JP3615140B2 - Particle detector - Google Patents

Particle detector Download PDF

Info

Publication number
JP3615140B2
JP3615140B2 JP2000303470A JP2000303470A JP3615140B2 JP 3615140 B2 JP3615140 B2 JP 3615140B2 JP 2000303470 A JP2000303470 A JP 2000303470A JP 2000303470 A JP2000303470 A JP 2000303470A JP 3615140 B2 JP3615140 B2 JP 3615140B2
Authority
JP
Japan
Prior art keywords
laser
purge air
particle detector
gas
reflecting mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000303470A
Other languages
Japanese (ja)
Other versions
JP2002107286A (en
Inventor
勉 中島
朋信 松田
敬 水上
憲司 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rion Co Ltd
Original Assignee
Rion Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rion Co Ltd filed Critical Rion Co Ltd
Priority to JP2000303470A priority Critical patent/JP3615140B2/en
Publication of JP2002107286A publication Critical patent/JP2002107286A/en
Application granted granted Critical
Publication of JP3615140B2 publication Critical patent/JP3615140B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、特にレーザ光を用いて試料気体中に含まれる粒子を検出する粒子検出器に関する。
【0002】
【従来の技術】
従来の粒子検出器としては、図4に示すように、レーザ共振器100を構成するレーザ媒質101と反射鏡102間に検出対象となる気体をインレット103からアウトレット104へ通過させる流路105を形成し、レーザ媒質101と流路105の間及び反射鏡102と流路105の間にそれぞれ板部材106を配置し、共振するレーザ光Laと清浄な気体のパージエアPaが通過するピンホール107を板部材106に形成したものが知られている。
【0003】
ピンホール107とは、共振するレーザ光Laのみを通過させる大きさの開口である。また、パージエアPaとは、レーザ媒質101及び反射鏡102が検出対象となる気体中に含まれる塵埃やミストなどによって汚れたりするのを防ぐ目的で、レーザ媒質101、反射鏡102やその近傍に吹き付ける清浄な気体である。なお、109はパージエア導入口である。
【0004】
このように、ピンホール107を開けた板部材106をケース108内に配置したのは、共振するレーザ光Laについてはピンホール107を通して検出対象となる気体に照射させるものの、レーザ媒質101と反射鏡102との間でレーザ光Laが共振する際にレーザ媒質101と反射鏡102で発生する散乱光Sについては板部材106によって検出部(受光部)に入射するのを防止するためである。
【0005】
【発明が解決しようとする課題】
しかし、従来の粒子検出器においては、ピンホール107を粒子検出に用いるレーザ光Laが通過すると共に、パージエア導入口109からケース108内に圧送され検出対象となる気体と一緒にアウトレット104へ抜けていくパージエアPaも通過するため、パージエアPaの流れによりピンホール107においてレーザ光Laに乱れが生じ、これが光ノイズとなって粒子検出の信号対雑音比(S/N比)が低下するという問題がある。
【0006】
本発明は、従来の技術が有するこのような問題点に鑑みてなされたものであり、その目的とするところは、パージエアの流れによって生じる光の乱れを抑えて粒子検出の信号対雑音比を向上させ微小粒子の検出が可能な粒子検出器を提供しようとするものである。
【0007】
【課題を解決するための手段】
上記課題を解決すべく請求項1に係る発明は、レーザ共振器内で共振するレーザ光を用いて、清浄な気体のパージエアをレーザ媒質や反射鏡などに吹き付けながら試料気体中に含まれる粒子を検出する粒子検出器において、板部材に形成した前記レーザ光と前記パージエアが通過するピンホールの他に、前記パージエアがアウトレットに抜ける通路を前記板部材又はケースの壁部に設けたものである。
【0008】
請求項2に係る発明は、請求項1に記載の粒子検出器において、前記板部材に設けた通路は、通気孔とした。
【0009】
【発明の実施の形態】
以下に本発明の実施の形態を添付図面に基づいて説明する。ここで、図1は本発明に係る粒子検出器の概略構成断面図、図2は同じく概略構成断面図、図3は板部材の他の実施の形態の断面図である。
【0010】
本発明に係る粒子検出器は、図1に示すように、ケース1内にレーザ共振器2を構成するレーザ媒質3と反射鏡4を対向させて配置し、レーザ媒質3と反射鏡4の中間に検出対象となる気体をインレット5からアウトレット6へ通過させる流路7を形成し、更にレーザ媒質3と流路7の間及び反射鏡4と流路7の間にそれぞれ板部材8,9を配置している。
【0011】
レーザ媒質3としては、ルビーレーザやYAGレーザなどの固体レーザ、へリウムネオンレーザや炭酸ガスレーザなどの気体レーザが用いられる。なお、レーザ共振器2は、レーザ媒質3を励起する励起光源(不図示)を備えている。
【0012】
また、レーザ媒質3及び反射鏡4近傍のケース1壁面には、清浄な気体のパージエアPaをケース1内に供給するパージエア導入口10,11が設けられている。なお、12はレーザ光Laと流路7が交差する粒子検出領域である。
【0013】
更に、図2に示すように、レーザ光Laが照射されることにより粒子検出領域12において生じる散乱光を受光する受光部13がケース1内又はケース1外に設けられている。なお、図2は、図1に示す流路7の方向(アウトレット6側)から見た粒子検出器の概略構成図であり、インレット5、パージエア導入口10,11の記載は省略している。
【0014】
受光部13は、共振するレーザ光Laと直交する方向で粒子検出領域12に対向して、インレット5からアウトレット6に至る検出対象となる気体が形成する流路7と干渉しない場所に設置されている。受光部13は、集光レンズ14、光電変換素子(例えば、フォトダイオード、フォトトランジスタなど)15などを備え、粒子検出領域12における散乱光の強度に応じた電気信号を出力する。
【0015】
板部材8,9には、主として共振するレーザ光Laが通過するピンホール16と、清浄な気体のパージエアPaが通過する通気孔17が形成されている。通気孔17は、板部材8,9の両面に垂直に開口する円形や四角形などの単なる孔である。通気孔17は、レーザ光Laによってレーザ媒質3と反射鏡4で発生する散乱光Sが直接受光部13に入射する虞がない位置に複数設けられている。
【0016】
粒子の検出対象となる気体は、アウトレット6の下流に接続された吸引ポンプ(不図示)がケース1内の気体を吸引することによって、インレット5から流路7を形成する。
なお、本発明に係る粒子検出器は、板部材8,9に通気孔17を形成した以外は、図4に示す従来の粒子検出器と同様な構成である。
【0017】
以上のように構成した本発明に係る粒子検出器の動作について説明する。レーザ媒質3と反射鏡4の間で共振するレーザ光Laを発生させる。このレーザ光Laは、ピンホール16を通過する。
【0018】
更に、2つのパージエア導入口10,11からケース1内に清浄な気体のパージエアPaが供給されると、パージエアPaはレーザ媒質3、反射鏡4やその近傍に吹き付けられた後、主に通気孔17を通過してアウトレット6へ抜ける。なお、パージエアPaの一部は、ピンホール16を通過してアウトレット6へ抜ける。
【0019】
この状態で、吸引ポンプによりケース1内の気体を吸引することによって、インレット5から粒子の検出対象となる気体がケース1内に流入し、流路7を形成する。すると、レーザ光Laと流路7が交差することで粒子検出領域12が形成される。
【0020】
そして、気体中に粒子が含まれていれば、粒子検出領域12で散乱光が生じ、散乱光を受光部13が受光し、散乱光の強度に応じた電気信号のレベルから気体に含まれる粒子の存在を確認することができる。
【0021】
ここで、レーザ媒質3、反射鏡4やその近傍に吹き付けられたパージエアPaは、主に通気孔17を通って検出対象となる気体と共にアウトレット6から排出される。
【0022】
従って、ピンホール16を通過するパージエアPaは、従来の粒子検出器より少なくなるので、パージエアPaがピンホール16を通過することによって生じるレーザ光Laの強度のゆらぎが低減される。その結果、レーザ光Laの強度のゆらぎが原因となって生じる粒子検出の信号対雑音比の低下を防ぐことができる。
【0023】
なお、上述の実施の形態においては、ピンホール16の他に、パージエアPaが板部材8,9を通過する通路として、板部材8,9の両面に垂直に開口する単なる円形や四角形などの通気孔17を採用した。
しかし、レーザ媒質3や反射鏡4で発生する散乱光Sが、板部材8,9に形成した通気孔を通して、直接受光部13に入射せず、しかもパージエアPaがピンホール16をほとんど通過せず円滑にアウトレット6に抜ける構成であればよい。
【0024】
そこで、パージエアPaが板部材8,9を通過する通路としては、単純に板部材8,9の両面に垂直に開口する通気孔17ではなく、図3に示すように、鎧戸状の通気孔18を板部材8,9に形成することもできる。
【0025】
また、図1又は図2に示すように、レーザ媒質3または反射鏡4が配置されたケース1と板部材8,9で形成される空間19,20内に供給されるパージエアPaがアウトレット6に抜ける通路としては、パージエアPaがレーザ媒質3または反射鏡4に吹き付けられた後、板部材8,9とケース1で形成される空間21に導かれる通路、例えばケース1の壁部に形成した空間19,20と空間21を連通する通路(不図示)でもよい。
【0026】
【発明の効果】
以上説明したように請求項1に係る発明によれば、ピンホールの他に、パージエアがアウトレットに抜ける通路を前記板部材又はケースの壁部に設けたので、ピンホールを通過するパージエアの量が減り、共振するレーザ光のゆらぎの程度が低減されるため、粒子検出における信号対雑音比を十分高くでき、比較的小さい粒径の粒子を正確に検出できる。
【0027】
請求項2に係る発明によれば、ピンホールを設けた板部材に通気孔を形成するだけの簡易な構成で、ピンホールを通過するパージエアの量を減らして、共振するレーザ光のゆらぎの程度を低減でき、粒子検出における信号対雑音比が十分高くなり、比較的小さい粒径の粒子を正確に検出できる。
【図面の簡単な説明】
【図1】本発明に係る粒子検出器の概略構成断面図
【図2】本発明に係る粒子検出器の概略構成断面図
【図3】板部材の他の実施の形態の断面図
【図4】従来の粒子検出器の概略構成断面図
【符号の説明】
1…ケース、2…レーザ共振器、3…レーザ媒質、4…反射鏡、5…インレット、6…アウトレット、7…流路、8,9…板部材、10,11…パージエア導入口、12…粒子検出領域、13…受光部、16…ピンホール、17,18…通気孔、19,20,21…空間、La…レーザ光、Pa…パージエア。
[0001]
BACKGROUND OF THE INVENTION
The present invention particularly relates to a particle detector that detects particles contained in a sample gas using laser light.
[0002]
[Prior art]
As a conventional particle detector, as shown in FIG. 4, a flow path 105 is formed between the laser medium 101 constituting the laser resonator 100 and the reflecting mirror 102 to allow a gas to be detected to pass from the inlet 103 to the outlet 104. A plate member 106 is disposed between the laser medium 101 and the flow path 105 and between the reflecting mirror 102 and the flow path 105, and the pin hole 107 through which the resonating laser light La and the purge gas Pa of clean gas pass is formed in the plate. What was formed in the member 106 is known.
[0003]
The pinhole 107 is an opening having a size that allows only the resonating laser beam La to pass therethrough. The purge air Pa is blown to the laser medium 101, the reflecting mirror 102, and the vicinity thereof in order to prevent the laser medium 101 and the reflecting mirror 102 from being contaminated by dust or mist contained in the gas to be detected. It is a clean gas. Reference numeral 109 denotes a purge air introduction port.
[0004]
As described above, the plate member 106 having the pinhole 107 disposed therein is disposed in the case 108. The resonating laser beam La is irradiated to the gas to be detected through the pinhole 107, but the laser medium 101 and the reflecting mirror are disposed. This is because the scattered light S generated by the laser medium 101 and the reflecting mirror 102 when the laser beam La resonates with the plate 102 is prevented from entering the detection unit (light receiving unit) by the plate member 106.
[0005]
[Problems to be solved by the invention]
However, in the conventional particle detector, the laser beam La used for particle detection passes through the pinhole 107 and passes through the purge air introduction port 109 into the case 108 and goes out to the outlet 104 together with the gas to be detected. Since some purge air Pa passes, the laser beam La is disturbed in the pinhole 107 due to the flow of the purge air Pa, and this becomes optical noise, which reduces the signal-to-noise ratio (S / N ratio) of particle detection. is there.
[0006]
The present invention has been made in view of such problems of the prior art, and its object is to improve the signal-to-noise ratio of particle detection by suppressing light disturbance caused by the flow of purge air. It is an object of the present invention to provide a particle detector capable of detecting minute particles.
[0007]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the invention according to claim 1 uses particles of laser gas that resonate in a laser resonator to spray particles contained in a sample gas while blowing clean gas purge air onto a laser medium or a reflecting mirror. In the particle detector to be detected, in addition to the laser beam formed on the plate member and the pinhole through which the purge air passes, a passage through which the purge air passes to the outlet is provided in the plate member or the wall of the case .
[0008]
According to a second aspect of the present invention, in the particle detector according to the first aspect, the passage provided in the plate member is a vent hole.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the accompanying drawings. Here, FIG. 1 is a schematic sectional view of a particle detector according to the present invention, FIG. 2 is a schematic sectional view of the same, and FIG. 3 is a sectional view of another embodiment of a plate member.
[0010]
As shown in FIG. 1, the particle detector according to the present invention has a laser medium 3 constituting a laser resonator 2 and a reflecting mirror 4 arranged in a case 1 so as to face each other, and an intermediate between the laser medium 3 and the reflecting mirror 4. In addition, a flow path 7 for allowing a gas to be detected to pass from the inlet 5 to the outlet 6 is formed, and further, plate members 8 and 9 are respectively provided between the laser medium 3 and the flow path 7 and between the reflecting mirror 4 and the flow path 7. It is arranged.
[0011]
As the laser medium 3, a solid-state laser such as a ruby laser or a YAG laser, or a gas laser such as a helium neon laser or a carbon dioxide laser is used. The laser resonator 2 includes an excitation light source (not shown) that excites the laser medium 3.
[0012]
Further, purge air inlets 10 and 11 for supplying clean gas purge air Pa into the case 1 are provided on the wall surface of the case 1 near the laser medium 3 and the reflecting mirror 4. In addition, 12 is a particle | grain detection area | region where the laser beam La and the flow path 7 cross | intersect.
[0013]
Further, as shown in FIG. 2, a light receiving portion 13 that receives scattered light generated in the particle detection region 12 when irradiated with the laser light La is provided inside or outside the case 1. 2 is a schematic configuration diagram of the particle detector viewed from the direction of the flow path 7 shown in FIG. 1 (outlet 6 side), and illustration of the inlet 5 and the purge air introduction ports 10 and 11 is omitted.
[0014]
The light receiving unit 13 is installed at a location that faces the particle detection region 12 in a direction orthogonal to the resonating laser beam La and does not interfere with the flow path 7 formed by the gas to be detected from the inlet 5 to the outlet 6. Yes. The light receiving unit 13 includes a condenser lens 14, a photoelectric conversion element (for example, a photodiode, a phototransistor, etc.) 15, and the like, and outputs an electric signal corresponding to the intensity of scattered light in the particle detection region 12.
[0015]
The plate members 8 and 9 are formed with pinholes 16 through which mainly resonating laser light La and vent holes 17 through which clean gas purge air Pa passes. The vent hole 17 is a simple hole such as a circle or a rectangle that opens perpendicularly to both surfaces of the plate members 8 and 9. A plurality of vent holes 17 are provided at positions where there is no possibility that the scattered light S generated by the laser medium 3 and the reflecting mirror 4 directly enters the light receiving unit 13 by the laser light La.
[0016]
The gas to be detected by the particles forms a flow path 7 from the inlet 5 when a suction pump (not shown) connected downstream of the outlet 6 sucks the gas in the case 1.
The particle detector according to the present invention has the same configuration as the conventional particle detector shown in FIG. 4 except that the air holes 17 are formed in the plate members 8 and 9.
[0017]
The operation of the particle detector according to the present invention configured as described above will be described. Laser light La that resonates between the laser medium 3 and the reflecting mirror 4 is generated. This laser beam La passes through the pinhole 16.
[0018]
Further, when purge gas Pa, which is a clean gas, is supplied into the case 1 from the two purge air inlets 10 and 11, the purge air Pa is sprayed mainly on the laser medium 3, the reflecting mirror 4 and the vicinity thereof, and then mainly vent holes. Pass through 17 and exit to outlet 6. A part of the purge air Pa passes through the pinhole 16 and escapes to the outlet 6.
[0019]
In this state, the gas in the case 1 is sucked by the suction pump, whereby the gas to be detected from the inlet 5 flows into the case 1 to form the flow path 7. Then, the particle | grain detection area | region 12 is formed because the laser beam La and the flow path 7 cross | intersect.
[0020]
If particles are contained in the gas, scattered light is generated in the particle detection region 12, the light receiving unit 13 receives the scattered light, and particles contained in the gas from the level of the electrical signal corresponding to the intensity of the scattered light. Can be confirmed.
[0021]
Here, the purge air Pa blown to the laser medium 3 and the reflecting mirror 4 and the vicinity thereof is mainly discharged through the vent hole 17 and the gas to be detected from the outlet 6.
[0022]
Accordingly, since the purge air Pa passing through the pinhole 16 is less than that of the conventional particle detector, fluctuations in the intensity of the laser beam La caused by the purge air Pa passing through the pinhole 16 are reduced. As a result, it is possible to prevent a decrease in the signal-to-noise ratio of particle detection caused by fluctuations in the intensity of the laser light La.
[0023]
In the above-described embodiment, in addition to the pinhole 16, as a passage through which the purge air Pa passes through the plate members 8, 9, a simple circular or square shape that opens perpendicularly to both surfaces of the plate members 8, 9 is used. A pore 17 was employed.
However, the scattered light S generated by the laser medium 3 and the reflecting mirror 4 does not directly enter the light receiving unit 13 through the air holes formed in the plate members 8 and 9, and the purge air Pa hardly passes through the pinhole 16. Any structure that can smoothly exit to the outlet 6 may be used.
[0024]
Therefore, the passage through which the purge air Pa passes through the plate members 8 and 9 is not simply the vent hole 17 that opens perpendicularly to both surfaces of the plate members 8 and 9, but as shown in FIG. Can also be formed on the plate members 8 and 9.
[0025]
Further, as shown in FIG. 1 or FIG. 2, purge air Pa supplied into the spaces 19 and 20 formed by the case 1 in which the laser medium 3 or the reflecting mirror 4 is disposed and the plate members 8 and 9 is supplied to the outlet 6. As a passage through which the purge air Pa is blown to the laser medium 3 or the reflecting mirror 4, a passage led to a space 21 formed by the plate members 8 and 9 and the case 1, for example, a space formed in the wall portion of the case 1. A passage (not shown) that communicates the spaces 19 and 20 with the space 21 may be used.
[0026]
【The invention's effect】
As described above, according to the first aspect of the present invention, in addition to the pinhole, a passage through which purge air passes to the outlet is provided in the wall of the plate member or case, so that the amount of purge air passing through the pinhole can be reduced. Since the degree of fluctuation of the resonating laser beam is reduced, the signal-to-noise ratio in particle detection can be made sufficiently high, and particles having a relatively small particle size can be accurately detected.
[0027]
According to the second aspect of the present invention, the amount of purge air passing through the pinhole is reduced with a simple configuration that merely forms a vent hole in the plate member provided with the pinhole, and the degree of fluctuation of the resonating laser beam. The signal-to-noise ratio in particle detection is sufficiently high, and particles with a relatively small particle size can be detected accurately.
[Brief description of the drawings]
FIG. 1 is a schematic sectional view of a particle detector according to the present invention. FIG. 2 is a schematic sectional view of a particle detector according to the present invention. FIG. 3 is a sectional view of another embodiment of a plate member. ] Cross-sectional view of schematic configuration of conventional particle detector [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Case, 2 ... Laser resonator, 3 ... Laser medium, 4 ... Reflecting mirror, 5 ... Inlet, 6 ... Outlet, 7 ... Channel, 8, 9 ... Plate member, 10, 11 ... Purge air introduction port, 12 ... Particle detection region, 13... Light receiving portion, 16... Pinhole, 17, 18 .. vent hole, 19, 20, 21 .. space, La .. laser beam, Pa.

Claims (2)

レーザ共振器内で共振するレーザ光を用いて、清浄な気体のパージエアをレーザ媒質や反射鏡などに吹き付けながら試料気体中に含まれる粒子を検出する粒子検出器において、板部材に形成した前記レーザ光と前記パージエアが通過するピンホールの他に、前記パージエアがアウトレットに抜ける通路を前記板部材又はケースの壁部に設けたことを特徴とする粒子検出器。The laser formed on a plate member in a particle detector that detects particles contained in a sample gas while blowing clean gas purge air onto a laser medium or a reflecting mirror using laser light that resonates in the laser resonator In addition to a pinhole through which light and the purge air pass, a particle detector is provided with a passage through the outlet of the purge air in the plate member or case . 前記板部材に設けた通路は、通気孔である請求項1に記載の粒子検出器。The particle detector according to claim 1, wherein the passage provided in the plate member is a vent hole.
JP2000303470A 2000-10-03 2000-10-03 Particle detector Expired - Lifetime JP3615140B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000303470A JP3615140B2 (en) 2000-10-03 2000-10-03 Particle detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000303470A JP3615140B2 (en) 2000-10-03 2000-10-03 Particle detector

Publications (2)

Publication Number Publication Date
JP2002107286A JP2002107286A (en) 2002-04-10
JP3615140B2 true JP3615140B2 (en) 2005-01-26

Family

ID=18784667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000303470A Expired - Lifetime JP3615140B2 (en) 2000-10-03 2000-10-03 Particle detector

Country Status (1)

Country Link
JP (1) JP3615140B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6456605B2 (en) * 2014-05-28 2019-01-23 アズビル株式会社 Particle detector

Also Published As

Publication number Publication date
JP2002107286A (en) 2002-04-10

Similar Documents

Publication Publication Date Title
JP3714926B2 (en) Sampling tube smoke detector
KR101529735B1 (en) Smoke sensing device
US20080218365A1 (en) Smoke detector
KR20200054952A (en) Particulate sensor device
JPH08233736A (en) Microparticle detection sensor
JP2004151103A (en) Low noise intracavity laser particle counter
JP2002223019A (en) Laser oscillator and light-scattering type particle- detecting apparatus using the same
US10962462B2 (en) Particulate matter-sensing sensor assembly
KR20040084739A (en) Optoelectronic dust sensor and air conditioning equipment in which such optoelectronic dust sensor is installed
JP2009230342A (en) Smoke detector
US20080212093A1 (en) Particle monitor system and substrate processing apparatus
KR101030329B1 (en) Particle counting device with wide range size
JP4995608B2 (en) smoke detector
JP3615140B2 (en) Particle detector
KR102221369B1 (en) Fine dust detection device with temperature detection function inside the vehicle
JP4987515B2 (en) smoke detector
JPH1123460A (en) Smoke sensor
JP7206814B2 (en) PM sensor
JP4185016B2 (en) Dust collection method and apparatus for laser processing by-products, and laser processing apparatus
JP2004184119A (en) Opacimeter
JPH0196532A (en) Fine particle detector by light scattering system
JPS59104533A (en) Light scattering type detector for fine particle
JP2000000420A (en) Air cleaner
KR102568945B1 (en) Apparatus for sensing particle
KR100267833B1 (en) The sensor of optical system.

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041026

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041028

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3615140

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071112

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091112

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101112

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111112

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121112

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250