WO2020090871A1 - がん治療のための腫瘍溶解性ウイルス - Google Patents

がん治療のための腫瘍溶解性ウイルス Download PDF

Info

Publication number
WO2020090871A1
WO2020090871A1 PCT/JP2019/042526 JP2019042526W WO2020090871A1 WO 2020090871 A1 WO2020090871 A1 WO 2020090871A1 JP 2019042526 W JP2019042526 W JP 2019042526W WO 2020090871 A1 WO2020090871 A1 WO 2020090871A1
Authority
WO
WIPO (PCT)
Prior art keywords
amino acid
seq
mutation
acid mutation
bhkt
Prior art date
Application number
PCT/JP2019/042526
Other languages
English (en)
French (fr)
Inventor
宏昭 内田
秀晃 田原
Original Assignee
国立大学法人東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京大学 filed Critical 国立大学法人東京大学
Priority to JP2020553970A priority Critical patent/JPWO2020090871A1/ja
Priority to US17/288,227 priority patent/US20210386807A1/en
Priority to EP19880535.0A priority patent/EP3875119A4/en
Publication of WO2020090871A1 publication Critical patent/WO2020090871A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N7/00Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/66Microorganisms or materials therefrom
    • A61K35/76Viruses; Subviral particles; Bacteriophages
    • A61K35/763Herpes virus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/16011Herpesviridae
    • C12N2710/16611Simplexvirus, e.g. human herpesvirus 1, 2
    • C12N2710/16621Viruses as such, e.g. new isolates, mutants or their genomic sequences
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/16011Herpesviridae
    • C12N2710/16611Simplexvirus, e.g. human herpesvirus 1, 2
    • C12N2710/16622New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/16011Herpesviridae
    • C12N2710/16611Simplexvirus, e.g. human herpesvirus 1, 2
    • C12N2710/16632Use of virus as therapeutic agent, other than vaccine, e.g. as cytolytic agent

Definitions

  • the present invention relates to a viral preparation containing an oncolytic virus for treating cancer, and a method for treating cancer using the oncolytic virus.
  • Oncolytic viral therapy using herpes simplex virus (HSV) is promising as a new treatment method for malignant tumors, and clinical trials have been extensively conducted so far including Japan.
  • HSV herpes simplex virus
  • T-VEC titaniumimogene laherparepvec
  • Non-Patent Document 1 T-VEC clinical trials for malignant melanoma have not shown significant prolongation of survival in a group of patients with distant metastases to the lung or liver: Non-Patent Document 1).
  • HSV enters cells by gV (glycoprotein D), which is the envelope glycoprotein of HSV, and its receptors on the cell surface, HVEM (herpesvirus entry mediator), nectin-1 or 3-O-sulfated heparan sulfate ( 3-OS-HS) and starts (non-patent document 2 to non-patent document 4).
  • gV glycoprotein D
  • HVEM herpesvirus entry mediator
  • nectin-1 or 3-O-sulfated heparan sulfate 3-OS-HS
  • Non-Patent Document 5 Non-Patent Document 5
  • -Non-patent document 7 In other words, gD, which is responsible for HSV entry into cells, was made unable to bind to its original receptor, and then EGFR (epidermal growth factor receptor), CEA (carcinoembryonic antigen) and EpCAM (epithelial cell adhesion molecule)
  • EGFR epidermal growth factor receptor
  • CEA carcinoembryonic antigen
  • EpCAM epidermal growth factor receptor
  • Non-Patent Document 8 The inventors efficiently transduce HSV that has undergone target cell-specific invasion between cells by introducing multiple syn mutations (syncytial mutations) that promote the HSV membrane fusion activity, resulting in a strong cell killing effect. A method was developed (Non-Patent Document 9).
  • Non-Patent Document 9 HSV (Non-Patent Document 9) that has been subjected to the receptor-targeting modification and the membrane fusion-promoting mutation described above exerts a strong cancer-killing cell activity in cultured cells (in vitro).
  • these modified HSVs have either a receptor-targeting modified HSV or an earlier oncolytic virus that targets cancer at the stage of intracellular replication of HSV and a membrane fusion promoting mutation. It is currently unknown how much antitumor effect is exerted in vivo as compared with the applied oncolytic virus.
  • the present invention has as a problem to be solved the development of a virus preparation containing an oncolytic HSV that has a higher tumoricidal cell activity than existing oncolytic HSVs in vivo.
  • the present inventors modified the receptor by introducing a mutation into the gD gene of HSV (this HSV is also referred to as “RR-oHSV (receptor-retargeted oncolytic HSV)” below), and an RR that introduced a syn mutation.
  • RR-oHSV receptor-retargeted oncolytic HSV
  • the antitumor effect of -oHSV was examined using a subcutaneous tumor xenograft model mouse. As a result, the following points were clarified.
  • the receptor-targeted gD mutation and syn mutation-introduced HSV were administered once into a tumor (volume approximately 300 mm 3 ) of a subcutaneous tumor xenograft model mouse (human glioma U87 cell-transplanted mouse).
  • a very small amount of 10 1 pfu exerted a strong antitumor effect (see Fig. 1).
  • an antitumor effect was confirmed by intratumoral administration of 5 ⁇ 10 6 pfu with respect to a tumor having a volume of about 32 mm 3 (see Non-Patent Document 10, FIG. 4, etc.).
  • a tumor with a volume of about 108 mm 3 has been confirmed to have an antitumor effect by intratumoral administration of 1 ⁇ 10 6 pfu (see, for example, Figure 6 of Non-Patent Document 11).
  • the dose showing an antitumor effect was significantly higher at the order of 10 6 pfu, Moreover, the antitumor effect has been confirmed by multiple intratumoral administrations (two or three times).
  • oncolytic HSV which has both receptor-targeted gD mutation and syn mutation, exerts a stronger antitumor effect with a very low viral load as compared with the preceding oncolytic HSV. it can.
  • the in vivo antitumor effect of HSV due to the addition of the receptor-targeted gD mutation as well as the syn mutation was so remarkable that it could not be predicted from the in vitro experimental results. That is, in vitro, the cancer-killing cell effect of HSV having the receptor-targeting gD mutation and the syn mutation is half the lethal dose compared with the cancer-killing cell effect of HSV having only the receptor-targeting gD mutation.
  • the (LD 50 ) was only several hundred times at most, but the in vivo antitumor effect was 100,000 times or more, which was much higher than expected.
  • CR-oHSV the restricted growth HSV
  • replicating oncolytic HSV which has an anti-tumor effect of HSV (also referred to as“ CR-oHSV-syn ”below) that also has a syn mutation and the above-mentioned RR-oHSV-syn according to the present invention.
  • RR-oHSV-syn and CR-oHSV-syn had similar cancer cell killing ability.However, in vivo, the antitumor effect of RR-oHSV-syn was the antitumor effect of CR-oHSV-syn. It was confirmed that the intratumoral administration and the systemic administration were at least about 1 million times higher and at least about 100 times higher, respectively.
  • a virus preparation for treating cancer comprising HSV (herpes simplex virus) having a receptor-targeted gD mutation and at least one membrane fusion activity promoting region on the genome.
  • HSV herpes simplex virus
  • the membrane fusion activity promoting region is a region having a syn mutation or a membrane fusion promoting foreign gene region.
  • the mutation that abolishes the ability to bind to nectin-1 is the deletion of all amino acids from 6th to 38th of SEQ ID NO: 1, 61st of SEQ ID NO: 1 To the 218th amino acid, a mutation of the 3rd and 38th amino acids of SEQ ID NO: 1, and / or a mutation of the 222nd and 223nd amino acids of SEQ ID NO: 1.
  • the third amino acid mutation in SEQ ID NO: 1 is deleted or replaced with cysteine, the 38th amino acid mutation is replaced with cysteine, the 222nd amino acid mutation is replaced with asparagine, and the 223nd amino acid mutation is The virus preparation according to (3) above, which is a substitution with isoleucine.
  • a mutation that causes a loss of binding ability to HVEM and 3-OS-HS is a deletion of all or part of amino acids 2 to 38 of SEQ ID NO: 1.
  • the deletion of a part of the amino acids from the 2nd to the 38th in SEQ ID NO: 1 is the deletion of the amino acids from the 2nd to the 24th, the deletion of the amino acids from the 7th to the 11th, the 7th To the 32nd amino acid or the 6th to 38th amino acid deletion, the 27th amino acid mutation is replaced with alanine, proline or arginine, and the 29th amino acid mutation is replaced with alanine And the amino acid mutation at the 30th position is a substitution with alanine, wherein the viral preparation according to (5) above.
  • the amino acid mutation at position th is alanine
  • the amino acid mutation at position 212 of SEQ ID NO: 4 is alanine
  • the amino acid mutation at position 213 of SEQ ID NO: 4 is alanine
  • Viral preparations. (9) The virus preparation according to any of (1) to (8) above, wherein a reporter gene and / or a therapeutic gene is integrated on the HSV genome.
  • the present invention provides a viral preparation containing oncolytic HSV having an extremely high antitumor effect.
  • the present invention provides a method for treating cancer having a high therapeutic effect.
  • Tumor volume after subcutaneous implantation of U87 cells and intratumoral administration of 10 7 pfu of KGNE and 10 2 pfu of KGNE-BhKt when the average tumor volume reached approximately 780 mm 3 (23 days after transplantation). Shows the change over time (n 6). The arrow indicates the administration date. Mice whose tumor volume exceeded 10% of body weight were euthanized. Antitumor effect after intravenous administration of KGNE-BhKt on U87 xenograft model. Subsequent transfer of tumor volume after subcutaneous injection of U87 cells and intravenous administration of KGNE-BhKt from 10 3 to 10 7 pfu when the average tumor volume reached approximately 300 mm 3 (8 days after transplantation).
  • HepG2 cells seeded the day before were infected with KG, KG ⁇ , KG ⁇ -BhKt, KGNE, KGNE-BhKt and KGNEp-BhKt, and 3 days later, MTT assay was performed and the absorbance (OD 540 and OD 630 ) was measured (n 6). Bars in the graph represent mean ⁇ standard deviation. Comparison of antitumor effects of systemic administration of ICP34.5 deletion type CR-oHSV and RR-oHSV after introduction of BhKt mutation (HepG2 xenograft model).
  • the first embodiment of the present invention is a treatment of cancer, which comprises an HSV having a receptor-targeted gD mutation and at least one membrane fusion activity promoting region on the genome (hereinafter also referred to as “HSV of the present invention”).
  • HSV of the present invention includes herpes simplex virus type 1 (HSV-1) and herpes simplex virus type 2 (HSV-2).
  • HSV-1 and HSV-2 used in the embodiment of the present invention are all strains classified into these (for example, KOS strain, F strain, 17 strain, VR3 strain, HF strain, HF10 that are classified as HSV-1).
  • HSV-1 as an example, the full-length genomic sequence is disclosed as GenBank no. JQ673480.1 (https://www.ncbi.nlm.nih.gov/nuccore/JQ673480.1).
  • the HSV of the present invention includes all HSV having a region having one syn mutation or a foreign gene region promoting membrane fusion.
  • the "membrane fusion activity promoting region” is a region containing a mutation or a gene for exhibiting the function of promoting the membrane fusion activity of HSV, as the mutation, for example, syn mutation, as a gene, Examples include a membrane fusion promoting foreign gene described below.
  • the HSV virus of the present invention having both the receptor-targeted gD mutation and the syn mutation has a significantly higher antitumor effect in vivo than the oncolytic HSV viruses reported so far by other groups. Indicates. And, the remarkable antitumor effect of HSV virus in vivo of the present invention is due to the introduction of syn mutation in addition to the receptor-targeted gD mutation in its genome, which cannot be predicted only from in vitro data. It is an effect. Due to the excellent antitumor effect of the present invention, the virus preparation of the present invention can exert a sufficient therapeutic effect not only by intratumoral administration but also by intravenous administration.
  • substitution or deletion of the amino acid and one or several (eg, 1 to 10, preferably 1) between the amino acids adjacent to the amino acid. ⁇ 5, and more preferably about 1 to 3) amino acids are inserted.
  • substitution or deletion of the 21st amino acid in the amino acid sequence, substitution with another amino acid, or amino acid adjacent to the 21st amino acid It means that one or several amino acids are inserted between.
  • the amino acid numbers described in the present specification may be shifted by about 1 to 10 for each strain of HSV. Therefore, in any HSV strain, for example, when the amino acid numbers are deviated by ⁇ n (where n is an integer of 1 or more and 10 or less), R21 should be read as R (21 ⁇ n).
  • the "receptor targeting gD mutation” is a mutation that causes loss (or reduction) of the binding ability with HVEM of gD, which is an envelope glycoprotein responsible for the entry of HSV virus into cells, Mutations that result in loss (or reduction) of nectin-1 binding ability, mutations that cause loss (or reduction) of 3-OS-HS binding ability, and mutations that impart tumor antigen binding ability (eg, tumor) It also refers to a nucleotide or amino acid mutation in the gD gene or gD protein that also has any of (for example, insertion mutation of DNA encoding scFv for an antigen).
  • SEQ ID NO: 1 shows the amino acid sequence of the gD protein of the KOS strain (not including the signal peptide consisting of 25 amino acid residues from the N terminus).
  • a specific example of the “receptor targeting gD mutation” will be described below using the KOS strain as an example, but the same applies to other strains.
  • the gD protein of the KOS strain is encoded in the forward direction (rightward) at the position of nucleotide number 138279..139463 of the KOS strain genome sequence registered as GenBank no. JQ673480.1. HVEM, nectin-1, 3-OS-HS and gD mutations that lose the ability to bind to gD, for example, Yoon et al., J Virol.
  • the position of the amino acid mutation that causes the loss of the binding ability to nectin-1 is shown as the amino acid position of gD protein by the amino acid number of SEQ ID NO: 1, it is ⁇ 6-38 (amino acid position). 6-38 amino acid deletion) (Menotti et al., J Virol. 82: 10153-10161 2008), ⁇ 61-218 (amino acid position 61-218 amino acid deletion) (Menotti et al., Proc Natl Acad Sci USA. 106). : 9039-9044 2009), R222N / F223I (Uchida et al., J Virol.
  • A3C / Y38C Connolly et al., J Virol. 79: 1282-1295 2005, Uchida et al. , J Virol. 83: 2951-2961 2009
  • the position of the mutation that causes loss of the ability to bind to HVEM is represented by the amino acid position of SEQ ID NO: 1 as the amino acid position of the gD protein.
  • tumor antigen refers to a tumor (cancer) cell surface such as tumor-specific antigen (Tumor-specific antigens: TSA) and tumor-associated antigen (TAA) that is specifically or abundantly expressed.
  • TSA tumor-specific antigen
  • TAA tumor-associated antigen
  • Many antigens have been reported so far, and can be easily selected by those skilled in the art.
  • EGFR, CEA, EpCAM, CD133 (prominin-1), HER2 (epidermal growth factor receptor 2), PSMA (prostate specific membrane antigen), and the like can be given as specific examples.
  • the “mutation imparting the ability to bind to a tumor antigen” means a molecule that specifically binds to a tumor antigen, such as an antibody, a peptide (including peptide aptamer), a DNA encoding a protein or the like gD It is a mutation that inserts into a gene and expresses a gD protein fused with a molecule that specifically binds to the tumor antigen.
  • the insertion position of the DNA encoding the molecule that specifically binds to the tumor antigen on the gD gene is not particularly limited, but for example, amino acids Nos. 2 to 38 (SEQ ID No. 1 which are involved in the ability to bind to HVEM).
  • the "antibody” may be a full-length antibody, or may be an antibody fragment as long as it retains the ability to specifically bind to a tumor antigen.
  • the antibody fragment include, but are not limited to, scFv (single chain Fv), Fab, Fab ', F (ab') 2, Fv (variable fragment of antibody), single chain antibody (heavy chain, light chain).
  • Heavy chain variable region Heavy chain variable region and light chain variable region and nanoantibodies, etc.
  • diabody scFv dimer
  • dsFv disulfide-stabilized Fv
  • peptide containing at least a part of CDR and the like, and preferably,
  • “syn mutation (syncytial mutation)” mainly means gB gene (or gB protein) of HSV, gK gene (or gK protein), UL20 gene (or UL20 protein: envelope protein UL20) and And / or a mutation introduced on the UL24 gene (or UL24 protein: nuclear protein UL24), and this mutation promotes the membrane fusion activity by HSV.
  • SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4 and SEQ ID NO: 5 show the amino acid sequence of gB protein of KOS strain, the amino acid sequence of gK protein of KOS strain, the amino acid sequence of UL20 protein of KOS strain and UL24 of KOS strain, respectively.
  • the amino acid sequence of the protein is shown.
  • a specific example of the "syn mutation" will be described below by taking the KOS strain as an example, but the same applies to other strains.
  • the gB protein of the KOS strain is in reverse order (leftward) to the position of nucleotide number 53022..55736 of the genomic sequence registered as GenBank no. JQ673480.1, and the gK protein is in order of nucleotide position 112101..113117.
  • the UL20 protein In the direction (rightward), the UL20 protein is encoded in the reverse direction (leftward) at the position of nucleotide number 40763..41431, and the UL24 protein is encoded in the forward direction (rightward direction) at the position of nucleotide number 47678..48487.
  • the syn mutation is also disclosed in many known documents, and a person skilled in the art can appropriately select an appropriate mutation.
  • the major gB protein syn mutations are shown as amino acid positions of gB protein by the amino acid numbers of SEQ ID NO: 2.
  • the nonsense mutation of S869 can be mentioned.
  • the major gK protein syn mutations are shown as amino acid positions of gK protein by the amino acid numbers of SEQ ID NO: 3, P33 mutations such as P33S, A40 mutations such as A40V and A40T, L86 mutations such as L86P and D99 mutations such as D99N. , A111V and other A111 mutations, T121I and other T121 mutations, C243Y and other C243 mutations, L304P and other L304 mutations, R310L and other R310 mutations, and the like.
  • the major UL20 protein syn mutations are shown as amino acid positions of UL20 protein by amino acid numbers of SEQ ID NO: 4, Y49A single mutation, Y49A / S50A / R51A and other Y49, S50 and R51 mutations, R209A single mutation, R209A / T212A. Examples include mutations of R209, T212 and R213 such as / R213A, deletion of C-terminal after N217, deletion of full-length UL20 protein and the like.
  • the major UL24 protein syn mutations are represented by the amino acid positions of UL24 protein by the amino acid numbers of SEQ ID NO: 5, T62G / R63V / V64S and other T62, R63 and V64 mutations can be mentioned.
  • the HSV of the present invention may retain a foreign gene that promotes membrane fusion of HSV (hereinafter also referred to as “membrane fusion-promoting foreign gene”), in addition to retaining the syn mutation described above. ..
  • the position on the HSV genome where the foreign gene is integrated is not particularly limited, and may be any position on the HSV genome as long as the HSV virus does not inhibit the function that the oncolytic virus should have.
  • the membrane fusion promoting foreign gene is not particularly limited, and examples thereof include a fusogenic membrane glycoprotein (FMG) derived from the gibbon ape leukemia virus (GALV).
  • the HSV of the present invention expresses a reporter gene and any therapeutic gene (for example, a gene that enhances the killing effect of cancer cells, a gene that suppresses tumor angiogenesis, a gene that promotes an antitumor immune response, etc.). If possible, it may be integrated into the genome (for details, see Peters et al., Mol Ther Oncolytics. 2015; 2. Pii: 15010. Epub 2015 Jul 22).
  • the position on the HSV genome where the gene is integrated is not particularly limited, and may be any position on the HSV genome as long as the HSV virus does not inhibit the function that the oncolytic virus should have.
  • the reporter gene include, but are not limited to, LacZ gene (Mineta et al., Nat Med.
  • the therapeutic gene is not particularly limited, but for example, as a gene encoding a cytotoxic molecule, a CD gene (Nakamura et al., Cancer Res. 61: 5447-5452 2001) and a TRAIL gene (Tamura et al., Mol Ther. 21).
  • GM-CSF gene Liu et al., Gene Ther. 10: 292-303 2003
  • IL-12 gene Roth et al., Ther Clin Dev. 25: 16-27 2014
  • genes encoding microenvironmental control molecules Zhang et al., Mol Ther. 20: 37-45 2012
  • PF4 gene Liu et al., Mol Ther. 14: 789-797 2006
  • Chondroitinase-ABC gene Dmitrieva et al., Clin Cancer Res. 17: 1362-1372 2011.
  • the virus preparation of the present invention contains at least one of the HSV of the present invention, and includes other pharmaceutically acceptable components, buffers, excipients, adjuvants, preservatives, fillers, stabilizers, thickeners, etc. , May contain other components usually used in formulation.
  • other therapeutically effective oncolytic viruses and / or therapeutically effective agents, etc. such as anticancer agents, auxiliary components (eg, CTLA-4 blockers and Immune checkpoint inhibitors such as PD-1 antibodies, and immunostimulants such as GM-CSF) may be included.
  • the dosage form of the virus preparation of the present invention is not particularly limited, and may be any form as long as it is suitable for the administration method, administration route, storage method, etc., and examples thereof include solutions and suspensions. It can be formulated as any dosage form selectable by one of ordinary skill in the art, including solids such as liquids, emulsions, tablets, pellets and capsules or semi-solids. Those skilled in the art can appropriately select the type of formulation additive used in the production of the virus formulation of the present invention, the ratio of the formulation additive to the active ingredient, or the method for producing the virus formulation, depending on its form. is there.
  • Inorganic or organic substances, or solid or liquid substances can be used as pharmaceutical additives, and generally, they can be compounded in an amount of 1 to 90% by weight based on the weight of the active ingredient. ..
  • examples of such substances include lactose, glucose, mannite, dextrin, cyclodextrin, starch, sucrose, magnesium aluminometasilicate, synthetic aluminum silicate, sodium carboxymethyl cellulose, hydroxypropyl starch, carboxymethyl cellulose calcium.
  • Ion exchange resin methyl cellulose, gelatin, gum arabic, hydroxypropyl cellulose, hydroxypropyl methyl cellulose, polyvinyl pyrrolidone, polyvinyl alcohol, light anhydrous silicic acid, magnesium stearate, talc, tragacanth, bentonite, bee gum, titanium oxide, sorbitan fatty acid ester, Sodium lauryl sulfate, glycerin, fatty acid glycerin ester, purified lanolin, glycerogelatin Polysorbate, macrogol, vegetable oils, waxes, liquid paraffin, white petrolatum, fluorocarbons, nonionic surfactants, propylene glycol, and water.
  • the virus preparation of the present invention when produced as a liquid such as an injection or a drip, its active ingredient is optionally added with hydrochloric acid, sodium hydroxide, lactic acid, sodium monohydrogen phosphate, sodium dihydrogen phosphate, etc. Dissolved in distilled water for injection with pH adjusting agents of sodium chloride, isotonic agents such as glucose, aseptically filtered and filled into ampoules, or further mannitol, trehalose, saccharose, sorbitol, dextrin, cyclodextrin, gelatin. It may be added to the above and lyophilized in a vacuum to prepare a solution-soluble injection. It is also possible to add reticine, polysorbate 80, polyoxyethylene hydrogenated castor oil, etc. and emulsify in water to prepare an emulsion for injection.
  • virus preparation can be formulated in a storable state, or a solid state such as a liquid or a lyophilized powder, and a method known in the art, for example, WO98 / 02522, WO03 / 053463, It may be manufactured with appropriate changes based on the methods disclosed in WO2007 / 056847, WO2008 / 114021 and WO2014 / 053571.
  • the route for administration of the virus preparation of the present invention may be any route as long as it is capable of dissolving a tumor.
  • it may be intravenous administration.
  • the virus preparation of the present invention since the virus preparation of the present invention has an extremely high oncolytic effect, it has a smaller dose and / or administration frequency than the known oncolytic virus preparation even when administered intravenously. A sufficient antitumor effect can be exerted.
  • the dose and frequency of administration of the virus preparation of the present invention are not particularly limited, and are appropriately selected according to the judgment of a doctor according to conditions such as the purpose of treatment, the type of cancer, the weight and age of the patient, and the severity of the disease.
  • Unit dose refers to the content of HSV of the invention in a given amount, which may be administered as a single infusion, or may include continuous infusion over a set period of time. ..
  • the administration frequency may be one administration or multiple administrations.
  • the unit dose of the present invention is lower than the previously reported effective dose of the oncolytic HSV virus (dose showing a tumor growth inhibitory effect), for example, in the case of intratumoral administration, Suppression of tumor growth at a dose (pfu) of about 10 -6 to about 10 -5 of an oncolytic virus (see Figure 4 of Non-Patent Document 10 and Figure 6 of Non-Patent Document 11) Has the effect of
  • the cancer to be treated by the virus preparation of the present invention may be any cancer and is not particularly limited.
  • a typical cancer for example, hepatocellular carcinoma, cholangiocellular carcinoma, renal cell carcinoma, squamous cell carcinoma, basal cell carcinoma, transitional cell carcinoma, adenocarcinoma, malignant gastrinoma, melanoma, fibrosarcoma, Myxosarcoma, liposarcoma, leiomyosarcoma, rhabdomyosarcoma, malignant teratoma, angiosarcoma, Kaposi's sarcoma, osteosarcoma, chondrosarcoma, lymphangiosarcoma, malignant meningioma, non-Hodgkin's lymphoma, Hodgkin's lymphoma, leukemia and brain tumor
  • Malignant tumors such as, epithelial cell-derived neoplasm (epithelial carcinoma), basal cell carcinoma, adenocarcinoma, lip cancer, oral cancer, esophageal cancer, small adenocar
  • a viral preparation containing an HSV virus having a receptor-targeted gD mutation and at least one syn mutation is administered to patients (including mammals other than humans), etc. It is a treatment method (hereinafter also referred to as "the cancer treatment method of the present invention") for performing treatment (tumor regression, etc.).
  • the method for treating cancer of the present invention includes treatment for the purpose of regressing a tumor that has already occurred, treatment for killing the metastasized cancer cells when metastasis is expected, and the like. It also includes adjunctive therapy before or after surgical operation.
  • the “mammal” to be treated means any animal classified as a mammal, and is not particularly limited, and examples thereof include humans, pet animals such as dogs, cats, rabbits, etc., cows, pigs, sheep. Any animal may be used, such as domestic animals such as horses and horses. Humans are preferred.
  • the antitumor effect is shown when the virus preparation of the present invention is intratumorally and intravenously administered to a subcutaneous tumor model mouse. As shown below, it was confirmed that the virus preparation of the present invention exhibits an extremely excellent antitumor effect as compared with known oncolytic HSV virus preparations.
  • Non-Patent Documents 5 and 9 Virus and purification method EGFR targeting RR-oHSV (KGNE) and EpCAM targeting RR-oHSV gB and gK syn mutation (gB: R858H and gK: A40T) introduced virus (KGNE-BhKt and KGNEp-BhKt) The previously reported ones were used (Non-Patent Documents 5 and 9). These viruses express EGFP under the control of the immediate early promoter of cytomegalovirus, and have an intracellular entry-enhancing double mutation (gB: D285N / A549T) in gB (Non-Patent Document 7).
  • KOS-37 BAC (Gierasch et al., J Virol Methods.135: 197-206 2006) with EGFP expression cassette introduced (KG), KG ICP34.5 gene deleted (KG ⁇ ) and KG ⁇ Plasmids (pKG, pKG ⁇ and pKG ⁇ -BhKt) encoding the viral genome of virus (KG ⁇ -BhKt) in which syn mutations (gB: R858H and gK: A40T) were introduced into gB and gK were genetically modified based on the Red homologous recombination system. (Tischer et al., Biotechniques 40: 191-1972006).
  • Non-Patent Document 5 by introducing the EGFP expression cassette in the same manner as the method previously reported for the BAC plasmid encoding the viral genome of KOS-37BAC (donated by David Leib of Dartmouth Medical School), pKG was introduced. Was produced (Non-Patent Document 5).
  • Primer sets used (5'-CCCAGGTAACCTCCACGCCCAACTCGGAACCCGTGGTCAGGAGCGCGCCCAGGATGACGACGATAAGTAGGG-3 '(SEQ ID NO: 6) and 5'- GACGACTCGGCGGACGCTGGTTGGCCGGGCCCCGCCGCGCTGGCGGCCGCGGGCGCGCTCCTGACCACGGGTTCCGAGTTGGGCGTGGAGGTTACCTGGGCTACAACCAATTAACCAATTCTGATTAG-3' (SEQ ID NO: 7)), pEPkan-S2 (was kindly provided Nikolaus Osterrieder of Free University of Berlin.) PKG ⁇ was constructed by deleting the ICP34.5 gene of pKG using the amplified sequence of the kanamycin resistance gene flanked by the recognition sequences of I-SceI encoded by the gene as the targeting fragment.
  • Non-Patent Document 9 Since 2 copies of ICP34.5 exist on the viral genome, the deletion operation of 2 copies was performed in 2 steps, 1 copy each.
  • pKG ⁇ -BhKt was prepared by introducing syn mutations (gB: R858H and gK: A40T) into pKG ⁇ gB and gK in the same manner as previously reported (Non-Patent Document 9). It was confirmed by PCR analysis, pulse field gel electrophoresis analysis after restriction enzyme digestion, and DNA sequence analysis that all the constructs were properly modified.
  • KG, KG ⁇ , and KG ⁇ -BhKt were prepared by transfecting VKG cells with pKG, pKG ⁇ , and pKG ⁇ -BhKt together with pxCANCre (provided by Izumu Saito of the University of Tokyo), and twice using Vero cells. A product cloned by limiting dilution was used. It was confirmed by the method previously reported that the BAC sequence of the cloned clone was removed (Miyagawa et al., Proc Natl Acad Sci USA.112: E1632-1641 2015).
  • the virus stock used for the animal experiment was prepared as described below. Infect monolayer cultured Vero-EpCAM cells with MOI 0.03 for KG, KG ⁇ and KGNE, MOI 0.06 for KGNEp, MOI 0.003 for KG ⁇ -BhKt and KGNE-BhKt, and MOI 0.006 for KGNEp-BhKt until 37 ° C until the next day. Then, the cells were cultured at 33 ° C. for 4 days from the next day. Five days after the start of infection, 1/10 amount of 5 M NaCl was added to the culture solution, and the cells were cultured at 33 ° C until the next day.
  • the pellet was pipetted and unraveled using 18G needle, 21G needle, 24G needle, 27G needle, 30G needle (Termo, Tokyo, Japan), then dispensed in small aliquots and rapidly frozen in liquid nitrogen. Later stored at -80 ° C.
  • the plaque forming unit (pfu) concentration (pfu / mL) of all viruses was determined by taking the average value of the results obtained by performing three independent infectious titer measurements using Vero-EpCAM cells.
  • Plaque formation assay and cell killing assay 1-3-1 Plaque formation assay Cells were seeded on a 6-well plate the day before, and each virus was added to the monolayer-cultured cells at 30 pfu / well or 100 pfu / well, and the cells were cultured at 37 ° C for 2 hours, then 1% methylcellulose was added. The containing medium was overlaid and cultured at 37 ° C. for 3 days. EGFP fluorescence images were taken with a BZ-X700 microscope (KEYENCE, Osaka, Japan). The plaque area was analyzed by Hybrid Cell Count software BZ-H3C (KEYENCE). 1-3-2.
  • mice were grouped so that the average tumor volume approximated, and PBS and virus suspended in PBS were administered intratumorally in a volume of 30 ⁇ L. Alternatively, it was administered in the right tail vein in a volume of 200 ⁇ L.
  • the intratumoral administration was carried out by administering the sample at one point where the needle penetrated about 2/3 of the length of the tumor.
  • a 27G needle was used for cell transplantation and virus administration, and needles were avoided by using an independently prepared one for each mouse.
  • the expression of EGFP in the tumor was confirmed using a wavelength-exchangeable twin-arm LED irradiation device (Optocode Co., Ltd., Tokyo). Tumor volume was calculated by the formula of (major axis ⁇ minor axis 2 ) / 2 (Tomayko et al., Cancer Chemother Pharmacol. 24: 148-154 1989).
  • Non-patent document 10 and Non-patent document 11 The antitumor effect of KGNE and KGNE-BhKt on the xenograft model of tumor cell line U87 (Non-patent document 10 and Non-patent document 11) was evaluated.
  • U87 cells are EGFR-positive and are cell lines confirmed to exert a significant antitumor effect by intratumoral administration of 10 7 pfu of KGNE (Non-Patent Document 6).
  • mice treated with 10 4 pfu of KG similar skin lesions were observed in some mice 12 days after administration, and the skin lesions expanded to the extent that tumor volume could not be measured 18 days after administration.
  • mice administered 10 7 pfu KG all 6 mice died before reaching the end point, and in the group administered 10 4 pfu KG 2 mice died.
  • no skin damage was observed in the mice administered with KG in all the mice administered with KG ⁇ or KGNE, and none of the mice died before reaching the end point.
  • TKNE-BhKt or KG ⁇ -BhKt was intravenously administered to a mouse model of subcutaneous tumor of U87 cells. Each virus was administered once intravenously when the subcutaneous tumor volume of U87 cells reached about 700 mm 3 (FIG. 14).
  • the tumor of 4 out of 5 mice in the KG ⁇ -BhKt administration group continued to grow, while in the KGNE-BhKt administration group, 10 7 pfu was administered to the group.
  • the tumor volume increased up to 3 days after administration, up to 5 days after administration in 10 6 pfu, and up to 7 days after administration of 10 5 pfu, but after that, all KGNE-BhKt administration was performed.
  • Tumor regression began to be confirmed in the group, and tumors of all individuals in the group were confirmed by 30 days after administration in the group administered 10 7 pfu, and in 35 days after administration in the group administered 10 6 pfu or 10 5 pfu. Completely regressed.
  • KG ⁇ -BhKt and KGNE-BhKt were administered once when subcutaneous tumor volume of HerpG2 cells transplanted into immunodeficient mice reached about 530 mm 3. It was administered intravenously (Fig. 16).
  • the anti-tumor effect from the administration of each virus to the PBS-administered group mice 11 days after reaching the endpoint was compared with that of the PBS-administered group, and 10 7 pfu of the KG ⁇ -BhKt-administered group and all KGNE-BhKt-administered groups were administered.
  • the virus preparation of the present invention exhibits an extremely high antitumor effect and is expected to be used in the medical field.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Virology (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Organic Chemistry (AREA)
  • Microbiology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mycology (AREA)
  • Epidemiology (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Immunology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

本発明は、in vivoにおいて、既存の腫瘍溶解性HSVの抗腫瘍効果と比較して、より効果的な殺がん細胞活性を有する腫瘍溶解性HSVを含有するウイルス製剤の開発を課題とする。具体的には、ゲノム上に受容体標的化gD変異および少なくとも1つの膜融合活性促進領域を持つHSV(herpes simplex virus)を含む、がんの治療のためのウイルス製剤および当該ウイルス製剤を用いたがんの治療法である。

Description

がん治療のための腫瘍溶解性ウイルス
 本発明は、腫瘍溶解性ウイルスを含むがん治療のためのウイルス製剤、および当該腫瘍溶解性ウイルスを用いたがんの治療法に関する。
 悪性腫瘍の新規治療法として単純ヘルペスウイルス(herpes simplex virus:HSV)を用いた腫瘍溶解性ウイルス療法が有望視され、これまでに日本を含め広く臨床試験が進められてきた。
 2015年、Amgen 社が開発した遺伝子組換えHSV 製剤T-VEC (talimogene laherparepvec)が欧米で初めて医薬品として承認されたことに伴い、本研究分野はさらに大きな期待を集めている。しかしながら、今日までの臨床試験で用いられてきた腫瘍溶解性ウイルスは、がん細胞のみならず正常細胞にも一旦は侵入してしまうという問題を抱えている。このため、侵入してしまった正常細胞の傷害を避けるためにウイルスの増殖能を減弱化せざるを得ず、これが腫瘍溶解能の低下にもつながり得るというジレンマが存在していた。加えて、溶解に必要なウイルス量を腫瘍局所で確保するためにはウイルスを腫瘍内に直接投与せざるを得ず、これが遠隔転移を有する進行がんの治療では大きな障壁となってきた(事実、T-VECの悪性黒色腫に対する臨床試験では、肺や肝臓への遠隔転移を有する患者群においては有意な生存期間の延長が認められていない:非特許文献1)。
 これに対し、がん細胞だけにしか侵入できない理想的な標的化ウイルスが実用化されれば、ウイルスの増殖能を弱めることなく本来の腫瘍溶解能を最大限に活用した治療戦略が可能となる。さらには、そのようなウイルスを静脈内投与することにより全身性の転移を来したがん症例を治療することも可能となり得る。
 HSVの細胞への侵入は、HSVのエンベロープ糖タンパク質であるgD(glycoprotein D)と、細胞表面に存在するそのレセプターであるHVEM(herpesvirus entry mediator)、nectin-1または3-O-sulfated heparan sulfate(3-OS-HS)との結合によって開始する(非特許文献2~非特許文献4)。本発明者らは、この最初の侵入過程に着目し、HSVを標的とする腫瘍細胞特異的に侵入させる方法を検討した結果、HSVの感染受容体の標的化改変に成功した(非特許文献5~非特許文献7)。すなわち、HSVの細胞への侵入を担うgDを、本来の受容体に結合不能とした上で、これにEGFR(epidermal growth factor receptor)、CEA(carcinoembryonic antigen)およびEpCAM(epithelial cell adhesion molecule)など様々な腫瘍関連抗原に対するscFv(単鎖抗体)をgDと融合して発現させることにより、標的細胞のみに効率良く侵入する標的化HSVの構築に成功した。
 HSVは、細胞へ侵入したのち、細胞間伝播により感染範囲を拡大させていく。この細胞間伝播は、子孫ウイルス粒子が感染細胞と隣接非感染細胞との間へ放出されることによって進行する。細胞間伝播によって感染した細胞は、丸い形態となり互いに凝集するものの、互いの細胞膜の融合はほとんど生じない(非特許文献8)。
 発明者らは、HSVの膜融合活性を促進するsyn変異(syncytial mutation)を複数導入することにより、標的細胞特異的侵入を遂げたHSVを効率良く細胞間伝播させ、強力な殺細胞効果をもたらす方法を開発した(非特許文献9)。すなわち、標的化HSVにgB(glycoprotein B)およびgK(glycoprotein K) のsyn変異のうち1つまたは両方を組み込んだウイルスを作製したところ、親株のウイルス(syn変異を有さないウイルス)では小さなプラークしか生じなかったヒト膵がん細胞株において、両方のsyn変異を導入したウイルスは非常に大きな多核巨細胞からなるプラークを形成し、強力な殺がん細胞活性を示した。しかも、感染した標的がん細胞がこれに隣接する非標的細胞と融合して感染が波及してしまうことは認められなかった。このことから、syn変異を導入した標的化HSVは、高いがん特異性を維持しつつその殺がん細胞活性が増強されるという優れた効果を持つことが明らかになった。
 上述の受容体標的化改変および膜融合促進変異を施したHSV(非特許文献9)は、培養細胞(in vitro)において強力な殺がん細胞活性を発揮することが明らかとなった。
 しかしながら、これらの改変を施したHSV が、受容体標的化改変のみを施したHSVまたはHSVの細胞内における複製の段階でがんを標的化した先行する腫瘍溶解性ウイルスおよびそれに膜融合促進変異を施した腫瘍溶解性ウイルスと比較して、生体内(in vivo)においてどの程度の抗腫瘍効果を発揮するかについては、現在のところ不明である。
Andtbackaら, J Clin Oncol. 33:2780-2788 2015 Montgomeryら, Cell 87:427-436 1996 Geraghtyら, Science 280:1618-1620 1998 Shuklaら, Cell 99:13-22 1999 Shibataら, Gene Ther. 23:479-488 2016 Uchidaら, Mol Ther. 21:561-569 2013 Uchidaら, J Virol. 84:12200-12209 2010 Ejercitoら, J Gen Virol. 2:357-364 1968 Okuboら, J Virol. 90:11096-11105 2016 Liuら, Gene Ther. 10:292-303 2003 Todoら, Proc Natl Acad Sci USA. 98:6396-6401 2001
 上記事情に鑑み、本発明は、in vivoにおいて、既存の腫瘍溶解性HSVより高い殺がん細胞活性を有する腫瘍溶解性HSVを含有するウイルス製剤の開発を解決課題とする。
 発明者らは、HSVのgD遺伝子に変異を導入して受容体を改変し(このHSVを以下「RR-oHSV(receptor-retargeted oncolytic HSV)」とも記載する)、かつ、syn変異を導入したRR-oHSV(以下「RR-oHSV-syn」とも記載する)の抗腫瘍効果に関し、皮下腫瘍ゼノグラフトモデルマウスを用いて検討した。その結果、以下の点が明らかとなった。
 まず、上述の受容体標的化gD変異およびsyn変異導入HSVを、皮下腫瘍ゼノグラフトモデルマウス(ヒト神経膠腫U87細胞を移植したマウス)の腫瘍(体積約300 mm3)内に1回投与したところ、101 pfuという極めて少量で強力な抗腫瘍効果を発揮した(図1参照)。他の研究グループによる同様の実験結果として、体積約32 mm3の腫瘍に対して、5×106 pfuの腫瘍内投与で抗腫瘍効果を確認したとの報告(非特許文献10のFigure 4などを参照)や体積約108 mm3の腫瘍に対して、1×106 pfuの腫瘍内投与で抗腫瘍効果を確認したとの報告(非特許文献11のFigure 6などを参照)がある。これら他のグループが行った実験では、発明者らが行った実験と比較して、腫瘍の体積が小さいのにも関わらず、抗腫瘍効果を示す投与量が106 pfuオーダーと格段に多く、しかも複数回(2回または3回)の腫瘍内投与を行うことで抗腫瘍効果を確認している。従って、受容体標的化gD変異およびsyn変異を併せ持つ腫瘍溶解性HSVは、先行している腫瘍溶解性HSVと比較して、非常に少ないウイルス量でより強力な抗腫瘍効果を発揮するものと評価できる。特に、受容体標的化gD変異の他、syn変異を施したことによるHSVのin vivoにおける抗腫瘍効果は、in vitroの実験結果からは予想できない程度に顕著な効果であった。すなわち、in vitroにおいて、受容体標的化gD変異およびsyn変異を持つHSVの殺がん細胞効果は、受容体標的化gD変異のみを持つHSVの殺がん細胞効果と比較して、半数致死量(LD50)にてせいぜい数百倍程度に過ぎなかったのに対し、in vivoにおける抗腫瘍効果については、10万倍以上と予想を大きく超えるものであった。
 さらに、発明者らは、gD遺伝子に変異を持たず、正常細胞における増殖を減弱化させる変異(例えば、ICP34.5の欠失など)を持つ制限増殖型HSV(以下、「CR-oHSV(conditionally replicating oncolytic HSV)」であって、syn変異を併せ持つHSV(以下「CR-oHSV-syn」とも記載する)と上記本発明にかかるRR-oHSV-synの抗腫瘍効果を比較した。In vitroでは、RR-oHSV-synとCR-oHSV-synの殺がん細胞能は同程度であった。しかしながら、in vivoにおいて、RR-oHSV-synの抗腫瘍効果は、CR-oHSV-synの抗腫瘍効果と比較して、腫瘍内投与で、少なくとも約100万倍、全身投与でも少なくとも約100倍高いことが確認された。
 以上の結果は、発明者らが開発した受容体標的化gD変異およびsyn変異を併せ持つ腫瘍溶解性HSV(RR-oHSV-syn)の抗腫瘍効果は、in vivoにおいて、他のグループから報告されている腫瘍溶解性HSVの抗腫瘍効果より、当業者の予想を超える程度に優れた効果であることを示している。
 本発明は以上の知見に基づいて完成されたものである。
  すなわち、本発明は以下の(1)~(9)である。
(1)ゲノム上に受容体標的化gD変異および少なくとも1つの膜融合活性促進領域を持つHSV(herpes simplex virus)を含む、がんの治療のためのウイルス製剤。
(2)前記膜融合活性促進領域が、syn変異を有する領域または膜融合促進外来遺伝子領域であることを特徴とする上記(1)に記載のウイルス製剤。
(3)前記受容体標的化gD変異のうち、nectin-1との結合能を喪失させる変異が、配列番号1の6番目から38番目までのアミノ酸の全部の欠失、配列番号1の61番目から218番目のアミノ酸の全部の欠失、配列番号1の3番目および38番目のアミノ酸の変異、ならびに/または、配列番号1の222番目および223番目のアミノ酸の変異であることを特徴とする上記(1)または(2)に記載のウイルス製剤。
(4)前記配列番号1の3番目のアミノ酸変異が欠失またはシステインへの置換、38番目のアミノ酸変異がシステインへの置換、222番目のアミノ酸変異がアスパラギンへの置換および223番目のアミノ酸変異がイソロイシンへの置換であることを特徴とする上記(3)に記載のウイルス製剤。
(5)前記受容体標的化gD変異のうち、HVEMおよび3-OS-HSとの結合能を喪失させる変異が、配列番号1の2番目から38番目までのアミノ酸の全部もしくは一部の欠失、配列番号1の61番目から218番目までのアミノ酸の全部の欠失、配列番号1の27番目のアミノ酸変異、配列番号1の29番目のアミノ酸変異、および/または、配列番号1の30番目のアミノ酸変異であることを特徴とする上記(1)または(2)に記載のウイルス製剤。
(6)前記配列番号1の2番目から38番目までのアミノ酸の一部の欠失が、2番目から24番目までのアミノ酸の欠失、7番目から11番目までのアミノ酸の欠失、7番目から32番目までのアミノ酸の欠失もしくは6番目から38番目までのアミノ酸の欠失のいずれか、27番目のアミノ酸変異がアラニン、プロリンもしくはアルギニンへの置換、29番目のアミノ酸変異がアラニンへの置換および30番目のアミノ酸変異がアラニンへの置換であることを特徴とする上記(5)に記載のウイルス製剤。
(7)前記syn変異が、下記(a)、(b)、(c)および/または(d)に記載の変異であることを特徴とする上記(2)に記載のウイルス製剤。
(a)配列番号2の796番目のアミノ酸変異、800番目のアミノ酸変異、813番目のアミノ酸変異、817番目のアミノ酸変異、854番目のアミノ酸変異、855番目のアミノ酸変異、858番目のアミノ酸変異、816番目と817番目の間へのアミノ酸の挿入、877番目のアミノ酸のナンセンス変異および/または869番目のアミノ酸のナンセンス変異、
(b)配列番号3の33番目のアミノ酸変異、40番目のアミノ酸変異、86番目のアミノ酸変異、99番目のアミノ酸変異、111番目のアミノ酸変異、121番目のアミノ酸変異、243番目のアミノ酸変異、304番目のアミノ酸変異および/または310番目のアミノ酸変異、
(c)配列番号4の49番目のアミノ酸変異、49、50および51番目のアミノ酸変異、209番目のアミノ酸変異、209、212および213番目のアミノ酸変異、217番目のアミノ酸のナンセンス変異、ならびに/または、配列番号4で表されるアミノ酸配列全ての欠失、
(d)配列番号5の62、63および64番目のアミノ酸変異
(8)前記配列番号2の796番目のアミノ酸変異がシステインへの置換、配列番号2の800番目のアミノ酸変異がトリプトファンへの置換、配列番号2の813番目のアミノ酸変異がイソロイシンへの置換、配列番号2の817番目のアミノ酸変異がヒスチジンもしくはプロリンへの置換、配列番号2の854番目のアミノ酸変異がフェニルアラニンへの置換、配列番号2の855番目のアミノ酸変異がバリンへの置換、配列番号2の858番目のアミノ酸変異がシステインもしくはヒスチジンへの置換、
 配列番号3の33番目のアミノ酸変異がセリンへの置換、配列番号3の40番目のアミノ酸変異がバリンもしくはスレオニンへの置換、配列番号3の86番目のアミノ酸変異がプロリンへの置換、配列番号3の99番目のアミノ酸変異がアスパラギンへの置換、配列番号111番目のアミノ酸変異がバリンへの置換、配列番号121番目のアミノ酸変異がイソロイシンへの置換、配列番号3の243番目のアミノ酸変異がチロシンへの置換、配列番号3の304番目のアミノ酸変異がプロリンへの置換、配列番号3の310番目のアミノ酸変異がロイシンへの置換、
 配列番号4の49番目のアミノ酸変異がアラニンへの置換、配列番号4の50番目のアミノ酸変異がアラニンへの置換、配列番号4の51番目のアミノ酸変異がアラニンへの置換、配列番号4の209番目のアミノ酸変異がアラニンへの置換、配列番号4の212番目のアミノ酸変異がアラニンへの置換、配列番号4の213番目のアミノ酸変異がアラニンへの置換、
 配列番号5の62番目のアミノ酸変異がグリシンへの置換、63番目のアミノ酸変異がバリンへの置換、64番目のアミノ酸変異がセリンへの置換であることを特徴とする上記(7)に記載のウイルス製剤。
(9)前記HSVのゲノム上にレポーター遺伝子および/または治療遺伝子が組み込まれていることを特徴とする、上記(1)ないし(8)のいずれかに記載のウイルス製剤。
 本発明により、極めて抗腫瘍効果の高い腫瘍溶解性HSVを含むウイルス製剤が提供される。
 本発明により、治療効果の高いがんの治療方法が提供される。
U87ゼノグラフトモデルに対するKGNE(EGFR標的化RR-oHSV)およびKGNE-BhKt(EGFR標的化RR-oHSV-syn)の腫瘍内投与後の抗腫瘍効果(1)。U87細胞を皮下移植し、腫瘍体積の平均が約300 mm3に達した時点(移植から9日後)に102および10pfuのKGNEならびに101、102および10pfuのKGNE-BhKtを腫瘍内投与した後の腫瘍の体積の継時変化を示す(n = 6)。矢印は投与日を示す。各投与群の平均値を示す。誤差棒は標準誤差を示す。 U87ゼノグラフトモデルに対するKGNEおよびKGNE-BhKtの腫瘍内投与後の抗腫瘍効果(2)。U87細胞を皮下移植し、腫瘍体積の平均が約300 mm3に達した時点(移植から9日後)に102および10pfuのKGNEならびに101、102および10pfuのKGNE-BhKtを腫瘍内投与した後の腫瘍の体積の継時変化を示す(n = 6)。矢印は投与日を示す。個体別の腫瘍体積の継時変化を示す。 より大きなU87ゼノグラフトモデルに対するKGNEおよびKGNE-BhKtの腫瘍内投与後の抗腫瘍効果。U87細胞を皮下移植し、腫瘍体積の平均が約780 mm3に達した時点(移植から23日後)に10pfuのKGNEならびに10pfuのKGNE-BhKtを腫瘍内投与した後の腫瘍の体積の継時変化を示す(n = 6)。矢印は投与日を示す。腫瘍体積が体重の10%を超過したマウスは安楽死させた。 U87ゼノグラフトモデルに対するKGNE-BhKtの静脈内投与後の抗腫瘍効果。U87細胞を皮下移植し、腫瘍体積の平均が約300 mm3に達した時点(移植から8日後)に103から10pfuまでKGNE-BhKtを静脈内投与した後の腫瘍の体積の継時変化を示す(n = 5-6)。矢印は投与日を示す。腫瘍体積が体重の10%を超過した時点で、それまでに腫瘍におけるEGFPのシグナルが体外から確認できなかったマウスは安楽死させた。 U87ゼノグラフトモデルに対するKGNE-BhKtの静脈内投与後の抗腫瘍効果。U87細胞を皮下移植し、腫瘍体積の平均が約730 mm3に達した時点(移植から23日後)に103から10pfuまでKGNE -BhKtを静脈内投与した後の腫瘍の体積の継時変化を示す(n = 5)。矢印は投与日を示す。腫瘍体積が体重の10%を超過した時点で、それまでに腫瘍におけるEGFPのシグナルが体外から確認できなかったマウスは安楽死させた。 さらに大きなU87ゼノグラフトモデルに対するKGNE-BhKtの静脈内投与後の抗腫瘍効果。U87細胞を皮下移植し、腫瘍体積が約500-1,800 mm3に達した時点(移植から43日後)に10pfuのKGNE-BhKtを静脈内投与した後の腫瘍の体積の継時変化を示す(n = 5)。矢印は投与日を示す。 全身投与による抗腫瘍効果に関するKGNEとKGNE-BhKtの比較(ヒト肝芽腫HepG2細胞のゼノグラフトモデル)。腫瘍体積が約570 mm3に達した時点(移植から25日後)でPBS、107 pfuのKGNEならびに105 pfuおよび107 pfuのKGNE-BhKtを投与した後の腫瘍体積の平均値の継時変化を示す(n = 6)。矢印は静脈内投与日を示す。誤差棒は標準誤差を示す。 KGNEp-BhKt(EpCAMを標的とするRR-oHSV-syn)の抗腫瘍効果(HepG2ゼノグラフトモデル)。腫瘍体積が約580 mm3に達した時点(移植から26日後)でPBS、105 pfuのKGNE-BhKtおよび105 pfuのKGNEp-BhKtを投与した後の腫瘍体積の平均値の継時変化を示す(n = 5)。矢印は静脈内投与日を示す。誤差棒は標準誤差を示す。 In vivoにおけるRR-oHSV-synの標的特異性の確認(U87ゼノグラフトモデル)。腫瘍体積が約270 mm3に達した時点でPBS、106 pfuのKGNE-BhKtおよび106 pfuのKGNEp-BhKtを投与した後の腫瘍体積の平均値の継時変化を示す(n = 6)。矢印は静脈内投与日を示す。誤差棒は標準誤差を示す。 RR-oHSVとCR-oHSVの抗腫瘍効果の比較のために用いたHSVのゲノム構造。UL;unique long segment、US;unique short segment、pCMV;human cytomegalovirus immediate early promoter(ヒトサイトメガロウイルス前初期プロモーター)、EGFP;enhanced green fluorescent protein(増強緑色蛍光タンパク質)、ΔICP34.5;ICP34.5遺伝子の欠失、scEGFR;EGFR標的化gD、Bh;R858H変異、Kt;A40T変異、白ボックス;D285N/A549T二重変異、黒ボックス;terminal and internal inverted repeats In vitroにおけるgB:R858H(Bh)変異およびgK:A40T(Kt)変異(BhKt変異)導入型oHSVのU87細胞に対する感染効率および殺細胞能。(A)U87細胞におけるプラークの形態および面積。単層培養したU87細胞にKGΔ、KGNE、KGΔ-BhKtおよびKGNE-BhKtを感染させ、メチルセルロース添加培地にて3日間培養し、蛍光顕微鏡にてEGFPのシグナルを観察した。プラーク画像内の棒は500 μmを示す。(B)EGFP陽性面積を定量した(n = 15)。グラフ内の棒は平均値±標準偏差を示す。(C)U87に対する殺細胞能。前日に播種したU87細胞にKG、KGΔ、KGΔ-BhKt、KGNE、KGNE-BhKtならびにKGNEp-BhKtを感染させ、3日後にMTTアッセイを行い、吸光度(OD540およびOD630)を測定した(n = 6)。グラフ内の棒は平均値±標準偏差を示す。 BhKt変異導入前のICP34.5欠失型CR-oHSVおよびRR-oHSVの抗腫瘍効果(U87ゼノグラフトモデル)。腫瘍体積の平均が約300 mm3に達した時点(移植から9日後)でPBS、104 pfuおよび107 pfuのKGΔならびに104 pfuおよび107 pfuのKGNEを投与した群の腫瘍体積の平均値の継時変化を示す(n = 6)。矢印は腫瘍内投与日を示す。誤差棒は標準誤差を示す。 BhKt変異導入後のICP34.5欠失型CR-oHSVおよびRR-oHSVの抗腫瘍効果(U87ゼノグラフトモデル)。腫瘍体積の平均が約320 mm3に達した時点(移植から9日後)でPBS、107 pfuのKGΔ、10pfu、103 pfu、105 pfuおよび107 pfuのKGΔ-BhKtならびに10pfuのKGNE-BhKtを投与した後の腫瘍体積の平均値の継時変化を示す(n = 6)。矢印は腫瘍内投与日を示す。誤差棒は標準誤差を示す。 BhKt変異導入後のICP34.5欠失型CR-oHSVおよびRR-oHSVの全身投与による抗腫瘍効果の比較(U87ゼノグラフトモデル)。(上図)腫瘍体積が約700 mm3に達した時点(移植から24日後)でPBS、107 pfuのKGΔ-BhKtならびに105 pfu、106 pfuおよび107 pfuのKGNE-BhKtを投与した後の腫瘍体積の継時変化を示す(n = 5)。矢印は静脈内投与日を示す。腫瘍体積が体重の10%を超過したマウスは安楽死させた。(下図)上図の実験におけるマウスの生存期間。 In vitroにおけるBhKt変異導入後のoHSVのHepG2細胞に対する感染効率および殺細胞能。(上図)単層培養したHepG2細胞にKG、KGΔ、KGNE、KGΔ-BhKt、KGNE-BhKtおよびKGNEp-BhKtを感染させ、メチルセルロース添加培地にて3日間培養し、蛍光顕微鏡にてEGFPのシグナルを観察した。プラーク画像内の棒は500 μmを示す。(中図)EGFP陽性面積を定量した(n = 15)。グラフ内の棒は平均値±標準偏差を示す。(下図)HepG2細胞に対する殺細胞能。前日に播種したHepG2細胞にKG、KGΔ、KGΔ-BhKt、KGNE、KGNE-BhKtならびにKGNEp-BhKtを感染させ、3日後にMTTアッセイを行い、吸光度(OD540およびOD630)を測定した(n = 6)。グラフ内の棒は平均値±標準偏差を示す。 BhKt変異導入後のICP34.5欠失型CR-oHSVおよびRR-oHSVの全身投与による抗腫瘍効果の比較(HepG2ゼノグラフトモデル)。腫瘍体積が約530 mm3に達した時点(移植から25日後)でPBS、10pfuのKGΔ-BhKtならびに10pfuおよび10pfuのKGNE-BhKtを投与した後の腫瘍体積の平均値の継時変化を示す(n = 6)。矢印は静脈内投与日を示す。誤差棒は標準誤差を示す。
 本発明の第1の実施形態は、ゲノム上に受容体標的化gD変異および少なくとも1つの膜融合活性促進領域を持つ HSV(以下「本発明のHSV」とも記載する)を含む、がんの治療のためのウイルス製剤(以下「本発明のウイルス製剤」とも記載する)である。
 本発明のHSVには、単純ヘルペスウイルス1型(HSV-1)および単純ヘルペスウイルス2型(HSV-2)が含まれる。本発明の実施形態で用いられるHSV-1およびHSV-2は、これらに分類されるあらゆる株(例えば、HSV-1に分類されるKOS株、F株、17株、VR3株、HF株、HF10株およびSC16 株など、ならびに、HSV-2に分類される186株、G株および333株など)およびこれらの亜株に由来するものの全てを含む。
 すなわち、例えば、HSV-1を例にして説明すると、GenBank no. JQ673480.1(https://www.ncbi.nlm.nih.gov/nuccore/JQ673480.1)として全長ゲノム配列が開示されているKOS株以外にも、HSV-1に分類されるその他の株およびこれらの亜株に属するHSV-1であって、受容体標的化gD変異および少なくとも1つの膜融合活性促進領域(例えば、少なくとも1つのsyn変異を有する領域または膜融合促進外来遺伝子領域)を持つHSVのすべてが、本発明のHSVである。
 また、「膜融合活性促進領域」とは、HSVの膜融合活性を促進する機能を発揮するための変異または遺伝子を含む領域のことで、変異としては、例えば、syn変異を、遺伝子としては、後述の膜融合促進外来遺伝子を挙げることができる。
 前述の通り、受容体標的化gD変異とsyn変異を併せ持つ本発明のHSVウイルスは、他グループによってこれまでに報告されている腫瘍溶解性HSVウイルスよりも、in vivo において、格段に高い抗腫瘍効果を示す。そして、本発明のin vivoにおけるHSVウイルスの顕著な抗腫瘍効果は、そのゲノムに受容体標的化gD変異に加えてsyn変異を導入することによるもので、in vitroでのデータのみからでは予想できない効果である。本発明の優れた抗腫瘍効果により、本発明のウイルス製剤は、腫瘍内投与のみならず静脈内投与によっても十分な治療効果を発揮することが可能である。
 本明細書において、アミノ酸の変異について記載する場合、特に断らない限り、当該アミノ酸の置換、欠失および当該アミノ酸と隣接するアミノ酸間への1または数個(例えば、1~10個、好ましくは1~5個、より好ましくは1~3個程度)のアミノ酸の挿入などを意味する。例えば、ある配列を参照して、「R21の変異」と記載する場合には、そのアミノ酸配列中21番目のアミノ酸の欠失、他のアミノ酸への置換または21番目のアミノ酸と隣接するアミノ酸との間に1または数個のアミノ酸が挿入されることを意味する。なお、上記例示に関しては、HSVの株毎に、本明細書中に記載したアミノ酸番号が1~10程度ずれる可能性がある。従って、任意のHSV株において、例えば、アミノ酸番号が±n個(ただし、nは1以上10以下の整数)ずれる場合には、R21は、R(21±n)と読み替えるものとする。
 本発明の実施形態において、「受容体標的化gD変異」とは、HSVウイルスの細胞内への侵入を担うエンベロープ糖タンパク質であるgDの、HVEMとの結合能を喪失(または低下)させる変異、nectin-1との結合能を喪失(または低下)させる変異、3-OS-HSとの結合能を喪失(または低下)させる変異、および、腫瘍抗原との結合能を付与する変異(例えば、腫瘍抗原に対するscFvなどをコードするDNAの挿入変異など)のいずれをも併せ持つ、gD遺伝子またはgDタンパク質における、ヌクレオチドまたはアミノ酸変異のことである。配列番号1にKOS株のgDタンパク質のアミノ酸配列(N末端からの25アミノ酸残基からなるシグナルペプチドは含まない)を示す。
 以下にKOS株を例にして「受容体標的化gD変異」の具体例を説明するが、他の株についても同様である。KOS株のgDタンパク質は、GenBank no. JQ673480.1として登録されているKOS株ゲノム配列のヌクレオチド番号138279..139463の位置に順方向(右向き)にコードされている。
 HVEM、nectin-1、3-OS-HSとgDとの結合能が失われるようなgD変異については、例えば、Yoonら, J Virol. 77:9221-9231 2003、Spearら, Virology 344:17-24 2006、Connollyら, J Virol. 79:1282-1295 2005、Uchidaら, J Virol. 83:2951-2961 2009、Uchidaら, J Virol. 84:12200-12209 2010およびShibataら, Gene Ther. 23:479-488 2016など多くの公知文献に開示されており、当業者であれば、適宜、適切な変異を選択することができる。
 特に限定はしないが、あえて例示するならば、nectin-1との結合能を喪失させるアミノ酸変異の位置をgDタンパク質のアミノ酸位置として、配列番号1のアミノ酸番号で示すと、Δ6-38(アミノ酸位置6~38のアミノ酸の欠失)(Menottiら, J Virol. 82:10153-10161 2008)、Δ61-218(アミノ酸位置61~218のアミノ酸の欠失)(Menottiら, Proc Natl Acad Sci USA. 106:9039-9044 2009)、R222N/F223I(Uchidaら, J Virol. 83:2951-2961 2009)などR222およびF223の変異、A3C/Y38C(Connollyら, J Virol. 79:1282-1295 2005、Uchidaら, J Virol. 83:2951-2961 2009)などA3およびY38の変異などを挙げることができる。
 HVEMとの結合能を喪失させる変異の位置をgDタンパク質のアミノ酸位置として、配列番号1のアミノ酸番号で示すと、Δ7-32(アミノ酸位置7~32のアミノ酸の欠失)(Yoonら, J Virol. 77:9221-9231 2003)、Δ2-24(アミノ酸位置2~24のアミノ酸の欠失)(Shibataら, Gene Ther. 23:479-488 2016)、Δ7-11(アミノ酸位置7~11のアミノ酸の欠失)(Uchidaら, J Virol. 84:12200-12209 2010)およびΔ6-38(Menottiら, J Virol. 82:10153-10161 2008)などアミノ酸位置2~38に存在するアミノ酸の全部またはその一部の欠失、Δ61-218(アミノ酸位置61~218のアミノ酸の欠失)(Menottiら, Proc Natl Acad Sci USA. 106:9039-9044 2009)、ならびに、Q27A、Q27P、Q27R、T29A、D30A(以上、Spearら, Virology 344:17-24 2006)などQ27、T29およびD30の変異などを挙げることができる。
 なお、HVEMとの結合を阻害する変異の多くは、3-OS-HSを介した細胞への侵入も阻害することが示されている(YoonおよびSpear, Proc Natl Acad Sci USA. 101:17252-17257 2004)。
 本明細書において「腫瘍抗原」とは、腫瘍特異抗原(Tumor-specific antigens:TSA)および腫瘍関連抗原(Tumor-associated antigens:TAA)など、腫瘍(がん)細胞表面に特異的または多く発現している抗原のことであり、これまでに多くの抗原が報告されており、当業者であれば容易に選択することができる。特に限定することなく、あえて例示するならば、EGFR、CEA、EpCAM、CD133(prominin-1)、HER2(epidermal growth factor receptor 2)およびPSMA(prostate specific membrane antigen)などを挙げることができる。
 本明細書において、「腫瘍抗原との結合能を付与する変異」とは、腫瘍抗原と特異的に結合する分子、例えば、抗体、ペプチド(ペプチドアプタマーを含む)、タンパク質などをコードするDNAをgD遺伝子へ挿入し、当該腫瘍抗原と特異的に結合する分子と融合したgDタンパク質を発現させる変異のことである。腫瘍抗原と特異的に結合する分子をコードするDNAのgD遺伝子上の挿入位置は、特に限定されることはないが、例えば、HVEMとの結合能に関与するアミノ酸番号2~38(配列番号1)または61~218(配列番号1)をコードする遺伝子上の位置などに挿入してもよい。
 ここで、「抗体」とは、全長抗体であってもよいが、腫瘍抗原との特異的な結合能を保持している限り、抗体断片であってもよい。当該抗体断片の例として、特に限定はしないが、scFv(single chain Fv)、Fab、Fab’、F(ab’)2、Fv(variable fragment of antibody)、一本鎖抗体(重鎖、軽鎖、重鎖可変領域、軽鎖可変領域およびナノ抗体等)、diabody(scFv二量体)、dsFv(disulfide-stabilized Fv)およびCDRを少なくとも一部に含むペプチドなどを挙げることができ、好ましくは、一本鎖抗体およびscFvなどである。
 本発明の実施形態において、「syn変異(syncytial mutation)」とは、主として、HSVのgB遺伝子(またはgBタンパク質)、gK遺伝子(またはgKタンパク質)、UL20遺伝子(またはUL20タンパク質:envelope protein UL20)および/またはUL24遺伝子(またはUL24タンパク質:nuclear protein UL24)上に導入された変異のことで、この変異によりHSVによる膜融合活性が促進される。配列番号2、配列番号3、配列番号4および配列番号5に、各々、KOS株のgBタンパク質のアミノ酸配列、KOS株のgKタンパク質のアミノ酸配列、KOS株のUL20タンパク質のアミノ酸配列およびKOS株のUL24タンパク質のアミノ酸配列を示す。
 以下にKOS株を例にして「syn変異」の具体例を説明するが他の株についても同様である。KOS株のgBタンパク質は、GenBank no. JQ673480.1として登録されているゲノム配列のヌクレオチド番号53022..55736の位置に逆方向(左向き)に、gKタンパク質はヌクレオチド番号112101..113117の位置に順方向(右向き)に、UL20タンパク質はヌクレオチド番号40763..41431の位置に逆方向(左向き)に、UL24タンパク質はヌクレオチド番号47678..48487の位置に順方向(右向き)にコードされている。syn変異についても、多くの公知文献に開示されており、当業者であれば、適宜、適切な変異を選択することができる。
 主なgBタンパク質のsyn変異をgBタンパク質のアミノ酸位置として、配列番号2のアミノ酸番号で示すと、R796CなどR796の変異、R800WなどR800の変異、T813IなどT813の変異、L817HおよびL817PなどL817の変異、S854FなどS854の変異、A855VなどA855の変異、R858CおよびR858HなどR858の変異、E816とL817の間への挿入(VN(2アミノ酸挿入)およびVNVN(4アミノ酸挿入))、T877のナンセンス変異、S869のナンセンス変異などを挙げることができる。
 主なgKタンパク質のsyn変異をgKタンパク質のアミノ酸位置として、配列番号3のアミノ酸番号で示すと、P33SなどP33の変異、A40VおよびA40TなどA40の変異、L86PなどL86の変異、D99NなどD99の変異、A111VなどA111の変異、T121IなどT121の変異、C243YなどC243の変異、L304PなどL304の変異、R310LなどR310の変異などを挙げることができる。
 主なUL20タンパク質のsyn変異をUL20タンパク質のアミノ酸位置として、配列番号4のアミノ酸番号で示すと、Y49A単独変異、Y49A/S50A/R51AなどY49、S50およびR51の変異、R209A単独変異、R209A/T212A/R213AなどR209、T212およびR213の変異、N217以降のC末端の欠失、UL20タンパク質全長の欠失などを挙げることができる。
 主なUL24タンパク質のsyn変異をUL24タンパク質のアミノ酸位置として、配列番号5のアミノ酸番号で示すと、T62G/R63V/V64SなどT62、R63およびV64の変異などを挙げることができる。
 主なsyn変異を表1にまとめた。
Figure JPOXMLDOC01-appb-T000001
 本発明のHSVは、前述のsyn変異を保持する以外にも、HSVの膜融合を促進する外来遺伝子(以下「膜融合促進外来遺伝子」とも記載する)を発現可能な状態で保持してもよい。当該外来遺伝子が組み込まれるHSVゲノム上の位置は特に限定されず、HSVウイルスが腫瘍溶解性ウイルスとして備えるべき機能を阻害することがなければ、HSVゲノム上のいかなる位置であってもよい。
 上記膜融合促進外来遺伝子として、特に限定はしないが、例えば、テナガザル白血病ウイルス(GALV:gibbon ape leukemia virus)由来の融合性糖タンパク質(FMG:fusogenic membrane glycoprotein)を挙げることができる。GALVのFMG遺伝子を発現可能な状態でゲノム上に保持するHSVの作製は、当業者であれば容易に行うことが可能で、例えば、Simpsonら, Cancer Res. 66:4835-4842 2006およびNakamoriら, Clin Cancer Res. 9:2727-2733 2003などを参照して実施することができる。
 さらに、本発明のHSVは、レポーター遺伝子および任意の治療遺伝子(例えば、がん細胞の殺傷効果を高める遺伝子、腫瘍の血管新生を抑制する遺伝子および抗腫瘍免疫反応を促進する遺伝子など)などが発現可能な状態で、そのゲノム上に組み込まれていてもよい(詳細については、Petersら, Mol Ther Oncolytics. 2015;2. pii: 15010. Epub 2015 Jul 22などを参照のこと)。当該遺伝子が組み込まれるHSVゲノム上の位置は特に限定されず、HSVウイルスが腫瘍溶解性ウイルスとして備えるべき機能を阻害することがなければ、HSVゲノム上のいかなる位置であってもよい。
 レポーター遺伝子として、特に限定はしないが、例えば、LacZ遺伝子(Minetaら, Nat Med. 1:938-943 1995)、Luc遺伝子(Yamamotoら, Gene Ther. 13:1731-1736 2006)、GFP遺伝子(Adusumilliら, FASEB J. 20:726-728 2006)およびNIS遺伝子(Liら, Cancer Gene Ther. 20:478-485 2013)などを挙げることができる。
 また、治療遺伝子については、特に限定はしないが、例えば、細胞傷害分子をコードする遺伝子としてCD遺伝子(Nakamuraら, Cancer Res. 61:5447-5452 2001)およびTRAIL遺伝子(Tamuraら, Mol Ther. 21:68-77 2013)など、免疫活性化分子をコードする遺伝子としてGM-CSF遺伝子(Liuら, Gene Ther. 10:292-303 2003)およびIL-12遺伝子(Rothら, Ther Clin Dev. 25:16-27 2014)など、微小環境制御分子をコードする遺伝子としてAngiostatin遺伝子(Zhangら, Mol Ther. 20:37-45 2012)、PF4遺伝子(Liuら, Mol Ther. 14:789-797 2006)およびChondroitinase-ABC遺伝子(Dmitrievaら, Clin Cancer Res. 17:1362-1372 2011)などを挙げることができる。
 本発明のウイルス製剤は、本発明のHSVの少なくとも1つを含み、薬学的に許容される成分、緩衝液、賦形剤、アジュバント、防腐薬、充填剤、安定化剤、増粘剤の他、製剤化において通常用いられる他の成分を含んでいてもよい。また、場合によっては、本発明のHSVの他、治療上有効な他の腫瘍溶解性ウイルスおよび/または治療上有効な薬剤等、例えば、抗がん剤、補助成分(例えば、CTLA-4 blockersやPD-1 antibodiesなどの免疫チェックポイント阻害剤、および、GM-CSFなどの免疫賦活剤など)が含まれていてもよい。
 本発明のウイルス製剤の剤形は、特に限定はされず、投与方法、投与経路あるいは保管方法などに適した形態であれば、いかなる形であってもよく、例えば、溶液や懸濁液などの液体、エマルジョン、錠剤、ペレットおよびカプセルなどの固形または半固形など任意の当業者によって選択可能な剤形として製剤化できる。
 本発明のウイルス製剤の製造に用いられる製剤用添加物の種類、有効成分に対する製剤用添加物の割合、またはウイルス製剤の製造方法は、その形態に応じて当業者が適宜選択することが可能である。製剤用添加物としては無機もしくは有機物質、または、固体もしくは液体の物質を用いることができ、一般的には、有効成分重量に対して1重量%から90重量%の間で配合することができる。具体的には、その様な物質の例としてラクトース、グルコース、マンニット、デキストリン、シクロデキストリン、デンプン、蔗糖、メタケイ酸アルミン酸マグネシウム、合成ケイ酸アルミニウム、カルボキシメチルセルロースナトリウム、ヒドロキシプロピルデンプン、カルボキシメチルセルロースカルシウム、イオン交換樹脂、メチルセルロース、ゼラチン、アラビアゴム、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、ポリビニルピロリドン、ポリビニルアルコール、軽質無水ケイ酸、ステアリン酸マグネシウム、タルク、トラガント、ベントナイト、ビーガム、酸化チタン、ソルビタン脂肪酸エステル、ラウリル硫酸ナトリウム、グリセリン、脂肪酸グリセリンエステル、精製ラノリン、グリセロゼラチン、ポリソルベート、マクロゴール、植物油、ロウ、流動パラフィン、白色ワセリン、フルオロカーボン、非イオン性界面活性剤、プロピレングルコール、水などが挙げられる。
 特に、本発明のウイルス製剤が注射剤や点滴剤など液体として製造される場合、その有効成分を、必要に応じて塩酸、水酸化ナトリウム、乳酸、リン酸一水素ナトリウム、リン酸二水素ナトリウムなどのpH調整剤、塩化ナトリウム、グルコースなどの等張化剤と共に注射用蒸留水に溶解し、無菌濾過してアンプルに充填するか、さらに、マンニトール、トレハロース、サッカロース、ソルビトール、デキストリン、シクロデキストリン、ゼラチンなどを加えて真空凍結乾燥し、用事溶解型の注射剤としてもよい。また、レチシン、ポリソルベート80 、ポリオキシエチレン硬化ヒマシ油などを加えて水中で乳化せしめ注射剤用乳剤とすることもできる。
 また、ウイルス製剤は、保存可能な状態で、液体または凍結乾燥粉末などの固体の状態で製剤化することができ、当該技術分野において知られている方法、例えば、WO98/02522、WO03/053463、WO2007/056847、WO2008/114021およびWO2014/053571などに開示される方法に基づいて、適宜変更を加えて製造してもよい。
 本発明のウイルス製剤は、腫瘍を溶解し得る経路であれば、如何なる投与経路であってもよく、例えば、腫瘍内投与の他、静脈内投与であってもよい。特に、本発明のウイルス製剤は、腫瘍溶解効果が極めて高いため、静脈内投与を行う場合であっても、既知の腫瘍溶解性ウイルス製剤と比較して、少ない投与量および/または投与回数で、十分な抗腫瘍効果を発揮することができる。
 本発明のウイルス製剤の投与量および投与回数は特に限定されず、治療の目的、がんの種類、患者の体重や年齢、疾患の重篤度などの条件に応じて、医師の判断により適宜選択することが可能である。
 また、本発明のウイルス製剤を投与する場合、様々な単位投与量を含んでいてもよい。単位投与量は、所定量の本発明のHSVの含有量のことであり、この単位投与量を1回の注入として投与してもよく、あるいは、設定された期間にわたる連続的注入を含んでもよい。また、投与回数は、1回の投与であっても複数回の投与であってもよい。
 本発明の単位投与量は、すでに報告されている、腫瘍溶解性HSVウイルスの有効投与量(腫瘍の増大抑制効果を示す投与量)よりも少ない投与量、例えば、腫瘍内投与の場合、先行の腫瘍溶解性ウイルス(非特許文献10のFigure 4、非特許文献11のFigure 6などを参照のこと)の投与量(pfu)の約10-6~約10-5程度で、腫瘍の増大を抑制する効果を有している。
 本発明のHSVは、受容体標的化gD変異を持っているため、細胞表面に腫瘍抗原を発現している限り、当該細胞(腫瘍細胞)を溶解(殺傷)することが可能である。従って、本発明のウイルス製剤が治療の対象とするがんは、いかなるものであってもよく、特に限定されない。あえて、典型的ながんを例示するならば、例えば、肝細胞癌、胆管細胞癌、腎細胞癌、扁平上皮癌、基底細胞癌、移行細胞癌、腺癌、悪性ガストリノーマ、メラノーマ、線維肉腫、粘液肉腫、脂肪肉腫、平滑筋肉腫、横紋筋肉腫、悪性奇形腫、血管肉腫、カポジ肉腫、骨肉腫、軟骨肉腫、リンパ管肉腫、悪性髄膜腫、非ホジキンリンパ腫、ホジキンリンパ腫、白血病および脳腫瘍等の悪性腫瘍、上皮細胞由来新生物(上皮癌腫)、基底細胞癌腫、腺癌腫、口唇癌、口腔癌、食道癌、小腸癌および胃癌のような胃腸癌、結腸癌、直腸癌、肝癌、膀胱癌、膵臓癌、卵巣癌、子宮頚癌、肺癌、乳癌、扁平上皮細胞癌および基底細胞癌のような皮膚癌、前立腺癌並びに腎細胞癌腫などの悪性新生物の他、全身の上皮、間葉または血液細胞を冒す他の既知のがんなどを挙げることができる。
 本発明の第2の実施形態は、受容体標的化gD変異および少なくとも1つのsyn変異を持つHSVウイルスを含むウイルス製剤を患者(ヒト以外の哺乳動物を含む)等に投与して、がんの治療(腫瘍の退縮など)を行う、治療方法(以下「本発明のがんの治療方法」とも記載する)である。本発明のがんの治療方法には、すでに発生している腫瘍の退縮を目的とする治療、転移が予想される場合の転移したがん細胞の殺傷を目的とする治療などが含まれ、外科的手術の術前または術後の補助療法なども含まれる。
 治療の対象となる「哺乳動物」は、哺乳類に分類される任意の動物を意味し、特に限定はしないが、例えば、ヒトの他、イヌ、ネコ、ウサギなどのペット動物、ウシ、ブタ、ヒツジ、ウマなどの家畜動物など、いかなる動物であってもよい。好ましくは、ヒトである。
 本明細書が英語に翻訳されて、単数形の「a」、「an」、および「the」の単語が含まれる場合、文脈から明らかにそうでないことが示されていない限り、単数のみならず複数のものも含むものとする。
 以下に実施例を示してさらに本発明の説明を行うが、本実施例は、あくまでも本発明の実施形態の例示にすぎず、本発明の範囲を限定するものではない。
 本実施例では、本発明のウイルス製剤を皮下腫瘍モデルマウスに腫瘍内投与および静脈内投与を行った場合の抗腫瘍効果を示す。以下に示す通り、本発明のウイルス製剤は、既知の腫瘍溶解性HSVウイルス製剤と比較して、極めて優れた抗腫瘍効果を示すことが確認できた。
1.材料および方法
1-1.細胞
 ヒト神経膠腫細胞株U87(ATCC HTB-14)は10% FBS(Thermo Fisher Scientific、Waltham、MA)添加イーグル最小必須培地(E-MEM;FUJIFILM Wako Pure Chemical Corporation、大阪)を用いて培養した。ヒト肝芽腫細胞株HepG2(ATCC HB-8065)は10% FBS添加ダルベッコ変法イーグル培地(DMEM、Thermo Fisher Scientific)を用いて培養した。サル腎臓細胞株Vero(ATCC CCL-81)は5% FBS添加DMEMを用いて培養した。サル腎臓細胞株Vero(ATCC CCL-81)にヒトEpCAMを導入した亜株(Vero-EpCAM)は5% FBS添加ダルベッコ変法イーグル培地(DMEM、Thermo Fisher Scientific)に4 μg/mL puromycin(Thermo Fisher Scientific)を加えた培地を用いて培養した(非特許文献5を参照のこと)。U87細胞はCellmatrix type I-P(新田ゼラチン、大阪)をコートしたフラスコで培養した。
 全ての細胞はマイコプラズマの混入がないことを確認している。
1-2.ウイルスおよび精製方法
 EGFR標的化RR-oHSV(KGNE)およびEpCAM標的化RR-oHSVのgBおよびgKにsyn変異(gB:R858HおよびgK:A40T)を導入したウイルス(KGNE-BhKtおよびKGNEp-BhKt)は以前報告したものを使用した(非特許文献5および非特許文献9)。これらのウイルスはサイトメガロウイルスの前初期プロモーター制御化でEGFPを発現し、gBに細胞内侵入増強二重変異(gB:D285N/A549T)を有する(非特許文献7)。
 KOS-37 BAC(Gieraschら, J Virol Methods. 135:197-206 2006)にEGFPの発現カセットを導入したウイルス(KG)、KGのICP34.5遺伝子を欠失させたウイルス(KGΔ)ならびにKGΔのgBおよびgKにsyn変異(gB:R858HおよびgK:A40T)を導入したウイルス(KGΔ-BhKt)のウイルスゲノムをコードするプラスミド(pKG、pKGΔならびにpKGΔ-BhKt)はRed相同組換えシステムに基づく遺伝子改変により作製した(Tischerら, Biotechniques 40:191-197 2006)。簡潔に、KOS-37 BACのウイルスゲノムがコードされているBAC plasmid(Dartmouth Medical SchoolのDavid Leibより供与頂いた。)に対して以前報告した方法と同様にEGFPの発現カセットを導入することによりpKGを作製した(非特許文献5)。プライマーセット(5’-CCCAGGTAACCTCCACGCCCAACTCGGAACCCGTGGTCAGGAGCGCGCCCAGGATGACGACGATAAGTAGGG-3’(配列番号6)および5’- GACGACTCGGCGGACGCTGGTTGGCCGGGCCCCGCCGCGCTGGCGGCCGCGGGCGCGCTCCTGACCACGGGTTCCGAGTTGGGCGTGGAGGTTACCTGGGCTACAACCAATTAACCAATTCTGATTAG-3’(配列番号7))を用いて、pEPkan-S2(Free University of BerlinのNikolaus Osterriederより供与頂いた。)がコードするI-Sce Iの認識配列に挟まれたカナマイシン耐性遺伝子を増幅した配列をtargeting fragmentとして、pKGのICP34.5遺伝子を欠失させることによりpKGΔを作製した。ICP34.5はウイルスゲノム上に2コピー存在するため、2コピーの欠失操作は1コピーずつ2段階で行った。pKGΔのgBおよびgKに対して、以前報告した方法と同様にsyn変異(gB:R858HおよびgK:A40T)を導入することによりpKGΔ-BhKtを作製した(非特許文献9)。全てのコンストラクトはPCR解析、制限酵素消化後のパルスフィールドゲル電気泳動解析、DNA配列解析により目的の改変が正しく行われたことを確認した。KG、KGΔ、KGΔ-BhKtはVero細胞に対してpKG、pKGΔ、pKGΔ-BhKtをpxCANCre(東京大学のIzumu Saitoより供与頂いた。)と共にトランスフェクションすることにより作製し、Vero細胞を用いて2回限界希釈することにより単クローン化したものを使用した。単クローン化したクローンのBAC配列が除去されていることは以前報告した方法で確認した(Miyagawaら, Proc Natl Acad Sci USA. 112:E1632-1641 2015)。
 動物実験に用いるウイルスストックは後述の通りに調製した。単層培養したVero-EpCAM細胞にKG、KGΔおよびKGNEをMOI 0.03、KGNEpをMOI 0.06、KGΔ-BhKtおよびKGNE-BhKtをMOI 0.003、KGNEp-BhKtをMOI 0.006となるように37℃で翌日まで感染させ、翌日から33℃で4日間培養した。感染開始から5日後に培養液に対して1/10量の5 M NaClを添加し、翌日まで33℃で培養した。翌日に室温で60分間振盪することにより細胞を全て剥離させ、細胞ごと培養液を回収し、4℃、2,100×gで15分間遠心分離した。上清を0.8 μmのニトロセルロース膜フィルター(Thermo Fisher Scientific)を用いて濾過し、濾液を4℃、48,500×gで30分間遠心分離した。上清を除去し、ダルベッコリン酸緩衝生理食塩水(PBS;Sigma、St. Louis、MO)を用いて再懸濁した。終濃度が2 mMとなるようにMgCl2水溶液を加えた後に、終濃度が300 units/mLとなるように Benzonase(登録商標) Nuclease(Merck、Darmstadt、Germany)を加え、室温で1時間穏やかに転倒混和した。PBSで希釈した後に4℃、48,500×gで30分間遠心分離し、上清を除去した。再度PBSを加えた後に、4℃、48,500×gで30分間遠心分離し、上清を除去した。少量のPBSを穏やかに加え、翌日まで4℃で静置した。翌日に、ペレットをピペッティングならびに18G針、21G針、24G針、27G針、30G針(Termo、東京、日本)を用いてほぐした後に、少量ずつ小分けに分注し、液体窒素で急速凍結した後に-80℃で保存した。全てのウイルスのプラーク形成単位(pfu)濃度(pfu/mL)はVero-EpCAM細胞を用いた感染力価測定を3回独立して行って得られた結果の平均値を求めることにより決定した。
1-3.プラークフォーメーションアッセイ(Plaque formation assay)およびセルキリングアッセイ(Cell killing assay)
1-3-1.プラークフォーメーションアッセイ
 前日に細胞を6-well plateに播種し、単層培養した細胞に各ウイルスを30 pfu/wellあるいは100 pfu/wellとなるように加え、37℃で2時間培養した後に1%メチルセルロース含有培地を重層して3日間37℃で培養した。EGFPの蛍光画像はBZ-X700顕微鏡(KEYENCE、大阪、日本)を用いて撮影した。プラーク面積はHybrid Cell Count software BZ-H3C(KEYENCE)にて解析した。
1-3-2.セルキリングアッセイ
 前日に細胞を96-well plateに播種し、単層培養した細胞に各ウイルスをMOI 0.001、0.01あるいは0.1となるように加え、37℃で3日間培養した。上清を除き、0.5 mg/mLのMTT in PBS (-)を加えて37℃で1時間培養した。上清を除き、99%エタノールを加えて室温で30分インキュベートした後にOD540およびOD630の吸光度をSynergy NEO2(BioTek, Winooski, USA)を用いて測定した。
1-4.動物実験
 全ての動物実験は東京大学の動物実験専門委員会に承認されており、東京大学動物実験実施規則および東京大学動物実験実施マニュアルを遵守した方法にて実施した。6-8週齢、雌の重度複合免疫不全マウスSCID-Beige(CB17.Cg-PrkdcscidLystbg-J/CrlCrlj;日本チャールス・リバー、神奈川)の左側腹部皮下にHanks’ balanced salt solution(Thermo Fisher Scientific)に懸濁した各種ヒトがん細胞株を1×107個/100 μLずつ移植した。腫瘍体積の平均値が図の説明に記載した値に達した時点に腫瘍体積の平均値が近似するようにマウスをグルーピングし、PBSおよびPBSに懸濁したウイルスを30 μLの体積で腫瘍内投与あるいは200 μLの体積で右尾静脈内投与した。腫瘍内投与は、腫瘍の長軸方向に対して針を3分の2ほど侵入させた1点でサンプルを投与することにより行った。細胞の移植およびウイルスの投与には27G針を用い、各マウスに対して独立して調製したものを投与することにより針の使い回しを避けた。腫瘍におけるEGFPの発現は波長交換式ツインアームLED照射装置(オプトコード株式会社、東京)を用いて確認した。腫瘍体積は(長径×短径)/2の計算式で求めた(Tomaykoら, Cancer Chemother Pharmacol. 24:148-154 1989)。
1-5.統計解析
 全ての統計解析はPrism 8 for macOS version 8.2.0 (272)を用いて行った。プラークフォーメーションアッセイの統計解析はDunn’s multiple comparison testにて行った。セルキリングアッセイの統計解析はTurky’s multiple comparison testにて行った。腫瘍体積の統計解析は2-way repeated measure ANOVAにて行い、生存率の統計解析はlog-lank testにて行った。全ての統計解析において、P値が0.05未満であった場合に有意差有りと判定した。
2.結果
2-1.RR-oHSVのin vivoにおける効果の検討
2-1-2.ヒト神経膠腫の皮下腫瘍モデルに対する腫瘍内投与による抗腫瘍効果の比較
 In vitroにてRR-oHSVの細胞間伝播様式を多核巨細胞形成の伴う様式へと変化させ、細胞間伝播効率ならびに殺細胞能を増強した2つのsyn変異(BhKt変異)が、in vivoにおけるRR-oHSVの抗腫瘍効果を増強するか否か検討するために、oHSVの抗腫瘍効果の検討に頻用されているヒト神経膠腫細胞株U87のゼノグラフトモデル(非特許文献10および非特許文献11)に対するKGNEおよびKGNE-BhKtの抗腫瘍効果を評価した。U87細胞はEGFR陽性であり、107 pfuのKGNEを腫瘍内投与することにより有意な抗腫瘍効果を発揮することが確認されている細胞株である(非特許文献6)。
 In vitroにおいて、U87細胞におけるKGNEおよびKGNE-BhKtの感染性を検討したところ、BhKt変異の導入により多核巨細胞を形成するようになり、細胞間伝播効率ならびに殺細胞能が有意に増強することが確認された。In vivoにおける抗腫瘍効果にBhKt変異の導入が与える影響を検討するために、U87細胞の皮下移植モデルマウスの腫瘍体積が約300 mm3に達した際に、KGNEおよびKGNE-BhKtを腫瘍の中心付近に直接投与した。その結果、102 pfuのKGNE投与群はPBS投与群と比較して有意な抗腫瘍効果を発揮しなかった(p = 0.62)のに対して、103 pfuのKGNE投与群は有意な抗腫瘍効果を発揮した(p < 0.0001)(図1)。103 pfuのKGNE投与群のマウスのうち一匹に腫瘍の退縮がみられた。一方でKGNE-BhKt投与群は全ての投与量で腫瘍の退縮がみられ、103 pfuのKGNE投与群と比較して全てのKGNE-BhKt投与群は有意に高い抗腫瘍効果を発揮した(p < 0.0001)(図1)。KGNE-BhKt投与群では、全てのマウスにおいて腫瘍の退縮がみられた(図2)。これらの結果から、BhKt変異の導入により、in vivoにおけるRR-oHSVの抗腫瘍効果が少なくとも100倍以上増強することが示唆された。
 なお、in vitroの結果ではあるが、syn変異として、gBのみに導入したKGNE-BhおよびgKのみに導入したKGNE-Ktの細胞間伝播効率は、KGNE(syn変異無し)よりも優れていることが報告されている(非特許文献9)。従って、in vivoにおいて、gBまたはgKのいずれかにのみ変異を導入したsyn変異を持つHSVであっても、KGNE(syn変異無し)よりも優れた抗腫瘍効果を発揮し得ると考えられる。
2-1-2.より巨大な腫瘍モデルに対する腫瘍内投与による抗腫瘍効果の比較
 諸家の報告より巨大な腫瘍に対してもKGNE-BhKtの腫瘍内投与による抗腫瘍効果がみられるか否か検討するために、腫瘍体積が約780 mm3に達した時点で107 pfuのKGNEおよび102 pfuのKGNE-BhKtを腫瘍内投与し、抗腫瘍効果を検討した。PBS投与群では腫瘍内投与から10日後の測定で全てのマウスの腫瘍が体重の10%に達した一方で、KGNE投与群では6匹中5匹の腫瘍が10日後に体重の10%に達し、KGNE-BhKt 投与群では6匹中1匹のみの腫瘍が15日後に体重の10%に達した(図3)。KGNE-BhKtはKGNEの10万分の1の投与量であるにも関わらず、6匹中5匹に急速な腫瘍の退縮がみられ、これらのマウスの腫瘍は完全に退縮するに至った(図3)。観察期間中に腫瘍の再増大の兆候はみられなかった。これらの結果から、KGNE-BhKtはKGNEよりも10万倍以上の抗腫瘍効果を有していることが示唆された。また、KGNE-BhKt投与群のマウスの所見に異常は見られず、腫瘍の退縮がみられてから最終測定日にかけて全ての個体で大きな体重減少がみられなかったことから、BhKt変異などのsyn変異をHSVに導入したとしても高い安全性を維持していることが示唆された。
2-1-3.全身投与による抗腫瘍効果の検討
 腫瘍内投与による高い抗腫瘍効果ならびに安全性がみられたため、同マウスモデルに対してKGNE-BhKtを静脈内投与した際の抗腫瘍効果を検討した。腫瘍体積が約300 mm3に達した際に、103から107 pfuのKGNE-BhKtを尾静脈から投与した。その結果、103および104 pfuの静脈内投与で5匹中1匹、105 pfuの静脈内投与で5匹中2匹、106および107 pfuの静脈内投与で全てのマウスで腫瘍の退縮がみられた(図4)。これらの結果から、KGNE-BhKtは10pfuの静脈内投与であっても腫瘍を退縮させることが可能であり、投与量を増やすことにより全てのマウスの腫瘍を完全に退縮させうることが示唆された。
 投与時の腫瘍体積の違いが静脈内投与後の抗腫瘍効果に与える影響を検討するために、腫瘍体積が約730 mm3に達した際に同様の検討を行った。その結果、10pfuの静脈内投与では全てのマウスにおいて腫瘍の退縮がみられなかったものの、104 pfuの静脈内投与で5匹中1匹、105、106ならびに10pfuの静脈内投与で全てのマウスに腫瘍の完全な退縮がみられた(図5)。これらの結果から、腫瘍体積がより大きな時点で投与した方が、より少量の投与量で腫瘍の退縮効果が得られることが示唆された。
 上記の検討結果を踏まえ、皮下腫瘍体積が約500-1,800 mm3に達したマウスにKGNE-BhKtを静脈内投与したところ、全てのマウスで急速な腫瘍の退縮がみられた(図6)。この結果から、KGNE-BhKtは腫瘍体積が1,800 mm3に達するほどの腫瘍をも静脈内投与により退縮させうることが示唆された。また、KGNE-BhKtを静脈内投与した全ての検討において、全てのマウスで異常所見はみられず、腫瘍の退縮がみられてから最終測定日にかけて全ての個体で大きな体重減少がみられなかったことから、KGNE-BhKtは安全に全身投与可能であることが示唆された。
2-1-4.全身投与による抗腫瘍効果に関するKGNEとKGNE-BhKtの比較
 KGNEとKGNE-BhKtの抗腫瘍効果を比較するために、HepG2の皮下腫瘍モデルの腫瘍体積が約570 mm3に達した際に、KGNEおよびKGNE-BhKtを単回静脈内投与した(図7)。各ウイルスを投与してからPBS投与群のマウスがエンドポイント(腫瘍体積が体重の10%を超過した時点)に達した11日後までの抗腫瘍効果をPBS投与群と比較したところ、107 pfuのKGNE投与群および全ての投与量のKGNE-BhKt投与群で有意に高い抗腫瘍効果が認められた(p < 0.0001)。KGNE投与群のマウスがエンドポイントに達した21日後までのKGNE投与群とKGNE-BhKt投与群の抗腫瘍効果を比較したところ、全ての投与量のKGNE-BhKt投与群で10pfuのKGNE投与群よりも有意に高い抗腫瘍効果が認められた(105 pfu: p = 0.048, 107 pfu: p < 0.0001)。この結果からKGNE-BhKtはHepG2の皮下腫瘍モデルに対してはKGNEと比較して少なくとも100倍以上高い抗腫瘍効果を発揮することが示唆された。以上の結果から、BhKt変異の導入により、様々ながん細胞に対するRR-oHSVの抗腫瘍効果を増強することが可能であることが示唆された。
2-1-5.EpCAM(Epithelial cell adhesion molecule, CD326:上皮細胞接着分子)を標的とするRR-oHSV-synの抗腫瘍効果
 EGFRとは異なる分子を標的とするRR-oHSV-synも抗腫瘍効果を発揮するか否かを検討するために、HepG2の皮下腫瘍モデルの腫瘍体積が約580 mm3に達した際にKGNEp-BhKtおよびKGNE-BhKtを単回静脈内投与した。(図8)。各ウイルスを投与してからPBS投与群のマウスがエンドポイントに達した8日後までの抗腫瘍効果をPBS投与群と比較したところ、どちらのウイルス投与群も有意に高い抗腫瘍効果を発揮した(p < 0.0001)。一方で、KGNE-BhKt投与群とKGNEp-BhKt投与群の間には投与から18日後の測定までは有意な差が認められなかった(p = 0.15)ものの、投与から21日後の測定からは有意差が認められはじめ、実験終了時(投与から42日後)までの結果においても有意差が認められた(p = 0.0045)。この結果から、RR-oHSV-synは標的分子の種類によらず抗腫瘍効果を発揮することができるものの、抗腫瘍効果の程度は異なりうることが示唆された。
 RR-oHSV-synがin vivoにおいても標的特異性を維持しており、標的分子を発現しないがん細胞に対しては抗腫瘍効果を発揮しないか否か検討するために、EpCAM陰性のU87細胞の皮下腫瘍モデルの腫瘍体積が約270 mm3に達した際に、HepG2に対して有意な抗腫瘍効果を発揮した投与量の10倍量のKGNEp-BhKtおよびKGNE-BhKtを単回静脈内投与した(図9)。各ウイルスを投与してからPBS投与群のマウスがエンドポイントに達した18日後までの抗腫瘍効果を比較したところ、KGNE-BhKt投与群は有意に高い抗腫瘍効果を発揮した一方で(p < 0.0001)、KGNEp-BhKt投与群はPBS投与群と比較して有意な差が認められなかった(p = 0.90)。以上の結果から、RR-oHSV-synは標的分子を発現しないがん細胞の腫瘍に対しては抗腫瘍効果を発揮せず、in vivoにおいてもRR-oHSV-synの標的特異性が維持されていることが示唆された。
2-2.RR-oHSVとCR-oHSVの抗腫瘍効果の比較
 正常細胞における増殖効率を減弱させたCR-oHSVがこれまでに報告されている。これまでにsyn変異を有するCR-oHSVとして、ICP34.5、ICP6、ICP0、ICP4、UL56の1または複数を欠失するHSVが報告されている(Fuら, Cancer Res. 62:2306-2312 2002、Nakamoriら, Clin Cancer Res. 9:2727-2733 2003、Nakamoriら, Prostate 60:53-60 2004、Fuら, Int J Oncol. 30:1561-1567 2007、Nakamoriら, Mol Ther. 9:658-665 2004、Israyelyanら, Hum Gene Ther. 18:457-473 2007、Israyelyanら, Virol J. 5:68 2008、Takaokaら, Virol J. 8:294 2011)。
 そこで、syn変異を有する本発明のRR-oHSVとsyn変異を有するCR-oHSVの抗腫瘍効果にどのような差が生じるか検討を行った。
2-2-1.BhKt変異導入型oHSVの構造
 RR-oHSVの抗腫瘍効果をCR-oHSVと比較するにあたり、CMVプロモーター制御下でEGFPを発現するHSV(KG)のICP34.5遺伝子を欠失させることによりCR-oHSV(KGΔ)を作製した(図10)。BhKt変異の導入による効果を検討するために、KGΔにBhKt変異を導入したKGΔ-BhKtを作製した(図10)。比較対照のRR-oHSVとしてはKGNEならびにKGNE-BhKtを用いた(図10)。
2-2-2.In vitroにおけるBhKt変異導入型oHSV(RR-oHSVおよびCR-oHSV)のU87細胞に対する感染効率および殺細胞能
 U87細胞におけるプラーク形態がBhKt変異の導入により多核巨細胞を伴う形態に変化するか否か確認したところ、KGΔおよびKGNEのプラーク形態はBhKt変異の導入により多核巨細胞形成を伴う形態に変化した(図11A)。また、形成されたプラーク面積を比較したところ、BhKt変異導入型RR-oHSVは親株よりも有意に大きなプラークを形成した。BhKt変異を導入したウイルス同士のプラーク面積に有意差は認められなかった(図11B)。
 U87細胞に対する各ウイルスの殺細胞能を比較したところ、検討した全てのMOIにおいてBhKt変異導入型oHSVは親株よりも高い殺細胞能を有していることが示唆された(図11C)。また、KGΔ-BhKtとKGNE-BhKtの殺細胞能は同程度であることが示唆された(図11C)。
 以上の結果から、in vitroにおけるBhKt変異の導入による細胞間伝播能および殺細胞の増強効果はICP34.5欠失型CR-oHSVとEGFR標的化RR-oHSVで同程度であることが示唆された。
2-2-3.BhKt変異を導入する前のICP34.5欠失型CR-oHSVおよびRR-oHSVのU87細胞の皮下腫瘍モデルに対する抗腫瘍効果
 BhKt変異の導入によるoHSVの抗腫瘍効果の増強の有無を検討するにあたり、親株であるKGΔおよびKGNEが毒性を示さず、有意な抗腫瘍効果を発揮する投与量を確認するために、重度免疫不全マウスにU87細胞を皮下移植したゼノグラフトモデルに104 pfuあるいは10pfuのウイルスを単回腫瘍内投与した(図12)。107 pfuのKGを投与したマウスの一部で投与から9日後に腫瘍から背部にかけての皮膚障害がみられ、投与から15日後には皮膚障害が腫瘍体積の測定が不能となるほどに拡大した。104 pfuのKGを投与したマウスでは投与から12日後に一部のマウスで同様の皮膚障害がみられ、投与から18日後には皮膚障害が腫瘍体積の測定が不能となるほどに拡大した。107 pfuのKGを投与した群ではエンドポイントに至る前に6匹全てのマウスが死亡し、104 pfuのKGを投与した群では2匹のマウスが死亡した。一方で、KGΔあるいはKGNEを投与した全てのマウスにKGを投与したマウスで見られた皮膚障害は一切確認できず、エンドポイントに至る前に死亡するマウスは存在しなかった。この結果から、ICP34.5の欠失あるいは受容体標的化改変により、腫瘍内投与後の毒性が減弱していることが示唆された。107 pfuを投与した条件において、KGΔ投与群ならびにKGNE投与群はPBS投与群に対して有意な抗腫瘍効果を発揮した(KGΔ: p = 0.0005 , KGNE: p < 0.0001)。104 pfuを投与した条件においては、KGΔ投与群はPBS投与群に対して有意な抗腫瘍効果を発揮しなかった一方で、KGNE投与群は有意な抗腫瘍効果を発揮した(KGΔ:p = 0.77, KGNE:p < 0.0001)。また、KGΔとKGNEの抗腫瘍効果を比較したところ、107 pfuを投与した条件で有意な差が認められた(p < 0.0001)。また、104 pfuのKGNEを投与した条件と107 pfuのKGΔでは有意な差が認められなかった(p = 0.43)。これらの結果から、KGNEはKGΔより高い抗腫瘍効果を発揮することが可能であり、KGΔの1000分の1のウイルス量で同程度の抗腫瘍効果を発揮しうることが示唆された。
2-2-4.BhKt変異の導入がICP34.5欠失型CR-oHSVおよびRR-oHSVの抗腫瘍効果に与える影響
 ICP34.5欠失型CR-oHSVの抗腫瘍効果がBhKt変異の導入により増強されるか否か検討するために、U87細胞の皮下腫瘍体積が約300 mm3に達した際にICP34.5欠失型CR-oHSVを単回腫瘍内投与した後の抗腫瘍効果を検討した(図13)。PBSを投与した群と比較して101 pfuのKGΔ-BhKtを投与した群では有意な抗腫瘍効果が認められなかった(p = 0.72)ものの103 pfu以上のKGΔ-BhKtを投与した群において有意に高い抗腫瘍効果が認められた(103 pfu: p = 0.0041 , 105 pfuおよび107 pfu: p < 0.0001)。また、105 pfu以上のKGΔ-BhKtを投与した群は107 pfuのKGΔを投与した群よりも高い抗腫瘍効果を発揮した(105 pfu: p = 0.0066 , 107 pfu: p < 0.0001)。この結果から、BhKt変異の導入によりICP34.5欠失型CR-oHSVの抗腫瘍効果が少なくとも100倍増強することが示唆された。しかしながら、KGΔ-BhKt投与群は107 pfuを投与したとしても一時的に腫瘍の増大を抑制するに止まった一方で、KGNE-BhKt投与群は101 pfuの投与で全てのマウスの腫瘍を完全に退縮させ、107 pfuのKGΔ-BhKtよりも有意に高い抗腫瘍効果を発揮した(p < 0.0001)。この結果から、U87細胞の皮下腫瘍モデルにおいて、KGNE-BhKtはKGΔ-BhKtよりも少なくとも100万倍高い抗腫瘍効果を発揮することが示唆された。
2-2-5.BhKt変異導入型RR-oHSVとCR-oHSVの全身投与による抗腫瘍効果の比較
 静脈内投与した場合もKGNE-BhKtはKGΔ-BhKtよりも高い抗腫瘍効果を発揮するか否かを確認するために、U87細胞の皮下腫瘍マウスモデルに対してKGNE-BhKtあるいはKGΔ-BhKtを静脈内投与した際の抗腫瘍効果を検討した。U87細胞の皮下腫瘍体積が約700 mm3に達した際に、各ウイルスを単回静脈投与した(図14)。その結果、PBS投与群では全てのマウス、KGΔ-BhKt投与群では5匹中の4匹のマウスの腫瘍が増大し続けた一方で、KGNE-BhKt投与群においては、107 pfuを投与した群では投与3日後まで、106 pfuを投与した群では投与5日後まで、105 pfuを投与した場合には投与7日後まで腫瘍体積の増大がみられたものの、その後は全てのKGNE-BhKt投与群において腫瘍の退縮が確認できはじめ、107 pfuを投与した群では投与30日後までに、106 pfuあるいは105 pfuを投与した群では投与35日後までに群内の全ての個体の腫瘍が完全退縮した。KGΔ-BhKt投与群のうち、投与時の腫瘍体積が最も小さかった1匹のマウスにおいては投与15日後まで腫瘍体積の増大が見られ、その後腫瘍の退縮がみられたものの、観察期間中(ウイルス投与から35日後)に腫瘍体積が投与時の腫瘍体積よりも小さくなるには至らなかった。観察期間中にKGNE-BhKtを投与した全ての個体において腫瘍の再増大は確認されず、マウスの行動所見に異常はみられなかった。PBS投与群とKGΔ-BhKt投与群の生存率を比較したところ、有意差が認められなかった一方で(p = 0.67)、全てのKGNE-BhKt投与群はPBS投与群あるいはKGΔ-BhKt投与群と比較した生存率に有意差が認められた(PBS: p = 0.0031, KGΔ-BhKt: p = 0.014)。これらの結果から、静脈内投与する条件においてもKGNE-BhKtはKGΔ-BhKtよりも少なくとも100倍高い抗腫瘍効果を発揮することが示唆された。
 U87細胞以外のがん細胞株を用いた場合にも同様の結果がみられるか否か確認するために、HepG2細胞の皮下腫瘍モデルに対するBhKt変異導入型oHSVの抗腫瘍効果を検討した。In vivoにおける検討の前に、HepG2細胞における各ウイルスの細胞間伝播効率および殺細胞能を検討したところ、KGNE-BhKtおよびKGΔ-BhKtは同程度の細胞間伝播能および殺細胞能を有していることが示唆された(図15)。また、KGNEに対するBhKt変異の導入により多核巨細胞形成を伴うプラーク形態へと変化したものの、KGNEとKGNE-BhKtの細胞間伝播効率および殺細胞効率は同程度であった(図15)。
 KGNE-BhKtとKGΔ-BhKtの抗腫瘍効果を比較するために、免疫不全マウスに移植したHerpG2細胞の皮下腫瘍体積が約530 mm3に達した際に、KGΔ-BhKtおよびKGNE-BhKtを単回静脈内投与した(図16)。各ウイルスを投与してからPBS投与群のマウスがエンドポイントに達した11日後までの抗腫瘍効果をPBS投与群と比較したところ、107 pfuのKGΔ-BhKt 投与群および全てのKGNE-BhKt投与群において有意に高い抗腫瘍効果が認められた(p < 0.0001)。KGΔ-BhKt投与群のマウスがエンドポイントに達した28日後までの抗腫瘍効果をKGNE-BhKt投与群の抗腫瘍効果と比較したところ、全てのKGNE-BhKt投与群の抗腫瘍効果はKGΔ-BhKt投与群の抗腫瘍効果よりも有意に高いことが認められた(p < 0.0001)。この結果から、HepG2の皮下腫瘍モデルにおいてもKGNE-BhKtはKGΔ-BhKtよりも少なくとも100倍高い抗腫瘍効果を発揮することが示唆された。
 本発明のウイルス製剤は、極めて高い抗腫瘍効果を発揮するものであり、医療分野における利用が期待される。

Claims (9)

  1.  ゲノム上に受容体標的化gD変異および少なくとも1つの膜融合活性促進領域を持つHSV(herpes simplex virus)を含む、がんの治療のためのウイルス製剤。
  2.  前記膜融合活性促進領域が、syn変異を有する領域または膜融合促進外来遺伝子領域であることを特徴とする請求項1に記載のウイルス製剤。
  3.  前記受容体標的化gD変異のうち、nectin-1との結合能を喪失させる変異が、配列番号1の6番目から38番目までのアミノ酸の全部の欠失、配列番号1の61番目から218番目のアミノ酸の全部の欠失、配列番号1の3番目および38番目のアミノ酸の変異、ならびに/または、配列番号1の222番目および223番目のアミノ酸の変異であることを特徴とする請求項1または2に記載のウイルス製剤。
  4.  前記配列番号1の3番目のアミノ酸変異が欠失またはシステインへの置換、38番目のアミノ酸変異がシステインへの置換、222番目のアミノ酸変異がアスパラギンへの置換および223番目のアミノ酸変異がイソロイシンへの置換であることを特徴とする請求項3に記載のウイルス製剤。
  5.  前記受容体標的化gD変異のうち、HVEMおよび3-OS-HSとの結合能を喪失させる変異が、配列番号1の2番目から38番目までのアミノ酸の全部もしくは一部の欠失、配列番号1の61番目から218番目までのアミノ酸の全部の欠失、配列番号1の27番目のアミノ酸変異、配列番号1の29番目のアミノ酸変異、および/または、配列番号1の30番目のアミノ酸変異であることを特徴とする請求項1または2に記載のウイルス製剤。
  6.  前記配列番号1の2番目から38番目までのアミノ酸の一部の欠失が、2番目から24番目までのアミノ酸の欠失、7番目から11番目までのアミノ酸の欠失、7番目から32番目までのアミノ酸の欠失もしくは6番目から38番目までのアミノ酸の欠失のいずれか、27番目のアミノ酸変異がアラニン、プロリンもしくはアルギニンへの置換、29番目のアミノ酸変異がアラニンへの置換および30番目のアミノ酸変異がアラニンへの置換であることを特徴とする請求項5に記載のウイルス製剤。
  7.  前記syn変異が、下記(a)、(b)、(c)および/または(d)に記載の変異であることを特徴とする請求項2に記載のウイルス製剤。
    (a)配列番号2の796番目のアミノ酸変異、800番目のアミノ酸変異、813番目のアミノ酸変異、817番目のアミノ酸変異、854番目のアミノ酸変異、855番目のアミノ酸変異、858番目のアミノ酸変異、816番目と817番目の間へのアミノ酸の挿入、877番目のアミノ酸のナンセンス変異および/または869番目のアミノ酸のナンセンス変異、
    (b)配列番号3の33番目のアミノ酸変異、40番目のアミノ酸変異、86番目のアミノ酸変異、99番目のアミノ酸変異、111番目のアミノ酸変異、121番目のアミノ酸変異、243番目のアミノ酸変異、304番目のアミノ酸変異および/または310番目のアミノ酸変異、
    (c)配列番号4の49番目のアミノ酸変異、49、50および51番目のアミノ酸変異、209番目のアミノ酸変異、209、212および213番目のアミノ酸変異、217番目のアミノ酸のナンセンス変異、ならびに/または、配列番号4で表されるアミノ酸配列全ての欠失、
    (d)配列番号5の62、63および64番目のアミノ酸変異
  8.  前記配列番号2の796番目のアミノ酸変異がシステインへの置換、配列番号2の800番目のアミノ酸変異がトリプトファンへの置換、配列番号2の813番目のアミノ酸変異がイソロイシンへの置換、配列番号2の817番目のアミノ酸変異がヒスチジンもしくはプロリンへの置換、配列番号2の854番目のアミノ酸変異がフェニルアラニンへの置換、配列番号2の855番目のアミノ酸変異がバリンへの置換、配列番号2の858番目のアミノ酸変異がシステインもしくはヒスチジンへの置換、
     配列番号3の33番目のアミノ酸変異がセリンへの置換、配列番号3の40番目のアミノ酸変異がバリンもしくはスレオニンへの置換、配列番号3の86番目のアミノ酸変異がプロリンへの置換、配列番号3の99番目のアミノ酸変異がアスパラギンへの置換、配列番号111番目のアミノ酸変異がバリンへの置換、配列番号121番目のアミノ酸変異がイソロイシンへの置換、配列番号3の243番目のアミノ酸変異がチロシンへの置換、配列番号3の304番目のアミノ酸変異がプロリンへの置換、配列番号3の310番目のアミノ酸変異がロイシンへの置換、
     配列番号4の49番目のアミノ酸変異がアラニンへの置換、配列番号4の50番目のアミノ酸変異がアラニンへの置換、配列番号4の51番目のアミノ酸変異がアラニンへの置換、配列番号4の209番目のアミノ酸変異がアラニンへの置換、配列番号4の212番目のアミノ酸変異がアラニンへの置換、配列番号4の213番目のアミノ酸変異がアラニンへの置換、
     配列番号5の62番目のアミノ酸変異がグリシンへの置換、63番目のアミノ酸変異がバリンへの置換、64番目のアミノ酸変異がセリンへの置換であることを特徴とする請求項7に記載のウイルス製剤。 
  9.  前記HSVのゲノム上にレポーター遺伝子および/または治療遺伝子が組み込まれていることを特徴とする、請求項1ないし8のいずれかに記載のウイルス製剤。
PCT/JP2019/042526 2018-10-30 2019-10-30 がん治療のための腫瘍溶解性ウイルス WO2020090871A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020553970A JPWO2020090871A1 (ja) 2018-10-30 2019-10-30 がん治療のための腫瘍溶解性ウイルス
US17/288,227 US20210386807A1 (en) 2018-10-30 2019-10-30 Oncolytic virus for cancer therapy
EP19880535.0A EP3875119A4 (en) 2018-10-30 2019-10-30 ONCOLYTIC VIRUS FOR THE TREATMENT OF CANCER

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-203553 2018-10-30
JP2018203553 2018-10-30

Publications (1)

Publication Number Publication Date
WO2020090871A1 true WO2020090871A1 (ja) 2020-05-07

Family

ID=70462070

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/042526 WO2020090871A1 (ja) 2018-10-30 2019-10-30 がん治療のための腫瘍溶解性ウイルス

Country Status (4)

Country Link
US (1) US20210386807A1 (ja)
EP (1) EP3875119A4 (ja)
JP (1) JPWO2020090871A1 (ja)
WO (1) WO2020090871A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024071397A1 (ja) * 2022-09-30 2024-04-04 国立大学法人 東京大学 Il13ra2に標的化した単純ヘルペスウイルス及び抗il13ra2抗体またはその抗原結合断片

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024067540A1 (en) * 2022-09-30 2024-04-04 Immvira Biopharmaceuticals Co., Limited Genetically engineered herpes simplex virus type 1 for treatment of hematologic cancers

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998002522A1 (fr) 1996-07-16 1998-01-22 Transgene S.A. Procede de conservation de virus recombinants infectieux, suspension aqueuse virale et utilisation comme medicament
WO2003053463A2 (en) 2001-12-10 2003-07-03 Bavarian Nordic A/S Poxvirus-containing compositions and process for their preparation
JP2005521398A (ja) * 2002-03-27 2005-07-21 ベイラー カレッジ オブ メディスン 癌治療用の強力な腫瘍溶解性単純ヘルペスウイルス
WO2007056847A1 (en) 2005-11-21 2007-05-24 Sanofi Pasteur Limited Stabilizing formulations for recombinant viruses
WO2008114021A1 (en) 2007-03-19 2008-09-25 Stabilitech Ltd. Method for preserving viral particles
WO2014053571A1 (en) 2012-10-02 2014-04-10 Transgene Sa Virus-containing formulation and use thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998002522A1 (fr) 1996-07-16 1998-01-22 Transgene S.A. Procede de conservation de virus recombinants infectieux, suspension aqueuse virale et utilisation comme medicament
WO2003053463A2 (en) 2001-12-10 2003-07-03 Bavarian Nordic A/S Poxvirus-containing compositions and process for their preparation
JP2005521398A (ja) * 2002-03-27 2005-07-21 ベイラー カレッジ オブ メディスン 癌治療用の強力な腫瘍溶解性単純ヘルペスウイルス
WO2007056847A1 (en) 2005-11-21 2007-05-24 Sanofi Pasteur Limited Stabilizing formulations for recombinant viruses
WO2008114021A1 (en) 2007-03-19 2008-09-25 Stabilitech Ltd. Method for preserving viral particles
WO2014053571A1 (en) 2012-10-02 2014-04-10 Transgene Sa Virus-containing formulation and use thereof

Non-Patent Citations (45)

* Cited by examiner, † Cited by third party
Title
"GenBank", Database accession no. JQ673480.1
ADUSUMILLI ET AL., FASEB J, vol. 20, 2006, pages 726 - 728
ANDTBACKA ET AL., J CLIN ONCOL., vol. 33, 2015, pages 2780 - 2788
CONNOLLY ET AL., J VIROL, vol. 79, 2005, pages 1282 - 1295
DMITRIEVA ET AL., CLIN CANCER RES, vol. 17, 2011, pages 1362 - 1372
EJERCITO ET AL., J GEN VIROL, vol. 2, 1968, pages 357 - 364
FU ET AL., CANCER RES, vol. 62, 2002, pages 2306 - 2312
FU ET AL., INT J ONCOL, vol. 30, 2007, pages 1561 - 1567
GERAGHTY ET AL., SCIENCE, vol. 280, 1998, pages 1618 - 1620
GIERASCH ET AL., J VIROL METHODS, vol. 135, 2006, pages 197 - 206
ISRAYELYAN ET AL., HUM GENE THER, vol. 18, 2007, pages 457 - 473
ISRAYELYAN ET AL., VIROL J, vol. 5, 2008, pages 68
LI ET AL., CANCER GENE THER, vol. 20, 2013, pages 478 - 485
LIU ET AL., GENE THER, vol. 10, 2003, pages 292 - 303
LIU ET AL., MOL THER, vol. 14, 2006, pages 789 - 797
MENOTTI ET AL., J VIROL, vol. 82, 2008, pages 10153 - 10161
MENOTTI ET AL., PROC NATL ACAD SCI USA., vol. 106, 2009, pages 9039 - 9044
MINETA ET AL., NAT MED, vol. 1, 1995, pages 938 - 943
MIYAGAWA ET AL., PROC NATL ACAD SCI USA., vol. 112, 2015, pages E1632 - 1641
MONTGOMERY ET AL., CELL, vol. 87, 1996, pages 427 - 436
NAKAMORI ET AL., CLIN CANCER RES, vol. 9, 2003, pages 2727 - 2733
NAKAMORI ET AL., MOL THER, vol. 9, 2004, pages 658 - 665
NAKAMORI ET AL., PROSTATE, vol. 60, 2004, pages 53 - 60
NAKAMURA ET AL., CANCER RES, vol. 61, 2001, pages 5447 - 5452
OKUBO ET AL., J VIROL, vol. 90, 2016, pages 11096 - 11105
OKUBO, Y. ET AL.: "Syncytial mutations do not impair the specificity of entry and spread of glycoprotein D receptor-retargeted herpes simplex virus", J VIRAL., vol. 90, 2016, pages 11096 - 11105, XP055704482 *
PETERS ET AL., MOL THER ONCOLYTICS, vol. 2, 22 July 2015 (2015-07-22), pages 15010
ROTH ET AL., THER CLIN DEV, vol. 25, 2014, pages 16 - 27
See also references of EP3875119A4
SHIBATA ET AL., GENE THER, vol. 23, 2016, pages 479 - 488
SHUKLA ET AL., CELL, vol. 99, 1999, pages 13 - 22
SIMPSON ET AL., CANCER RES, vol. 66, 2006, pages 4835 - 4842
SPEAR ET AL., VIROLOGY, vol. 344, 2006, pages 17 - 24
SUZUKKI, TAKUMA ET AL.: "O3-1-16: Development of oncolytic virus therapy using herpes simplex virus which inserted a cancer-targeting single- chain antibody into envelope glycoprotein gD", THE 61TH ANNUAL MEETING OF THE JAPANESE SOCIETY FOR VIROLOGY; NOVEMBER 10-12, 2013, vol. 61, 2013, JP, pages 271, XP009527816 *
TAKAOKA ET AL., VIROL J, vol. 8, 2011, pages 294
TAMURA ET AL., MOL THER, vol. 21, 2013, pages 561 - 569
TISCHER ET AL., BIOTECHNIQUES, vol. 40, 2006, pages 191 - 197
TODO ET AL., PROC NATL ACAD SCI USA., vol. 98, 2001, pages 6396 - 6401
TOMAYKO ET AL., CANCER CHEMOTHER PHARMACOL, vol. 24, 1989, pages 148 - 154
UCHIDA ET AL., J VIROL, vol. 83, 2009, pages 2951 - 2961
UCHIDA ET AL., J VIROL, vol. 84, 2010, pages 12200 - 12209
YAMAMOTO ET AL., GENE THER, vol. 13, 2006, pages 1731 - 1736
YOON ET AL., J VIROL, vol. 77, 2003, pages 9221 - 9231
YOONSPEAR, PROC NATL ACAD SCI USA., vol. 101, 2004, pages 17252 - 17257
ZHANG ET AL., MOL THER, vol. 20, 2012, pages 37 - 45

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024071397A1 (ja) * 2022-09-30 2024-04-04 国立大学法人 東京大学 Il13ra2に標的化した単純ヘルペスウイルス及び抗il13ra2抗体またはその抗原結合断片

Also Published As

Publication number Publication date
EP3875119A1 (en) 2021-09-08
JPWO2020090871A1 (ja) 2021-10-07
US20210386807A1 (en) 2021-12-16
EP3875119A4 (en) 2022-08-31

Similar Documents

Publication Publication Date Title
Howells et al. Oncolytic viruses—interaction of virus and tumor cells in the battle to eliminate cancer
US10456432B2 (en) Oncolytic herpes simplex virus and therapeutic uses thereof
Chu et al. Use of replicating oncolytic adenoviruses in combination therapy for cancer
Eager et al. Clinical development directions in oncolytic viral therapy
Watanabe et al. Oncolytic virotherapy by HSV
Everts et al. Replication-selective oncolytic viruses in the treatment of cancer
TWI776858B (zh) 一種重組單純皰疹病毒及其用途
US8586028B2 (en) Synthetic herpes simplex viruses type-1 for treatment of cancers
ES2743952T3 (es) Composiciones terapéuticas de uso para el tratamiento del cáncer
CN113842453B (zh) 一种抑制SARS-CoV-2的纳米捕集剂
WO2020090871A1 (ja) がん治療のための腫瘍溶解性ウイルス
JP2021519747A (ja) 腫瘍を治療するための仮性狂犬病ウイルス
Potts et al. Oncolytic viruses in the treatment of bladder cancer
CN111635913A (zh) 构建体及其应用
Tang et al. Oncolytic viral vectors in the era of diversified cancer therapy: From preclinical to clinical
Wildner Oncolytic viruses as therapeutic agents
Nemunaitis et al. Selectively replicating viral vectors
Hoffmann et al. Comparison of herpes simplex virus-and conditionally replicative adenovirus-based vectors for glioblastoma treatment
Hingorani et al. Oncolytic viruses for potential osteosarcoma therapy
JP2004515461A (ja) 癌治療における変異ヘルペスウイルスおよび抗癌剤の使用
Steel et al. Immunocompetent syngeneic cotton rat tumor models for the assessment of replication-competent oncolytic adenovirus
Sonabend et al. Gene therapy trials for the treatment of high-grade gliomas
Martínez-Vélez et al. Oncolytic virotherapy for gliomas: a preclinical and clinical summary
Yura et al. Development of oncolytic virotherapy for the treatment of oral cancer–At the waiting stage for clinical use
Davis et al. Application of oncolytic viruses for cure of colorectal cancer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19880535

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020553970

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019880535

Country of ref document: EP

Effective date: 20210531