatus 1 </ b> A includes an alignment camera AC and an imaging unit IR, and the laser processing head (first irradiation unit) 10 </ b> B is attached to the mounting portion 66 via the turning mechanism 67. The point of attachment is mainly different from the laser processing apparatus 1 described above. In the present embodiment, the laser processing apparatus 1A trims a target object 100 having a surface 100a (hereinafter also referred to as “first main surface 100a”) and a surface 100b (hereinafter also referred to as “second main surface 100b”). Then, a peeling process is performed to obtain (manufacture) a semiconductor device. The trimming process is a process for removing an unnecessary portion of the object 100. The peeling process is a process for peeling a part of the object 100. First, the configuration of the laser processing apparatus 1A will be described focusing on the differences from the laser processing apparatus 1 described above. Note that, in FIG. 40, the device frame 1a, the light source unit 8 and the like are omitted.
図40に示されるように、アライメントカメラAC及び撮像ユニットIRは、レーザ加工ヘッド(第2照射部)10Aと共に取付部65に取り付けられている。アライメントカメラACは、例えば、対象物100を透過する光を用いてデバイスパターン等を撮像する。アライメントカメラACにより得られる画像に基づいて、対象物100に対するレーザ光L1の照射位置のアライメント等が実施される。撮像ユニットIRは、対象物100を透過する光により対象物100を撮像する。例えば、対象物100がシリコンを含むウェハである場合、撮像ユニットIRにおいては、近赤外領域の光が用いられる。撮像ユニットIRにより得られる画像に基づいて、対象物100の内部に形成された改質領域及び当該改質領域から延びる亀裂の状態の確認等が実施される。
As shown in FIG. 40, the alignment camera AC and the imaging unit IR are attached to the attachment section 65 together with the laser processing head (second irradiation section) 10A. The alignment camera AC images, for example, a device pattern or the like using light that passes through the target object 100. Based on the image obtained by the alignment camera AC, alignment of the irradiation position of the laser light L1 with respect to the target object 100 is performed. The imaging unit IR images the object 100 with light that passes through the object 100. For example, when the object 100 is a wafer containing silicon, light in the near infrared region is used in the imaging unit IR. Based on the image obtained by the imaging unit IR, confirmation of the modified region formed inside the object 100 and the state of cracks extending from the modified region are performed.
レーザ加工ヘッド10Bは、旋回機構67を介して取付部66に取り付けられている。旋回機構67は、X方向に平行な軸線を中心線として旋回可能となるように取付部66に取り付けられている。これにより、移動機構6は、レーザ加工ヘッド10Bの集光部(第1集光部)14の光軸が対象物100の第2主面100bに平行なY方向(対象物の表面に垂直な方向と交差する第1方向)に沿った状態、又はレーザ加工ヘッド10Bの集光部14の光軸が第2主面100bに垂直なZ方向(第2方向)に沿った状態となるように、レーザ加工ヘッド10Bの向きを変えることができる。なお、レーザ加工装置1Aにおいて、集光部14の光軸が第1方向に沿った状態とは、当該光軸が第1方向に対して10°以下の角度を成す状態を意味し、集光部14の光軸が第2方向に沿った状態とは、当該光軸が第2方向に対して10°以下の角度を成す状態を意味する。
The laser processing head 10B is attached to the attachment portion 66 via the turning mechanism 67. The turning mechanism 67 is attached to the mounting portion 66 so as to turn about an axis parallel to the X direction as a center line. Thereby, the moving mechanism 6 causes the optical axis of the condensing part (first condensing part) 14 of the laser processing head 10B to be parallel to the second main surface 100b of the object 100 in the Y direction (perpendicular to the surface of the object. So that the optical axis of the condensing part 14 of the laser processing head 10B is along the Z direction (second direction) perpendicular to the second main surface 100b. The direction of the laser processing head 10B can be changed. In the laser processing apparatus 1A, the state where the optical axis of the condensing unit 14 is along the first direction means a state in which the optical axis makes an angle of 10 ° or less with respect to the first direction. The state where the optical axis of the portion 14 is along the second direction means a state where the optical axis makes an angle of 10 ° or less with the second direction.
次に、レーザ加工装置1Aの加工対象である対象物100について説明する。対象物100は、例えば円板状に形成された半導体ウェハを含む。対象物100は、種々の材料で形成されていてもよいし、種々の形状を呈していてもよい。対象物100の第1主面100aには、機能素子(図示省略)が形成されている。機能素子は、例えば、フォトダイオード等の受光素子、レーザダイオード等の発光素子、メモリ等の回路素子等である。
Next, the object 100 that is a processing target of the laser processing apparatus 1A will be described. The target object 100 includes, for example, a disc-shaped semiconductor wafer. The object 100 may be formed of various materials and may have various shapes. A functional element (not shown) is formed on the first main surface 100a of the object 100. The functional element is, for example, a light receiving element such as a photodiode, a light emitting element such as a laser diode, a circuit element such as a memory, or the like.
図41(a)及び(b)に示されるように、対象物100には、有効部分RR及び周縁部分EEが設定されている。有効部分RRは、取得する半導体デバイスに対応する部分である。有効部分RRは、例えば、対象物100を厚さ方向から見た場合に中央部分を含む円板状の部分である。周縁部分EEは、対象物100における有効部分RRよりも外側の領域である。周縁部分EEは、対象物100において有効部分RR以外の外縁部分である。周縁部分EEは、例えば、有効部分RRを囲う円環状のベベル部分(ベベル部)である。
As shown in FIGS. 41A and 41B, an effective portion RR and a peripheral portion EE are set in the object 100. The effective portion RR is a portion corresponding to the semiconductor device to be acquired. The effective portion RR is, for example, a disk-shaped portion including a central portion when the object 100 is viewed from the thickness direction. The peripheral portion EE is a region outside the effective portion RR of the object 100. The peripheral edge portion EE is an outer edge portion of the object 100 other than the effective portion RR. The peripheral edge portion EE is, for example, an annular bevel portion (bevel portion) surrounding the effective portion RR.
対象物100には、剥離予定面としての仮想面M1が設定されている。仮想面M1は、改質領域の形成を予定する面である。仮想面M1は、対象物100のレーザ光入射面である第2主面100bと向かい合う面(すなわち、第2主面100bに対向する面)である。仮想面M1は、第1領域M1a及び第2領域M1bを含んでいる。第1領域M1aは、仮想面M1のうち有効部分RRに位置する領域である。第2領域M1bは、仮想面M1のうち周縁部分EEに位置する領域である。仮想面M1は、第2主面100bに平行な面であり、例えば円形状を呈している。仮想面M1は、仮想的な領域であり、平面に限定されず、曲面ないし3次元状の面であってもよい。有効部分RR、周縁部分EE及び仮想面M1の設定は、制御部9において行うことができる。有効部分RR、周縁部分EE及び仮想面M1は、座標指定されたものであってもよい。
A virtual surface M1 as a planned separation surface is set on the object 100. The virtual surface M1 is a surface where the modified region is to be formed. The virtual surface M1 is a surface that faces the second main surface 100b that is the laser light incident surface of the object 100 (that is, a surface that faces the second main surface 100b). The virtual surface M1 includes a first area M1a and a second area M1b. The first region M1a is a region located in the effective portion RR of the virtual surface M1. The second area M1b is an area located on the peripheral edge portion EE of the virtual surface M1. The virtual surface M1 is a surface parallel to the second principal surface 100b and has, for example, a circular shape. The virtual surface M1 is a virtual area and is not limited to a flat surface, and may be a curved surface or a three-dimensional surface. The control unit 9 can set the effective portion RR, the peripheral portion EE, and the virtual surface M1. The effective portion RR, the peripheral portion EE, and the virtual surface M1 may have coordinate designations.
対象物100には、トリミング予定ラインとしてのラインM3が設定されている。ラインM3は、改質領域の形成を予定するラインである。ラインM3は、対象物100の外縁の内側において環状に延在する。ラインM3は、例えば、円環状に延在する。ラインM3は、対象物100の内部における仮想面M1よりもレーザ光入射面とは反対側の部分にて、有効部分RRと周縁部分EEとの境界に設定されている。ラインM3の設定は、制御部9において行うことができる。ラインM3は、座標指定されたものであってもよい。
The object 100 has a line M3 as a planned trimming line. The line M3 is a line which is scheduled to form the modified region. The line M3 extends annularly inside the outer edge of the object 100. The line M3 extends, for example, in an annular shape. The line M3 is set at the boundary between the effective portion RR and the peripheral edge portion EE at the portion inside the object 100 on the side opposite to the laser light incident surface with respect to the virtual surface M1. The setting of the line M3 can be performed by the control unit 9. The line M3 may have coordinates designated.
次に、レーザ加工装置1Aを用いて、対象物100にトリミング加工及び剥離加工を施し、半導体デバイスを製造(取得)する方法の一例について、説明する。以下に説明する製造方法は、トリミング加工及び剥離加工によって対象物100から取り除く除去部分(対象物100において半導体デバイスとして用いられない部分)について、リユース可能な方法である。
Next, an example of a method of manufacturing (acquiring) a semiconductor device by performing trimming processing and peeling processing on the object 100 using the laser processing apparatus 1A will be described. The manufacturing method described below is a method in which a removed portion (a portion that is not used as a semiconductor device in the target object 100) removed from the target object 100 by the trimming process and the peeling process can be reused.
まず、図40に示されるように、第2主面100bをレーザ光入射面側にした状態で、支持部7に対象物100を支持させる。対象物100において機能素子が形成された第1主面100a側には、支持基板等の基板が接合されているか、或いはテープ材が貼り付けられている。
First, as shown in FIG. 40, the object 100 is supported by the support portion 7 with the second main surface 100b facing the laser light incident surface side. A substrate such as a support substrate is bonded or a tape material is attached to the first main surface 100a side of the object 100 on which the functional element is formed.
続いて、図42及び図43(a)に示されるように、対象物100にトリミング加工を施す。具体的には、ラインM3の上方にレーザ加工ヘッド10Aの集光部(第2集光部)14が位置し、且つラインM3上の位置にレーザ光L1の第1集光点P1(以下、単に「集光点P1」ともいう)が位置するように、移動機構5が支持部7を移動させると共に移動機構6がレーザ加工ヘッド10Aを移動させる。そして、移動機構5が回転軸C(以下、「軸線C」ともいう)を中心線として支持部7を一定の回転速度で回転させながら、ラインM3上の位置にレーザ光L1の集光点P1を位置させた状態で、レーザ加工ヘッド10Aからレーザ光L1を出射させる。このようなレーザ光L1の照射を、集光点P1のZ方向の位置を変えて繰り返し行う。これにより、図43(b)に示されるように、剥離処理の前に、対象物100の内部における仮想面M1(図41参照)よりもレーザ光入射面とは反対側の部分に、ラインM3(図41参照)に沿って改質領域43を形成する。なお、対象物100に対するトリミング加工では、レーザ加工ヘッド10Aの集光部14の光軸がZ方向に沿っており、対象物100の第2主面100bがレーザ光L1の入射面である。
Subsequently, as shown in FIGS. 42 and 43 (a), the object 100 is trimmed. Specifically, the condensing part (second condensing part) 14 of the laser processing head 10A is located above the line M3, and the first converging point P1 of the laser beam L1 is located at a position on the line M3. The moving mechanism 5 moves the support portion 7 and the moving mechanism 6 moves the laser processing head 10A so that the “focus point P1” is simply located. Then, the moving mechanism 5 rotates the support portion 7 at a constant rotation speed with the rotation axis C (hereinafter, also referred to as “axis C”) as a center line, and at the position on the line M3, the focus point P1 of the laser light L1. Laser beam L1 is emitted from the laser processing head 10A in the state of being positioned. Such irradiation of the laser beam L1 is repeated by changing the position of the condensing point P1 in the Z direction. As a result, as shown in FIG. 43 (b), before the peeling process, the line M3 is formed in the portion on the opposite side of the virtual surface M1 (see FIG. 41) inside the object 100 from the laser light incident surface. The modified region 43 is formed along the line (see FIG. 41). In the trimming process on the object 100, the optical axis of the light condensing unit 14 of the laser processing head 10A is along the Z direction, and the second main surface 100b of the object 100 is the incident surface of the laser beam L1.
続いて、図42及び図44(a)に示されるように、対象物100の有効部分RRに剥離加工を施す。具体的には、移動機構5が軸線Cを中心線として支持部7を一定の回転速度で回転させながら、レーザ加工ヘッド10Aからレーザ光L1を出射させると共に、仮想面M1の第1領域M1a(図41参照)において集光点P1が外側から内側にY方向に沿って移動するように、移動機構6がレーザ加工ヘッド10Aを移動させる。これにより、図44(b)及び(c)に示されるように、対象物100の内部に、第1領域M1a(図41参照)に沿って、渦巻き状(インボリュート曲線)に延びる改質領域4を形成する。なお、対象物100の有効部分RRに対する剥離加工では、レーザ加工ヘッド10Aの集光部14の光軸がZ方向に沿っており、対象物100の第2主面100bがレーザ光L1の入射面である。このように、対象物100の有効部分RRに対する剥離加工では、制御部9は、レーザ加工ヘッド10Aの集光部14の光軸がZ方向に沿った状態で、有効部分RRの内部に第1領域M1aに沿って改質領域4が形成されるように、支持部7、レーザ加工ヘッド10A、及び複数の移動機構5,6を制御する。
Subsequently, as shown in FIGS. 42 and 44 (a), the effective portion RR of the object 100 is subjected to peeling processing. Specifically, the moving mechanism 5 causes the laser processing head 10A to emit the laser beam L1 while rotating the support portion 7 around the axis C as the center line at a constant rotation speed, and at the same time, the first region M1a (of the virtual surface M1 ( In FIG. 41), the moving mechanism 6 moves the laser processing head 10A so that the focal point P1 moves from the outside to the inside along the Y direction. As a result, as shown in FIGS. 44 (b) and (c), the reformed region 4 extending in a spiral shape (involute curve) inside the object 100 along the first region M1a (see FIG. 41). To form. In the peeling process for the effective portion RR of the object 100, the optical axis of the condensing portion 14 of the laser processing head 10A is along the Z direction, and the second main surface 100b of the object 100 is the incident surface of the laser beam L1. Is. As described above, in the peeling process for the effective portion RR of the object 100, the control unit 9 places the first inside the effective portion RR in a state where the optical axis of the condensing unit 14 of the laser processing head 10A is along the Z direction. The support 7, the laser processing head 10A, and the plurality of moving mechanisms 5 and 6 are controlled so that the modified region 4 is formed along the region M1a.
続いて、図45及び図46に示されるように、対象物100の周縁部分EEに剥離加工を施す。具体的には、レーザ加工ヘッド10Bの集光部14の光軸がY方向に沿った状態となるように、移動機構6がレーザ加工ヘッド10Bの向きを変え、図41及び図47に示されるように、仮想面M1の第2領域M1b上の位置にレーザ光L2の集光点P2が位置するように、移動機構5が支持部7を移動させると共に移動機構6がレーザ加工ヘッド10Bを移動させる。そして、移動機構5が軸線Cを中心線として支持部7を一定の回転速度で回転させながら、第2領域M1b上の位置にレーザ光L2の集光点P2を位置させた状態で、レーザ加工ヘッド10Bからレーザ光L2を出射させる。これにより、周縁部分EEの内部に、第2領域M1bに沿って改質領域4aを形成する。この改質領域4aからは、内側(すなわち、第1領域M1aに沿った改質領域4側)及び外側(すなわち、対象物100の側面EE1側)に亀裂4bが延びる。
Subsequently, as shown in FIGS. 45 and 46, the peripheral edge portion EE of the object 100 is subjected to a peeling process. Specifically, the moving mechanism 6 changes the direction of the laser processing head 10B so that the optical axis of the condensing portion 14 of the laser processing head 10B is in the Y direction, and is shown in FIGS. 41 and 47. As described above, the moving mechanism 5 moves the support portion 7 and the moving mechanism 6 moves the laser processing head 10B so that the focus point P2 of the laser light L2 is located at the position on the second area M1b of the virtual surface M1. Let Then, while the moving mechanism 5 rotates the support portion 7 around the axis C as the center line at a constant rotation speed, the laser processing is performed with the focus point P2 of the laser light L2 positioned at the position on the second region M1b. The laser beam L2 is emitted from the head 10B. As a result, the modified region 4a is formed inside the peripheral portion EE along the second region M1b. The crack 4b extends from the modified region 4a to the inside (that is, the modified region 4 side along the first region M1a) and the outside (that is, the side face EE1 side of the object 100).
なお、対象物100の周縁部分EEに対する剥離加工では、レーザ加工ヘッド10Bの集光部14の光軸がY方向に沿っており、対象物100の側面EE1がレーザ光L2の入射面である。図46及び図47に示されるように、側面EE1は、第1主面100a及び第2主面100bと交差する側面のうち、第1主面100a及び第2主面100bに垂直な面(第1主面100a及び第2主面100bに平行な方向から見た場合に垂直な面)である。側面EE2は、第1主面100a及び第2主面100bと交差する側面のうち、第1主面100aと側面EE1との間及び第2主面100bと側面EE1との間に形成された面取り面であり、例えば、外側に凸のラウンド状を呈している。側面EE1,側面EE2は、周縁部分EEに含まれている。本実施形態では、側面EE1,EE2は、ベベル部分を構成している。
In the peeling process for the peripheral edge portion EE of the object 100, the optical axis of the condensing part 14 of the laser processing head 10B is along the Y direction, and the side surface EE1 of the object 100 is the incident surface of the laser beam L2. As shown in FIGS. 46 and 47, the side surface EE1 is a surface perpendicular to the first main surface 100a and the second main surface 100b among the side surfaces intersecting the first main surface 100a and the second main surface 100b (first It is a surface perpendicular to the first main surface 100a and the second main surface 100b when viewed from a direction parallel to the main surface 100a and the second main surface 100b. The side surface EE2 is a chamfer formed between the first main surface 100a and the side surface EE1 and between the second main surface 100b and the side surface EE1 among the side surfaces intersecting the first main surface 100a and the second main surface 100b. The surface is, for example, a round shape that is convex outward. The side surface EE1 and the side surface EE2 are included in the peripheral edge portion EE. In this embodiment, the side faces EE1 and EE2 form a bevel portion.
以上のように、対象物100の周縁部分EEに対する剥離加工では、制御部9は、レーザ加工ヘッド10Bの集光部14の光軸がY方向に沿った状態で、周縁部分EEの内部に改質領域4aが形成されるように、支持部7、レーザ加工ヘッド10B、及び複数の移動機構5,6を制御する。また、制御部9は、レーザ加工ヘッド10Bの集光部14の光軸がY方向に沿った状態で、対象物100の第2主面100bに垂直な軸線Cを中心線として支持部7が回転するように、移動機構5を制御する。なお、レーザ加工ヘッド10Bの集光部14の光軸がY方向に沿った状態において、レーザ加工ヘッド10Bの集光部14から出射されるレーザ光L2の偏光方向は、レーザ光L2の集光点P2が対象物100に対して移動する方向に沿っている。
As described above, in the peeling process for the peripheral edge portion EE of the object 100, the control unit 9 changes the inside of the peripheral edge portion EE in a state where the optical axis of the condensing portion 14 of the laser processing head 10B is along the Y direction. The support portion 7, the laser processing head 10B, and the plurality of moving mechanisms 5 and 6 are controlled so that the quality region 4a is formed. Further, the control unit 9 controls the support unit 7 with the axis C perpendicular to the second main surface 100b of the object 100 as a center line in a state where the optical axis of the light condensing unit 14 of the laser processing head 10B is along the Y direction. The moving mechanism 5 is controlled so as to rotate. In the state where the optical axis of the condensing part 14 of the laser processing head 10B is along the Y direction, the polarization direction of the laser light L2 emitted from the condensing part 14 of the laser processing head 10B is the condensing of the laser light L2. The point P2 is along the moving direction of the object 100.
続いて、図48(a)に示されるように、仮想面M1(図41参照)に渡る改質領域及び改質領域から延びる亀裂を境界として、対象物100の一部を剥離する。これと共に、ラインM3(図41参照)に沿う改質領域及び改質領域から延びる亀裂を境界として、周縁部分EEを取り除く。なお、対象物100の一部の剥離及び周縁部分EEの除去は、例えば吸着冶具を用いて実施してもよい。対象物100の一部の剥離は、支持部7上で実施してもよいし、剥離専用のエリアに移動させて実施してもよい。対象物100の一部の剥離は、エアーブロー又はテープ材を利用して実施してもよい。外部応力だけで対象物100を剥離することができない場合には、対象物100に反応するエッチング液(KOH又はTMAH等)で改質領域4,43を選択的にエッチングしてもよい。これにより、対象物100を容易に剥離することができる。支持部7を一定の回転速度で回転させたが、当該回転速度は変化させてもよい。例えば支持部7の回転速度は、改質領域4に含まれる改質スポットのピッチが一定間隔となるように変化させてもよい。
Subsequently, as shown in FIG. 48A, a part of the object 100 is peeled off with the modified region across the virtual plane M1 (see FIG. 41) and the crack extending from the modified region as boundaries. Along with this, the peripheral edge portion EE is removed with the modified region along the line M3 (see FIG. 41) and the crack extending from the modified region as boundaries. The peeling of a part of the object 100 and the removal of the peripheral edge portion EE may be performed by using, for example, a suction jig. Part of the object 100 may be peeled off on the support portion 7 or may be moved to an area dedicated to peeling. A part of the object 100 may be peeled off by using an air blow or a tape material. When the object 100 cannot be peeled off only by the external stress, the modified regions 4 and 43 may be selectively etched with an etching solution (KOH, TMAH, or the like) that reacts with the object 100. Thereby, the object 100 can be easily peeled off. Although the support portion 7 is rotated at a constant rotation speed, the rotation speed may be changed. For example, the rotation speed of the support portion 7 may be changed so that the pitch of the reforming spots included in the reforming region 4 is constant.
続いて、図48(b)に示されるように、対象物100の剥離面100hに対して、仕上げの研削又は砥石等の研磨材による研磨を実施する。エッチングにより対象物100を剥離している場合、当該研磨を簡略化することができる。以上の結果、半導体デバイス100kが取得される。
Subsequently, as shown in FIG. 48B, the separation surface 100h of the object 100 is subjected to finish grinding or polishing with an abrasive such as a grindstone. When the object 100 is peeled off by etching, the polishing can be simplified. As a result, the semiconductor device 100k is obtained.
なお、一般的な剥離加工においては、形成される改質領域4に含まれる複数の改質スポットのピッチを密にし、剥離予定面としての仮想面M1に改質スポットを敷き詰めることで、対象物100を剥離する場合がある。この場合、加工条件としては、改質スポットから亀裂が比較的伸びない条件(例えば、レーザ光の波長が短波長(1028nm)、パルス幅が50nsec、パルスピッチが1~10μm(特に、1.5~3.5μm))が選択される。これに対し、本実施形態では、加工条件として、仮想面M1に沿って亀裂が伸びる条件を選択している。例えば仮想面M1の第1領域M1aに沿って改質領域4を形成するためのレーザ光L1の加工条件として、レーザ光L1の波長が長波長(例えば1099nm)、パルス幅が700nsecを選択している。
[作用及び効果] In general peeling processing, the pitch of a plurality of reforming spots included in the reformingregion 4 to be formed is made dense, and the reforming spots are spread on the virtual plane M1 as the planned peeling surface, thereby reducing the target object. 100 may be peeled off. In this case, the processing conditions are such that the cracks do not relatively extend from the modified spot (for example, the wavelength of the laser light is a short wavelength (1028 nm), the pulse width is 50 nsec, and the pulse pitch is 1 to 10 μm (particularly, 1.5 μm). .About.3.5 μm)) is selected. On the other hand, in the present embodiment, as the processing condition, the condition that the crack extends along the virtual plane M1 is selected. For example, as the processing condition of the laser light L1 for forming the modified region 4 along the first region M1a of the virtual surface M1, the wavelength of the laser light L1 is selected to be a long wavelength (for example, 1099 nm) and the pulse width is 700 nsec. There is.
[Action and effect]
[作用及び効果] In general peeling processing, the pitch of a plurality of reforming spots included in the reforming
[Action and effect]
レーザ加工装置1Aでは、レーザ加工ヘッド10Bの集光部14の光軸が対象物100の第2主面100bに垂直な方向と交差するY方向に沿った状態で、レーザ加工ヘッド10Bの集光部14からレーザ光L2が集光されつつ出射させられることにより、対象物100の周縁部分EEの内部に改質領域4aが形成される。これにより、例えば、強度向上のために対象物100の側面EE1,EE2が面取り面を含んでいるような場合にも、対象物100のうち当該側面EE1,EE2を含む周縁部分EEの内部にレーザ光L2を適切に集光させることができる。よって、レーザ加工装置1Aによれば、対象物100の周縁部分EEの内部に改質領域4aを精度良く形成することができる。
In the laser processing apparatus 1A, the laser processing head 10B collects light in a state where the optical axis of the condensing unit 14 of the laser processing head 10B is along the Y direction intersecting the direction perpendicular to the second main surface 100b of the object 100. The laser light L2 is condensed and emitted from the portion 14 to form the modified region 4a inside the peripheral edge portion EE of the object 100. Thereby, for example, even when the side surfaces EE1 and EE2 of the object 100 include chamfered surfaces for the purpose of improving the strength, the laser is provided inside the peripheral edge portion EE of the object 100 including the side surfaces EE1 and EE2. The light L2 can be condensed appropriately. Therefore, according to the laser processing apparatus 1A, the modified region 4a can be accurately formed inside the peripheral portion EE of the object 100.
図49(a)は、対象物の周縁部分の断面写真を示す図であり、図49(b)は、図49(a)の一部を拡大した断面写真を示す図である。図49(a)及び(b)に示される例では、対象物はシリコンウェハであり、周縁部分はベベル部分である。当該ベベル部分の水平方向(シリコンウェハの主面に平行な方向)の幅は、200~300μm程度であり、当該ベベル部分を構成する側面のうちシリコンウェハの主面に垂直な面の垂直方向(シリコンウェハの主面に垂直な方向)の幅は、100μm程度であった。図49(a)及び(b)に示される例では、ベベル部分を構成する側面のうちシリコンウェハの主面に垂直な面をレーザ光入射面として、ベベル部分の外側からベベル部分の内部に水平方向に沿ってレーザ光を集光させた。その結果、周縁部分の内部に、改質領域、並びに、当該改質領域から内側及び外側に水平方向に沿って延びる亀裂が形成された。当該亀裂の延び量は、120μm程度であった。
49 (a) is a diagram showing a cross-sectional photograph of the peripheral portion of the object, and FIG. 49 (b) is a diagram showing a partially enlarged cross-sectional photograph of FIG. 49 (a). In the example shown in FIGS. 49A and 49B, the object is a silicon wafer and the peripheral portion is a bevel portion. The width of the bevel portion in the horizontal direction (direction parallel to the main surface of the silicon wafer) is about 200 to 300 μm, and the vertical direction of the side surface of the bevel portion which is perpendicular to the main surface of the silicon wafer ( The width in the direction perpendicular to the main surface of the silicon wafer) was about 100 μm. In the examples shown in FIGS. 49 (a) and 49 (b), of the side faces forming the bevel portion, the surface perpendicular to the main surface of the silicon wafer is the laser light incident surface, and the laser light is incident from the outside of the bevel portion to the inside of the bevel portion. The laser light was focused along the direction. As a result, a modified region and a crack extending horizontally inward and outward from the modified region were formed inside the peripheral portion. The extension amount of the crack was about 120 μm.
また、レーザ加工装置1Aでは、レーザ加工ヘッド10Aの集光部14の光軸が対象物100の第2主面100bに垂直なZ方向に沿った状態で、レーザ加工ヘッド10Aの集光部14からレーザ光L1が集光されつつ出射させられることにより、対象物100の有効部分RRの内部に仮想面M1に沿って改質領域4が形成される。これにより、対象物100の有効部分RRの内部に仮想面M1に沿って改質領域4を精度良く形成することができる。
Further, in the laser processing apparatus 1A, with the optical axis of the condensing unit 14 of the laser processing head 10A being along the Z direction perpendicular to the second main surface 100b of the object 100, the condensing unit 14 of the laser processing head 10A. The laser beam L1 is emitted while being collected from the target region 100, so that the modified region 4 is formed inside the effective portion RR of the object 100 along the virtual plane M1. Thereby, the modified region 4 can be accurately formed inside the effective portion RR of the object 100 along the virtual plane M1.
また、レーザ加工装置1Aでは、レーザ加工ヘッド10Bの集光部14の光軸がY方向に沿った状態で、第2主面100bに垂直な軸線Cを中心線として支持部7が回転させられて、対象物100の周縁部分EEの内部に改質領域4aが形成される。これにより、対象物100の周縁部分EEの内部に改質領域4aを効率良く形成することができる。
Further, in the laser processing apparatus 1A, with the optical axis of the condensing portion 14 of the laser processing head 10B being along the Y direction, the support portion 7 is rotated about the axis C perpendicular to the second main surface 100b as a center line. Thus, the modified region 4a is formed inside the peripheral portion EE of the object 100. As a result, the modified region 4a can be efficiently formed inside the peripheral portion EE of the object 100.
また、レーザ加工装置1Aでは、レーザ加工ヘッド10Bの集光部14の光軸がY方向に沿った状態において、レーザ加工ヘッド10Bの集光部14から出射されるレーザ光L2の偏光方向が、レーザ光L2の集光点P2が対象物100に対して移動する方向に沿っている。これにより、対象物100の周縁部分EEの内部において改質領域4aから対象物100の第2主面100bに平行な方向に延びる亀裂4bの延び量を大きくすることができる。
In the laser processing apparatus 1A, the polarization direction of the laser light L2 emitted from the light condensing unit 14 of the laser processing head 10B is in the state where the optical axis of the light condensing unit 14 of the laser processing head 10B is along the Y direction. The condensing point P2 of the laser light L2 is along the direction in which it moves with respect to the object 100. Thereby, the extension amount of the crack 4b extending from the modified region 4a in the direction parallel to the second major surface 100b of the target object 100 inside the peripheral portion EE of the target object 100 can be increased.
なお、以上に説明した変形例では、例えば、移動機構5,6は、支持部7及びレーザ加工ヘッド10Aの少なくとも1つを移動させるように構成されていればよい。同様に、移動機構5,6は、支持部7及びレーザ加工ヘッド10Bの少なくとも1つを移動させるように構成されていればよい。
In the modification described above, for example, the moving mechanisms 5 and 6 may be configured to move at least one of the support 7 and the laser processing head 10A. Similarly, the moving mechanisms 5 and 6 may be configured to move at least one of the support portion 7 and the laser processing head 10B.
また、制御部9は、レーザ加工ヘッド10Bの集光部14の光軸がZ方向に沿った状態で、対象物100の有効部分RRの内部に仮想面M1に沿って改質領域4が形成されるように、支持部7、レーザ加工ヘッド10B及び移動機構5,6を制御してもよい。これにより、レーザ加工ヘッド10Aと共に或いはレーザ加工ヘッド10Aに代わって、対象物100の有効部分RRの内部に仮想面M1に沿って改質領域4を精度良く形成することができる。
Further, the control unit 9 forms the modified region 4 along the virtual plane M1 inside the effective portion RR of the object 100 in a state where the optical axis of the condensing unit 14 of the laser processing head 10B is along the Z direction. As described above, the support 7, the laser processing head 10B, and the moving mechanisms 5 and 6 may be controlled. Thereby, the modified region 4 can be accurately formed along the virtual plane M1 inside the effective portion RR of the object 100 together with or instead of the laser processing head 10A.
また、レーザ加工ヘッド10Bが、その集光部14の光軸がZ方向に沿った状態及びその集光部14の光軸がY方向に沿った状態の両方の状態で、対象物100に改質領域4を形成する場合には、レーザ加工装置1Aは、レーザ加工ヘッド10Aを備えていなくてもよい。
Further, the laser processing head 10B is changed to the object 100 in both the state where the optical axis of the light condensing portion 14 is along the Z direction and the state where the optical axis of the light condensing portion 14 is along the Y direction. When forming the quality region 4, the laser processing apparatus 1A may not include the laser processing head 10A.
また、レーザ加工ヘッド10Bは、その集光部14の光軸がY方向に沿った状態で、対象物100の周縁部分EEに改質領域4aを形成することを、専用として実施するものであってもよい。その場合にも、レーザ加工装置1Aが対象物100の周縁部分EEに改質領域4aを形成することを、専用として実施するものであるときには、レーザ加工装置1Aは、レーザ加工ヘッド10Aを備えていなくてもよい。
Further, the laser processing head 10B is dedicated to forming the modified region 4a in the peripheral edge portion EE of the object 100 with the optical axis of the condensing portion 14 along the Y direction. May be. Also in that case, when the laser processing apparatus 1A is dedicated to forming the modified region 4a on the peripheral edge portion EE of the object 100, the laser processing apparatus 1A includes the laser processing head 10A. You don't have to.
また、レーザ加工装置1Aでは、図50に示されるように、レーザ加工ヘッド10Bの集光部14の光軸が対象物100の第2主面100bに垂直な方向(すなわち、Z方向)と交差する方向のうちY方向以外の方向に沿った状態で、対象物100の周縁部分EEの内部に改質領域4aが形成されるように、レーザ加工ヘッド10Bの集光部14からレーザ光L2が集光されつつ出射させられてもよい。これにより、周縁部分EEを構成する側面EE1,EE2の形状等に応じて、レーザ光L2が周縁部分EEの内部に適切に集光されるように、レーザ加工ヘッド10Bの集光部14の光軸の角度を調整することができる。なお、レーザ加工ヘッド10Bの集光部14の光軸が対象物100の第2主面100bに垂直な方向と交差する方向(対象物の表面に垂直な方向と交差する第1方向)は、例えば、対象物100の第2主面100bに垂直な方向に対して10~90°の角度を成す方向、又は対象物100の第2主面100bに垂直な方向に対して30~90°の角度を成す方向である。
Further, in the laser processing apparatus 1A, as shown in FIG. 50, the optical axis of the condensing portion 14 of the laser processing head 10B intersects the direction perpendicular to the second main surface 100b of the object 100 (that is, the Z direction). The laser beam L2 is emitted from the condensing part 14 of the laser processing head 10B so that the modified region 4a is formed inside the peripheral edge portion EE of the object 100 in a direction other than the Y direction among the directions. It may be emitted while being collected. Thereby, according to the shape of the side surfaces EE1 and EE2 forming the peripheral edge portion EE, the light of the light condensing portion 14 of the laser processing head 10B is appropriately focused so that the laser light L2 is focused inside the peripheral edge portion EE. The angle of the axis can be adjusted. The direction in which the optical axis of the condensing part 14 of the laser processing head 10B intersects the direction perpendicular to the second main surface 100b of the object 100 (the first direction intersecting the direction perpendicular to the surface of the object) is: For example, a direction forming an angle of 10 to 90 ° with respect to a direction perpendicular to the second main surface 100b of the object 100, or a direction of 30 to 90 ° with respect to a direction perpendicular to the second main surface 100b of the object 100. It is a direction that forms an angle.
また、上記実施形態では、対象物100の有効部分RRに剥離加工を施した後に、対象物100の周縁部分EEに剥離加工を施したが、対象物100の周縁部分EEに剥離加工を施した後に、対象物100の有効部分RRに剥離加工を施してもよい。また、上記実施形態では、対象物100の第2主面100bをレーザ光入射面としたが、対象物100の第1主面100aをレーザ光入射面としてもよい。また、レーザ加工装置1Aは、アブレーション等の加工に適用されてもよい。
Further, in the above embodiment, the peripheral portion EE of the target object 100 is subjected to the release processing after the effective portion RR of the target object 100 is subjected to the release processing, but the peripheral edge portion EE of the target object 100 is subjected to the release processing. After that, the effective portion RR of the object 100 may be subjected to a peeling process. Further, in the above embodiment, the second main surface 100b of the object 100 is the laser light incident surface, but the first main surface 100a of the object 100 may be the laser light incident surface. Further, the laser processing device 1A may be applied to processing such as ablation.
また、対象物100の種類、対象物100の形状、対象物100のサイズ、対象物100が有する結晶方位の数及び方向、並びに、対象物100の主面の面方位は、特に限定されない。また、改質領域は、対象物100の内部に形成された結晶領域、再結晶領域又はゲッタリング領域等であってもよい。結晶領域は、対象物100の加工前の構造を維持している領域である。再結晶領域は、蒸発、プラズマ化又は溶融した後に再凝固する際に、単結晶又は多結晶として凝固した領域である。ゲッタリング領域は、重金属等の不純物を集めて捕獲するゲッタリング効果を発揮する領域である。
The type of the target object 100, the shape of the target object 100, the size of the target object 100, the number and direction of crystal orientations of the target object 100, and the plane orientation of the main surface of the target object 100 are not particularly limited. Further, the modified region may be a crystal region, a recrystallization region, a gettering region, or the like formed inside the object 100. The crystal region is a region in which the structure of the object 100 before processing is maintained. The recrystallized region is a region which is solidified as a single crystal or a polycrystal when re-solidified after being evaporated, turned into plasma or melted. The gettering region is a region that exhibits a gettering effect of collecting and trapping impurities such as heavy metals.
上述した実施形態及び変形例における各構成には、上述した材料及び形状に限定されず、様々な材料及び形状を適用することができる。また、上述した実施形態又は変形例における各構成は、他の実施形態又は変形例における各構成に任意に適用することができる。
The materials and shapes described above are not limited to the above-described embodiments and modifications, and various materials and shapes can be applied. Further, each configuration in the above-described embodiment or modification can be arbitrarily applied to each configuration in the other embodiment or modification.
1,101…レーザ加工装置、4,43…改質領域、6,300…移動機構、9…制御部、10A,10B…レーザ加工ヘッド(照射部)、36…測距センサ(周縁監視部)、100…対象物、100a…表面、100b…裏面(レーザ光入射面)、100X…ベベル周辺部(第1部分)、100Y…内周部(第2部分)、107…ステージ(支持部)、111…GUI(入力部)、BB…ベベル部(周縁部分)、E1…第1方向、E2…第2方向、IR…撮像ユニット(撮像部,加工状態監視部)、L1…第1レーザ光(レーザ光)、L2…第2レーザ光(レーザ光)、M1…仮想面、M11…ライン(加工用ライン)、M11a…並行ライン、M12…ライン(並行ライン,加工用ライン)、M20…ライン(加工用ライン)、P1…第1集光点(集光点)、SA…改質スポット。
1, 101 ... Laser processing apparatus, 4, 43 ... Modified area, 6, 300 ... Moving mechanism, 9 ... Control section, 10A, 10B ... Laser processing head (irradiation section), 36 ... Distance measuring sensor (periphery monitoring section) , 100 ... Object, 100a ... Front surface, 100b ... Back surface (laser light incident surface), 100X ... Bevel peripheral portion (first portion), 100Y ... Inner peripheral portion (second portion), 107 ... Stage (support portion), 111 ... GUI (input part), BB ... Bevel part (peripheral part), E1 ... 1st direction, E2 ... 2nd direction, IR ... Imaging unit (imaging part, processing state monitoring part), L1 ... 1st laser beam ( Laser light), L2 ... second laser light (laser light), M1 ... virtual surface, M11 ... line (processing line), M11a ... parallel line, M12 ... line (parallel line, processing line), M20 ... line ( Processing line), P1 ... Vol. 1 point (focal point), SA ... reforming spot.
Claims (10)
- 対象物にレーザ光を照射することにより、前記対象物の内部において仮想面に沿って改質領域を形成するレーザ加工装置であって、
前記対象物を支持する支持部と、
前記支持部によって支持された前記対象物に前記レーザ光を照射する照射部と、
前記レーザ光の集光点の位置が前記仮想面に沿って移動するように前記支持部及び前記照射部の少なくとも一方を移動させる移動機構と、
前記支持部、前記照射部及び前記移動機構を制御する制御部と、
前記レーザ光の入射方向に沿う方向から前記対象物を撮像する撮像部と、を備え、
前記制御部は、並ぶように配された複数の並行ラインを有する加工用ラインに沿って、前記レーザ光を前記対象物に照射させて、前記改質領域を前記対象物に形成する第1前処理を実行し、
前記撮像部は、前記第1前処理により複数の前記並行ラインを有する加工用ラインに沿って前記改質領域を形成した場合の加工状態を映す第1画像を取得する、レーザ加工装置。 By irradiating an object with a laser beam, a laser processing apparatus for forming a modified region along a virtual surface inside the object,
A support portion that supports the object,
An irradiation unit that irradiates the laser beam to the object supported by the support unit,
A moving mechanism that moves at least one of the support portion and the irradiation portion so that the position of the condensing point of the laser light moves along the virtual surface;
A control unit that controls the support unit, the irradiation unit, and the moving mechanism;
An imaging unit that images the object from a direction along the incident direction of the laser light,
The control unit irradiates the object with the laser light along a processing line having a plurality of parallel lines arranged side by side to form the modified region on the object. Perform processing,
The laser processing apparatus, wherein the imaging unit acquires a first image showing a processing state when the modified region is formed along the processing line having the plurality of parallel lines by the first preprocessing. - 前記制御部は、一本の加工用ラインに沿って、前記レーザ光を前記対象物に照射させて、前記改質領域を前記対象物に形成する第2前処理を実行し、
前記撮像部は、前記第2前処理により前記一本の加工用ラインに沿って前記改質領域を形成した場合の加工状態を映す第2画像を取得する、請求項1に記載のレーザ加工装置。 The control unit irradiates the object with the laser light along one processing line, and executes a second pretreatment for forming the modified region on the object,
The laser processing apparatus according to claim 1, wherein the imaging unit acquires a second image showing a processing state when the modified region is formed along the one processing line by the second preprocessing. .. - 前記制御部は、前記第2画像に映る加工状態を判定し、当該判定結果に応じて前記第2前処理の加工条件を変更する、請求項2に記載のレーザ加工装置。 The laser processing apparatus according to claim 2, wherein the control unit determines a processing state shown in the second image, and changes the processing condition of the second preprocessing according to the determination result.
- 前記制御部は、前記第2画像に映る加工状態が第1スライシング状態か否かを判定し、前記第1スライシング状態ではない場合に前記第2前処理の加工条件を変更し、
前記第1スライシング状態は、前記改質領域に含まれる複数の改質スポットから延びる亀裂が、前記一本の加工用ラインに沿う方向に伸展する状態である、請求項3に記載のレーザ加工装置。 The control unit determines whether or not the processing state shown in the second image is a first slicing state, and when the processing state is not the first slicing state, changes the processing condition of the second preprocessing,
The laser processing apparatus according to claim 3, wherein the first slicing state is a state in which cracks extending from a plurality of modified spots included in the modified region extend in a direction along the one processing line. .. - 前記制御部は、前記第1画像に映る加工状態を判定し、当該判定結果に応じて前記第1前処理の加工条件を変更する、請求項1~4の何れか一項に記載のレーザ加工装置。 The laser processing according to any one of claims 1 to 4, wherein the control unit determines a processing state shown in the first image, and changes the processing condition of the first preprocessing according to the determination result. apparatus.
- 前記第1前処理では、並ぶように配された複数の並行ラインを有する加工用ラインに沿って、第1加工条件で前記レーザ光を前記対象物に照射させて、前記改質領域を前記対象物に形成し、
前記撮像部は、前記第1画像として、第1規定量のレーザ加工後の加工状態を映す画像を取得し、
前記制御部は、前記第1画像に基づいて、前記第1前処理による前記第1規定量のレーザ加工後の加工状態が第2スライシング状態か否かを判定し、前記第2スライシング状態ではない場合に前記第1加工条件を変更し、
前記第2スライシング状態は、前記改質領域に含まれる複数の改質スポットから延びる亀裂が、前記並行ラインに沿う方向及び前記並行ラインと交差する方向に伸展して互いに繋がる状態である、請求項5に記載のレーザ加工装置。 In the first pretreatment, the object is irradiated with the laser light under a first processing condition along a processing line having a plurality of parallel lines arranged side by side, and the modified region is the target. Formed into a thing,
The imaging unit acquires, as the first image, an image showing a processing state after laser processing of a first prescribed amount,
The control unit determines whether the processing state after the laser processing of the first specified amount by the first pre-processing is the second slicing state based on the first image, and is not the second slicing state. In the case of changing the first processing condition,
The second slicing state is a state in which cracks extending from a plurality of modified spots included in the modified region extend and are connected to each other in a direction along the parallel lines and in a direction intersecting with the parallel lines. 5. The laser processing device according to item 5. - 前記第1前処理では、並ぶように配された複数の並行ラインを有する加工用ラインに沿って、第2加工条件で前記レーザ光を前記対象物に照射させて、前記改質領域を前記対象物に形成し、
前記撮像部は、前記第1画像として、第1規定量のレーザ加工後の加工状態を映す画像と、前記第1規定量よりも多い第2規定量のレーザ加工後の加工状態を映す画像と、を取得し、
前記制御部は、
前記第1規定量のレーザ加工後の加工状態を映す画像としての前記第1画像に基づいて、前記第1前処理による前記第1規定量のレーザ加工後の加工状態が第2スライシング状態か否かを判定し、
前記第1規定量のレーザ加工後の加工状態が第2スライシング状態の場合、前記第2加工条件を変更し、
前記第1規定量のレーザ加工後の加工状態が第2スライシング状態ではない場合、前記第2規定量のレーザ加工後の加工状態を映す画像としての前記第1画像に基づいて、前記第1前処理による前記第2規定量のレーザ加工後の加工状態が第2スライシング状態か否かを判定し、
前記第2規定量のレーザ加工後の加工状態が前記第2スライシング状態ではない場合に、前記第2加工条件を変更し、
前記第2スライシング状態は、前記改質領域に含まれる複数の改質スポットから延びる亀裂が、前記並行ラインに沿う方向及び前記並行ラインと交差する方向に伸展して互いに繋がる状態である、請求項5に記載のレーザ加工装置。 In the first pretreatment, the object is irradiated with the laser beam under a second processing condition along a processing line having a plurality of parallel lines arranged side by side so that the modified region is the target. Formed into a thing,
The image capturing unit, as the first image, an image showing a processing state after laser processing of a first specified amount, and an image showing a processing state after laser processing of a second specified amount larger than the first specified amount. Get,
The control unit is
Whether the processing state after the laser processing of the first specified amount by the first pretreatment is the second slicing state based on the first image as an image showing the processing state after the laser processing of the first specified amount Determine whether
When the processing state after the laser processing of the first specified amount is the second slicing state, the second processing condition is changed,
When the processing state after the laser processing of the first specified amount is not the second slicing state, based on the first image as an image showing the processing state after the laser processing of the second specified amount, the first front It is determined whether the processing state after the laser processing of the second specified amount by the processing is the second slicing state,
Changing the second processing condition when the processing state after the laser processing of the second specified amount is not the second slicing state,
The second slicing state is a state in which cracks extending from a plurality of modified spots included in the modified region extend and are connected to each other in a direction along the parallel lines and in a direction intersecting with the parallel lines. 5. The laser processing device according to item 5. - 前記対象物は、条件決定用のウェハである、請求項1~7の何れか一項に記載のレーザ加工装置。 The laser processing apparatus according to any one of claims 1 to 7, wherein the object is a wafer for condition determination.
- 前記対象物は、半導体デバイス用のウェハである、請求項1~7の何れか一項に記載のレーザ加工装置。 The laser processing apparatus according to any one of claims 1 to 7, wherein the object is a semiconductor device wafer.
- 対象物にレーザ光を照射することにより、前記対象物の内部において仮想面に沿って改質領域を形成するレーザ加工方法であって、
並ぶように配された複数の並行ラインを有する加工用ラインに沿って、前記レーザ光を前記対象物に照射させて、前記改質領域を前記対象物に形成する第1前工程と、
前記第1前工程により複数の前記並行ラインを有する加工用ラインに沿って前記改質領域を形成した場合の加工状態を映す第1画像を取得する第1撮像工程と、を備えるレーザ加工方法。 By irradiating a target with a laser beam, a laser processing method for forming a modified region along a virtual surface inside the target,
A first pre-process of irradiating the object with the laser light along a processing line having a plurality of parallel lines arranged so as to be aligned, and forming the modified region on the object.
A first imaging step of acquiring a first image showing a processing state when the modified region is formed along the processing line having the plurality of parallel lines by the first previous step, the laser processing method.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020247028072A KR20240132114A (en) | 2018-10-30 | 2019-10-30 | Laser processing device and laser processing method |
CN201980071652.5A CN113039038B (en) | 2018-10-30 | 2019-10-30 | Laser processing device and laser processing method |
KR1020217015672A KR102699051B1 (en) | 2018-10-30 | 2019-10-30 | Laser processing device and laser processing method |
CN202311243325.8A CN117020449A (en) | 2018-10-30 | 2019-10-30 | Laser processing device and laser processing method |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-204114 | 2018-10-30 | ||
JP2018204114 | 2018-10-30 | ||
JP2019-073179 | 2019-04-05 | ||
JP2019073179A JP7134909B2 (en) | 2018-10-30 | 2019-04-05 | LASER PROCESSING APPARATUS AND LASER PROCESSING METHOD |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020090902A1 true WO2020090902A1 (en) | 2020-05-07 |
Family
ID=70463790
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/042602 WO2020090902A1 (en) | 2018-10-30 | 2019-10-30 | Laser machining device and laser machining method |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP7293475B2 (en) |
KR (1) | KR20240132114A (en) |
CN (1) | CN117020449A (en) |
TW (1) | TW202400339A (en) |
WO (1) | WO2020090902A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2616949A (en) * | 2022-01-27 | 2023-09-27 | Ii Vi Delaware Inc | Polycrystalline diamond (PCD) laser lapping machine |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015012015A (en) * | 2013-06-26 | 2015-01-19 | 株式会社ディスコ | Processing method of wafer |
JP2018147928A (en) * | 2017-03-01 | 2018-09-20 | 株式会社ディスコ | Inspection method and inspection device for semiconductor ingot and laser processing apparatus |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5533733Y2 (en) | 1978-07-27 | 1980-08-11 | ||
RU2459691C2 (en) * | 2010-11-29 | 2012-08-27 | Юрий Георгиевич Шретер | Method of separating surface layer of semiconductor chip (versions) |
JP7058320B2 (en) | 2018-03-14 | 2022-04-21 | 東京エレクトロン株式会社 | Board processing system, board processing method and computer storage medium |
CN112638573B (en) | 2018-09-13 | 2023-08-22 | 东京毅力科创株式会社 | Processing system and processing method |
JP7157816B2 (en) | 2018-10-23 | 2022-10-20 | 東京エレクトロン株式会社 | SUBSTRATE PROCESSING APPARATUS AND SUBSTRATE PROCESSING METHOD |
WO2020129730A1 (en) | 2018-12-21 | 2020-06-25 | 東京エレクトロン株式会社 | Substrate processing device and substrate processing method |
-
2019
- 2019-10-30 KR KR1020247028072A patent/KR20240132114A/en active Application Filing
- 2019-10-30 TW TW112134811A patent/TW202400339A/en unknown
- 2019-10-30 WO PCT/JP2019/042602 patent/WO2020090902A1/en active Application Filing
- 2019-10-30 CN CN202311243325.8A patent/CN117020449A/en active Pending
-
2022
- 2022-08-31 JP JP2022138322A patent/JP7293475B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015012015A (en) * | 2013-06-26 | 2015-01-19 | 株式会社ディスコ | Processing method of wafer |
JP2018147928A (en) * | 2017-03-01 | 2018-09-20 | 株式会社ディスコ | Inspection method and inspection device for semiconductor ingot and laser processing apparatus |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2616949A (en) * | 2022-01-27 | 2023-09-27 | Ii Vi Delaware Inc | Polycrystalline diamond (PCD) laser lapping machine |
Also Published As
Publication number | Publication date |
---|---|
KR20240132114A (en) | 2024-09-02 |
CN117020449A (en) | 2023-11-10 |
JP2022173224A (en) | 2022-11-18 |
TW202400339A (en) | 2024-01-01 |
JP7293475B2 (en) | 2023-06-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102692293B1 (en) | Laser processing device and laser processing method | |
WO2020090929A1 (en) | Laser processing apparatus and laser processing method | |
JP7560620B2 (en) | How to process the object | |
JP7293475B2 (en) | LASER PROCESSING APPARATUS AND LASER PROCESSING METHOD | |
WO2020090901A1 (en) | Laser machining device and laser machining method | |
WO2021153317A1 (en) | Laser processing device and laser processing method | |
TWI850274B (en) | Laser processing device and laser processing method | |
TWI856985B (en) | Laser processing device and laser processing method | |
JP7368246B2 (en) | Laser processing equipment and laser processing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19880901 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20217015672 Country of ref document: KR Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19880901 Country of ref document: EP Kind code of ref document: A1 |