JP5834429B2 - Tool rotation speed selection method - Google Patents

Tool rotation speed selection method Download PDF

Info

Publication number
JP5834429B2
JP5834429B2 JP2011054991A JP2011054991A JP5834429B2 JP 5834429 B2 JP5834429 B2 JP 5834429B2 JP 2011054991 A JP2011054991 A JP 2011054991A JP 2011054991 A JP2011054991 A JP 2011054991A JP 5834429 B2 JP5834429 B2 JP 5834429B2
Authority
JP
Japan
Prior art keywords
natural frequency
tool
analysis
rotation speed
spindle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011054991A
Other languages
Japanese (ja)
Other versions
JP2012187691A (en
Inventor
俊之 沖田
俊之 沖田
良太 棚瀬
良太 棚瀬
松永 茂
茂 松永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2011054991A priority Critical patent/JP5834429B2/en
Publication of JP2012187691A publication Critical patent/JP2012187691A/en
Application granted granted Critical
Publication of JP5834429B2 publication Critical patent/JP5834429B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Automatic Control Of Machine Tools (AREA)

Description

本発明は、回転工具用いて工作物を加工するときの工具軸の固有振動数を用いてびびり振動を回避する工具回転速度選定方法に関するものである。   The present invention relates to a tool rotation speed selection method for avoiding chatter vibration using a natural frequency of a tool axis when a workpiece is machined using a rotary tool.

回転工具を用いた加工においてびびり振動を防止するために、基準工具を装着して実測した固有振動数の周波数と、基準工具単体の形状・材質から算出される固有振動数の周波数の比を補正係数として求め、この補正係数と使用する回転工具の形状から算出される固有振動数を乗じて算出した固有振動数の周波数を用いて、びびり振動の起きない工具回転速度を設定する従来技術1(例えば、特許文献1参照)がある。   In order to prevent chatter vibration during machining using a rotating tool, the ratio of the natural frequency frequency measured with the reference tool and the natural frequency calculated from the shape and material of the reference tool is corrected. Prior art 1 for setting a tool rotation speed at which chatter vibration does not occur using a frequency of the natural frequency calculated by multiplying the correction coefficient and the natural frequency calculated from the shape of the rotary tool to be used. For example, see Patent Document 1.

特開2003−340627号公報JP 2003-340627 A

工具の動剛性が小さくて質量の小さい小型の工具の場合は工具の特性値が支配的で固有振動数が決まるため、従来技術1の補正係数による固有振動数の計算でも誤差は少ない。しかし、工具単体の動剛性が大きい場合や質量が大きい場合は、固有振動数は工具と主軸系を含む複数の質量、ばね、減衰からなる連成系の振動モデルとして決定されるので、複数の固有振動数を持つ。従来技術1では工具のみの特性値から1個の固有振動数を算出している、このため、複数の固有振動数を持つ場合は、どの固有振動数でびびり振動が発生するか不明である。さらに、正確な固有振動数の予測ができずびびり振動の防止回転速度に誤差を生じる恐れがある。
本発明は上記事情に鑑みてなされたものであり、大型の工具を用いた場合にも、正確な固有振動数の推定を可能にして、びびり振動を回避する工具回転速度選定方法を提供することを目的とする。
In the case of a small tool having a small dynamic rigidity and a small mass, the characteristic value of the tool is dominant and the natural frequency is determined. Therefore, even when the natural frequency is calculated by the correction coefficient of the conventional technique 1, the error is small. However, when the dynamic rigidity of the tool alone is large or the mass is large, the natural frequency is determined as a coupled vibration model consisting of a plurality of masses, springs, and damping including the tool and spindle system. Has a natural frequency. In the prior art 1, one natural frequency is calculated from the characteristic value of only the tool. For this reason, when there are a plurality of natural frequencies, it is unclear which natural frequency causes chatter vibrations. Furthermore, the natural frequency cannot be predicted accurately, and an error may occur in the rotational speed that prevents chatter vibration.
The present invention has been made in view of the above circumstances, and provides a tool rotation speed selection method that enables accurate estimation of the natural frequency and avoids chatter vibration even when a large tool is used. With the goal.

上記の課題を解決するための請求項1に係る発明の特徴は、回転する工具を主軸に装着して工作物を加工するときに発生するびびり振動を回避する工具回転速度選定方法であって、
基準工具を装着した主軸系の固有振動数の解析値である解析基準固有振動数を計算する基準固有振動数解析工程と、
前記基準工具を主軸に装着して測定した固有振動数である実測固有振動数を測定する固有振動数実測工程と、
所定固有振動数について、前記解析基準固有振動数と前記実測固有振動数の差である補正値を演算する補正値演算工程と、
前記基準工具を除く工具を装着した主軸系の固有振動数の解析値である解析固有振動数を計算する固有振動数解析工程と、
前記解析固有振動数を前記補正値を用いて補正して予測固有振動数を演算する固有振動数補正工程と、
前記予測固有振動数を用いて推奨工具回転速度を演算する、工具回転速度演算工程と、を備えることである。
A feature of the invention according to claim 1 for solving the above-mentioned problem is a tool rotation speed selection method for avoiding chatter vibration that occurs when a workpiece is machined by mounting a rotating tool on a spindle.
A reference natural frequency analysis step for calculating an analysis reference natural frequency which is an analysis value of the natural frequency of the spindle system to which the reference tool is attached;
A natural frequency actual measurement step for measuring an actual natural frequency that is a natural frequency measured by mounting the reference tool on the spindle;
A correction value calculation step for calculating a correction value that is a difference between the analysis reference natural frequency and the measured natural frequency for a predetermined natural frequency;
A natural frequency analysis step of calculating an analysis natural frequency which is an analysis value of a natural frequency of a spindle system equipped with a tool excluding the reference tool;
A natural frequency correction step of calculating the predicted natural frequency by correcting the analysis natural frequency using the correction value;
A tool rotation speed calculating step of calculating a recommended tool rotation speed using the predicted natural frequency.

請求項に係る発明の特徴は、請求項1に係る発明において、前記基準工具として形状パターンと寸法の異なる複数の基準工具を備えることである。
A feature of the invention according to claim 2 is that, in the invention according to claim 1, a plurality of reference tools having different dimensions from the shape pattern are provided as the reference tool.

請求項1に係る発明によれば、基準工具を装着した主軸系の固有振動数の解析値と実測値の差である補正値を用いて、使用工具を装着した主軸系の固有振動数の解析値を補正するので、使用工具を装着した主軸系の正確な固有振動値が算出できる。そのため、びびり振動の発生しない推奨工具軸回転速度を正確に選定できる。   According to the invention according to claim 1, analysis of the natural frequency of the main spindle system to which the tool is attached is used by using a correction value that is a difference between the actual value and the analysis value of the main spindle system to which the reference tool is attached. Since the value is corrected, an accurate natural vibration value of the spindle system on which the tool used is mounted can be calculated. Therefore, it is possible to accurately select the recommended tool shaft rotation speed at which chatter vibration does not occur.

請求項に係る発明によれば、形状パターンと寸法の異なる複数の基準工具を備えることで、使用工具に近い特性を持つ基準工具の補正値を用いることができ、より正確な使用工具の固有振動値が算出できる。そのため、びびり振動の発生しない推奨工具軸回転速度をより正確に選定できる。
According to the invention which concerns on Claim 2 , the correction value of the reference tool which has the characteristic close | similar to the tool used can be used by providing the some reference tool from which a shape pattern and a dimension differ, The characteristic of the tool used more correctly Vibration value can be calculated. Therefore, the recommended tool axis rotation speed at which chatter vibration does not occur can be selected more accurately.

本実施形態の工具・主軸系の固有振動数の測定方法を示す図である。It is a figure which shows the measuring method of the natural frequency of the tool and spindle system of this embodiment. 基準工具を装着した系のコンプライアンスの周波数応答を示す図である。It is a figure which shows the frequency response of the compliance of the type | system | group equipped with the reference | standard tool. 推奨工具回転速度選定方法の工程を示す工程図である。It is process drawing which shows the process of the recommended tool rotational speed selection method. 補正値の演算の概念を示す図である。It is a figure which shows the concept of the calculation of a correction value. 基準工具を装着した系と使用工具を装着した系のピーク対を選定する概念を示した図である。It is the figure which showed the concept which selects the peak pair of the type | system | group equipped with the reference | standard tool and the type | system | group equipped with the use tool. 補正値を用いて使用工具を装着した系の固有振動数を補正する概念を示した図である。It is the figure which showed the concept which correct | amends the natural frequency of the system | strain with which the tool used was mounted | worn using a correction value. 基準工具のパターンを示す図である。It is a figure which shows the pattern of a reference | standard tool.

以下、本発明の実施形態を図1〜図7に基づき説明する。
図1は工具2を装着した主軸1の概略と、固有振動数測定装置3を用いてインパルス応答試験により固有振動数を測定する概念を示した図である。
主軸1は、工具2を保持するスピンドル11と、スピンドル11を回転自在に軸受12、13を介して支持するハウジング16をそなえる。スピンドル11の軸方向の中央部にはモータロータ14が固定され、ハウジング16にモータステータ15が固定されている。
Hereinafter, embodiments of the present invention will be described with reference to FIGS.
FIG. 1 is a diagram showing an outline of a main shaft 1 on which a tool 2 is mounted and a concept of measuring a natural frequency by an impulse response test using a natural frequency measuring device 3.
The main shaft 1 includes a spindle 11 that holds the tool 2 and a housing 16 that rotatably supports the spindle 11 via bearings 12 and 13. A motor rotor 14 is fixed to the central portion of the spindle 11 in the axial direction, and a motor stator 15 is fixed to the housing 16.

インパルス応答試験は、スピンドル11を静止した状態で、センサ32を固定した工具2をハンマー31で打撃し、そのときに出力される信号を固有振動数演算装置33で演算して測定する。
図2は主軸・工具系のコンプライアンスの周波数応答を示す図で、横軸が周波数、縦軸がコンプライアンスである。固有振動数はコンプライアンスが図2のa、b、c、d等のピークを示す位置である。
In the impulse response test, the tool 2 with the sensor 32 fixed is struck with a hammer 31 while the spindle 11 is stationary, and a signal output at that time is calculated with a natural frequency calculator 33 and measured.
FIG. 2 is a diagram showing the frequency response of compliance of the spindle / tool system, with the horizontal axis representing frequency and the vertical axis representing compliance. The natural frequency is a position where the compliance shows peaks such as a, b, c, and d in FIG.

再生びびり振動は、固有振動数近辺で切屑厚みの周期的変動が発生して、切削力の変動が増大することにより発生する。このため、工具の刃先の作用周期を固有振動数に一致させて切屑厚みの変動を無くすれば防止できることが知られている。このため、固有振動数をf(Hz)、工具刃数をe、1以上の整数をn、工具回転速度をN(min−1)とすると、N=(f・60)/(e.n)で算出される工具回転速度で加工するとびびり振動が発生しないことが知られている。 Regenerative chatter vibration is generated when periodic fluctuations in chip thickness occur around the natural frequency and fluctuations in cutting force increase. For this reason, it is known that this can be prevented by making the working period of the cutting edge of the tool coincide with the natural frequency to eliminate the fluctuation of the chip thickness. Therefore, assuming that the natural frequency is f (Hz), the number of tool blades is e, an integer of 1 or more is n, and the tool rotation speed is N (min −1 ), N = (f · 60) / (e.n). It is known that chatter vibration does not occur when machining at the tool rotation speed calculated in (1).

主軸系は振動モデルとしてみた場合、工具2・スピンドル11・モータロータ14の質量、工具2・スピンドル11・軸受12・軸受13のばねなどで構成されている。このため、複数の質量とばねが連成された振動系として複数の固有振動数が存在する。この固有振動数の周波数とコンプライアンスを、質量、ばね、減衰係数を定めてモーダル計算することで解析的に求めることができることが知られている。
複数の固有振動数を持つ系のびびり振動は、コンプライアンスの大きな固有振動数で発生する可能性が高いが、必ずしも順位通りに決まるものではなく、コンプライアンスの上位の固有振動数の中の1つで発生することが多い。
When viewed as a vibration model, the spindle system is composed of the mass of the tool 2, the spindle 11, and the motor rotor 14, the spring of the tool 2, the spindle 11, the bearing 12, and the bearing 13. For this reason, there are a plurality of natural frequencies as a vibration system in which a plurality of masses and springs are coupled. It is known that the frequency and compliance of this natural frequency can be obtained analytically by determining the mass, spring and damping coefficient and performing modal calculation.
Chatter vibration of a system with multiple natural frequencies is likely to occur at a natural frequency with large compliance, but it is not necessarily determined in order, and is one of the higher natural frequencies of compliance. Often occurs.

びびり振動を回避する推奨工具回転速度選定方法について、図3の工程図に基づき説明する。
初めに、基準工具2をスピンドル11に装着した状態でインパルス応答試験を行い、図2の実線に示すようなコンプライアンスの周波数応答線図を測定する(S1)。平行して、基準工具2をスピンドル11に装着した系の解析を行い、図2の破線に示すようなコンプライアンスの周波数応答線図を演算する(S2)。基準工具を装着した系の実測値と解析値の対応ピークを決定する。具体的には、図2において、コンプライアンスの実測値と解析値の最大値同士を対応するピーク対aとする、ピーク対aから周波数の降順(または昇順)で同じ順番のピークを対応するピーク対b、c,dとする。対象とするピークは実測値において所定の閾値より大きい値の4個のピークとする。(S3)。
A recommended tool rotation speed selection method for avoiding chatter vibration will be described with reference to the process diagram of FIG.
First, an impulse response test is performed with the reference tool 2 mounted on the spindle 11, and a compliance frequency response diagram as shown by a solid line in FIG. 2 is measured (S1). In parallel, a system in which the reference tool 2 is mounted on the spindle 11 is analyzed, and a compliance frequency response diagram as shown by a broken line in FIG. 2 is calculated (S2). Determine the corresponding peak of the measured and analyzed values of the system with the reference tool. Specifically, in FIG. 2, the peak value corresponding to the peak in the same order in descending frequency (or ascending order) from the peak pair a to the peak pair a corresponding to the measured compliance value and the maximum value of the analysis value. Let b, c, d. The target peaks are four peaks that are actually measured values that are larger than a predetermined threshold value. (S3).

基準工具を装着した系の補正値を演算する。図4にピークbの具体例を示す、ピークbの解析による周波数をMfk、実測による周波数をMfとすると、周波数補正値ΔfはΔf=Mf−Mfkとなる。ピークbの解析によるコンプライアンスをMCk、実測によるコンプライアンスをMCとすると、コンプライアンス補正値ΔCはΔC=MC−MCkとなる。同様にして夫々の対応ピーク対毎に、周波数補正値Δf〜Δfと、コンプライアンス補正値ΔC〜ΔCを演算する(S4)。使用工具をスピンドルに装着した状態の解析を行い、周波数応答線図を演算する(S5)。基準工具を装着した系の解析値と使用工具を装着した系の解析値の対応ピークを決定する。具体的には、図5に示すように、S3で決めた基準工具を装着した系の解析値のピークaに使用工具を装着した系の解析値の最大ピークを対応させ、ピーク対aから周波数の降順(または昇順)で同じ順番のピークを対応するピーク対b、c,dとする(S6)。使用工具を装着した系の固有振動数の周波数とコンプライアンスの予測値を演算する。具体的には、図6に示すように、使用工具を装着した系の解析のピーク値a、b、c,dの周波数とコンプライアンスの値に、夫々対応する周波数補正値Δf〜Δfと、コンプライアンス補正値ΔC〜ΔCを加算し、周波数予測値fha〜fhdとコンプライアンス予測値Cha〜Chdを演算する(S7)。推奨順位と推奨工具軸回転速度の決定。推奨順位はコンプライアンス予測値の大きい順とする。順位1番目の推奨工具軸回転速度NはN=(fha・60)/(e.n)となる。ここで、eは工具の刃数でnは1以上の整数である。(S8)。推奨工具軸回転速度とその推奨順位を出力する(S9)。 Calculate the correction value of the system with the reference tool. FIG. 4 shows a specific example of the peak b. When the frequency obtained by analyzing the peak b is Mfk b and the actually measured frequency is Mf b , the frequency correction value Δf b is Δf b = Mf b −Mfk b . When the compliance by analysis of the peak b is MCk b and the compliance by measurement is MC b , the compliance correction value ΔC b is ΔC b = MC b −MCk b . Similarly, frequency correction values Δf a to Δf d and compliance correction values ΔC a to ΔC d are calculated for each corresponding peak pair (S4). An analysis of the state in which the tool used is mounted on the spindle is performed, and a frequency response diagram is calculated (S5). The corresponding peak of the analysis value of the system with the reference tool and the analysis value of the system with the tool used is determined. Specifically, as shown in FIG. 5, the peak a of the analysis value of the system with the reference tool determined in S3 is made to correspond to the maximum peak of the analysis value of the system with the tool used, and the frequency from peak pair a Peaks in the same order in descending order (or ascending order) are set as corresponding peak pairs b, c, d (S6). Calculate the frequency of natural frequency and the predicted value of compliance of the system with the tool used. Specifically, as shown in FIG. 6, frequency correction values Δf a to Δf d corresponding to the frequency and compliance values of the peak values a, b, c, d in the analysis of the system in which the tool used is mounted, respectively. Then, the compliance correction values ΔC a to ΔC d are added to calculate the predicted frequency values fha to fhd and predicted compliance values Cha to Chd (S7). Determination of recommended order and recommended tool axis rotation speed. The recommended order is the order of the predicted compliance value. The first recommended tool axis rotation speed N 1 in the ranking is N 1 = (fha · 60) / (en). Here, e is the number of blades of the tool, and n is an integer of 1 or more. (S8). The recommended tool axis rotation speed and its recommended order are output (S9).

以上のように、本発明によれば基準工具の解析値と実測値差から求めた補正値を用いて、使用工具の解析値を補正して求めた予測固有振動数の周波数から、びびり振動を発生しない推奨工具軸回転速度を算出するので、実測定をすることなく、正確な推奨工具軸回転速度を設定できる。さらに、複数の固有振動数のコンプライアンス順位に基づき、複数の推奨工具軸回転速度を推奨順位と共に出力するので、複数の固有振動数をもつ主軸系に対しても確実にびびり振動を発生しない推奨工具軸回転速度を算出できる。   As described above, according to the present invention, chatter vibration is reduced from the frequency of the predicted natural frequency obtained by correcting the analysis value of the tool used, using the correction value obtained from the difference between the analysis value of the reference tool and the actual measurement value. Since the recommended tool axis rotation speed that does not occur is calculated, an accurate recommended tool axis rotation speed can be set without performing actual measurement. In addition, since multiple recommended tool axis rotation speeds are output along with the recommended order based on the compliance order of multiple natural frequencies, the recommended tool does not generate chatter vibrations reliably even for spindle systems with multiple natural frequencies. The shaft rotation speed can be calculated.

上記の説明では、1つの基準工具の補正値を用いた例について述べたが、図7に示すように複数の基準工具を準備しておき、使用工具の形状が2つの基準工具の中間に位置する場合は、2つの基準工具の補正値の平均値を用いて補正してもよい。   In the above description, the example using the correction value of one reference tool has been described. However, as shown in FIG. 7, a plurality of reference tools are prepared, and the shape of the tool used is positioned between the two reference tools. When doing, you may correct | amend using the average value of the correction value of two reference tools.

1:主軸系 2:工具 3:固有振動数測定装置 11:スピンドル 12、13:軸受14:モータロータ 15:ステータ 16:ハウジング 31:ハンマー 32:センサ 33:固有振動数演算装置 1: Spindle system 2: Tool 3: Natural frequency measuring device 11: Spindle 12, 13: Bearing 14: Motor rotor 15: Stator 16: Housing 31: Hammer 32: Sensor 33: Natural frequency calculation device

Claims (2)

回転する工具を主軸に装着して工作物を加工するときに発生するびびり振動を回避する工具回転速度選定方法であって、
基準工具を装着した主軸系の固有振動数の解析値である解析基準固有振動数を計算する基準固有振動数解析工程と、
前記基準工具を主軸に装着して測定した固有振動数である実測固有振動数を測定する固有振動数実測工程と、
所定固有振動数について、前記解析基準固有振動数と前記実測固有振動数の差である補正値を演算する補正値演算工程と、
前記基準工具を除く工具を装着した主軸系の固有振動数の解析値である解析固有振動数を計算する固有振動数解析工程と、
前記解析固有振動数を前記補正値を用いて補正して予測固有振動数を演算する固有振動数補正工程と、
前記予測固有振動数を用いて推奨工具回転速度を演算する、工具回転速度演算工程と、を備える工具回転速度選定方法。
A tool rotation speed selection method for avoiding chatter vibration that occurs when machining a workpiece with a rotating tool mounted on the spindle,
A reference natural frequency analysis step for calculating an analysis reference natural frequency which is an analysis value of the natural frequency of the spindle system to which the reference tool is attached;
A natural frequency actual measurement step for measuring an actual natural frequency that is a natural frequency measured by mounting the reference tool on the spindle;
A correction value calculation step for calculating a correction value that is a difference between the analysis reference natural frequency and the measured natural frequency for a predetermined natural frequency;
A natural frequency analysis step of calculating an analysis natural frequency which is an analysis value of a natural frequency of a spindle system equipped with a tool excluding the reference tool;
A natural frequency correction step of calculating the predicted natural frequency by correcting the analysis natural frequency using the correction value;
A tool rotation speed selection method comprising: calculating a recommended tool rotation speed using the predicted natural frequency; and a tool rotation speed calculation step.
前記基準工具として形状パターンと寸法の異なる複数の基準工具を備える、請求項1に記載の工具回転速度選定方法。 The tool rotation speed selection method according to claim 1, comprising a plurality of reference tools having different shapes and dimensions as the reference tools.
JP2011054991A 2011-03-14 2011-03-14 Tool rotation speed selection method Expired - Fee Related JP5834429B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011054991A JP5834429B2 (en) 2011-03-14 2011-03-14 Tool rotation speed selection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011054991A JP5834429B2 (en) 2011-03-14 2011-03-14 Tool rotation speed selection method

Publications (2)

Publication Number Publication Date
JP2012187691A JP2012187691A (en) 2012-10-04
JP5834429B2 true JP5834429B2 (en) 2015-12-24

Family

ID=47081421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011054991A Expired - Fee Related JP5834429B2 (en) 2011-03-14 2011-03-14 Tool rotation speed selection method

Country Status (1)

Country Link
JP (1) JP5834429B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2538750C2 (en) * 2013-05-23 2015-01-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный технологический университет "СТАНКИН" (ФГБОУ ВПО МГТУ "СТАНКИН") Method of determination of optimum cutting speed during metal working
JP6276139B2 (en) * 2014-08-26 2018-02-07 オークマ株式会社 Machine Tools
JP6578195B2 (en) * 2015-11-26 2019-09-18 Dmg森精機株式会社 Method for deriving natural frequency of cutting tool, method for creating stability limit curve, and device for deriving natural frequency of cutting tool
JP6735183B2 (en) * 2016-08-19 2020-08-05 オークマ株式会社 Machine tool with rotating shaft
JP6629816B2 (en) * 2017-10-31 2020-01-15 ファナック株式会社 Diagnostic device and diagnostic method
RU2707308C1 (en) * 2018-09-21 2019-11-26 Федеральное государственное бюджетное образовательное учреждение высшего образования "Рыбинский государственный авиационный технический университет имени П.А. Соловьева" Method of setting up a lathe for part turning
RU2757336C2 (en) * 2020-01-31 2021-10-13 Общество с ограниченной ответственностью "Научно-производственное объединение "Центротех" (ООО "НПО "Центротех") Method for determining optimal modes of cutting process of structural steels

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3887197B2 (en) * 2001-10-02 2007-02-28 株式会社森精機製作所 NC machine tool correction device
JP4177028B2 (en) * 2002-05-22 2008-11-05 株式会社神戸製鋼所 Machining method by small diameter end mill and method for determining machining conditions
JP4528937B2 (en) * 2004-12-02 2010-08-25 株式会社 東北テクノアーチ Measuring / processing system
JP5215064B2 (en) * 2008-07-17 2013-06-19 オークマ株式会社 Method and apparatus for suppressing chatter vibration of machine tool

Also Published As

Publication number Publication date
JP2012187691A (en) 2012-10-04

Similar Documents

Publication Publication Date Title
JP5834429B2 (en) Tool rotation speed selection method
JP5732325B2 (en) Vibration discrimination method and vibration discrimination apparatus
US8256590B2 (en) Vibration suppressing device and vibration suppressing method for machine tool
JP6625794B2 (en) A method for calculating a spindle stable rotational speed capable of suppressing chatter vibration, a method for notifying the method, a method for controlling a spindle rotational speed, an NC program editing method, and an apparatus therefor.
JP4777960B2 (en) Vibration suppression device
JP4433422B2 (en) Vibration suppression device
US8014903B2 (en) Method for suppressing vibration and device therefor
JP5622626B2 (en) Rotational speed display device
ITMI20081584A1 (en) VIBRATION SUPPRESSION DEVICE FOR MACHINE TOOLS
US20150306720A1 (en) Control device for working device, working device, control program for working device, control method for working device, and working method
WO2014115395A1 (en) Cutting-vibration suppression method, computation control device, and machine tool
JP5802062B2 (en) Machine tool control apparatus and control method
JP5917251B2 (en) Chatter vibration suppression system and suppression method
JP5226484B2 (en) Chatter vibration suppression method
JP6302794B2 (en) Rotation speed display method
JP5155090B2 (en) Vibration determination method and vibration suppression device for machine tool
JP5631792B2 (en) Machine tool monitoring device
JP5862111B2 (en) Machining data correction method
JP5660850B2 (en) Vibration display device
JP6276139B2 (en) Machine Tools
JP5580226B2 (en) Method and apparatus for creating stability limit diagram
JP5782899B2 (en) Cutting condition setting device
JP5674491B2 (en) Vibration determination device
JP2012200844A (en) Method for forming chatter stability limit diagram
JP4995115B2 (en) Vibration suppression method and apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151019

R150 Certificate of patent or registration of utility model

Ref document number: 5834429

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees