JP2014079814A - Boring tool - Google Patents

Boring tool Download PDF

Info

Publication number
JP2014079814A
JP2014079814A JP2012227101A JP2012227101A JP2014079814A JP 2014079814 A JP2014079814 A JP 2014079814A JP 2012227101 A JP2012227101 A JP 2012227101A JP 2012227101 A JP2012227101 A JP 2012227101A JP 2014079814 A JP2014079814 A JP 2014079814A
Authority
JP
Japan
Prior art keywords
tool
axis
cutting
hole
cutting edges
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012227101A
Other languages
Japanese (ja)
Inventor
Masaharu Takiguchi
正治 滝口
Kenichi Nareta
建一 馴田
Masayuki Mabuchi
雅行 馬渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2012227101A priority Critical patent/JP2014079814A/en
Publication of JP2014079814A publication Critical patent/JP2014079814A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Milling, Broaching, Filing, Reaming, And Others (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a boring tool capable of sufficiently increasing dimensional accuracy of a machined hole.SOLUTION: The boring tool is inserted into a prepared hole, previously formed in a workpiece, to cut the inner wall surface of the prepared hole and form a machined hole. The boring tool comprises: a tool body 2 having a shaft shape and rotated around its axis O; and a plurality of cutting edges 3 formed on an outer circumferential surface of the tool body 2 in the circumferential direction with mutual intervals, and extending along the axis O direction. The number of cutting edges 3 is an even number, and all the pairs of the cutting edges 3 disposed back-to-back by sandwiching the axis O on a cross section perpendicular to the axis O are not at the positions of 180° rotational symmetry to each other.

Description

本発明は、被切削材に予め形成された下穴に挿入され、該下穴の内壁面を切削加工して加工穴を形成する穴加工工具に関するものである。   The present invention relates to a hole machining tool that is inserted into a prepared hole formed in advance in a workpiece and cuts an inner wall surface of the prepared hole to form a processed hole.

従来、この種の穴加工工具として、例えば下記特許文献1に示されるような、軸状をなし、その軸線回りに回転される工具本体(シャンク部)と、前記工具本体の外周面に周方向に間隔をあけて形成され、軸線方向に沿うように延びる複数の切れ刃とを備えたリーマが知られている。この穴加工工具では、工具本体の外周面に、複数の切れ刃が周方向に等間隔をあけて配置されている。   Conventionally, as this type of drilling tool, for example, as shown in Patent Document 1 below, a tool body (shank portion) that has an axial shape and is rotated around the axis, and a circumferential direction on the outer peripheral surface of the tool body. A reamer is known that includes a plurality of cutting edges that are formed at intervals and extend along the axial direction. In this hole drilling tool, a plurality of cutting edges are arranged at equal intervals in the circumferential direction on the outer peripheral surface of the tool body.

特開2002−059313号公報JP 2002-059313 A

しかしながら、前述した従来の穴加工工具においては、加工穴の寸法精度(特に真円度や円筒度)を高めることに、未だ改善の余地があった。   However, the above-described conventional drilling tools still have room for improvement in improving the dimensional accuracy (particularly roundness and cylindricity) of the drilled holes.

本発明は、このような事情に鑑みてなされたものであって、加工穴の寸法精度を十分に高めることができる穴加工工具を提供することを目的としている。   This invention is made | formed in view of such a situation, Comprising: It aims at providing the drilling tool which can fully improve the dimensional accuracy of a drilling hole.

このような課題を解決して、前記目的を達成するために、本発明は以下の手段を提案している。
すなわち、本発明は、被切削材に予め形成された下穴に挿入され、該下穴の内壁面を切削加工して加工穴を形成する穴加工工具であって、軸状をなし、その軸線回りに回転される工具本体と、前記工具本体の外周面に周方向に間隔をあけて形成され、軸線方向に沿うように延びる複数の切れ刃と、を備え、前記切れ刃の数は偶数とされ、前記軸線に垂直な断面で、前記軸線を挟んで背向配置される一対の切れ刃同士は、全て互いに180°回転対称の位置にないことを特徴とする。
In order to solve such problems and achieve the above object, the present invention proposes the following means.
That is, the present invention is a hole machining tool that is inserted into a prepared hole formed in a work material in advance and cuts the inner wall surface of the prepared hole to form a processed hole. A tool body that is rotated around, and a plurality of cutting edges that are formed on the outer peripheral surface of the tool body at intervals in the circumferential direction and extend along the axial direction, and the number of cutting edges is an even number. A pair of cutting blades arranged in a back direction across the axis in a cross section perpendicular to the axis are not in a rotationally symmetric position with respect to each other by 180 °.

本発明の穴加工工具では、工具本体の外周面に形成された切れ刃の数(総数)が偶数とされており、該工具本体の軸線を中央に挟んで一対の切れ刃同士が背向配置(背中合わせに配置)されている。そして、工具本体の軸線に垂直な断面(以下、横断面視)において、全ての前記一対の切れ刃同士が、互いに180°回転対称の位置にない配置とされているので、下記の顕著な効果を奏する。   In the hole drilling tool of the present invention, the number (total number) of cutting edges formed on the outer peripheral surface of the tool body is an even number, and a pair of cutting edges are arranged in the back direction with the axis of the tool body sandwiched in the center. (Placed back to back). And in the cross section perpendicular to the axis of the tool main body (hereinafter referred to as a cross sectional view), all the pair of cutting edges are arranged so as not to be 180 ° rotationally symmetrical with each other. Play.

すなわち、工具本体の横断面視で、背向配置される一対の切れ刃同士の間の距離は、これら切れ刃が軸線回りに描く円形状の回転軌跡の直径(加工穴の内径)よりも小さくなっており、前記一対の切れ刃のうち、一方の切れ刃が被切削材の下穴の内壁面(内周面)に切り込んだときに、該一方の切れ刃が切削により受ける外力(反力)が、工具本体を通して他方の切れ刃の切削に影響しにくくなっている。つまり、この横断面視で、前記一方の切れ刃と工具本体の軸線とを結ぶ直線上に前記他方の切れ刃がないために、一方の切れ刃に生じる切削負荷が、他方の切れ刃に伝わりにくい。また、これら一対の切れ刃同士を結ぶ直線は、工具軸線上を通らないため、工具本体の軸振れが起こりにくくなっている。   In other words, the distance between the pair of cutting blades arranged in the back direction in a cross-sectional view of the tool body is smaller than the diameter of the circular rotation locus (the inner diameter of the machining hole) drawn by the cutting edges around the axis. And when one of the pair of cutting edges cuts into the inner wall surface (inner peripheral surface) of the prepared hole of the workpiece, the external force (reaction force) that the one cutting edge receives by cutting ) Is less likely to affect the cutting of the other cutting edge through the tool body. That is, in this cross-sectional view, since the other cutting edge is not on the straight line connecting the one cutting edge and the axis of the tool body, the cutting load generated on one cutting edge is transmitted to the other cutting edge. Hateful. In addition, since the straight line connecting the pair of cutting edges does not pass on the tool axis line, the tool body is less likely to run out.

このように、背向する切れ刃同士が互いに影響を及ぼしにくくされ、かつ、軸振れが抑制されることから、被切削材に形成される加工穴の真円度及び円筒度が確実に高められる。従って、本発明の穴加工工具によれば、加工穴の寸法精度を十分に高めることができるのである。   In this way, since the cutting edges facing each other are less likely to affect each other and the shaft runout is suppressed, the roundness and cylindricity of the processed hole formed in the workpiece are reliably increased. . Therefore, according to the drilling tool of the present invention, the dimensional accuracy of the drilled hole can be sufficiently increased.

また、本発明の穴加工工具において、前記軸線に垂直な断面で、周方向に隣り合う前記切れ刃同士の間に前記軸線を中心として形成される角度が、全て互いに異なるように設定されていることとしてもよい。   Further, in the drilling tool of the present invention, in the cross section perpendicular to the axis, the angles formed around the axis between the cutting edges adjacent in the circumferential direction are set to be different from each other. It is good as well.

この場合、工具本体の横断面視で、周方向に隣り合う切れ刃同士の間に軸線を中心として形成される角度(中心角)が、全て互いに異なるように設定されているので、本発明の上述した構成を容易に実現しやすい。また、工具本体の振動や共振等を防止する効果が顕著に高められて、高精度な切削加工が行える。   In this case, in the cross-sectional view of the tool body, the angles (center angles) formed around the axis line between the cutting edges adjacent in the circumferential direction are all set to be different from each other. It is easy to realize the configuration described above. In addition, the effect of preventing vibration and resonance of the tool body is remarkably enhanced, and high-precision cutting can be performed.

また、本発明の穴加工工具において、前記工具本体の外周面には、前記切れ刃の工具回転方向後方側に隣接して配置され、前記軸線に垂直な断面が、該切れ刃の回転軌跡上に重なるように円弧状をなす丸ランド部が備えられることとしてもよい。   Further, in the drilling tool of the present invention, the outer peripheral surface of the tool body is disposed adjacent to the rear side in the tool rotation direction of the cutting edge, and a cross section perpendicular to the axis is on the rotation locus of the cutting edge. It is good also as providing the circular land part which makes circular arc shape so that it may overlap.

この場合、工具本体の横断面視で、背向配置される一対の切れ刃同士のうち、少なくとも一方の切れ刃と軸線とを通る直線上に、他方の切れ刃に隣接する丸ランド部を配置できる。従って、一方の切れ刃が切削により外力を受けたときに、軸線を挟んで反対側に位置する前記丸ランド部が加工穴の内壁面に当接することで、前記一方の切れ刃が径方向内側から支持されるように作用して、切れ刃が回転軌跡上(つまり加工面)から後退させられることが抑制される。これにより、加工穴の寸法精度がより顕著に高められることになる。尚、このような作用は切れ刃の数が奇数である場合には得られにくい。   In this case, a circular land portion adjacent to the other cutting edge is arranged on a straight line passing through at least one of the cutting edges and the axis among the pair of cutting edges arranged in the back direction in the cross-sectional view of the tool body. it can. Therefore, when one of the cutting edges receives an external force by cutting, the round land portion located on the opposite side across the axis line comes into contact with the inner wall surface of the machining hole, so that the one cutting edge is radially inward. Thus, the cutting edge is prevented from being retracted from the rotation locus (that is, the machining surface). As a result, the dimensional accuracy of the processed hole is significantly increased. Such an action is difficult to obtain when the number of cutting edges is an odd number.

本発明の穴加工工具によれば、加工穴の寸法精度を十分に高めることができる。   According to the drilling tool of the present invention, the dimensional accuracy of the drilled hole can be sufficiently increased.

本発明の一実施形態に係る穴加工工具を示す(a)正面図、(b)側面図である。It is the (a) front view and (b) side view which show the drilling tool concerning one embodiment of the present invention. 図1の穴加工工具の要部を示す横断面図(軸線に垂直な断面図)である。It is a cross-sectional view (cross-sectional view perpendicular to the axis) showing the main part of the hole drilling tool of FIG. 本発明の一実施形態に係る穴加工工具を説明するための参考例を示す横断面図である。It is a cross-sectional view which shows the reference example for demonstrating the drilling tool which concerns on one Embodiment of this invention. 本発明の一実施形態に係る穴加工工具を説明するための参考例を示す横断面図である。It is a cross-sectional view which shows the reference example for demonstrating the drilling tool which concerns on one Embodiment of this invention. 本発明の穴加工工具で切削加工された加工穴の真円度を説明する図である。It is a figure explaining the roundness of the processing hole cut by the hole processing tool of this invention. 参考例の穴加工工具で切削加工された加工穴の真円度を説明する図である。It is a figure explaining the roundness of the processing hole cut with the hole processing tool of the reference example.

以下、本発明の一実施形態に係る穴加工工具1について、図面を参照して説明する。
本実施形態の穴加工工具1は、例えば自動車エンジン等のシリンダーヘッドにおいてバルブステムが挿通されるステムガイド穴の加工に用いられる、リーマである。
Hereinafter, a drilling tool 1 according to an embodiment of the present invention will be described with reference to the drawings.
The hole machining tool 1 of the present embodiment is a reamer used for machining a stem guide hole through which a valve stem is inserted, for example, in a cylinder head of an automobile engine or the like.

この穴加工工具1は、被切削材に予め形成された下穴に挿入され、該下穴の内壁面(内周面)を切削加工して、所定の内径の加工穴を形成するものである。
図1(a)(b)及び図2に示されるように、穴加工工具1は、軸状をなし、その軸線O回りに回転される工具本体2と、工具本体2の外周面に周方向に間隔をあけて形成され、軸線O方向に沿うように延びる複数の切れ刃3とを備えている。また、穴加工工具1は、工具本体2の外周面における切れ刃3の工具回転方向T後方側に隣接して配置され、軸線Oに垂直な断面が、該切れ刃3の回転軌跡上に重なるように円弧状をなす丸ランド部4と、丸ランド部4の工具回転方向T後方側にそれぞれ連なり、軸線Oに垂直な断面が、該丸ランド部4よりも径方向内側に後退するように形成された逃げ面部5とを備えている。また、工具本体2の外周面において、逃げ面部5と、該逃げ面部5の工具回転方向T後方側に隣り合う切れ刃3との間には、切屑排出溝8が形成されている。
この穴加工工具1は、工具本体2の軸線O方向に沿う基端側(図1(b)における右側)の端部が該穴加工工具1より大径とされた不図示の切削工具に装着されるとともに、該切削工具が工作機械等の主軸に装着され、この主軸が回転することで、軸線O回りに回転されるようになっている。
The hole machining tool 1 is inserted into a prepared hole formed in a workpiece, and an inner wall surface (inner peripheral surface) of the prepared hole is cut to form a processed hole having a predetermined inner diameter. .
As shown in FIGS. 1A and 1B and FIG. 2, the drilling tool 1 has a shaft shape, a tool body 2 that is rotated around the axis O, and a circumferential direction on the outer peripheral surface of the tool body 2. And a plurality of cutting edges 3 extending along the axis O direction. Further, the hole machining tool 1 is disposed adjacent to the tool rotation direction T rear side of the cutting edge 3 on the outer peripheral surface of the tool body 2, and a cross section perpendicular to the axis O overlaps the rotation locus of the cutting edge 3. In this way, the circular land portion 4 having an arc shape and the circular land portion 4 are connected to the rear side in the tool rotation direction T, and the cross section perpendicular to the axis O is retracted radially inward from the circular land portion 4. And a formed flank face portion 5. Further, on the outer peripheral surface of the tool body 2, a chip discharge groove 8 is formed between the flank portion 5 and the cutting edge 3 adjacent to the flank portion 5 on the rear side in the tool rotation direction T.
This drilling tool 1 is mounted on a cutting tool (not shown) whose base end side (right side in FIG. 1B) along the axis O direction of the tool body 2 has a larger diameter than the drilling tool 1. At the same time, the cutting tool is mounted on a main shaft of a machine tool or the like, and the main shaft rotates to rotate about the axis O.

ここで、本明細書では、工具本体2の軸線Oに沿う方向(軸線O方向)のうち、該工具本体2の前記切削工具側を基端側といい、工具本体2の前記切削工具とは反対側であるとともに、この工具本体2を被切削材の下穴へ挿入する方向(図1(b)における左側)を先端側という。また、軸線Oに垂直な方向(軸線Oに直交する方向)を径方向といい、軸線O回りに周回する方向を周方向という。   Here, in the present specification, of the direction along the axis O of the tool body 2 (axis O direction), the cutting tool side of the tool body 2 is referred to as a base end side, and the cutting tool of the tool body 2 is In addition to being on the opposite side, the direction in which the tool body 2 is inserted into the prepared hole of the workpiece (left side in FIG. 1B) is referred to as the tip side. A direction perpendicular to the axis O (direction orthogonal to the axis O) is referred to as a radial direction, and a direction around the axis O is referred to as a circumferential direction.

図1(b)において、工具本体2は、軸状(棒状)をなしており、工具本体2における先端側部分は切刃部6とされ、基端側部分はシャンク部7となっている。工具本体2は、例えば超硬合金等の硬質材料で形成されている。尚、工具本体2は、少なくともその切刃部6が超硬合金等の硬質材料で形成されていることが好ましく、シャンク部7については、前記硬質材料以外の鋼材等であっても構わない。また、工具本体2には、図示しないクーラント供給孔が、軸線Oに沿って該工具本体2を貫通するように形成されている。クーラント供給孔は、工具本体2内の軸線O上から各切れ刃3へ向けて複数に分岐して形成されている。   In FIG. 1B, the tool main body 2 has an axial shape (bar shape), the tip side portion of the tool main body 2 is a cutting edge portion 6, and the base end side portion is a shank portion 7. The tool body 2 is formed of a hard material such as a cemented carbide. The tool body 2 preferably has at least a cutting edge portion 6 made of a hard material such as cemented carbide, and the shank portion 7 may be a steel material other than the hard material. Further, a coolant supply hole (not shown) is formed in the tool body 2 so as to penetrate the tool body 2 along the axis O. The coolant supply hole is formed to be branched into a plurality from the axis O in the tool body 2 toward each cutting edge 3.

工具本体2のシャンク部7における基端側の端部は、この穴加工工具1を前記切削工具に装着する装着部となっている。   An end portion on the proximal end side of the shank portion 7 of the tool main body 2 is a mounting portion for mounting the drilling tool 1 on the cutting tool.

図1(b)に示されるように、本実施形態では、切れ刃3は、軸線O方向の先端から基端側に向かうに従い漸次工具回転方向Tの前方側に向かって、螺旋状に延びている。尚、切れ刃3は、軸線O方向の先端から基端側に向かうに従い漸次工具回転方向Tの後方側に向かって延びていてもよく、或いは、軸線Oに平行に延びて形成されていてもよい。また、切れ刃3の先端部3aは、該先端部3a以外の部位とは異なり、先端側に向かうに従い漸次径方向の内側に向かって延びており、この先端部3aが食付き刃(パイロット刃)とされている。   As shown in FIG. 1B, in the present embodiment, the cutting edge 3 extends in a spiral shape gradually toward the front side in the tool rotation direction T from the tip end in the axis O direction toward the base end side. Yes. Note that the cutting edge 3 may gradually extend toward the rear side in the tool rotation direction T from the tip end in the axis O direction toward the base end side, or may be formed to extend in parallel to the axis O. Good. Further, the tip 3a of the cutting edge 3 is different from the portion other than the tip 3a, and gradually extends inward in the radial direction toward the tip. The tip 3a is a bite blade (pilot blade). ).

図2において、本実施形態では、工具本体2の切刃部6の外周面に、周方向に間隔をあけて切れ刃3が偶数となるように形成されており、具体的には6つの切れ刃3が形成されている。工具本体2の切刃部6において周方向に隣り合う切れ刃3同士の間には、これら切れ刃3のうち、工具回転方向T後方側に位置する切れ刃3の工具回転方向T前方側にそれぞれ連なり、該切れ刃3よりも径方向内側に窪まされるとともに、軸線O方向に沿うように延びる切屑排出溝8が形成されている。   In FIG. 2, in the present embodiment, the cutting edge 3 is formed on the outer peripheral surface of the cutting edge portion 6 of the tool body 2 so as to have an even number of cutting edges 3 at intervals in the circumferential direction. A blade 3 is formed. Between the cutting edges 3 adjacent to each other in the circumferential direction in the cutting edge portion 6 of the tool body 2, among these cutting edges 3, the cutting edge 3 located on the rear side in the tool rotation direction T is on the front side in the tool rotation direction T. A chip discharge groove 8 that is continuous and recessed radially inward of the cutting edge 3 and extends along the direction of the axis O is formed.

図2に示される横断面視(軸線Oに垂直な断面視)で、切屑排出溝8において工具回転方向T前方側を向く壁面8aは、切れ刃3から径方向内側に向かって延びており、この壁面8aが切れ刃3のすくい面となっている。また、切屑排出溝8において工具回転方向T後方側を向く壁面8bは、径方向内側に向かうに従い漸次工具回転方向T後方側に向かって延びている。   In the cross-sectional view shown in FIG. 2 (sectional view perpendicular to the axis O), the wall surface 8a facing the front side in the tool rotation direction T in the chip discharge groove 8 extends radially inward from the cutting edge 3. This wall surface 8 a is the rake face of the cutting edge 3. Further, the wall surface 8b facing the tool rotation direction T rear side in the chip discharge groove 8 gradually extends toward the tool rotation direction T rear side as it goes radially inward.

丸ランド部4は、全ての切れ刃3の工具回転方向T後方側に隣接して形成されており、本実施形態では、これら丸ランド部4同士の周方向に沿う長さ(周長)が互いに略同一とされている。工具本体2の切刃部6の直径が例えばφ4〜20mmの場合に、各丸ランド部4の周長は、例えば0.05〜0.5mmの範囲内である。図2に示される横断面視において、丸ランド部4は、図中に2点鎖線で示す切れ刃3の軸線O回りの回転軌跡上に位置するように、円弧状に形成されており、該丸ランド部4の工具回転方向T前方側の端縁に形成される稜線部分が、切れ刃3となっている。   The round land portions 4 are formed adjacent to the rear side in the tool rotation direction T of all the cutting edges 3, and in this embodiment, the length (circumferential length) along the circumferential direction between the round land portions 4 is set. They are almost identical to each other. When the diameter of the cutting edge portion 6 of the tool body 2 is, for example, φ4 to 20 mm, the circumferential length of each round land portion 4 is in the range of 0.05 to 0.5 mm, for example. In the cross-sectional view shown in FIG. 2, the round land portion 4 is formed in an arc shape so as to be positioned on the rotation locus around the axis O of the cutting edge 3 indicated by a two-dot chain line in the drawing, A ridge line portion formed at the edge of the round land portion 4 on the front side in the tool rotation direction T is a cutting edge 3.

逃げ面部5は、全ての丸ランド部4の工具回転方向T後方側に隣接して形成されており、これら逃げ面部5の工具回転方向T後方側には、切屑排出溝8の壁面8bがそれぞれ連なっている。図2に示される横断面視において、逃げ面部5は、工具回転方向T後方側に向かうに従い漸次径方向内側に向かって直線状に延びている。また、図2の横断面視で、逃げ面部5の周方向に沿う単位長さあたりの径方向への変位量は、切屑排出溝8の壁面8bにおける前記変位量よりも小さくなっている。つまり、工具本体2の横断面視において、逃げ面部5の傾斜は、切屑排出溝8の壁面8bの傾斜よりも緩やかであり、このような逃げ面部5が形成されていることで、例えば丸ランド部4の工具回転方向T後方側に直接壁面8bが連なるような構成に比べて、工具本体2の切れ刃3後方側の肉厚が確保されている。   The flank surfaces 5 are formed adjacent to the rear side of the tool rotation direction T of all the round lands 4, and the wall surfaces 8 b of the chip discharge grooves 8 are respectively formed on the rear side of the flank surfaces 5 in the tool rotation direction T. It is lined up. In the cross-sectional view shown in FIG. 2, the flank portion 5 extends linearly toward the inner side in the radial direction gradually toward the rear side in the tool rotation direction T. 2, the amount of radial displacement per unit length along the circumferential direction of the flank portion 5 is smaller than the amount of displacement of the wall surface 8b of the chip discharge groove 8. That is, in the cross-sectional view of the tool main body 2, the inclination of the flank portion 5 is gentler than the inclination of the wall surface 8b of the chip discharge groove 8, and the flank portion 5 is formed. Compared to the configuration in which the wall surface 8b is directly connected to the rear side of the tool rotation direction T of the portion 4, the thickness of the rear side of the cutting edge 3 of the tool body 2 is ensured.

また、本実施形態では、丸ランド部4の周方向に沿う長さは、逃げ面部5の周方向に沿う長さよりも短くされている。丸ランド部4の周方向に沿う長さの総和は、被切削材に形成する加工穴の内壁面が所望の面粗度の範囲内となるように設定される。   Further, in the present embodiment, the length along the circumferential direction of the round land portion 4 is shorter than the length along the circumferential direction of the flank surface portion 5. The total length along the circumferential direction of the round land portion 4 is set so that the inner wall surface of the processed hole formed in the workpiece is within a desired surface roughness range.

また、図2に示される横断面視で、軸線Oを挟んで背向配置(背中合わせに対向配置)される一対の切れ刃3同士は、全ての対において、互いに180°回転対称(2回対称)の位置にない設定とされている。本実施形態では、切れ刃3が6つ形成されているとともに、前記背向配置される切れ刃3の対が3組設けられており、これら3組の対におけるそれぞれの切れ刃3同士が、全て180°回転対称の位置にないように設定されている。   Further, in the cross-sectional view shown in FIG. 2, the pair of cutting blades 3 that are arranged in a back-to-back direction (facing each other back to back) with respect to the axis O are 180 ° rotationally symmetric with respect to each other (two-fold symmetric). ) Position is not set. In the present embodiment, six cutting blades 3 are formed, and three pairs of cutting blades 3 arranged in the back direction are provided, and each of the cutting blades 3 in these three pairs of pairs, All are set so as not to be in a position of 180 ° rotational symmetry.

具体的に、軸線Oを挟んで背向配置される一対の切れ刃3同士のうち、一方の切れ刃3に対して、他方の切れ刃3が180°回転対称の位置から軸線O回り(工具回転方向Tの前方側又は後方側)にずらされる角度αは、1〜10°の範囲内とされている。ここで、一方の切れ刃3に対して、他方の切れ刃3が180°回転対称の位置から軸線O回りにずらされる周方向の向きは、基準とする切れ刃3をいずれにするかで、いずれにもなることから、前記角度αは、前記180°回転対称の位置から工具回転方向T前方側へ向けたものでも、工具回転方向T後方側へ向けたものでもよい。具体的に、図2において、軸線Oを挟んで図2の上下に背向配置される一対の切れ刃3同士のうち、下方に位置する一方の切れ刃3と軸線Oとを通る一点鎖線で示される直線、及び、上方に位置する他方の切れ刃3と軸線Oとを通る直線(壁面8aに相当)との間に形成される交差角(中心角)αが、1°≦α≦10°の範囲内である。   Specifically, out of a pair of cutting edges 3 that are arranged backward with the axis O in between, the other cutting edge 3 is rotated around the axis O from the position where the other cutting edge 3 is 180 ° rotationally symmetrical (tool) The angle α shifted to the front side or the rear side in the rotation direction T is in the range of 1 to 10 °. Here, the direction of the circumferential direction in which the other cutting edge 3 is shifted around the axis O from the position where the other cutting edge 3 is 180 ° rotationally symmetric with respect to one cutting edge 3 is determined by which one of the reference cutting edges 3 is Therefore, the angle α may be directed from the 180 ° rotationally symmetric position toward the front side of the tool rotation direction T or toward the rear side of the tool rotation direction T. Specifically, in FIG. 2, among a pair of cutting blades 3 arranged back and forth in FIG. 2 across the axis O, a one-dot chain line passing through one cutting blade 3 positioned below and the axis O. The crossing angle (center angle) α formed between the straight line shown and the straight line passing through the other cutting edge 3 positioned above and the axis O (corresponding to the wall surface 8a) is 1 ° ≦ α ≦ 10. Within the range of °.

また、図2に示される横断面視で、周方向に隣り合う切れ刃3同士の間に軸線Oを中心として形成される角度θ1〜θ6は、全て互いに異なるように設定されている。本実施形態のように、切れ刃3が6つ形成されている場合においては、例えば、前記角度θ1〜θ6は、50〜70°の範囲内で、互いに全て異なる値に設定される。   Further, in the cross-sectional view shown in FIG. 2, the angles θ1 to θ6 formed around the axis O between the cutting edges 3 adjacent in the circumferential direction are all set to be different from each other. In the case where six cutting edges 3 are formed as in the present embodiment, for example, the angles θ1 to θ6 are all set to different values within a range of 50 to 70 °.

以上説明した本実施形態の穴加工工具1では、工具本体2の外周面に形成された切れ刃3の数(総数)が偶数とされており、該工具本体2の軸線Oを中央に挟んで一対の切れ刃3同士が背向配置(背中合わせに配置)されている。そして、工具本体2の軸線Oに垂直な横断面視において、全ての前記一対の切れ刃3同士が、互いに180°回転対称の位置にない配置とされているので、下記の顕著な効果を奏する。   In the drilling tool 1 of the present embodiment described above, the number (total number) of cutting edges 3 formed on the outer peripheral surface of the tool body 2 is an even number, and the axis O of the tool body 2 is sandwiched in the center. A pair of cutting blades 3 are arranged backward (arranged back to back). And in the cross-sectional view perpendicular | vertical to the axis O of the tool main body 2, since all the said pair of cutting blades 3 are the arrangement | positioning which is not in a mutually 180 degree rotational symmetry position, there exists the following remarkable effect. .

すなわち、図2に示される工具本体2の横断面視で、背向配置される一対の切れ刃3同士の間の距離は、これら切れ刃3が軸線O回りに描く円形状の回転軌跡の直径(加工穴の内径)よりも小さくなっており、前記一対の切れ刃3のうち、一方の切れ刃3が被切削材の下穴の内壁面(内周面)に切り込んだときに、該一方の切れ刃3が切削により受ける外力(反力)が、工具本体2を通して他方の切れ刃3の切削に影響しにくくなっている。つまり、この横断面視で、前記一方の切れ刃3と工具本体2の軸線Oとを結ぶ直線上に前記他方の切れ刃3がないために、一方の切れ刃3に生じる切削負荷が、他方の切れ刃3に伝わりにくい。また、これら一対の切れ刃3同士を結ぶ直線は、工具軸線O上を通らないため、工具本体2の軸振れが起こりにくくなっている。   That is, in the cross-sectional view of the tool body 2 shown in FIG. 2, the distance between the pair of cutting edges 3 arranged in the back direction is the diameter of the circular rotation locus drawn by the cutting edges 3 about the axis O. When one of the pair of cutting blades 3 cuts into the inner wall surface (inner peripheral surface) of the lower hole of the workpiece, the one of the pair of cutting blades 3 The external force (reaction force) that the cutting edge 3 receives by cutting is less likely to affect the cutting of the other cutting edge 3 through the tool body 2. That is, in this cross-sectional view, since the other cutting edge 3 is not on the straight line connecting the one cutting edge 3 and the axis O of the tool body 2, the cutting load generated on one cutting edge 3 is It is difficult to be transmitted to the cutting edge 3. Further, since the straight line connecting the pair of cutting edges 3 does not pass on the tool axis O, the axial runout of the tool body 2 is less likely to occur.

このように、背向する切れ刃3同士が互いに影響を及ぼしにくくされ、かつ、軸振れが抑制されることから、被切削材に形成される加工穴の真円度及び円筒度が確実に高められる。従って、本実施形態の穴加工工具1によれば、加工穴の寸法精度を十分に高めることができるのである。   In this way, since the back-facing cutting edges 3 are less likely to affect each other and the shaft runout is suppressed, the roundness and cylindricity of the machining hole formed in the workpiece are reliably increased. It is done. Therefore, according to the drilling tool 1 of this embodiment, the dimensional accuracy of the drilled hole can be sufficiently increased.

また、軸線Oに垂直な断面で、周方向に隣り合う切れ刃3同士の間に軸線Oを中心として形成される角度θ1〜θ6が、全て互いに異なるように設定されているので、本実施形態の上述した構成(全ての背向切れ刃3同士が180°回転対称位置にない構成)を容易に実現しやすい。また、工具本体2の振動や共振等を防止する効果が顕著に高められて、高精度な切削加工が行える。   In addition, since the angles θ1 to θ6 formed around the axis O between the cutting edges 3 adjacent to each other in the circumferential direction in the cross section perpendicular to the axis O are set to be different from each other, this embodiment The above-described configuration (a configuration in which all the back-facing cutting blades 3 are not positioned at 180 ° rotational symmetry) is easily realized. In addition, the effect of preventing vibration and resonance of the tool body 2 is remarkably enhanced, and high-precision cutting can be performed.

また、工具本体2の外周面には、切れ刃3の工具回転方向T後方側に隣接して配置されるとともに、該工具本体2の横断面視において、切れ刃3の回転軌跡上に重なるように丸ランド部4がそれぞれ形成されているので、下記の効果を奏する。
すなわち、図2に示される横断面視で、背向配置される一対の切れ刃3同士(例えば、図2において軸線Oを挟んで左上〜右下に背向配置される一対の切れ刃3)のうち、少なくとも一方の切れ刃3(図2の右下の切れ刃3)と軸線Oとを通る直線上に、他方の切れ刃3(図2の左上の切れ刃3)に隣接する丸ランド部4を配置できる。従って、一方の切れ刃3が切削により外力を受けたときに、軸線Oを挟んで反対側に位置する前記丸ランド部4が加工穴の内壁面に当接することで、前記一方の切れ刃3が径方向内側から支持されるように作用して、切れ刃3が回転軌跡上(つまり加工面)から後退させられることが抑制される。これにより、加工穴の寸法精度がより顕著に高められることになる。尚、このような作用は切れ刃3の数が奇数である場合には得られにくい。
In addition, the tool body 2 is disposed on the outer peripheral surface adjacent to the rear side in the tool rotation direction T of the cutting edge 3, and overlaps the rotation locus of the cutting edge 3 in a cross-sectional view of the tool body 2. Since the round land portions 4 are respectively formed, the following effects are obtained.
That is, in a cross-sectional view shown in FIG. 2, a pair of cutting blades 3 arranged in the back direction (for example, a pair of cutting blades 3 arranged in the back direction from upper left to lower right across the axis O in FIG. 2) Round land adjacent to the other cutting edge 3 (upper left cutting edge 3 in FIG. 2) on a straight line passing through at least one cutting edge 3 (lower right cutting edge 3 in FIG. 2) and the axis O. The part 4 can be arranged. Therefore, when one of the cutting edges 3 receives an external force by cutting, the round land portion 4 positioned on the opposite side across the axis O comes into contact with the inner wall surface of the machining hole, whereby the one cutting edge 3 Is supported from the inner side in the radial direction, and the cutting edge 3 is suppressed from being retracted from the rotation locus (that is, the machining surface). As a result, the dimensional accuracy of the processed hole is significantly increased. Such an action is difficult to obtain when the number of cutting edges 3 is an odd number.

また、本実施形態の穴加工工具1では、工具本体2の外周面に周方向に間隔をあけて配置された複数の切れ刃3に、丸ランド部4と逃げ面部5とが、切れ刃3から工具回転方向T後方側に向かってこの順にそれぞれ形成されている。すなわち、切れ刃3に隣接して丸ランド部4がそれぞれ形成されていることで、これら丸ランド部4によりバニッシュ効果が得られ、つまり丸ランド部4が加工穴内周面を擦ることで滑らかな仕上げ面が得られるとともに、切削加工された加工穴の面粗度が確保される。また、丸ランド部4に隣接して逃げ面部5がそれぞれ形成されていることで、これら丸ランド部4の周方向に沿う長さが小さく抑えられるとともに、該丸ランド部4が加工穴の内壁面を擦り過ぎて切削抵抗が増大するようなことが抑制されている。   Further, in the hole drilling tool 1 of the present embodiment, the round land portion 4 and the flank portion 5 are provided on the plurality of cutting edges 3 arranged on the outer peripheral surface of the tool body 2 at intervals in the circumferential direction. Are formed in this order from the tool rotation direction T toward the rear side. That is, by forming the round lands 4 adjacent to the cutting edge 3, a vanish effect is obtained by the round lands 4, that is, the round lands 4 are smooth by rubbing the inner peripheral surface of the processing hole. A finished surface is obtained and the surface roughness of the machined hole is ensured. Further, by forming the flank portions 5 adjacent to the round lands 4, the length along the circumferential direction of the round lands 4 can be suppressed to be small, and the round lands 4 are inside the machining holes. It is suppressed that the cutting resistance increases due to excessive rubbing of the wall surface.

従って、本実施形態の穴加工工具1によれば、加工穴の面粗度を確保しつつも、切削抵抗を抑制して工具本体2の振動や共振等を防止することが可能であり、高精度な切削加工を安定して行うことができる。また、これにより切削された加工穴は、寸法精度がより高品位に確保されて、真円度や円筒度に優れたものとなる。   Therefore, according to the drilling tool 1 of the present embodiment, it is possible to prevent vibration and resonance of the tool body 2 by suppressing the cutting resistance while ensuring the surface roughness of the drilled hole. Accurate cutting can be performed stably. In addition, the machined hole thus cut has higher dimensional accuracy and is excellent in roundness and cylindricity.

特に、本実施形態で説明したように、例えば自動車エンジン等のシリンダーヘッドにおいてバルブステムが挿通されるステムガイド穴の加工に、この穴加工工具1を用いた場合は、前述のように、丸ランド部4によるバニッシュ効果が適宜得られつつも過剰となることがないため、下記の効果を奏する。   In particular, as described in the present embodiment, when the hole machining tool 1 is used for machining a stem guide hole through which a valve stem is inserted in a cylinder head of an automobile engine or the like, for example, as described above, a round land is used. Since the vanish effect by the part 4 is obtained as appropriate, it does not become excessive, and the following effects are produced.

すなわち、前記ステムガイド穴では、加工穴の内周面に、ある程度のポーラス(気孔)が露出して形成されていることが好ましく、該ポーラス内に潤滑油が保持されることで、ステムガイド穴内におけるバルブステムの摺動が円滑となる。
本実施形態の穴加工工具1によれば、丸ランド部4によるバニッシュ効果が適宜得られつつも過剰とはならないために(つまり加工面の面粗度がねらい値(所定範囲)に収まりやすいため)、穴加工時に加工穴内周面の焼き付きが防止されて切削抵抗が低減され、かつ、ポーラスを潰し過ぎるようなことも防止される。つまり面粗度を確保しつつも加工穴内周面にポーラスが適宜残されて、加工されたステムガイド穴においては、バルブステムの摺動が円滑に行われるのである。
That is, in the stem guide hole, it is preferable that a certain amount of porous (pores) is exposed on the inner peripheral surface of the processed hole, and the lubricating oil is held in the porous, so that the inside of the stem guide hole The valve stem slides smoothly.
According to the drilling tool 1 of the present embodiment, the burnish effect by the round land portion 4 can be obtained as appropriate, but it is not excessive (that is, the surface roughness of the processed surface easily falls within the target value (predetermined range)). ), Seizure of the inner peripheral surface of the processed hole is prevented at the time of drilling, cutting resistance is reduced, and it is also possible to prevent the porous material from being crushed too much. That is, while ensuring the surface roughness, the porous is appropriately left on the inner peripheral surface of the processed hole, and the valve stem slides smoothly in the processed stem guide hole.

また、丸ランド部4の周方向に沿う長さが、逃げ面部5の周方向に沿う長さよりも短くされているので、前述した効果がより確実に得られやすくなる。
尚、本実施形態では、切れ刃3の数を6つとして説明したが、切れ刃3の数は、それ以外の4つや8つ等であってもよく、この場合、各丸ランド部4の周方向に沿う長さを、全ての丸ランド部4の長さの総和が所定範囲となるように適宜設定することが好ましい。具体的には、本実施形態のように切れ刃3の数が6つの場合に対して、切れ刃3の数が4つの場合には各丸ランド部4の長さを大きくとり、切れ刃3の数が8つの場合には各丸ランド部4の長さを小さくして、加工穴の内壁面が所望の面粗度の範囲内となるように設定することが好ましい。
Moreover, since the length along the circumferential direction of the round land portion 4 is shorter than the length along the circumferential direction of the flank surface portion 5, the above-described effect is more easily obtained.
In the present embodiment, the number of cutting edges 3 is described as six. However, the number of cutting edges 3 may be four or eight other than that, and in this case, each of the round land portions 4 It is preferable to appropriately set the length along the circumferential direction so that the sum of the lengths of all the round land portions 4 falls within a predetermined range. Specifically, when the number of cutting edges 3 is four as compared with the case where the number of cutting edges 3 is six as in the present embodiment, the length of each round land portion 4 is increased and the cutting edges 3 are increased. When the number of is eight, it is preferable to set the length of each round land portion 4 so that the inner wall surface of the processed hole is within a desired surface roughness range.

ここで、図3及び図4の参考例を用いて、本実施形態をより詳細に説明する。
図3の例では、工具本体2の外周面に、切れ刃3が周方向に不等間隔に6つ形成されており、これら切れ刃3の工具回転方向T後方側に、丸ランド部4と逃げ面部5とがこの順にそれぞれ連なっている点については前述の実施形態と同様であるが、その一方で、この図3に示される横断面視で、軸線Oを挟んで背向配置される一対の切れ刃3同士は、互いに180°回転対称の位置となるように設定されている。
Here, the present embodiment will be described in more detail using the reference examples of FIGS. 3 and 4.
In the example of FIG. 3, six cutting edges 3 are formed on the outer peripheral surface of the tool body 2 at unequal intervals in the circumferential direction. The points where the flank portions 5 are connected to each other in this order are the same as those in the above-described embodiment. On the other hand, in the cross-sectional view shown in FIG. The cutting edges 3 are set so as to be 180 ° rotationally symmetrical with each other.

具体的に、図3において、周方向に隣り合う切れ刃3同士の間に軸線Oを中心として形成される角度θ1〜θ3は、互いに異なるように設定されている一方、これら角度θ1〜θ3は、工具回転方向Tに沿ってこの順に2組ずつ設けられている。そして、軸線Oを挟んで向かい合う角度θ1同士、角度θ2同士、角度θ3同士が、互いに同一の値となるように設定されている。
この参考例では、角度θ1〜θ3が互いに異なる値に設定されることで、工具本体2の振動や共振等を防止する効果が得られるが、軸線Oを挟んで背向配置される一対の切れ刃3同士が、互いの切削に影響を及ぼしやすくなり、また、工具本体2の軸振れが生じやすくなって、加工穴の寸法精度を高品位に確保することができない。
Specifically, in FIG. 3, the angles θ1 to θ3 formed around the axis O between the cutting edges 3 adjacent in the circumferential direction are set to be different from each other, while these angles θ1 to θ3 are Two sets are provided in this order along the tool rotation direction T. Then, the angles θ1, facing each other across the axis O, the angles θ2, and the angles θ3 are set to have the same value.
In this reference example, the angles θ1 to θ3 are set to different values, so that an effect of preventing vibration and resonance of the tool body 2 can be obtained. The blades 3 tend to affect each other's cutting, and the tool body 2 tends to run out, and the dimensional accuracy of the processed hole cannot be ensured with high quality.

図5及び図6に示されるものは、本発明の実施形態に係る穴加工工具1と、図3の参考例で説明した穴加工工具とを用いて、被切削材の下穴に加工穴を形成し、その真円度を測定したものである。
この試験に用いた両穴加工工具のうち、本実施形態の穴加工工具1においては、角度θ1〜θ6を、63°、57°、62°、58°、61°、59°(順不同)とし、6つの切れ刃3が周方向に完全不等間隔となるように配置されている。一方、参考例の穴加工工具においては、角度θ1〜θ3を、59°、58°、63°(順不同)とした。
尚、切削条件としては、穴加工工具:φ5.5mm6枚刃リーマ、ワーク:焼結材(ステムガイド)、切削速度(vc):30m/min、1回転あたりの送り(fr):0.3mm/rev、穴あけ長さ(ld):25mm、切削油剤(圧力):塩素フリーエマルジョン(5MPa)とした。また、切削加工はそれぞれにつき、3回行った。
5 and 6 show a drilling hole in the prepared hole of the workpiece using the drilling tool 1 according to the embodiment of the present invention and the drilling tool described in the reference example of FIG. It was formed and its roundness was measured.
Among the two hole drilling tools used in this test, in the hole drilling tool 1 of this embodiment, the angles θ1 to θ6 are 63 °, 57 °, 62 °, 58 °, 61 °, 59 ° (in no particular order). The six cutting edges 3 are arranged so as to be completely unequal intervals in the circumferential direction. On the other hand, in the drilling tool of the reference example, the angles θ1 to θ3 were 59 °, 58 °, and 63 ° (in no particular order).
The cutting conditions are: hole machining tool: φ5.5 mm 6-blade reamer, workpiece: sintered material (stem guide), cutting speed (vc): 30 m / min, feed per rotation (fr): 0.3 mm / Rev, drilling length (ld): 25 mm, cutting fluid (pressure): chlorine-free emulsion (5 MPa). Moreover, each cutting process was performed 3 times.

図5及び図6の測定結果から明らかなように、図5(a)〜(c)に示される本実施形態の穴加工工具1により切削された加工穴は、図6(a)〜(c)に示される図3の参考例の穴加工工具により切削された加工穴に比べて、真円度が全て優れたものとなった。   As is apparent from the measurement results of FIGS. 5 and 6, the machining holes cut by the drilling tool 1 of the present embodiment shown in FIGS. 5A to 5C are shown in FIGS. The roundness was all excellent as compared with the drilled holes cut by the drilling tool of the reference example shown in FIG.

また、図4の例では、工具本体2の外周面に、切れ刃3が周方向に等間隔に6つ形成されており(つまり角度θは60°であり、全て同一)、これら切れ刃3のうち、一部の切れ刃3の工具回転方向T後方側に丸ランド部4と逃げ面部5とがこの順に連なり、前記一部以外の切れ刃3の工具回転方向T後方側には、丸ランド部4より周方向の長さが長い丸ランド部9のみが連なっている。   In the example of FIG. 4, six cutting edges 3 are formed on the outer peripheral surface of the tool body 2 at equal intervals in the circumferential direction (that is, the angle θ is 60 °, and all are the same). Among them, the round land portion 4 and the flank face portion 5 are connected in this order to the rear side of the tool rotation direction T of some of the cutting edges 3, Only the round land portions 9 that are longer in the circumferential direction than the land portions 4 are connected.

具体的に、丸ランド部9は、図中に2点鎖線で示される切れ刃3の回転軌跡上に位置しており、一の切れ刃3に連なる丸ランド部9の周長は、該一の切れ刃3とは異なる他の切れ刃3に連なる丸ランド部4及び逃げ面部5の周長の和と略同一に設定されている。   Specifically, the round land portion 9 is located on the rotation locus of the cutting edge 3 indicated by a two-dot chain line in the drawing, and the circumferential length of the round land portion 9 connected to one cutting edge 3 is It is set to be substantially the same as the sum of the circumferential lengths of the round land portion 4 and the flank portion 5 connected to another cutting blade 3 different from the other cutting blade 3.

この参考例においても、軸線Oを挟んで背向配置される一対の切れ刃3同士が、互いの切削に影響を及ぼしやすくなり、また、工具本体2の軸振れが生じやすくなって、加工穴の寸法精度を確保することができない。さらに、加工中に工具本体2が振動、共振しやすくなるおそれがある。また、切れ刃3の工具回転方向T後方側に、周長の長い丸ランド部9が形成されているものが含まれるために、該丸ランド部9及び丸ランド部4によるバニッシュ効果が過剰となりやすく、切削抵抗が増大して、加工穴の真円度や円筒度が確保できなくなることがあり、また加工穴内周面のポーラスも潰されやすくなる。このように、図4に示される参考例の穴加工工具は、例えば自動車エンジン等のシリンダーヘッドにおいてバルブステムが挿通されるステムガイド穴の加工に用いるには、不向きである。
すなわち、前述した実施形態の穴加工工具1のように、軸線Oを挟んで背向配置される一対の切れ刃3同士が、全て互いに180°回転対称の位置でない位置に配置されており、さらに好ましくは、全ての切れ刃3の工具回転方向T後方側に周長の短い丸ランド部4と、該丸ランド部4より径方向内側に後退された逃げ面部5とがこの順に連なっていることで、バニッシュ効果が得られつつも過剰となるようなことがなく、面粗度及び仕上がり寸法精度がともに良好となるので、例えば上記ステムガイド穴の加工に用いた場合に、格別顕著な効果が得られるのである。
Also in this reference example, the pair of cutting blades 3 arranged in the back direction with the axis O interposed therebetween are likely to affect each other's cutting, and the shaft runout of the tool body 2 is liable to occur, resulting in a machining hole. The dimensional accuracy cannot be ensured. Further, the tool body 2 may easily vibrate and resonate during processing. Moreover, since the thing with which the round circumference part 9 with a long circumference is formed in the tool rotation direction T back side of the cutting edge 3 is included, the vanish effect by this round land part 9 and the round land part 4 becomes excessive. The cutting resistance increases, the roundness or cylindricity of the processed hole may not be ensured, and the porous surface of the inner peripheral surface of the processed hole is likely to be crushed. As described above, the hole drilling tool of the reference example shown in FIG. 4 is unsuitable for use in machining a stem guide hole through which a valve stem is inserted in a cylinder head of an automobile engine, for example.
That is, like the hole drilling tool 1 of the above-described embodiment, the pair of cutting blades 3 that are arranged backward with respect to the axis O are all arranged at positions that are not rotationally symmetrical with each other by 180 °. Preferably, a round land portion 4 having a short circumferential length and a flank face portion 5 retracted radially inward from the round land portion 4 are connected in this order to the rear side in the tool rotation direction T of all the cutting edges 3. Thus, the vanishing effect is obtained but not excessive, and both the surface roughness and the finished dimensional accuracy are improved. For example, when used for the processing of the stem guide hole, a particularly remarkable effect is obtained. It is obtained.

尚、本発明は前述の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。   The present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.

例えば、前述の実施形態では、工具本体2の外周面に切れ刃3が6つ形成されているとしたが、切れ刃3の数が偶数であれば本発明の効果が得られることから、例えばそれ以外の2つ、4つ、8つ等であっても構わない。   For example, in the above-described embodiment, six cutting edges 3 are formed on the outer peripheral surface of the tool body 2, but if the number of cutting edges 3 is an even number, the effect of the present invention can be obtained. There may be other two, four, eight, etc.

また、複数の切れ刃3のうち、少なくとも一部の切れ刃3における先端部3aは、ホーニング加工が施されたホーニング切れ刃とされていてもよい。   Moreover, the front-end | tip part 3a in at least one part cutting edge 3 among the some cutting edges 3 may be made into the honing cutting edge to which the honing process was performed.

1 穴加工工具
2 工具本体
3 切れ刃
4 丸ランド部
O 軸線
T 工具回転方向
θ1〜θ6 周方向に隣り合う切れ刃同士の間に軸線を中心として形成される角度
DESCRIPTION OF SYMBOLS 1 Hole machining tool 2 Tool main body 3 Cutting edge 4 Round land part O Axis line T Tool rotation direction (theta) 1- (theta) 6 The angle formed centering on an axis line between the cutting edges adjacent to the circumferential direction

Claims (3)

被切削材に予め形成された下穴に挿入され、該下穴の内壁面を切削加工して加工穴を形成する穴加工工具であって、
軸状をなし、その軸線回りに回転される工具本体と、
前記工具本体の外周面に周方向に間隔をあけて形成され、軸線方向に沿うように延びる複数の切れ刃と、を備え、
前記切れ刃の数は偶数とされ、
前記軸線に垂直な断面で、前記軸線を挟んで背向配置される一対の切れ刃同士は、全て互いに180°回転対称の位置にないことを特徴とする穴加工工具。
A hole machining tool that is inserted into a prepared hole formed in a work material in advance and forms a processed hole by cutting the inner wall surface of the prepared hole,
A tool body that has an axial shape and is rotated around the axis,
A plurality of cutting blades formed on the outer peripheral surface of the tool body at intervals in the circumferential direction and extending along the axial direction,
The number of cutting edges is an even number,
A drilling tool characterized in that a pair of cutting blades arranged in a back direction across the axis in a cross section perpendicular to the axis are not in a rotationally symmetric position with respect to each other by 180 °.
請求項1に記載の穴加工工具であって、
前記軸線に垂直な断面で、周方向に隣り合う前記切れ刃同士の間に前記軸線を中心として形成される角度が、全て互いに異なるように設定されていることを特徴とする穴加工工具。
The drilling tool according to claim 1,
A drilling tool characterized in that angles formed around the axis line between the cutting edges adjacent in the circumferential direction in the cross section perpendicular to the axis line are all different from each other.
請求項1又は2に記載の穴加工工具であって、
前記工具本体の外周面には、前記切れ刃の工具回転方向後方側に隣接して配置され、前記軸線に垂直な断面が、該切れ刃の回転軌跡上に重なるように円弧状をなす丸ランド部が備えられることを特徴とする穴加工工具。
The drilling tool according to claim 1 or 2,
On the outer peripheral surface of the tool main body, a round land which is arranged adjacent to the rear side in the tool rotation direction of the cutting edge and has an arc shape so that a cross section perpendicular to the axis overlaps the rotation locus of the cutting edge. A drilling tool characterized by comprising a part.
JP2012227101A 2012-10-12 2012-10-12 Boring tool Pending JP2014079814A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012227101A JP2014079814A (en) 2012-10-12 2012-10-12 Boring tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012227101A JP2014079814A (en) 2012-10-12 2012-10-12 Boring tool

Publications (1)

Publication Number Publication Date
JP2014079814A true JP2014079814A (en) 2014-05-08

Family

ID=50784507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012227101A Pending JP2014079814A (en) 2012-10-12 2012-10-12 Boring tool

Country Status (1)

Country Link
JP (1) JP2014079814A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020090594A1 (en) * 2018-10-31 2020-05-07 株式会社アヤボ Hole processing tool, and design method, manufacturing method, and evaluation method for same
JP2020078836A (en) * 2018-11-12 2020-05-28 株式会社田野井製作所 Tap, unnecessary region removal body of tap, and tap material

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS499791A (en) * 1972-05-09 1974-01-28
JPS49148591U (en) * 1973-04-17 1974-12-23
EP0195838A1 (en) * 1985-03-27 1986-10-01 Rockwell International Corporation Reamer with unequally spaced flutes
JPH11507303A (en) * 1996-05-25 1999-06-29 マパル ファブリック フュール プラツィジョンズベルクゼウグ ドクトル.クレス カーゲー Chip removal and finishing tools
JP2002200512A (en) * 2000-11-17 2002-07-16 Mapal Fab Praezisionswerkzeu Dr Kress Kg Tool for cutting surface of hole
JP2007098497A (en) * 2005-10-03 2007-04-19 Mitsubishi Materials Corp Boring tool

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS499791A (en) * 1972-05-09 1974-01-28
JPS49148591U (en) * 1973-04-17 1974-12-23
EP0195838A1 (en) * 1985-03-27 1986-10-01 Rockwell International Corporation Reamer with unequally spaced flutes
JPH11507303A (en) * 1996-05-25 1999-06-29 マパル ファブリック フュール プラツィジョンズベルクゼウグ ドクトル.クレス カーゲー Chip removal and finishing tools
JP2002200512A (en) * 2000-11-17 2002-07-16 Mapal Fab Praezisionswerkzeu Dr Kress Kg Tool for cutting surface of hole
JP2007098497A (en) * 2005-10-03 2007-04-19 Mitsubishi Materials Corp Boring tool

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020090594A1 (en) * 2018-10-31 2020-05-07 株式会社アヤボ Hole processing tool, and design method, manufacturing method, and evaluation method for same
JPWO2020090594A1 (en) * 2018-10-31 2021-12-16 株式会社アヤボ Hole drilling tool and its design method, manufacturing method and evaluation method
JP2020078836A (en) * 2018-11-12 2020-05-28 株式会社田野井製作所 Tap, unnecessary region removal body of tap, and tap material
JP7454204B2 (en) 2018-11-12 2024-03-22 株式会社田野井製作所 Taps, unnecessary parts removed from taps, and tap materials

Similar Documents

Publication Publication Date Title
JP5491505B2 (en) Milling and cutting tips therefor
JP5679042B2 (en) Guide pad, cutting tool body and cutting tool
WO2014069453A1 (en) Ball end mill
JP6838164B2 (en) Taper reamer
CN110446575B (en) Ball end mill
JP6911534B2 (en) Ball end mill
JP2011073129A (en) Boring drill
US20200230708A1 (en) Rotary cutting tool
KR101617972B1 (en) Drill body of indexable drill
JP5652540B2 (en) Guide pad, cutting tool body and cutting tool
JP6179165B2 (en) Radius end mill
JP2014079814A (en) Boring tool
EP3868504A1 (en) Reamer with oil hole
JP4930313B2 (en) Reamer
JP2021115684A (en) Multi-blade ball end mil and processing method of multi-blade ball end mill
JP2021053783A (en) Drill
JP5256240B2 (en) Workpiece machining method using reamer
JP4966717B2 (en) Drilling tool
JP2009050994A (en) Hole working tool
KR100990171B1 (en) Twist drill reamer for the high speed machining of the difficult-to-cut materials
JP2013013962A (en) Cbn end mill
JP2018183854A (en) Rotary Cutting Tool
JP5705299B1 (en) Rotary cutting tool
US11826835B2 (en) Drilling tool
JP2017042870A (en) Reamer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160628

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170104