WO2020090594A1 - Hole processing tool, and design method, manufacturing method, and evaluation method for same - Google Patents

Hole processing tool, and design method, manufacturing method, and evaluation method for same Download PDF

Info

Publication number
WO2020090594A1
WO2020090594A1 PCT/JP2019/041590 JP2019041590W WO2020090594A1 WO 2020090594 A1 WO2020090594 A1 WO 2020090594A1 JP 2019041590 W JP2019041590 W JP 2019041590W WO 2020090594 A1 WO2020090594 A1 WO 2020090594A1
Authority
WO
WIPO (PCT)
Prior art keywords
max
hole
real part
maximum real
cutting edges
Prior art date
Application number
PCT/JP2019/041590
Other languages
French (fr)
Japanese (ja)
Inventor
健一郎 松崎
孝宏 劉
恵三 塚本
Original Assignee
株式会社アヤボ
国立大学法人鹿児島大学
国立大学法人大分大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アヤボ, 国立大学法人鹿児島大学, 国立大学法人大分大学 filed Critical 株式会社アヤボ
Priority to EP19879971.0A priority Critical patent/EP3875200A4/en
Priority to CN201980072056.9A priority patent/CN112996622A/en
Priority to JP2020553822A priority patent/JPWO2020090594A1/en
Publication of WO2020090594A1 publication Critical patent/WO2020090594A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D77/00Reaming tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D2277/00Reaming tools
    • B23D2277/10Reaming tools comprising means for damping of vibration, i.e. for reduction of chatter
    • B23D2277/105Reaming tools comprising means for damping of vibration, i.e. for reduction of chatter with cutting edges located at unequal angles around the periphery of the tool
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D2277/00Reaming tools
    • B23D2277/20Number of cutting edges
    • B23D2277/205Six
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/4097Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by using design data to control NC machines, e.g. CAD/CAM
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • the present invention relates to a hole drilling tool and its designing method, manufacturing method, and evaluation method.
  • This hole drilling tool is suitably used, for example, for reaming. Similarly, it is preferably used for general drilling such as end milling and drilling.
  • Non-Patent Document 1 proposes a solution to this problem.
  • the mechanism of the machined hole polygonalization phenomenon in reaming is considered to be a self-excited vibration phenomenon due to a time delay.
  • a characteristic equation based on the so-called Matsuzaki-Liu model has been proposed. Based on the characteristic roots, we are simulating the placement of cutting edges that can suppress self-excited vibration in a reamer (hole drilling tool). A proof test was conducted on a reamer that was evaluated to be able to suppress self-excited vibration in such a simulation, and hole drilling with high roundness was realized.
  • the angle sequence of the cutting edge of the reamer to be evaluated is substituted into the characteristic equation of the Matsuzaki-Liu model, and this is analyzed to form a digonal to 13-gonal hole.
  • the chart is made by correlating the frequency and its characteristic root for each polygon. Then, the obtained chart is judged to judge whether or not the angle distribution of the cutting edge to be evaluated is good.
  • FIG. 4 and FIG. 5 as examples of the chart shown in Non-Patent Document 1. More specifically, the maximum value (real part) of the characteristic roots of the dihedral to 13-diagonal chart obtained as a result of the simulation is observed.
  • the present inventors have studied a method for simply evaluating the results of the simulation based on the Matsuzaki-Liu model. As a result, I noticed that the curves in the charts shown in FIGS. 4 and 5 are all gentle. Therefore, it was considered that the value when the frequency ⁇ was zero (the value on the vertical axis in the chart) reflected the maximum value. Note that if the frequency ⁇ is set to zero, the characteristic equation of the Matsuzaki-Liu model is simplified (the term including ⁇ can be ignored), and the calculation speed is also improved.
  • This quasi-static characteristic root is specified by calculation for all polygons, and the quality of the angle distribution of the cutting edge to be evaluated is evaluated by the maximum value among them.
  • the judge is required to have the skill. In addition, it is difficult to objectively grasp the degree of quality.
  • the inventors have examined what is a standard for evaluating the value of the quasi-static characteristic root.
  • the maximum value ⁇ MAX (maximum real part) of the real part in the quasi-static characteristic root was focused.
  • this is compared with the maximum real part R ⁇ MAX of the angle of the cutting edge to be evaluated.
  • the test result indicates the roundness when the actual reamer processing is executed by the reamer provided with the angular distribution of the cutting edges to be evaluated.
  • a reamer (6 blades) is taken as an example, and the maximum real part R ⁇ MAX of the quasi-static characteristic root is used as a reference hole processing tool by using cutting edges that are evenly spaced, using the characteristic equation of the Matsuzaki-Liu model. I calculated. Further, the maximum real part T ⁇ MAX of the quasi-static characteristic root of the object to be evaluated (those having various angles of cutting edges) was similarly calculated. Then, the difference between them (maximum real part T ⁇ MAX ⁇ maximum real part R ⁇ MAX ) was calculated. The difference is referred to as a QCR value (QCR: Quasi-static characteristic root).
  • the maximum real part T ⁇ MAX of the reference hole drilling tool is within the range of the predetermined threshold value with respect to the maximum real part R ⁇ MAX of the reference hole drilling tool, from the relationship of FIG. As you can see, it enables drilling with high roundness. Further, according to the hole drilling tool of the first aspect thus defined, the maximum real part is evaluated in comparison with the reference hole drilling tool, so that the evaluation is objective.
  • the second aspect of the present invention is defined as follows. That is, A hole drilling tool stipulated in the first aspect, wherein the quasi-static characteristic roots in the characteristic equation correspond to 2 to 13 polygons,
  • the reference hole processing tool is one in which the cutting edges are arranged at an equal pitch,
  • the absolute value of the difference between the maximum real part T ⁇ MAX of the target hole drilling tool and the maximum real part R ⁇ MAX of the reference hole drilling tool is 0.075 or more.
  • the hole drilling tool of the second aspect defined in this way reflects the result of FIG. 8 more specifically, and if a hole drilling tool having such characteristics is used, the hole to be drilled is expensive. Roundness can be secured.
  • the reason why the quasi-static characteristic root is limited to the 13-sided polygon or less is that the shape exceeding the 13-sided polygon can be said to be close to a circle, so that even if this occurs, it does not significantly affect the actual drilling. ..
  • the maximum real part of the quasi-static characteristic root obtained there becomes large there is a possibility that it will be a large value as the QCR value, although it has little effect on actual hole drilling. There is.
  • the third aspect of the present invention is defined as follows. That is, In the hole drilling tool defined in the second aspect, the absolute value of the difference between the maximum real part T ⁇ MAX of the target hole drilling tool and the maximum real part R ⁇ MAX of the reference hole drilling tool is 0.10.
  • the hole drilling tool defined in the third aspect as described above more specifically reflects the result of FIG. 8. If a hole drilling tool having such characteristics is used, a hole to be drilled is formed. Therefore, a high roundness can be secured.
  • the fourth aspect of the present invention is defined as follows. That is, In the hole drilling tool defined in the second aspect, the absolute value of the difference between the maximum real part T ⁇ MAX of the target hole drilling tool and the maximum real part R ⁇ MAX of the reference hole drilling tool is 0.125 or more.
  • the hole drilling tool of the fourth aspect thus defined further reflects the result of FIG. 8, and if the hole drilling tool having such characteristics is used, a higher roundness can be obtained in the hole to be drilled. The degree can be secured.
  • the fifth aspect of the present invention is defined as follows. That is, In the second to fourth specified hole drilling tools, the cutting edge number n is 6.
  • the hole drilling tool of the fifth aspect thus defined further reflects the result of FIG. 8, and if the hole drilling tool having such characteristics is used, the hole drilling tool having a higher hole Roundness can be secured.
  • the sixth aspect of the present invention is defined as follows. That is, in the hole drilling tool defined in the second to fifth aspects, when the dividing angle ⁇ i between the cutting edge i and the cutting edge i + 1 adjacent thereto in the counter-rotational direction is viewed all around the hole drilling tool. The size relationship and the size relationship when the margin width tmi + 1 of the cutting edge i + 1 and / or the land width ti + 1 are viewed in the entire circumferential direction of the hole drilling tool are the same.
  • the width (margin width, land width) of the portion of the cutting edge that is in contact with the work material is changed.
  • the change corresponds to the size of the angle (division angle) of the adjacent cutting edges. That is, the larger the division angle, the greater the load on the portion of the cutting edge on the downstream side in the rotation direction that contacts the work material. Therefore, the wear of the portion is likely to progress. Therefore, if the division angle is increased, the width of the cutting edge portion in contact with the work material is correspondingly increased to suppress the progress of wear and prevent uneven distribution of wear.
  • the seventh aspect of the present invention is defined as follows. That is, in the hole drilling tool defined in the sixth aspect, a ratio ( ⁇ 1: ⁇ 2: ...: ⁇ n) of the split angle when the split angle ⁇ i is viewed over the entire circumference of the drill and the margin width are the tool.
  • the division angle and the width (margin width, land width) of the cutting edge portion in contact with the work material are proportional to each other, so that uneven wear occurs. Will be even less.
  • the eighth aspect of the present invention is defined as follows. That is, In the hole drilling tool defined in the sixth or seventh aspect, the margin portion of the cutting edge is covered with a hard film. According to the hole drilling tool of the eighth aspect defined in this way, uneven distribution of wear can be prevented while reducing the use of the hard coating material.
  • the hole drilling tool described above is suitably used for reaming (the ninth aspect).
  • FIG. 1 is a drawing-substituting photograph showing a reamer that is an example of the hole drilling tool of the present invention.
  • FIG. 2 is a schematic diagram showing the basic parameters of the Matsuzaki-Liu model applied to a 6-hole cutting tool.
  • FIG. 3 is a schematic diagram showing the analysis principle of the Matsuzaki-Liu model.
  • FIG. 4 shows the analysis results of the hole making tool provided with equally-spaced cutting edges.
  • the horizontal axis of each chart shows the frequency and the vertical axis shows the characteristic root.
  • FIG. 5 shows the analysis results of the hole drilling tools provided with cutting edges of different intervals.
  • the horizontal axis of each chart shows the frequency and the vertical axis shows the characteristic root.
  • FIG. 6 shows the relationship between the number of revolutions and the roundness obtained by carrying out the drilling with the drilling tools of Comparative Examples 1 and 2 and Examples 1 to 6 of the present invention.
  • FIG. 7 shows the relationship between the number of revolutions and the roundness obtained by carrying out hole making with the hole making tools of Examples 7 to 12 of the present invention.
  • FIG. 8 is a graph showing the relationship between the QCR value and the average roundness in Examples and Comparative Examples.
  • FIG. 9 is a conceptual diagram showing the division angle of each cutting edge of the hole drilling tool.
  • FIG. 10 is an explanatory view of mechanical terms of the hole drilling tool.
  • FIG. 11 shows the relationship between the maximum real part ⁇ MAX of the quasi-static characteristic root and the average roundness.
  • FIG. 12 shows the relationship between the characteristic root part and the number of rotations for Comparative Examples 1 and 2 and Examples 1 and 2.
  • FIG. 13 shows the relationship between the maximum characteristic root and the number of polygons.
  • FIG. 1 is a drawing-substituting photograph showing a hole drilling tool (reamer) used for reaming.
  • reamer hole drilling tool
  • FIG. 2 shows an analytical model of reaming in the case of 6 cutting edges.
  • the figure shows the reamer as seen from the front of the cutting edge.
  • the reamer does not rotate, and the work material rotates clockwise at an angular velocity ⁇ .
  • the reamer and the spindle are considered to move integrally, and only in-plane translational movement is considered, and rotational movement and bending and twisting of the reamer are ignored. Further, for simplicity, it is assumed that the reamer and the spindle are supported isotropically by the spring and the dashpot.
  • the coordinate system 0-xy fixed in the space with the center of the prepared hole as the origin is taken, and the coordinates of the center axis of the reamer are (x, y).
  • FIG. 3 shows the relationship between the cutting edge and the processed hole in the reaming in the case of 6 blades.
  • the surface of the machined hole is developed, and the horizontal axis represents the axial position and the vertical axis represents the circumferential angle.
  • the cutting edge is shown by a solid horizontal line, the left end of which represents the axial tip.
  • the work material is fed while rotating with respect to the cutting edge.
  • the rotation is represented by the downward movement in the vertical direction
  • the feed is represented by the movement in the right lateral direction. Move to the lower right along the diagonal direction.
  • the radial displacement r i of the cutting edge i is approximately represented as follows.
  • the fluctuation P i of the main component force of the cutting edge i and the fluctuation Q i of the back component force based on the state of normal cutting in which the center of the reamer does not move from the origin is the area of the portion cut by the cutting edge i. Assuming that it is proportional to the fluctuation amount of, the following equation holds.
  • K c represents the specific cutting resistance
  • b represents the ratio of the back force component to the main force component.
  • the magnitude of the fluctuation of the contact force at each part is proportional to the difference between the radial displacement of the cutting edge and the amount of deformation of the hole surface in contact with the change over time, and the amount of deformation of the hole surface at the time when cutting was performed. Equal to the radial displacement of the cutting edge. Therefore, the change in normal force N i, j and the change in frictional force F i, j at the first contact portion of the cutting edge i are expressed by the following equations.
  • k and c are the spring constant and the viscous damping coefficient per unit length between the cutting edge and the surface of the work material
  • is the dynamic friction coefficient.
  • Equation 7 The solution of Equation 7 is assumed as follows.
  • s represents a characteristic index made dimensionless by the rotational angular velocity ⁇ .
  • Table 1 shows the results of analysis of the above equation of motion for each of the examples and comparative examples shown.
  • the maximum characteristic root shows the maximum value of the characteristic root (real part) in all frequencies and in the digonal to 13-sided polygon. Obtaining this value requires calculation of the amount of data required to draw many charts as shown in FIGS.
  • QCR value indicates the difference between the maximum real part Tishiguma MAX of quasi-static characteristics roots up real Arushiguma MAX and other examples and comparative examples of quasi-static characteristics roots of Comparative Example 1 (equally divided cutting edge).
  • nitride hard coating target Reamer all around Workpiece ⁇ br/>
  • Material FC250 (gray iron casting)
  • Outer Diameter: ⁇ 8 (Outer Diameter of Reamer 7.98)
  • Length prepared hole depth 26, reaming depth 24
  • Cutting speed (peripheral speed at ⁇ 8) 50 to 15 m / min
  • Cutting oil Soluble type water-soluble cutting oil
  • Measuring device Taylron 365 manufactured by TAYLOR HOBSON Measurement position: The reaming depth of 24 mm is 0.5 mm to 1 mm from the surface as the first surface, and the circularity of a total of 12 surfaces is measured at a pitch of 2 mm in the depth direction.
  • FIGS. 6 and 7 The test results of Examples and Comparative Examples are shown in FIGS. 6 and 7.
  • the vertical axis of each chart in FIGS. 6 and 7 indicates the circularity, and the horizontal axis indicates the rotation speed of the reamer.
  • the average roundness in Table 1 indicates the average roundness of each chart in FIGS. 6 and 7.
  • the extremely roundness is excluded when calculating the average value. This is to remove an error due to the driving unit of the reamer device.
  • FIG. 8 shows the relationship between the QCR value in Table 1 and the average roundness.
  • Table 1 the two data on the right side show comparative examples, and the other data show examples. It can be seen from FIG. 8 that the average roundness increases when the absolute value of the QCR value is 0.075 or more. Furthermore, its absolute value is preferably 0.10. More preferably, the absolute value is 0.125 or more.
  • various reamers have been proposed and sold in the past. Some of them may accidentally have a QCR value exceeding each of the above thresholds.
  • the QCR value proposed in this specification is a completely novel concept by the present inventors, and such an incidental conventional reamer does not disclose the concept at all. .. Therefore, even if such a reamer exists before the present application, it is considered that the present invention does not lose its novelty. And, if such a reamer exists before the application of the present application, it shall be excluded from the claims targeting the hole drilling tool.
  • the reamer having the angles and the cutting edges shown in each example show excellent characteristics (roundness). It is considered that even if the cutting edges are changed by ⁇ 3 degrees depending on the angles of the cutting edges in each example, the same performance, that is, the reproducibility of the roundness can be obtained. Particularly, the reamer having the cutting edge angular distribution shown in Examples 10 and 11 exhibits excellent characteristics (roundness). It is considered that even if each cutting edge is changed by ⁇ 5 degrees depending on the angle of the cutting edge, equivalent performance, that is, reproducibility of roundness can be obtained. Therefore, another aspect of the present invention can be defined as follows.
  • each cutting edge is a reamer with six cutting edges, and the arrangement angle of each cutting edge is 35 to 45 degrees, 75 to 85 degrees, 55 to 65 degrees, 50 to 60 degrees, 30 to 40 degrees, and 85 to 95 degrees.
  • a reamer having 45 to 55 degrees, 25 to 35 degrees, 95 to 105 degrees, 65 to 75 degrees, 65 to 75 degrees, and 35 to 45 degrees in that order.
  • FIG. 9 schematically shows the disassembly angle of each cutting edge in the reamer.
  • FIG. 10 schematically shows the cutting edge shape of the reamer.
  • the larger the division angle the greater the load applied to the cutting edge on the rear side in the rotation direction. This load accelerates the wear of the cutting edge. If there is a variation in the progress of wear in each cutting edge that constitutes the reamer, it becomes difficult to maintain a high roundness, and the durability is reduced.
  • the width of the cutting edge portion that contacts the work material (the width of the land portion (land width) or the margin portion) It is preferable to adjust the width (margin width) according to the spacing between the cutting edges (division angle).
  • the size relationship when the width tmi + 1 and / or the land width ti + 1 is viewed in the entire circumferential direction of the processing tool is matched.
  • the ratio of the dividing angle when the dividing angle ⁇ i is seen all around the processing tool ( ⁇ 1: ⁇ 2: ...: ⁇ n) and the ratio of the margin width when looking at the margin width all the way around the processing tool (tm2: tm3: ...: Tmn: tm1) and / or the land width ratio (t2: t3: ...: tn: tm1) when the land width is viewed over the entire circumference of the processing tool.
  • FIG. 11 shows the relationship between the maximum real part ⁇ MAX of the quasi-static characteristic root and the average roundness. From this figure, it is understood that the maximum real part ⁇ MAX of the quasi-static characteristic root itself can also be an index showing the characteristic of the hole drilling tool. Here, as compared with FIG. 8, it can be seen that the QCR value shows its characteristics more clearly.
  • FIG. 12 shows the relationship between the characteristic root part of the characteristic equation of the Matsuzaki-Liu model and the rotation speed for Comparative Examples 1 and 2, and Examples 1 and 2.
  • FIG. 13 shows the relationship between the maximum characteristic root and the number of polygons.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Milling, Broaching, Filing, Reaming, And Others (AREA)

Abstract

Provided is a method for simply evaluating a simulation result on the basis of the Matsuzaki-Liu model. This hole processing tool for forming a hole is provided with a plurality of cutting edges, wherein when the cutting edges are applied to the Matsuzaki-Liu characteristic equation, the maximum real part TσMAX is in the range of a predetermined threshold with respect to the maximum real part RσMAXX of a reference hole processing tool if No is the integer value closest to the imaginary part of a quasi-static characteristic root s, which is a characteristic root at the vibration frequency ω=0, and if the maximum real part σMAX is the maximum real part of the quasi-static characteristic root s that satisfies 3≤No≤2n+1 (n is the number of cutting edges).

Description

穴加工具並びにその設計方法、製造方法及び評価方法Hole processing tool and its designing method, manufacturing method and evaluation method
 本発明は穴加工具並びにその設計方法、製造方法及び評価方法に関する。この穴加工具は例えばリーマ加工に好適に用いられる。同様にエンドミル加工やドリル加工など一般的な穴あけ加工に好適に用いられる。 The present invention relates to a hole drilling tool and its designing method, manufacturing method, and evaluation method. This hole drilling tool is suitably used, for example, for reaming. Similarly, it is preferably used for general drilling such as end milling and drilling.
 例えば、リーマ加工においてその穴加工精度を低下させる1つの原因として加工穴の多角形化がある。この問題の解決法が非特許文献1に提案されている。
 この非特許文献1では、リーマ加工における加工穴多角形化現象の発生メカニズムを時間遅れによる自励振動現象と考えている。そして、いわゆる松崎-劉モデルによる特性方程式が提案されている。その特性根に基づき、リーマ(穴加工具)における自励振動を抑制できる切れ刃の配置のシミュレーションを行っている。
 かかるシミュレーションにおいて自励振動が抑制できると評価されたリーマについて、実証試験を行ったところ、真円度の高い穴加工が実現される。
For example, in reaming, polygonalization of a machined hole is one of the causes for lowering the hole machining accuracy. Non-Patent Document 1 proposes a solution to this problem.
In this non-patent document 1, the mechanism of the machined hole polygonalization phenomenon in reaming is considered to be a self-excited vibration phenomenon due to a time delay. A characteristic equation based on the so-called Matsuzaki-Liu model has been proposed. Based on the characteristic roots, we are simulating the placement of cutting edges that can suppress self-excited vibration in a reamer (hole drilling tool).
A proof test was conducted on a reamer that was evaluated to be able to suppress self-excited vibration in such a simulation, and hole drilling with high roundness was realized.
 非特許文献1に記載のシミュレーションでは、評価対象となるリーマの切れ切れ刃の角度のならびを松崎-劉モデルの特性方程式に代入してこれを解析し、2角形~13角形の穴が形成されるものとして、角形ごとに振動数とその特性根を対応させてチャート化する。そして、得られたチャートを判断して、評価対象となる切れ刃の角度のならびの良否を判断している。非特許文献1に示されたチャートの例として図4、図5を参照されたい。
 より具体的には、シミュレーションの結果として得られた2角形~13角形のチャートについてその特性根の最大値(実部)を観察する。そして、リーマ加工時、特性根の最大値がゼロを超える多角形の影響が発現すると考える。特性根の値が大きくなればなるほど、その影響も強く現れる。従って、2角形~13角形についての全てのチャートをくまなく観察し、各特性根の値がゼロ以下、若しくはゼロに近くなる切れ刃の角度のならびを良品と判断する。
 換言すれば、評価対象となる切れ刃の角度の並びについて、1つ1つ上記の評価作業を行わなければならないので、手間がかかっていた。
In the simulation described in Non-Patent Document 1, the angle sequence of the cutting edge of the reamer to be evaluated is substituted into the characteristic equation of the Matsuzaki-Liu model, and this is analyzed to form a digonal to 13-gonal hole. As a matter, the chart is made by correlating the frequency and its characteristic root for each polygon. Then, the obtained chart is judged to judge whether or not the angle distribution of the cutting edge to be evaluated is good. Please refer to FIG. 4 and FIG. 5 as examples of the chart shown in Non-Patent Document 1.
More specifically, the maximum value (real part) of the characteristic roots of the dihedral to 13-diagonal chart obtained as a result of the simulation is observed. Then, it is considered that the influence of the polygon having the maximum value of the characteristic root exceeding zero appears during the reaming process. The larger the value of the characteristic root, the stronger the effect. Therefore, all the charts for the triangles to the triangles are observed all over, and the range of the angles of the cutting edges at which the value of each characteristic root is equal to or less than zero or close to zero is determined as a good product.
In other words, the above-mentioned evaluation work has to be carried out one by one for the arrangement of the angles of the cutting edges to be evaluated, which is troublesome.
 そこで、本発明者らは、松崎-劉モデルに基づくシミュレーションの結果を簡便に評価する方法を検討してきた。
 その結果、図4、図5に描かれたチャートのカーブはどれもなだらかであることに気が付いた。従って、振動数ωをゼロとしたときの値(チャートにおける縦軸の値)はその最大値を反映していると考えた。なお、振動数ωをゼロとすると、松崎-劉モデルの特性方程式が簡素化されるので(ωを含む項を無視できる)、演算速度も向上する。
Therefore, the present inventors have studied a method for simply evaluating the results of the simulation based on the Matsuzaki-Liu model.
As a result, I noticed that the curves in the charts shown in FIGS. 4 and 5 are all gentle. Therefore, it was considered that the value when the frequency ω was zero (the value on the vertical axis in the chart) reflected the maximum value. Note that if the frequency ω is set to zero, the characteristic equation of the Matsuzaki-Liu model is simplified (the term including ω can be ignored), and the calculation speed is also improved.
 このように、振動数ω=0のときの特性根を準静的特性根と名付ける。
 全ての角形についてこの準静的特性根を演算により特定し、そのうちの最大値をもって評価対象となる切れ刃の角度のならびの良否を評価する。
 しかしながら、演算により得られる数値(振動数ω=0における特性根)のみからその良否を判断するには、判断する者に熟練が要求される。
 また、その良否の程度を客観的に把握することが困難である。
In this way, the characteristic root when the frequency ω = 0 is named as a quasi-static characteristic root.
This quasi-static characteristic root is specified by calculation for all polygons, and the quality of the angle distribution of the cutting edge to be evaluated is evaluated by the maximum value among them.
However, in order to judge the quality based only on the numerical value (the characteristic root at the frequency ω = 0) obtained by the calculation, the judge is required to have the skill.
In addition, it is difficult to objectively grasp the degree of quality.
 そこで発明者らは、準静的特性根の値の評価の基準となるものの検討をした。検討の結果、準静的特性根において実部の最大値σMAX(最大実部)に着目した。そして、ある角度のならびで配置された切れ刃の最大実部RσMAXを基準にして、これと評価対象となる切れ刃の角度のならびの最大実部TσMAXとを比較することとした。
 特に、切れ刃の角度のならびを等間隔としたものを基準としたとき、その最大実部RσMAXと評価対象の最大実部TσMAXの差と試験結果との間に強い相関関係が現れることを見出した。ここに試験結果は、評価対象の切れ刃の角度のならびを備えたリーマにより実際のリーマ加工を実行したときの真円度を指す。
Therefore, the inventors have examined what is a standard for evaluating the value of the quasi-static characteristic root. As a result of the study, the maximum value σ MAX (maximum real part) of the real part in the quasi-static characteristic root was focused. Then, with reference to the maximum real part Rσ MAX of the cutting edges arranged at a certain angle, this is compared with the maximum real part Rσ MAX of the angle of the cutting edge to be evaluated.
In particular, when based on the those regular intervals a sequence of angle of the cutting edge, a strong correlation appears between the difference between the maximum real part Tishiguma MAX evaluated and its maximum real part Arushiguma MAX test results Found. Here, the test result indicates the roundness when the actual reamer processing is executed by the reamer provided with the angular distribution of the cutting edges to be evaluated.
 実施例ではリーマ(6刃)を例にとり、等間隔にならばせた切れ刃を基準穴加工具としてその準静的特性根の最大実部RσMAXを松崎-劉モデルの特性方程式を用いて演算した。また、評価対象(種々の切れ刃の角度ならびを持つもの)の準静的特性根の最大実部TσMAXも同様にして演算した。そして、両者の差(最大実部TσMAX-最大実部RσMAX)を演算した。当該差をQCR値(QCR:Quasi-static characterisitic root)という。
 他方、基準穴加工具と評価対象穴加工具についてリーマ加工を実行して、得られた穴の真円度を測定した。
 そして、測定した真円度と既述のQCR値との関係が図8に示される。
 図8の結果より、QCR値と真円度との間に高い相関関係があることがわかる。
In the example, a reamer (6 blades) is taken as an example, and the maximum real part R σ MAX of the quasi-static characteristic root is used as a reference hole processing tool by using cutting edges that are evenly spaced, using the characteristic equation of the Matsuzaki-Liu model. I calculated. Further, the maximum real part T σ MAX of the quasi-static characteristic root of the object to be evaluated (those having various angles of cutting edges) was similarly calculated. Then, the difference between them (maximum real part T σ MAX −maximum real part R σ MAX ) was calculated. The difference is referred to as a QCR value (QCR: Quasi-static characteristic root).
On the other hand, reaming was performed on the reference hole processing tool and the evaluation target hole processing tool, and the roundness of the obtained hole was measured.
The relationship between the measured roundness and the QCR value described above is shown in FIG.
From the result of FIG. 8, it can be seen that there is a high correlation between the QCR value and the roundness.
 以上の知見より、この発明の第1の局面を次のように規定する。即ち、
 複数切れ刃を備えた穴を形成するための穴加工具であって、
 各切れ刃を松崎-劉モデルの特性方程式に当てはめたとき、振動数ω=0における特性根である準静的特性根sの虚部に最も近い整数値をNとし
 3≦N≦2n+1(nは切れ刃数)を満足する前記準静的特性根sのうちの最大の実部を最大実部σMAXとしたとき、
 基準穴加工具の最大実部RσMAXに対してその最大実部TσMAXが所定の閾値の範囲内にある、穴加工具。
 このように規定した第1の局面の穴加工具は、基準穴加工具の最大実部RσMAXに対してその最大実部TσMAXが所定の閾値の範囲内にあるので、図8の関係からわかるように、高い真円度を確保しての穴加工を可能とする。
 また、このように規定した第1の局面の穴加工具によれば、基準穴加工具との比較において最大実部が評価されるので、当該評価が客観的となる。
Based on the above findings, the first aspect of the present invention is defined as follows. That is,
A hole processing tool for forming a hole having a plurality of cutting edges,
When each cutting edge is applied to the characteristic equation of the Matsuzaki-Liu model, the integer value closest to the imaginary part of the quasi-static characteristic root s, which is the characteristic root at the frequency ω = 0, is N 0 , and 3 ≦ N 0 ≦ 2n When the maximum real part of the quasi-static characteristic root s that satisfies +1 (n is the number of cutting edges) is the maximum real part σ MAX ,
Its maximum real part Tishiguma MAX the maximum real part Arushiguma MAX of the reference drilling tool is within the predetermined threshold, the drilling tool.
In the hole drilling tool of the first aspect defined in this way, since the maximum real part Tσ MAX of the reference hole drilling tool is within the range of the predetermined threshold value with respect to the maximum real part Rσ MAX of the reference hole drilling tool, from the relationship of FIG. As you can see, it enables drilling with high roundness.
Further, according to the hole drilling tool of the first aspect thus defined, the maximum real part is evaluated in comparison with the reference hole drilling tool, so that the evaluation is objective.
 また、この発明の第2の局面は次のように規定される。即ち、
 第1の局面に規定の穴加工具であって、前記特性方程式において準静的特性根は2~13角形に対応するものであり、
 前記基準穴加工具は前記切れ刃が等ピッチで配置されたものであり、
 対象穴加工具の前記最大実部TσMAXと基準穴加工具の前記最大実部RσMAXとの差の絶対値が、0.075以上である。但しTσMAX≦RσMAX
The second aspect of the present invention is defined as follows. That is,
A hole drilling tool stipulated in the first aspect, wherein the quasi-static characteristic roots in the characteristic equation correspond to 2 to 13 polygons,
The reference hole processing tool is one in which the cutting edges are arranged at an equal pitch,
The absolute value of the difference between the maximum real part Tσ MAX of the target hole drilling tool and the maximum real part Rσ MAX of the reference hole drilling tool is 0.075 or more. However, Tσ MAX ≤ Rσ MAX
 このように規定される第2の局面の穴加工具は、図8の結果をより具体的に反映させたものであり、かかる特性を備えた穴加工具を用いれば、穿設する穴に高い真円度を確保できる。
 なお、準静的特性根を13角形以下に限定するのは、13角形を超えるものは円に近いといえるので、かりにこれが発生しても実際の穴加工には大きな影響を与えないためである。他方、14角以上を反映したとき、そこで得られた準静的特性根の最大実部が大きくなると、実際の穴加工においては殆ど影響しないにも拘わらず、QCR値としては大きな値となるおそれがある。
The hole drilling tool of the second aspect defined in this way reflects the result of FIG. 8 more specifically, and if a hole drilling tool having such characteristics is used, the hole to be drilled is expensive. Roundness can be secured.
The reason why the quasi-static characteristic root is limited to the 13-sided polygon or less is that the shape exceeding the 13-sided polygon can be said to be close to a circle, so that even if this occurs, it does not significantly affect the actual drilling. .. On the other hand, when 14 or more corners are reflected, if the maximum real part of the quasi-static characteristic root obtained there becomes large, there is a possibility that it will be a large value as the QCR value, although it has little effect on actual hole drilling. There is.
 この発明の第3の局面は次のように規定される。即ち、
 第2の局面に規定の穴加工具において、対象穴加工具の前記最大実部TσMAXと基準穴加工具の前記最大実部RσMAXとの差の絶対値が、0.10以上である。
 このように規定される第3の局面に規定の穴加工具は、図8の結果を更に具体的に反映させたものであり、かかる特性を備えた穴加工具を用いれば、穿設する穴により高い真円度を確保できる。
The third aspect of the present invention is defined as follows. That is,
In the hole drilling tool defined in the second aspect, the absolute value of the difference between the maximum real part Tσ MAX of the target hole drilling tool and the maximum real part Rσ MAX of the reference hole drilling tool is 0.10.
The hole drilling tool defined in the third aspect as described above more specifically reflects the result of FIG. 8. If a hole drilling tool having such characteristics is used, a hole to be drilled is formed. Therefore, a high roundness can be secured.
 この発明の第4の局面は次のように規定される。即ち、
 第2の局面に規定の穴加工具において、対象穴加工具の前記最大実部TσMAXと基準穴加工具の前記最大実部RσMAXとの差の絶対値が、0.125以上である。
 このように規定される第4の局面の穴加工具は、図8の結果をより一層反映させたものであり、かかる特性を備えた穴加工具を用いれば、穿設する穴により高い真円度を確保できる。
The fourth aspect of the present invention is defined as follows. That is,
In the hole drilling tool defined in the second aspect, the absolute value of the difference between the maximum real part Tσ MAX of the target hole drilling tool and the maximum real part Rσ MAX of the reference hole drilling tool is 0.125 or more.
The hole drilling tool of the fourth aspect thus defined further reflects the result of FIG. 8, and if the hole drilling tool having such characteristics is used, a higher roundness can be obtained in the hole to be drilled. The degree can be secured.
 この発明の第5の局面は次のように規定される。即ち、
 第2から第4に規定の穴加工具において、前記切れ刃数nが6である。
 このように規定される第5の局面目の穴加工具は、図8の結果をより一層反映させたものであり、かかる特性を備えた穴加工具を用いれば、穿設する穴により高い真円度を確保できる。
The fifth aspect of the present invention is defined as follows. That is,
In the second to fourth specified hole drilling tools, the cutting edge number n is 6.
The hole drilling tool of the fifth aspect thus defined further reflects the result of FIG. 8, and if the hole drilling tool having such characteristics is used, the hole drilling tool having a higher hole Roundness can be secured.
 この発明の第6の局面は次のように規定される。即ち
 第2から第5の局面に規定の穴加工具において、切れ刃iとこれに反回転方向へ隣り合う切れ刃i+1との間の分割角αiを穴加工具全周にみたときの大小関係と、切れ刃i+1のマージン幅tmi+1及び/又はランド幅ti+1を穴加工具全周方向にみたときの大小関係が一致している。
The sixth aspect of the present invention is defined as follows. That is, in the hole drilling tool defined in the second to fifth aspects, when the dividing angle αi between the cutting edge i and the cutting edge i + 1 adjacent thereto in the counter-rotational direction is viewed all around the hole drilling tool. The size relationship and the size relationship when the margin width tmi + 1 of the cutting edge i + 1 and / or the land width ti + 1 are viewed in the entire circumferential direction of the hole drilling tool are the same.
 このように規定される第6の局面に規定の穴加工具によれば、切れ刃において被削材に接する部分の幅(マージン幅、ランド幅)に変化が与えられる。その変化は、隣りあう切れ刃の角度(分割角)の大きさに対応する。即ち、分割角が大きくなればなるほど、回転方向下流側の切れ刃において被削材と接する部分にかかる負担が大きくなる。よって、当該部分の摩耗が進行し易い。そこで、分割角が大きくなればそれに応じて被削材と接する切れ刃の部分の幅を大きくし、摩耗の進行を抑制し、もって摩耗の偏在を予防する。 According to the hole drilling tool defined in the sixth aspect defined in this way, the width (margin width, land width) of the portion of the cutting edge that is in contact with the work material is changed. The change corresponds to the size of the angle (division angle) of the adjacent cutting edges. That is, the larger the division angle, the greater the load on the portion of the cutting edge on the downstream side in the rotation direction that contacts the work material. Therefore, the wear of the portion is likely to progress. Therefore, if the division angle is increased, the width of the cutting edge portion in contact with the work material is correspondingly increased to suppress the progress of wear and prevent uneven distribution of wear.
 この発明の第7の局面は次のように規定される。即ち
 第6の局面に規定の穴加工具において、前記分割角αiを前記加工具全周にみたときの該分割角の比(α1:α2:……:αn)と前記マージン幅を前記加工具全周にみたときの該マージン幅の比(tm2:tm3:……:tmn:tm1)及び/又は前記ランド幅を前記加工具全周にみたときの該ランド幅の比(t2:t3:……:tn:t1)が一致している。
 このように規定される第7の局面の穴加工具によれば、分割角と被削材に接する切れ刃の部分の幅(マージン幅、ランド幅)とが比例しているので、摩耗の偏在がより一層少なくなる。
The seventh aspect of the present invention is defined as follows. That is, in the hole drilling tool defined in the sixth aspect, a ratio (α1: α2: ...: αn) of the split angle when the split angle αi is viewed over the entire circumference of the drill and the margin width are the tool. The margin width ratio (tm2: tm3: ...: tmn: tm1) when viewed over the entire circumference and / or the land width ratio (t2: t3: ...) when the land width is viewed over the entire circumference of the processing tool. ...: tn: t1) match.
According to the hole drilling tool of the seventh aspect defined in this way, the division angle and the width (margin width, land width) of the cutting edge portion in contact with the work material are proportional to each other, so that uneven wear occurs. Will be even less.
 この発明の第8の局面は次のように規定される。即ち、
 第6又は第7の局面に規定の穴加工具において、前記切れ刃のマージン部分が硬質皮膜で被覆されている。
 このように規定される第8の局面の穴加工具によれば、硬質皮膜の材料の使用を少なくしつつ、摩耗の偏在を予防できる。
 以上説明してきた穴加工具はリーマ加工に好適に用いられる(第9の局面)。
The eighth aspect of the present invention is defined as follows. That is,
In the hole drilling tool defined in the sixth or seventh aspect, the margin portion of the cutting edge is covered with a hard film.
According to the hole drilling tool of the eighth aspect defined in this way, uneven distribution of wear can be prevented while reducing the use of the hard coating material.
The hole drilling tool described above is suitably used for reaming (the ninth aspect).
図1は本発明の穴加工具の例であるリーマを示す図面代用写真である。FIG. 1 is a drawing-substituting photograph showing a reamer that is an example of the hole drilling tool of the present invention. 図2は6枚切れ刃の穴加工具に適用する松崎-劉モデルの基本パラメータを示す模式図である。FIG. 2 is a schematic diagram showing the basic parameters of the Matsuzaki-Liu model applied to a 6-hole cutting tool. 図3は松崎-劉モデルの解析原理を示す模式図である。FIG. 3 is a schematic diagram showing the analysis principle of the Matsuzaki-Liu model. 図4は等間隔の切れ刃を備えた穴加工具の解析結果を示し、各チャートの横軸は周波数を縦軸は特性根を示す。FIG. 4 shows the analysis results of the hole making tool provided with equally-spaced cutting edges. The horizontal axis of each chart shows the frequency and the vertical axis shows the characteristic root. 図5は異間隔の切れ刃を備えた穴加工具の解析結果を示し、各チャートの横軸は周波数を縦軸は特性根を示す。FIG. 5 shows the analysis results of the hole drilling tools provided with cutting edges of different intervals. The horizontal axis of each chart shows the frequency and the vertical axis shows the characteristic root. 図6はこの発明の比較例1及び2並びに実施例1~6の穴加工具で穴加工を実施して得られた回転数との真円度との関係を示す。FIG. 6 shows the relationship between the number of revolutions and the roundness obtained by carrying out the drilling with the drilling tools of Comparative Examples 1 and 2 and Examples 1 to 6 of the present invention. 図7はこの発明の実施例7~12の穴加工具で穴加工を実施して得られた回転数との真円度との関係を示す。FIG. 7 shows the relationship between the number of revolutions and the roundness obtained by carrying out hole making with the hole making tools of Examples 7 to 12 of the present invention. 図8は実施例及び比較例におけるQCR値と平均真円度との関係を示すグラフである。FIG. 8 is a graph showing the relationship between the QCR value and the average roundness in Examples and Comparative Examples. 図9は穴加工具の各切れ刃の分割角を示す概念図である。FIG. 9 is a conceptual diagram showing the division angle of each cutting edge of the hole drilling tool. 図10は穴加工具の機械的な用語の説明図である。FIG. 10 is an explanatory view of mechanical terms of the hole drilling tool. 図11は準静的特性根の最大実部σMAXと平均真円度との関係を示す。FIG. 11 shows the relationship between the maximum real part σMAX of the quasi-static characteristic root and the average roundness. 図12は特性根実部と回転数との関係を比較例1及び2、実施例1及び2について示す。FIG. 12 shows the relationship between the characteristic root part and the number of rotations for Comparative Examples 1 and 2 and Examples 1 and 2. 図13は最大特性根実部と角形数との関係を示す。FIG. 13 shows the relationship between the maximum characteristic root and the number of polygons.
 最初に、松崎-劉モデルについて説明する。
 図1はリーマ加工に用いる穴加工具(リーマ)を示す図面代用写真である。
 一般的なリーマ加工では、被削材が固定され、リーマが回転することにより加工が行われるが、基本的な特性を解明することを目的とし、解析モデルとしてより単純な工具固定・被削材回転の場合を取り扱うこととする。なお、被削材には下穴があけられており、工具が振動することなく加工が行われる正常切削状態において下穴の中心とリーマの軸中心は一致しているものとする。
図2に6枚切れ刃の場合のリーマ加工の解析モデルを示す。図はリーマを刃先正面から見たものであり、リーマは回転せず、被削材が角速度ωで時計方向に回転している。リーマおよびスピンドルは一体で運動するものとして面内の並進運動のみを考慮し、回転運動やリーマの曲げおよびねじりは無視する。また、簡単のために、リーマおよびスピンドルはばねおよびダッシュポットで等方的に支持されているとする。
下穴の中心を原点とする空間に固定された座標系0-xyをとり、リーマの中心軸の座標を(x,y)とする。リーマの刃数をnとし、x軸の正方向に切れ刃の1つを配置する。この切れ刃から順に被削材の回転方向と逆向きに切れ刃i(i=1,2,……,n)と番号をつけ、切れ刃iのx軸からの角度をαとする。なお、α=0radである。それぞれの切れ刃には切削力と接触力が作用すると考える。切削はリーマの軸方向先端のみで行われると仮定し、切削部分では切削力の主分力と背分力が作用するものとする。また、切れ刃の軸方向先端以外の部分では、加工穴との接触による垂直抗力と摩擦力を考慮する。
First, the Matsuzaki-Liu model will be described.
FIG. 1 is a drawing-substituting photograph showing a hole drilling tool (reamer) used for reaming.
In general reamer machining, the work material is fixed and machining is performed by rotating the reamer, but for the purpose of clarifying the basic characteristics, a simpler tool fixing and work material as an analysis model is used. The case of rotation will be handled. It is assumed that the work material has a prepared hole, and the center of the prepared hole and the axial center of the reamer coincide with each other in a normal cutting state where machining is performed without vibrating the tool.
FIG. 2 shows an analytical model of reaming in the case of 6 cutting edges. The figure shows the reamer as seen from the front of the cutting edge. The reamer does not rotate, and the work material rotates clockwise at an angular velocity ω. The reamer and the spindle are considered to move integrally, and only in-plane translational movement is considered, and rotational movement and bending and twisting of the reamer are ignored. Further, for simplicity, it is assumed that the reamer and the spindle are supported isotropically by the spring and the dashpot.
The coordinate system 0-xy fixed in the space with the center of the prepared hole as the origin is taken, and the coordinates of the center axis of the reamer are (x, y). The number of reamer blades is n, and one of the cutting edges is arranged in the positive direction of the x-axis. From this cutting edge, the cutting edge i (i = 1, 2, ..., N) is numbered in the direction opposite to the direction of rotation of the work material, and the angle of the cutting edge i from the x-axis is α i . Note that α i = 0 rad. It is considered that cutting force and contact force act on each cutting edge. It is assumed that cutting is performed only at the tip of the reamer in the axial direction, and the main component force of the cutting force and the back component force act on the cutting portion. In addition, in a portion other than the axial tip of the cutting edge, the normal force and frictional force due to contact with the processed hole are considered.
 図3に6枚刃の場合のリーマ加工における切れ刃と加工穴の関係を示す。この図は加工穴の表面を展開したものであり、横軸は軸方向の位置を、縦軸は周方向の角度を表す。この図において、切れ刃は横方向の実線で示され、その左端は軸方向先端を表す。切れ刃に対して被削材は回転しながら送られているが、図において回転は縦方向下向きの移動により、送りは横方向右向きの移動によりそれぞれ表されるため、被削材は点線で示した斜め方向に沿って右下の向きに移動する。したがって、赤線で示した切れ刃の軸方向における最も先端の部分では切削が行われ、それ以降の部分では直前の切れ刃から順に前の切れ刃が削った部分と接触している。
切削はすべての切れ刃で同時に行われるため、ある切れ刃が切削する軸方向長さは、図3 に示すように直前の切れ刃が切削した部分が到達するまでの間に送られた長さとなる。したがって、被削材1 回転あたりの送りをδとすると、切れ刃iが切削する部分の軸方向長さδは次のようになる。
Figure JPOXMLDOC01-appb-M000001
ここで、δはすべての切れ刃が切削する軸方向長さの総和と等しい。なお、αとδの添え字jがnを超える場合(j>n)、次式により定義する。
Figure JPOXMLDOC01-appb-M000002
ここでは、リーマの微小振動の成長について検討するため、リーマの変位x、yがリーマの半径より十分小さいとして、切れ刃iの半径方向変位rは近似的に次のように表される。
Figure JPOXMLDOC01-appb-M000003
リーマの中心が原点から動くことなく加工が行われる正常切削の状態を基準とする切れ刃iの主分力の変動Pおよび背分力の変動Qは切れ刃iが切削する部分の面積の変動量に比例すると仮定すると、次式が成り立つ。
Figure JPOXMLDOC01-appb-M000004
ここに、Kは比切削抵抗、bは主分力に対する背分力の比を表す。
次に接触力について考える。正常切削の状態を基準とする垂直抗力の変動は、切れ刃と被削材表面との間の分布ばねと分布ダッシュポットでモデル化できると仮定する。また、摩擦力はクーロン摩擦力と仮定する。図3に示すように、接触部分の先端から順にl=1、2、… と番号を付すと、切れ刃iの1番目接触部分は、切れ刃i+lによって時刻t-(αi+l-αi)/ωに切削された部分であり、軸方向長さはδi+1となる。各部分の接触力の変動の大きさは切れ刃の半径方向変位と接触している穴表面の変形量の差とその時間変化に比例し、穴表面の変形量は切削が行われた時刻における切削を行った切れ刃の半径方向変位に等しい。したがって、切れ刃iの1番目接触部分における垂直抗力の変動Ni,jおよび摩擦力の変動Fi,jは次式で表される。
Figure JPOXMLDOC01-appb-M000005
ここに、k、cは切れ刃と被削材表面との間の単位長さあたりのばね定数と粘性減衰係数、μは動摩擦係数である。
 切れ刃と加工穴との軸方向の接触長さがm回転分の送りに相当するδmであると仮定すると、l= 1、…、n ×mの範囲で切れ刃が加工穴と接触する。このとき、切れ刃iに作用する垂直抗力の変動の総和Nと摩擦力の変動の総和Fは次式となる。
Figure JPOXMLDOC01-appb-M000006
リーマおよびスピンドルの等価質量をM,x,y方向の等価ばね定数および等価粘性減衰係数をれぞれKおよびCとすると、リーマおよびスピンドルの運動方程式は次式となる。
Figure JPOXMLDOC01-appb-M000007
ここに、F、Fは切れ刃に作用する力(主分力、背分力、垂直抗力および摩擦力)の変動のx,y方向成分であり、次のように表される。
Figure JPOXMLDOC01-appb-M000008
FIG. 3 shows the relationship between the cutting edge and the processed hole in the reaming in the case of 6 blades. In this figure, the surface of the machined hole is developed, and the horizontal axis represents the axial position and the vertical axis represents the circumferential angle. In this figure, the cutting edge is shown by a solid horizontal line, the left end of which represents the axial tip. The work material is fed while rotating with respect to the cutting edge.In the figure, the rotation is represented by the downward movement in the vertical direction, and the feed is represented by the movement in the right lateral direction. Move to the lower right along the diagonal direction. Therefore, cutting is performed at the most tip end portion in the axial direction of the cutting edge indicated by the red line, and in the subsequent portion, the cutting edge immediately before is in contact with the cut portion in order from the immediately preceding cutting edge.
Since cutting is performed on all cutting edges at the same time, the axial length cut by a certain cutting edge is the same as the length sent by the cutting edge of the immediately preceding cutting edge, as shown in Fig. 3. Become. Therefore, when the feed per one revolution of the work material is δ, the axial length δ i of the portion cut by the cutting edge i is as follows.
Figure JPOXMLDOC01-appb-M000001
Here, δ is equal to the sum of the axial lengths of all the cutting edges. When the subscript j of α and δ exceeds n (j> n), it is defined by the following equation.
Figure JPOXMLDOC01-appb-M000002
Here, in order to study the growth of minute vibrations of the reamer, assuming that the displacements x and y of the reamer are sufficiently smaller than the radius of the reamer, the radial displacement r i of the cutting edge i is approximately represented as follows.
Figure JPOXMLDOC01-appb-M000003
The fluctuation P i of the main component force of the cutting edge i and the fluctuation Q i of the back component force based on the state of normal cutting in which the center of the reamer does not move from the origin is the area of the portion cut by the cutting edge i. Assuming that it is proportional to the fluctuation amount of, the following equation holds.
Figure JPOXMLDOC01-appb-M000004
Here, K c represents the specific cutting resistance, and b represents the ratio of the back force component to the main force component.
Next, consider the contact force. It is assumed that the variation of the normal force with respect to the state of normal cutting can be modeled by a distributed spring and a distributed dashpot between the cutting edge and the work surface. The frictional force is assumed to be Coulomb frictional force. As shown in FIG. 3, if the numbers of l = 1, 2, ... Are sequentially given from the tip of the contact portion, the first contact portion of the cutting edge i is the time t− (α i + l) by the cutting edge i + l. It is a portion cut to −α i ) / ω, and the axial length is δ i + 1 . The magnitude of the fluctuation of the contact force at each part is proportional to the difference between the radial displacement of the cutting edge and the amount of deformation of the hole surface in contact with the change over time, and the amount of deformation of the hole surface at the time when cutting was performed. Equal to the radial displacement of the cutting edge. Therefore, the change in normal force N i, j and the change in frictional force F i, j at the first contact portion of the cutting edge i are expressed by the following equations.
Figure JPOXMLDOC01-appb-M000005
Here, k and c are the spring constant and the viscous damping coefficient per unit length between the cutting edge and the surface of the work material, and μ is the dynamic friction coefficient.
Assuming that the axial contact length between the cutting edge and the machined hole is δm, which corresponds to the feed for m rotations, the cutting edge contacts the machined hole in the range of l = 1, ..., N × m. In this case, the sum F i of the variation of the sum N i and the frictional force variation in normal force acting on the cutting edge i becomes the following equation.
Figure JPOXMLDOC01-appb-M000006
Assuming that the equivalent masses of the reamer and the spindle are the equivalent spring constants in the M, x, and y directions and the equivalent viscous damping coefficients are K and C, respectively, the equation of motion of the reamer and the spindle is as follows.
Figure JPOXMLDOC01-appb-M000007
Here, F x and F y are x and y direction components of fluctuations of forces (main component force, back force component, vertical drag force and frictional force) acting on the cutting edge, and are expressed as follows.
Figure JPOXMLDOC01-appb-M000008
数7の解を次のように仮定する。
Figure JPOXMLDOC01-appb-M000009
ここに、s は回転角速度ω によって無次元化された特性指数を表す。数9を数7に代入し、数3~6および式8を考慮すると、以下の式を得る。
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000014
式(10)から次の特性方程式を得る
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000016
The solution of Equation 7 is assumed as follows.
Figure JPOXMLDOC01-appb-M000009
Here, s represents a characteristic index made dimensionless by the rotational angular velocity ω. By substituting the equation 9 into the equation 7 and considering the equations 3 to 6 and the equation 8, the following equation is obtained.
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000014
Obtain the following characteristic equation from equation (10)
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000016
 かかるモデルの運動方程式を解析した結果が図4のチャート(等分割刃)と図5のチャート(異分割刃)として表される。 The results of analyzing the equation of motion of such a model are shown in the chart of FIG. 4 (equal division blade) and the chart of FIG. 5 (different division blade).
 この発明では、振動数ω=0である準静的特性根を用いるので、松崎-劉モデルの特性方程式は次のように纏められる。
Figure JPOXMLDOC01-appb-M000017
In the present invention, since the quasi-static characteristic root having the frequency ω = 0 is used, the characteristic equation of the Matsuzaki-Liu model can be summarized as follows.
Figure JPOXMLDOC01-appb-M000017
 かかる運動方程式を解析するにあたり用いたパラメータ(切れ刃の配置角度(α)を除く)は次の通りである。
Kcd/K =1.0
kd/K =1.0
b=0.01
m=0.10
m =1
 ここに、mは整数値、その他は無次元量である。
The parameters (excluding the cutting edge arrangement angle (α j )) used in analyzing the equation of motion are as follows.
Kcd / K = 1.0
kd / K = 1.0
b = 0.01
m = 0.10
m = 1
Here, m is an integer value and the others are dimensionless quantities.
 示す各実施例及び比較例について上記運動方程式の解析を行った結果を表1に示す。
Figure JPOXMLDOC01-appb-T000018
Table 1 shows the results of analysis of the above equation of motion for each of the examples and comparative examples shown.
Figure JPOXMLDOC01-appb-T000018
 表1において、最大特性根は全周波数かつ2角形~13角形における特性根(実部)の最大値を示す。この値を得るには、図4及び図5に示すように数多くのチャートを描くのに必要な量のデータの演算が必要である。
 他方、準静的特性根の最大実部σMAXとは、振動数ω=0における特性根である準静的特性根sの虚部に最も近い整数値をNとし、3≦N≦13を満足する準静的特性根sのうちの最大の実部を指す。
 かかる準静的特性根sの最大実部σMAXは、周波数ω=0のときのみの演算(各チャートの縦軸の値)で済む。更に、周波数ω=0では運動方程式が簡素化されるので、演算にかかる負担が大幅に緩和される。よって、コンピュータに対する同じ負荷で数多くの対象の評価が可能となる。
 QCR値は比較例1(等分割切れ刃)の準静的特性根の最大実部RσMAXと他の実施例及び比較例の準静的特性根の最大実部TσMAXとの差を示す。
In Table 1, the maximum characteristic root shows the maximum value of the characteristic root (real part) in all frequencies and in the digonal to 13-sided polygon. Obtaining this value requires calculation of the amount of data required to draw many charts as shown in FIGS.
On the other hand, the maximum real part σ MAX of the quasi-static characteristic root means that N 0 is an integer value closest to the imaginary part of the quasi-static characteristic root s which is the characteristic root at the frequency ω = 0, and 3 ≦ N 0 ≦ It indicates the largest real part of the quasi-static characteristic root s that satisfies 13.
The maximum real part σ MAX of the quasi-static characteristic root s can be calculated (value on the vertical axis of each chart) only when the frequency ω = 0. Further, since the equation of motion is simplified at the frequency ω = 0, the burden on the calculation is greatly reduced. Therefore, many objects can be evaluated with the same load on the computer.
QCR value indicates the difference between the maximum real part Tishiguma MAX of quasi-static characteristics roots up real Arushiguma MAX and other examples and comparative examples of quasi-static characteristics roots of Comparative Example 1 (equally divided cutting edge).
 各実施例及び比較例について、その解析条件に適合するように、リーマ加工試験を行った。基本的な試験条件は次の通りであった(材質やリーマ装置の種類に応じて調整を行っている)。

 リーマについて、
溝底の径:φ5.2mm
溝の深さ:1.4mm
溝の丸みの半径:R0.05~R0.3mm
ランド幅:分割角度に異存
マージン幅:0.5mm
材質:超硬合金
硬質皮膜の材質:TiN,TiAlN,TiSiN,AlCrN等の窒化物
硬質皮膜の被覆対象:リーマ全周

 被削材
材質:FC250(ねずみ鋳鉄品)
外径:φ8(リーマの外径=7.98)
下孔径:φ7.5(下穴用ドリルの外径)
長さ:下穴深さ26、リーマ加工深さ24

 穿設条件
回転速度:2000~6000rpm
進行速度:送り量200~600mm/min 切削速度(φ8での周速)50~15m/min
切削油:ソリュブルタイプ水溶性切削油
 内径の測定条件
測定器:TAYLOR HOBSON社製 Talyrond 365
測定位置:リーマ加工深さ24mmの穴を表面から0.5~1mm入ったところのを1面目とし、深さ方向に向かって2mmピッチで合計12面の真円度を測定。
Reaming tests were conducted on each of the examples and comparative examples so as to meet the analysis conditions. The basic test conditions were as follows (adjusted according to the type of material and reamer device).

About the reamer,
Diameter of groove bottom: φ5.2 mm
Groove depth: 1.4mm
Radius of groove roundness: R0.05-R0.3mm
Land width: Divided into different angles Margin width: 0.5 mm
Material: Cemented carbide hard coating material: TiN, TiAlN, TiSiN, AlCrN, etc. nitride hard coating target: Reamer all around

Workpiece <br/> Material: FC250 (gray iron casting)
Outer Diameter: φ8 (Outer Diameter of Reamer = 7.98)
Pilot hole diameter: φ7.5 (outer diameter of drill for pilot hole)
Length: prepared hole depth 26, reaming depth 24

Drilling conditions Rotation speed: 2000-6000 rpm
Progressive speed: Feed rate 200 to 600 mm / min Cutting speed (peripheral speed at φ8) 50 to 15 m / min
Cutting oil: Soluble type water-soluble cutting oil
Measuring conditions of inner diameter Measuring device: Taylron 365 manufactured by TAYLOR HOBSON
Measurement position: The reaming depth of 24 mm is 0.5 mm to 1 mm from the surface as the first surface, and the circularity of a total of 12 surfaces is measured at a pitch of 2 mm in the depth direction.
 実施例及び比較例の試験結果を図6及び図7に示す。
 図6及び図7の各チャートの縦軸は真円度を示し、横軸はリーマの回転速度を示す。
 表1の平均真円度は、図6及び図7の各チャートの真円度の平均を示している。なお、極端に外れた真円度は平均値計算時に除外している。リーマ装置の駆動部による誤差を除くためである。
The test results of Examples and Comparative Examples are shown in FIGS. 6 and 7.
The vertical axis of each chart in FIGS. 6 and 7 indicates the circularity, and the horizontal axis indicates the rotation speed of the reamer.
The average roundness in Table 1 indicates the average roundness of each chart in FIGS. 6 and 7. In addition, the extremely roundness is excluded when calculating the average value. This is to remove an error due to the driving unit of the reamer device.
 図8は、表1のQCR値と平均真円度との関係を示す。表1において右側の2つのデータが比較例を、他のデータは実施例を示す。
 図8より、QCR値の絶対値が0.075以上であると平均真円度が高くなることがわかる。更には、その絶対値は、0.10以上であることが好ましく。更に好ましくはその絶対値は0.125以上である。
 なお、表1で挙げた比較例1、2のリーマの他に、従来より種々のリーマが提案されかつ販売されてきている。その中には、偶発的に、QCR値が上記各閾値を超えるものがあるかもしれない。しかしながら、リーマの性能を評価するあたり、この明細書で提案するQCR値は本発明者らによる全く新規なコンセプトであり、かかる偶発的な従来のリーマは何ら当該コンセプトを開示しているわけではない。従って、仮にかかるリーマが本願出願前に存在していたとしても、本発明は新規性を失わないものと考える。そして、仮にかかるリーマが本願出願前に存在していたときは、穴加工具を対象とする請求項からこれを除くものとする。
FIG. 8 shows the relationship between the QCR value in Table 1 and the average roundness. In Table 1, the two data on the right side show comparative examples, and the other data show examples.
It can be seen from FIG. 8 that the average roundness increases when the absolute value of the QCR value is 0.075 or more. Furthermore, its absolute value is preferably 0.10. More preferably, the absolute value is 0.125 or more.
In addition to the reamers of Comparative Examples 1 and 2 listed in Table 1, various reamers have been proposed and sold in the past. Some of them may accidentally have a QCR value exceeding each of the above thresholds. However, in evaluating the performance of the reamer, the QCR value proposed in this specification is a completely novel concept by the present inventors, and such an incidental conventional reamer does not disclose the concept at all. .. Therefore, even if such a reamer exists before the present application, it is considered that the present invention does not lose its novelty. And, if such a reamer exists before the application of the present application, it shall be excluded from the claims targeting the hole drilling tool.
 表1より、各実施例に示した角度のならびに切れ刃を配置したリーマは優れた特性(真円度)を示す。各実施例の切れ刃の角度のならびにおいて、各切れ刃を±3度変化させても、同等のパフォーマンス、即ち真円度の再現性が得られるものと考えられる。
 特に実施例10及び実施例11に示した切れ刃の角度のならびを有するリーマが優れた特性(真円度)を示している。
 かかる切れ刃の角度のならびにおいて、各切れ刃を±5度変化させても、同等のパフォーマンス、即ち真円度の再現性が得られるものと考えられる。
 よって、この発明の他の局面は次のように規定できる。即ち、6枚切れ刃のリーマであって、各切れ刃の配置角度が順に35~45度、75~85度、55~65度、50~60度、30~40度、及び85~95度であるリーマ。
 更には、順に45~55度、25~35度、95~105度、65~75度、65~75度、及び35~45度であるリーマ。
From Table 1, the reamer having the angles and the cutting edges shown in each example show excellent characteristics (roundness). It is considered that even if the cutting edges are changed by ± 3 degrees depending on the angles of the cutting edges in each example, the same performance, that is, the reproducibility of the roundness can be obtained.
Particularly, the reamer having the cutting edge angular distribution shown in Examples 10 and 11 exhibits excellent characteristics (roundness).
It is considered that even if each cutting edge is changed by ± 5 degrees depending on the angle of the cutting edge, equivalent performance, that is, reproducibility of roundness can be obtained.
Therefore, another aspect of the present invention can be defined as follows. That is, it is a reamer with six cutting edges, and the arrangement angle of each cutting edge is 35 to 45 degrees, 75 to 85 degrees, 55 to 65 degrees, 50 to 60 degrees, 30 to 40 degrees, and 85 to 95 degrees. Is a reamer.
Furthermore, a reamer having 45 to 55 degrees, 25 to 35 degrees, 95 to 105 degrees, 65 to 75 degrees, 65 to 75 degrees, and 35 to 45 degrees in that order.
 図9には、リーマにおける各切れ刃の分解角度を模式的に示す。図10にはリーマの切れ刃形を模式的に示す。
 リーマで加工を行う際、分割角が大きい程、回転方向後側の切れ刃にはより大きな荷重がかかる。この荷重により切れ刃の摩耗が促進する。ここに、リーマを構成する各切れ刃において摩耗の進行にバラつき生じると、高い真円度を維持する妨げとなり、耐久性を低下させる。
 従って、各切れ刃の摩耗のバラつきの発生を防止し、各切れ刃の剛性を確保するため、被削材に接触する切れ刃の部分の幅(ランド部分の幅(ランド幅)若しくはマージン部の幅(マージン幅))を切れ刃の間隔(分割角)に応じて調整することが好ましい。
FIG. 9 schematically shows the disassembly angle of each cutting edge in the reamer. FIG. 10 schematically shows the cutting edge shape of the reamer.
When processing with a reamer, the larger the division angle, the greater the load applied to the cutting edge on the rear side in the rotation direction. This load accelerates the wear of the cutting edge. If there is a variation in the progress of wear in each cutting edge that constitutes the reamer, it becomes difficult to maintain a high roundness, and the durability is reduced.
Therefore, in order to prevent the occurrence of variation in wear of each cutting edge and to secure the rigidity of each cutting edge, the width of the cutting edge portion that contacts the work material (the width of the land portion (land width) or the margin portion) It is preferable to adjust the width (margin width) according to the spacing between the cutting edges (division angle).
 より具体的には、切れ刃iとこれに反回転方向へ隣り合う切れ刃i+1との間の分割角αiを加工具全周にみたときの大小関係と、切れ刃i+1のマージン幅tmi+1及び/又はランド幅ti+1を加工具全周方向にみたときの大小関係とを一致させる。
 更には、分割角αiを加工具全周にみたときの該分割角の比(α1:α2:……:αn)とマージン幅を加工具全周にみたときの該マージン幅の比(tm2:tm3:……:tmn:tm1)及び/又はランド幅を加工具全周にみたときの該ランド幅の比(t2:t3:……:tn:tm1)を一致させる。
More specifically, the size relationship when the dividing angle αi between the cutting edge i and the cutting edge i + 1 adjacent to the cutting edge i in the counter-rotational direction is viewed over the entire circumference of the processing tool, and the margin of the cutting edge i + 1 The size relationship when the width tmi + 1 and / or the land width ti + 1 is viewed in the entire circumferential direction of the processing tool is matched.
Furthermore, the ratio of the dividing angle when the dividing angle αi is seen all around the processing tool (α1: α2: ...: αn) and the ratio of the margin width when looking at the margin width all the way around the processing tool (tm2: tm3: ...: Tmn: tm1) and / or the land width ratio (t2: t3: ...: tn: tm1) when the land width is viewed over the entire circumference of the processing tool.
 本発明者らの他の実験結果を図11~図13に示す。
 図11は準静的特性根の最大実部σMAXと平均真円度との関係を示す。この図から準静的特性根の最大実部σMAX自体も穴加工具の特性を示す指標となり得ることがわかる。
 ここで、図8と比較すると、QCR値の方が、その特性をより明確に示していることがわかる。
The results of other experiments conducted by the present inventors are shown in FIGS. 11 to 13.
FIG. 11 shows the relationship between the maximum real part σMAX of the quasi-static characteristic root and the average roundness. From this figure, it is understood that the maximum real part σMAX of the quasi-static characteristic root itself can also be an index showing the characteristic of the hole drilling tool.
Here, as compared with FIG. 8, it can be seen that the QCR value shows its characteristics more clearly.
 なお、図12は、松崎-劉モデルの特性方程式の特性根実部と回転数との関係を比較例1及び2、実施例1及び2について示したものである。
 図13は、同じく最大特性根実部と角形数との関係を示したものである。
Note that FIG. 12 shows the relationship between the characteristic root part of the characteristic equation of the Matsuzaki-Liu model and the rotation speed for Comparative Examples 1 and 2, and Examples 1 and 2.
FIG. 13 shows the relationship between the maximum characteristic root and the number of polygons.
 本発明は、前記各局面および前記各実施形態の説明に何ら限定されるものではない。特許請求の範囲の記載を逸脱せず、当業者が容易に想到できる範囲で種々の変形態様も本発明に含まれる。 The present invention is in no way limited to the description of each aspect and each embodiment. Various modifications are also included in the present invention within a range that can be easily conceived by a person skilled in the art without departing from the scope of claims.

Claims (17)

  1.  複数切れ刃を備えた穴を形成するための穴加工具であって、
     各切れ刃を松崎-劉モデルの運動方程式に当てはめたとき、振動数ω=0における特性根である準静的特性根sの虚部に最も近い整数値をNとし
     3≦N≦2n+1(nは切れ刃数)を満足する前記準静的特性根sのうちの最大の実部を最大実部σMAXとしたとき、
     基準穴加工具の最大実部RσMAXに対してその最大実部TσMAXが所定の閾値の範囲内にある、穴加工具。
    A hole processing tool for forming a hole having a plurality of cutting edges,
    When each cutting edge is applied to the equation of motion of the Matsuzaki-Liu model, the integer value closest to the imaginary part of the quasi-static characteristic root s, which is the characteristic root at the frequency ω = 0, is N 0 , and 3 ≦ N 0 ≦ 2n When the maximum real part of the quasi-static characteristic root s that satisfies +1 (n is the number of cutting edges) is the maximum real part σ MAX ,
    Its maximum real part Tishiguma MAX the maximum real part Arushiguma MAX of the reference drilling tool is within the predetermined threshold, the drilling tool.
  2.  前記運動方程式において準静的特性根は2~13角形に対応するものであり、
     前記基準穴加工具は前記各切れ刃が等ピッチで配置されたものであり、
     対象穴加工具の前記最大実部TσMAXと基準穴加工具の前記最大実部RσMAXとの差の絶対値が0.075以上である、但し、TσMAX≦RσMAXである穴加工具。
    In the above equation of motion, quasi-static characteristic roots correspond to 2 to 13 polygons,
    The reference hole processing tool is one in which the cutting edges are arranged at an equal pitch,
    An absolute value of a difference between the maximum real part Tσ MAX of the target hole drilling tool and the maximum real part Rσ MAX of the reference hole drilling tool is 0.075 or more, provided that Tσ MAX ≤ Rσ MAX .
  3.  前記差の絶対値が0.10以上である、請求項2に記載の穴加工具 The hole drilling tool according to claim 2, wherein the absolute value of the difference is 0.10 or more.
  4.  前記差の絶対値が0.125以上である、請求項2に記載の穴加工具。 The hole drilling tool according to claim 2, wherein the absolute value of the difference is 0.125 or more.
  5.  前記切れ刃数nが6である、請求項2~4に記載の穴加工具。 The hole drilling tool according to any one of claims 2 to 4, wherein the number of cutting edges n is 6.
  6.  切れ刃iとこれに反回転方向へ隣り合う切れ刃i+1との間の分割角αiを穴加工具全周にみたときの大小関係と、切れ刃i+1のマージン幅tmi+1又はランド幅ti+1を穴加工具全周方向にみたときの大小関係とが一致している、請求項2~5に記載の加工具。 The magnitude relationship when the dividing angle αi between the cutting edge i and the adjacent cutting edge i + 1 in the counter-rotating direction is viewed over the entire circumference of the hole making tool, and the margin width tmi + 1 of the cutting edge i + 1 or The processing tool according to any one of claims 2 to 5, wherein the land width ti + 1 is the same in size relationship when viewed in the entire circumferential direction of the hole processing tool.
  7.  前記分割角αiを前記穴加工具全周にみたときの該分割角の比(α1:α2:……:αn)と前記マージン幅を前記穴加工具全周にみたときの該マージン幅の比(tm2:tm3:……:tmn:tm1)又は前記ランド幅を前記穴加工部全周にみたときの該ランド幅の比(t2:t3:……:tn:t1)が一致している、請求項6に記載の加工具。 Ratio of the division angle when the division angle αi is seen all around the hole drilling tool (α1: α2: ...: αn) and ratio of the margin width when the margin width is seen all around the hole drilling tool. (Tm2: tm3: ...: tmn: tm1) or the land width ratio (t2: t3: ...: tn: t1) when the land width is viewed over the entire circumference of the hole-machining portion is the same. The processing tool according to claim 6.
  8.  前記切れ刃のマージン部分が硬質皮膜で被覆されている、請求項6又は請求項7に記載の加工具。 The processing tool according to claim 6 or 7, wherein a marginal portion of the cutting edge is covered with a hard film.
  9.  前記穴加工具はリーマ加工に用いられる、請求項1~請求項8の何れかに記載の加工具。 The processing tool according to any one of claims 1 to 8, wherein the hole processing tool is used for reaming.
  10.  複数の切れ刃を備えた穴を形成するための穴加工具の設計方法であって、
     対象加工具として任意に選択した角度の前記複数の切れ刃を松崎-劉モデルの特性方程式に当てはめて、周波数ω=0における特性根である準静的特性根sの虚部に最も近い整数値をNを特定し、
     3≦N≦2n+1(nは切れ刃数)を満足する前記準静的特性根sのうちの最大の実部である最大実部σMAXを特定し、
     基準穴加工具の最大実部RσMAXに対してその最大実部TσMAXが所定の閾値の範囲内にある前記対象加工具を選択する、加工穴具の設計方法。
    A method of designing a hole drilling tool for forming a hole having a plurality of cutting edges,
    An integer value closest to the imaginary part of the quasi-static characteristic root s, which is the characteristic root at the frequency ω = 0, is obtained by applying the plurality of cutting edges having an arbitrarily selected angle as the target processing tool to the characteristic equation of the Matsuzaki-Liu model. Identify N 0 ,
    The maximum real part σ MAX that is the maximum real part of the quasi-static characteristic root s that satisfies 3 ≦ N 0 ≦ 2n + 1 (n is the number of cutting edges) is specified,
    Its maximum real part Tishiguma MAX selects the target processing tool within a predetermined threshold range relative to the maximum real part Arushiguma MAX of the reference drilling tool, a method of designing a machined hole tool.
  11.  前記特性方程式において準静的特性根は2~13角形の対応するものであり、
     前記基準穴加工具は前記切れ刃が等ピッチで配置されたものであり、
     対象穴加工具の前記最大実部TσMAXと基準穴加工具の前記最大実部RσMAXとの差の絶対値が、0.075、0.10又は0.125以上である、但し、TσMAX≦TσMAXである請求項10に記載の設計方法。
    In the above characteristic equation, the quasi-static characteristic roots correspond to 2 to 13 polygons,
    The reference hole processing tool is one in which the cutting edges are arranged at an equal pitch,
    The absolute value of the difference between the maximum real part T σ MAX of the target hole drilling tool and the maximum real part R σ MAX of the reference hole drilling tool is 0.075, 0.10 or 0.125 or more, provided that T σ MAX The design method according to claim 10, wherein ≦ T σ MAX .
  12.  請求項10又は請求項11に記載の設計方法で得た設計に基づき穴加工具を製造する穴加工具の製造方法。 A method for manufacturing a hole making tool, which manufactures a hole making tool based on the design obtained by the designing method according to claim 10 or claim 11.
  13.  複数切れ刃を備えた穴を形成するための穴加工具の評価方法であって、
     評価対象加工具の前記複数の切れ刃を松崎-劉モデルの特性方程式に当てはめて、角速度ω=0における特性根である準静的特性根sの虚部に最も近い整数値をNを特定し、
     3≦N≦2n+1(nは切れ刃数)を満足する前記準静的特性根sのうちの最大の実部の最大実部σMAXを特定し、
     基準穴加工具の最大実部RσMAXに対してその最大実部TσMAXが所定の閾値の範囲内にある前記対象加工具を良品とする、加工穴具の評価方法。
    A method for evaluating a hole processing tool for forming a hole having a plurality of cutting edges,
    By applying the plurality of cutting edges of the evaluation target processing tool to the characteristic equation of the Matsuzaki-Liu model, N 0 is specified as the integer value closest to the imaginary part of the quasi-static characteristic root s which is the characteristic root at the angular velocity ω = 0. Then
    The maximum real part σ MAX of the maximum real part of the quasi-static characteristic root s that satisfies 3 ≦ N 0 ≦ 2n + 1 (n is the number of cutting edges) is specified,
    Its maximum real part Tishiguma MAX the maximum real part Arushiguma MAX of the reference drilling tool is as acceptable the target processing tool within a predetermined threshold range, the evaluation method of the machined hole tool.
  14.  前記特性方程式において準静的特性根は2~13角形の対応するものであり、
     前記基準穴加工具は前記切れ刃が等ピッチで配置されたものであり、
     対象穴加工具の前記最大実部TσMAXと基準穴加工具の前記最大実部RσMAXとの差の絶対値が、0.075、0.10又は0.125以上である、但し、TσMAX≦RσMAXである請求項13に記載の評価方法。
    In the above characteristic equation, the quasi-static characteristic roots correspond to 2 to 13 polygons,
    The reference hole processing tool is one in which the cutting edges are arranged at an equal pitch,
    The absolute value of the difference between the maximum real part T σ MAX of the target hole drilling tool and the maximum real part R σ MAX of the reference hole drilling tool is 0.075, 0.10 or 0.125 or more, provided that T σ MAX The evaluation method according to claim 13, wherein ≦ Rσ MAX .
  15.  複数切れ刃を備えた穴を形成するための穴加工具の評価方法であって、
     評価対象加工具の前記複数切れ刃を松崎-劉モデルの特性方程式に当てはめて、角速度ω=0における特性根である準静的特性根sの虚部に最も近い整数値をNを特定し、
     3≦N≦2n+1(nは切れ刃数)を満足する前記準静的特性根sのうちの最大の実部を最大実部σMAXを特定する、評価方法。
    A method for evaluating a hole processing tool for forming a hole having a plurality of cutting edges,
    The plurality of cutting edges of the processing tool to be evaluated are applied to the characteristic equation of the Matsuzaki-Liu model, and N 0 is specified as the integer value closest to the imaginary part of the quasi-static characteristic root s which is the characteristic root at angular velocity ω = 0. ,
    An evaluation method in which the maximum real part σ MAX is specified as the maximum real part of the quasi-static characteristic root s that satisfies 3 ≦ N 0 ≦ 2n + 1 (n is the number of cutting edges).
  16.  6枚切れ刃のリーマであって、各切れ刃の配置角度が順に35~45度、75~85度、55~65度、50~60度、30~40度、及び85~95度であるリーマ。 Reamer with 6 cutting edges, and the arrangement angle of each cutting edge is 35 to 45 degrees, 75 to 85 degrees, 55 to 65 degrees, 50 to 60 degrees, 30 to 40 degrees, and 85 to 95 degrees. Reamer.
  17.  6枚切れ刃のリーマであって、各切れ刃の配置角度が順位に45~55度、25~35度、95~105度、65~75度、及び35~45度であるリーマ。 Reamer with 6 cutting edges, where the angle of each cutting edge is 45-55 degrees, 25-35 degrees, 95-105 degrees, 65-75 degrees, and 35-45 degrees.
PCT/JP2019/041590 2018-10-31 2019-10-24 Hole processing tool, and design method, manufacturing method, and evaluation method for same WO2020090594A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19879971.0A EP3875200A4 (en) 2018-10-31 2019-10-24 Hole processing tool, and design method, manufacturing method, and evaluation method for same
CN201980072056.9A CN112996622A (en) 2018-10-31 2019-10-24 Hole machining tool, and design method, manufacturing method, and evaluation method thereof
JP2020553822A JPWO2020090594A1 (en) 2018-10-31 2019-10-24 Hole drilling tool and its design method, manufacturing method and evaluation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018206189 2018-10-31
JP2018-206189 2018-10-31

Publications (1)

Publication Number Publication Date
WO2020090594A1 true WO2020090594A1 (en) 2020-05-07

Family

ID=70463205

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/041590 WO2020090594A1 (en) 2018-10-31 2019-10-24 Hole processing tool, and design method, manufacturing method, and evaluation method for same

Country Status (4)

Country Link
EP (1) EP3875200A4 (en)
JP (1) JPWO2020090594A1 (en)
CN (1) CN112996622A (en)
WO (1) WO2020090594A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0634907U (en) * 1991-10-02 1994-05-10 道子 柳田 Rattan basket
JP2014079814A (en) * 2012-10-12 2014-05-08 Mitsubishi Materials Corp Boring tool
CN108655500A (en) * 2017-03-28 2018-10-16 上海大学 A kind of processing cast iron skewed slot reamer

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT502061A1 (en) * 2005-06-24 2007-01-15 Boehlerit Gmbh & Co Kg RUBBER WITH CUTTING PLATE
JP4753893B2 (en) * 2007-02-13 2011-08-24 株式会社アライドマテリアル Diamond reamer
JP4951788B2 (en) * 2008-12-26 2012-06-13 国立大学法人九州大学 Guide part arrangement structure and guide part arrangement method for tip tool for deep hole machining
CN201596817U (en) * 2009-06-05 2010-10-06 孔凡智 High-precision wear-resistance reamer
KR101239045B1 (en) * 2010-12-15 2013-03-04 대구텍 유한회사 Asymmetrical rotary cutting tool

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0634907U (en) * 1991-10-02 1994-05-10 道子 柳田 Rattan basket
JP2014079814A (en) * 2012-10-12 2014-05-08 Mitsubishi Materials Corp Boring tool
CN108655500A (en) * 2017-03-28 2018-10-16 上海大学 A kind of processing cast iron skewed slot reamer

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Bulletin of the Japan Society of Mechanical Engineers", STUDY FOR POLYGONAL DEFORMATION PHENOMENON OF BOREHOLE IN REAMING PROCESS, vol. 83, no. 852, 2017
MATSUZAKI, KENICHIRO ET AL.: "Study for polygonal deformation phenomenon of borehole in reaming process", TRANSACTIONS OF THE JSME, vol. 83, no. 852, 9 August 2017 (2017-08-09), pages 1 - 13, XP055812883, ISSN: 2187-9761 *

Also Published As

Publication number Publication date
EP3875200A4 (en) 2022-11-30
JPWO2020090594A1 (en) 2021-12-16
CN112996622A (en) 2021-06-18
EP3875200A1 (en) 2021-09-08

Similar Documents

Publication Publication Date Title
Roukema et al. Generalized modeling of drilling vibrations. Part I: Time domain model of drilling kinematics, dynamics and hole formation
Turner et al. Modelling of the stability of variable helix end mills
CN101722438B (en) Vibration suppressing method and vibration suppressing device for machine tool
Park et al. Robust chatter stability in micro-milling operations
JP5732325B2 (en) Vibration discrimination method and vibration discrimination apparatus
CN104778333B (en) A kind of helical end millses orthogonal turn-milling processes three-dimensional stability modeling method
Song et al. Design for variable pitch end mills with high milling stability
JP2009522122A (en) Rotary cutting tool
JP5622626B2 (en) Rotational speed display device
JP2007175830A (en) Christmas tree formed milling cutter
Taner et al. Generalized cutting force model in multi-axis milling using a new engagement boundary determination approach
JP5834429B2 (en) Tool rotation speed selection method
Xu et al. Energy based cutting force model calibration for milling
CN107238480B (en) Milling process based on operational modal analysis damps scaling method
Nishida et al. Cutting force and finish surface simulation of end milling operation in consideration of static tool deflection by using voxel model
Wiederkehr et al. Determination of the dynamic behaviour of micro-milling tools at higher spindle speeds using ball-shooting tests for the application in process simulations
Cai et al. Identifying the transient milling force coefficient of a slender end-milling cutter with vibrations
WO2020090594A1 (en) Hole processing tool, and design method, manufacturing method, and evaluation method for same
Campos et al. Study of the cutting forces on micromilling of an aluminum alloy
Jiménez et al. Model for the prediction of low-frequency lateral vibrations in drilling process with pilot hole
No et al. Scanning and modeling for non-standard edge geometry endmills
Tyler et al. Process damping analytical stability analysis and validation
JP6060027B2 (en) Cutting tool and design method thereof
JP6953545B2 (en) End mill specification setting method, machining condition setting method and machining method
CN109048466B (en) Milling flutter suppression method based on multi-frequency variable rotation speed

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19879971

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020553822

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019879971

Country of ref document: EP

Effective date: 20210531