WO2020090836A1 - 細胞の製造方法 - Google Patents

細胞の製造方法 Download PDF

Info

Publication number
WO2020090836A1
WO2020090836A1 PCT/JP2019/042423 JP2019042423W WO2020090836A1 WO 2020090836 A1 WO2020090836 A1 WO 2020090836A1 JP 2019042423 W JP2019042423 W JP 2019042423W WO 2020090836 A1 WO2020090836 A1 WO 2020090836A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
skeletal muscle
cell
myod
days
Prior art date
Application number
PCT/JP2019/042423
Other languages
English (en)
French (fr)
Inventor
英俊 櫻井
智也 内村
Original Assignee
国立大学法人京都大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人京都大学 filed Critical 国立大学法人京都大学
Publication of WO2020090836A1 publication Critical patent/WO2020090836A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/34Muscles; Smooth muscle cells; Heart; Cardiac stem cells; Myoblasts; Myocytes; Cardiomyocytes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • A61P21/04Drugs for disorders of the muscular or neuromuscular system for myasthenia gravis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms

Definitions

  • the present invention relates to a method for producing skeletal muscle cells from pluripotent stem cells, skeletal muscle cells obtained by the production method, and a method for screening therapeutic or preventive agents for myopathy using the skeletal muscle cells.
  • Myopathies include a large number of illnesses, but most of the symptoms are atrophy of muscles and consequent loss of muscle strength.
  • the causes of muscle atrophy include abnormalities in the muscle itself and abnormalities in the nerves that move the muscle.
  • the former is called myogenic disease (myopathy), and the latter is called neurogenic disease.
  • myopathy myogenic disease
  • Duchenne muscular dystrophy which has the largest number of patients among muscular dystrophy, is caused by mutations (point mutation, deletion mutation, duplication mutation, etc.) of the causative gene, dystrophin gene. , A disease that occurs because normal dystrophin protein is not synthesized.
  • a model that reflects the pathological condition in humans in vitro is needed.
  • the development of induced pluripotent stem cells produced by reprogramming somatic cells has been expected to utilize cells produced from the patient's own cells as a disease state model.
  • One example of such cells is skeletal muscle cells, and various efforts have been made to establish a method for inducing differentiation of induced pluripotent stem cells into skeletal muscle cells.
  • the present inventors have previously introduced a tetracycline (Tet) -inducible transcription factor (MyoD or Myf5) into pluripotent stem cells, and continue doxycyclin (Doxycyclin (Doxycyclin It has been reported that differentiation into skeletal muscle cells can be induced by adding Dox)) and expressing the transcription factor in pluripotent stem cells (Patent Document 1).
  • Tet tetracycline
  • Doxycyclin Doxycyclin
  • the present inventors have also improved the method for inducing into skeletal muscle cells, and by continuously adding Dox from day 1 of differentiation induction, exogenous MyoD is expressed, and after 3-4 days.
  • Non-patent document 1 It has been reported that by re-seeding (Replating) cells in a medium containing 5% Knockout Serum Replacement (KSR), it is possible to efficiently and reproducibly induce differentiation into skeletal muscle cells.
  • KSR Knockout Serum Replacement
  • ShojiE et al Induced pluripotent stem cells to differentiate in a medium containing 20% Knockout Serum Replacement (KSR), and continuously added Dox from day 1 of differentiation induction to add exogenous MyoD.
  • KSR Knockout Serum Replacement
  • the object of the present invention is to provide a method for producing skeletal muscle cells that can be cultured for a long period of time and have high maturity, and can be used for screening a therapeutic or prophylactic agent for myopathy. It is intended to provide skeletal muscle cells that can be used for studies such as pathological conditions suspected to involve skeletal muscle maturity.
  • Non-Patent Document 1 In the method for inducing skeletal muscle cells by the method described in Non-Patent Document 1, the present inventors continued to culture by adding Dox again in a culture solution that failed to continue adding Dox unintentionally. However, by chance, we found surprisingly that the quality of the obtained skeletal muscle cells is higher than the cells obtained by the conventional method, rather than falling. Moreover, it was found that the method of adding Dox again can omit the addition of KSR, which was considered to be essential in the conventional method. The present inventors have completed the present invention as a result of further research based on these findings.
  • a method for producing skeletal muscle cells from pluripotent stem cells which comprises the following steps: (1) a step of culturing cells under the condition of expressing one or more exogenous factors selected from MyoD and Myf5, (2) a step of culturing the cells obtained in the step (1) under conditions in which the exogenous factor is not expressed, and (3) one or more cells selected from MyoD and Myf5 in the cells obtained in the step (2) A method comprising the step of culturing under the condition for expressing the exogenous factor.
  • the method according to [1] further comprising the step of culturing the cells obtained in step (3) under conditions that do not express the exogenous factor.
  • [3] The method according to [1] or [2], wherein the culture of the step (2) is performed in a medium containing no ROCK inhibitor or containing a ROCK inhibitor at less than 10 ⁇ M.
  • [4] The method according to any one of [1] to [3], wherein the cell culture after the step (2) is performed in a medium containing no Knockout Serum Replacement.
  • [5] The method according to any one of [1] to [4], wherein the exogenous factor expressed in the step (1) and the step (3) is MyoD.
  • [11] A step of providing skeletal muscle cells by the method according to any one of [1] to [9], (2) When the test substance is brought into contact with the skeletal muscle cells obtained in step (1), and (3) when the pathological condition of the skeletal muscle cells is relieved as compared with the case where the test substance is not brought into contact. And a method for screening a therapeutic or preventive agent for myopathy, which comprises the step of selecting the test substance as a candidate substance for treating or preventing myopathy. [12] The method according to [11], which further comprises a step of applying electrical stimulation to the skeletal muscle cells obtained in step (1).
  • the method for screening a therapeutic or preventive agent for myopathy which comprises the step of selecting the test substance as a candidate substance for treating or preventing myopathy.
  • a cell transplant therapeutic agent comprising the skeletal muscle cell according to [10].
  • a method for treating or preventing myopathy which comprises administering or transplanting an effective amount of the skeletal muscle cell according to [10] or the cell transplant therapeutic agent according to [14] to a test animal.
  • FIG. 1 shows a schematic diagram of the protocol of the culture method of the present invention.
  • HS horse serum.
  • Dox Doxycycline.
  • Y ROCK inhibitor / Y-27632.
  • FIG. 2 shows the morphology of the process of inducing differentiation from human iPS cells to skeletal muscle cells using the method of the present invention, which was observed periodically with a phase contrast microscope.
  • D day.
  • FIG. 3 shows a fluorescence microscopic image of cells that had been induced to undergo skeletal muscle differentiation for 14 days by the method of the present invention after fluorescent immunostaining with anti-MHC antibodies, and the results of cell fusion (Fusion index) analysis.
  • FIG. 4 shows exogenous MyoD (Exo-MyoD), endogenous in skeletal muscle differentiated cell lines on days 8, 10, 12, and 14 induced by the conventional method (Replating) and the method of the present invention (Replating MKII).
  • FIG. 5 shows the cells after 14 days of skeletal muscle differentiation induction by the method of the present invention, which were fluorescently immunostained with anti-MYH1 & 2 antibody, anti-MYH2 antibody, anti-MYH3 antibody, anti-MYH7 antibody and anti-MYH8 antibody, respectively. A fluorescence microscope image is shown.
  • FIG. 6 shows the results of analysis of a cell line in which skeletal muscle differentiation was induced by the electrical stimulation maturation induction differentiation method shown in FIG. The left diagram of FIG.
  • FIG. 7 shows images obtained as a result of analyzing with a scanning electron microscope the sarcomere structure of a cell line in which skeletal muscle differentiation was induced for 17 days by the electrically stimulated maturation-induced differentiation method.
  • the right diagram of FIG. 7 is an enlarged image of the part surrounded by the dotted rectangle in the left diagram.
  • Fig. 8 compares the expression levels of Dys1, pan-MHC, MYH1 & 2, MYH2, MYH3, MYH7, MYH8, RYR1, Tata-binding protein / TBP, with (+) and without ( ⁇ ) maturation induction by electrical stimulation. The result of Western blot analysis is shown.
  • EFS Electrical-field stimulation.
  • FIG. 9 shows a schematic diagram of the protocol of the electrically stimulated maturation-induced differentiation method.
  • FIG. 9A shows that at the time of reseeding on the 4th day (D4), the cell line was reseeded on a 12 kPa hydrogel (hydrogel) and matured by electrical stimulation (EFS / Electrical field stimulation) from the 10th day (D10). The protocol to initiate the induction is shown.
  • FIG. 9B shows a diagram in which C-PACE and a 6-well plate are connected by a cable and the plate is observed in a 37 ° C. incubator at 5% CO 2 during analysis by SI8000.
  • FIG. 9A shows that at the time of reseeding on the 4th day (D4), the cell line was reseeded on a 12 kPa hydrogel (hydrogel) and matured by electrical stimulation (EFS / Electrical field stimulation) from the 10th day (D10). The protocol to initiate the induction is shown.
  • FIG. 9B shows a
  • FIG. 10 shows a morphology in which the process of inducing differentiation of Tet-MyoDhiPSC clones into skeletal muscle cells using the method of the present invention was observed at regular intervals with a phase contrast microscope.
  • D day .
  • DMD- ⁇ Cell line derived from DMD patient
  • DMD-CKI Gene repair strain of DMD patient (crisper knock-in)
  • FIG. 11 shows a fluorescence microscopic image of cells in which skeletal muscle differentiation was induced for 14 days by the method of the present invention after fluorescent immunostaining with anti-MHC antibody, and the result of cell fusion (Fusion index) analysis.
  • Exo-MyoD Exogenous MyoD
  • Endo-MyoD Endogenous in skeletal muscle differentiated cell lines on days 8, 10, 12, and 14 induced by the conventional method (Replating) and the method of the present invention (Replating MKII).
  • DMD- ⁇ Cell line derived from DMD patient;
  • DMD-CKI Gene repair strain of DMD patient FIG.
  • FIG. 13 shows the cells after 14 days of skeletal muscle differentiation induction by the method of the present invention, which were fluorescently immunostained with anti-MYH1 & 2 antibody, anti-MYH2 antibody, anti-MYH3 antibody, anti-MYH7 antibody and anti-MYH8 antibody, respectively.
  • a fluorescence microscope image is shown.
  • DMD- ⁇ Cell line derived from DMD patient;
  • DMD-CKI Gene repair strain of DMD patient
  • the left diagram of FIG. 14 shows an image of the sarcomere structure of a cell line that was induced to undergo skeletal muscle differentiation for 17 days by the electrical stimulation maturation-induced differentiation method described in FIG. 9 after immunostaining with an anti- ⁇ -actinin antibody.
  • FIG. 14 shows a graph of the proportion of cells showing a sarcomere pattern with ⁇ -actinin (the left two bars of the four bars are replating (conventional method), and the right bar is (replating MKII: the present invention). Method)).
  • DMD- ⁇ Cell line derived from DMD patient;
  • DMD-CKI Gene repair strain of DMD patient
  • FIG. 15 shows the results of analysis of a cell line in which skeletal muscle differentiation was induced by the electrical stimulation maturation-induced differentiation method described in FIG.
  • the upper left figure shows the result of showing the presence or absence of the operation of the cells produced by the conventional method (Replating) and the cells produced by the method of the present invention (Replating MKII) by heat-map
  • the upper right figure shows the above cells
  • DMD- ⁇ Cell line derived from DMD patient
  • DMD-CKI Gene repair strain of DMD patient
  • FIG. 16 shows images obtained as a result of analyzing with a scanning electron microscope the sarcomere structure of a cell line in which skeletal muscle differentiation was induced for 17 days by the electrical stimulation maturation-induced differentiation method described in FIG. 9.
  • DMD- ⁇ Cell line derived from DMD patient;
  • DMD-CKI Gene repair strain of DMD patient Fig. 17 shows the expression level of Dys1, pan-MHC, MYH1 / 2, MYH2, MYH3, MYH7, MYH8, RYR1, Tata-binding protein / TBP depending on whether (+) or not (-) maturation induction by electrical stimulation.
  • FIG. 18 shows a schematic diagram of an Acute model skeletal muscle training method using electrical stimulation.
  • EFS Electrical-field stimulation
  • DMD- ⁇ DMD patient-derived cell line
  • DMD-CKI DMD patient gene repair strain
  • FIG. 18 shows a schematic diagram of an Acute model skeletal muscle training method using electrical stimulation.
  • the cell line is reseeded on 12kPa hydrogel, and electrical stimulation (EFS / Electrical field stimulation) is started from the 10th day (D10) to gradually increase the voltage.
  • EFS Electrical-field stimulation
  • D10 10th day
  • 409 B2 Cell line derived from a healthy human iPS cell clone; 409 ex45KO: Dystrophin knockout cell line of a healthy person
  • DMD- ⁇ Cell line derived from DMD patient; DMD-CKI: Gene repair strain of DMD patient
  • DMD- ⁇ Cell line derived from DMD patient; DMD-CKI: Gene repair strain of DMD patient FIG.
  • FIG. 27 shows a schematic diagram of a skeletal muscle training method of the Chronic model (chronic model) by electrical stimulation.
  • D4 re-seeding on the 4th day
  • D6 re-seeding the cell line on 12kPa hydrogel and starting electrical stimulation (EFS / Electrical field stimulation) from the 6th day (D6) and gradually increasing the voltage.
  • EFS / Electrical field stimulation starting electrical stimulation
  • FIG. 28 shows the change results of the contraction velocity ( ⁇ m / s) during electrical stimulation in the Chronic model.
  • 409B2 WT Cell line derived from healthy human iPS cell clone
  • 409B2KO Healthy dystrophin knockout cell line
  • the present invention provides a method for producing skeletal muscle cells from pluripotent stem cells (hereinafter, also referred to as “production method of the present invention”).
  • the production method of the present invention includes, for example, (1) a step of culturing cells under the condition that one or more exogenous factors selected from MyoD and Myf5 (hereinafter, also referred to as “skeletal muscle cell inducing factor”) are expressed, (2) The step of culturing the cell obtained or cultured in the step (1) under the condition that the exogenous factor is not expressed, and (3) the cell obtained or cultured in the step (2), It includes a step of culturing under the condition that a skeletal muscle cell inducing factor is expressed.
  • the production method of the present invention may further include the step (4) of culturing the cells obtained in the step (3) under conditions in which the exogenous factor is not expressed.
  • the skeletal muscle cell population provided by the process of the invention is compared to a cell population produced by conventional methods, particularly cells with multiple nuclei, It was found that the proportion of cells with 3 or more nuclei was significantly higher. Further, the skeletal muscle cells provided by the production method of the present invention, skeletal muscle markers serving as an indicator of maturity of skeletal muscle cells (eg: MYOD, MYH3, MYH8, MYH1, MYH2, MYH7) expression is observed, and Skeletal muscle cells were capable of long-term culture (at least 2 weeks or more). Therefore, the production method of the present invention can provide a skeletal muscle cell having the above-mentioned properties, which can be cultured for a long period of time and has a high maturity, as compared with cells produced by a conventional method.
  • MYOD skeletal muscle markers serving as an indicator of maturity of skeletal muscle cells
  • “producing skeletal muscle cells” means obtaining a cell population containing at least skeletal muscle cells. Preferably, a cell population containing 50% or more (eg, 50%, 60%, 70%, 80%, 90% or more) of skeletal muscle cells is obtained.
  • the “skeletal muscle cell” means a cell expressing myogenin and / or myosin heavy chain (MHC), and may be a polynuclear cell or a mononuclear cell.
  • MyoD when MyoD was used as a skeletal muscle cell-inducing factor, it was possible to produce skeletal muscle cells with high maturity that could be cultured for a long period of time. Therefore, it is preferable to use MyoD as the skeletal muscle cell inducer.
  • Myf5 instead of MyoD, it is possible to efficiently produce skeletal muscle cells from pluripotent stem cells, as in the case of using MyoD, endogenous
  • the present inventors have previously reported that the expression of MyoD and myogenin is induced. Therefore, when Myf5 is used as the skeletal muscle cell-inducing factor in the production method of the present invention, skeletal muscle cells with high maturity that can be cultured for a long period of time can be produced as in the case of using MyoD.
  • skeletal muscle cell inducing factor Only one kind of skeletal muscle cell inducing factor may be used, or plural kinds thereof may be used.
  • the skeletal muscle cell-inducing factor expressed in step (1) and the skeletal muscle cell-inducing factor expressed in step (3) may be different, but are preferably the same.
  • a MyoD or Myf5 protein derived from any mammal eg, human, mouse, rat, monkey, cow, horse, pig, dog, etc.
  • a nucleic acid encoding the same is used.
  • it is preferably human.
  • Those of the same species as the origin of the pluripotent stem cells of interest are preferred.
  • MyoD1 human myogenic differentiation 1 (MyoD1) consisting of the amino acid sequence represented by SEQ ID NO: 2 (registered in NCBI as accession number: NP_002469), and its ortholog in other mammals , And their transcription mutants, splicing mutants, and the like. Alternatively, it has 90% or more, preferably 95% or more, more preferably 97% or more amino acid identity with any of the above proteins and has a function equivalent to that of the protein (eg, transcription activation of muscle-specific promoter). Etc.).
  • human myogenic factor 5 consisting of the amino acid sequence represented by SEQ ID NO: 4 (registered in NCBI as accession number: NP_005584), and its ortholog in other mammals , And their transcription mutants, splicing mutants, and the like.
  • it has 90% or more, preferably 95% or more, more preferably 97% or more amino acid identity with the above protein, and has a function equivalent to that of the protein (eg, transcription activation of muscle-specific promoter).
  • the identity of amino acid sequences can be calculated in the same manner as above.
  • Skeletal muscle cell-inducing factor can be introduced into cells as a nucleic acid encoding the factor.
  • a nucleic acid encoding MyoD human myogenic differentiation 1 (MyoD1) cDNA (registered in NCBI as accession number: NP_002478) consisting of the nucleotide sequence represented by SEQ ID NO: 1 and its in other mammals Orthologs, as well as their transcriptional variants, splicing variants and the like can be mentioned.
  • nucleic acid eg, muscle-specific It may be a nucleic acid encoding a protein having promoter activation of transcription, etc.
  • the stringent condition here is to combine a complex or probe as taught by Berger and Kimmel (1987, Guide toMolecular Cloning Techniques Methods in Enzymology, Vol. 152, Academic Press, San Diego Diego CA). It can be determined based on the melting temperature (Tm) of the nucleic acid. For example, as washing conditions after hybridization, conditions of about “1 ⁇ SSC, 0.1% SDS, 37 ° C.” can be mentioned.
  • the complementary strand is preferably one that maintains a hybridized state with the target positive strand even after washing under such conditions.
  • more stringent hybridization conditions include “0.5 x SSC, 0.1% SDS, 42 ° C” washing conditions, more strictly “0.1 x SSC, 0.1% SDS, 65 ° C” washing conditions.
  • the conditions under which the positive strand and the complementary strand maintain the hybridized state can be mentioned.
  • nucleic acid encoding Myf5 human myogenic factor 5 (Myf5) cDNA (registered in NCBI as accession number: NM_005593) consisting of the nucleotide sequence represented by SEQ ID NO: 3 and its in other mammals Orthologs, as well as their transcriptional variants, splicing variants and the like can be mentioned.
  • it has 90% or more, preferably 95% or more, and more preferably 97% or more nucleotide identity with any of the above nucleic acids, and has a function equivalent to that of the protein encoded by the nucleic acid (eg, muscle-specific It may be a nucleic acid encoding a protein having promoter activation of transcription, etc.).
  • nucleotide sequence identity can be calculated in the same manner as above.
  • it may have a positive strand having a complementary relationship to the extent that it can hybridize with a complementary strand of any of the above nucleic acids under stringent conditions.
  • stringent condition has the same meaning as above.
  • the nucleic acid encoding MyoD or Myf5 may be DNA or RNA, or may be a DNA / RNA chimera. Further, the nucleic acid may be single-stranded, double-stranded DNA, double-stranded RNA or DNA: RNA hybrid. It is preferably double-stranded DNA or single-stranded RNA. When using single-stranded RNA, RNA that incorporates 5-methylcytidine and pseudouridine (TriLink Biotechnologies) may be used in order to suppress degradation, or modified RNA obtained by treatment with phosphatase may be used.
  • TriLink Biotechnologies TriLink Biotechnologies
  • MyoD and Myf5 and DNAs encoding them can be easily isolated from the DNAs encoding each protein based on the cDNA sequence information of human MyoD1 and human Myf5, or can be chemically synthesized. it can.
  • the RNA encoding MyoD or Myf5 can be prepared, for example, by transcribing to mRNA using a vector containing a DNA encoding each protein as a template and using an in vitro transcription system known per se.
  • vectors such as viruses, plasmids and artificial chromosomes can be introduced into cells by methods such as lipofection, liposomes and microinjection.
  • viral vectors include retrovirus vectors, lentivirus vectors, adenovirus vectors, adeno-associated virus vectors, Sendai virus vectors and the like.
  • artificial chromosome vector include human artificial chromosome (HAC), yeast artificial chromosome (YAC), bacterial artificial chromosome (BAC, PAC) and the like.
  • the plasmid include a plasmid for mammalian cells.
  • the vector may contain regulatory sequences such as promoter, enhancer, ribosome binding sequence, terminator, and polyadenylation site so that the DNA encoding MyoD or Myf5 can be expressed.
  • Resistance genes eg, kanamycin resistance gene, ampicillin resistance gene, puromycin resistance gene, etc.
  • thymidine kinase gene selection marker sequences such as diphtheria toxin gene, fluorescent protein, ⁇ -glucuronidase (GUS), reporter gene sequences such as FLAG, etc.
  • GUS ⁇ -glucuronidase
  • SV40 promoter As a promoter, SV40 promoter, LTR promoter, CMV (cytomegalovirus) promoter, RSV (Rous sarcoma virus) promoter, MoMuLV (Moloney mouse leukemia virus) LTR, HSV-TK (herpes simplex virus thymidine kinase) promoter, EF- ⁇ promoter, CAG Examples of the promoter and the TRE promoter (CMV minimal promoter having a Tet response sequence in which the tetO sequence is continuous 7 times) are exemplified. When using the TRE promoter, it is desirable to simultaneously express a fusion protein with tetR and VP16AD or a fusion protein with reverse tetR (rtetR) and VP16AD in the same cell.
  • rtetR reverse tetR
  • an expression cassette comprising a promoter and a DNA encoding MyoD or Myf5 which binds to the promoter is incorporated into the chromosome of the cell, and a transposon sequence is inserted before and after this expression cassette in order to excise it as necessary. You may have.
  • the transposon sequence is not particularly limited, but piggyBac is exemplified.
  • the expression cassette may have LoxP or FRT sequences before and after the expression cassette for the purpose of removing the expression cassette.
  • Another preferred non-integrative type vector is an episomal vector capable of autonomous replication outside the chromosome.
  • the specific means using the episomal vector is disclosed in Yu et al., Science, 324, 797-801 (2009). If necessary, on the 5'side and 3'side of the vector element required for replication of the episomal vector, an episomal vector in which the loxP sequence was arranged in the same direction, a nucleic acid encoding a skeletal muscle cell inducing factor was inserted. It is also possible to construct an expression vector and introduce this into somatic cells. Examples of the above-mentioned episomal vector include a vector containing a sequence required for autonomous replication derived from EBV, SV40 and the like as a vector element.
  • the vector element required for autonomous replication is specifically a replication origin and a gene encoding a protein that binds to the replication origin and controls replication.
  • a replication origin oriP For EBNA-1 gene and SV40, origin of replication ori and SV40 large T antigen are mentioned.
  • a vector capable of expressing a fusion protein with a reverse tetR (rtetR) and VP16AD having a TRE promoter, or a fusion protein with tetR and VP16AD having a TRE promoter is a drug responsive induction vector.
  • examples of the drug used for inducing expression include doxycycline (Dox), tetracycline or derivatives thereof (abbreviated as “Dox etc.”).
  • a vector containing a metallothionein promoter (drug corresponding to the vector: heavy metal ion) and a vector containing a steroid-responsive promoter (drug corresponding to the vector: steroid hormone or its derivative) are also included in the drug-responsive inducing vector.
  • a vector in which expression of a nucleic acid linked to a promoter is induced by stimulation may be used, such as a vector containing a light-responsive promoter (induced by light) or a heat shock protein promoter (induced by heat shock).
  • the drug-responsive inducing vector are collectively referred to as an inducing vector.
  • an inducing vector containing a nucleic acid encoding a skeletal muscle cell inducing factor, preferably a cell into which a drug-responsive inducing vector has been introduced is treated with a drug corresponding to the vector.
  • it is performed by culturing in the presence of stimulation.
  • the skeletal muscle cell-inducing factor when in the form of RNA, it may be introduced into cells by a method such as electroporation, lipofection, or microinjection.
  • the pluripotent stem cells used in the present invention include, for example, induced pluripotent stem cells (iPS cells), embryonic stem cells (embryonic stem cells: ES cells), embryos derived from cloned embryos obtained by nuclear transfer. Nuclear transfer embryonic cell (ntES cell), multipotent germline stem cell (“mGS cell”), embryonic germ cell (EG cell), Muse cell (multi-lineage differentiating stress stress enduring cell) ), But preferably iPS cells (more preferably human iPS cells).
  • iPS cells more preferably human iPS cells.
  • iPS cells can be produced by introducing a specific reprogramming factor into somatic cells in the form of DNA or protein, and have almost the same characteristics as ES cells, such as pluripotency and proliferative capacity by self-renewal, Somatic cell-derived artificial stem cells with (Takahashi K. and Yamanaka S. (2006) Cell, 126: 663-676; Takahashi K. et al. (2007), Cell, 131: 861-872; Yu J . Et al. (2007), Science, 318: 1917-1920; Nakagawa M. et al., Nat. Biotechnol. 26: 101-106 (2008); WO2007 / 069666).
  • the iPS cells When using iPS cells, the iPS cells may be prepared from somatic cells by a method known per se, or iPS cells that have already been established and stocked may be used.
  • the reprogramming factor is a gene that is specifically expressed in ES cells, its gene product or non-coding RNA, or a gene that plays an important role in maintaining undifferentiation of ES cells, its gene product or non-coding It may be composed of RNA or a low molecular weight compound.
  • reprogramming factor As a gene contained in the reprogramming factor, for example, Oct3 / 4, Sox2, Sox1, Sox3, Sox15, Sox17, Klf4, Klf2, c-Myc, N-Myc, L-Myc, Nanog, Lin28, Fbx15, ERas, ECAT15. -2, Tcl1, beta-catenin, Lin28b, Sall1, Sall4, Esrrb, Nr5a2, Tbx3, Glis1 and the like are exemplified. These reprogramming factors may be used alone or in combination.
  • the combination of initialization factors includes WO2007 / 069666, WO2008 / 118820, WO2009 / 007852, WO2009 / 032194, WO2009 / 058413, WO2009 / 057831, WO2009 / 075119, WO2009 / 079007, WO2009.
  • HDAC histone deacetylase
  • VPA valproic acid
  • trichostatin A sodium butyrate
  • small molecule inhibitors such as MC1293, M344, siRNA and shRNA against HDAC.
  • nucleic acid expression inhibitors such as HDAC1 siRNA Smartpool (Millipore), HuSH29mer shRNA Constructs againinst HDAC1 (OriGene), etc.
  • MEK inhibitors eg PD184352, PD98059, U0126, SL327 and PD0325901
  • glycogen synthase Kinase-3 inhibitors eg Bio and CHIR99021
  • DNA methyltransferase inhibitors eg 5-azacytidine
  • histone methyltransferase inhibitors eg small molecule inhibitors such as BIX-01294, Suv39hl, Suv39h2, SetDBl and Nucleic acid expression inhibitors such as siRNA and shRNA against G9a
  • L-channel calcium agonist eg Bayk8644
  • p53 inhibitors for example siRNA and sh
  • “somatic cell” means any animal cell (preferably mammalian cell including human) except germ line cells such as ova, oocytes, ES cells or totipotent cells. Somatic cells include, but are not particularly limited to, fetal (pup) somatic cells, neonatal (pup) somatic cells, and mature, healthy or diseased somatic cells, and primary cultured cells. , Passage cells, and cell lines.
  • somatic cells include, for example, (1) neural stem cells, hematopoietic stem cells, mesenchymal stem cells, tissue stem cells (somatic stem cells) such as dental pulp stem cells, (2) tissue progenitor cells, (3) lymphocytes, epithelium Cells, endothelial cells, muscle cells, fibroblasts (skin cells, etc.), hair cells, hepatocytes, gastric mucosal cells, intestinal cells, splenocytes, pancreatic cells (exocrine pancreatic cells, etc.), brain cells, lung cells, kidney cells And differentiated cells such as adipocytes.
  • neural stem cells hematopoietic stem cells
  • mesenchymal stem cells such as dental pulp stem cells
  • tissue progenitor cells such as dental pulp stem cells
  • lymphocytes epithelium Cells, endothelial cells, muscle cells, fibroblasts (skin cells, etc.)
  • hair cells hepatocytes
  • gastric mucosal cells intestinal cells
  • ES cells are stem cells that are pluripotent and have the ability to proliferate by self-renewal, established from the inner cell mass of early embryos (eg, blastocysts) of mammals such as humans and mice. ES cells were found in mice in 1981 (MJ Evans and MH Kaufman (1981), Nature 292: 154-156), and then ES cell lines were established in primates such as humans and monkeys (JA Thomson et al. (1998), Science 282: 1145-1147; JA Thomson et al. (1995), Proc. Natl. Acad. Sci. USA, 92: 7844-7848; JA Thomson et al. (1996), Biol.
  • ES cells can be established by removing the inner cell mass from the blastocyst of the fertilized egg of the target animal and culturing the inner cell mass on a fibroblast feeder.
  • a fibroblast feeder for example, USP 5,843,780; ThomsonJA, et al. (1995), ProcNatl. Acad. Sci. U S A. 92: 7844-7848; ThomsonJA. , Et al. (1998), Science. 282: 1145-1147; Suemori H. et al. (2006), Biochem. Biophys. Res.
  • ES cells can be established using only single blastomeres of embryos in the cleavage stage before the blastocyst stage (Chung Y. et al. (2008), Stem Cell 2: 113- 117), and can also be established by using embryos that have stopped developing (ZhangX. Et al. (2006), Stem Cells 24: 2669-2676.).
  • nt ES cells are ES cells derived from cloned embryos produced by nuclear transfer technology and have almost the same characteristics as ES cells derived from fertilized eggs (Wakayama T. et al. (2001), Science, 292 : 740-743; S. Wakayama et al. (2005), Biol. Reprod., 72: 932-936; ByrneJ. Et al. (2007), Nature, 450: 497-502). That is, an ES cell established from the inner cell mass of a blastocyst derived from a cloned embryo obtained by replacing the nucleus of an unfertilized egg with the nucleus of a somatic cell is a ntES (nuclear transfer ES) cell.
  • ntES nuclear transfer ES
  • ntES cells For the production of ntES cells, a combination of nuclear transfer technology (Cibelli JBet et al. (1998), Nature Biotechnol., 16: 642-646) and ES cell production technology (above) is used (Wakayama Kiyoka et al. (2008), Experimental Medicine, Volume 26, No. 5 (Special Issue), pages 47-52).
  • somatic cell nuclei are injected into unfertilized eggs that have undergone enucleation in mammals, and can be initialized by culturing for several hours.
  • ⁇ mGS cells are pluripotent stem cells derived from the testis and are the origin of spermatogenesis. Like ES cells, this cell can induce differentiation into cells of various lineages, and has the property that, for example, when it is transplanted into a mouse blastocyst, a chimeric mouse can be created (Kanatsu-Shinohara M. et al. 2003) Biol. Reprod., 69: 612-616; Shinohara K. et al. (2004), Cell, 119: 1001-1012). It is capable of self-renewal in a culture medium containing glial cell line-derived neurotrophic factor (GDNF), and can be reproduced by repeated passage under the same culture conditions as ES cells. Stem cells can be obtained (Masanori Takebayashi et al. (2008), Experimental Medicine, Vol. 26, No. 5 (Special Issue), pp. 41-46, Yodosha (Tokyo, Japan)).
  • GDNF glial cell line-
  • EG cells are pluripotent cells that are established from embryonic primordial germ cells and have the same pluripotency as ES cells. It can be established by culturing primordial germ cells in the presence of substances such as LIF, bFGF, and stem cell factor (Matsui Y. et al. (1992), Cell, 70: 841-847; JL Resnick et al. (1992), Nature, 359: 550-551).
  • Muse cells are non-neoplastic pluripotent stem cells that are endogenous to the living body and can be produced, for example, by the method described in WO2011 / 007900. Specifically, long-term trypsin treatment of fibroblasts or bone marrow stromal cells, preferably 8 hours or 16 hours trypsin treatment, cells with pluripotency obtained by suspension culture is Muse cells, SSEA-3 and CD105 are positive.
  • pluripotent stem cells are cultured under an adherent culture condition that does not form embryoid bodies and is not a condition for inducing into a specific cell type (hereinafter, also referred to as “preculture”).
  • preculture a condition for inducing into a specific cell type
  • matrigel for example, matrigel (BD), type I collagen, type IV collagen, gelatin, laminin, heparan sulfate proteoglycan, or entactin, and a combination thereof (also referred to as “matrigel etc.”) were used for coating treatment.
  • Examples include a method of adhering to a culture dish and culturing cells using a medium used for culturing animal cells as a basic medium.
  • a medium containing bFGF may be used, but it is preferable that the medium does not contain bFGF. Even when a medium containing bFGF is used, it is desirable to replace it with a medium that does not contain bFGF during the preculture.
  • StemFit (Example: StemFit AK03N, StemFit AK02N) (Ajinomoto Co.), PECM (Primate ES Cell Medium), GMEM (Glasgow Minimum Essential Medium: Glasgow Minimum Essential Medium), IMDM (Iskoff modified) Dulbecco's Medium: Iscove's Modified Dulbecco's Medium), 199 medium, Eagle's Minimum Essential Medium (EMEM), ⁇ MEM, Dulbecco's Modified Eagle Medium (Dulbecco's modified Eagle's Medium, DMI) Fischer's medium, a mixed medium thereof and the like are included.
  • EMEM Eagle's Minimum Essential Medium
  • DMI Dulbecco's Modified Eagle Medium
  • ROCK inhibitors eg: Y-27632, Fasudil / HA1077, SR3677, GSK269962, H-1152, Wf-536, etc.
  • serum eg: fetal bovine serum (FBS), human serum, horse serum, etc.
  • serum substitute eg: fetal bovine serum (FBS), human serum, horse serum, etc.
  • FBS fetal bovine serum
  • serum substitute eg: fetal bovine serum (FBS), human serum, horse serum, etc.
  • FBS fetal bovine serum
  • serum substitute eg: fetal bovine serum (FBS), human serum, horse serum, etc.
  • FBS fetal bovine serum
  • serum substitute eg: fetal bovine serum (FBS), human serum, horse serum, etc.
  • FBS fetal bovine serum
  • serum substitute eg: human serum, horse serum, etc.
  • serum substitute eg: fetal bovine serum (FBS), human serum, horse
  • the preferred pre-culture condition is that pluripotent stem cells adhered to a matrigel-coated culture dish are cultured in StemFit containing a ROCK inhibitor, and then the medium is replaced with PECM containing a ROCK inhibitor and cultured. It is a condition to do.
  • the preculture is preferably carried out for 1 to 3 days or less, more preferably 2 days.
  • the culture temperature is not particularly limited, but is about 30 to about 40 ° C., preferably about 37 ° C., the culture is performed in the presence of CO 2 -containing air, and the CO 2 concentration is preferably about 2 to 5%. is there.
  • expressing a skeletal muscle cell-inducing factor is used to mean at least producing a skeletal muscle cell-inducing factor (protein), unless otherwise specified, but preferably further It is also used to include the production of muscle cell-inducing factor (mRNA).
  • condition for expressing a skeletal muscle cell-inducing factor means inducing the expression of a skeletal muscle cell-inducing factor, continuously culturing cells in the presence of the substances described below, or skeleton. It means a condition under which the expression of the skeletal muscle cell-inducing factor is maintained by continuous culturing in the absence of a substance that inhibits the expression induction of the muscle cell-inducing factor.
  • the "condition for not expressing a skeletal muscle cell-inducing factor” means that the cells are continuously cultured in the absence of a substance that induces the expression of the skeletal muscle cell-inducing factor, or the skeleton. It means the condition in which the expression of skeletal muscle cell-inducing factor is stopped by continuously culturing the cells in the presence of a substance that inhibits the expression of muscle cell-inducing factor. It does not mean only the condition in which the expression of the cell-inducing factor is not observed.
  • the method for maintaining the expression of the skeletal muscle cell-inducing factor is not particularly limited, but when the skeletal muscle cell-inducing factor is RNA, it can be carried out by introducing the RNA multiple times in a desired period. Then, by replacing the medium with a medium not containing the RNA, the expression of the skeletal muscle cell-inducing factor can be stopped.
  • the skeletal muscle cell inducing factor is DNA, for example, using a drug-responsive inducing vector, the cells are cultured in a medium containing Dox or the like for a desired period (in the case of Tet-on system), or a medium containing no Dox or the like.
  • the expression of the skeletal muscle cell-inducing factor can be maintained, while Dox-free medium (in the case of Tet-on system), or Expression can be stopped by replacing the medium with a medium containing Dox (in the case of Tet-off system). Expression can be maintained or stopped in the same manner when other induction vectors are used.
  • the expression of a skeletal muscle cell inducing factor can be maintained by culturing cells into which the vector has been introduced for a desired period, On the other hand, after a desired period of time, the expression can be stopped by introducing transposase or Cre or Flp into cells.
  • the culture period of step (1) is not particularly limited, but is preferably 3 days or less, and more preferably 1 day or more. In a preferred embodiment, the period of step (1) is 2 days. Further, the culture period of step (3) is not particularly limited, but it is preferable to maintain the expression of the skeletal muscle cell inducing factor until Myotube is formed, and the specific number of days is 2 days or more and 10 days. The following (eg: 10 days, 9 days, 8 days, 7 days, 6 days, 5 days or less) can be mentioned. As shown in the example below (D10 in FIG. 2), since the formation of a clear Myotube was observed by maintaining the expression of the skeletal muscle cell inducing factor for 4 days, 4 days is mentioned as a preferable index.
  • the formation of Myotube can be confirmed by an electron microscope.
  • the concentration of the drug corresponding to the vector in the medium of step (1) or (3) is not particularly limited as long as the skeletal muscle cell inducing factor is expressed in the cells.
  • Dox when used, it is preferably about 0.4 ⁇ g / mL to 1.5 ⁇ g / mL, and even when other than Dox is used, those skilled in the art can appropriately set the concentration.
  • the culture period of step (2) is not particularly limited, but is preferably 8 days or less (eg, 8 days, 7 days, 6 days, 5 days, 4 days or less), and is 1 day or more. Preferably. In a preferred embodiment, the period of step (2) is 2 days. Further, the culture period of step (4) is not particularly limited, but it is typically about 2 to 7 days, but the culture may be performed over this period.
  • the basal medium and each additive such as ROCK inhibitor, serum, and serum substitute in the culture of steps (1) to (4) the same as those described in the above preculture can be used.
  • the culture conditions temperature, CO 2 concentration
  • the same conditions as those described in the above preculture can be mentioned.
  • the medium of step (2) may contain a ROCK inhibitor, but it is preferable not to contain it.
  • its concentration in the medium is preferably less than 10 ⁇ M (eg: 9 ⁇ M, 5 ⁇ M, 4 ⁇ M, 3 ⁇ M, 2 ⁇ M, 1 ⁇ M or less), more preferably 0.3 ⁇ M or less (eg: 0.3 ⁇ M , 0.2 ⁇ M, 0.1 ⁇ M or less).
  • Culturing after the step (2) is preferably performed in a KSR-free medium. As shown in the examples below, it is possible to reduce the contamination of undifferentiated pluripotent stem cells by reducing the concentration of ROCK inhibitor. Further, it is preferable that the culturing after the step (2) is performed in a medium containing less than 5% (v / v) (eg, 4%, 3%, 2%, 1% or less) horse serum, It is preferable to perform the culture in a medium containing 2% (v / v) horse serum. Specific examples of the basic medium include PECM in the step (1) and ⁇ MEM in the step (2) and subsequent steps.
  • the cells cultured in the step (1) are peeled off once before and after the step (2) is started, and another culture dish or plate (eg: It is preferable to perform re-plating on 96-well plate and 384-well plate (hereinafter, also referred to as “replating”).
  • the culture dish or plate is preferably coated with Matrigel or the like.
  • Non-Patent Document 1 can be appropriately referred to for a specific method of reseeding and a coating method for a culture dish and the like.
  • the coating is performed by adding Matrigel (BD) diluted 100-fold with ⁇ MEM onto the culture dish or plate and incubating at 4 ° C. for 24 hours or more.
  • BD Matrigel
  • the production method of the present invention further include a step of applying electrical stimulation to the cells obtained in any of the steps (1) to (4).
  • the present invention provides a skeletal muscle cell comprising a step of applying electrical stimulation to skeletal muscle cells (including skeletal muscle progenitor cells) obtained in any of steps (1) to (4).
  • a method for maturing skeletal muscle progenitor cells is provided.
  • the present invention provides a long-term culture method for skeletal muscle cells, which comprises a step of carrying out maintenance culture of the cells obtained by the production method of the present invention under the same culture conditions as in step (4).
  • the term "maturation of skeletal muscle cells” refers to (1) a skeletal muscle maturation marker (fast muscle marker (eg, MYH1, 2), slow Muscle marker (eg: MYH7)), marker expressed in immature skeletal muscle cells (fetal (pup) marker (eg: MYH3), infant (pup) marker (eg: MYH8)), skeletal muscle marker (MyoD, CKM) , MHC, Myogenin) expression is amplified, (2) sarcomere structure can be confirmed by electron microscope analysis, (3) contractile activity is observed in response to external stimuli (eg, electrical stimulation), etc. Means to satisfy These indexes can be confirmed by a method known per se.
  • a skeletal muscle maturation marker fast muscle marker (eg, MYH1, 2), slow Muscle marker (eg: MYH7)
  • marker expressed in immature skeletal muscle cells fetal (pup) marker (eg: MYH3), infant (pup) marker (eg: MYH8)
  • “long-term culture” means that it can be cultured under the condition that there is no change in the cell morphology due to weakening or the like for 2 weeks or more, and that the expression of the skeletal muscle marker is not significantly reduced. means. These indexes can also be confirmed by a method known per se.
  • the “skeletal muscle maturation marker” means a marker that is not expressed in skeletal muscle cells prepared by the method described in Non-Patent Document 1, while “expressed in immature skeletal muscle cells”.
  • the “marker that does” means a marker that is also found in skeletal muscle cells prepared by the method described in Non-Patent Document 1.
  • the “skeletal muscle marker” means a marker whose expression level decreases in the skeletal muscle cells produced by the method described in Non-Patent Document 1 by continuing the culture.
  • the electrical stimulation step can be performed on the cells obtained in any of the steps (1) to (4), but from the step before and after the step (2) (that is, the timing of reseeding), the step ( It is preferable to start electrical stimulation on cells at the stage until the end of 3).
  • the start date of the electrical stimulation step for example, 4 days or more after the start of culture of pluripotent stem cells (eg, 4 days, 5 days, 6 days or later), It is typically the 4th to 14th days, preferably the 5th to 12th days, and more preferably the 6th to 10th days.
  • a certain electrical stimulation may be given, but it is preferable to increase the electrical stimulation voltage stepwise.
  • Conditions for electrical stimulation are not particularly limited as long as they do not cause cell death or toxicity due to electrolysis of the medium, but the voltage is, for example, 0.5 V or more (eg, 0.5 V, 1 V, 1.5 V, 1.6 V, 1.7 V, 1.8 V, 1.8 V V, 1.9V, 2V or higher), and preferably 20V or lower (eg 20V, 15V, 14V, 13V, 12V, 11V, 10V or lower).
  • the voltage is stepwise increased within the above range, for example, within the range of 0.5V to 20V, preferably within the range of 2V to 10V (for example, 2V ⁇ 5V ⁇ 10V It is desirable to raise).
  • the frequency is, for example, preferably 0.1 Hz or higher (eg 0.1, 0.2, 0.3, 0.4 or higher), and 1 Hz or lower (eg 1 Hz, 0.9 Hz, 0.8 Hz, 0.7 Hz, 0.6 Hz, 0.5). In a preferred embodiment, the frequency is 0.5 Hz.
  • the electrical stimulation may be given at intervals (for example, for 1 to 10 minutes) or may be given continuously, but it is preferable that the electrical stimulation is given continuously.
  • the period for giving electrical stimulation to cells is preferably 5 days or more (eg, 5 days or more consecutively from Day 10), and once contraction activity can be confirmed in the cells, the contraction activity can be confirmed at a level large enough (example : 10V, 5V, 2V), and it is preferable to continuously give electric stimulation.
  • the period for applying electrical stimulation to cells includes, for example, 2 days or more (eg, 2 days, 3 days, 4 days, 5 days, 6 days or more), and typically 2 days.
  • the period is from 30 days to 30 days, preferably from 4 days to 25 days, more preferably from 6 days to 21 days.
  • the cells are continuously subjected to electrical stimulation for 7 days.
  • the medium is replaced at least once every two days during the period of applying the electrical stimulation.
  • hydrogel When the electrical stimulation process is performed, cells plated on plastic are expected to have a hard ground surface and cannot withstand stimulation, or contraction activity of cells is expected to be difficult. Therefore, cells are seeded on a hydrogel.
  • the hydrogel used in the present invention include gelatin hydrogel, collagen hydrogel, starch hydrogel, pectin hydrogel, hyaluronic acid hydrogel, chitin hydrogel, chitosan hydrogel, and alginic acid hydrogel. Among them, collagen hydrogel or gelatin hydrogel is preferable.
  • the gel hardness (elasticity coefficient) of the hydrogel is preferably 10 kPa or more (example: 10 kPa, 11 kPa, 12 kPa, 13 kPa, 14 kPa, 15 kPa or more), and 25 kPa or less (example: 25 kPa, 20 kPa, 19 kPa, 18 kPa , 17 kPa, 16 kPa, 15 kPa or less), and in a preferred embodiment 12 kPa.
  • the timing of seeding the cells on the hydrogel is not particularly limited, but it is preferable to seed the cells on the hydrogel before applying electrical stimulation, and it is more preferable to seed the cells on the hydrogel at the timing of reseeding.
  • the skeletal muscle cells obtained may be isolated or purified before use.
  • the method of isolation or purification can appropriately use methods well known to those skilled in the art, for example, labeling with an antibody against a molecule as an indicator, a method using flow cytometry or mass cytometry, a magnetic cell separation method, Alternatively, there may be mentioned a method of purifying using an affinity column or the like on which a desired antigen is immobilized.
  • the present invention also provides a skeletal muscle cell obtained by the production method of the present invention (hereinafter, also referred to as “skeletal muscle cell of the present invention”).
  • the skeletal muscle cells of the present invention are high-maturity cells that can be cultured for a long period of time, specifically, (A) derived from pluripotent stem cells, (B) skeletal muscle maturation marker, It may have the property that a marker expressed in immature skeletal muscle cells and a skeletal muscle marker are expressed, and that (C) long-term culture of at least 2 weeks or more is possible.
  • Specific examples and definitions of the skeletal muscle maturation marker, the marker expressed in immature skeletal muscle cells and the skeletal muscle marker are described in 1.
  • the skeletal muscle cell of the present invention may further have the properties of (D) contracting in response to electrical stimulation and (E) having a sarcomere structure.
  • the skeletal muscle cell of the present invention may have a nucleic acid encoding a skeletal muscle cell-inducing factor, or the nucleic acid may be removed.
  • the present invention provides a method for screening a candidate drug that is a useful agent for treating or preventing myopathy (hereinafter, also referred to as “screening method of the present invention”).
  • the screening method of the present invention comprises, for example, (1 ′) the step of contacting a skeletal muscle cell of the present invention with a candidate substance, and (2 ′) the case where the skeletal muscle cell is not contacted with the candidate substance.
  • the step of selecting as a therapeutic or preventive agent for myopathy is included.
  • the skeletal muscle cell of the present invention is preferably 1. It is provided by a method including the steps (1) to (4).
  • the skeletal muscle cells of the present invention are high-quality cells that have the property of being capable of long-term culture and having high maturity.
  • the screening method of the present invention has a high quality, and by using skeletal muscle cells that strongly reflect the pathological condition, compared to the case of using skeletal muscle cells prepared by a conventional method, it becomes possible to perform a more accurate screening. obtain.
  • the skeletal muscle cells of the present invention can be applied to the study of pathological conditions related to the maturity of skeletal muscle cells, and it is possible to screen a therapeutic or prophylactic agent for such pathological conditions.
  • the skeletal muscle cells used in the screening method of the present invention are typically cells derived from myopathy patients, and preferably cells derived from patients suffering from the same disease as myopathy to be treated with a therapeutic or prophylactic agent. ..
  • the screening method of the present invention may include the step of applying electrical stimulation to the skeletal muscle cells provided in step (1 ′) above.
  • a constant electrical stimulation may be applied, but it is preferable to increase the electrical stimulation voltage stepwise.
  • Conditions for electrical stimulation are not particularly limited as long as they do not cause cell death or toxicity due to electrolysis of the medium, but the voltage is, for example, 0.5 V or more (eg, 0.5 V, 1 V, 1.5 V, 1.6 V, 1.7 V, 1.8 V, 1.8 V V, 1.9V, 2V or higher), and preferably 20V or lower (eg 20V, 15V, 14V, 13V, 12V, 11V, 10V or lower).
  • a sudden increase in voltage at a certain point eg, increase in voltage at a rate of 1.5 times or more (eg, 1.5 times, 1.6 times, 1.7 times, 1.8 times, 1.9 times, 2 times or more) causes muscle injury.
  • Acute model of can be created.
  • the frequency is, for example, preferably 0.1 Hz or higher (eg 0.1, 0.2, 0.3, 0.4 or higher), and 1 Hz or lower (eg 1 Hz, 0.9 Hz, 0.8 Hz, 0.7 Hz, 0.6 Hz, 0.5). Hz or lower), but in a preferred embodiment the frequency is 1 Hz.
  • the electrical stimulation may be given at intervals (for example, for 1 to 10 minutes) or may be given continuously, but it is preferable that the electrical stimulation is given continuously.
  • the start date of the electrical stimulation step for example, 4 days or more from the start of culture of pluripotent stem cells (eg, 4th day, 5th day, 6th day, 7th day, 8th day, 9th day, Day 10 or later), and is typically the 4th to 24th days, preferably the 6th to 20th days, and more preferably the 10th to 14th days.
  • the period of electrical stimulation of cells includes, for example, 4 days or more (eg, 4 days, 5 days, 6 days or more), and typically 4 days to 12 days, preferably 5 days to 10 days. Days, more preferably 6 to 8 days.
  • the screening method of the present invention is performed by, for example, electrical stimulation (for example, at 0.5 to 2 V) on day 8 or later (eg, Day8 to Day12) from the start of culture of pluripotent stem cells.
  • electrical stimulation for example, at 0.5 to 2 V
  • Day8 to Day12 e.g., Day8 to Day12
  • After continuing the culture for a specific period eg 10 days to 25 days
  • gradually increasing the voltage in the range of 0.5V to 10V for example 1 to 3 days at a voltage of 1.5V to 2.0V. It includes a step of giving a degree of stimulation.
  • the cells used in the screening method of the present invention may be subjected to electrical stimulation from the early stage of the differentiation induction stage from pluripotent stem cells to skeletal muscle cells. Therefore, in another embodiment, the screening method of the present invention comprises (i) the above 1. Steps (1), (ii) above 1. Steps (2), (iii) above 1.
  • Step (3) further comprising (iv) a step of culturing cells cultured in step (ii) or step (iii) by electrical stimulation to differentiate into skeletal muscle cells, (v) the step (iv) In the step of contacting the test substance with the skeletal muscle cells obtained in), and (vi) when the pathological condition of the skeletal muscle cells is relieved as compared with the case where the test substance is not contacted, the test substance is Selecting as a candidate substance for treating or preventing myopathy.
  • the cells cultured in the step (iii) are used in the step (iv)
  • the cells can be used within 4 days (eg, 4 days, 3 days, 2 days or less) from the start of the step (iii). Cells are preferred.
  • the electrical stimulation in step (iv) may be a constant electrical stimulation, but it is preferable to increase the electrical stimulation voltage stepwise.
  • Conditions for electrical stimulation are not particularly limited as long as they do not cause cell death or toxicity due to electrolysis of the medium, but the voltage is, for example, 0.5 V or more (eg, 0.5 V, 1 V, 1.5 V, 1.6 V, 1.7 V, 1.8 V, 1.8 V V, 1.9V, 2V or higher), and preferably 20V or lower (eg 20V, 15V, 14V, 13V, 12V, 11V, 10V or lower).
  • it is preferable to raise the voltage stepwise within the above range for example, within the range of 0.5V to 20V (for example, stepwise increasing from 2V ⁇ 5V ⁇ 10V).
  • the frequency is, for example, preferably 0.1 Hz or higher (eg 0.1, 0.2, 0.3, 0.4 or higher), and 1 Hz or lower (eg 1 Hz, 0.9 Hz, 0.8 Hz, 0.7 Hz, 0.6 Hz, 0.5). In a preferred embodiment, the frequency is 0.5 Hz.
  • the electrical stimulation may be given at intervals (for example, for 1 to 10 minutes) or may be given continuously, but it is preferable that the electrical stimulation is given continuously. In this way, a chronic model of muscle injury (Chronic model) can be prepared by applying electrical stimulation early in the stage of inducing differentiation of pluripotent stem cells into skeletal muscle cells.
  • Diseases for which analysis with the Chronic model is useful include diseases that cause mitochondrial dysfunction in the group of fatigue-prone diseases.
  • diseases that cause mitochondrial dysfunction in the group of fatigue-prone diseases include Duchenne muscular dystrophy, Becker muscular dystrophy and myotonia Dystrophy, facial scapulohumeral muscular dystrophy, Ulrich congenital muscular dystrophy, mitochondrial myopathy, congenital myopathy, GNE myopathy, etc. are applicable.
  • Examples of the start date of the electrical stimulation step include, for example, the 4th day or later (eg, the 4th day, the 5th day, the 6th day or later) from the start of the culture of pluripotent stem cells, and typically 4 days.
  • the day to the 18th day preferably the 5th to the 14th day, and more preferably the 6th to the 10th day.
  • the period for culturing cells by electrical stimulation is, for example, 10 days or more (eg, 10 days, 15 days, 20 days, 25 days, 26 days or more), and typically 10 days.
  • To 40 days preferably 20 to 35 days, more preferably 26 to 30 days.
  • the screening method of the present invention includes, for example, starting the electrical stimulation step on day 4 and after (eg, Day4 to Day8) from the start of culture of pluripotent stem cells, and for example, 0.5 V Culturing is carried out for a specific period (for example, 10 to 25 days) while gradually increasing the voltage in the range from 1 to 20V.
  • the above step (iv) includes the above 1. Similar to the step (4) of step 1, it is preferable to carry out under the condition that an exogenous factor is not expressed. As described in.
  • Specific timings for seeding gels and cells used when applying electrical stimulation are as follows. The same gels and timings as described in 1. are mentioned.
  • the timing of contacting the test substance with the skeletal muscle cells in the acute model is not particularly limited, but from the viewpoint of suppressing the influence on the differentiation or maturation of cells, the latter half of the differentiation induction process, for example, from the start of culture of pluripotent stem cells It can be done after the 10th day (eg 10th, 11th, 12th, 13th, 14th or later), typically between 10th and 20th days, It is preferably 12th to 18th days, more preferably 14th to 16th days.
  • the period for contacting the test substance with the skeletal muscle cells is not particularly limited, and examples thereof include 1 day or longer (eg, 1 day or longer), and typically 1 to 6 days, preferably Is 1 to 4 days, more preferably 1 to 2 days.
  • the timing of contacting the test substance with skeletal muscle cells in a chronic model is not particularly limited, but from the viewpoint of suppressing the effect on cell differentiation or maturation, the latter half of the differentiation induction process, for example, from the start of culture of pluripotent stem cells Can be done after the 16th day (eg 16th, 17th, 18th, 18th, 19th, 20th, 21st, 22nd or later), typically 16th From the eye to the 35th day, preferably from the 20th day to the 30th day, more preferably from the 22nd day to the 26th day.
  • the 16th day eg 16th, 17th, 18th, 18th, 19th, 20th, 21st, 22nd or later
  • typically 16th From the eye to the 35th day preferably from the 20th day to the 30th day, more preferably from the 22nd day to the 26th day.
  • the period for contacting the test substance with the skeletal muscle cells is not particularly limited, and examples thereof include 1 day or more (eg, 1 day, 2 days, 3 days, 4 days or more), and typically It is 1 to 14 days, preferably 2 to 10 days, more preferably 4 to 8 days.
  • myopathy examples include muscular dystrophy (eg Duchenne muscular dystrophy (DMD), Becker muscular dystrophy, limb girdle muscular dystrophy, facial scapulohumeral muscular dystrophy, oropharyngeal muscular dystrophy, Emery-Dreyfus muscular dystrophy, congenital muscular dystrophy, Distal muscular dystrophy, myotonic dystrophy, etc., distal myopathy (eg, Miyoshi myopathy, GNE myopathy, oropharyngeal distal myopathy, etc.), congenital myopathy (eg, nemarin myopathy, central core disease, etc.) ), Glycogen storage disease, periodic quadriplegia, mitochondrial myopathy.
  • DMD Duchenne muscular dystrophy
  • Becker muscular dystrophy Becker muscular dystrophy
  • limb girdle muscular dystrophy e.g., facial scapulohumeral muscular dystrophy
  • oropharyngeal muscular dystrophy eg.g
  • Muscular dystrophy is a condition associated with a deficiency or mutation in the dystrophin protein.
  • Miyoshi-type myopathy is a pathological condition associated with a mutation in dysferlin
  • GNE myopathy is a pathological condition associated with a mutation in GNE (UDP-N-acetylglucosamine 2-epimerase / N-acetylmannosamine-kinase).
  • Central core disease is a pathological condition associated with a mutation in ryanodine receptor (RYR1), and glycogen storage disease is associated with a mutation in glycogen metabolizing enzyme.
  • the pathological condition of skeletal muscle cells can be observed as a deficiency or mutation of dystrophin protein in the skeletal muscle cells or a positive inflammatory marker.
  • the inflammation marker is exemplified by the activity of prostaglandin D2 or NFkB.
  • the alleviation of the pathological condition can be confirmed by, for example, expression of a dystrophin protein or a short dystrophin protein due to exon skipping or a decrease in an inflammatory marker.
  • myopathy is Miyoshi-type myopathy
  • the pathological condition of skeletal muscle cells can be observed as an abnormal membrane repair of muscle in the skeletal muscle cells.
  • the abnormality in muscle membrane repair can be observed by the uptake of FM1-43 in all cytoplasmic lesions.
  • the alleviation of the disease state can be confirmed by, for example, a decrease in the uptake of FM1-43.
  • those skilled in the art can appropriately observe the pathological condition and alleviation of skeletal muscle cells.
  • the candidate substance is, for example, a cell extract, a cell culture supernatant, a microbial fermentation product, an extract derived from a marine organism, a plant extract, a purified protein or a crude protein, a peptide, a non-peptide compound, a synthetic low molecular weight compound.
  • natural compounds are exemplified.
  • the candidate substance also includes (1) a biological library, (2) a synthetic library method using deconvolution, (3) a “one-bead one-compound” library.
  • Method and (4) any of a number of approaches in combinatorial library methods known in the art including synthetic library methods using affinity chromatography selection.
  • Biological library methods using affinity chromatography sorting are limited to peptide libraries, but the other four approaches are applicable to small molecule libraries of peptides, non-peptide oligomers, or compounds (Lam (1997 ) Anticancer Drug Des. 12: 145-67).
  • An example of a method for synthesizing a molecular library can be found in the art (DeWitt et al. (1993) Proc. Natl. Acad. Sci.
  • Compound libraries include solutions (see Houghten (1992) Bio / Techniques 13: 412-21) or beads (Lam (1991) Nature 354: 82-4), chips (Fodor (1993) Nature 364: 555- 6), bacteria (U.S. Pat.No. 5,223,409), spores (U.S. Pat.Nos. 5,571,698, 5,403,484, and 5,223,409), plasmids (Cull et al. (1992) Proc. Natl. Acad. Sci. USA 89: 1865-9) or Phage (Scott and Smith (1990) Science 249: 386-90; Devlin (1990) Science 249: 404-6; Cwirla et al. (1990) Proc. Natl. Acad. Sci. USA 87 : 6378-82; Felici (1991) J. Mol. Biol. 222: 301-10; US Patent Application No. 2002103360).
  • the present invention also provides a cell transplantation therapeutic agent (hereinafter, also referred to as "cell transplantation therapeutic agent of the present invention") containing the skeletal muscle cells of the present invention.
  • a cell transplantation therapeutic agent hereinafter, also referred to as "cell transplantation therapeutic agent of the present invention" containing the skeletal muscle cells of the present invention.
  • the skeletal muscle cells of the present invention are high-quality cells that have the property of being capable of long-term culture and having high maturity. Therefore, the skeletal muscle cells are suitable for use as a raw material for a cell transplant therapeutic agent, and the skeletal muscle cells or the cell transplant therapeutic agent of the present invention are useful for treating or preventing myopathy.
  • an effective amount of the skeletal muscle cell or cell transplant therapeutic agent of the present invention is administered or transplanted to a mammal (eg, human, mouse, rat, monkey, cow, horse, pig, dog, etc.) to be treated or prevented.
  • a mammal eg, human, mouse, rat, monkey, cow, horse, pig, dog, etc.
  • a method for treating or preventing myopathy is also included in the present invention.
  • the types of myopathy to be treated or prevented include the above 3. The same diseases as those mentioned in 1.
  • substantially the same means that the HLA genotypes are matched to such an extent that the immune reaction to the transplanted cells can be suppressed by the immunosuppressant, and for example, HLA-A and HLA-B.
  • the skeletal muscle cell is a cell derived from a myopathy patient, for example, by using a method such as genome editing (eg, CRISPR system, TALEN, ZFN, etc.), a mutation of a gene causing myopathy is repaired in advance. It is preferable that If sufficient cells cannot be obtained due to age or constitution, it can be transplanted while avoiding rejection by embedding it in a capsule such as polyethylene glycol or silicone, or a porous container. is there.
  • a capsule such as polyethylene glycol or silicone, or a porous container.
  • the above-mentioned skeletal muscle cells are produced as parenteral preparations such as injections, suspensions and infusions by mixing with a pharmaceutically acceptable carrier in a conventional manner.
  • a pharmaceutically acceptable carrier that can be contained in the parenteral preparation include physiological saline, isotonic solution containing glucose and other adjuvants (eg, D-sorbitol, D-mannitol, sodium chloride, etc.)
  • An aqueous solution for injection can be mentioned.
  • the agent for cell transplantation of the present invention includes, for example, buffers (eg, phosphate buffer, sodium acetate buffer), soothing agents (eg, benzalkonium chloride, procaine hydrochloride, etc.), stabilizers (eg, human).
  • Serum albumin, polyethylene glycol, etc.), a preservative, an antioxidant and the like may be added.
  • the transplantation therapeutic agent of the present invention is formulated as an aqueous suspension
  • skeletal muscle cells may be suspended in the above-mentioned aqueous solution so as to be about 1 ⁇ 10 6 to about 1 ⁇ 10 8 cells / mL. ..
  • the dose or amount of the skeletal muscle cell or cell transplant therapeutic agent of the present invention, the number of doses, or the number of transplants can be appropriately determined depending on the age, body weight, symptoms, etc. of the mammal to be administered.
  • the agent for cell transplantation of the present invention is provided in a cryopreserved state under conditions usually used for cryopreservation of cells, and can be thawed before use.
  • it may further contain serum or a substitute thereof, an organic solvent (eg, DMSO), and the like.
  • the concentration of serum or its substitute can be, but is not limited to, about 1 to about 30% (v / v), preferably about 5 to about 20% (v / v).
  • the concentration of the organic solvent is not particularly limited, but may be 0 to about 50% (v / v), preferably about 5 to about 20% (v / v).
  • Human iPS cells were maintained and cultured in the same manner as the method described in Non-Patent Document 1. That is, human iPS cells were maintained in a feeder-free state.
  • the maintenance medium used was StemFit (Ajinomoto) 500 mL plus 50 mU / L penicillin / 50 ⁇ g / L streptomycin (Invitrogen).
  • Human iPS cells after the introduction of the Tet vector were further maintained and cultured in a medium supplemented with 100 ⁇ g / ml neomycin or puromycin (Nacalai Tesque). Cell passage was performed when the cell colonies became 80-90% confluent.
  • the cells were detached with a cell dissociation solution, Accutase (Funakoshi Co., Ltd.), and then scraped with a scraper, and ROCK inhibitor Y-27632 (Nacalai Tesque, Inc.) (hereinafter abbreviated as “ROCK inhibitor Y”) on a newly laminin-coated plate.
  • the cells were seeded with a supplemented medium and cultured in an incubator at 37 ° C., 5% CO 2 , 100% humidity environment.
  • cDNA was purchased from MGC clone (MGC: 71135, GenBank: BC064493.1). On the other hand, the following primers were used for amplification by PCR reaction to obtain a cDNA fragment.
  • Myf5 was amplified from the cDNA from the differentiated human iPS cells by PCR using KOD plus Neo as an enzyme to obtain a cDNA fragment. These cDNA fragments were incorporated into the entry vector using pENTR Directional TOPO Cloning Kits (Invitrogen).
  • the entry vector was prepared by incorporating the vector into E. coli and amplifying it.
  • the sequences of the primers used are as follows.
  • MyoD-Cloning Fw CACCATGGAGCTACTGTCGCCA (SEQ ID NO: 5) MyoD-Cloning Rv: TCAGAGCACCTGGTATATCGGGT (SEQ ID NO: 6) Myf5-Cloning Fw: CACCATGGACGTGATGGATGGCTG (SEQ ID NO: 7) Myf5-Cloning Rv: TCATAGCACATGATAGATAA (SEQ ID NO: 8)
  • tetracycline-responsive gene forced expression vector For the tetracycline-responsive gene forced expression piggyBac vector, KW111 or KW879 developed by Woltjen et al. Was used (Woltjen K. et al., Nature 458, 766, 2009). This vector incorporates both reverse tetracycline transactivator (rtTA) and tetracycline-responsive region (TRE), and the neomycin vector KW111 is designed to express mCherry in synchronization with the target gene. In addition, the neomycin resistance gene (KW111) or the puromycin resistance gene (KW879) can be used for drug selection.
  • rtTA reverse tetracycline transactivator
  • TRE tetracycline-responsive region
  • neomycin vector KW111 is designed to express mCherry in synchronization with the target gene.
  • Tet-Vector into iPS Cells
  • a healthy human iPS cell clone (409B2) and a DMD patient-derived iPS cell clone (DMD- ⁇ 44) were prepared as cells for 10 cm dishes.
  • the seeded cells and the vector were transfected by electroporation in the same manner as in the maintenance culture.
  • 5 ⁇ g of each of the Tet-MyoD vector and a vector (EF1 ⁇ -PBase) in which Transposase was incorporated in the downstream of EF1 ⁇ -promoter was prepared and dissolved in 100 ⁇ l of Opti-MEM (Invitrogen).
  • 1.0 ⁇ 10 6 cells were suspended in OptiMEM containing the vector, and the vector was transfected under the conditions shown in Table 1 using NEPA21 electroporator (Nepagene).
  • the transfected cells were seeded on a 6-well plate under the condition of 1.0 ⁇ 10 3 to 5.0 ⁇ 10 4 .
  • the medium was replaced with a medium containing 100 ⁇ g / ml neomycin or puromycin (Nacalai Tesque). After that, the medium was replaced with a drug-containing medium every two days, and cells transformed into drug resistance were selected.
  • PCR mRNA from cells was extracted with Sepasol (registered trademark) -RNA I Super G (Nacalai Tesque, Inc.), and cDNA was synthesized using SuperScript III reverse transcription kit (Invitrogen).
  • a PCR reaction using the following primers and Ex Taq (Takara Bio Inc.) was performed on the product, and a gene expression band was confirmed by agarose gel electrophoresis.
  • the PCR reaction was performed with a thermal cycler Veriti (ABI), and the reaction was carried out at an annealing temperature of 60 ° C for 25 to 30 cycles.
  • Transgenic-MyoD Fw: CACCATGGAGCTACTGTCGCCA (SEQ ID NO: 5) Transgenic-MyoD (Tg) Rv: TCAGAGCACCTGGTATATCGGGT (SEQ ID NO: 6) Endogenous-MyoD (Endo) Fw: GACTGCCAGCACTTTGCTATCT (SEQ ID NO: 9) Endogenous-MyoD (Endo) Rv: CCTCAGAGCACCTGGTATATCG (SEQ ID NO: 10) Myogenin Fw: TGGGCGTGTAAGGTGTGTAA (SEQ ID NO: 11) Myogenin Rv: CATGGTTTCATCTGGGAAGG (SEQ ID NO: 12) CKM Fw: ACATGGCCAAGGTACTGACC (SEQ ID NO: 13) CKM Rv: TGATGGGGTCAAAGAGTTCC (SEQ ID NO: 14) MHC Fw: GTTAAGGGCCTGAGGAAGTATG (SEQ ID NO: 15)
  • the primary antibody was diluted in the above blocking solution (anti-MHC (Mouse Monoclonal.R & D, 1: 400 dilution), anti-MYH1 & 2 (Mouse Monoclonal.Sigma, 1: 100 dilution), anti-MYH2 (Mouse). Monoclonal. Millipore, 1: 100 dilution), anti-MYH3 (Rabbit Polyclonal. Atlas, 1: 100 dilution), anti-MYH7 (Mouse Monoclonal. Santa Cruz. 1: 200 dilution), anti-MYH8 (Rabbit Polyclonal. Novus, 1: 100 dilution) and anti- ⁇ actin antibody (ARabbit Polyclonan. Abcam.
  • SI8000 video analyzer The SI8000 video analyzer (SONY) was used to analyze contractile activity of differentiated skeletal muscle cells.
  • SONY The SI8000 video analyzer
  • a C-Pace EP and C-Dish system were used to give a stimulus with a frequency of 0.5 Hz, a pulse width of 2 msec, and a voltage of 10 V.
  • a total of 270 frames were taken at 27 frames / sec for 10 seconds, and the speed and distance during contraction activity were analyzed by SI8000 software.
  • the electron microscope analysis sample was first fixed with 2% paraformaldehyde + 2% glutaraldehyde (PBS dilution) at 4 ° C. for 30 minutes. Then, it was fixed overnight at 4 ° C. with 2% glutaraldehyde. The sample was washed several times with phosphate buffer and then refixed with 2% osmium tetroxide at 4 ° C for 90 minutes. The sample was dehydrated stepwise with ethanol, replaced with propylene oxide, and finally embedded in resin. The sample was cut into 70 nm slices, stained with 2% uranyl acetate, and secondary stained with Lead stain solution. The section was observed with a transmission electron microscope (JEM-1400Plus) and photographed with a CCD camera.
  • JEM-1400Plus transmission electron microscope
  • SI8000 video analyzer (SONY) was used.
  • the contractile activity was stimulated with a C-Pase EP and C-Dish system at a frequency of 0.5 Hz or 1 Hz, a pulse width of 2 msec, and a voltage of 10 V or 20 V.
  • images were taken at 27 frams / sec for a total of 270 frames for 10 seconds, and each parameter during contractile activity was analyzed by SI8000 software.
  • To measure the calcium peak cells were incubated with Cal-520 TM as a calcime indicator for 1 hour, and the fluorescent signal of Cal-520 TM was measured and analyzed using SI8000 and a fluorescence microscope.
  • Example 1 Induction of skeletal muscle cells from Tet-MyoD hiPSC clone
  • healthy human iPS cell clone 409B2 was induced to differentiate into skeletal muscle cells, and its differentiation potential to skeletal muscle cells was changed over time. evaluated.
  • the culture period in PECM + Dox to be added from the second day (D2) is 48. After that, re-seeding (Replating MKII) was performed.
  • Example 2 Evaluation of maturity of skeletal muscle cells 2-1. Evaluation by skeletal muscle cell multinucleation
  • the skeletal muscle cell multinucleation is known as one of the indicators showing the maturity of skeletal muscle cells. Therefore, the conventional method described in Non-Patent Document 1 (FIG. 3: Replating) and the method of the present invention (FIG. 3: Replating MKII) (hereinafter, the method according to the protocol shown in FIG. 1 is referred to as “the method of the present invention or Replating MKII”). Also referred to as ".”), Skeletal muscle cells were compared with each other by nuclear staining.
  • the expression of MHC myosin heavy chain
  • FIG. 3 left panel
  • the number of nuclei was quantified by multinucleation analysis (Fusion index analysis)
  • the myocytes produced by the protocol of the present invention cells having a plurality of nuclei were observed in a larger proportion, and particularly 3 or more nuclei were observed.
  • the number of cells with cells was also remarkably recognized (Fig. 3: right panel).
  • MYH3 is predominantly expressed in the fetal period
  • MYH8 is predominantly expressed in the infancy, and the expression decreases as both grow and grow into adults.
  • MYH1, MYH2 and MYH4 are upregulated in the fast muscle type
  • MYH7 is upregulated in the slow muscle type. Therefore, in order to confirm the maturity of the skeletal muscle cells obtained in the present invention, as a result of analyzing the expression of the fast muscle and slow muscle markers, in the skeletal muscle cells produced in the present invention, many were found in the fetus and the early childhood.
  • the expressed MYH3 and MYH8 were strongly expressed (FIG. 5), and in addition to them, the expression of fast-muscle type MYH1 and MYH2 and slow-muscle type MYH7 was observed (FIG. 5).
  • Example 3 Induction of skeletal muscle cells from Tet-MyoD hiPSC clones
  • DMD patient-derived disease iPS cell clones DMD patient-derived disease iPS cell clones (DMD- ⁇ ) and its isogenic control DMD-CKI cells were used. Also, it was tested whether or not it could be induced into skeletal muscle cells like the 409B2 cells used in Example 1.
  • the iPS cell clone was induced to differentiate into skeletal muscle cells, and the ability to differentiate into skeletal muscle cells was evaluated over time. It should be noted that, compared with the conventional method (replating) described in Non-Patent Document 1, the method of the present invention (replating MKII) showed efficient skeletal muscle differentiation induction and maturation as in 409B2 cells. (Fig. 10).
  • Example 4 Assessment of skeletal muscle cell maturity 4-1. Evaluation by skeletal muscle cell multinucleation
  • the skeletal muscle cell multinucleation is known as one of the indicators showing the maturity of skeletal muscle cells. Therefore, the skeletal muscle cells obtained by the conventional method described in Non-Patent Document 1 (FIG. 11: Replating) and the method of the present invention (FIG. 11: Replating MKII) were compared for multinucleation by nuclear staining. In the method according to the present invention, expression of MHC (myosin heavy chain) was confirmed on day 14, and multinucleation was observed (FIG. 11: left panel).
  • MHC myosin heavy chain
  • MYH3 is predominantly expressed in the fetal period
  • MYH8 is predominantly expressed in the infancy, and the expression decreases as both grow and grow into adults.
  • MYH1, MYH2 and MYH4 are increased in the fast muscle type
  • MYH7 is increased in the slow muscle type. Therefore, in order to confirm the maturity of the skeletal muscle cells obtained in the present invention, as a result of analyzing the expression of the fast muscle and slow muscle markers, in the skeletal muscle cells produced in the present invention, many were found in the fetus and the early childhood.
  • the expressed MYH3 and MYH8 were strongly expressed (FIG. 13), and in addition to them, the expression of fast-muscle type MYH1 and MYH2 and slow-muscle type MYH7 was observed (FIG. 13).
  • Example 5 Analysis using skeletal muscle training (Acute model) 5-1. Analysis of Skeletal Muscle Exercise Performance Before and After Skeletal Muscle Training
  • skeletal muscle training according to the protocol shown in FIG. 18 was used.
  • WT cells or 409B2 wild-type cells
  • KO cells or 409B2 ex45KO cells that knocked out exon 45 of the dystrophin gene
  • No difference was observed (upper part of FIG. 19).
  • KO cells had a markedly decreased motor function, and a decrease in calcium peak was also observed (FIG. 19, lower panel).
  • Example 6 Analysis using skeletal muscle training (Chronic model)
  • skeletal muscle training according to the protocol shown in FIG. 27 was used.
  • WT cells and KO cells an increase in the contraction rate was observed from D17 to D21, and an increase in the contraction rate was observed.
  • KO cells it is recognized that the contraction rate started to gradually decrease from around D23. That is, fatigue due to chronic skeletal muscle training was observed in KO cells.
  • the skeletal muscle cells produced by the present invention are cells that can be cultured for a long period of time and have a high degree of maturity, as compared with skeletal muscle cells produced by a conventional method.
  • By using cells with such a high maturity level not only it is possible to conduct pathology reproduction research in many myopathy, drug discovery screening, but also as a cell transplantation therapeutic agent for treating treatment or prevention of myopathy. Can be used.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • General Engineering & Computer Science (AREA)
  • Cell Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Biochemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microbiology (AREA)
  • Neurology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Immunology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • General Chemical & Material Sciences (AREA)
  • Epidemiology (AREA)
  • Molecular Biology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Biophysics (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Dermatology (AREA)
  • Transplantation (AREA)
  • Botany (AREA)
  • Cardiology (AREA)
  • Vascular Medicine (AREA)

Abstract

本発明は、多能性幹細胞から骨格筋細胞を製造する方法であって、以下の工程:(1)MyoD及びMyf5から選ばれる1以上の外因性因子を発現させる条件で細胞を培養する工程、(2)工程(1)で得られた細胞を、該外因性因子を発現させない条件で培養する工程、及び(3)工程(2)で得られた細胞を、MyoD及びMyf5から選ばれる1以上の外因性因子を発現させる条件で培養する工程を含む方法を提供する。

Description

細胞の製造方法
 本発明は、多能性幹細胞から骨格筋細胞を製造する方法、該製造方法により得られる骨格筋細胞、及び該骨格筋細胞を用いたミオパチーの治療又は予防剤のスクリーニング方法に関する。
(発明の背景)
 筋疾患は非常に多くの病気を含んでいるが、その症状の大半は筋肉の萎縮とそれに伴う筋力の低下である。筋肉の萎縮の原因には、筋肉自体に異常がある場合と筋肉を動かす神経に異常がある場合とがあり、前者を筋原性疾患(ミオパチー)、後者を神経原性疾患という。ミオパチーの代表的なものとして、筋ジストロフィーが知られており、筋ジストロフィーのうち最も患者数の多いデュシェンヌ型筋ジストロフィーは、原因遺伝子であるジストロフィン遺伝子の変異(点突然変異や欠失変異、重複変異など)により、正常なジストロフィンタンパク質が合成されないために生ずる病気である。性染色体劣性遺伝で男子だけに発症する疾患であり、人口10万人あたり3~5人、出生男児2000~3000人あたり1人といわれている。デュシェンヌ型筋ジストロフィー症を含む多くのミオパチーに対する良好な治療手段は未だなく、治療法の開発が望まれている。
 治療薬を開発する上では、in vitroでのヒトでの病態を反映したモデルが必要となる。近年、体細胞を初期化することにより作製される人工多能性幹細胞が開発されたことで、患者自身の細胞から作製された細胞を病態モデルとして利用することが期待されている。かかる細胞の1つとして、骨格筋細胞が挙げられ、人工多能性幹細胞から骨格筋細胞への分化誘導法を確立するために、様々な努力がなされている。その分化誘導方法として、本発明者らは以前、テトラサイクリン(Tet)誘導性の転写因子(MyoD又はMyf5)を多能性幹細胞に導入し、分化誘導の1日目以降継続してドキシサイクリン(Doxycyclin(Dox))を添加して、多能性幹細胞で該転写因子を発現させることで、骨格筋細胞へと分化誘導できることを報告している(特許文献1)。本発明者らはまた、前記骨格筋細胞への誘導方法を改良し、分化誘導の1日目以降継続してDoxを添加することで、外因性のMyoDを発現させ、3~4日目に、5% Knockout Serum Replacement(KSR)を含む培地中に細胞を再播種(Replating)することで、効率良く、かつ再現性高く骨格筋細胞へ分化誘導できることを報告している(非特許文献1)。また、Shoji Eらは、20% Knockout Serum Replacement(KSR)を含む培地中で多能性幹細胞を分化誘導し、分化誘導の1日目以降継続してDoxを添加して、外因性のMyoDを発現させることで、多能性幹細胞を骨格筋細胞へと分化誘導する方法を報告している(非特許文献2)。
国際公開第2013/073246号
Uchimura T. et al., Stem Cell Research, 25:98-106 (2017) Shoji E. et al., Science Reports, 5:12831 (2015)
 しかしながら、上記従来の方法で作製された骨格筋細胞は、長期間培養することが困難であり、7日~9日間程度しか培養することができず、また、前記方法により作製された骨格筋細胞は成熟度も低いという問題があった。その為、成熟度の高い細胞を用いたスクリーニングができず、また骨格筋の成熟度が関与すると疑われる病態等の研究に、前記骨格筋細胞を応用する事ができないという問題が生じていた。従って、本発明の課題は、長期間培養することが可能で、成熟度が高い骨格筋細胞を製造する方法を提供すること、及びミオパチーの治療又は予防剤のスクリーニングに使用することができ、また骨格筋の成熟度が関与すると疑われる病態等の研究にも使用することができる、骨格筋細胞を提供することである。
 本発明者らは、非特許文献1に記載の方法により骨格筋細胞への誘導方法において、意図せずにDoxの添加を継続し損なった培養液において、再度Doxを添加して培養を続けたところ、得られた骨格筋細胞の品質が、従来法の細胞と比較して、落ちるどころか却って高いものである、との驚くべき知見を偶然にも見出した。しかも、再度Doxを添加する方法では、従来法では必須であると考えられていたKSRの添加を省略できることを見出した。本発明者らは、これらの知見に基づいてさらに研究を重ねた結果、本発明を完成するに至った。
 即ち、本発明は以下の通りである。
[1] 多能性幹細胞から骨格筋細胞を製造する方法であって、以下の工程:
 (1)MyoD及びMyf5から選ばれる1以上の外因性因子を発現させる条件で細胞を培養する工程、
 (2)工程(1)で得られた細胞を、該外因性因子を発現させない条件で培養する工程、及び
 (3)工程(2)で得られた細胞を、MyoD及びMyf5から選ばれる1以上の外因性因子を発現させる条件で培養する工程
を含む方法。
[2] さらに、工程(3)で得られた細胞を、該外因性因子を発現させない条件で培養する工程を含む、[1]に記載の方法。
[3] 前記工程(2)の培養を、ROCK阻害剤を含まない、又はROCK阻害剤を10μM未満で含む培地で行う、[1]又は[2]に記載の方法。
[4] 前記工程(2)以降の細胞培養を、Knockout Serum Replacementを含まない培地で行う、[1]~[3]のいずれかに記載の方法。
[5] 前記工程(1)及び工程(3)で発現させる外因性因子がMyoDである、[1]~[4]のいずれかに記載の方法。
[6] さらに、工程(3)で得られた細胞に段階的に電気刺激を与える工程を含む、[1]~[5]のいずれかに記載の方法。
[7] MyoD及びMyf5から選ばれる1以上の外因性因子を発現させる条件が以下である、[1]~[6]のいずれかに記載の方法:
 MyoD及び/又はMyf5をコードする核酸を含む薬剤応答性誘導ベクターを導入した多能性幹細胞を、該ベクターと対応する薬剤の存在下で培養する。
[8] 前記多能性幹細胞がヒト多能性幹細胞である、[1]~[7]のいずれかに記載の方法。
[9] 前記ヒト多能性幹細胞がミオパチー患者由来の細胞である、[8]に記載の方法。
[10] [1]~[9]のいずれかに記載の方法により得られた骨格筋細胞。
[11] (1)[1]~[9]のいずれかに記載の方法により骨格筋細胞を提供する工程、
 (2)工程(1)で得られた骨格筋細胞に被験物質を接触させる工程、及び
 (3)被験物質を接触させなかった場合と比較して、該骨格筋細胞の病態が緩和された場合に、該被験物質をミオパチーの治療又は予防の候補物質として選別する工程
を含む、ミオパチー治療又は予防剤のスクリーニング方法。
[12] さらに工程(1)で得られた骨格筋細胞に電気刺激を与える工程を含む、[11]に記載の方法。
[13] (1)MyoD及びMyf5から選ばれる1以上の外因性因子を発現させる条件で細胞を培養する工程、
 (2)工程(1)で得られた細胞を、該外因性因子を発現させない条件で培養する工程、
 (3)工程(2)で得られた細胞を、MyoD及びMyf5から選ばれる1以上の外因性因子を発現させる条件で培養する工程、
 (4)工程(2)又は(3)で培養された細胞に電気刺激を与えて培養し、骨格筋細胞に分化させる工程、
 (5)工程(4)で得られた骨格筋細胞に被験物質を接触させる工程、及び
 (6)被験物質を接触させなかった場合と比較して、該骨格筋細胞の病態が緩和された場合に、該被験物質をミオパチーの治療又は予防の候補物質として選別する工程
を含む、ミオパチー治療又は予防剤のスクリーニング方法。
[14] [10]に記載の骨格筋細胞を含有してなる、細胞移植療法剤。
[15] [10]に記載の骨格筋細胞又は[14]に記載の細胞移植療法剤の有効量を被験動物に投与又は移植することを含む、ミオパチーの治療又は予防方法。
[16] ミオパチーの治療又は予防に使用するための、[10]に記載の骨格筋細胞又は[14]に記載の細胞移植療法剤。
[17] 細胞移植療法剤の製造における、[10]に記載の骨格筋細胞の使用。
 本方法により、長期培養(少なくとも2週間以上)が可能な、成熟度が高く、さらには病態を強く反映する骨格筋細胞を製造することが可能であり、このような成熟度が高く病態を強く反映する細胞を用いることで、より多くの筋疾患での病態再現研究が可能となり、より精度の高い創薬スクリーニングが可能となる。さらに、本方法により得られた骨格筋細胞に電気刺激を与えることで、より長期間培養可能な、成熟度の高い骨格筋細胞を製造することが可能となる。
図1は、本発明の培養方法のプロトコルの概略図を示す。HS: horse serum. Dox: Doxycycline. Y: ROCK inhibitor/Y-27632. 図2は、本発明の方法を用いたヒトiPS細胞から骨格筋細胞への分化誘導過程を、位相差顕微鏡で定時的に観察した形態を示す。 D: day. 図3は、本発明の方法で14日間骨格筋分化誘導させた細胞を、抗MHC抗体により蛍光免疫染色した後の該細胞の蛍光顕微鏡画像と、細胞融合(Fusion index)解析の結果を示す。細胞融合(Fusion index)解析については、従来の方法(Replating)と本発明の方法(Replating MKII)による結果を記載している。左パネル:抗MHC抗体と核染色(DAPI)の蛍光免疫染色。右パネル:細胞融合解析。抗MHC抗体で染色した1骨格筋細胞あたり、DAPIで染色した核がいくつ存在するかを数値化して解析した結果(それぞれ、n=5)(エラーバー:標準偏差)。 図4は、従来の方法(Replating)と本発明の方法(Replating MKII)により誘導した、8、10、12、14日目の骨格筋分化細胞株における外来性MyoD(Exo-MyoD)、内在性MyoD(Endo-MyoD)、CKM、MHC、Myogeninの発現量を、PCRを用いて確認・比較した結果を示す(それぞれ、n=6)(エラーバー:標準偏差)。 図5は、本発明の方法で14日間骨格筋分化誘導させた細胞を、それぞれ抗MYH1&2抗体, 抗MYH2抗体, 抗MYH3抗体, 抗MYH7抗体と抗MYH8抗体により蛍光免疫染色した後の該細胞の蛍光顕微鏡画像を示す。 図6は、下記に示す図9で示す、電気刺激成熟誘導分化方法で骨格筋分化誘導させた細胞株を、動画解析装置SI8000で解析した結果を示す。図6Aの左図は、従来の方法(Replating)により作製した細胞と、本発明の方法(Replating MKII)により作製した細胞の動作の有無をheat-mapで示した結果を示し、右図は、上記各細胞の収縮活動面積(Contracting area)(%)を数値化し、比較した結果(それぞれ、n=5)(エラーバー:標準偏差)を示す。図6Bは、それぞれの収縮速度(Contracting velocity)(μm/s)、弛緩速度(Relaxation velocity)(μm/s)と収縮距離(Contracting distance)(μm)を解析した結果(それぞれ、n=5)(エラーバー:標準偏差)を示す。 図7は、図6と同じく、電気刺激成熟誘導分化方法で17日間骨格筋分化誘導させた細胞株のサルコメア構造を、走査型電子顕微鏡で解析した結果の画像を示す。図7右図は、同左図の点線四角形で囲んだ箇所を拡大した画像である。 図8は、電気刺激による成熟誘導の有(+)無(-)による、Dys1, pan-MHC, MYH1&2, MYH2, MYH3, MYH7, MYH8, RYR1, Tata-binding protein/TBPの発現量の比較をWestern blot解析でした結果を示す。EFS:Electrical-field stimulation. 図9は、電気刺激成熟誘導分化方法のプロトコルの概略図を示す。図9Aは、4日目(D4)の再播種の際に、12kPa ハイドロゲル(hydrogel)上に細胞株を再播種し、10日目(D10)から電気刺激(EFS/Electrical field stimulation )による成熟誘導を開始するプロトコルを示す。図9Bは、SI8000による解析時に、C-PACEと6-well plateをケーブルで繋ぎ、プレートは5% CO2、37℃培養器の中で観察する場合の図を示す。 図10は、本発明の方法を用いたTet-MyoD hiPSC クローンから骨格筋細胞への分化誘導過程を、位相差顕微鏡で定時的に観察した形態を示す。 D: day.;DMD-Δ:DMD患者由来の細胞株;DMD-CKI:DMD患者の遺伝子修復株(クリスパーノックイン) 図11は、本発明の方法で14日間骨格筋分化誘導させた細胞を、抗MHC抗体により蛍光免疫染色した後の該細胞の蛍光顕微鏡画像と、細胞融合(Fusion index)解析の結果を示す。細胞融合(Fusion index)解析については、従来の方法(Replating)と本発明の方法(Replating MKII)による結果を記載している。左パネル:抗MHC抗体と核染色(DAPI)の蛍光免疫染色。右パネル:細胞融合解析。抗MHC抗体で染色した1骨格筋細胞あたり、DAPIで染色した核がいくつ存在するかを数値化して解析した結果(それぞれ、n=5(エラーバー:標準偏差)。DMD-Δ:DMD患者由来の細胞株;DMD-CKI:DMD患者の遺伝子修復株 図12は、従来の方法(Replating)と本発明の方法(Replating MKII)により誘導した、8、10、12、14日目の骨格筋分化細胞株における外来性MyoD(Exo-MyoD)、内在性MyoD(Endo-MyoD)、CKM、MHC、Myogeninの発現量を、PCRを用いて確認・比較した結果を示す(それぞれ、n=3)(エラーバー:標準偏差)。DMD-Δ:DMD患者由来の細胞株;DMD-CKI:DMD患者の遺伝子修復株 図13は、本発明の方法で14日間骨格筋分化誘導させた細胞を、それぞれ抗MYH1&2抗体, 抗MYH2抗体, 抗MYH3抗体, 抗MYH7抗体と抗MYH8抗体により蛍光免疫染色した後の該細胞の蛍光顕微鏡画像を示す。DMD-Δ:DMD患者由来の細胞株;DMD-CKI:DMD患者の遺伝子修復株 図14左図は、図9に記載の電気刺激成熟誘導分化方法で17日間骨格筋分化誘導させた細胞株のサルコメア構造を、抗α-actinin抗体により免疫染色した後の画像を示す。図14右図は、α-actininでサルコメアパターンを示す細胞の割合のグラフを示す(4つのバーのうち左2つのバーは、replating(従来の方法)、右のバーは(replating MKII:本発明の方法)による結果を示す)。DMD-Δ:DMD患者由来の細胞株;DMD-CKI:DMD患者の遺伝子修復株 図15は、図9に記載の電気刺激成熟誘導分化方法で骨格筋分化誘導させた細胞株を、動画解析装置SI8000で解析した結果を示す。左上図は、従来の方法(Replating)により作製した細胞と、本発明の方法(Replating MKII)により作製した細胞の動作の有無をheat-mapで示した結果を示し、右上図は、上記各細胞の収縮活動面積(Contracting area)(%)を数値化し、比較した結果(それぞれ、n=5)(エラーバー:標準偏差)を示す。下図は、それぞれの収縮速度(Contracting velocity)(μm/s)、弛緩速度(Relaxation velocity)(μm/s)と収縮距離(Contracting distance)(μm)を解析した結果(それぞれ、n=5)(エラーバー:標準偏差)を示す。DMD-Δ:DMD患者由来の細胞株;DMD-CKI:DMD患者の遺伝子修復株 図16は、図9に記載の電気刺激成熟誘導分化方法で17日間骨格筋分化誘導させた細胞株のサルコメア構造を、走査型電子顕微鏡で解析した結果の画像を示す。DMD-Δ:DMD患者由来の細胞株;DMD-CKI:DMD患者の遺伝子修復株 図17は、電気刺激による成熟誘導の有(+)無(-)による、Dys1, pan-MHC, MYH1/2, MYH2, MYH3, MYH7, MYH8, RYR1, Tata-binding protein/TBPの発現量の比較をWestern blot解析でした結果を示す。EFS:Electrical-field stimulation;DMD-Δ:DMD患者由来の細胞株;DMD-CKI:DMD患者の遺伝子修復株 図18は、電気刺激によるAcute model(急性モデル)の骨格筋トレーニング方法の概略図を示す。4日目(D4)の再播種の際に、12kPa ハイドロゲル(hydrogel)上に細胞株を再播種し、10日目(D10)から電気刺激(EFS/Electrical field stimulation )を始め徐々に電圧を上げていきD15から24時間急激に電圧を上げる事により、細胞障害を引き起こす(Acute modelの作製)プロトコルを示す。 図19は、図18記載の骨格筋トレーニング方法の前(上段)後(下段)における、骨格筋運動パフォーマンス(収縮速度(Contraction velocity (μm/s)、弛緩速度(Relaxation velocity)(μm/s)、加速度(Acceleration)(μm/s)、単収縮距離(Twitching distance)(μm)、及びカルシウムピーク(Cal-520 peak)(励起波長480nm/蛍光波長nmでの相対強度))の解析結果を示す(それぞれ、n=5)(エラーバー:標準偏差*:p < 0.05)。409 B2:健常ヒトiPS細胞クローン由来の細胞株;409 ex45KO:健常者のジストロフィンノックアウト細胞株(疾患モデル) 図20は、図18記載の骨格筋トレーニング方法の前(pre-damage)後(post-damage)における、炎症マーカー(IL-1β、TNFα、IL6)の発現解析結果を示す(それぞれ、n=6)(エラーバー:標準偏差;*:p < 0.05)。409 B2:健常ヒトiPS細胞クローン由来の細胞株;409 ex45KO:健常者のジストロフィンノックアウト細胞株 図21は、Acute modelにおける、IL6タンパク質の解析結果を示す(それぞれ、n=6)(エラーバー:標準偏差;*:p < 0.05)。409 B2:健常ヒトiPS細胞クローン由来の細胞株;409 ex45KO:健常者のジストロフィンノックアウト細胞株 図22は、Acute modelにおける、active-caspase(active-caspase 8;Casp8及びactive-caspase 9;Casp9)の活性解析結果を示す(それぞれ、n=6)(エラーバー:標準偏差;*:p < 0.05)。409 B2:健常ヒトiPS細胞クローン由来の細胞株;409 ex45KO:健常者のジストロフィンノックアウト細胞株 図23は、Acute modelにおける、トータルATPレベルの解析結果を示す(それぞれ、n=6)(エラーバー:標準偏差;*:p < 0.05)。409 B2:健常ヒトiPS細胞クローン由来の細胞株;409 ex45KO:健常者のジストロフィンノックアウト細胞株 図24は、図18記載の骨格筋トレーニング方法の前(上段)後(下段)における、骨格筋運動パフォーマンス(収縮速度(Contraction velocity)(μm/s)、弛緩速度(Relaxation velocity)(μm/s)、加速度(Acceleration)(μm/s2)、単収縮距離(Twitching distance)(μm)、及びカルシウムピーク(Cal-520 peak)(励起波長480nm/蛍光波長nmでの相対強度))の解析結果を示す(それぞれ、n=5)(エラーバー:標準偏差*:p < 0.05)。DMD-Δ:DMD患者由来の細胞株;DMD-CKI:DMD患者の遺伝子修復株 図25は、図18記載の骨格筋トレーニング方法の前(上段)後(下段)における、炎症マーカー(IL-1β、TNFα、IL6)の発現解析結果を示す(それぞれ、n=6)(エラーバー:標準偏差;*:p < 0.05)。DMD-Δ:DMD患者由来の細胞株;DMD-CKI:DMD患者の遺伝子修復株 図26は、Acute modelにおける、IL6タンパク質の解析結果を示す(それぞれ、n=6)(エラーバー:標準偏差;*:p < 0.05)。DMD-Δ:DMD患者由来の細胞株;DMD-CKI:DMD患者の遺伝子修復株 図27は、電気刺激によるChronic model(慢性モデル)の骨格筋トレーニング方法の概略図を示す。4日目(D4)の再播種の際に、12kPa ハイドロゲル(hydrogel)上に細胞株を再播種し、6日目(D6)から電気刺激(EFS/Electrical field stimulation )を始め徐々に電圧を上げていき最終的にD16に20Vに到達させる事により、慢性的な細胞障害を引き起こす(Chronic modelの作製)プロトコルを示す。 図28は、Chronic modelにおける電気刺激中の収縮速度(Contraction velocity)(μm/s)の変化結果を示す。409B2 WT:健常ヒトiPS細胞クローン由来の細胞株;409B2KO:健常者のジストロフィンノックアウト細胞株
(発明の詳細な説明)
1.骨格筋細胞の製造方法
 本発明は、多能性幹細胞から骨格筋細胞を製造する方法(以下、「本発明の製法」ともいう)を提供する。本発明の製法は、例えば、(1)MyoD及びMyf5から選ばれる1以上の外因性因子(以下、「骨格筋細胞誘導因子」ともいう)を発現させる条件で細胞を培養する工程、(2)工程(1)で得られた又は培養された細胞を、該外因性因子を発現させない条件で培養する工程、並びに(3)工程(2)で得られた又は培養された細胞を、1以上の骨格筋細胞誘導因子を発現させる条件で培養する工程を含む。本発明の製法は、さらに、(4)工程(3)で得られた細胞を、該外因性因子を発現させない条件で培養する工程を含んでいてもよい。
 下述の実施例で示す通り、好ましい実施態様において、本発明の製法により提供される骨格筋細胞集団は、従来の方法により作製された細胞集団と比較して、複数の核を有する細胞、特に3つ以上の核を持つ細胞数の割合が顕著に高いことが見出された。また、本発明の製法により提供される骨格筋細胞は、骨格筋細胞の成熟度の指標となる骨格筋マーカー(例:MYOD、MYH3、MYH8、MYH1、MYH2、MYH7)の発現が認められ、前記骨格筋細胞は、長期間の培養(少なくとも2週間以上)が可能であった。従って、本発明の製法により、従来の方法により作製された細胞と比較して、長期間培養可能で成熟度の高い、上記性質を有する骨格筋細胞が提供され得る。
 本明細書において、「骨格筋細胞を製造する」とは、少なくとも骨格筋細胞を含有する細胞集団を得ることを意味する。好ましくは、骨格筋細胞を50%以上(例:50%、60%、70%、80%、90%またはそれ以上)含有する細胞集団を得ることである。また本明細書において、「骨格筋細胞」とは、ミオゲニン及び/又はミオシン重鎖(MHC)を発現している細胞を意味し、多核細胞であっても単核細胞であってもよい。
 上述の通り、骨格筋細胞誘導因子としてMyoDを用いたところ、長期培養が可能な、成熟度が高い骨格筋細胞を製造することが可能であった。従って、骨格筋細胞誘導因子として、MyoDを用いることが好ましい。また、特許文献1に記載されているように、MyoDの代わりにMyf5を用いた場合でも、多能性幹細胞から骨格筋細胞を効率良く製造できること、MyoDを用いた場合と同様に、内在性のMyoDやミオゲニンの発現が誘導されることを本発明者らは以前報告している。そのため、本発明の製法において、骨格筋細胞誘導因子としてMyf5を用いた場合も、MyoDを用いた場合と同様に、長期培養が可能な、成熟度が高い骨格筋細胞を製造し得る。
 骨格筋細胞誘導因子は、1種のみを用いてもよく、複数種類用いてもよい。また、工程(1)で発現させる骨格筋細胞誘導因子と、工程(3)で発現させる骨格筋細胞誘導因子とは、異なるものであってもよいが、同一のものであることが好ましい。
 骨格筋細胞誘導因子としては、例えば、任意の哺乳動物(例:ヒト、マウス、ラット、サル、ウシ、ウマ、ブタ、イヌ等)由来のMyoD若しくはMyf5タンパク質又はそれをコードする核酸等を用いることができるが、好ましくはヒトである。対象となる多能性幹細胞の由来と同一種のものが好ましい。
 本発明で用いるMyoDとしては、配列番号2で表されるアミノ酸配列からなるヒトmyogenic differentiation 1(MyoD1)(NCBIにアクッセッション番号:NP_002469として登録されている)、及び他の哺乳動物におけるそのオルソログ、並びにそれらの転写変異体、スプライシング変異体などが挙げられる。或いは、上記いずれかのタンパク質と90%以上、好ましくは95%以上、より好ましくは97%以上のアミノ酸同一性を有し、且つ該タンパク質と同等の機能(例、筋特異的プロモーターの転写活性化など)を有するタンパク質であってもよい。ここでアミノ酸配列の同一性はNCBI BLAST(National Center for Biotechnology Information Basic Local Alignment Search Tool)のblastpプログラムを用い、以下の条件(期待値=10;ギャップを許す;マトリクス=BLOSUM62;フィルタリング=OFF)にて計算することができる。
 本発明で用いるMyf5としては、配列番号4で表されるアミノ酸配列からなるヒトmyogenic factor 5(MYF5)(NCBIにアクッセッション番号:NP_005584として登録されている)、及び他の哺乳動物におけるそのオルソログ、並びにそれらの転写変異体、スプライシング変異体などが挙げられる。或いは、上記のタンパク質と90%以上、好ましくは95%以上、より好ましくは97%以上のアミノ酸同一性を有し、且つ該タンパク質と同等の機能(例、筋特異的プロモーターの転写活性化など)を有するタンパク質であってもよい。ここでアミノ酸配列の同一性は上記と同様にして計算することができる。
 骨格筋細胞誘導因子は、該因子をコードする核酸として細胞に導入することができる。MyoDをコードする核酸としては、配列番号1で表されるヌクレオチド配列からなるヒトmyogenic differentiation 1(MyoD1)cDNA(NCBIにアクッセッション番号:NP_002478として登録されている)、及び他の哺乳動物におけるそのオルソログ、並びにそれらの転写変異体、スプライシング変異体などが挙げられる。或いは、上記いずれかの核酸と90%以上、好ましくは95%以上、より好ましくは97%以上のヌクレオチド同一性を有し、且つ該核酸にコードされるタンパク質と同等の機能(例、筋特異的プロモーターの転写活性化など)を有するタンパク質をコードする核酸であってもよい。ここでヌクレオチド配列の同一性はNCBI BLAST(National Center for Biotechnology Information Basic Local Alignment Search Tool)のblastnプログラムを用い、以下の条件(期待値=10;ギャップを許す;フィルタリング=ON;マッチスコア=1;ミスマッチスコア=-3)にて計算することができる。或いは、上記いずれかの核酸の相補鎖とストリンジェントな条件でハイブリダイズすることができる程度の相補関係を有する正鎖を有するものであってもよい。なお、ここでストリンジェントな条件は、Berger and Kimmel(1987, Guide to Molecular Cloning Techniques Methods in Enzymology, Vol. 152, Academic Press, San Diego CA)に教示されるように、複合体或いはプローブを結合する核酸の融解温度(Tm)に基づいて決定することができる。例えばハイブリダイズ後の洗浄条件として、通常「1×SSC、0.1%SDS、37℃」程度の条件を挙げることができる。相補鎖はかかる条件で洗浄しても対象とする正鎖とハイブリダイズ状態を維持するものであることが好ましい。特に限定されないが、より厳しいハイブリダイズ条件として「0.5×SSC、0.1%SDS、42℃」程度の洗浄条件、さらに厳しくは「0.1×SSC、0.1%SDS、65℃」程度の洗浄条件で洗浄しても正鎖と相補鎖とがハイブリダイズ状態を維持する条件を挙げることができる。
 Myf5をコードする核酸としては、配列番号3で表されるヌクレオチド配列からなるヒトmyogenic factor 5(Myf5)cDNA(NCBIにアクッセッション番号:NM_005593として登録されている)、及び他の哺乳動物におけるそのオルソログ、並びにそれらの転写変異体、スプライシング変異体などが挙げられる。或いは、上記いずれかの核酸と90%以上、好ましくは95%以上、より好ましくは97%以上のヌクレオチド同一性を有し、且つ該核酸にコードされるタンパク質と同等の機能(例、筋特異的プロモーターの転写活性化など)を有するタンパク質をコードする核酸であってもよい。ここでヌクレオチド配列の同一性は上記と同様にして計算することができる。或いは、上記いずれかの核酸の相補鎖とストリンジェントな条件でハイブリダイズすることができる程度の相補関係を有する正鎖を有するものであってもよい。ここでストリンジェントな条件は上記と同義である。
 MyoD若しくはMyf5をコードする核酸は、DNAであってもRNAであってもよく、或いはDNA/RNAキメラであってもよい。また、該核酸は、一本鎖であっても、二本鎖DNA、二本鎖RNA若しくはDNA:RNAハイブリッドであってもよい。好ましくは二本鎖DNA若しくは一本鎖RNAである。一本鎖RNAを用いる場合、分解を抑制するため、5-メチルシチジン及びシュードウリジン(pseudouridine)(TriLink Biotechnologies)を取り込ませたRNAを用いてもよく、フォスファターゼ処理による修飾RNAを用いてもよい。
 MyoD及びMyf5並びにそれらをコードするDNAは、例えば、上記ヒトMyoD1及びヒトMyf5のcDNA配列情報に基づいて容易に各タンパク質をコードするDNAを単離することができ、或いは化学的に合成することもできる。MyoD又はMyf5をコードするRNAは、例えば、それぞれのタンパク質をコードするDNAを含むベクターを鋳型として、自体公知のin vitro転写系にてmRNAに転写することにより調製することができる。
 骨格筋細胞誘導因子がDNAの形態の場合、例えば、ウイルス、プラスミド、人工染色体などのベクターをリポフェクション、リポソーム、マイクロインジェクションなどの手法によって細胞内に導入することができる。ウイルスベクターとしては、レトロウイルスベクター、レンチウイルスベクター、アデノウイルスベクター、アデノ随伴ウイルスベクター、センダイウイルスベクターなどが例示される。また、人工染色体ベクターとしては、ヒト人工染色体(HAC)、酵母人工染色体(YAC)、細菌人工染色体(BAC、PAC)などが例示される。プラスミドとしては、哺乳動物細胞用プラスミドが例示される。ベクターには、MyoD又はMyf5をコードするDNAが発現可能なように、プロモーター、エンハンサー、リボゾーム結合配列、ターミネーター、ポリアデニル化サイトなどの制御配列を含むことができるし、さらに、必要に応じて、薬剤耐性遺伝子(例えば、カナマイシン耐性遺伝子、アンピシリン耐性遺伝子、ピューロマイシン耐性遺伝子など)、チミジンキナーゼ遺伝子、ジフテリアトキシン遺伝子などの選択マーカー配列、蛍光タンパク質、βグルクロニダーゼ(GUS)、FLAGなどのレポーター遺伝子配列などを含むことができる。プロモーターとして、SV40プロモーター、LTRプロモーター、CMV(cytomegalovirus)プロモーター、RSV(Rous sarcoma virus)プロモーター、MoMuLV(Moloney mouse leukemia virus)LTR、HSV-TK(herpes simplex virus thymidine kinase)プロモーター、EF-αプロモーター、CAGプロモーター及びTREプロモーター(tetO配列が7回連続したTet応答配列をもつCMV最小プロモーター)が例示される。TREプロモーターを用いた場合、同一の細胞において、tetR及びVP16ADとの融合タンパク質又はリバース(reverse)tetR(rtetR)及びVP16ADとの融合タンパク質を同時に発現させることが望ましい。
 また、上記ベクターには、プロモーターとそれに結合するMyoD又はMyf5をコードするDNAからなる発現カセットを、細胞の染色体へ取り込み、さらに必要に応じて切除するために、この発現カセットの前後にトランスポゾン配列を有していてもよい。トランスポゾン配列として特に限定されないが、piggyBacが例示される。他の態様として、発現カセットを除去する目的のため、発現カセットの前後にLoxP配列又はFRT配列を有してもよい。
 別の好ましい非組込み型ベクターとして、染色体外で自律複製可能なエピソーマルベクターが挙げられる。エピソーマルベクターを用いる具体的手段は、Yu et al., Science, 324, 797-801 (2009)に開示されている。必要に応じて、エピソーマルベクターの複製に必要なベクター要素の5’側及び3’側に、loxP配列を同方向に配置したエピソーマルベクターに、骨格筋細胞誘導因子をコードする核酸を挿入した発現ベクターを構築し、これを体細胞に導入することもできる。上記エピソーマルベクターとしては、例えば、EBV、SV40等に由来する自律複製に必要な配列をベクター要素として含むベクターが挙げられる。自律複製に必要なベクター要素としては、具体的には、複製開始点と、複製開始点に結合して複製を制御するタンパク質をコードする遺伝子であり、例えば、EBVにあっては複製開始点oriPとEBNA-1遺伝子、SV40にあっては複製開始点oriとSV40 large T antigen遺伝子が挙げられる。
 本明細書において、TREプロモーターを有しリバースtetR(rtetR)及びVP16ADとの融合タンパク質、又はTREプロモーターを有しtetR及びVP16ADとの融合タンパク質を発現させることが可能なベクターを、薬剤応答性誘導ベクターと称する。上記ベクターにおいて、発現誘導に用いる薬剤(「ベクターと対応する薬剤」ともいう)としては、例えば、ドキシサイクリン(Dox)、テトラサイクリン又はそれらの誘導体(「Dox等」と略記する)が挙げられる。また、メタロチオネインプロモーターを含有するベクター(ベクターと対応する薬剤:重金属イオン)、ステロイド応答性プロモーターを含有するベクター(ベクターと対応する薬剤:ステロイドホルモン又はその誘導体)も、薬剤応答性誘導ベクターに包含されるものとする。さらに、光応答性プロモーター(光で誘導)、ヒートショックタンパク質プロモーター(ヒートショックで誘導)を含有するベクターなどの、刺激によりプロモーターに連結した核酸の発現が誘導されるベクターを用いてもよく、これらと薬剤応答性誘導ベクターをまとめて、誘導ベクターと称する。本発明の好ましい態様において、工程(1)及び(3)は、骨格筋細胞誘導因子をコードする核酸を含む誘導ベクター、好ましくは薬剤応答性誘導ベクターを導入した細胞を、該ベクターと対応する薬剤又は刺激の存在下で培養することにより行う。
 骨格筋細胞誘導因子がRNAの形態の場合、例えばエレクトロポレーション、リポフェクション、マイクロインジェクションなどの手法によって細胞内に導入してもよい。
 本発明に用いる多能性幹細胞としては、例えば、人工多能性幹細胞(induced pluripotent stem cell:iPS細胞)、胚性幹細胞(embryonic stem cell:ES細胞)、核移植により得られるクローン胚由来の胚性幹細胞(nuclear transfer Embryonic stem cell:ntES細胞)、多能性生殖幹細胞(multipotent germline stem cell)(「mGS細胞」)、胚性生殖幹細胞(EG細胞)、Muse細胞(multi-lineage differentiating stress enduring cell)が挙げられるが、好ましくはiPS細胞(より好ましくはヒトiPS細胞)である。上記多能性幹細胞がES細胞又はヒト胚に由来する任意の細胞である場合、その細胞は胚を破壊して作製された細胞であっても、胚を破壊することなく作製された細胞であってもよいが、好ましくは、胚を破壊することなく作製された細胞である。
 iPS細胞は、特定の初期化因子を、DNA又はタンパク質の形態で体細胞に導入することによって作製することができる、ES細胞とほぼ同等の特性、例えば分化多能性と自己複製による増殖能、を有する体細胞由来の人工の幹細胞である(Takahashi K. and Yamanaka S.(2006)Cell, 126:663-676; Takahashi K. et al.(2007), Cell, 131:861-872; Yu J. et al.(2007), Science, 318:1917-1920; Nakagawa M. et al., Nat. Biotechnol. 26:101-106(2008);WO 2007/069666)。iPS細胞を用いる場合、該iPS細胞は、自体公知の方法により体細胞から作製してもよいし、既に樹立され、ストックされているiPS細胞を用いてもよい。初期化因子は、ES細胞に特異的に発現している遺伝子、その遺伝子産物若しくはノンコーディング(non-coding)RNA又はES細胞の未分化維持に重要な役割を果たす遺伝子、その遺伝子産物若しくはノンコーディングRNA、或いは低分子化合物によって構成されてもよい。初期化因子に含まれる遺伝子として、例えば、Oct3/4、Sox2、Sox1、Sox3、Sox15、Sox17、Klf4、Klf2、c-Myc、N-Myc、L-Myc、Nanog、Lin28、Fbx15、ERas、ECAT15-2、Tcl1、beta-catenin、Lin28b、Sall1、Sall4、Esrrb、Nr5a2、Tbx3又はGlis1等が例示される。これらの初期化因子は、単独で用いてもよく、組み合わせて用いてもよい。初期化因子の組み合わせとしては、WO 2007/069666、WO 2008/118820、WO 2009/007852、WO 2009/032194、WO 2009/058413、WO 2009/057831、WO 2009/075119、WO 2009/079007、WO 2009/091659、WO 2009/101084、WO 2009/101407、WO 2009/102983、WO 2009/114949、WO 2009/117439、WO 2009/126250、WO 2009/126251、WO 2009/126655、WO 2009/157593、WO 2010/009015、WO 2010/033906、WO 2010/033920、WO 2010/042800、WO 2010/050626、WO 2010/056831、WO 2010/068955、WO 2010/098419、WO 2010/102267、WO 2010/111409、WO 2010/111422、WO 2010/115050、WO 2010/124290、WO 2010/147395、WO 2010/147612、Huangfu D, et al.(2008), Nat. Biotechnol., 26:795-797、Shi Y, et al.(2008), Cell Stem Cell, 2:525-528、Eminli S, et al.(2008), Stem Cells. 26:2467-2474、Huangfu D, et al.(2008), Nat Biotechnol. 26:1269-1275、Shi Y, et al.(2008), Cell Stem Cell, 3, 568-574、Zhao Y, et al.(2008), Cell Stem Cell, 3:475-479、Marson A,(2008), Cell Stem Cell, 3, 132-135、Feng B, et al.(2009), Nat Cell Biol. 11:197-203、R.L. Judson et al.,(2009), Nat. Biotech., 27:459-461、Lyssiotis CA, et al.(2009), Proc Natl Acad Sci U S A. 106:8912-8917、Kim JB, et al.(2009), Nature. 461:649-643、Ichida JK, et al.(2009), Cell Stem Cell. 5:491-503、Heng JC, et al.(2010), Cell Stem Cell. 6:167-74、Han J, et al.(2010), Nature. 463:1096-100、Mali P, et al.(2010), Stem Cells. 28:713-720、Maekawa M, et al.(2011), Nature. 474:225-9に記載の組み合わせが例示される。
 上記初期化因子には、例えば、ヒストンデアセチラーゼ(HDAC)阻害剤[例えば、バルプロ酸(VPA)、トリコスタチンA、酪酸ナトリウム、MC 1293、M344等の低分子阻害剤、HDACに対するsiRNA及びshRNA(例、HDAC1 siRNA Smartpool(Millipore)、HuSH 29mer shRNA Constructs against HDAC1(OriGene)等)等の核酸性発現阻害剤など]、MEK阻害剤(例えば、PD184352、PD98059、U0126、SL327及びPD0325901)、グリコーゲンシンターゼキナーゼ-3阻害剤(例えば、Bio及びCHIR99021)、DNAメチルトランスフェラーゼ阻害剤(例えば、5-アザシチジン)、ヒストンメチルトランスフェラーゼ阻害剤(例えば、BIX-01294等の低分子阻害剤、Suv39hl、Suv39h2、SetDBl及びG9aに対するsiRNA及びshRNA等の核酸性発現阻害剤など)、L-チャネルカルシウムアゴニスト(例えばBayk8644)、酪酸、TGFβ阻害剤又はALK5阻害剤(例えば、LY364947、SB431542、616453及びA-83-01)、p53阻害剤(例えばp53に対するsiRNA及びshRNA)、ARID3A阻害剤(例えば、ARID3Aに対するsiRNA及びshRNA)、miR-291-3p、miR-294、miR-295及びmir-302などのmiRNA、Wntシグナリング(例えば可溶性Wnt3a)、神経ペプチドY、プロスタグランジン類(例えば、プロスタグランジンE2及びプロスタグランジンJ2)、hTERT、SV40LT、UTF1、IRX6、GLISl、PITX2、DMRTBl等の樹立効率を高めることを目的として用いられる因子も含まれるが、それらに限定されない。本明細書においては、これらの樹立効率を高めることを目的として用いられる因子についても初期化因子と別段の区別をしないものとする。
 本明細書において、「体細胞」とは、卵子、卵母細胞、ES細胞などの生殖系列細胞又は分化全能性細胞を除くあらゆる動物細胞(好ましくは、ヒトを含む哺乳動物細胞)を意味する。体細胞としては、特に限定されないが、胎児(仔)の体細胞、新生児(仔)の体細胞、及び成熟した健全な若しくは疾患性の体細胞のいずれも包含されるし、また、初代培養細胞、継代細胞、及び株化細胞のいずれも包含される。具体的には、体細胞は、例えば(1)神経幹細胞、造血幹細胞、間葉系幹細胞、歯髄幹細胞等の組織幹細胞(体性幹細胞)、(2)組織前駆細胞、(3)リンパ球、上皮細胞、内皮細胞、筋肉細胞、線維芽細胞(皮膚細胞等)、毛細胞、肝細胞、胃粘膜細胞、腸細胞、脾細胞、膵細胞(膵外分泌細胞等)、脳細胞、肺細胞、腎細胞及び脂肪細胞等の分化した細胞などが例示される。
 ES細胞は、ヒトやマウスなどの哺乳動物の初期胚(例えば胚盤胞)の内部細胞塊から樹立された、多能性と自己複製による増殖能を有する幹細胞である。ES細胞は、マウスで1981年に発見され(M.J. Evans and M.H. Kaufman(1981), Nature 292:154-156)、その後、ヒト、サルなどの霊長類でもES細胞株が樹立された(J.A. Thomson et al.(1998), Science 282:1145-1147; J.A. Thomson et al.(1995), Proc. Natl. Acad. Sci. USA, 92:7844-7848; J.A. Thomson et al.(1996), Biol. Reprod., 55:254-259; J.A. Thomson and V.S. Marshall(1998), Curr. Top. Dev. Biol., 38:133-165)。ES細胞は、対象動物の受精卵の胚盤胞から内部細胞塊を取出し、内部細胞塊を線維芽細胞のフィーダー上で培養することによって樹立することができる。ヒト及びサルのES細胞の樹立と維持の方法については、例えば、USP5,843,780; Thomson JA, et al.(1995), Proc Natl. Acad. Sci. U S A. 92:7844-7848;Thomson JA, et al.(1998), Science. 282:1145-1147; Suemori H. et al.(2006), Biochem. Biophys. Res. Commun., 345:926-932; Ueno M. et al.(2006), Proc. Natl. Acad. Sci. USA, 103:9554-9559; Suemori H. et al.(2001), Dev. Dyn., 222:273-279; Kawasaki H. et al.(2002), Proc. Natl. Acad. Sci. USA, 99:1580-1585;Klimanskaya I. et al.(2006), Nature. 444:481-485などに記載されている。或いは、ES細胞は、胚盤胞期以前の卵割期の胚の単一割球のみを用いて樹立することもできるし(Chung Y. et al. (2008), Cell Stem Cell 2: 113-117)、発生停止した胚を用いて樹立することもできる(Zhang X. et al. (2006), Stem Cells 24: 2669-2676.)。
 nt ES細胞は、核移植技術によって作製されたクローン胚由来のES細胞であり、受精卵由来のES細胞とほぼ同じ特性を有している(Wakayama T. et al.(2001), Science, 292:740-743; S. Wakayama et al.(2005), Biol. Reprod., 72:932-936; Byrne J. et al.(2007), Nature, 450:497-502)。すなわち、未受精卵の核を体細胞の核と置換することによって得られたクローン胚由来の胚盤胞の内部細胞塊から樹立されたES細胞がnt ES(nuclear transfer ES)細胞である。nt ES細胞の作製のためには、核移植技術(Cibelli J.B. et al.(1998), Nature Biotechnol., 16:642-646)とES細胞作製技術(上記)との組み合わせが利用される(若山清香ら(2008), 実験医学, 26巻, 5号(増刊), 47~52頁)。核移植においては、哺乳動物の除核した未受精卵に、体細胞の核を注入し、数時間培養することで初期化することができる。
 mGS細胞は、精巣由来の多能性幹細胞であり、精子形成のための起源となる細胞である。この細胞は、ES細胞と同様に、種々の系列の細胞に分化誘導可能であり、例えばマウス胚盤胞に移植するとキメラマウスを作出できるなどの性質をもつ(Kanatsu-Shinohara M. et al.(2003)Biol. Reprod., 69:612-616; Shinohara K. et al.(2004), Cell, 119:1001-1012)。神経膠細胞系由来神経栄養因子(glial cell line-derived neurotrophic factor(GDNF))を含む培養液で自己複製可能であるし、またES細胞と同様の培養条件下で継代を繰り返すことによって、生殖幹細胞を得ることができる(竹林正則ら(2008), 実験医学, 26巻, 5号(増刊), 41~46頁, 羊土社(東京、日本))。
 EG細胞は、胎生期の始原生殖細胞から樹立される、ES細胞と同様な多能性をもつ細胞である。LIF、bFGF、幹細胞因子(stem cell factor)などの物質の存在下で始原生殖細胞を培養することによって樹立し得る(Matsui Y. et al.(1992), Cell, 70:841-847; J.L. Resnick et al.(1992), Nature, 359:550-551)。
 Muse細胞は、生体に内在する非腫瘍性の多能性幹細胞であり、例えば、WO 2011/007900に記載された方法にて製造することができる。詳細には、線維芽細胞又は骨髄間質細胞を長時間トリプシン処理、好ましくは8時間又は16時間トリプシン処理した後、浮遊培養することで得られる多能性を有した細胞がMuse細胞であり、SSEA-3及びCD105が陽性である。
 本発明において、工程(1)の前に、多能性幹細胞を、胚様体を形成させず、特定の細胞種への誘導条件ではない接着培養条件下で培養(以下、「前培養」ともいう)することが好ましい。この培養方法として、例えば、マトリゲル(BD)、I型コラーゲン、IV型コラーゲン、ゼラチン、ラミニン、ヘパラン硫酸プロテオグリカン、又はエンタクチン、及びこれらの組み合わせ(「マトリゲル等」ともいう)を用いてコーティング処理された培養皿へ接着させ、動物細胞の培養に用いられる培地を基本培地として、細胞を培養する方法が挙げられる。この時、bFGFを含有する培地を用いてもよいが、bFGFを含有していない培地であることが望ましい。bFGFを含有する培地を用いる場合であっても、前培養の途中でbFGFを含有していない培地に交換することが望ましい。ここで、基本培地としては、例えば、StemFit(例:StemFit AK03N、StemFit AK02N)(味の素社)、PECM(Primate ES Cell Medium)、GMEM(グラスゴー最小必須培地:Glasgow Minimum Essential Medium)、IMDM(イスコフ改変ダルベッコ培地:Iscove's Modified Dulbecco's Medium)、199培地、イーグル最小必須培地(Eagle’s Minimum Essential Medium)(EMEM)、αMEM、ダルベッコ改変イーグル培地(Dulbecco’s modified Eagle’s Medium)(DMEM)、Ham’s F12培地、RPMI 1640培地、フィッシャー培地(Fischer’s medium)、及びこれらの混合培地などが包含される。
 基本培地には、ROCK阻害剤(例:Y-27632、Fasudil/HA1077、SR3677、GSK269962、H-1152、Wf-536等)、血清(例:ウシ胎仔血清(FBS)、ヒト血清、ウマ血清等)若しくは血清代替物、インスリン、各種ビタミン、L-グルタミン、非必須アミノ酸等の各種アミノ酸、2-メルカプトエタノール、各種サイトカイン(インターロイキン類(IL-2、IL-7、IL-15等)、幹細胞因子(SCF (Stem cell factor))、アクチビンなど)、各種ホルモン、各種増殖因子(白血病抑制因子(LIF)、塩基性線維芽細胞増殖因子(bFGF)、TGF-β等)、各種細胞外マトリックス、各種細胞接着分子、ペニシリン/ストレプトマイシン、ピューロマイシン等の抗生物質、フェノールレッド等のpH指示薬などを適宜添加することができる。血清代替物として、アルブミン、トランスフェリン、脂肪酸、インスリン、コラーゲン前駆体、微量元素、Knockout Serum Replacement(KSR)、ITS-サプリメント及びこれらの混合物などが包含される。
 好ましい前培養条件は、マトリゲルでコーティングされた培養皿に接着させた多能性幹細胞を、ROCK阻害剤を含有するStemFit中で培養した後に、ROCK阻害剤を含有するPECMに培地を交換して培養する条件である。
 上記前培養を行う場合の期間としては、1日間~3日間以下行うことが好ましく、2日間行うことがより好ましい。培養温度は、特に限定されないが、約30~約40℃、好ましくは約37℃であり、CO2含有空気の存在下で培養が行われ、CO2濃度は、好ましくは約2~5%である。
 本明細書において、「骨格筋細胞誘導因子を発現させる」とは、特にことわらない限り、少なくとも骨格筋細胞誘導因子(タンパク質)を産生させることを含む意味で用いられるが、好ましくは、さらに骨格筋細胞誘導因子(mRNA)を産生させることをも含む意味で用いられる。本明細書において、「骨格筋細胞誘導因子を発現させる条件」とは、骨格筋細胞誘導因子の発現を誘導する、下記に記載の物質の存在下で継続して細胞を培養すること、或いは骨格筋細胞誘導因子の発現誘導を阻害する物質の非存在下で継続して培養することで、骨格筋細胞誘導因子の発現が維持される条件を意味する。また、本明細書において、「骨格筋細胞誘導因子を発現させない条件」とは、上記の骨格筋細胞誘導因子の発現を誘導する物質の非存在下で継続して細胞を培養すること、或いは骨格筋細胞誘導因子の発現を阻害する物質の存在下で継続して細胞を培養することで、骨格筋細胞誘導因子の発現が停止される条件を意味し、mRNAレベル及びタンパク質レベルで完全に骨格筋細胞誘導因子の発現が認められない条件のみを意味するものではない。
 骨格筋細胞誘導因子の発現を維持する方法としては、特に限定されないが、骨格筋細胞誘導因子がRNAの場合、所望の期間において、該RNAの導入を複数回行うことで実施可能であり、一方で、該RNAを含まない培地に培地交換することで、該骨格筋細胞誘導因子の発現を停止することができる。骨格筋細胞誘導因子がDNAの場合、例えば、薬剤応答性誘導ベクターを用いて、所望の期間Dox等を含む培地で細胞を培養する(Tet-onシステムの場合)、或いはDox等を含まない培地で細胞を培養する(Tet-offシステムの場合)ことで、該骨格筋細胞誘導因子の発現を維持することができ、一方で、Dox等を含まない培地(Tet-onシステムの場合)、或いはDox等を含む培地(Tet-offシステムの場合)に培地交換することで、発現を停止することができる。その他の誘導ベクターを用いた場合も、同様に発現を維持又は停止することができる。或いは、トランスポゾン配列を有するベクター又はLoxP配列若しくはFRT配列を有するベクターを用いる場合には、該ベクターを導入した細胞を所望の期間培養することで骨格筋細胞誘導因子の発現を維持することができ、一方で、所望の期間経過後、トランスポゼース又はCre若しくはFlpを細胞内に導入することで、発現を停止することができる。
 工程(1)の培養期間は特に限定されないが、3日間以下であることが好ましく、また、1日間以上であることが好ましい。好ましい実施態様において、工程(1)の期間は2日間である。また、工程(3)の培養期間も特に限定されないが、Myotubeが形成されるまで骨格筋細胞誘導因子の発現を維持することが好ましく、具体的な日数の目安としては、2日間以上、10日間以下(例:10日間、9日間、8日間、7日間、6日間、5日間又はそれ以下)が挙げられる。下述の実施例で示す通り(図2のD10)、4日間骨格筋細胞誘導因子の発現を維持することで明確なMyotubeの形成が認められたため、好ましい目安として4日間が挙げられる。Myotubeの形成は、電子顕微鏡により確認することができる。薬剤応答性誘導ベクターを用いる場合、工程(1)又は(3)の培地中におけるベクターと対応する薬剤の濃度は、細胞において骨格筋細胞誘導因子が発現される限り特に限定されない。例えば、Doxを用いる場合には、0.4μg/mL~1.5μg/mL程度が好ましく、Dox以外を用いる場合も、当業者であれば適宜濃度を設定することができる。
 工程(2)の培養期間は特に限定されないが、8日間以下(例:8日間、7日間、6日間、5日間、4日間又はそれ以下)であることが好ましく、また、1日間以上であることが好ましい。好ましい実施態様において、工程(2)の期間は2日間である。また、工程(4)の培養期間も特に限定されないが、典型的には、2日間~7日間程度であるが、これを超えて培養してもよい。
 工程(1)~(4)の培養における、基本培地や、ROCK阻害剤、血清、血清代替物などの各添加物については、上記前培養に記載のものと同様のものを用いることができる。培養条件(温度、CO2濃度)についても、上記前培養に記載のものと同様の条件が挙げられる。例えば、工程(2)の培地には、ROCK阻害剤を含んでいてもよいが、含んでいないことが好ましい。ROCK阻害剤を含む場合、培地におけるその濃度は、10μM未満(例:9μM、5μM、4μM、3μM、2μM、1μM又はそれ未満)であることが好ましく、より好ましくは0.3μM以下(例:0.3μM、0.2μM、0.1μM又はそれ以下)である。工程(2)以降の培養は、KSRを含まない培地で行うことが好ましい。下述の実施例で示す通り、ROCK阻害剤の濃度を減らすことで、未分化多能性幹細胞の混入を減らすことが可能となる。また、工程(2)以降の培養は、5%(v/v)未満(例:4%、3%、2%、1%又はそれ未満)のウマ血清を含む培地で行うことが好ましく、より好ましくは2%(v/v)のウマ血清を含む培地で行なうことが好ましい。具体的な基本培地としては、例えば、工程(1)はPECM、工程(2)以降はαMEMが挙げられる。
 骨格筋細胞への誘導効率の均一性及び細胞生存率の向上の観点から、工程(2)の開始前後に、工程(1)で培養した細胞を一度はがし、別の培養皿やプレート(例:96ウェルプレート、384ウェルプレート)に撒き直すこと(以下、「再播種(Replating)」ともいう)を行うことが好ましい。前記培養皿やプレートは、マトリゲル等でコーティングされていることが好ましい。再播種の具体的な方法や、培養皿等のコーティング方法は、非特許文献1を適宜参酌することができる。好ましい実施態様において、上記コーティングは、αMEMで100倍に希釈したマトリゲル(BD社)を、前記培養皿やプレート上に加え、4℃で24時間以上インキュベートすることにより行う。
 後述の実施例で示す通り、工程(3)により得られた細胞に対して、電気刺激を与えることで、従来の方法で作製した骨格筋細胞と比較して、ダイナミックかつ広い面積で収縮活動を示し、また収縮速度及び収縮距離も増加した骨格筋細胞が作製された。また、従来の方法で作製した骨格筋細胞では認められなかった、明確なサルコメア構造も認められた。さらに、電気刺激を与える工程(以下、「電気刺激工程」ともいう)を行わずに、本発明の製法で得られた骨格筋細胞よりも、さらに長期間培養可能であった。このように、電気刺激工程を行うことで、より成熟した、さらに長期間培養可能な骨格筋細胞を製造することが可能である。従って、本発明の製法は、工程(1)~工程(4)のいずれかの段階で得られる細胞に対して、電気刺激を与える工程をさらに含むことが好ましい。別の態様において、本発明は、工程(1)~(4)のいずれかの段階で得られる骨格筋細胞(骨格筋前駆細胞を含む)に対し、電気刺激を与える工程を含む、骨格筋細胞又は骨格筋前駆細胞の成熟化方法を提供する。さらに別の態様において、本発明は、本発明の製法で得られた細胞を、工程(4)と同様の培養条件で維持培養する工程を含む、骨格筋細胞の長期培養方法を提供する。
 本明細書において、「骨格筋細胞の成熟化」とは、長期間細胞を分化培養する事により、該細胞の(1)骨格筋成熟化マーカー(速筋マーカー(例:MYH1、2)、遅筋マーカー(例:MYH7))、未成熟な骨格筋細胞で発現するマーカー(胎児(仔)マーカー(例:MYH3)、幼児(仔)マーカー(例:MYH8))、骨格筋マーカー(MyoD、CKM、MHC、Myogenin)の発現が増幅する、(2)サルコメア構造が電子顕微鏡解析で確認出来る、(3)外部からの刺激(例、電気刺激)に応答して収縮活動が認められる、等のいずれかを満たす事を意味する。これらの指標は自体公知の方法により確認できる。また、本明細書において、「長期培養」とは、2週間以上細胞形態に弱体化等での変化が無く、上記骨格筋マーカーの発現の著しい減少が見られない条件で培養可能であることを意味する。これらの指標も自体公知の方法により確認できる。本明細書において、「骨格筋成熟化マーカー」は、非特許文献1に記載の方法により作製した骨格筋細胞では発現が見られないマーカーを意味し、一方で「未成熟な骨格筋細胞で発現するマーカー」は、非特許文献1に記載の方法により作製した骨格筋細胞でも見られるマーカーを意味する。また、「骨格筋マーカー」は、非特許文献1に記載の方法により作製した骨格筋細胞では、培養を続けることで発現量が低下するマーカーを意味する。
 電気刺激工程は、工程(1)~工程(4)のいずれかの段階で得られる細胞に対して行うことができるが、工程(2)の前後(即ち、再播種するタイミング)から、工程(3)の終了までの間の段階の細胞に対して電気刺激を開始することが好ましい。具体的には、電気刺激工程の開始日としては、例えば、多能性幹細胞の培養開始から4日目以降(例:4日目、5日目、6日目又はそれ以降)が挙げられ、典型的には4日目~14日目であり、好ましくは5日目~12日目であり、より好ましくは6日目~10日目である。電気刺激工程において、一定の電気刺激を与えてもよいが、段階的に電気刺激の電圧を上げることが好ましい。
 電気刺激の条件は、細胞死や培地の電気分解による毒性を引き起こさない限り特に限定されないが、電圧は、例えば、0.5V以上(例:0.5V、1V、1.5V、1.6V、1.7V、1.8V、1.9V、2V又はそれ以上)であることが好ましく、また、20V以下(例:20V、15V、14V、13V、12V、11V、10V又はそれ以下)であることが好ましい。段階的に電圧を上げる場合には、前記の範囲内、例えば、0.5V~20Vの範囲内で、好ましくは2V~10Vの範囲内で段階的に上げる(例えば、2V→5V→10Vと段階的に上げる)ことが望ましい。周波数は、例えば、0.1Hz以上(例:0.1、0.2、0.3、0.4又はそれ以上)であることが好ましく、また、1Hz以下(例:1Hz、0.9Hz、0.8Hz、0.7Hz、0.6Hz、0.5Hz又はそれ以下)であることが好ましいが、好適な実施態様において、周波数は0.5Hzである。電気刺激は、間隔を開けて(例えば、1~10分間)与えてもよいし、連続して与えてもよいが、連続して与えることが好ましい。細胞に電気刺激を与える期間は、5日以上(例:Day10から連続して5日以上)が好ましく、1度細胞に収縮活動が確認できたら、収縮活動が確認できるレベルの大きさで(例:10V、5V、2V)、絶えず電気刺激を与え続けることが好ましい。具体的には、細胞に電気刺激を与える期間としては、例えば、2日間以上(例:2日間、3日間、4日間、5日間、6日間又はそれ以上)が挙げられ、典型的には2日間~30日間、好ましくは4日間~25日間、より好ましくは6日間~21日間である。好ましい実施態様において、細胞に7日間絶えず電気刺激を与える。また、電気刺激を与える期間は、最低でも2日に1度は培地交換を行う事が好ましい。
 電気刺激工程を行う場合、プラスチック上に蒔かれた細胞では、接地面が硬く刺激に耐えられない、或いは細胞の収縮活動が困難であることが予期されるため、細胞をハイドロゲル上に播種することが好ましい。本発明に用いるハイドロゲルとしては、例えば、ゼラチンハイドロゲル、コラーゲンハイドロゲル、デンプンハイドロゲル、ペクチンハイドロゲル、ヒアルロン酸ハイドロゲル、キチンハイドロゲル、キトサンハイドロゲル又はアルギン酸ハイドロゲルなどを挙げることができる。中でも、コラーゲンハイドロゲル又はゼラチンハイドロゲルが好ましい。ハイドロゲルのゲル硬度(弾力係数)としては、10kPa以上(例:10kPa、11kPa、12kPa、13kPa、14kPa、15kPa又はそれ以上)であることが好ましく、25kPa以下(例:25kPa、20kPa、19kPa、18kPa、17kPa、16kPa、15kPa又はそれ以下)であることが好ましく、好適な実施態様において、12kPaである。細胞をハイドロゲル上に播種するタイミングは、特に限定されないが、電気刺激を与える前にハイドロゲル上に播種することが好ましく、再播種するタイミングでハイドロゲル上に播種することがより好ましい。
 本発明において、得られた骨格筋細胞は、単離又は精製して用いてもよい。単離又は精製の方法は、当業者に周知の方法を適宜用いることができ、例えば、指標とする分子に対する抗体により標識し、フローサイトメトリーやマスサイトメトリーを用いた方法、磁気細胞分離法、又は所望の抗原を固定化したアフィニティカラム等を用いて精製する方法が挙げられる。
2.本発明の骨格筋細胞
 本発明はまた、本発明の製法により得られた骨格筋細胞(以下、「本発明の骨格筋細胞」ともいう)を提供する。上述の通り、本発明の骨格筋細胞は、長期培養が可能で成熟度が高い細胞であり、具体的には、(A)多能性幹細胞由来である、(B)骨格筋成熟化マーカー、未成熟な骨格筋細胞で発現するマーカー、及び骨格筋マーカーを発現している、(C)少なくとも2週間以上の長期培養が可能である、との性質を有し得る。骨格筋成熟マーカー、未成熟な骨格筋細胞で発現するマーカー及び骨格筋マーカーの具体例及び定義は上記1.で記載した通りであり、同様に長期培養の定義も、上記1.で記載した通りである。本発明の骨格筋細胞は、さらに、(D)電気刺激に応答して収縮する、(E)サルコメア構造を有する、との特性を有し得る。また、本発明の骨格筋細胞は、骨格筋細胞誘導因子をコードする核酸を有していてもよいし、該核酸が取り除かれていてもよい。
3.ミオパチー治療又は予防剤のスクリーニング方法
 本発明は、ミオパチーの治療又は予防に有用な薬剤である候補薬剤をスクリーニングする方法(以下、「本発明のスクリーニング方法」ともいう)を提供する。本発明のスクリーニング方法は、例えば、(1’)本発明の骨格筋細胞に、候補物質を接触させる工程、及び(2’)候補物質と接触させなかった場合と比較して、該骨格筋細胞の病態が緩和された場合、ミオパチーの治療又は予防剤として選別する工程を含む。本発明の骨格筋細胞は、好ましくは、上記1.の工程(1)~(4)を含む方法により、提供される。上述の通り、本発明の骨格筋細胞は、長期培養が可能で成熟度が高いとの性質を有する、品質の高い細胞である。本発明のスクリーニング方法は、この品質が高く、病態を強く反映する骨格筋細胞を用いることにより、従来の方法により作製された骨格筋細胞を用いる場合と比べて、より精度の高いスクリーニングが可能となり得る。例えば、本発明の骨格筋細胞は、骨格筋細胞の成熟度が関与する病態等の研究に応用することができ、該病態等の治療又は予防剤をスクリーニングすることが可能となる。本発明のスクリーニング方法に用いる骨格筋細胞は、典型的にはミオパチー患者由来の細胞であり、好ましくは、治療又は予防剤による治療の対象とするミオパチーと同じ疾患に罹患した患者由来の細胞である。
 一態様において、本発明のスクリーニング方法は、上記工程(1’)で提供された骨格筋細胞に電気刺激を与える工程を含み得る。電気刺激を与える工程において、一定の電気刺激を与えてもよいが、段階的に電気刺激の電圧を上げることが好ましい。電気刺激の条件は、細胞死や培地の電気分解による毒性を引き起こさない限り特に限定されないが、電圧は、例えば、0.5V以上(例:0.5V、1V、1.5V、1.6V、1.7V、1.8V、1.9V、2V又はそれ以上)であることが好ましく、また、20V以下(例:20V、15V、14V、13V、12V、11V、10V又はそれ以下)であることが好ましい。段階的に電圧を上げる場合には、前記の範囲内、例えば、0.5V~20Vの範囲内で段階的に上げる(例えば、2V→5V→10Vと段階的に上げる)ことが好ましいが、特定の時点で急激に電圧を上げる(例えば、1.5倍以上(例:1.5倍、1.6倍、1.7倍、1.8倍、1.9倍、2倍又はそれ以上)の上昇率で電圧を上げる)ことで、筋傷害の急性モデル(Acute model)を作製することができる。Acute modelでの解析が有用である疾患としては、物理的な筋への障害で病態が悪化する疾患が挙げられ、具体的には、デュシェンヌ型筋ジストロフィーの他にベッカー型筋ジストロフィー、三好型遠位型筋ジストロフィー、肢帯型筋ジストロフィーなどが該当する。Acute modelを用いることで、比較的短期間でスクリーニングを行うことが可能となる。周波数は、例えば、0.1Hz以上(例:0.1、0.2、0.3、0.4又はそれ以上)であることが好ましく、また、1Hz以下(例:1Hz、0.9Hz、0.8Hz、0.7Hz、0.6Hz、0.5Hz又はそれ以下)であることが好ましいが、好適な実施態様において、周波数は1Hzである。電気刺激は、間隔を開けて(例えば、1~10分間)与えてもよいし、連続して与えてもよいが、連続して与えることが好ましい。電気刺激工程の開始日としては、例えば、多能性幹細胞の培養開始から4日目以降(例:4日目、5日目、6日目、7日目、8日目、9日目、10日目又はそれ以降)が挙げられ、典型的には4日目~24日目であり、好ましくは6日目~20日目であり、より好ましくは10日目~14日目である。細胞に電気刺激を与える期間としては、例えば、4日間以上(例:4日間、5日間、6日間又はそれ以上)が挙げられ、典型的には4日間~12日間、好ましくは5日間~10日間、より好ましくは6日間~8日間である。
 急性モデルを用いる場合の好ましい実施態様において、本発明のスクリーニング方法は、例えば、多能性幹細胞の培養開始から8日目以降(例:Day8~Day12)に(例えば、0.5~2Vで)電気刺激を開始し、例えば0.5Vから10Vの範囲で電圧を段階的に上げながら特定の期間(例えば、10日間~25日間)培養を続けた後、例えば1.5V~2.0Vの電圧で1~3日間程度刺激を与える工程を含む。
 また、本発明のスクリーニング方法で用いる細胞は、多能性幹細胞から骨格筋細胞への分化誘導段階の初期から、電気刺激を与えてもよい。従って、別の実施態様において、本発明のスクリーニング方法は、(i)上記1.の工程(1)、(ii)上記1.の工程(2)、(iii)上記1.の工程(3)を含み、さらに(iv)工程(ii)又は工程(iii)で培養された細胞に電気刺激を与えて培養し、骨格筋細胞に分化させる工程、(v)前記工程(iv)で得られた骨格筋細胞に被験物質を接触させる工程、及び(vi)被験物質を接触させなかった場合と比較して、該骨格筋細胞の病態が緩和された場合に、該被験物質をミオパチーの治療又は予防の候補物質として選別する工程、を含み得る。
 上記工程(iv)に工程(iii)で培養された細胞を用いる場合、該細胞としては、工程(iii)の開始から4日以内(例:4日、3日、2日又はそれ以下)の細胞が好ましい。また、工程(iv)における電気刺激は、一定の電気刺激であってもよいが、段階的に電気刺激の電圧を上げることが好ましい。電気刺激の条件は、細胞死や培地の電気分解による毒性を引き起こさない限り特に限定されないが、電圧は、例えば、0.5V以上(例:0.5V、1V、1.5V、1.6V、1.7V、1.8V、1.9V、2V又はそれ以上)であることが好ましく、また、20V以下(例:20V、15V、14V、13V、12V、11V、10V又はそれ以下)であることが好ましい。段階的に電圧を上げる場合には、前記の範囲内、例えば、0.5V~20Vの範囲内で段階的に上げる(例えば、2V→5V→10Vと段階的に上げる)ことが好ましい。周波数は、例えば、0.1Hz以上(例:0.1、0.2、0.3、0.4又はそれ以上)であることが好ましく、また、1Hz以下(例:1Hz、0.9Hz、0.8Hz、0.7Hz、0.6Hz、0.5Hz又はそれ以下)であることが好ましいが、好適な実施態様において、周波数は0.5Hzである。電気刺激は、間隔を開けて(例えば、1~10分間)与えてもよいし、連続して与えてもよいが、連続して与えることが好ましい。このようにして多能性幹細胞から骨格筋細胞への分化誘導段階の初期で電気刺激を与えることで、筋傷害の慢性モデル(Chronic model)を作製することができる。Chronic modelでの解析が有用な疾患としては、易疲労性を示す疾患群で特にミトコンドリア機能障害を来す疾患が挙げられ、具体的には、デュシェンヌ型筋ジストロフィーの他にベッカー型筋ジストロフィー、筋強直性ジストロフィー、顔面肩甲上腕型筋ジストロフィー、ウルリッヒ先天性筋ジストロフィー、ミトコンドリアミオパチー、先天性ミオパチー、GNEミオパチーなどが該当する。電気刺激工程の開始日としては、例えば、多能性幹細胞の培養開始から4日目以降(例:4日目、5日目、6日目又はそれ以降)が挙げられ、典型的には4日目~18日目であり、好ましくは5日目~14日目であり、より好ましくは6日目~10日目である。細胞に電気刺激を与えて培養を行う期間としては、例えば、10日間以上(例:10日間、15日間、20日間、25日間、26日間又はそれ以上)が挙げられ、典型的には10日間~40日間であり、好ましくは20日間~35日間であり、より好ましくは26日間~30日間である。
 慢性モデルを用いる場合の好ましい実施態様において、本発明のスクリーニング方法は、例えば、多能性幹細胞の培養開始から4日目以降(例:Day4~Day8)に電気刺激工程を開始し、例えば0.5Vから20Vの範囲で電圧を段階的に上げながら、特定の期間(例えば、10~25日間)培養を行う工程を含む。また、上記工程(iv)は、上記1.の工程(4)と同様に、外因性因子を発現させない条件で行うことが好ましく、具体的な培養条件等については上記1.に記載の通りである。
 電気刺激を与える期間は、最低でも2日に1度は培地交換を行う事が好ましい。電気刺激を与える場合に用いる具体的なゲルや細胞をゲルに播種するタイミングとしては、上記1.で記載したものと同じゲル及びタイミングが挙げられる。
 急性モデルにおいて骨格筋細胞に被験物質を接触させるタイミングは特に限定されないが、細胞の分化又は成熟への影響を抑えられる観点からは、分化誘導過程の後半、例えば、多能性幹細胞の培養開始から10日目以降(例:10日目、11日目、12日目、13日目、14日目又はそれ以降)に行うことができ、典型的には10日目~20日目であり、好ましくは12日目~18日目であり、より好ましくは14日目~16日目である。骨格筋細胞に被験物質を接触させる期間も特に制限されないが、該期間として例えば、1日間以上(例:1日間又はそれ以上)が挙げられ、典型的には1日間~6日間であり、好ましくは1日間~4日間であり、より好ましくは1日間~2日間である。
 慢性モデルにおいて骨格筋細胞に被験物質を接触させるタイミングは特に限定されないが、細胞の分化又は成熟への影響を抑えられる観点からは、分化誘導過程の後半、例えば、多能性幹細胞の培養開始から16日目以降(例:16日目、17日目、18日目、19日目、20日目、21日目、22日目又はそれ以降)に行うことができ、典型的には16日目~35日目であり、好ましくは20日目~30日目であり、より好ましくは22日目~26日目である。骨格筋細胞に被験物質を接触させる期間も特に制限されないが、該期間として例えば、1日間以上(例:1日間、2日間、3日間、4日間又はそれ以上)が挙げられ、典型的には1日間~14日間であり、好ましくは2日間~10日間であり、より好ましくは4日間~8日間である。
 上記ミオパチーとしては、例えば、筋ジストロフィー(例:デュシェンヌ型筋ジストロフィー(DMD)、ベッカー型筋ジストロフィー、肢帯型筋ジストロフィー、顔面肩甲上腕型筋ジストロフィー、眼筋咽頭型筋ジストロフィー、エメリ・ドレフュス型筋ジストロフィー、先天性筋ジストロフィー、遠位型筋ジストロフィー、筋強直性ジストロフィー等)、遠位型ミオパチー(例:三好型ミオパチー、GNEミオパチー、眼咽頭型遠位型ミオパチー等)、先天性ミオパチー(例:ネマリンミオパチー、セントラルコア病等)、糖原病、周期性四肢麻痺、ミトコンドリアミオパチーなどが挙げられる。筋ジストロフィーは、ジストロフィンタンパク質の欠損又は変異と関連する病態である。三好型ミオパチーは、ジスフェリンの変異と関連する病態であり、GNEミオパチーは、GNE(UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase)の変異と関連する病態である。また、セントラルコア病は、リアノジン受容体(RYR1)の変異と、糖原病は、グリコーゲン代謝酵素の変異と関連する病態である。
 ミオパチーが筋ジストロフィーである場合、骨格筋細胞の病態は、当該骨格筋細胞におけるジストロフィンタンパク質の欠損若しくは変異又は炎症マーカーの陽性として観察することができる。ここで、炎症マーカーとはプロスタグランジンD2又はNFkBの活性が例示される。病態の緩和は、例えば、ジストロフィンタンパク質若しくはエクソン・スキッピングによる短ジストロフィンタンパク質の発現又は炎症マーカーの低下で確認することができる。
 ミオパチーが三好型ミオパチーである場合、骨格筋細胞の病態は、当該骨格筋細胞における筋肉の膜修復異常として観察することができる。ここで、筋肉の膜修復異常は、細胞質損傷部位全体(all cytoplasmic lesion)におけるFM1-43の取り込みにより観察することができる。病態の緩和は、例えば、FM1-43の取り込みの低下で確認することができる。その他のミオパチーについても、当業者であれば適宜骨格筋細胞の病態及び緩和を観察することができる。
 本発明において、候補物質は、例えば、細胞抽出物、細胞培養上清、微生物発酵産物、海洋生物由来の抽出物、植物抽出物、精製タンパク質又は粗タンパク質、ペプチド、非ペプチド化合物、合成低分子化合物、及び天然化合物が例示される。
 本発明において、候補物質はまた、(1)生物学的ライブラリー、(2)デコンヴォルーションを用いる合成ライブラリー法、(3)「1ビーズ1化合物(one-bead one-compound)」ライブラリー法、及び(4)アフィニティクロマトグラフィー選別を使用する合成ライブラリー法を含む当技術分野で公知のコンビナトリアルライブラリー法における多くのアプローチのいずれかを使用して得ることができる。アフィニティクロマトグラフィー選別を使用する生物学的ライブラリー法はペプチドライブラリーに限定されるが、その他の4つのアプローチはペプチド、非ペプチドオリゴマー、又は化合物の低分子化合物ライブラリーに適用できる(Lam(1997)Anticancer Drug Des. 12:145-67)。分子ライブラリーの合成方法の例は、当技術分野において見出され得る(DeWitt et al.(1993)Proc. Natl. Acad. Sci. USA 90:6909-13; Erb et al.(1994)Proc. Natl. Acad. Sci. USA 91:11422-6; Zuckermann et al.(1994)J. Med. Chem. 37:2678-85; Cho et al.(1993)Science 261:1303-5; Carell et al.(1994)Angew. Chem. Int. Ed. Engl. 33:2059; Carell et al.(1994)Angew. Chem. Int. Ed. Engl. 33:2061; Gallop et al.(1994)J. Med. Chem. 37:1233-51)。化合物ライブラリーは、溶液(Houghten(1992)Bio/Techniques 13:412-21を参照のこと)又はビーズ(Lam(1991)Nature 354:82-4)、チップ(Fodor(1993)Nature 364:555-6)、細菌(米国特許第5,223,409号)、胞子(米国特許第5,571,698号、同第5,403,484号、及び同第5,223,409号)、プラスミド(Cull et al.(1992)Proc. Natl. Acad. Sci. USA 89:1865-9)若しくはファージ(Scott and Smith(1990)Science 249:386-90; Devlin(1990)Science 249:404-6; Cwirla et al.(1990)Proc. Natl. Acad. Sci. USA 87:6378-82; Felici(1991)J. Mol. Biol. 222:301-10; 米国特許出願第2002103360号)として作製され得る。
4.細胞移植療法剤
 本発明はまた、本発明の骨格筋細胞を含有してなる、細胞移植療法剤(以下、「本発明の細胞移植療法剤」ともいう)を提供する。上述の通り、本発明の骨格筋細胞は、長期培養が可能で成熟度が高いとの性質を有する、品質の高い細胞である。よって、該骨格筋細胞は、細胞移植療法剤の原料として用いることに適しており、該骨格筋細胞又は本発明の細胞移植療法剤は、ミオパチーの治療又は予防に有用である。従って、本発明の骨格筋細胞又は細胞移植療法剤の有効量を治療又は予防の対象とする哺乳動物(例:ヒト、マウス、ラット、サル、ウシ、ウマ、ブタ、イヌ等)に投与又は移植する、ミオパチーの治療又は予防方法も、本発明に包含される。治療又は予防の対象とするミオパチーの種類としては、上記3.で記載したものと同じ疾患が挙げられる。
 本発明の骨格筋細胞を、細胞移植療法剤に用いる場合、拒絶反応が起こらないという観点から、移植先の個体のHLA遺伝子型が同一若しくは実質的に同一である体細胞から樹立したiPS細胞に由来する細胞を用いることが望ましい。ここで、「実質的に同一」とは、移植した細胞に対して免疫抑制剤により免疫反応が抑制できる程度にHLA遺伝子型が一致していることであり、例えば、HLA-A、HLA-B及びHLA-DRの3遺伝子座或いはHLA-Cを加えた4遺伝子座が一致するHLA型を有する体細胞である。上記骨格筋細胞が、ミオパチー患者由来の細胞である場合には、例えば、ゲノム編集(例:CRISPRシステム、TALEN、ZFN等)などの手法を用いて、ミオパチーの原因となる遺伝子の変異を予め修復しておくことが好ましい。年齢や体質などの理由から充分な細胞が得られない場合には、ポリエチレングリコールやシリコンのようなカプセル、多孔性の容器などに包埋して拒絶反応を回避した状態で移植することも可能である。
 上記骨格筋細胞は、常套手段にしたがって医薬上許容される担体と混合するなどして、注射剤、懸濁剤、点滴剤等の非経口製剤として製造される。当該非経口製剤に含まれ得る医薬上許容される担体としては、例えば、生理食塩水、ブドウ糖やその他の補助薬を含む等張液(例えば、D-ソルビトール、D-マンニトール、塩化ナトリウムなど)などの注射用の水性液を挙げることができる。本発明の細胞移植療法剤は、例えば、緩衝剤(例えば、リン酸塩緩衝液、酢酸ナトリウム緩衝液)、無痛化剤(例えば、塩化ベンザルコニウム、塩酸プロカインなど)、安定剤(例えば、ヒト血清アルブミン、ポリエチレングリコールなど)、保存剤、酸化防止剤などと配合してもよい。本発明の移植療法剤を水性懸濁液剤として製剤化する場合、上記水性液に約1×106~約1×108細胞/mLとなるように、骨格筋細胞を懸濁させればよい。また、本発明の骨格筋細胞又は細胞移植療法剤の投与量又は移植量及び投与回数又は移植回数は、投与される哺乳動物の年齢、体重、症状などによって適宜決定することができる。
 本発明の細胞移植療法剤は、細胞の凍結保存に通常使用される条件で凍結保存された状態で提供され、用時融解して用いることもできる。その場合、血清若しくはその代替物、有機溶剤(例、DMSO)等をさらに含んでいてもよい。この場合、血清若しくはその代替物の濃度は、特に限定されるものではないが約1~約30%(v/v)、好ましくは約5~約20%(v/v)であり得る。有機溶剤の濃度は、特に限定されるものではないが0~約50%(v/v)、好ましくは約5~約20%(v/v)であり得る。
 以下に実施例を挙げて本発明をさらに具体的に説明するが、これらは単なる例示であって本発明はこれらに限定されない。
<方法>
ヒトiPS細胞の樹立又は入手
 409B2iPS細胞は、京都大学iPS細胞研究所の沖田博士から提供頂いた。その細胞にまずジストロフィン遺伝子のエクソン45を標的としたsgRNAとCas9ヌクレアーゼを導入し、該遺伝子のエクソン45を欠損させることで409B2 ex45KO iPS細胞を樹立した。
 DMD患者由来iPS細胞では、京都大学医学部附属病院にてDMD患者よりインフォームドコンセント取得後に皮膚生検を実施し採取した皮膚線維芽細胞を元に、京都大学iPS細胞研究所・櫻井研究室でiPS細胞を樹立した。その後、京都大学iPS細胞研究所・堀田研究室にて遺伝子修復株の樹立の為、CRISPR Cas9を用いて遺伝子欠損部分を修復した。
ヒトiPS細胞の培養
 ヒトiPS細胞の維持培養は、非特許文献1に記載の方法と同様に行った。すなわち、ヒトiPS細胞はフィーダーフリーの状態で維持した。維持培地はStemFit (味の素社) 500mLに50mU/L ペニシリン/ 50μg/L ストレプトマイシン (Invitrogen社)を加えたものを用いた。Tetベクター導入後のヒトiPS細胞ではさらに100μg/mlのネオマイシン又はピューロマイシン(ナカライテスク社)を添加した培地にて維持培養した。細胞継代は細胞コロニーが80~90%コンフレントになった時点で行った。細胞解離液、Accutase(フナコシ社)で細胞を剥がし、その後スクレイパーで掻把し、新しくラミニンコートされたプレートにROCK阻害剤Y-27632(ナカライテスク社)(以下、「ROCK阻害剤Y」と略記する)添加培地で播種し、37℃、5% CO2、100%湿度環境のインキュベータで培養した。
cDNAのクローニング
 MyoDは、MGC cloneよりcDNAを購入(MGC社:71135, GenBank: BC064493.1)した。これに対して下記のプライマーを用い、PCR反応で増幅しcDNAフラグメントを得た。Myf5は、分化したヒトiPS細胞からのcDNAよりKOD plus Neoを酵素としてPCR反応にて増幅しcDNAフラグメントを得た。これらのcDNAフラグメントをpENTR Directional TOPO Cloning Kits(Invitrogen社)を用いてエントリーベクターに組み込んだ。具体的には、PCR産物4ng、Salt Solution 1μL、蒸留水3.5μL、TOPO vector pENTR/D 1μLを加えて反応させた。その後、大腸菌にベクターを組み込み、増幅させることでエントリーベクターを調製した。使用したプライマーの配列は以下のとおりである。
プライマー配列
MyoD-Cloning Fw: CACCATGGAGCTACTGTCGCCA(配列番号5)
MyoD-Cloning Rv: TCAGAGCACCTGGTATATCGGGT(配列番号6)
Myf5-Cloning Fw: CACCATGGACGTGATGGATGGCTG(配列番号7)
Myf5-Cloning Rv: TCATAGCACATGATAGATAA(配列番号8)
テトラサイクリン応答性遺伝子強制発現ベクターの作製
 テトラサイクリン応答性遺伝子強制発現piggyBacベクターは、Woltjenらが開発したKW111またはKW879を用いた(Woltjen K. et al., Nature 458, 766, 2009)。このベクターは、reverse tetracycline transactivator (rtTA)とテトラサイクリン応答性領域(TRE)を両方組み込んだものであり、またネオマイシンベクターであるKW111は、ターゲット遺伝子と同調してmCherryが発現するようデザインされている。またネオマイシン耐性遺伝子(KW111)又はピューロマイシン耐性遺伝子(KW879)により薬剤による選別が可能である。これらのベクターとpENTR/D-TOPOにエントリーベクターとを混合し、LRクロナーゼ(Invitrogen社)を用いた組換え反応により、テトラサイクリン応答性MyoD(又はMyf5)強制発現piggiBacベクター(Tet-MyoD又はTet-Myf5ベクター)を作製した。
Tet-ベクターのiPS細胞への導入
 健常ヒトiPS細胞クローン(409B2)とDMD患者由来のiPS細胞クローン(DMD-Δ44)は10cmディッシュ1枚分の細胞を準備した。ベクター導入の前日よりROCK阻害剤Y含有培地で培養した後、維持培養と同様に、播種した細胞とベクターのエレクトロポレーション法によるトランスフェクションを行った。Tet-MyoDベクターと、EF1α-promoter下流にTransposaseを組み込んだベクター(EF1α-PBase)をそれぞれ5μg準備し、100μlのOpti-MEM(Invitrogen社)に溶解した。1.0x106の細胞を、ベクターを含有するOptiMEMで懸濁し、NEPA21エレクトロポーレーター(Nepagene社)を用いて、ベクターを表1の条件でトランスフェクションした。トランスフェクションした細胞を、1.0x103~5.0x104の条件で6-wellプレートに播種した。48時間後に100μg/mlのネオマイシン又はピューロマイシン(ナカライテスク社)含有培地に交換した。その後は2日置きに薬剤含有培地への培地交換を行い、薬剤耐性に形質転換した細胞を選別した。
Figure JPOXMLDOC01-appb-T000001
Tet-MyoD及びTet-Myf5 iPS細胞のクローンの選別
 得られたクローンは、培地にて100倍に希釈したマトリゲル(Invitrogen社)にてコートした6wellプレートに播種した。48時間後にドキシサイクリン (Dox; LKT Laboratories社)を1μg/mlにて培地に添加した。Dox添加の4日間後、骨格筋細胞に誘導された細胞の内、分化誘導の状態によってクローンの選別を行った。
PCRによる遺伝子発現解析
 細胞からのmRNAをSepasol(登録商標)-RNA I Super G(ナカライテスク社)で抽出し、SuperScriptIII逆転写キット(Invitrogen社)を用いてcDNA合成した。その産物に対して下記のプライマーとEx Taq(タカラバイオ社)を用いたPCR反応を行い、アガロースゲル電気泳動で遺伝子発現のバンドを確認した。PCR反応はサーマルサイクラーVeriti(ABI社)にて行い、アニーリング温度60度、25~30サイクルで反応させた。
プライマー配列
Transgenic-MyoD (Tg) Fw:CACCATGGAGCTACTGTCGCCA(配列番号5)
Transgenic-MyoD (Tg) Rv:TCAGAGCACCTGGTATATCGGGT(配列番号6)
Endogenous-MyoD (Endo) Fw:GACTGCCAGCACTTTGCTATCT(配列番号9)
Endogenous-MyoD (Endo) Rv:CCTCAGAGCACCTGGTATATCG(配列番号10)
Myogenin Fw:TGGGCGTGTAAGGTGTGTAA(配列番号11)
Myogenin Rv:CATGGTTTCATCTGGGAAGG(配列番号12)
CKM Fw:ACATGGCCAAGGTACTGACC(配列番号13)
CKM Rv:TGATGGGGTCAAAGAGTTCC(配列番号14)
MHC Fw:GTTAAGGGCCTGAGGAAGTATG(配列番号15)
MHC Rv:TTATCCACCAGATCCTGCAATC(配列番号16)
β-actin Fw: CTCTTCCAGCCTTCCTTCCT(配列番号17)
β-actin Rv: CACCTTCACCGTTCCAGTTT(配列番号18)
IL-1β Cat#: Hs00174097 (ThermoFisher Scientific)
TNFα Cat#: Hs01113624 (ThermoFisher Scientific)
IL6 Cat#: Hs00985639 (ThermoFisher Scientific)
Tet-MyoD iPS細胞の骨格筋細胞への分化誘導
 ヒトiPS細胞の維持培養、分化誘導は非特許文献1に記載の方法を改変して行った(本文中、非特許文献1に記載の方法をReplatingと記載し、本発明の方法はReplating MKIIと記載する)。すなわち、0日目の継代時にマトリゲルコートされたプレートへ、ROCK阻害剤Yを含むStemFit培地で播種した。1日目にROCK阻害剤Yを添加したPECM培地(Reprocell)に交換し、2日目に0.4μg/mLから1.5μg/mLのDoxを添加したPECM培地に交換した。その48時間後の4日目に、再播種をアッセイに適合した目的のプレート(例えば後述の12kPa Easy Coat Softwell 6)に行った。その際はαMEM(ナカライテスク社)に2%(v/v)ウマ血清(HS: Invitrogen社)、100μM 2-メルカプトエタノール、インスリン、SB431542(以上和光純薬社)、グルコース (Invitrogen社)、50mU/L ペニシリン/ 50μg/L ストレプトマイシンを添加した培地を使用した。再播種後2日間はDox非添加の培地で培養し、その後1μg/mLのDoxを再添加した。14日目に免疫染色を行い、骨格筋細胞への分化誘導がなされているか確認した。
分化骨格筋細胞の電気刺激による成熟化促進培養
 4日目(D4)での再播種の際に、12kPa Easy Coat Softwell 6 (Matrigen社)上に再播種し、10日目から電気刺激による成熟化促進を行い17日目に各試験を行った。電気刺激装置はC-Pace EPとC-Dish(IonOptix社)を用いて周波数0.5Hz、パルス幅2msec、電圧2V~5Vの刺激を24時間、期間中毎日連続で与え続けた。培地は最低でも2日に1回交換した。
分化骨格筋細胞の免疫染色
 分化した細胞を2%パラフォルムアルデヒド(ナカライテスク社)/PBSで、4℃で10分固定し、PBSで5分間3回洗浄した後、メタノール(ナカライテスク社)に1%過酸化水素(Wako社)を加えた液で脱色を15分行った。再度PBSで4℃、5分間、3回洗浄した。Blocking One(ナカライテスク社)にてブロッキングを4℃で15分間行った。一次抗体は、上記ブロッキング液中に希釈して(anti-MHC (Mouse Monoclonal. R&D社、1:400希釈), anti-MYH1&2 (Mouse Monoclonal. Sigma社、 1:100希釈), anti-MYH2 (Mouse Monoclonal. Millipore社、1:100希釈), anti-MYH3 (Rabbit Polyclonal. Atlas社、1:100希釈), anti-MYH7 (Mouse Monoclonal. Santa Cruz. 1:200希釈), anti-MYH8 (Rabbit Polyclonal. Novus社、1:100希釈)、anti-αアクチン抗体(ARabbit Polyclonan. Abcam. 1:500希釈)使用した。4℃で16~18時間反応させ、0.2%トライトンX-100添加PBS(PBST)で3回洗浄した後、二次抗体はanti-Rabbi又はanti-Mouse IgG-Alexa644 (Molecular Probes社)を1:500でPBSTに希釈し、4℃で16~18時間反応させた。その後細胞の核を染色するため、5μg/mlのDAPI(Sigma社)をPBST中に5000倍に希釈し、室温で5分反応させ、PBSにて3回洗浄した後、倒立蛍光顕微鏡システム(キーエンス社)にて観察した。
分化骨格筋細胞のWestern blot解析
 分化した細胞を、protease inhibitor (Roche社)を添加したRIPA buffer(Roche社)で溶解し、遠心分離操作によりタンパク質を抽出した。得られたタンパク質サンプルをミニプロティアンTetraセルシステム(Bio-Rad社)又はMini Gel Tank(Invitrogen社)で電気泳動し、トランスブロットTurboブロッティングシステム(Bio-Rad社)でPVDFメンブレンにトランスファーした。その後、iBind Western Systems (Invitrogen社)を用いてブロッキングし、1次抗体、2次抗体を反応させた。Western blotに使用したそれぞれの抗体は、次の通り:anti-DYS1 (Mouse Monoclonal. Leica社、1:100希釈), anti-MHC ((Mouse Monoclonal. R&D社、1:500希釈), anti-MYH1&2 (Mouse Monoclonal. Sigma. 1:500希釈), anti-MYH2 (Mouse Monoclonal. Millipore社、1:500希釈), anti-MYH3 (Rabbit Polyclonal. Atlas社、1:500希釈), anti-MYH7 (Mouse Monoclonal. Santa Cruz社、1:1000), anti-MYH8 (Rabbit Polyclonal. Novus社、1:500希釈), anti-RYR1 (Rabbit Polyclonal. Cell Signaling社、1:1000希釈), anti-TBP (Rabbit Polyclonal. Cell Signaling社、1:1000希釈), HPL conjugated Goat-anti-Rabbit/Mouse IgG(Invitrogen社、1:500希釈)。化学発光シグナルは、ECL Primer Western Blotting Detection Reagent (GE社)で反応させて、ChemiDoc Imaging Systems(Bio-Rad社)で撮影した。なお、本明細書において、「MYH1&2」は「MYH1/2」と称することもある。
分化骨格筋細胞のタンパク質量解析
 分化した細胞のconditioned medium 2mLを回収し、0.22μM filter unitで濾過した。回収した溶液をAmicon Ultra 2mL 10Kコラム(Millipore)を用いて濃縮した。その後、Human IL-6 Quantikine ELISA kit (R&D)を用いて濃縮した溶液中のIL-6タンパク質の量を測定した。また、測定結果を濃縮した溶液のトータルタンパク質の量で補正した。
active-caspaseの活性解析
 分化した細胞をスクレーパーで回収して遠心しペレット状にした。その後、PBSで再構成し、Casepase-Glo 8と9 Assay(Promega)を用いて、active-caspaseの活性解析を行った。また、測定結果はペレットに含まれるトータルDNAの量で補正した。
トータルATPレベルの解析
 分化した細胞をスクレーパーで回収して遠心しペレット状にした。その後、CellTiter-Glo Luminescent Cell Viability Assay(Promega)を用いて、トータルATPレベルの測定を行った。また測定結果はペレットに含まれるトータルDNAの量で補正した。
SI8000動画解析装置
 分化した骨格筋細胞の収縮活動の解析には、SI8000動画解析装置(SONY社)を用いた。収縮活動にはC-Pace EPとC-Dishシステムを用いて周波数0.5Hz、パルス幅2msec、電圧10Vの刺激を与えた。SI8000を用いて、27 frames/secで計270 frames、10秒間撮影しSI8000のソフトウェアで収縮活動時の速度及び距離を解析した。
電子顕微鏡解析
 サンプルはまず2% paraformaldehyde+2% glutaraldehyde(PBS希釈)を用いて4℃で30分間固定した。その後、2% glutaraldehydeを用いて4℃で一晩固定した。サンプルはphosphate bufferで数回洗った後、2% osmium tetroxideを用いて4℃で90分再固定した。サンプルは段階的にエタノールで脱水させ、propylene oxideに置換し最終的に樹脂に埋め込んだ。サンプルは70nm切片に切り、2% uranyl acetateで染色しLead stain solutionで2次染色を行った。切片は透過型電子顕微鏡(JEM-1400Plus)で観察し、CCDカメラにより撮影した。
骨格筋パフォーマンスの解析
 分化した骨格筋細胞の骨格筋パフォーマンスの解析には、SI8000動画解析装置(SONY社)を用いた。収縮活動には、C-Pase EPとC-Dishシステムを用いて周波数0.5Hzまたは1Hz、パルス幅2msec、電圧10Vまたは20Vの刺激を与えた。SI8000を用いて27frams/secで計270 frames、10秒間撮影しSI8000のソフトウェアで収縮活動時の各パラメーターを解析した。また、カルシウムピークの測定には、細胞をカルシムインジケータのCal-520TMと共に1時間培養し、SI8000と蛍光顕微鏡を用いてCal-520TMの蛍光シグナルを測定し解析した。
<結果>
実施例1:Tet-MyoD hiPSCクローンからの骨格筋細胞誘導
 図1に示すプロトコルにより、まず健常ヒトiPS細胞クローン409B2を骨格筋細胞へ分化誘導し、その骨格筋細胞への分化能を経時的に評価した。特筆すべき点として、非特許文献1に記載の従来の方法(replating)と比べて、本発明の方法(replating MKII)では、2日目(D2)から入れるPECM+Doxでの培養期間を48時間にし、その後再播種(Replating MKII)を行った。細胞再播種の際にROCK阻害剤Yの濃度を減じる事により、未分化iPS細胞の混入を減らす事が可能であった(図2: D4)。Doxが存在しない状態の培養を2日間行い(図2: D6)、再度Doxを添加し骨格筋細胞への分化を再誘導させた(図2: D8)。同条件で4日間培養した後、10日目には、効率的な筋分化が認められ(図2: D10)、D10のタイミングでDoxを再度非添加とした。その後は、Doxの非存在下で分化誘導又は成熟化が進んだ(図2: D16)。
実施例2:骨格筋細胞の成熟度評価
2-1.骨格筋細胞の多核化による評価
 骨格筋細胞の成熟度を示す指標の一つとして、骨格筋細胞の多核化が知られている。そこで、非特許文献1に記載の従来の方法(図3:Replating)及び本発明の方法(図3:Replating MKII)(以下では、図1に示すプロトコルによる方法を「本発明の方法又はReplating MKII」ともいう。)によって得られた骨格筋細胞について、核染色による多核化の比較を行った。本発明による方法では、14日目においてMHC (myosin heavy chain)の発現が確認されると共に、多核化が認められた(図3:左パネル)。多核化解析(Fusion index解析)により核数の定量を行ったところ、本発明プロトコルによって作製された筋細胞で、より多くの割合で複数の核を有する細胞が観察され、特に3つ以上の核を持つ細胞数も顕著に認められた(図3:右パネル)。
2-2.骨格筋マーカーの発現による評価
 骨格筋細胞への分化や成熟度が進むにつれて、特異的な骨格筋マーカーの発現が上昇する事が知られている。そこで、各種骨格筋マーカーの発現変動について経時的に比較解析を行った。外因性のMyoDは、Doxの添加及び非添加によりそれぞれ上昇と減少することが確認出来た(図4: Exo-MyoD)。対照的に、内因性のMyoD(図4: Endo-MyoD)は本発明のプロトコルで作製した骨格筋細胞において、培養期間が進んでもより安定的に発現している事が確認された(図4)。その他の骨格筋マーカー(CKM、MHC、Myogenin)においても、培養期間が進んでも、より安定的にそれらのマーカーが発現していることが確認された(図4)。一方で、非特許文献1に記載の従来の方法(Replating)では、培養期間が進むにつれ、骨格筋マーカーは発現の減少が確認された(図4)。
 生体内の骨格筋は速筋と遅筋の2種類が存在していることが知られており、それぞれ特異的なMYHを発現している。胎児期にはMYH3が、幼児期にはMYH8が優勢的に発現しており、両方共成長して大人になるにつれて発現が減少していく。その代わりに、速筋タイプではMYH1、MYH2やMYH4が、遅筋タイプではMYH7が発現上昇してくる。そこで、本発明で得られた骨格筋細胞の成熟度を確認する為に、速筋や遅筋マーカーの発現を解析した結果、本発明で作製した骨格筋細胞においては、胎児や幼児期に多く発現しているMYH3やMYH8は強く発現しており(図5)、更にそれらに加えて速筋タイプのMYH1とMYH2、遅筋タイプのMYH7の発現が認められた(図5)。
2-3.電気刺激による評価
 本発明プロトコルで分化誘導された骨格筋細胞を更に成熟化させる為に、電気刺激による誘導方法を適用した。すなわち、図9に示すように、4日目(D4)に細胞を一度再播種した後に、10日目(D10)より電気刺激装置を用いて細胞に直接電気刺激を与えた。この際、12kPaのハイドロゲル(hydrogel)上に播種した。この方法で2週間半(17日間)に渡って分化誘導かつ電気刺激による成熟化促進を施した細胞について、SI8000動画解析装置を用いて収縮活動(ROI中の運動面積)を解析した。図6で示すように、従来の方法で培養した細胞に比べて、本発明プロトコルで培養した細胞の方が、明らかによりダイナミックにかつ広い面積で収縮活動を示すことが確認された(図6:パネルA)。また、細胞の収縮速度や収縮距離を解析した所、従来の方法で培養した細胞に比べて、本発明プロトコルで培養した細胞の方が、顕著に収縮速度が増加しており且つ、収縮距離も増えている事が認められた(図6:パネルB)。
2-4.サルコメア構造の確認
 骨格筋の成熟や収縮にはサルコメア構造が関わっている事が知られており、サルコメア構造が1つの成熟度を示す指標になっている。そこで、本発明プロトコルで成熟化させた骨格筋細胞について電子顕微鏡解析を行った。すると、従来までの方法では骨格筋細胞が未成熟故にサルコメア構造は認められなかったが、本発明プロトコルで成熟化させた骨格筋細胞においては、明確なサルコメア構造が認められた(図7)。これらのサルコメア構造が骨格筋細胞の成熟や収縮活動に繋がっていると考えられる。
2-5.電気刺激による成熟化促進による評価
 最後に、本発明プロトコルで誘導した骨格筋細胞において、電気刺激による成熟化促進の有無による骨格筋タンパク質の発現の差異を解析した。すると、電気刺激による成熟化促進が無い場合は、10日目(D10)から17日目(D17)までMYHs(MYH1&2, MYH2, MYH3, MYH7, MYH8)やRYR1の発現に顕著な違いは認められなかったが、電気刺激による成熟化促進を施した場合には、無刺激時に比べて顕著に発現量が増幅している事が認められた(図8)。また、同様の結果をDMD患者由来のiPS細胞DMD-Δ44及びisogenic control株であるDMD-CKI-Δ44でも得ている。
実施例3:Tet-MyoD hiPSCクローンからの骨格筋細胞誘導
 本発明の方法により、DMD患者由来の疾患iPS細胞クローン(DMD-Δ)とそのアイソジェニックコントロールであるDMD-CKI細胞を用いた場合にも、実施例1で用いた409B2細胞と同様に骨格筋細胞に誘導できるか否かを試験した。まず、上記iPS細胞クローンを骨格筋細胞へ分化誘導し、その骨格筋細胞への分化能を経時的に評価した。特筆すべき点として、非特許文献1に記載の従来の方法(replating)と比べて、本発明の方法(replating MKII)では、409B2細胞と同様に効率的な骨格筋分化誘導と成熟化が認められた(図10)。
実施例4:骨格筋細胞の成熟度評価
4-1.骨格筋細胞の多核化による評価
 骨格筋細胞の成熟度を示す指標の一つとして、骨格筋細胞の多核化が知られている。そこで、非特許文献1に記載の従来の方法(図11:Replating)及び本発明の方法(図11:Replating MKII)によって得られた骨格筋細胞について、核染色による多核化の比較を行った。本発明による方法では、14日目においてMHC (myosin heavy chain)の発現が確認されると共に、多核化が認められた(図11:左パネル)。多核化解析(Fusion index解析)により核数の定量を行ったところ、本発明プロトコルによって作製された筋細胞で、より多くの割合で複数の核を有する細胞が観察され、特に3つ以上の核を持つ細胞数も顕著に認められた(図11:右パネル)。
4-2.骨格筋細胞の成熟度評価(骨格筋マーカーの発現)
 骨格筋細胞への分化や成熟度が進むにつれて、特異的な骨格筋マーカーの発現が上昇する事が知られている。そこで、各種骨格筋マーカーの発現変動について経時的に比較解析を行った。外因性のMyoD は、Dox の添加及び非添加によりそれぞれ上昇と減少することが確認出来た(図12: Exo-MyoD)。対照的に、内因性のMyoD(図12: Endo-MyoD)は本発明のプロトコルで作製した骨格筋細胞において、培養期間が進んでもより安定的に発現している事が確認された(図12)。その他の骨格筋マーカー(CKM、MHC、Myogenin)においても、培養期間が進んでも、より安定的にそれらのマーカーが発現していることが確認された(図12)。一方で、非特許文献1に記載の従来の方法(Replating)では、培養期間が進むにつれ、骨格筋マーカーは発現の減少が確認された(図12)。
 生体内の骨格筋は速筋と遅筋の2種類が存在していることが知られており、それぞれ特異的なMYHを発現している。胎児期にはMYH3が、幼児期にはMYH8が優勢的に発現しており、両方共成長して大人になるにつれて発現が減少していく。その代わりに、速筋タイプではMYH1、MYH2やMYH4が、遅筋タイプではMYH7が発現上昇してくる。そこで、本発明で得られた骨格筋細胞の成熟度を確認する為に、速筋や遅筋マーカーの発現を解析した結果、本発明で作製した骨格筋細胞においては、胎児や幼児期に多く発現しているMYH3やMYH8は強く発現しており(図13)、更にそれらに加えて速筋タイプのMYH1とMYH2、遅筋タイプのMYH7の発現が認められた(図13)。
4-3.α-actinin免染を用いたサルコメア構造の確認
 骨格筋の成熟や収縮にはサルコメア構造を関わっており、サルコメア構造の構築にはα-actininがサルコメア構造の用に整列して染まる事が知られている。そこで、図9に記載のプロトコルで成熟化させた骨格筋細胞についてα-actininの免疫染色を行った。すると、従来の方法ではサルコメア構造の様な染まり方をするα-actininを持つファイバーの比率が10%未満なのに対して、図9に記載のプロトコルで成熟化させた骨格筋細胞では80%近いファイバーにおいて認められた(図14)。
4-4.電気刺激による確認
 本発明プロトコルで分化誘導された骨格筋細胞を更に成熟化させる為に、電気刺激による誘導方法を適用した。すなわち、図9に示すように、4日目(D4)に細胞を一度再播種した後に、10日目(D10)より電気刺激装置を用いて細胞に直接電気刺激を与えた。この際、12kPa のハイドロゲル(hydrogel)上に播種した。この方法で2週間半(17日間)に亘って分化誘導かつ電気刺激による成熟化促進を施した細胞について、SI8000 動画解析装置を用いて収縮活動(ROI 中の運動面積)を解析した。図15で示すように、従来の方法で培養した細胞に比べて、図9に記載のプロトコルで培養した細胞の方が、明らかによりダイナミックにかつ広い面積で収縮活動を示すことが確認された(図15:左上図)。また、細胞の収縮速度や収縮距離を解析した所、従来の方法で培養した細胞に比べて、図9に記載のプロトコルで培養した細胞の方が、顕著に収縮速度が増加しており、且つ収縮距離も増加している事が認められた(図15:右上図及び下図)。
4-5.サルコメア構造の確認
 骨格筋の成熟や収縮にはサルコメア構造が関わっている事が知られており、サルコメア構造が1つの成熟度を示す指標になっている。そこで、図9に記載のプロトコルで成熟化させた骨格筋細胞について電子顕微鏡解析を行った。すると、従来の方法では骨格筋細胞が未成熟であるが故にサルコメア構造は認められなかったが、図9に記載のプロトコルで成熟化させた骨格筋細胞においては、明確なサルコメア構造が認められた(図16)。これらのサルコメア構造が骨格筋細胞の高い成熟度や収縮活動に繋がっていると考えられる。
4-6.電気刺激による成熟化促進による評価
 最後に、図9に記載のプロトコルで誘導した骨格筋細胞において、電気刺激による成熟化促進の有無による骨格筋タンパク質の発現の差異を解析した。すると、電気刺激による成熟化促進が無い場合は、10日目(D10)から17日目(D17)までMYHsやRYR1の発現に顕著な違いは認められなかったが、電気刺激による成熟化促進を施した場合には、無刺激時に比べて顕著に発現量が増幅している事が認められた(図17)。特に、MYH7については、電気刺激の有無でマーカーの発現が顕著に異なっていた。
実施例5:骨格筋トレーニングを用いた解析(Acute model)
5-1.骨格筋トレーニング前後の骨格筋運動パフォーマンスの解析
 本解析では、図18に記載のプロトコルによる骨格筋トレーニングを用いた。10Vでの刺激時には、野生型細胞(WT細胞又は409B2ともいう)とジストロフィン遺伝子のエクソン45をノックアウトした細胞(KO細胞または409B2 ex45KOともいう)の間には、カルシウムオーバーロードは認められるものの運動機能の差は認められなかった(図19上段)。しかしながら、20Vでの24時間刺激後、KO細胞で著しく運動機能が低下しており、またカルシウムピークの低下も認められた(図19下段)。
5-2.骨格筋トレーニング前後の炎症マーカーの発現解析(Acute model)
 本解析では、図18に記載のプロトコルによる骨格筋トレーニングを用いた。20Vでの刺激を与える前は、WT及びKO細胞において有意な差や発現は認められなかった(図20上段)。反対に、24時間の刺激後では、KO細胞において著しく炎症マーカー遺伝子の発現量の増加が認められた(図20下段)。
5-3.骨格筋トレーニング前後の炎症マーカーの発現解析(Acute model)
 本解析では、図18に記載のプロトコルによる骨格筋トレーニングを用いた。20Vでの刺激を与える前は、WT及びKO細胞において、炎症マーカー遺伝子の発現や、mRNAレベルの有意な差は認められなかった(図20上段)。一方で24時間の刺激後では、KO細胞において著しく炎症マーカー遺伝子のmRNAレベルの増加が認められた(図20下段)。同様にIL6のタンパク質の発現レベルについても解析した。20Vでの刺激を与える前は、WT及びKO細胞において、IL6タンパク質の発現レベルの有意な差は認められなかった(図21上段)。反対に、24時間の刺激後では、KO細胞において著しくIL6タンパク質レベルの増加が認められた(図21下段)。
5-4.Acute modelにおけるactive-caspaseの活性及びトータルATPレベルの解析
 20V、24時間の刺激後、WT細胞と比較して、active-caspase 8と9の活性化の上昇がKO細胞において認められた(図22左図)。一方で、mRNA発現量自体の変化は認められなかった(図22右図)。即ち、KO細胞では、WT細胞と比較してアポトーシスの顕著な亢進が認められた。また、同様の刺激後、WT細胞と比較して、KO細胞ではトータルATPの発現量の有意な低下が認められた(図23)。従って、病態モデル細胞における運動機能の低下は、ATPレベルの低下に起因することが示唆される。
5-5.骨格筋トレーニング前後の骨格筋運動パフォーマンスの解析(Acute model)
 WT細胞の代わりにDMD-CKI細胞、KO細胞としてDMD-Δ細胞を用いて、上記5-1.と同様の実験を行った。10Vでの刺激時には、DMD-CKI細胞とDMD-Δ細胞の間には、カルシウムオーバーロードは見られるが運動機能の差は認められなかった(図24上段)。しかしながら、20Vでの24時間刺激後、KO細胞で著しく運動機能が低下しており、またカルシウムピークの低下も認められた(図24下段)。
5-6.骨格筋トレーニング前後の炎症マーカーの発現解析(Acute model)
 WT細胞の代わりにDMD-CKI細胞、KO細胞としてDMD-Δ細胞を用いて、上記5-2.と同様の実験を行った。20Vでの刺激を与える前は、DMD-CKI及びDMD-Δ細胞において有意な差や発現は認められなかった(図25上段)。一方で24時間の刺激後は、DMD-Δ細胞において著しく炎症マーカー遺伝子の発現量の増加が認められた(図25下段)。同様にIL6のタンパク質の発現レベルについても解析した。20Vでの刺激を与える前は、DMD-CKI細胞及びKO細胞において、IL6タンパク質の発現レベルの有意な差は認められなかった(図26上段)。反対に、24時間の刺激後では、KO細胞において著しくIL6タンパク質レベルの増加が認められた(図26下段)。
実施例6:骨格筋トレーニングを用いた解析(Chronic model)
 本解析では、図27に記載のプロトコルによる骨格筋トレーニングを用いた。WT細胞及びKO細胞は共に、D17からD21にかけて右肩上がりに収縮速度の上昇が認められ、その後数日間横ばいの変化が認められた。しかしながら、KO細胞においては、D23頃から少しずつ収縮速度が下降し始めた事が認められる。即ち、KO細胞では慢性的な骨格筋トレーニングによる疲労が認められた。
 本発明により製造された骨格筋細胞は、従来の方法により製造された骨格筋細胞と比較して、長期培養が可能であり、成熟度が高い細胞である。このような成熟度が高い細胞を用いることで、多くのミオパチーでの病態再現研究、創薬スクリーニングが可能となるだけでなく、ミオパチーの治療又は予防などを治療するための細胞移植療法剤としても使用することが可能となる。
 本出願は、日本国で出願された特願2018-204358(出願日:2018年10月30日)を基礎としており、ここで言及することにより、それらの内容は本明細書に全て包含される。

Claims (14)

  1.  多能性幹細胞から骨格筋細胞を製造する方法であって、以下の工程:
     (1)MyoD及びMyf5から選ばれる1以上の外因性因子を発現させる条件で細胞を培養する工程、
     (2)工程(1)で得られた細胞を、該外因性因子を発現させない条件で培養する工程、及び
     (3)工程(2)で得られた細胞を、MyoD及びMyf5から選ばれる1以上の外因性因子を発現させる条件で培養する工程
    を含む方法。
  2.  さらに、工程(3)で得られた細胞を、該外因性因子を発現させない条件で培養する工程を含む、請求項1に記載の方法。
  3.  前記工程(2)の培養を、ROCK阻害剤を含まない、又はROCK阻害剤を10μM未満で含む培地で行う、請求項1又は2に記載の方法。
  4.  前記工程(2)以降の細胞培養を、Knockout Serum Replacementを含まない培地で行う、請求項1~3のいずれか1項に記載の方法。
  5.  前記工程(1)及び工程(3)で発現させる外因性因子がMyoDである、請求項1~4のいずれか1項に記載の方法。
  6.  さらに、工程(3)で得られた細胞に段階的に電気刺激を与える工程を含む、請求項1~5のいずれか1項に記載の方法。
  7.  MyoD及びMyf5から選ばれる1以上の外因性因子を発現させる条件が以下である、請求項1~6のいずれか1項に記載の方法:
     MyoD及び/又はMyf5をコードする核酸を含む薬剤応答性誘導ベクターを導入した多能性幹細胞を、該ベクターと対応する薬剤の存在下で培養する。
  8.  前記多能性幹細胞がヒト多能性幹細胞である、請求項1~7のいずれか1項に記載の方法。
  9.  前記ヒト多能性幹細胞がミオパチー患者由来の細胞である、請求項8に記載の方法。
  10.  請求項1~9のいずれか1項に記載の方法により得られた骨格筋細胞。
  11.  (1)請求項1~9のいずれか1項に記載の方法により骨格筋細胞を提供する工程、
     (2)工程(1)で得られた骨格筋細胞に被験物質を接触させる工程、及び
     (3)被験物質を接触させなかった場合と比較して、該骨格筋細胞の病態が緩和された場合に、該被験物質をミオパチーの治療又は予防の候補物質として選別する工程
    を含む、ミオパチー治療又は予防剤のスクリーニング方法。
  12.  さらに工程(1)で得られた骨格筋細胞に電気刺激を与える工程を含む、請求項11に記載の方法。
  13.  (1)MyoD及びMyf5から選ばれる1以上の外因性因子を発現させる条件で細胞を培養する工程、
     (2)工程(1)で得られた細胞を、該外因性因子を発現させない条件で培養する工程、
     (3)工程(2)で得られた細胞を、MyoD及びMyf5から選ばれる1以上の外因性因子を発現させる条件で培養する工程、
     (4)工程(2)又は(3)で培養された細胞に電気刺激を与えて培養し、骨格筋細胞に分化させる工程、
     (5)工程(4)で得られた骨格筋細胞に被験物質を接触させる工程、及び
     (6)被験物質を接触させなかった場合と比較して、該骨格筋細胞の病態が緩和された場合に、該被験物質をミオパチーの治療又は予防の候補物質として選別する工程
    を含む、ミオパチー治療又は予防剤のスクリーニング方法。
  14.  請求項10に記載の骨格筋細胞を含有してなる、細胞移植療法剤。
PCT/JP2019/042423 2018-10-30 2019-10-29 細胞の製造方法 WO2020090836A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-204358 2018-10-30
JP2018204358 2018-10-30

Publications (1)

Publication Number Publication Date
WO2020090836A1 true WO2020090836A1 (ja) 2020-05-07

Family

ID=70463750

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/042423 WO2020090836A1 (ja) 2018-10-30 2019-10-29 細胞の製造方法

Country Status (2)

Country Link
JP (1) JP7548494B2 (ja)
WO (1) WO2020090836A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008502310A (ja) * 2003-11-17 2008-01-31 ジェンザイム・コーポレーション 骨格筋由来細胞およびそれに関する方法
WO2013073246A1 (en) * 2011-11-18 2013-05-23 Kyoto University Method of inducing differentiation from pluripotent stem cells to skeletal muscle cells
WO2016108288A1 (ja) * 2014-12-29 2016-07-07 国立大学法人京都大学 骨格筋前駆細胞の製造方法
JP2016536014A (ja) * 2013-10-30 2016-11-24 ジェイソン・ミクラス 三次元組織培養のためのデバイス及び方法
WO2017188458A1 (ja) * 2016-04-27 2017-11-02 武田薬品工業株式会社 骨格筋前駆細胞及び骨格筋細胞の製造方法
WO2018128779A1 (en) * 2017-01-06 2018-07-12 The Regents Of The University Of California Methods for generating skeletal muscle progenitor cells

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3564362A4 (en) * 2016-12-28 2020-07-08 Kyoto Prefectural Public University Corporation SKELETAL MUSCLE CELLS AND THEIR INDUCTION METHOD
US11136555B2 (en) * 2017-03-01 2021-10-05 Elixirgen Scientific, Inc. Compositions and methods for differentiation of human pluripotent stem cells into desired cell types

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008502310A (ja) * 2003-11-17 2008-01-31 ジェンザイム・コーポレーション 骨格筋由来細胞およびそれに関する方法
WO2013073246A1 (en) * 2011-11-18 2013-05-23 Kyoto University Method of inducing differentiation from pluripotent stem cells to skeletal muscle cells
JP2016536014A (ja) * 2013-10-30 2016-11-24 ジェイソン・ミクラス 三次元組織培養のためのデバイス及び方法
WO2016108288A1 (ja) * 2014-12-29 2016-07-07 国立大学法人京都大学 骨格筋前駆細胞の製造方法
WO2017188458A1 (ja) * 2016-04-27 2017-11-02 武田薬品工業株式会社 骨格筋前駆細胞及び骨格筋細胞の製造方法
WO2018128779A1 (en) * 2017-01-06 2018-07-12 The Regents Of The University Of California Methods for generating skeletal muscle progenitor cells

Also Published As

Publication number Publication date
JP7548494B2 (ja) 2024-09-10
JP2020068775A (ja) 2020-05-07

Similar Documents

Publication Publication Date Title
US20220017866A1 (en) Production methods for megakaryocytes and platelets
JP6745498B2 (ja) 神経分化誘導用の多能性幹細胞
JP6083877B2 (ja) 多能性幹細胞から骨格筋細胞への分化誘導方法
EP2998391B1 (en) Efficient myocardial cell induction method
US8883498B2 (en) Method for inducing differentiation of pluripotent stem cells into skeletal muscle or skeletal muscle progenitor cells
EP2980207B1 (en) Cell sorting method
US10626368B2 (en) Method for inducing cerebral cortex neurons
JP6460482B2 (ja) 多能性幹細胞から生殖細胞への分化誘導方法
JP6612736B2 (ja) 心筋細胞の選別方法
WO2016108288A1 (ja) 骨格筋前駆細胞の製造方法
EP3246398B1 (en) Method for selecting skeletal muscle progenitor cell
JP7548494B2 (ja) 細胞の製造方法
JP2023086705A (ja) 筋疲労/筋損傷の細胞モデル、その製造方法及びその用途
WO2021015086A1 (ja) 骨格筋幹細胞から成熟筋管細胞を製造する方法
WO2022102742A1 (ja) 骨格筋系譜細胞および骨格筋幹細胞の高効率純化用細胞表面マーカーおよびその利用
WO2022138593A1 (ja) 骨格筋細胞の製造方法
EP4180516A1 (en) Skeletal muscle precursor cells and method for purifying same, composition for treating myogenic diseases, and method for producing cell group containing skeletal muscle precursor cells
WO2020138510A1 (ja) 大脳皮質細胞からのl1cam陽性細胞の取得および細胞製剤としてのその使用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19880447

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19880447

Country of ref document: EP

Kind code of ref document: A1