WO2020090503A1 - Pm sensor - Google Patents

Pm sensor Download PDF

Info

Publication number
WO2020090503A1
WO2020090503A1 PCT/JP2019/040929 JP2019040929W WO2020090503A1 WO 2020090503 A1 WO2020090503 A1 WO 2020090503A1 JP 2019040929 W JP2019040929 W JP 2019040929W WO 2020090503 A1 WO2020090503 A1 WO 2020090503A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
flow path
outlet
sensor
outer case
Prior art date
Application number
PCT/JP2019/040929
Other languages
French (fr)
Japanese (ja)
Inventor
俊輔 石黒
熊田 辰己
尚敬 石山
河合 孝昌
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to DE112019005395.7T priority Critical patent/DE112019005395T5/en
Priority to CN201980071508.1A priority patent/CN112930472A/en
Publication of WO2020090503A1 publication Critical patent/WO2020090503A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00735Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models
    • B60H1/00792Arrangement of detectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00735Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models
    • B60H1/008Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models the input being air quality
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2273Atmospheric sampling
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • G01N15/075Investigating concentration of particle suspensions by optical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N2015/0042Investigating dispersion of solids
    • G01N2015/0046Investigating dispersion of solids in gas, e.g. smoke

Definitions

  • the present disclosure relates to a PM sensor that detects particulate matter contained in air.
  • Patent Document 1 there is one disclosed in Patent Document 1 as a ventilation device having a dust sensor.
  • This ventilation device includes a dust sensor having a light emitting unit and a light receiving unit, and the light receiving unit receives scattered light when the light emitted from the light emitting unit hits the floating particles, thereby floating particles in the air. Is being detected.
  • FIG. 9 is a configuration diagram of the PM sensor 90 under consideration by the present inventors.
  • the PM sensor 90 includes a light emitting element 221, a light receiving element 222, a mirror 223, a sensor substrate 220, and a case 21 that houses them.
  • the case 21 has a first outer case 211, a second outer case 212, a first inner case 213, and a second inner case 214.
  • the first outer case 211 and the second outer case 212 form an outer case
  • the first inner case 213 and the second inner case 214 form an inner case.
  • a detection flow path 231 through which particles to be detected flow is formed inside the inner cases 213 and 214.
  • a space is provided between the outer cases 211, 212 and the inner cases 213, 214 in order to reduce the impact from the outside on the inner cases 213, 214 that house optical components such as the light emitting element 221, the light receiving element 222, and the mirror 223.
  • This space is called the non-detection flow path 232.
  • Air also flows through this non-detection flow path 232.
  • the detection flow channel 231 corresponds to the first air flow channel
  • the non-detection flow channel 232 corresponds to the second air flow channel
  • the light emitting element 221, the light receiving element 222, the mirror 223, and the like correspond to optical elements.
  • the outer cases 211 and 212 are formed with an outer inflow port 211a that allows air to flow into the non-detection flow channel 232 and an outer outflow port 211b that allows air in the non-detection flow channel 232 to flow out of the outer cases 211 and 212. ..
  • the outer outlet 211b corresponds to the first outer outlet.
  • the inner case 213, 214 is formed with an inner outlet port 214b for letting air out from the detection flow path 231.
  • the PM sensor 90 detects particles in the air by receiving light scattered by the light receiving element 222 when light emitted from the light emitting element 221 hits particles in the air flowing through the detection channel 231.
  • the PM sensor 90 has a low-pass filter for removing noise included in the signal output from the light receiving element 222.
  • the low pass filter removes noise contained in the signal output from the light receiving element 222, and it is possible to accurately detect the presence or absence and the concentration of particles in the air.
  • the present disclosure is intended to improve the detection accuracy of particulate matter contained in air.
  • a PM sensor that detects particulate matter contained in air includes an optical element for detecting the particulate matter, and a first air flow path that accommodates the optical element and allows air to flow. And an outer case that forms a second air flow path between the inner case and the inner case in which air bypasses the first air flow path.
  • the outer case is formed with an outer inlet for letting air into the second air passage and an outer outlet for letting air out of the second air passage out of the outer case.
  • An inner outlet that allows air to flow out from the passage is formed, and a portion of the air that has flowed into the outer case from the outer inlet flows into the first air flow path and the rest of the air that has flowed into the outer case is the first.
  • the air flowing out from the inner outlet of the first air passage and the air flowing in the second air passage merge and are discharged from the outer outlet to the outside of the outer case. ing. Further, it has a structure in which the pressure drop in the pressure drop region that occurs at the confluence of the air flowing out from the inner outlet and the air flowing in the second air passage is suppressed.
  • the present PM sensor has a structure that suppresses the pressure drop in the pressure drop region that occurs at the confluence of the air flowing out from the inner outlet and the air flowing through the second air passage. Therefore, the velocity of the air flowing through the first air flow path is suppressed, and the detection accuracy of particles in the air can be improved.
  • FIG. 10 is a partially enlarged view of FIG. 9.
  • FIG. 3 is a partially enlarged view of FIG. 2. It is a schematic sectional drawing of the PM sensor which concerns on 2nd Embodiment. It is a schematic sectional drawing of the PM sensor which concerns on 3rd Embodiment.
  • FIG. 3 is a schematic cross-sectional view of a PM sensor under study by the inventors.
  • the PM sensor according to the first embodiment will be described with reference to FIGS. 1 to 6.
  • the PM sensor 20 according to the present embodiment is installed in a vehicle and is arranged in a vehicle air conditioner 10 that air-conditions a vehicle interior.
  • the vehicle air conditioner 10 includes an air conditioning unit 100 and a PM sensor 20.
  • the air conditioning unit 100 is a part of the vehicle air conditioner 10, and performs air conditioning of the air taken in from the outside and supplies the conditioned air into the vehicle interior.
  • the air conditioning unit 100 includes a blower storage section 101, a blower 130, a connecting section 140, and an air conditioning section 150.
  • the blower storage part 101 is a part of the vehicle air conditioner 10 that takes in air from the outside.
  • a blower 130 is housed inside the blower housing 101.
  • An inner air inlet 111 and an outer air inlet 112 are formed in the blower storage portion 101.
  • the inside air inlet 111 is an opening formed as an inlet for air introduced from the passenger compartment.
  • the outside air inlet 112 is an opening formed as an inlet for air introduced from outside the vehicle.
  • the space outside the vehicle and the outside air inlet 112 are also connected by a duct (not shown).
  • An inside / outside air switching door (not shown) is provided between the inside air inlet 111 and the outside air inlet 112 in the blower storage unit 101.
  • the ratio between the air flowing in from the inside air inlet 111 and the air flowing in from the outside air inlet 112 is adjusted. Since a publicly known one can be adopted as the structure of such an inside / outside air switching door, a concrete illustration and description thereof will be omitted.
  • a particle filter 120 is arranged at a position on the upstream side (upper side in FIG. 1) of the blower 130 along the air flow direction in the blower housing 101.
  • the particle filter 120 is a filter for removing particles from the air flowing in from the inside air inlet 111 or the outside air inlet 112. As the air passes through the particle filter 120, clean air with a reduced particle concentration is blown into the vehicle interior.
  • the blower 130 is a blower that blows out air so that it is blown into the passenger compartment.
  • air is drawn into the blower housing portion 101 from the inside air inlet 111 and the outside air inlet 112. The air is blown into the vehicle compartment through the connection unit 140 and the air conditioning unit 150 described below.
  • connection part 140 is a part provided as a flow path connecting the blower storage part 101 and the air conditioning part 150.
  • the blower storage part 101 and the connection part 140 are integrally formed.
  • the air conditioner 150 is a part that adjusts the temperature of the air. Inside the air conditioning unit 150, an evaporator for dehumidifying and cooling the air, a heater core for heating the air, an air mix door for adjusting the amount of air flowing through each of the evaporator and the heater core, and the like are arranged.
  • a defroster blowing unit 151, a face blowing unit 152, and a foot blowing unit 153 are provided at the downstream side of the air conditioning unit 150 along the air flow direction.
  • the defroster blowout part 151 is a part which blows out conditioned air toward the window of the vehicle.
  • the face blowing section 152 is a section that blows out the conditioned air toward the face of the vehicle occupant.
  • the foot blowout portion 153 is a portion that blows out conditioned air toward the feet of an occupant of the vehicle.
  • a door (not shown) is provided in each of the defroster blowing unit 151, the face blowing unit 152, and the foot blowing unit 153, and the flow rate of the air blown from each blowing unit is adjusted by the opening of the door. Since a known structure can be adopted as the structure of the air conditioning unit 150 as described above, a concrete illustration and description thereof will be omitted.
  • an air introducing chamber 160 is formed at a position in the blower housing 101 near the end of the particle filter 120.
  • the air introduction chamber 160 is formed as a space in which the air introduced into the air conditioning unit 100 flows from the outside of the air conditioning unit 100.
  • the opening 161 serving as an air inlet of the air introduction chamber 160 is formed at a position above the particle filter 120 and the PM sensor 20 described later.
  • the opening 161 communicates the space around the air conditioning unit 100 with the air introduction chamber 160.
  • the opening 162, which serves as an air outlet, in the air introduction chamber 160 is formed at a position slightly below the particle filter 120.
  • the opening 162 communicates between the air introduction chamber 160 and the space of the blower housing 101 below the particle filter 120.
  • the suction force of the blower 130 causes the air in the air introduction chamber 160 to be discharged to the blower 130 side through the opening 162.
  • outside air flows into the air introduction chamber 160 through the opening 161. Therefore, inside the air introduction chamber 160 in the present embodiment, air flows downward from the opening 161 located above the opening 162.
  • the blower storage unit 101 is arranged inside the instrument panel of the vehicle.
  • the space inside the instrument panel that is, the space outside the air introducing chamber 160, is connected to the vehicle interior. Therefore, the air flowing into the air introduction chamber 160 from the opening 161 is the air in the vehicle compartment.
  • the part of the air conditioning unit 100 where the air introduction chamber 160 is formed is the part to which the PM sensor 20 is attached.
  • the PM sensor 20 is attached to the blower housing portion 101 from the outside so as to partition a side portion of the air introduction chamber 160.
  • the position of the upper end of the PM sensor 20 is lower than the opening 161.
  • the positions of the opening 161, the opening 162, the PM sensor 20 and the like as described above are merely examples.
  • the opening 161, the opening 162, the PM sensor 20 and the like may be formed at positions different from the above.
  • the PM sensor 20 is a sensor unit for measuring the presence and concentration of particles in the air. As shown in FIG. 2, the PM sensor 20 includes a light emitting element 221, a light receiving element 222, a mirror 223, a sensor substrate 220, and a case 21 for housing them.
  • the light emitting element 221 emits light.
  • the light emitted from the light emitting element 221 is reflected by the mirror 223.
  • the reflected light reflected by the mirror 223 is received by the light receiving element 222 through a through hole formed in the first inner case 213 described later.
  • the case 21 has a first outer case 211, a second outer case 212, a first inner case 213, and a second inner case 214.
  • the first outer case 211 and the second outer case 212 form an outer case
  • the first inner case 213 and the second inner case 214 form an inner case.
  • the light receiving elements 222 are prevented from being affected by light from the outside of the outer cases 211 and 212.
  • a detection flow path 231 through which particles to be detected flow is formed inside the inner cases 213 and 214.
  • a space is provided between the outer cases 211, 212 and the inner cases 213, 214 in order to reduce the impact from the outside on the inner cases 213, 214 containing the optical components such as the light emitting element 221, the light receiving element 222, and the mirror 223.
  • the non-detection flow path 232 is provided.
  • the outer cases 211 and 212 are formed with an outer inflow port 211a that allows air to flow into the non-detection flow channel 232 and an outer outflow port 211b that allows air in the non-detection flow channel 232 to flow out of the outer cases 211 and 212. .. Further, the inner cases 213 and 214 each have an inner inlet port 214a through which air flows from the non-detection flow channel 232 to the detection flow channel 231, and an inner outlet port 214b through which air flows from the detection flow channel 231 to the non-detection flow channel 232. And are formed.
  • the PM sensor 20 detects presence / absence and concentration of particles in the air by receiving scattered light when the light emitted from the light emitting element 221 hits particles in the air flowing through the detection channel 231 with the light receiving element 222. To do.
  • the PM sensor 20 detects the presence or absence and the concentration of particles in the air based on the amount of light received by the light receiving element 222.
  • a light receiving circuit 30 is connected to the light receiving element 222.
  • the light receiving circuit 30 includes a current amplification unit 31 that amplifies the current flowing through the light receiving element 222, and an amplifier 32 that converts the current amplified by the current amplification unit 31 into a voltage and amplifies it.
  • the light receiving circuit 30 further includes a low-pass filter 33 that removes noise included in the output signal of the amplifier 32, and a voltage output unit 34 that outputs the signal that has passed through the low-pass filter 33.
  • Fig. 3 shows the frequency characteristics of the detection capability of the PM sensor 20. As shown in the figure, the detection capability of the PM sensor 20 is high in the low frequency region. However, the detection capability of the PM sensor 20 decreases as the frequency increases. This is considered to be due to the influence of the low pass filter 33.
  • the PM sensor 20 When the blower is rotating at a low speed and the speed of the air flowing in the air conditioning unit is low, the PM sensor 20 has a high detection capability and can detect the presence or absence and concentration of particles with high accuracy. However, when the blower rotates at high speed and the speed of the air flowing through the air conditioning unit becomes high, the detection capability of the PM sensor 20 decreases. For this reason, there is a problem in that the presence / absence of particles and the detection accuracy of the concentration decrease.
  • the present inventors examined the flow of air flowing through the detection channel 231 and the non-detection channel 232.
  • the pressure drop in the pressure drop region that occurs at the confluence of the air flowing out from the inner outlet 214b and the air flowing through the non-detection flow path 232 is suppressed.
  • the center line of the inner outlet 214b and the center line of the outer outlet 211b are eccentric.
  • the center line of the inner outlet 214b and the center line of the outer outlet 211b are eccentric.
  • a part of the outer outlets 211b is an inner outlet. It is formed so as to be included inside 214b.
  • the PM sensor of this embodiment detects the particulate matter contained in the air.
  • the PM sensor of the present embodiment includes optical elements 221 to 223 for detecting particulate matter, and inner cases 213 and 214 that house the optical elements 221 to 223 and form a first air flow path 231 through which air flows. , Are provided. Further, it is provided with outer cases 211 and 212 that form second air channels 232 between the inner cases 213 and 214 and the air bypasses the first air channels 231 and flow.
  • outer cases 211 and 212 include an outer inlet 211a that allows air to flow into the second air flow path 232 and an outer outlet 211b that allows air in the second air flow path 232 to flow out of the outer cases 211 and 212. Has been formed.
  • the inner case 213, 214 is formed with an inner outlet 214 b for letting air out from the first air flow path 231. Then, a part of the air that has flowed into the outer cases 211 and 212 from the outer inlet 211a flows into the first air flow path 231, and the rest of the air that has flowed into the outer cases 211 and 212 is the second air flow. It flows into the path 232. After that, the air flowing out from the inner air outlet 214b of the first air flow passage 231 and the air flowing in the second air flow passage 232 join together and are discharged from the outer air outlet 211b to the outside of the outer cases 211, 212. ing.
  • the structure has a structure in which the pressure drop in the pressure drop region that occurs at the confluence of the air flowing out from the inner outlet 214b and the air flowing in the second air flow path 232 is suppressed.
  • the present PM sensor has a structure in which the pressure drop in the pressure drop region that occurs at the confluence of the air flowing out from the inner outlet 214b and the air flowing through the second air flow path 232 is suppressed. There is. Therefore, the velocity of the air flowing through the first air flow path 231 is suppressed, and the detection accuracy of particles in the air can be improved.
  • center line of the inner outlet 214b is located at the center of the outer outlet 211b so as to suppress the pressure drop in the pressure lowering region that occurs at the confluence of the air flowing out from the inner outlet 214b and the air flowing through the second air passage 232. It is eccentric with the line.
  • the center line of the inner outlet port 214b is eccentric with the center line of the outer outlet port 211b, so that the pressure drop generated at the confluence of the air flowing out from the inner outlet port 214b and the air flowing in the second air passage 232. It is possible to suppress the pressure drop in the region.
  • center line of the inner outlet 214b and the center line of the outer outlet 211b are controlled so as to suppress the pressure drop in the pressure drop region that occurs at the confluence of the air flowing out from the inner outlet 214b and the air flowing through the non-detection flow path 232. And are eccentric.
  • the center line of the inner outlet 214b and the center line of the outer outlet 211b are eccentric.
  • a part of the outer outlets 211b is an inner outlet. It is formed so as to be included inside 214b.
  • the pressure loss at the inner inlet 214a does not become too large, and the air can be easily introduced into the detection flow path 231. Further, it is possible to suppress light from entering the inside of the outer cases 211, 212 from the outside of the outer cases 211, 212. By suppressing the entry of light into the outer cases 211, 212, the ratio of the light entering from the outside of the outer cases 211, 212 to the scattered light obtained by the light emitted from the optical element can be reduced. The detection accuracy of particulate matter can be improved.
  • the optical elements 221 to 223 receive the scattered light when the light emitted from the light emitting element 221 hits the particulate matter contained in the air flowing through the first air flow path 231 by the light receiving element 222 to receive the scattered light. It can be configured to detect particles therein.
  • the PM sensor according to the second embodiment will be described with reference to FIG. 7.
  • the PM sensor of the present embodiment is different from the PM sensor of the first embodiment in the width a of the non-detection flow path 232.
  • the width a of the non-detection flow path 232 corresponds to the length of the outer outlet 211b in the center line direction.
  • the width a of the non-detection flow path 232 of the PM sensor 20 of the present embodiment is longer than the width of the non-detection flow path 232 of the PM sensor 20 of the first embodiment.
  • the width a of the non-detection flow path 232 of the PM sensor 20 of the present embodiment is longer than the width of the non-detection flow path 232 of the PM sensor 20 of the first embodiment. Therefore, it is possible to suppress the pressure drop in the pressure drop region that occurs at the confluence of the air flowing out from the inner outlet 214b and the air flowing through the non-detection flow path 232, and it is possible to improve the detection accuracy of particles in the air. ..
  • the PM sensor according to the third embodiment will be described with reference to FIG.
  • the PM sensor of the present embodiment further allows air in the non-detection flow path 232 to flow in the outer case 211, 212 at a position different from the outer outlet 211b.
  • a second outer outlet 211c is formed to flow out.
  • the second outer outlet 211c that allows the air in the non-detection flow path 232 to flow out of the outer case can be provided at a position different from the outer outlet 211b.
  • the detection target of the PM sensor 20 is not limited to the air inside the vehicle interior, and for example, the presence or absence and concentration of particles in the air outside the vehicle interior can also be detected.
  • the particle filter 120 is arranged on the upstream side of the blower 130 in the air flow.
  • the particle filter 120 may be arranged on the downstream side of the blower 130 in the air flow.
  • the present disclosure is not limited to the above-described embodiments, and can be modified as appropriate. Further, the above embodiments are not unrelated to each other, and can be appropriately combined unless a combination is obviously impossible. Further, in each of the above-described embodiments, it goes without saying that the elements constituting the embodiment are not necessarily essential unless explicitly stated as being essential or in principle considered to be essential. Yes. Further, in each of the above-described embodiments, when numerical values such as the number of components of the embodiment, numerical values, amounts, ranges, etc. are referred to, it is clearly limited to a particular number and in principle limited to a specific number. The number is not limited to the specific number, except in the case of being performed.
  • the PM sensor is a PM sensor that detects particulate matter contained in air, and is an optical sensor for detecting particulate matter.
  • An inner case that includes an element and that houses an optical element and that forms a first air flow path through which air flows, and second air that flows around the first air flow path between the inner case and the inner case.
  • an outer case that forms a flow path.
  • the outer case is formed with an outer inflow port for letting air into the second air passage and an outer outflow port for letting air in the second air passage out of the outer case.
  • the inner case is formed with an inner outlet that allows air to flow out from the first air flow path.
  • the center line of the inner outlet is located outside so that the pressure drop in the pressure drop region that occurs at the confluence of the air flowing out from the inner outlet and the air flowing through the second air passage is suppressed. It is eccentric with the center line of the outlet.
  • a part of the outer outlet is inside the inner outlet. Is formed to be included.
  • the pressure loss at the inner inflow port does not become too large, and air can be easily introduced into the detection flow path. Further, it is possible to prevent light from entering the inside of the outer case from the outside of the outer case. By suppressing the penetration of light into the outer case, the ratio of the light entering from the outside of the outer case to the scattered light obtained by the light emitted from the optical element can be reduced, so the detection accuracy of particulate matter can be reduced. Can be improved.
  • the outer outlet is the first outer outlet
  • the air in the second air flow path is disposed in the outer case at a position different from that of the first outer outlet.
  • a second outer outlet is formed to allow the water to flow out to.
  • the optical element receives the scattered light when the light emitted from the light emitting element hits the particulate matter contained in the air flowing through the first air flow path, by the light receiving element.
  • the optical element can be configured so that the light receiving element receives scattered light when the light emitted from the light emitting element hits the particulate matter contained in the air flowing through the first air flow path.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

This PM sensor comprises: an optical element (221-223) for detecting particulate matter; an inner case (213, 214) that accommodates the optical element and forms a first air flow path (231); and an outer case (211, 212) that forms, between the outer case and inner case, a second air flow path (232) through which air flows so as to bypass the first air flow path. The outer case has, formed therein, an outside inflow opening (211a) for allowing air to flow into the second air flow path and an outside outflow opening (211b) for allowing the air of the second air flow path to flow outside of the outer case. The inner case has, formed therein, an inside outflow opening (214b) for allowing air to flow out from the first air flow path. After some air that has flowed in from the outside inflow opening flows into the first air flow path and the rest flows into the second air flow path, air that has flowed out from the inside outflow opening and air flowing through the second air flow path merge and are discharged to the outside from the outside outflow opening. Pressure reduction in the pressure reduction area formed at the section where air that has flowed out from the inside outflow opening and air flowing through the second air flow path merge is suppressed.

Description

PMセンサPM sensor 関連出願への相互参照Cross-reference to related application
 本出願は、2018年10月31日に出願された日本特許出願番号2018-205656号に基づくもので、ここにその記載内容が参照により組み入れられる。 This application is based on Japanese Patent Application No. 2018-205656 filed on October 31, 2018, the description of which is incorporated herein by reference.
 本開示は、空気に含まれる粒子状物質を検出するPMセンサに関するものである。 The present disclosure relates to a PM sensor that detects particulate matter contained in air.
 従来、埃センサを有する換気装置として特許文献1に示すものがある。この換気装置は、発光部と受光部とを有する埃センサを備えており、発光部から発せられた光が浮遊粒子に当たった際の散乱光を受光部で受光することにより空気中の浮遊粒子を検知している。 Conventionally, there is one disclosed in Patent Document 1 as a ventilation device having a dust sensor. This ventilation device includes a dust sensor having a light emitting unit and a light receiving unit, and the light receiving unit receives scattered light when the light emitted from the light emitting unit hits the floating particles, thereby floating particles in the air. Is being detected.
特開2008-24032号公報JP, 2008-24032, A
 本発明者らは、特許文献1に記載された埃センサのように、空気中を漂う粒子の濃度を検出する機能を、車両用空調装置に設けることについて検討を進めている。図9は、本発明者らが検討中のPMセンサ90の構成図である。このPMセンサ90は、発光素子221、受光素子222、ミラー223およびセンサ基板220と、これらを収納するケース21と、を備えている。 The present inventors are studying to provide a vehicle air conditioner with a function of detecting the concentration of particles floating in the air like the dust sensor described in Patent Document 1. FIG. 9 is a configuration diagram of the PM sensor 90 under consideration by the present inventors. The PM sensor 90 includes a light emitting element 221, a light receiving element 222, a mirror 223, a sensor substrate 220, and a case 21 that houses them.
 ケース21は、第1外側ケース211、第2外側ケース212、第1内側ケース213および第2内側ケース214を有している。第1外側ケース211および第2外側ケース212は、外側ケースを構成しており、第1内側ケース213および第2内側ケース214は、内側ケースを構成している。 The case 21 has a first outer case 211, a second outer case 212, a first inner case 213, and a second inner case 214. The first outer case 211 and the second outer case 212 form an outer case, and the first inner case 213 and the second inner case 214 form an inner case.
 内側ケース213、214の内部には、検知対象の粒子が流れる検知流路231が形成されている。発光素子221、受光素子222、ミラー223等の光学部品を収納した内側ケース213、214への外部からの衝撃を緩和するため、外側ケース211、212と内側ケース213、214との間に空間が形成されている。この空間は、非検知流路232と呼ばれる。この非検知流路232にも空気が流れるようになっている。なお、検知流路231は第1空気流路に相当し、非検知流路232は第2空気流路に相当し、発光素子221、受光素子222、ミラー223等は光学素子に相当する。 A detection flow path 231 through which particles to be detected flow is formed inside the inner cases 213 and 214. A space is provided between the outer cases 211, 212 and the inner cases 213, 214 in order to reduce the impact from the outside on the inner cases 213, 214 that house optical components such as the light emitting element 221, the light receiving element 222, and the mirror 223. Has been formed. This space is called the non-detection flow path 232. Air also flows through this non-detection flow path 232. The detection flow channel 231 corresponds to the first air flow channel, the non-detection flow channel 232 corresponds to the second air flow channel, and the light emitting element 221, the light receiving element 222, the mirror 223, and the like correspond to optical elements.
 外側ケース211、212には、空気を非検知流路232に流入させる外側流入口211aと非検知流路232の空気を外側ケース211、212の外に流出させる外側流出口211bが形成されている。外側流出口211bは第1外側流出口に対応する。また、内側ケース213、214には、検知流路231から空気を流出させる内側流出口214bが形成されている。 The outer cases 211 and 212 are formed with an outer inflow port 211a that allows air to flow into the non-detection flow channel 232 and an outer outflow port 211b that allows air in the non-detection flow channel 232 to flow out of the outer cases 211 and 212. .. The outer outlet 211b corresponds to the first outer outlet. Further, the inner case 213, 214 is formed with an inner outlet port 214b for letting air out from the detection flow path 231.
 そして、外側流入口211aから外側ケース211、212の内部に流入した空気の一部が検知流路231に流入するとともに外側ケース211、212の内部に流入した空気の残りが非検知流路232に流入した後、検知流路231の内側流出口214bから流出した空気と非検知流路232を流れる空気が合流して外側流出口211bから外側ケース211、212の外に排出されるようになっている。 Then, a part of the air that has flowed into the outer cases 211 and 212 from the outer inlet 211a flows into the detection flow channel 231, and the rest of the air that has flowed into the outer cases 211 and 212 flows into the non-detection flow channel 232. After flowing in, the air flowing out from the inner outlet 214b of the detection flow channel 231 and the air flowing in the non-detection flow channel 232 join together and are discharged from the outer flow outlet 211b to the outside of the outer cases 211, 212. There is.
 PMセンサ90は、発光素子221から発せられた光が検知流路231を流れる空気中の粒子に当たった際の散乱光を受光素子222で受光することにより空気中の粒子を検知する。 The PM sensor 90 detects particles in the air by receiving light scattered by the light receiving element 222 when light emitted from the light emitting element 221 hits particles in the air flowing through the detection channel 231.
 ところで、PMセンサ90は、受光素子222から出力される信号に含まれるノイズを除去するためのローパスフィルタを有している。このローパスフィルタにより受光素子222から出力される信号に含まれるノイズを除去され、精度よく空気中の粒子の有無および濃度を検出することが可能となっている。 By the way, the PM sensor 90 has a low-pass filter for removing noise included in the signal output from the light receiving element 222. The low pass filter removes noise contained in the signal output from the light receiving element 222, and it is possible to accurately detect the presence or absence and the concentration of particles in the air.
 しかしながら、車両用空調装置における空調ユニットを流れる空気の風量が大きくなり、検知流路231を流れる空気の粒子の速度が速くなると、ローパスフィルタの影響によりPMセンサ90の粒子の検知能力が低下してしまう。このため、精度よく空気中の粒子の有無および濃度を検出することができなくなってしまうといった問題がある。 However, when the air volume of the air flowing through the air conditioning unit in the vehicle air conditioner increases and the velocity of the particles of the air flowing through the detection flow path 231 increases, the effect of the low-pass filter decreases the particle detection capability of the PM sensor 90. I will end up. Therefore, there is a problem in that it becomes impossible to accurately detect the presence and concentration of particles in the air.
 本開示は上、空気に含まれる粒子状物質の検出精度を向上することを目的とする。 The present disclosure is intended to improve the detection accuracy of particulate matter contained in air.
 本開示の1つの観点によれば、空気に含まれる粒子状物質を検出するPMセンサは、粒子状物質を検出するための光学素子と、光学素子を収納するとともに空気が流れる第1空気流路を形成する内側ケースと、内側ケースとの間に空気が第1空気流路を迂回して流れる第2空気流路を形成する外側ケースと、を備えている。外側ケースには、空気を第2空気流路に流入させる外側流入口と第2空気流路の空気を外側ケースの外に流出させる外側流出口が形成され、内側ケースには、第1空気流路から空気を流出させる内側流出口が形成され、外側流入口から外側ケースの内部に流入した空気の一部が第1空気流路に流入するとともに外側ケースの内部に流入した空気の残りが第2空気流路に流入した後、第1空気流路の内側流出口から流出した空気と第2空気流路を流れる空気が合流して外側流出口から外側ケースの外に排出されるようになっている。そして、内側流出口から流出した空気と第2空気流路を流れる空気の合流部に生じる圧力低下領域の圧力低下が抑制される構造を有している。 According to one aspect of the present disclosure, a PM sensor that detects particulate matter contained in air includes an optical element for detecting the particulate matter, and a first air flow path that accommodates the optical element and allows air to flow. And an outer case that forms a second air flow path between the inner case and the inner case in which air bypasses the first air flow path. The outer case is formed with an outer inlet for letting air into the second air passage and an outer outlet for letting air out of the second air passage out of the outer case. An inner outlet that allows air to flow out from the passage is formed, and a portion of the air that has flowed into the outer case from the outer inlet flows into the first air flow path and the rest of the air that has flowed into the outer case is the first. After flowing into the second air passage, the air flowing out from the inner outlet of the first air passage and the air flowing in the second air passage merge and are discharged from the outer outlet to the outside of the outer case. ing. Further, it has a structure in which the pressure drop in the pressure drop region that occurs at the confluence of the air flowing out from the inner outlet and the air flowing in the second air passage is suppressed.
 上記した構成によれば、本PMセンサは、内側流出口から流出した空気と第2空気流路を流れる空気の合流部に生じる圧力低下領域の圧力低下が抑制される構造を有している。したがって、第1空気流路を流れる空気の速度が抑制され、空気中の粒子の検出精度を向上することができる。 According to the above configuration, the present PM sensor has a structure that suppresses the pressure drop in the pressure drop region that occurs at the confluence of the air flowing out from the inner outlet and the air flowing through the second air passage. Therefore, the velocity of the air flowing through the first air flow path is suppressed, and the detection accuracy of particles in the air can be improved.
 なお、各構成要素等に付された括弧付きの参照符号は、その構成要素等と後述する実施形態に記載の具体的な構成要素等との対応関係の一例を示すものである。 Note that the reference numerals in parentheses attached to the respective constituent elements and the like indicate an example of a correspondence relationship between the constituent elements and the like and specific constituent elements and the like described in the embodiments described later.
第1実施形態のPMセンサを備えた車両用空調装置の全体構成図である。It is the whole air-conditioner lineblock diagram for vehicles provided with a PM sensor of a 1st embodiment. 第1実施形態のPMセンサの概略断面図である。It is a schematic sectional drawing of the PM sensor of 1st Embodiment. 受光回路の構成図である。It is a block diagram of a light receiving circuit. PMセンサの検知能力の周波数特性を示した図である。It is the figure which showed the frequency characteristic of the detection capability of a PM sensor. 図9の部分拡大図である。FIG. 10 is a partially enlarged view of FIG. 9. 図2の部分拡大図である。FIG. 3 is a partially enlarged view of FIG. 2. 第2実施形態に係るPMセンサの概略断面図である。It is a schematic sectional drawing of the PM sensor which concerns on 2nd Embodiment. 第3実施形態に係るPMセンサの概略断面図である。It is a schematic sectional drawing of the PM sensor which concerns on 3rd Embodiment. 発明者らが検討中のPMセンサの概略断面図である。FIG. 3 is a schematic cross-sectional view of a PM sensor under study by the inventors.
 以下、本開示の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、図中、同一符号を付してある。 Hereinafter, an embodiment of the present disclosure will be described based on the drawings. In the following respective embodiments, the same or equivalent portions are designated by the same reference numerals in the drawings.
 (第1実施形態)
 第1実施形態に係るPMセンサについて、図1~図6を参照しながら説明する。本実施形態に係るPMセンサ20は、車両に搭載され、車室内の空調を行う車両用空調装置10に配置される。図1に示されるように、車両用空調装置10は、空調ユニット100と、PMセンサ20と、を備えている。
(First embodiment)
The PM sensor according to the first embodiment will be described with reference to FIGS. 1 to 6. The PM sensor 20 according to the present embodiment is installed in a vehicle and is arranged in a vehicle air conditioner 10 that air-conditions a vehicle interior. As shown in FIG. 1, the vehicle air conditioner 10 includes an air conditioning unit 100 and a PM sensor 20.
 先ず、空調ユニット100の構成について説明する。空調ユニット100は、車両用空調装置10の一部分であって、外部から取り込んだ空気の空調を行い、空調された空気を車室内に供給するものである。空調ユニット100は、ブロア収納部101と、ブロア130と、接続部140と、空調部150と、を備えている。 First, the configuration of the air conditioning unit 100 will be described. The air conditioning unit 100 is a part of the vehicle air conditioner 10, and performs air conditioning of the air taken in from the outside and supplies the conditioned air into the vehicle interior. The air conditioning unit 100 includes a blower storage section 101, a blower 130, a connecting section 140, and an air conditioning section 150.
 ブロア収納部101は、車両用空調装置10のうち外部からの空気を取り込む部分となっている。ブロア収納部101の内部には、ブロア130が収容されている。ブロア収納部101には、内気入口111と外気入口112とが形成されている。内気入口111は、車室内から導入される空気の入口として形成された開口である。外気入口112は、車両の外から導入される空気の入口として形成された開口である。車両の外部の空間と外気入口112との間も、不図示のダクトによって接続されている。 The blower storage part 101 is a part of the vehicle air conditioner 10 that takes in air from the outside. A blower 130 is housed inside the blower housing 101. An inner air inlet 111 and an outer air inlet 112 are formed in the blower storage portion 101. The inside air inlet 111 is an opening formed as an inlet for air introduced from the passenger compartment. The outside air inlet 112 is an opening formed as an inlet for air introduced from outside the vehicle. The space outside the vehicle and the outside air inlet 112 are also connected by a duct (not shown).
 ブロア収納部101のうち、内気入口111と外気入口112との間には、不図示の内外気切り換えドアが設けられている。内外気切り換えドアの動作によって、内気入口111から流入する空気と、外気入口112から流入する空気と、の比率が調整される。なお、このような内外気切り換えドアの構成としては公知のものを採用し得るので、その具体的な図示や説明については省略する。 An inside / outside air switching door (not shown) is provided between the inside air inlet 111 and the outside air inlet 112 in the blower storage unit 101. By the operation of the inside / outside air switching door, the ratio between the air flowing in from the inside air inlet 111 and the air flowing in from the outside air inlet 112 is adjusted. Since a publicly known one can be adopted as the structure of such an inside / outside air switching door, a concrete illustration and description thereof will be omitted.
 ブロア収納部101のうち、空気の流れ方向に沿ってブロア130よりも上流側(図1では上方側)となる位置には、粒子フィルタ120が配置されている。粒子フィルタ120は、内気入口111や外気入口112から流入した空気から、粒子を除去するためのフィルタである。空気が粒子フィルタ120を通ることにより、粒子濃度の低減された清浄な空気が車室内に吹き出される。 A particle filter 120 is arranged at a position on the upstream side (upper side in FIG. 1) of the blower 130 along the air flow direction in the blower housing 101. The particle filter 120 is a filter for removing particles from the air flowing in from the inside air inlet 111 or the outside air inlet 112. As the air passes through the particle filter 120, clean air with a reduced particle concentration is blown into the vehicle interior.
 ブロア130は、車室内に吹き出されるように空気を送り出す送風装置である。ブロア130が駆動されると、内気入口111や外気入口112からブロア収納部101の内部に空気が引き込まれる。当該空気は、次に述べる接続部140及び空調部150を通って車室内に吹き出される。 The blower 130 is a blower that blows out air so that it is blown into the passenger compartment. When the blower 130 is driven, air is drawn into the blower housing portion 101 from the inside air inlet 111 and the outside air inlet 112. The air is blown into the vehicle compartment through the connection unit 140 and the air conditioning unit 150 described below.
 接続部140は、ブロア収納部101と空調部150との間を繋ぐ流路として設けられた部分である。本実施形態では、ブロア収納部101と接続部140とが一体に形成されている。 The connection part 140 is a part provided as a flow path connecting the blower storage part 101 and the air conditioning part 150. In this embodiment, the blower storage part 101 and the connection part 140 are integrally formed.
 空調部150は、空気の温度調節を行う部分である。空調部150の内部には、空気の除湿及び冷却を行うエバポレータ、空気の加熱を行うヒータコア、エバポレータ及びヒータコアのそれぞれを流れる空気の量を調整するエアミックスドア等が配置されている。 The air conditioner 150 is a part that adjusts the temperature of the air. Inside the air conditioning unit 150, an evaporator for dehumidifying and cooling the air, a heater core for heating the air, an air mix door for adjusting the amount of air flowing through each of the evaporator and the heater core, and the like are arranged.
 空調部150のうち空気の流れ方向に沿って下流側となる部分には、デフロスタ吹き出し部151、フェイス吹き出し部152、及びフット吹き出し部153がそれぞれ設けられている。デフロスタ吹き出し部151は、車両の窓に向けて空調風を吹き出す部分である。フェイス吹き出し部152は、車両の乗員の顔に向けて空調風を吹き出す部分である。フット吹き出し部153は、車両の乗員の足元に向けて空調風を吹き出す部分である。 A defroster blowing unit 151, a face blowing unit 152, and a foot blowing unit 153 are provided at the downstream side of the air conditioning unit 150 along the air flow direction. The defroster blowout part 151 is a part which blows out conditioned air toward the window of the vehicle. The face blowing section 152 is a section that blows out the conditioned air toward the face of the vehicle occupant. The foot blowout portion 153 is a portion that blows out conditioned air toward the feet of an occupant of the vehicle.
 デフロスタ吹き出し部151、フェイス吹き出し部152、及びフット吹き出し部153のそれぞれには不図示のドアが設けられており、ドアの開度によってそれぞれの吹き出し部から吹き出される空気の流量が調整される。なお、以上に説明したような空調部150の構造としては公知のものを採用し得るので、その具体的な図示や説明については省略する。 A door (not shown) is provided in each of the defroster blowing unit 151, the face blowing unit 152, and the foot blowing unit 153, and the flow rate of the air blown from each blowing unit is adjusted by the opening of the door. Since a known structure can be adopted as the structure of the air conditioning unit 150 as described above, a concrete illustration and description thereof will be omitted.
 図1に示されるように、ブロア収納部101のうち粒子フィルタ120の端部近傍となる位置には、空気導入室160が形成されている。空気導入室160は、空調ユニット100の外側から、空調ユニット100の内部に導入される空気が流れる空間、として形成されている。 As shown in FIG. 1, an air introducing chamber 160 is formed at a position in the blower housing 101 near the end of the particle filter 120. The air introduction chamber 160 is formed as a space in which the air introduced into the air conditioning unit 100 flows from the outside of the air conditioning unit 100.
 空気導入室160のうち空気の入口となる開口161は、粒子フィルタ120や後述のPMセンサ20よりも上方側となる位置に形成されている。開口161は、空調ユニット100の周囲の空間と、空気導入室160との間を連通させるものである。空気導入室160のうち空気の出口となる開口162は、粒子フィルタ120よりも僅かに下方側となる位置に形成されている。 The opening 161 serving as an air inlet of the air introduction chamber 160 is formed at a position above the particle filter 120 and the PM sensor 20 described later. The opening 161 communicates the space around the air conditioning unit 100 with the air introduction chamber 160. The opening 162, which serves as an air outlet, in the air introduction chamber 160 is formed at a position slightly below the particle filter 120.
 開口162は、空気導入室160と、ブロア収納部101のうち粒子フィルタ120よりも下方側の空間との間を連通させるものである。 The opening 162 communicates between the air introduction chamber 160 and the space of the blower housing 101 below the particle filter 120.
 ブロア130が駆動されているときには、ブロア130の吸引力により、空気導入室160の空気は開口162を通ってブロア130側に排出される。これを補うように、外部の空気は開口161を通って空気導入室160に流入する。このため、本実施形態における空気導入室160の内部では、開口162よりも上方側に位置する開口161から下方側に向けて空気が流れることとなる。 When the blower 130 is driven, the suction force of the blower 130 causes the air in the air introduction chamber 160 to be discharged to the blower 130 side through the opening 162. To compensate for this, outside air flows into the air introduction chamber 160 through the opening 161. Therefore, inside the air introduction chamber 160 in the present embodiment, air flows downward from the opening 161 located above the opening 162.
 ブロア収納部101は、車両のうちインストルメントパネルの内側に配置されている。インストルメントパネルの内側の空間、すなわち、空気導入室160の外側の空間は、車室内と繋がっている。このため、開口161から空気導入室160に流入する空気は、車室内の空気となっている。 The blower storage unit 101 is arranged inside the instrument panel of the vehicle. The space inside the instrument panel, that is, the space outside the air introducing chamber 160, is connected to the vehicle interior. Therefore, the air flowing into the air introduction chamber 160 from the opening 161 is the air in the vehicle compartment.
 図1に示されるように、空調ユニット100のうち空気導入室160が形成されている部分は、PMセンサ20が取り付けられる部分となっている。PMセンサ20は、空気導入室160のうち側方の部分を区画するように、ブロア収納部101に対して外側から取り付けられている。PMセンサ20の上端の位置は、開口161よりも低い位置となっている。 As shown in FIG. 1, the part of the air conditioning unit 100 where the air introduction chamber 160 is formed is the part to which the PM sensor 20 is attached. The PM sensor 20 is attached to the blower housing portion 101 from the outside so as to partition a side portion of the air introduction chamber 160. The position of the upper end of the PM sensor 20 is lower than the opening 161.
 なお、上記のような開口161、開口162、PMセンサ20等の位置はあくまで一例である。開口161、開口162、PMセンサ20等は、それぞれ上記とは異なる位置に形成されていてもよい。 The positions of the opening 161, the opening 162, the PM sensor 20 and the like as described above are merely examples. The opening 161, the opening 162, the PM sensor 20 and the like may be formed at positions different from the above.
 PMセンサ20は、空気中における粒子の有無および濃度を測定するためのセンサユニットである。PMセンサ20は、図2に示すように、発光素子221、受光素子222、ミラー223およびセンサ基板220と、これらを収納するケース21と、を備えている。 The PM sensor 20 is a sensor unit for measuring the presence and concentration of particles in the air. As shown in FIG. 2, the PM sensor 20 includes a light emitting element 221, a light receiving element 222, a mirror 223, a sensor substrate 220, and a case 21 for housing them.
 発光素子221は、光を照射するものである。発光素子221から照射された光はミラー223に反射する。そして、ミラー223に反射した反射光は、後述する第1内側ケース213に形成された貫通穴を通って受光素子222で受光されるようになっている。 The light emitting element 221 emits light. The light emitted from the light emitting element 221 is reflected by the mirror 223. Then, the reflected light reflected by the mirror 223 is received by the light receiving element 222 through a through hole formed in the first inner case 213 described later.
 ケース21は、第1外側ケース211、第2外側ケース212、第1内側ケース213および第2内側ケース214を有している。第1外側ケース211および第2外側ケース212は、外側ケースを構成しており、第1内側ケース213および第2内側ケース214は、内側ケースを構成している。 The case 21 has a first outer case 211, a second outer case 212, a first inner case 213, and a second inner case 214. The first outer case 211 and the second outer case 212 form an outer case, and the first inner case 213 and the second inner case 214 form an inner case.
 受光素子222を収納した内側ケース213、214の外側に外側ケース211、212を配置することで、受光素子222が外側ケース211、212の外部からの光の影響を受けないようになっている。 By arranging the outer cases 211 and 212 outside the inner cases 213 and 214 housing the light receiving elements 222, the light receiving elements 222 are prevented from being affected by light from the outside of the outer cases 211 and 212.
 内側ケース213、214の内部には、検知対象の粒子が流れる検知流路231が形成されている。 A detection flow path 231 through which particles to be detected flow is formed inside the inner cases 213 and 214.
 発光素子221、受光素子222、ミラー223等の光学部品を収納した内側ケース213、214への外部からの衝撃を緩和するため、外側ケース211、212と内側ケース213、214との間に空間としての非検知流路232が設けられている。 A space is provided between the outer cases 211, 212 and the inner cases 213, 214 in order to reduce the impact from the outside on the inner cases 213, 214 containing the optical components such as the light emitting element 221, the light receiving element 222, and the mirror 223. The non-detection flow path 232 is provided.
 外側ケース211、212には、空気を非検知流路232に流入させる外側流入口211aと非検知流路232の空気を外側ケース211、212の外に流出させる外側流出口211bが形成されている。また、内側ケース213、214には、非検知流路232から検知流路231へ空気を流入させる内側流入口214aと、検知流路231から非検知流路232へ空気を流出させる内側流出口214bと、が形成されている。 The outer cases 211 and 212 are formed with an outer inflow port 211a that allows air to flow into the non-detection flow channel 232 and an outer outflow port 211b that allows air in the non-detection flow channel 232 to flow out of the outer cases 211 and 212. .. Further, the inner cases 213 and 214 each have an inner inlet port 214a through which air flows from the non-detection flow channel 232 to the detection flow channel 231, and an inner outlet port 214b through which air flows from the detection flow channel 231 to the non-detection flow channel 232. And are formed.
 そして、外側流入口211aから外側ケース211、212の内部に流入した空気の一部が検知流路231に流入するとともに外側ケース211、212の内部に流入した空気の残りが非検知流路232に流入する。そして、検知流路231の内側流出口214bから流出した空気と非検知流路232を流れる空気が合流して外側流出口211bから外側ケース211、212の外に排出される。 Then, a part of the air that has flowed into the outer cases 211 and 212 from the outer inlet 211a flows into the detection flow channel 231, and the rest of the air that has flowed into the outer cases 211 and 212 flows into the non-detection flow channel 232. Inflow. Then, the air flowing out from the inner outlet 214b of the detection flow channel 231 and the air flowing in the non-detection flow channel 232 join together and are discharged from the outer flow outlet 211b to the outside of the outer cases 211, 212.
 PMセンサ20は、発光素子221から発せられた光が検知流路231を流れる空気中の粒子に当たった際の散乱光を受光素子222で受光することにより空気中における粒子の有無および濃度を検知する。PMセンサ20は、受光素子222で受光された光量に基づいて空気中における粒子の有無および濃度を検知する。 The PM sensor 20 detects presence / absence and concentration of particles in the air by receiving scattered light when the light emitted from the light emitting element 221 hits particles in the air flowing through the detection channel 231 with the light receiving element 222. To do. The PM sensor 20 detects the presence or absence and the concentration of particles in the air based on the amount of light received by the light receiving element 222.
 図3に示すように、受光素子222には、受光回路30が接続されている。受光回路30は、受光素子222に流れる電流を増幅する電流増幅部31と、電流増幅部31により増幅された電流を電圧に変換して増幅するアンプ32と、を備えている。受光回路30は、さらに、アンプ32の出力信号に含まれるノイズを除去するローパスフィルタ33と、ローパスフィルタ33を通過した信号を出力する電圧出力部34と、を備えている。 As shown in FIG. 3, a light receiving circuit 30 is connected to the light receiving element 222. The light receiving circuit 30 includes a current amplification unit 31 that amplifies the current flowing through the light receiving element 222, and an amplifier 32 that converts the current amplified by the current amplification unit 31 into a voltage and amplifies it. The light receiving circuit 30 further includes a low-pass filter 33 that removes noise included in the output signal of the amplifier 32, and a voltage output unit 34 that outputs the signal that has passed through the low-pass filter 33.
 PMセンサ20の検知能力の周波数特性を図3に示す。図に示すように、低周波領域ではPMセンサ20の検知能力は高くなっている。しかし、周波数が高くなるにつれてPMセンサ20の検知能力は低下している。これは、ローパスフィルタ33の影響によるものと考えられる。 Fig. 3 shows the frequency characteristics of the detection capability of the PM sensor 20. As shown in the figure, the detection capability of the PM sensor 20 is high in the low frequency region. However, the detection capability of the PM sensor 20 decreases as the frequency increases. This is considered to be due to the influence of the low pass filter 33.
 ブロアが低速で回転しており空調ユニット内を流れる空気の速度が低速の場合には、PMセンサ20の検知能力は高く、精度よく粒子の有無および濃度を検出することができる。しかし、ブロアが高速で回転し、空調ユニット内を流れる空気の速度が高速になるとPMセンサ20の検知能力は低下する。このため、粒子の有無および濃度の検出精度が低下してしまうといった問題がある。 When the blower is rotating at a low speed and the speed of the air flowing in the air conditioning unit is low, the PM sensor 20 has a high detection capability and can detect the presence or absence and concentration of particles with high accuracy. However, when the blower rotates at high speed and the speed of the air flowing through the air conditioning unit becomes high, the detection capability of the PM sensor 20 decreases. For this reason, there is a problem in that the presence / absence of particles and the detection accuracy of the concentration decrease.
 そこで、本発明者らは、検知流路231と非検知流路232を流れる空気の流れについて検討を行った。 Therefore, the present inventors examined the flow of air flowing through the detection channel 231 and the non-detection channel 232.
 図9に示した検討中のPMセンサ90の構成では、図5に示すように、内側流出口214bの中心線が外側流出口211bの中心線と一致している。このため、外側流出口211bでアスピレーション効果が生じる。このような構成では、内側流出口214bから流出した空気と非検知流路232を流れる空気の合流部の空気の流速が大きくなる。なお、ベルヌーイの定理により空気の流速が大きくなると圧力が低下する。すなわち、図5に示すように、内側流出口214bから流出した空気と非検知流路232を流れる空気の合流部において負圧となる圧力低下領域が生じる。 In the configuration of the PM sensor 90 under study shown in FIG. 9, the center line of the inner outlet 214b coincides with the center line of the outer outlet 211b, as shown in FIG. Therefore, an aspiration effect occurs at the outer outlet 211b. With such a configuration, the flow velocity of air at the confluence of the air flowing out from the inner outlet 214b and the air flowing through the non-detection flow path 232 is increased. In addition, according to Bernoulli's theorem, the pressure decreases as the flow velocity of air increases. That is, as shown in FIG. 5, a pressure drop region that becomes a negative pressure is generated at the confluence of the air flowing out from the inner outlet 214 b and the air flowing through the non-detection flow path 232.
 このように、内側流出口214bから流出した空気と非検知流路232を流れる空気の合流部の圧力が負圧になると、合流部に検知流路231の空気が引き込まれるため、さらに検知流路231の内部の空気の流速が速くなってしまう。このように、検知流路231の内部の空気の流速が速くなると、PMセンサ20の検知能力が低下し、粒子の検出精度が低下してしまうことが分かった。 In this way, when the pressure at the confluence of the air flowing out from the inner outlet 214b and the air flowing through the non-detection flow channel 232 becomes negative, the air in the detection flow channel 231 is drawn into the confluence, so that the detection flow channel is further detected. The flow velocity of the air inside 231 becomes high. As described above, it has been found that when the flow velocity of the air inside the detection flow path 231 is increased, the detection capability of the PM sensor 20 is reduced and the detection accuracy of particles is reduced.
 そこで、本実施形態のPMセンサ20は、図6のように、内側流出口214bから流出した空気と非検知流路232を流れる空気の合流部に生じる圧力低下領域の圧力低下が抑制されるよう内側流出口214bの中心線と外側流出口211bの中心線とが偏心する。 Therefore, in the PM sensor 20 of the present embodiment, as shown in FIG. 6, the pressure drop in the pressure drop region that occurs at the confluence of the air flowing out from the inner outlet 214b and the air flowing through the non-detection flow path 232 is suppressed. The center line of the inner outlet 214b and the center line of the outer outlet 211b are eccentric.
 このような偏心により、内側流出口214bから流出した空気と非検知流路232を流れる空気の合流部の圧力低下が抑制され、検知流路231の内部の空気の流速が速くなるのが抑制される。したがって、粒子の有無および濃度の検出精度の低下が抑制される。 Due to such eccentricity, the pressure drop at the confluence of the air flowing out from the inner outlet 214b and the air flowing through the non-detection flow passage 232 is suppressed, and the increase in the flow velocity of the air inside the detection flow passage 231 is suppressed. It Therefore, the presence or absence of particles and the decrease in the detection accuracy of the concentration are suppressed.
 なお、内側流出口214bの中心線と外側流出口211bの中心線との偏心量が大きすぎると、内側流入口214aにおける圧力損失が大きくなるので、検知流路231に空気が導入されにくくなってしまう。 If the eccentricity between the center line of the inner outlet 214b and the center line of the outer outlet 211b is too large, the pressure loss at the inner inlet 214a increases, so that it becomes difficult to introduce air into the detection flow passage 231. I will end up.
 このため、本実施形態のPMセンサ20では、内側流出口214bの中心線と外側流出口211bの中心線とが偏心する。そして、外側ケース211、212は、該外側ケース211、212の外側流出口211bが形成された面の法線方向から外側ケース211、212に投影したとき外側流出口211bの一部が内側流出口214bの内部に含まれるように形成されている。 Therefore, in the PM sensor 20 of the present embodiment, the center line of the inner outlet 214b and the center line of the outer outlet 211b are eccentric. When the outer cases 211 and 212 are projected onto the outer cases 211 and 212 from the direction normal to the surface of the outer cases 211 and 212 on which the outer outlets 211b are formed, a part of the outer outlets 211b is an inner outlet. It is formed so as to be included inside 214b.
 以上、説明したように、本実施形態のPMセンサは、空気に含まれる粒子状物質を検出する。本実施形態のPMセンサは、粒子状物質を検出するための光学素子221~223と、光学素子221~223を収納するとともに空気が流れる第1空気流路231を形成する内側ケース213、214と、を備えている。また、内側ケース213、214との間に空気が第1空気流路231を迂回して流れる第2空気流路232を形成する外側ケース211、212を備えている。 As described above, the PM sensor of this embodiment detects the particulate matter contained in the air. The PM sensor of the present embodiment includes optical elements 221 to 223 for detecting particulate matter, and inner cases 213 and 214 that house the optical elements 221 to 223 and form a first air flow path 231 through which air flows. , Are provided. Further, it is provided with outer cases 211 and 212 that form second air channels 232 between the inner cases 213 and 214 and the air bypasses the first air channels 231 and flow.
 また、外側ケース211、212には、空気を第2空気流路232に流入させる外側流入口211aと第2空気流路232の空気を外側ケース211、212の外に流出させる外側流出口211bが形成されている。 In addition, the outer cases 211 and 212 include an outer inlet 211a that allows air to flow into the second air flow path 232 and an outer outlet 211b that allows air in the second air flow path 232 to flow out of the outer cases 211 and 212. Has been formed.
 また、内側ケース213、214には、第1空気流路231から空気を流出させる内側流出口214bが形成される。そして、外側流入口211aから外側ケース211、212の内部に流入した空気の一部が第1空気流路231に流入するとともに外側ケース211、212の内部に流入した空気の残りが第2空気流路232に流入する。その後、第1空気流路231の内側流出口214bから流出した空気と第2空気流路232を流れる空気が合流して外側流出口211bから外側ケース211、212の外に排出されるようになっている。 Further, the inner case 213, 214 is formed with an inner outlet 214 b for letting air out from the first air flow path 231. Then, a part of the air that has flowed into the outer cases 211 and 212 from the outer inlet 211a flows into the first air flow path 231, and the rest of the air that has flowed into the outer cases 211 and 212 is the second air flow. It flows into the path 232. After that, the air flowing out from the inner air outlet 214b of the first air flow passage 231 and the air flowing in the second air flow passage 232 join together and are discharged from the outer air outlet 211b to the outside of the outer cases 211, 212. ing.
 そして、内側流出口214bから流出した空気と第2空気流路232を流れる空気の合流部に生じる圧力低下領域の圧力低下が抑制される構造を有している。 The structure has a structure in which the pressure drop in the pressure drop region that occurs at the confluence of the air flowing out from the inner outlet 214b and the air flowing in the second air flow path 232 is suppressed.
 上記した構成によれば、本PMセンサは、内側流出口214bから流出した空気と第2空気流路232を流れる空気の合流部に生じる圧力低下領域の圧力低下が抑制される構造を有している。したがって、第1空気流路231を流れる空気の速度が抑制され、空気中の粒子の検出精度を向上することができる。 According to the above configuration, the present PM sensor has a structure in which the pressure drop in the pressure drop region that occurs at the confluence of the air flowing out from the inner outlet 214b and the air flowing through the second air flow path 232 is suppressed. There is. Therefore, the velocity of the air flowing through the first air flow path 231 is suppressed, and the detection accuracy of particles in the air can be improved.
 また、内側流出口214bから流出した空気と第2空気流路232を流れる空気の合流部に生じる圧力低下領域の圧力低下が抑制されるよう内側流出口214bの中心線が外側流出口211bの中心線と偏心している。 Further, the center line of the inner outlet 214b is located at the center of the outer outlet 211b so as to suppress the pressure drop in the pressure lowering region that occurs at the confluence of the air flowing out from the inner outlet 214b and the air flowing through the second air passage 232. It is eccentric with the line.
 このように、内側流出口214bの中心線が外側流出口211bの中心線と偏心させることで、内側流出口214bから流出した空気と第2空気流路232を流れる空気の合流部に生じる圧力低下領域の圧力低下を抑制することができる。 As described above, the center line of the inner outlet port 214b is eccentric with the center line of the outer outlet port 211b, so that the pressure drop generated at the confluence of the air flowing out from the inner outlet port 214b and the air flowing in the second air passage 232. It is possible to suppress the pressure drop in the region.
 また、内側流出口214bから流出した空気と非検知流路232を流れる空気の合流部に生じる圧力低下領域の圧力低下が抑制されるよう内側流出口214bの中心線と外側流出口211bの中心線とが偏心している。 In addition, the center line of the inner outlet 214b and the center line of the outer outlet 211b are controlled so as to suppress the pressure drop in the pressure drop region that occurs at the confluence of the air flowing out from the inner outlet 214b and the air flowing through the non-detection flow path 232. And are eccentric.
 このように、内側流出口214bの中心線と外側流出口211bの中心線とを偏心させることにより、内側流出口214bから流出した空気と非検知流路232を流れる空気の合流部の圧力低下を抑制することができる。さらに、検知流路231の内部の空気の流速が速くなるのを抑制することができ、空気中の粒子の検出精度を向上することができる。 In this way, by eccentricizing the center line of the inner outlet 214b and the center line of the outer outlet 211b, it is possible to reduce the pressure at the confluence of the air flowing out of the inner outlet 214b and the air flowing in the non-detection flow path 232. Can be suppressed. Furthermore, it is possible to prevent the flow velocity of the air inside the detection flow path 231 from increasing, and it is possible to improve the detection accuracy of particles in the air.
 また、本実施形態のPMセンサ20は、内側流出口214bの中心線と外側流出口211bの中心線とが偏心する。そして、外側ケース211、212は、該外側ケース211、212の外側流出口211bが形成された面の法線方向から外側ケース211、212に投影したとき外側流出口211bの一部が内側流出口214bの内部に含まれるように形成されている。 Further, in the PM sensor 20 of the present embodiment, the center line of the inner outlet 214b and the center line of the outer outlet 211b are eccentric. When the outer cases 211 and 212 are projected onto the outer cases 211 and 212 from the direction normal to the surface of the outer cases 211 and 212 on which the outer outlets 211b are formed, a part of the outer outlets 211b is an inner outlet. It is formed so as to be included inside 214b.
 したがって、内側流入口214aにおける圧力損失が大きくなりすぎず、検知流路231に空気が導入されやすくすることができる。また、外側ケース211、212の外部から外側ケース211、212の内部への光の侵入を抑えることができる。外側ケース211、212の内部への光の侵入を抑えることで、光学素子から発した光によって得られた散乱光に対し、外側ケース211、212の外部から侵入する光の割合を低下できるため、粒子状物質の検出精度を向上することができる。 Therefore, the pressure loss at the inner inlet 214a does not become too large, and the air can be easily introduced into the detection flow path 231. Further, it is possible to suppress light from entering the inside of the outer cases 211, 212 from the outside of the outer cases 211, 212. By suppressing the entry of light into the outer cases 211, 212, the ratio of the light entering from the outside of the outer cases 211, 212 to the scattered light obtained by the light emitted from the optical element can be reduced. The detection accuracy of particulate matter can be improved.
 また、光学素子221~223は、発光素子221から発せられた光が第1空気流路231を流れる空気に含まれる粒子状物質に当たった際の散乱光を受光素子222で受光することにより空気中の粒子を検知するよう構成することができる。 In addition, the optical elements 221 to 223 receive the scattered light when the light emitted from the light emitting element 221 hits the particulate matter contained in the air flowing through the first air flow path 231 by the light receiving element 222 to receive the scattered light. It can be configured to detect particles therein.
 (第2実施形態)
 第2実施形態に係るPMセンサについて図7を用いて説明する。本実施形態のPMセンサは、上記第1実施形態のPMセンサと比較して、非検知流路232の幅aが異なっている。
(Second embodiment)
The PM sensor according to the second embodiment will be described with reference to FIG. 7. The PM sensor of the present embodiment is different from the PM sensor of the first embodiment in the width a of the non-detection flow path 232.
 非検知流路232の幅aは、外側流出口211bの中心線方向の長さに相当する。本実施形態のPMセンサ20の非検知流路232の幅aは、上記第1実施形態のPMセンサ20の非検知流路232の幅よりも長くなっている。これにより、内側流出口214bから流出した空気と非検知流路232を流れる空気の合流部に生じる圧力低下領域の圧力低下が抑制される。 The width a of the non-detection flow path 232 corresponds to the length of the outer outlet 211b in the center line direction. The width a of the non-detection flow path 232 of the PM sensor 20 of the present embodiment is longer than the width of the non-detection flow path 232 of the PM sensor 20 of the first embodiment. As a result, the pressure drop in the pressure drop region that occurs at the confluence of the air flowing out from the inner outlet 214b and the air flowing through the non-detection flow path 232 is suppressed.
 本実施形態では、上記第1実施形態と共通の構成から奏される同様の効果を上記第1実施形態と同様に得ることができる。 In the present embodiment, the same effect as that obtained from the configuration common to the first embodiment can be obtained similarly to the first embodiment.
 また、本実施形態のPMセンサ20の非検知流路232の幅aは、上記第1実施形態のPMセンサ20の非検知流路232の幅よりも長くなっている。したがって、内側流出口214bから流出した空気と非検知流路232を流れる空気の合流部に生じる圧力低下領域の圧力低下を抑制することができ、空気中の粒子の検出精度を向上することができる。 Further, the width a of the non-detection flow path 232 of the PM sensor 20 of the present embodiment is longer than the width of the non-detection flow path 232 of the PM sensor 20 of the first embodiment. Therefore, it is possible to suppress the pressure drop in the pressure drop region that occurs at the confluence of the air flowing out from the inner outlet 214b and the air flowing through the non-detection flow path 232, and it is possible to improve the detection accuracy of particles in the air. ..
 (第3実施形態)
 第3実施形態に係るPMセンサについて図8を用いて説明する。本実施形態のPMセンサは、上記第1実施形態のPMセンサと比較して、さらに、外側ケース211、212に、外側流出口211bと異なる位置に、非検知流路232の空気を外側ケースの外に流出させる第2外側流出口211cが形成されている。
(Third Embodiment)
The PM sensor according to the third embodiment will be described with reference to FIG. Compared with the PM sensor of the first embodiment, the PM sensor of the present embodiment further allows air in the non-detection flow path 232 to flow in the outer case 211, 212 at a position different from the outer outlet 211b. A second outer outlet 211c is formed to flow out.
 このように、外側流出口211bと異なる位置に、非検知流路232の空気を外側ケースの外に流出させる第2外側流出口211cを設けることもできる。 In this way, the second outer outlet 211c that allows the air in the non-detection flow path 232 to flow out of the outer case can be provided at a position different from the outer outlet 211b.
 本実施形態では、上記第1実施形態と共通の構成から奏される同様の効果を上記第1実施形態と同様に得ることができる。 In the present embodiment, the same effect as that obtained from the configuration common to the first embodiment can be obtained similarly to the first embodiment.
 (他の実施形態)
 (1)上記各実施形態では、車室内の空調を行う車両用空調装置10にPMセンサ20を搭載する例を示したが、空気清浄機等、車両用空調装置10以外の装置にPMセンサ20を搭載することもできる。
(Other embodiments)
(1) In each of the above-described embodiments, the example in which the PM sensor 20 is mounted on the vehicle air conditioner 10 that air-conditions the vehicle interior has been described. Can also be installed.
 (2)上記各実施形態では、開口161から空気導入室160に車室内の空気が流入し、この空気導入室160に流入した空気における粒子の有無および濃度をPMセンサ20で検知する例を示した。しかし、PMセンサ20の検知対象は車室内の空気に限定されるものではなく、例えば、車室外の空気における粒子の有無および濃度を検出することもできる。 (2) In each of the above-described embodiments, an example in which the air in the vehicle compartment flows into the air introduction chamber 160 from the opening 161, and the presence or absence and concentration of particles in the air that has flowed into the air introduction chamber 160 is detected by the PM sensor 20. It was However, the detection target of the PM sensor 20 is not limited to the air inside the vehicle interior, and for example, the presence or absence and concentration of particles in the air outside the vehicle interior can also be detected.
 (3)上記各実施形態では、ブロア130の空気流れ上流側に粒子フィルタ120を配置したが、例えば、ブロア130の空気流れ下流側に粒子フィルタ120を配置してもよい。 (3) In each of the above embodiments, the particle filter 120 is arranged on the upstream side of the blower 130 in the air flow. However, for example, the particle filter 120 may be arranged on the downstream side of the blower 130 in the air flow.
 なお、本開示は上記した実施形態に限定されるものではなく、適宜変更が可能である。また、上記各実施形態は、互いに無関係なものではなく、組み合わせが明らかに不可な場合を除き、適宜組み合わせが可能である。また、上記各実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。また、上記各実施形態において、実施形態の構成要素の個数、数値、量、範囲等の数値が言及されている場合、特に必須であると明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではない。また、上記各実施形態において、構成要素等の材質、形状、位置関係等に言及するときは、特に明示した場合および原理的に特定の材質、形状、位置関係等に限定される場合等を除き、その材質、形状、位置関係等に限定されるものではない。 It should be noted that the present disclosure is not limited to the above-described embodiments, and can be modified as appropriate. Further, the above embodiments are not unrelated to each other, and can be appropriately combined unless a combination is obviously impossible. Further, in each of the above-described embodiments, it goes without saying that the elements constituting the embodiment are not necessarily essential unless explicitly stated as being essential or in principle considered to be essential. Yes. Further, in each of the above-described embodiments, when numerical values such as the number of components of the embodiment, numerical values, amounts, ranges, etc. are referred to, it is clearly limited to a particular number and in principle limited to a specific number. The number is not limited to the specific number, except in the case of being performed. Further, in each of the above-mentioned embodiments, when referring to the material, shape, positional relationship, etc. of the constituent elements, etc., unless specifically stated or in principle limited to a specific material, shape, positional relationship, etc. However, the material, shape, positional relationship, etc. are not limited.
 (まとめ)
 上記各実施形態の一部または全部で示された第1の観点によれば、PMセンサは、空気に含まれる粒子状物質を検出するPMセンサであって、粒子状物質を検出するための光学素子を備えている、また、光学素子を収納するとともに空気が流れる第1空気流路を形成する内側ケースと、内側ケースとの間に空気が第1空気流路を迂回して流れる第2空気流路を形成する外側ケースと、を備えている。また、外側ケースには、空気を第2空気流路に流入させる外側流入口と第2空気流路の空気を外側ケースの外に流出させる外側流出口が形成されている。また、内側ケースには、第1空気流路から空気を流出させる内側流出口が形成されている。また、外側流入口から外側ケースの内部に流入した空気の一部が第1空気流路に流入するとともに外側ケースの内部に流入した空気の残りが第2空気流路に流入した後、第1空気流路の内側流出口から流出した空気と第2空気流路を流れる空気が合流して外側流出口から外側ケースの外に排出されるようになっている。そして、内側流出口から流出した空気と第2空気流路を流れる空気の合流部に生じる圧力低下領域の圧力低下が抑制される構造を有している。
(Summary)
According to the first aspect described in part or all of each of the above embodiments, the PM sensor is a PM sensor that detects particulate matter contained in air, and is an optical sensor for detecting particulate matter. An inner case that includes an element and that houses an optical element and that forms a first air flow path through which air flows, and second air that flows around the first air flow path between the inner case and the inner case. And an outer case that forms a flow path. Further, the outer case is formed with an outer inflow port for letting air into the second air passage and an outer outflow port for letting air in the second air passage out of the outer case. In addition, the inner case is formed with an inner outlet that allows air to flow out from the first air flow path. In addition, a part of the air that has flowed into the outer case from the outer flow inlet flows into the first air flow path, and the rest of the air that has flowed into the outer case flows into the second air flow path. The air flowing out from the inner outlet of the air flow channel and the air flowing in the second air flow channel join together and are discharged from the outer flow outlet to the outside of the outer case. Further, it has a structure in which the pressure drop in the pressure drop region that occurs at the confluence of the air flowing out from the inner outlet and the air flowing in the second air passage is suppressed.
 また、第2の観点によれば、内側流出口から流出した空気と第2空気流路を流れる空気の合流部に生じる圧力低下領域の圧力低下が抑制されるよう内側流出口の中心線が外側流出口の中心線と偏心している。 Further, according to the second aspect, the center line of the inner outlet is located outside so that the pressure drop in the pressure drop region that occurs at the confluence of the air flowing out from the inner outlet and the air flowing through the second air passage is suppressed. It is eccentric with the center line of the outlet.
 このように、内側流出口の中心線が外側流出口の中心線と偏心させることで、内側流出口から流出した空気と第2空気流路を流れる空気の合流部に生じる圧力低下領域の圧力低下を抑制することができる。 In this way, by eccentricizing the center line of the inner outlet with the center line of the outer outlet, the pressure drop in the pressure drop region that occurs at the confluence of the air flowing out from the inner outlet and the air flowing through the second air passage Can be suppressed.
 また、第3の観点によれば、外側ケースは、該外側ケースの外側流出口が形成された面の法線方向から外側ケースに投影したとき外側流出口の一部が内側流出口の内部に含まれるように形成されている。 Further, according to a third aspect, when the outer case is projected onto the outer case from a direction normal to a surface of the outer case where the outer outlet is formed, a part of the outer outlet is inside the inner outlet. Is formed to be included.
 したがって、内側流入口における圧力損失が大きくなりすぎず、検知流路に空気が導入されやすくすることができる。また、外側ケースの外部から外側ケースの内部への光の侵入を抑えることができる。外側ケースの内部への光の侵入を抑えることで、光学素子から発した光によって得られた散乱光に対し、外側ケースの外部から侵入する光の割合を低下できるため、粒子状物質の検出精度を向上することができる。 Therefore, the pressure loss at the inner inflow port does not become too large, and air can be easily introduced into the detection flow path. Further, it is possible to prevent light from entering the inside of the outer case from the outside of the outer case. By suppressing the penetration of light into the outer case, the ratio of the light entering from the outside of the outer case to the scattered light obtained by the light emitted from the optical element can be reduced, so the detection accuracy of particulate matter can be reduced. Can be improved.
 また、第4の観点によれば、外側流出口は、第1外側流出口であり、外側ケースには、第1外側流出口と異なる位置に、第2空気流路の空気を外側ケースの外に流出させる第2外側流出口が形成されている。 Further, according to a fourth aspect, the outer outlet is the first outer outlet, and the air in the second air flow path is disposed in the outer case at a position different from that of the first outer outlet. A second outer outlet is formed to allow the water to flow out to.
 このように、第1外側流出口と異なる位置に、非検知流路の空気を外側ケースの外に流出させる第2外側流出口を設けることもできる。 In this way, it is possible to provide a second outer outlet at a position different from that of the first outer outlet so that the air in the non-detection flow passage flows out of the outer case.
 また、第5の観点によれば、光学素子は、発光素子から発せられた光が第1空気流路を流れる空気に含まれる粒子状物質に当たった際の散乱光を受光素子で受光する。 Further, according to the fifth aspect, the optical element receives the scattered light when the light emitted from the light emitting element hits the particulate matter contained in the air flowing through the first air flow path, by the light receiving element.
 このように、発光素子から発せられた光が第1空気流路を流れる空気に含まれる粒子状物質に当たった際の散乱光を受光素子で受光するよう光学素子を構成することができる。 In this way, the optical element can be configured so that the light receiving element receives scattered light when the light emitted from the light emitting element hits the particulate matter contained in the air flowing through the first air flow path.

Claims (5)

  1.  空気に含まれる粒子状物質を検出するPMセンサであって、
     前記粒子状物質を検出するための光学素子(221~223)と、
     前記光学素子を収納するとともに前記空気が流れる第1空気流路(231)を形成する内側ケース(213、214)と、
     前記内側ケースとの間に前記空気が前記第1空気流路を迂回して流れる第2空気流路(232)を形成する外側ケース(211、212)と、を備え、
     前記外側ケースには、前記空気を前記第2空気流路に流入させる外側流入口(211a)と前記第2空気流路の前記空気を前記外側ケースの外に流出させる外側流出口(211b)が形成され、
     前記内側ケースには、前記第1空気流路から前記空気を流出させる内側流出口(214b)が形成され、
     前記外側流入口から前記外側ケースの内部に流入した前記空気の一部が前記第1空気流路に流入するとともに前記外側ケースの内部に流入した前記空気の残りが前記第2空気流路に流入した後、前記第1空気流路の前記内側流出口から流出した前記空気と前記第2空気流路を流れる前記空気が合流して前記外側流出口から前記外側ケースの外に排出されるようになっており、
     前記内側流出口から流出した前記空気と前記第2空気流路を流れる前記空気の合流部に生じる圧力低下領域の圧力低下が抑制される構造を有しているPMセンサ。
    A PM sensor for detecting particulate matter contained in air,
    An optical element (221 to 223) for detecting the particulate matter,
    An inner case (213, 214) that houses the optical element and forms a first air flow path (231) through which the air flows;
    An outer case (211, 212) forming a second air flow path (232) between the inner case and the air, the air bypassing the first air flow path;
    The outer case has an outer inlet (211a) for allowing the air to flow into the second air passage and an outer outlet (211b) for allowing the air in the second air passage to flow out of the outer case. Formed,
    An inner outlet (214b) for letting out the air from the first air passage is formed in the inner case,
    Part of the air that has flowed into the outer case from the outer inlet flows into the first air flow path, and the rest of the air that has flowed into the outer case flows into the second air flow path. After that, the air flowing out of the inner outlet of the first air passage and the air flowing in the second air passage are combined and discharged from the outer outlet to the outside of the outer case. Has become
    A PM sensor having a structure that suppresses a pressure drop in a pressure drop region that occurs in a confluence portion of the air flowing out from the inner outlet and the air flowing in the second air flow path.
  2.  前記内側流出口から流出した前記空気と前記第2空気流路を流れる前記空気の合流部に生じる圧力低下領域の圧力低下が抑制されるよう前記内側流出口の中心線が前記外側流出口の中心線と偏心している請求項1に記載のPMセンサ。 The center line of the inner outlet is the center of the outer outlet so as to suppress the pressure drop in the pressure drop region that occurs at the confluence of the air flowing out from the inner outlet and the air flowing through the second air flow path. The PM sensor according to claim 1, which is eccentric to the line.
  3.  前記外側ケースは、該外側ケースの前記外側流出口が形成された面の法線方向から前記外側ケースに投影したとき前記外側流出口の一部が前記内側流出口の内部に含まれるように形成されている請求項2に記載のPMセンサ。 The outer case is formed such that a part of the outer outlet is included in the inner outlet when projected onto the outer case from a direction normal to a surface of the outer case on which the outer outlet is formed. The PM sensor according to claim 2, which is provided.
  4.  前記外側流出口は、第1外側流出口であり、
     前記外側ケースには、前記第1外側流出口と異なる位置に、前記第2空気流路の前記空気を前記外側ケースの外に流出させる第2外側流出口が形成されている請求項1ないし3のいずれか1つに記載のPMセンサ。
    The outer outlet is a first outer outlet,
    A second outer outlet is formed in the outer case at a position different from that of the first outer outlet so as to allow the air in the second air passage to flow out of the outer case. The PM sensor according to any one of 1.
  5.  前記光学素子は、発光素子(221)から発せられた光が前記第1空気流路を流れる前記空気に含まれる前記粒子状物質に当たった際の散乱光を受光素子(222)で受光することにより空気中の粒子を検知する請求項1ないし4のいずれか1つに記載のPMセンサ。 The optical element receives light scattered by the light receiving element (222) when the light emitted from the light emitting element (221) hits the particulate matter contained in the air flowing through the first air flow path. The PM sensor according to any one of claims 1 to 4, which detects particles in the air by means of:
PCT/JP2019/040929 2018-10-31 2019-10-17 Pm sensor WO2020090503A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112019005395.7T DE112019005395T5 (en) 2018-10-31 2019-10-17 PM sensor
CN201980071508.1A CN112930472A (en) 2018-10-31 2019-10-17 PM sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018205656A JP7206814B2 (en) 2018-10-31 2018-10-31 PM sensor
JP2018-205656 2018-10-31

Publications (1)

Publication Number Publication Date
WO2020090503A1 true WO2020090503A1 (en) 2020-05-07

Family

ID=70462058

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/040929 WO2020090503A1 (en) 2018-10-31 2019-10-17 Pm sensor

Country Status (4)

Country Link
JP (1) JP7206814B2 (en)
CN (1) CN112930472A (en)
DE (1) DE112019005395T5 (en)
WO (1) WO2020090503A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023122176A (en) 2022-02-22 2023-09-01 株式会社ヴァレオジャパン Air conditioner for vehicle

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6134443A (en) * 1984-07-25 1986-02-18 Matsushita Electric Works Ltd Sensor
JP2008024032A (en) * 2006-07-18 2008-02-07 Denso Corp Air conditioner for vehicle
WO2011129294A1 (en) * 2010-04-15 2011-10-20 いすゞ自動車株式会社 Exhaust sensor alignment structure
JP2015038463A (en) * 2013-07-17 2015-02-26 シャープ株式会社 Fine particle measuring apparatus
US20170038343A1 (en) * 2015-08-07 2017-02-09 Abhijeet Vikram Kshirsagar Box-in-box gas sensor housing
JP2017181153A (en) * 2016-03-29 2017-10-05 パナソニックIpマネジメント株式会社 Particle detection sensor

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0961352A (en) * 1995-08-24 1997-03-07 Horiba Ltd Gas introducing device
JPH09138196A (en) * 1995-11-15 1997-05-27 Denso Corp Concentration detector for particle in liquid
JP2000043549A (en) * 1998-07-28 2000-02-15 Calsonic Corp Gas detecting device for vehicle
JP2002130195A (en) * 2000-10-30 2002-05-09 Denso Corp Muffler
JP4905040B2 (en) * 2006-10-06 2012-03-28 株式会社島津製作所 Particle classifier
JP5511238B2 (en) * 2009-06-29 2014-06-04 三菱重工業株式会社 Aspirator and vehicle air conditioner using the same
JP5640592B2 (en) * 2010-09-14 2014-12-17 セイコーエプソン株式会社 Optical device unit and detection apparatus
JP5667102B2 (en) * 2012-02-21 2015-02-12 日本特殊陶業株式会社 Particle sensor
JP5837107B2 (en) * 2014-01-17 2015-12-24 シャープ株式会社 Particle measuring instrument
KR101559765B1 (en) * 2014-07-16 2015-10-14 (주)일산 Particles Collecting Apparatus Using Bipolar Discharge for Increasing Filtration Efficiency, and Particles Collecting System Having the Same
WO2017043263A1 (en) * 2015-09-09 2017-03-16 株式会社村田製作所 Gas concentration detection device
JP2017072428A (en) * 2015-10-06 2017-04-13 パナソニックIpマネジメント株式会社 Photoelectric particle detection sensor
JP2017129807A (en) * 2016-01-22 2017-07-27 京セラドキュメントソリューションズ株式会社 Image formation device
KR20170097391A (en) * 2016-02-18 2017-08-28 암페놀센싱코리아 유한회사 Sensor device for sensing fine dust
KR101636242B1 (en) * 2016-03-21 2016-07-05 주식회사 제이디티 Durability improving apparatus of drain flow sensor for semiconductor manufacturing equipment
JP2018205656A (en) 2017-06-09 2018-12-27 セイコーエプソン株式会社 projector

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6134443A (en) * 1984-07-25 1986-02-18 Matsushita Electric Works Ltd Sensor
JP2008024032A (en) * 2006-07-18 2008-02-07 Denso Corp Air conditioner for vehicle
WO2011129294A1 (en) * 2010-04-15 2011-10-20 いすゞ自動車株式会社 Exhaust sensor alignment structure
JP2015038463A (en) * 2013-07-17 2015-02-26 シャープ株式会社 Fine particle measuring apparatus
US20170038343A1 (en) * 2015-08-07 2017-02-09 Abhijeet Vikram Kshirsagar Box-in-box gas sensor housing
JP2017181153A (en) * 2016-03-29 2017-10-05 パナソニックIpマネジメント株式会社 Particle detection sensor

Also Published As

Publication number Publication date
JP7206814B2 (en) 2023-01-18
CN112930472A (en) 2021-06-08
DE112019005395T5 (en) 2021-07-22
JP2020071140A (en) 2020-05-07

Similar Documents

Publication Publication Date Title
US20180195946A1 (en) Dust sensor having flow rate control function
US10137753B2 (en) Air guide housing and ventilation, heating or air conditioning system with such an air guide housing
WO2020090503A1 (en) Pm sensor
KR102221369B1 (en) Fine dust detection device with temperature detection function inside the vehicle
CN113498386B (en) Particle concentration detection device
JP5511238B2 (en) Aspirator and vehicle air conditioner using the same
KR101755712B1 (en) Apparatus for measuring concentration of co2 for vehicle
JP6791049B2 (en) Vehicle air conditioner
KR20210016965A (en) Multi-functional Sensor for Car
JP6920901B2 (en) Air conditioner
JP4388398B2 (en) Aspirator for vehicle air conditioning
JP3876830B2 (en) Centrifugal blower and blower for air conditioner
JP7234619B2 (en) vehicle air conditioner
WO2022176727A1 (en) Vehicular air conditioning device
JP7017136B2 (en) Vehicle dust measuring device
JP4613722B2 (en) Ventilation system for vehicles
JP2023122176A (en) Air conditioner for vehicle
JP2003136953A (en) Air cleaner
JP2000000420A (en) Air cleaner
CN118201789A (en) Air conditioner for vehicle
JP3615140B2 (en) Particle detector
KR20230063138A (en) Apparatus for integrated sensing interior temperature and dust of vehicle
WO2019039137A1 (en) Vehicle air conditioning apparatus
JP2021071097A (en) Blower
JP2017164042A (en) Vacuum cleaner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19877706

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19877706

Country of ref document: EP

Kind code of ref document: A1