WO2020090415A1 - Ni paste and layered ceramic capacitor - Google Patents

Ni paste and layered ceramic capacitor Download PDF

Info

Publication number
WO2020090415A1
WO2020090415A1 PCT/JP2019/040151 JP2019040151W WO2020090415A1 WO 2020090415 A1 WO2020090415 A1 WO 2020090415A1 JP 2019040151 W JP2019040151 W JP 2019040151W WO 2020090415 A1 WO2020090415 A1 WO 2020090415A1
Authority
WO
WIPO (PCT)
Prior art keywords
paste
present
type oxide
ceramic
mass
Prior art date
Application number
PCT/JP2019/040151
Other languages
French (fr)
Japanese (ja)
Inventor
寛志 岡村
秋本 裕二
Original Assignee
昭栄化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭栄化学工業株式会社 filed Critical 昭栄化学工業株式会社
Priority to KR1020217015588A priority Critical patent/KR20210084536A/en
Priority to CN201980071072.6A priority patent/CN112955980B/en
Priority to JP2020553736A priority patent/JP7338634B2/en
Publication of WO2020090415A1 publication Critical patent/WO2020090415A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors

Definitions

  • the present invention relates to a Ni paste for forming internal electrodes for manufacturing a highly reliable multilayer ceramic capacitor, and a multilayer ceramic capacitor manufactured using this Ni paste.
  • the monolithic ceramic capacitor is generally manufactured as follows. First, a dielectric ceramic raw material powder is dispersed in a resin binder and formed into a sheet, and a ceramic green sheet is formed into an inorganic electrode containing conductive powder and optionally ceramic powder, a resin binder, and an internal electrode mainly containing a solvent. The conductive paste is printed in a predetermined pattern and dried to remove the solvent and form an internal electrode dry film. Next, a plurality of the obtained ceramic sheets having the internal electrode dry film are stacked, pressure-bonded to form a laminated body, cut into a predetermined shape, and then fired at a high temperature to obtain a ceramic body.
  • a conductive paste for external electrodes is applied to both end faces of the ceramic body and then fired to obtain a laminated ceramic capacitor.
  • the external electrodes may be formed by applying an external electrode paste to an unfired laminate and firing the ceramic bodies at the same time.
  • the internal electrode one using Ni as a main component is known (for example, Patent Document 1).
  • Patent Document 2 by using an internal electrode in which Sn is solid-dissolved in Ni, the height of the electrical barrier at the interface between the dielectric layer and the electrode layer is changed, and the invention is intended to achieve a high temperature load life. Is listed.
  • an object of the present invention is to provide a Ni paste for internal electrodes, which can suppress the melting point drop due to Sn solid solution in Ni as much as possible and can improve the high temperature load life.
  • Another object of the present invention is to provide a multilayer ceramic capacitor that exhibits excellent reliability even when the dielectric layer is made thinner and a voltage with high electric field strength is applied.
  • the present invention (1) includes (A) a conductive powder mainly containing Ni, (B) a binder resin, (C) an organic solvent, (D) Pyrochlore-type oxide containing Sn and one or both of Ta and Nb, and Containing
  • the content of the pyrochlore type oxide is 0.05 to 2.0 parts by mass with respect to 100 parts by mass of the conductive powder (A) Ni as a main component.
  • the present invention provides a Ni paste.
  • the content of the pyrochlore type oxide is 0.1 to 0.6 parts by mass with respect to 100 parts by mass of the conductive powder mainly composed of (A) Ni.
  • Ni paste is provided.
  • the Ni paste according to (1) or (2) is characterized in that it is a pyrochlore type oxide represented by.
  • the present invention is a ceramic laminate in which a plurality of ceramic dielectric layers and a plurality of internal electrode layers containing Ni are alternately laminated, External electrodes formed on the outer surface of the ceramic laminate, Equipped with At the interface between the ceramic dielectric layer and the internal electrode layer, there is a complex oxide containing Sn and either or both of Ta and Nb.
  • the present invention provides a laminated ceramic capacitor characterized by the following.
  • the present invention (5) is a ceramic laminate in which a plurality of ceramic dielectric layers and a plurality of internal electrode layers containing Ni are alternately laminated, External electrodes formed on the outer surface of the ceramic laminate, Equipped with The internal electrode layers are formed of a fired product obtained by firing the Ni paste of any one of (1) to (3) at 900 to 1400 ° C.,
  • the present invention provides a laminated ceramic capacitor characterized by the following.
  • Ni paste for internal electrodes which can suppress the melting point drop due to solid solution of Sn in Ni as much as possible and can improve the high temperature load life. Further, according to the present invention, it is possible to provide a monolithic ceramic capacitor that exhibits excellent reliability even when the dielectric layer is made thinner and a voltage with high electric field strength is applied.
  • the Ni paste of the present invention is (A) a conductive powder mainly containing Ni, (B) a binder resin, (C) an organic solvent, (D) Pyrochlore-type oxide containing Sn and one or both of Ta and Nb, and Containing
  • the content of the pyrochlore type oxide is 0.05 to 2.0 parts by mass with respect to 100 parts by mass of the conductive powder containing (A) Ni as a main component. Is a Ni paste.
  • Ni paste of the present invention is suitably used for forming internal electrodes of a laminated ceramic capacitor, and is also applicable to other ceramic electronic components such as a laminated ceramic actuator.
  • the Ni paste of the present invention includes at least one of (A) Ni-based conductive powder, (B) binder resin, (C) organic solvent, (D) Sn, and Ta and Nb. Or a pyrochlore-type oxide containing both of them.
  • the (A) Ni-based conductive powder according to the Ni paste of the present invention is a powder that is used as a conductive powder in a Ni paste for forming internal electrodes and that mainly contains Ni.
  • the conductive powder (A) containing Ni as a main component include a powder containing only metallic Ni.
  • the conductive powder mainly composed of (A) Ni a composite powder of Ni and another compound, a mixed powder of Ni and another compound, a mixture of Ni and another, as long as the effects of the present invention are exhibited. Examples thereof include alloy powder with a metal.
  • Examples of the composite powder of Ni and another compound include a composite powder in which the surface of the Ni powder is covered with a glassy thin film, a composite powder in which the surface of the Ni powder is covered with an oxide, and a surface of the Ni powder. Examples thereof include composite powders which are surface-treated with an organometallic compound, a surfactant, fatty acids and the like. Examples of the mixed powder of Ni and another compound include a mixed powder of Ni powder and a co-material powder described later.
  • the other metal that can be used in the alloy powder may be any metal that does not easily cause a melting point drop when alloyed with Ni, and examples thereof include Cu, Ag, Pd, Pt, Rh, Ir, Re, Ru and Os.
  • Ni content in the conductive powder mainly composed of Ni is not particularly limited as long as the effects of the present invention are exhibited, but is preferably 60% by mass or more, particularly preferably 80% by mass or more, and further preferably Is 100% by mass.
  • the average particle size of the (A) Ni-based conductive powder is not particularly limited, but is preferably 0.05 to 1.0 ⁇ m.
  • the average particle diameter of the conductive powder (A) mainly containing Ni is within the above range, a dense internal electrode layer having high smoothness can be easily formed.
  • the symbol "-" indicating the numerical range indicates the range including the numerical values described before and after the symbol "-” unless otherwise specified. That is, for example, the notation “0.05 to 1.0” is synonymous with “0.05 or more and 1.0 or less” unless otherwise specified.
  • the content of the (A) Ni-based conductive powder is not particularly limited, and is usually 30 to 30 in consideration of the finish viscosity, printability, storage stability, etc. of the Ni paste. It is appropriately selected within the range of 95% by mass.
  • the content of the (A) Ni-based conductive powder in the Ni paste of the present invention may be selected in the range of 50 to 95 mass%.
  • the (B) binder resin relating to the Ni paste of the present invention is not particularly limited as long as it can be used as a conductive paste for forming internal electrodes.
  • the (B) binder resin is generally used as a conductive paste for forming internal electrodes, for example, a cellulose resin such as ethyl cellulose, an acrylic resin, a methacrylic resin, a butyral resin, an epoxy resin, a phenol resin, Examples include rosin.
  • the content of the (B) binder resin in the Ni paste of the present invention is not particularly limited, and is usually 0.1 to 30 parts by mass, preferably 100 parts by mass of the conductive powder mainly containing (A) Ni. 1 to 15 parts by mass.
  • the (C) organic solvent related to the Ni paste of the present invention is not particularly limited as long as it can dissolve the (B) binder resin, and examples thereof include alcohol-based, ether-based, ester-based and hydrocarbon-based solvents and the like. Mixed solvent of.
  • the pyrochlore type oxide containing (D) Sn and / or one or both of Ta and Nb according to the Ni paste of the present invention is a composite oxide of Sn and Ta, and Sn and Nb. It is a composite oxide or a composite oxide composed of Sn, Ta, and Nb, and is an oxide having a pyrochlore type structure. Since the Ni paste of the present invention contains the pyrochlore type oxide containing (D) Sn and either or both of Ta and Nb, the high temperature load life of the laminated ceramic capacitor after firing is improved.
  • the pyrochlore type oxide containing Sn and one or both of Ta and Nb may contain a metal element other than Sn, Ta and Nb as long as the effect of the present invention is exhibited.
  • the content of the pyrochlore type oxide containing (D) Sn and one or both of Ta and Nb is set to 100 parts by mass of the conductive powder mainly composed of (A) Ni.
  • the amount is 0.05 to 2.0 parts by mass, preferably 0.1 to 0.6 parts by mass.
  • the content of the pyrochlore type oxide containing (D) Sn and one or both of Ta and Nb in the Ni paste exceeds the above range, the improvement in high temperature load life tends to decrease. In addition, the variation in life becomes large. Further, if the content of the pyrochlore type oxide containing (D) Sn and one or both of Ta and Nb in the Ni paste is less than the above range, the effect of improving the high temperature load life can be obtained. Absent.
  • a pyrochlore-type oxide containing Sn and one or both of Ta and Nb has a pyrochlore structure based on Sn 2 (Ta, Nb) 2 O 7.
  • the pyrochlore structure can maintain a single phase within the range represented by the following general formula (1).
  • the molar ratio of Ta and Nb, which are M elements, is 100: 0 to 0: 100.
  • Sn 2 Ta 2 O 7 becomes Sn 2+ 2 Ta 2 O 7 , but in the present specification, it will be referred to as Sn 2 Ta 2 O 7 according to the convention. To do.
  • Examples of the method for adding the pyrochlore-type oxide (hereinafter also referred to as the component (D)) containing (D) Sn and one or both of Ta and Nb to the Ni paste of the present invention include: Examples include a method of adding the component (D) as a powder, a method of forming a powder of the component (D) into a slurry, and a method of coating the surface of the conductive powder mainly containing (A) Ni with the component (D). Be done.
  • the average particle size of the component (D) is preferably 50% or less, and particularly preferably 30% or less of the average particle size of the conductive powder mainly composed of (A) Ni. .. Since the content of the component (D) in the Ni paste of the present invention is small, the average particle size of the component (D) within the above range allows more uniform dispersion in the electrode film after printing.
  • the Ni paste of the present invention can contain a common material powder which is usually added to the Ni paste for forming the internal electrodes.
  • the co-material powder optionally contained is for the purpose of approximating the sintering shrinkage behavior of the internal electrode to that of the dielectric layer, and the kind of the co-material powder is not particularly limited, but is not limited to the ceramic dielectric material. It is desirable to select the capacitor so that the change in the characteristics of the capacitor due to the reaction of is minimized.
  • the co-material powder a general formula: ABO 3 (where A is at least one of Ba, Ca and Sr, and B is Ti, Zr, etc.), which is commonly used in Ni pastes for forming internal electrodes, is used.
  • the co-material powder preferably has the same composition as or a similar composition to the dielectric ceramic raw material powder used as the main component of the dielectric layer.
  • the common material powder may be attached to the surface of the conductive powder containing (A) Ni as a main component and then mixed with other components in the Ni paste.
  • the content of the co-material powder in the Ni paste of the present invention is (A) the total content of the co-material powder with respect to 100 parts by mass of the conductive powder mainly containing Ni. And is 30 parts by mass or less.
  • the content of the co-material powder in the Ni paste exceeds the above range, the electrode layer becomes thick and a structural defect is likely to occur, and the electrode layer becomes a discontinuous film.
  • the average particle diameter of the co-material powder is not particularly limited, but it is more preferable that it is 30% or less of the average particle diameter of the conductive powder mainly composed of (A) Ni, which is more effective in suppressing sintering and improving the denseness. It is preferable because Further, it is preferable that the total specific surface area of the co-material powder in the paste is larger than the total specific surface area of the conductive powder mainly composed of (A) Ni in order to enhance the effect of improving the high temperature load life. By selecting the average particle size and content of the co-material powder, the total specific surface area of the co-material powder in the paste is made larger than the total specific surface area of the conductive powder (A) Ni as a main component.
  • the average particle size of the material powder is preferably 0.01 ⁇ m or more.
  • the Ni paste of the present invention may contain additives such as a plasticizer, a dispersant, and a surfactant, which are usually added to the Ni paste for forming the internal electrodes, if necessary. ..
  • the Ni paste of the present invention contains the above-mentioned (A) Ni-based conductive powder, (B) binder resin, (C) organic solvent, and (D) Sn and one or both of Ta and Nb. It is prepared by uniformly mixing and dispersing a pyrochlore-type oxide containing, and a co-material powder and other various additives, which are optionally added, according to a conventional method.
  • the monolithic ceramic capacitor of the present invention is manufactured by the following method using the Ni paste of the present invention.
  • the dielectric ceramic raw material powder is dispersed in a resin binder and formed into a sheet by a doctor blade method, a die coater method or the like to produce a ceramic green sheet containing the dielectric ceramic raw material powder.
  • the dielectric ceramic raw material powder for forming the dielectric layer barium titanate-based, strontium zirconate-based, calcium strontium zirconate-based perovskite-type oxides, or some of the metal elements constituting these are used.
  • the particle size of the raw material powder is preferably about 0.05 to 0.4 ⁇ m when the thickness of the dielectric ceramic layer is 5.0 ⁇ m or less.
  • the Ni paste of the present invention is applied on the obtained ceramic green sheet by a usual method such as screen printing and dried to remove the solvent, thereby forming an internal electrode paste dry film having a predetermined pattern.
  • a predetermined number of ceramic green sheets having the internal electrode paste film formed thereon are stacked and pressure-laminated to produce an unfired laminated body.
  • the obtained laminated body is cut into a predetermined shape and then fired at a high temperature to simultaneously sinter the dielectric layer and the electrode layer to obtain a laminated ceramic capacitor body.
  • terminal electrodes are baked on both end faces of the element body to form the laminated ceramic capacitor of the present invention.
  • the terminal electrode may be attached before firing the above-mentioned laminated body and fired at the same time as the laminated body.
  • the thus-obtained monolithic ceramic capacitor of the present invention is a ceramic laminate in which a plurality of ceramic dielectric layers and a plurality of internal electrode layers containing Ni are alternately laminated, External electrodes formed on the outer surface of the ceramic laminate, Equipped with At the interface between the ceramic dielectric layer and the internal electrode layer, there is a complex oxide containing Sn and either or both of Ta and Nb. Is a monolithic ceramic capacitor.
  • the ceramic dielectric layer according to the monolithic ceramic capacitor of the present invention is, as the dielectric ceramic raw material powder, a perovskite type oxide such as barium titanate-based, strontium zirconate-based, calcium strontium zirconate-based, or a metal element constituting these.
  • These dielectric ceramic raw material powders are molded by using a powder containing an ordinary perovskite type oxide as a main component, such as one in which a part of is replaced with another metal element, and 900 to 1400 in a reducing atmosphere. It is formed by baking at a temperature of 1,100 to 1,300 ° C.
  • the internal electrode layers containing Ni are formed by using the Ni paste of the present invention, that is, the Ni paste of the present invention is screen-printed or the like to form a ceramic green for forming a dielectric layer. It is formed by molding on a sheet, drying and firing. Therefore, the internal electrode layer containing Ni according to the multilayer ceramic capacitor of the present invention includes “Sn and either or both of Ta and Nb, or both, at the interface between the ceramic dielectric layer and the internal electrode layer. "Composite oxides" are present. In the multilayer ceramic capacitor of the present invention, "a complex oxide containing Sn and one or both of Sn and Ta and Nb are present" is present at the interface between the ceramic dielectric layer and the internal electrode layer.
  • the melting point drop due to the solid solution of Sn in Ni is suppressed as much as possible and the high temperature load life is improved. Therefore, even if the dielectric layer is further thinned and a voltage with high electric field strength is applied, it is excellent. Demonstrate reliability.
  • TEM transmission electron microscope
  • EDS energy dispersive X-ray spectroscopy
  • WDS wavelength dispersive X-ray spectroscopy
  • EELS electrostatic loss spectroscopy
  • the internal electrode layer containing Ni according to the laminated ceramic capacitor of the present invention is formed by firing the Ni paste of the present invention in a reducing atmosphere at 900 to 1400 ° C, preferably 1100 to 1300 ° C.
  • the external electrode of the monolithic ceramic capacitor of the present invention is not particularly limited as long as it can be used as the external electrode of the monolithic ceramic capacitor.
  • the laminated ceramic capacitor of the present invention is a ceramic laminated body in which a plurality of ceramic dielectric layers and a plurality of internal electrode layers containing Ni are alternately laminated, External electrodes formed on the outer surface of the ceramic laminate, Equipped with The internal electrode layers are formed of a fired product obtained by firing the Ni paste of the present invention at 900 to 1400 ° C., Is a monolithic ceramic capacitor.
  • the internal electrode layers are formed by molding the Ni paste of the present invention on a ceramic green sheet for forming a laminated layer by screen printing or the like, drying and firing. ..
  • the firing temperature of the Ni paste of the present invention is 900 to 1400 ° C., preferably 1100 to 1300 ° C., and the firing atmosphere is a reducing atmosphere.
  • Example 1 ⁇ Production of Ni paste and multilayer ceramic capacitor>
  • SnO powder and Ta 2 O 5 powder were weighed and mixed, respectively, and reduced with N 2 -0.1% H 2 -H 2 O gas. After firing in an atmosphere at 1000 ° C., it was ground until the average particle size became 0.05 ⁇ m to produce a pyrochlore type oxide containing Sn and Ta. It was confirmed by XRD (X-ray diffraction) that the obtained product was a pyrochlore type oxide containing Sn and Ta.
  • a polyvinyl butyral binder, ethanol, and an additive for adjusting the capacitor characteristics are added to BaTiO 3 powder having an average particle size of 0.2 ⁇ m, which is the main component of the ceramic green sheet, and wet mixed by a media mill to prepare a ceramic slurry.
  • This ceramic slurry was formed into a sheet by a die coater method to prepare a ceramic green sheet having a thickness of 5.5 ⁇ m.
  • an Ni electrode paste was printed on the ceramic green sheet in a rectangular pattern of 1.5 mm ⁇ 3.0 mm and then dried to form an internal electrode dry film. The thickness of the internal electrode dry film was 1.5 ⁇ m.
  • Ceramic green sheets having a dry film of the internal electrodes were stacked so that the dielectric effective layer was 50 layers, and pressure and pressure of 1250 kg / cm 2 were applied at 90 ° C. for pressure bonding and molding to obtain an unfired ceramic laminate. ..
  • This ceramic laminate was heated to 700 ° C. in an atmosphere of N 2 -0.1% H 2 —H 2 O gas to burn the binder, and then the oxygen partial pressure at 1220 ° C. was 1 ⁇ 10 ⁇ .
  • a reducing atmosphere consisting of 8 atm of N 2 -0.1% H 2 -H 2 O gas, the temperature was raised at a heating rate of 5 ° C./min, and the temperature was maintained at 1220 ° C. for 2 hours to sinter and densify.
  • a multilayer ceramic body was obtained by performing reoxidation treatment at 1000 ° C. for 3 hours in a N 2 —H 2 O gas atmosphere in the cooling stage. Then, a Cu paste for forming an external electrode containing Cu powder and a BaO-based glass frit is applied to both end faces of the monolithic ceramic body and baked at a temperature of 780 ° C. in an N 2 atmosphere to form an external electrode. A multilayer ceramic capacitor was produced. By performing this for all of the above 12 kinds of Ni pastes, the samples of sample numbers 1 to 12 in Table 1 were obtained. In addition, in Table 1, the sample with * added to the sample number is a comparative example that does not satisfy the requirements of the present invention.
  • the external dimensions of the obtained monolithic ceramic capacitor were: width (W): 1.6 mm, length (L): 3.2 mm, thickness (T): 0.7 mm, and the internal electrode layer had a thickness of 1. It was 2 ⁇ m, and the thickness of the ceramic dielectric layer interposed between the internal electrodes was 4.0 ⁇ m. The area of the counter electrode per one dielectric layer was 3.25 mm 2 .
  • the shape parameter m value obtained from the Weibull plot is for evaluating the variation of the failure time. The larger this m value is, the smaller the variation of the failure time is, which is desirable as a capacitor. Table 1 also shows the evaluation results of MTTF and m value.
  • (2) Evaluation of Continuity of Internal Electrode Layer Each of the laminated ceramic capacitors of Sample Nos. 1 to 12 was cut along a plane orthogonal to the internal electrode layer and observed with a SEM (scanning electron microscope). The observation magnification was 1000 times, 10 internal electrodes were randomly selected from the observation visual field, and the ratio of the portion where the electrodes were present to the entire length was measured and evaluated as continuity.
  • the improvement of MTTF correlates with the existence of the complex oxide layer of Sn and Ta.
  • the m value which is an index of the variation in failure time, shows a maximum when the amount of the pyrochlore-type oxide of Sn 2 Ta 2 O 7 added is about 0.4 parts by mass with respect to 100 parts by mass of the spherical nickel powder, Then, when it was 0.7 parts by mass or more, the m value became smaller than that of the non-added one. This was consistent with that in the dielectric layer, grain growth was promoted in the vicinity of the internal electrode rather than in the internal region of the dielectric layer.
  • the continuity of the internal electrodes is 98% or more in the sample numbers 1 to 11, and the addition amount of the pyrochlore type oxide of Sn 2 Ta 2 O 7 is 3.0 parts by mass with respect to 100 parts by mass of the spherical nickel powder.
  • Sample No. 12 which was No. 2, the continuity was 93%, and the ball-up of the electrode film was remarkable.
  • 100 parts by mass of the spherical nickel powder is mixed with the pyrochlore type oxide of Sn 2 Ta 2 O 7 .
  • the amount added should be in the range of 0.05 to 2.0 parts by mass, and if it is in the range of 0.1 to 0.6 parts, MTTF should be doubled or more without lowering the m value It is possible to improve the high temperature load life efficiently and surely.
  • Example 2 The same experiment as in Example 1 was carried out except that the composition of the pyrochlore type oxide of Sn 2 Ta 2 O 7 was Sn 2+ 1.865 Ta 2 O 6.865 and Sn 2+ 1.75 Ta 1.75 Sn 4+ 0.25 O 6.625. As a result, both obtained the same results as in Example 1. That is, it was confirmed that the effect of the present invention was achieved by including the single-phase pyrochlore type oxide containing Sn and Ta in the Ni paste.

Abstract

Provided is a Ni paste characterized by containing (A) an electrically conductive powder comprising mainly Ni, (B) a binder resin, (C) an organic solvent and (D) a pyrochlore type oxide containing Sn and Ta and/or Nb, with the content of the pyrochlore type oxide being 0.05-2.0 parts by mass relative to 100 parts by mass of the electrically conductive powder (A) comprising mainly Ni. Provided by the present invention is a Ni paste for an internal electrode, which can minimize a reduction in melting point caused by solid solution of Sn into Ni and can improve load life at high temperature. The present invention can also provide a layered ceramic capacitor in which the thickness of a dielectric layer can be further reduced and which exhibits excellent reliability even if a voltage having a high electric field strength is applied.

Description

Niペーストおよび積層セラミックコンデンサNi paste and multilayer ceramic capacitor
 本発明は、信頼性の高い積層セラミックコンデンサを製造するための内部電極形成用等のNiペーストと、これを用いて製造される積層セラミックコンデンサに関する。 The present invention relates to a Ni paste for forming internal electrodes for manufacturing a highly reliable multilayer ceramic capacitor, and a multilayer ceramic capacitor manufactured using this Ni paste.
 近年のエレクトロニクス技術の発展に伴い、積層セラミックコンデンサに対する小型化および大容量化の要求がさらに高まっている。これらの要求を満たすために、積層セラミックコンデンサを構成する誘電体層の薄層化が進められている。しかし、誘電体層を薄層化すると、1層あたりに加わる電界強度が相対的に高くなる。そこで、電圧印加時における信頼性の向上が求められる。 Demand for miniaturization and large capacity for multilayer ceramic capacitors is increasing with the recent development of electronics technology. In order to meet these requirements, thinning of the dielectric layer that constitutes the monolithic ceramic capacitor has been promoted. However, when the dielectric layer is thinned, the electric field strength applied per layer becomes relatively high. Therefore, it is required to improve reliability when a voltage is applied.
 ここで、積層セラミックコンデンサは、一般に次のようにして製造される。先ず、誘電体セラミック原料粉末を樹脂バインダ中に分散させ、シート化してなるセラミックグリーンシートに、導電性粉末と所望によりセラミック粉末等を含む無機粉末、樹脂バインダおよび溶剤を主成分とする内部電極用の導電性ペーストを所定のパターンで印刷し、乾燥して溶剤を除去し、内部電極乾燥膜を形成する。次いで、得られた内部電極乾燥膜を有するセラミックシートを複数枚積み重ね、圧着して積層体とし、所定の形状に切断した後、高温で焼成してセラミック素体を得る。この後、セラミック素体の両端面に外部電極用の導電性ペーストを塗布した後、焼成して積層セラミックコンデンサを得る。なお、外部電極は、未焼成の積層体に外部電極用ペーストを塗布し、セラミック素体と同時に焼成されることもある。そして、内部電極としてはNiを主成分として用いたものが知られている(例えば、特許文献1)。 Here, the monolithic ceramic capacitor is generally manufactured as follows. First, a dielectric ceramic raw material powder is dispersed in a resin binder and formed into a sheet, and a ceramic green sheet is formed into an inorganic electrode containing conductive powder and optionally ceramic powder, a resin binder, and an internal electrode mainly containing a solvent. The conductive paste is printed in a predetermined pattern and dried to remove the solvent and form an internal electrode dry film. Next, a plurality of the obtained ceramic sheets having the internal electrode dry film are stacked, pressure-bonded to form a laminated body, cut into a predetermined shape, and then fired at a high temperature to obtain a ceramic body. After that, a conductive paste for external electrodes is applied to both end faces of the ceramic body and then fired to obtain a laminated ceramic capacitor. The external electrodes may be formed by applying an external electrode paste to an unfired laminate and firing the ceramic bodies at the same time. As the internal electrode, one using Ni as a main component is known (for example, Patent Document 1).
 内部電極にNiを主成分として用いた積層セラミックコンデンサを製造する際には、Niの酸化を防止するために還元雰囲気で焼成を行う必要があるが、この際、誘電体層に酸素欠損が導入されてしまい、それが高温負荷寿命の低下を引き起こすという問題があった。 When manufacturing a monolithic ceramic capacitor using Ni as a main component for the internal electrodes, it is necessary to perform firing in a reducing atmosphere in order to prevent oxidation of Ni. At this time, oxygen deficiency is introduced into the dielectric layer. However, there is a problem in that it causes a decrease in high temperature load life.
 そこで、特許文献2には、NiにSnが固溶した内部電極を用いることにより、誘電体層と電極層の界面の電気的障壁の高さが変化し、高温負荷寿命を達成しようとしている発明が記載されている。 Therefore, in Patent Document 2, by using an internal electrode in which Sn is solid-dissolved in Ni, the height of the electrical barrier at the interface between the dielectric layer and the electrode layer is changed, and the invention is intended to achieve a high temperature load life. Is listed.
特開2001-101926JP 2001-101926 A WO2012/111592WO2012 / 111592
 しかしながら、NiにSnが固溶するとNiの融点が低下し焼結が促進されるため、焼成時に電極層の各所でボールアップが起こり易くなり、電極膜の連続性を低下させることとなる。そして、電極膜の連続性の低下はコンデンサの容量低下を招く。 However, when Sn is solid-dissolved in Ni, the melting point of Ni is lowered and the sintering is promoted, so that ball-up easily occurs at various places of the electrode layer during firing, which deteriorates the continuity of the electrode film. Then, the decrease in the continuity of the electrode film causes a decrease in the capacitance of the capacitor.
 そこで、本発明の目的は、NiへのSn固溶による融点降下を極力抑え、且つ、高温負荷寿命を向上することができる内部電極用のNiペーストを提供することにある。また、本発明の目的は、誘電体層の更なる薄層化および高電界強度の電圧印加が行われても、優れた信頼性を示す積層セラミックコンデンサを提供することにある。 Therefore, an object of the present invention is to provide a Ni paste for internal electrodes, which can suppress the melting point drop due to Sn solid solution in Ni as much as possible and can improve the high temperature load life. Another object of the present invention is to provide a multilayer ceramic capacitor that exhibits excellent reliability even when the dielectric layer is made thinner and a voltage with high electric field strength is applied.
 上記課題は、以下の本発明により解決される。
 すなわち、本発明(1)は、(A)Niを主とする導電性粉末と、
(B)バインダ樹脂と、
(C)有機溶剤と、
(D)Snと、Ta及びNbのうちのずれか一方又は両方と、を含むパイロクロア型酸化物と、
を含有し、
 前記パイロクロア型酸化物の含有量が、(A)Niを主とする導電性粉末100質量部に対して、0.05~2.0質量部であること、
を特徴とするNiペーストを提供するものである。
The above problems can be solved by the present invention described below.
That is, the present invention (1) includes (A) a conductive powder mainly containing Ni,
(B) a binder resin,
(C) an organic solvent,
(D) Pyrochlore-type oxide containing Sn and one or both of Ta and Nb, and
Containing
The content of the pyrochlore type oxide is 0.05 to 2.0 parts by mass with respect to 100 parts by mass of the conductive powder (A) Ni as a main component.
The present invention provides a Ni paste.
 また、本発明(2)は、前記パイロクロア型酸化物の含有量が、前記(A)Niを主とする導電性粉末100質量部に対して、0.1~0.6質量部であることを特徴とする(1)のNiペーストを提供するものである。 Further, in the present invention (2), the content of the pyrochlore type oxide is 0.1 to 0.6 parts by mass with respect to 100 parts by mass of the conductive powder mainly composed of (A) Ni. (1) Ni paste is provided.
 また、本発明(3)は、前記パイロクロア型酸化物が、下記一般式(1):
   Sn2+ 2-xzSn4+ y7-x-y/2   (1)
(式中、MはTa及びNbのうちのいずれか1種又は2種であり、xは0~0.6、yは0~0.5、y+z=2である。)
で表されるパイロクロア型酸化物であることを特徴とする(1)又は(2)いずれかのNiペーストを提供するものである。
Further, in the present invention (3), the pyrochlore type oxide is represented by the following general formula (1):
Sn 2+ 2-x M z Sn 4+ y O 7-xy / 2 (1)
(In the formula, M is one or two of Ta and Nb, x is 0 to 0.6, y is 0 to 0.5, and y + z = 2.)
The Ni paste according to (1) or (2) is characterized in that it is a pyrochlore type oxide represented by.
 また、本発明(4)は、複数のセラミック誘電体層と、Niを含む複数の内部電極層と、が交互に積層されているセラミック積層体と、
 前記セラミック積層体の外表面に形成されている外部電極と、
を備え、
 前記セラミック誘電体層と前記内部電極層との界面に、Snと、Ta及びNbのうちのずれか一方又は両方と、を含む複合酸化物が存在すること、
を特徴とする積層セラミックコンデンサを提供するものである。
Further, the present invention (4) is a ceramic laminate in which a plurality of ceramic dielectric layers and a plurality of internal electrode layers containing Ni are alternately laminated,
External electrodes formed on the outer surface of the ceramic laminate,
Equipped with
At the interface between the ceramic dielectric layer and the internal electrode layer, there is a complex oxide containing Sn and either or both of Ta and Nb.
The present invention provides a laminated ceramic capacitor characterized by the following.
 また、本発明(5)は、複数のセラミック誘電体層と、Niを含む複数の内部電極層と、が交互に積層されているセラミック積層体と、
 前記セラミック積層体の外表面に形成されている外部電極と、
を備え、
 前記内部電極層が、(1)~(3)いずれかのNiペーストが900~1400℃で焼成された焼成物で形成されていること、
を特徴とする積層セラミックコンデンサを提供するものである。
Further, the present invention (5) is a ceramic laminate in which a plurality of ceramic dielectric layers and a plurality of internal electrode layers containing Ni are alternately laminated,
External electrodes formed on the outer surface of the ceramic laminate,
Equipped with
The internal electrode layers are formed of a fired product obtained by firing the Ni paste of any one of (1) to (3) at 900 to 1400 ° C.,
The present invention provides a laminated ceramic capacitor characterized by the following.
 本発明によれば、NiへのSn固溶による融点降下を極力抑え、且つ、高温負荷寿命を向上することができる内部電極用のNiペーストを提供することができる。また、本発明によれば、誘電体層の更なる薄層化および高電界強度の電圧印加が行われても、優れた信頼性を示す積層セラミックコンデンサを提供することができる。 According to the present invention, it is possible to provide a Ni paste for internal electrodes, which can suppress the melting point drop due to solid solution of Sn in Ni as much as possible and can improve the high temperature load life. Further, according to the present invention, it is possible to provide a monolithic ceramic capacitor that exhibits excellent reliability even when the dielectric layer is made thinner and a voltage with high electric field strength is applied.
 本発明のNiペーストは、
(A)Niを主とする導電性粉末と、
(B)バインダ樹脂と、
(C)有機溶剤と、
(D)Snと、Ta及びNbのうちのずれか一方又は両方と、を含むパイロクロア型酸化物と、
を含有し、
 前記パイロクロア型酸化物の含有量が、前記(A)Niを主とする導電性粉末100質量部に対して、0.05~2.0質量部であること、
を特徴とするNiペーストである。
The Ni paste of the present invention is
(A) a conductive powder mainly containing Ni,
(B) a binder resin,
(C) an organic solvent,
(D) Pyrochlore-type oxide containing Sn and one or both of Ta and Nb, and
Containing
The content of the pyrochlore type oxide is 0.05 to 2.0 parts by mass with respect to 100 parts by mass of the conductive powder containing (A) Ni as a main component.
Is a Ni paste.
 本発明のNiペーストは、積層セラミックコンデンサの内部電極形成用途に好適に用いられ、また、積層セラミックアクチュエータ等の他のセラミック電子部品へも適用可能である。 The Ni paste of the present invention is suitably used for forming internal electrodes of a laminated ceramic capacitor, and is also applicable to other ceramic electronic components such as a laminated ceramic actuator.
 本発明のNiペーストは、少なくとも、(A)Niを主とする導電性粉末、(B)バインダ樹脂と、(C)有機溶剤と、(D)Snと、Ta及びNbのうちのいずれか一方又は両方と、を含むパイロクロア型酸化物と、を含有する。 The Ni paste of the present invention includes at least one of (A) Ni-based conductive powder, (B) binder resin, (C) organic solvent, (D) Sn, and Ta and Nb. Or a pyrochlore-type oxide containing both of them.
 本発明のNiペーストに係る(A)Niを主とする導電性粉末は、内部電極の形成用のNiペーストにおいて、導電性粉末として用いられ、Niを主として含有する粉末である。(A)Niを主とする導電性粉末としては、金属Niのみからなる粉末が挙げられる。また、(A)Niを主とする導電性粉末としては、本発明の作用効果を奏する限りにおいて、Niと他の化合物との複合粉末、Niと他の化合物との混合粉末、Niと他の金属との合金粉末等が挙げられる。Niと他の化合物との複合粉末としては、例えば、Ni粉末の表面がガラス質薄膜で被覆されている複合粉末、Ni粉末の表面が酸化物で被覆されている複合粉末、Ni粉末の表面が有機金属化合物、界面活性剤、脂肪酸類などで表面処理された複合粉末が挙げられる。Niと他の化合物との混合粉末としては、例えば、Ni粉末と、後述する共材粉末などとの混合粉末が挙げられる。また合金粉末において利用可能な他の金属としては、Niと合金化する際に融点降下を起こしにくい金属であれば良く、一例としてCu、Ag、Pd、Pt、Rh、Ir、Re、Ru、Os、In、Ga、Zn、Bi、Pb、Fe、V、Y等が挙げられる。(A)Niを主とする導電性粉末中のNi含有量は、本発明の作用効果を奏する限りにおいて、特に制限されないが、好ましくは60質量%以上、特に好ましくは80質量%以上、更に好ましくは100質量%である。 The (A) Ni-based conductive powder according to the Ni paste of the present invention is a powder that is used as a conductive powder in a Ni paste for forming internal electrodes and that mainly contains Ni. Examples of the conductive powder (A) containing Ni as a main component include a powder containing only metallic Ni. As the conductive powder mainly composed of (A) Ni, a composite powder of Ni and another compound, a mixed powder of Ni and another compound, a mixture of Ni and another, as long as the effects of the present invention are exhibited. Examples thereof include alloy powder with a metal. Examples of the composite powder of Ni and another compound include a composite powder in which the surface of the Ni powder is covered with a glassy thin film, a composite powder in which the surface of the Ni powder is covered with an oxide, and a surface of the Ni powder. Examples thereof include composite powders which are surface-treated with an organometallic compound, a surfactant, fatty acids and the like. Examples of the mixed powder of Ni and another compound include a mixed powder of Ni powder and a co-material powder described later. The other metal that can be used in the alloy powder may be any metal that does not easily cause a melting point drop when alloyed with Ni, and examples thereof include Cu, Ag, Pd, Pt, Rh, Ir, Re, Ru and Os. , In, Ga, Zn, Bi, Pb, Fe, V, Y and the like. (A) The Ni content in the conductive powder mainly composed of Ni is not particularly limited as long as the effects of the present invention are exhibited, but is preferably 60% by mass or more, particularly preferably 80% by mass or more, and further preferably Is 100% by mass.
 (A)Niを主とする導電性粉末の平均粒径は、特に限定されないが、好ましくは0.05~1.0μmである。(A)Niを主とする導電性粉末の平均粒径が上記範囲内にあることにより、緻密で平滑性が高く、薄い内部電極層が形成され易くなる。なお、本明細書において数値範囲を示す符号「~」は、特に断らない限り、符号「~」の前後に記載された数値を含む範囲を示すものとする。すなわち、例えば「0.05~1.0」という表記は、特に断らない限り、「0.05以上1.0以下」と同義である。 The average particle size of the (A) Ni-based conductive powder is not particularly limited, but is preferably 0.05 to 1.0 μm. When the average particle diameter of the conductive powder (A) mainly containing Ni is within the above range, a dense internal electrode layer having high smoothness can be easily formed. In addition, in the present specification, the symbol "-" indicating the numerical range indicates the range including the numerical values described before and after the symbol "-" unless otherwise specified. That is, for example, the notation “0.05 to 1.0” is synonymous with “0.05 or more and 1.0 or less” unless otherwise specified.
 本発明のNiペースト中、(A)Niを主とする導電性粉末の含有量は、特に制限されず、Niペーストの仕上がり粘度、印刷性、保存安定性等々を考慮して、通常は30~95質量%の範囲で、適宜選択される。また、本発明のNiペースト中の(A)Niを主とする導電性粉末の含有量としては、50~95質量%の範囲で選択されてもよい。 In the Ni paste of the present invention, the content of the (A) Ni-based conductive powder is not particularly limited, and is usually 30 to 30 in consideration of the finish viscosity, printability, storage stability, etc. of the Ni paste. It is appropriately selected within the range of 95% by mass. The content of the (A) Ni-based conductive powder in the Ni paste of the present invention may be selected in the range of 50 to 95 mass%.
 本発明のNiペーストに係る(B)バインダ樹脂は、内部電極形成用の導電性ペーストに使用可能なものであれば、特に制限されない。(B)バインダ樹脂としては、内部電極形成用の導電性ペーストとして一般的に使用されているもの、例えば、エチルセルロースなどのセルロース系樹脂、アクリル樹脂、メタクリル樹脂、ブチラール樹脂、エポキシ樹脂、フェノール樹脂、ロジン等が挙げられる。 The (B) binder resin relating to the Ni paste of the present invention is not particularly limited as long as it can be used as a conductive paste for forming internal electrodes. The (B) binder resin is generally used as a conductive paste for forming internal electrodes, for example, a cellulose resin such as ethyl cellulose, an acrylic resin, a methacrylic resin, a butyral resin, an epoxy resin, a phenol resin, Examples include rosin.
 本発明のNiペーストにおける(B)バインダ樹脂の含有量は、特に制限されず、(A)Niを主とする導電性粉末100質量部に対し、通常は0.1~30質量部、好ましくは1~15質量部である。 The content of the (B) binder resin in the Ni paste of the present invention is not particularly limited, and is usually 0.1 to 30 parts by mass, preferably 100 parts by mass of the conductive powder mainly containing (A) Ni. 1 to 15 parts by mass.
 本発明のNiペーストに係る(C)有機溶剤は、(B)バインダ樹脂を溶解するものであれば特に限定されず、例えば、アルコール系、エーテル系、エステル系、炭化水素系等の溶剤やこれらの混合溶剤が挙げられる。 The (C) organic solvent related to the Ni paste of the present invention is not particularly limited as long as it can dissolve the (B) binder resin, and examples thereof include alcohol-based, ether-based, ester-based and hydrocarbon-based solvents and the like. Mixed solvent of.
 本発明のNiペーストに係る(D)Snと、Ta及びNbのうちのずれか一方又は両方と、を含むパイロクロア型酸化物は、SnとTaとからなる複合酸化物、SnとNbとからなる複合酸化物又はSnとTaとNbとからなる複合酸化物であり、且つ、パイロクロア型の構造有する酸化物である。本発明のNiペーストが、(D)SnとTa及びNbのうちのずれか一方又は両方とを含むパイロクロア型酸化物を含有することにより、焼成後の積層セラミックコンデンサの高温負荷寿命が向上する。(D)SnとTa及びNbのうちのずれか一方又は両方とを含むパイロクロア型酸化物は、本発明の効果を奏する限り、Sn、Ta及びNb以外の金属元素を含んでいてもよい。 The pyrochlore type oxide containing (D) Sn and / or one or both of Ta and Nb according to the Ni paste of the present invention is a composite oxide of Sn and Ta, and Sn and Nb. It is a composite oxide or a composite oxide composed of Sn, Ta, and Nb, and is an oxide having a pyrochlore type structure. Since the Ni paste of the present invention contains the pyrochlore type oxide containing (D) Sn and either or both of Ta and Nb, the high temperature load life of the laminated ceramic capacitor after firing is improved. (D) The pyrochlore type oxide containing Sn and one or both of Ta and Nb may contain a metal element other than Sn, Ta and Nb as long as the effect of the present invention is exhibited.
 本発明のNiペースト中、(D)SnとTa及びNbのうちのずれか一方又は両方とを含むパイロクロア型酸化物の含有量は、(A)Niを主とする導電性粉末100質量部に対して、0.05~2.0質量部、好ましくは0.1~0.6質量部である。本発明のNiペースト中の(D)SnとTa及びNbのうちのずれか一方又は両方とを含むパイロクロア型酸化物の含有量が上記範囲にあることにより、電極層および誘電体層側への元素拡散が極力抑えられ、効率良くかつ確実に高温負荷寿命が向上する。一方、Niペースト中の(D)SnとTa及びNbのうちのずれか一方又は両方とを含むパイロクロア型酸化物の含有量が、上記範囲を超えて多くなると、高温負荷寿命向上が少なくなる傾向にあり、また、寿命のバラツキが大きくなる。また、Niペースト中の(D)SnとTa及びNbのうちのずれか一方又は両方とを含むパイロクロア型酸化物の含有量が、上記範囲未満だと、上記高温負荷寿命の向上効果が得られない。 In the Ni paste of the present invention, the content of the pyrochlore type oxide containing (D) Sn and one or both of Ta and Nb is set to 100 parts by mass of the conductive powder mainly composed of (A) Ni. On the other hand, the amount is 0.05 to 2.0 parts by mass, preferably 0.1 to 0.6 parts by mass. When the content of the pyrochlore type oxide containing (D) Sn and either or both of Ta and Nb in the Ni paste of the present invention is in the above range, the content of the pyrochlore type oxide on the electrode layer and the dielectric layer side is increased. Element diffusion is suppressed as much as possible, and the high temperature load life is improved efficiently and surely. On the other hand, if the content of the pyrochlore type oxide containing (D) Sn and one or both of Ta and Nb in the Ni paste exceeds the above range, the improvement in high temperature load life tends to decrease. In addition, the variation in life becomes large. Further, if the content of the pyrochlore type oxide containing (D) Sn and one or both of Ta and Nb in the Ni paste is less than the above range, the effect of improving the high temperature load life can be obtained. Absent.
 (D)SnとTa及びNbのうちのずれか一方又は両方とを含むパイロクロア型酸化物は、Sn2(Ta,Nb)27を基本にしたパイロクロア構造を有しているが、従前から
知られているように、パイロクロア構造は次の一般式(1)で表される範囲内で単相を保つことができる。
(D) A pyrochlore-type oxide containing Sn and one or both of Ta and Nb has a pyrochlore structure based on Sn 2 (Ta, Nb) 2 O 7. As is known, the pyrochlore structure can maintain a single phase within the range represented by the following general formula (1).
 (D)SnとTa及びNbのうちのずれか一方又は両方とを含むパイロクロア型酸化物は、好ましくは下記一般式(1):
   Sn2+ 2-xzSn4+ y7-x-y/2   (1)
(式中、MはTa及びNbのうちのいずれか1種又は2種であり、xは0~0.6、yは0~0.5、y+z=2である。)
で表されるパイロクロア型酸化物である。一般式(1)で表されるパイロクロア型酸化物において、M元素は、Taのみであってもよいし、Nbのみであってもよいし、TaとNbの組み合わせであってもよい。つまり、一般式(1)で表されるパイロクロア型酸化物では、M元素であるTaとNbの比率は、モル比で100:0~0:100である。なお、上記一般式(1)の記載に従えば、Sn2Ta27はSn2+ 2Ta27になるが、本明細書では慣例に従い、Sn2Ta27と表わすものとする。
The (D) pyrochlore-type oxide containing Sn and one or both of Ta and Nb is preferably the following general formula (1):
Sn 2+ 2-x M z Sn 4+ y O 7-xy / 2 (1)
(In the formula, M is one or two of Ta and Nb, x is 0 to 0.6, y is 0 to 0.5, and y + z = 2.)
It is a pyrochlore type oxide represented by. In the pyrochlore type oxide represented by the general formula (1), the M element may be only Ta, only Nb, or a combination of Ta and Nb. That is, in the pyrochlore type oxide represented by the general formula (1), the molar ratio of Ta and Nb, which are M elements, is 100: 0 to 0: 100. According to the description of the general formula (1), Sn 2 Ta 2 O 7 becomes Sn 2+ 2 Ta 2 O 7 , but in the present specification, it will be referred to as Sn 2 Ta 2 O 7 according to the convention. To do.
 本発明のNiペーストへの(D)SnとTa及びNbのうちのずれか一方又は両方とを含むパイロクロア型酸化物(以下、(D)成分とも記載する。)の添加方法としては、例えば、(D)成分を粉末として添加する方法、(D)成分の粉末をスラリー化して添加する方法、(A)Niを主とする導電性粉末の表面を(D)成分で被覆する方法等が挙げられる。(D)成分を粉末又はスラリーとして用いる場合、(D)成分の平均粒径は、(A)Niを主とする導電性粉末の平均粒径の50%以下が好ましく、30%以下が特に好ましい。本発明のNiペースト中の(D)成分の含有量が少ないことから、(D)成分の平均粒径が上記範囲にあることにより、印刷後の電極膜内により均質に分散させることができる。 Examples of the method for adding the pyrochlore-type oxide (hereinafter also referred to as the component (D)) containing (D) Sn and one or both of Ta and Nb to the Ni paste of the present invention include: Examples include a method of adding the component (D) as a powder, a method of forming a powder of the component (D) into a slurry, and a method of coating the surface of the conductive powder mainly containing (A) Ni with the component (D). Be done. When the component (D) is used as a powder or a slurry, the average particle size of the component (D) is preferably 50% or less, and particularly preferably 30% or less of the average particle size of the conductive powder mainly composed of (A) Ni. .. Since the content of the component (D) in the Ni paste of the present invention is small, the average particle size of the component (D) within the above range allows more uniform dispersion in the electrode film after printing.
 なお、本発明者等による実験によれば、焼成後にパイロクロア型酸化物となる量で、SnOとTa25とを秤量し、Niペーストへ添加し、焼成した場合には、高温負荷寿命の向上は見られるものの、本発明の作用効果に比べて小さくなる。 According to the experiments conducted by the present inventors, SnO and Ta 2 O 5 were weighed in such amounts that they would become pyrochlore type oxides after firing, and when they were added to Ni paste and fired, the high temperature load life was Although an improvement can be seen, it is smaller than the effect of the present invention.
 本発明のNiペーストは、通常、内部電極形成用のNiペーストに添加されている共材粉末を含有することができる。任意に含有される共材粉末は、内部電極の焼結収縮挙動を誘電体層に近似させることを目的としたものであり、この共材粉末の種類は、特に限定されないが、セラミック誘電体との反応によるコンデンサの特性変化が最小になるように選択されることが望ましい。共材粉末としては、通常内部電極形成用のNiペーストに使用されているような、一般式:ABO3(但し、AはBa、CaおよびSrの少なくとも1種であり、Bは、Ti、ZrおよびHfの少なくとも1種である。)で表されるセラミック粉末、例えば、チタン酸バリウム、ジルコン酸ストロンチウム、ジルコン酸カルシウム等のペロブスカイト型酸化物粉末や、これらに種々の添加剤が添加されたものが好ましい。また、共材粉末としては、誘電体層の主成分として使用される誘電体セラミック原料粉末と同一の組成、又は近似した組成のものが、好ましい。なお、予め(A)Niを主とする導電性粉末の表面に共材粉末を付着させてから、Niペースト中の他の成分と混合してもよい。 The Ni paste of the present invention can contain a common material powder which is usually added to the Ni paste for forming the internal electrodes. The co-material powder optionally contained is for the purpose of approximating the sintering shrinkage behavior of the internal electrode to that of the dielectric layer, and the kind of the co-material powder is not particularly limited, but is not limited to the ceramic dielectric material. It is desirable to select the capacitor so that the change in the characteristics of the capacitor due to the reaction of is minimized. As the co-material powder, a general formula: ABO 3 (where A is at least one of Ba, Ca and Sr, and B is Ti, Zr, etc.), which is commonly used in Ni pastes for forming internal electrodes, is used. And Hf)), for example, a perovskite-type oxide powder such as barium titanate, strontium zirconate, or calcium zirconate, and those to which various additives are added. Is preferred. The co-material powder preferably has the same composition as or a similar composition to the dielectric ceramic raw material powder used as the main component of the dielectric layer. The common material powder may be attached to the surface of the conductive powder containing (A) Ni as a main component and then mixed with other components in the Ni paste.
 本発明のNiペーストが共材粉末を含有する場合、本発明のNiペースト中、共材粉末の含有量は、(A)Niを主とする導電性粉末100質量部に対し、共材粉末合計で30質量部以下である。Niペースト中の共材粉末の含有量が、上記範囲を超えると、電極層が厚くなり、構造欠陥を生じ易くなる他、電極層が不連続膜になる。 When the Ni paste of the present invention contains a co-material powder, the content of the co-material powder in the Ni paste of the present invention is (A) the total content of the co-material powder with respect to 100 parts by mass of the conductive powder mainly containing Ni. And is 30 parts by mass or less. When the content of the co-material powder in the Ni paste exceeds the above range, the electrode layer becomes thick and a structural defect is likely to occur, and the electrode layer becomes a discontinuous film.
 共材粉末の平均粒径は、特に限定されないが、(A)Niを主とする導電性粉末の平均粒径の30%以下であることが、より優れた焼結抑制効果および緻密性向上効果を示すので好ましい。更に、ペースト中における共材粉末の総比表面積が、(A)Niを主とする導電性粉末の総比表面積よりも大きいことが、高温負荷寿命の向上効果が高まる点で好ましい。なお、共材粉末の平均粒径及び含有量を選択することにより、ペースト中における共材粉末の総比表面積を、(A)Niを主とする導電性粉末の総比表面積よりも大きくすることができる。ただし、共材粉末の平均粒径が小さ過ぎると、表面積の増大により伴い、粉末自身の焼結が速くなり過ぎるため、Niを主とする導電性粉末の焼結抑制効果が低くなるので、共材粉末の平均粒径は0.01μm以上であることが好ましい。 The average particle diameter of the co-material powder is not particularly limited, but it is more preferable that it is 30% or less of the average particle diameter of the conductive powder mainly composed of (A) Ni, which is more effective in suppressing sintering and improving the denseness. It is preferable because Further, it is preferable that the total specific surface area of the co-material powder in the paste is larger than the total specific surface area of the conductive powder mainly composed of (A) Ni in order to enhance the effect of improving the high temperature load life. By selecting the average particle size and content of the co-material powder, the total specific surface area of the co-material powder in the paste is made larger than the total specific surface area of the conductive powder (A) Ni as a main component. You can However, if the average particle size of the co-material powder is too small, the sintering of the powder itself will be too fast due to the increase in the surface area, and the effect of suppressing the sintering of the conductive powder mainly containing Ni will be low. The average particle size of the material powder is preferably 0.01 μm or more.
 本発明のNiペーストは、上記の他、内部電極形成用のNiペーストに通常添加されることのある可塑剤、分散剤、界面活性剤等の添加剤を、必要に応じて含有することができる。 In addition to the above, the Ni paste of the present invention may contain additives such as a plasticizer, a dispersant, and a surfactant, which are usually added to the Ni paste for forming the internal electrodes, if necessary. ..
 本発明のNiペーストは、上述した(A)Niを主とする導電性粉末、(B)バインダ樹脂、(C)有機溶剤、(D)SnとTa及びNbのうちのずれか一方又は両方とを含むパイロクロア型酸化物、及びその他必要に応じて添加される共材粉末や種々の添加剤を、常法に従って均一に混合分散させることにより、調製される。 The Ni paste of the present invention contains the above-mentioned (A) Ni-based conductive powder, (B) binder resin, (C) organic solvent, and (D) Sn and one or both of Ta and Nb. It is prepared by uniformly mixing and dispersing a pyrochlore-type oxide containing, and a co-material powder and other various additives, which are optionally added, according to a conventional method.
 本発明の積層セラミックコンデンサは、本発明のNiペーストを用いて、以下のような方法で製造される。 The monolithic ceramic capacitor of the present invention is manufactured by the following method using the Ni paste of the present invention.
 先ず、誘電体セラミック原料粉末を、樹脂バインダ中に分散させ、ドクターブレード法やダイコーター法等でシート成形し、誘電体セラミック原料粉末を含むセラミックグリーンシートを作製する。誘電体層を形成するための誘電体セラミック原料粉末としては、チタン酸バリウム系、ジルコン酸ストロンチウム系、ジルコン酸カルシウムストロンチウム系などのペロブスカイト型酸化物、又はこれらを構成する金属元素の一部を他の金属元素で置換したものなど、通常のペロブスカイト型酸化物を主成分とする粉末が使用される。必要に応じて、これらの原料粉末に、コンデンサ特性を調整するための各種添加剤が配合される。原料粉末の粒径は、例えば誘電体セラミック層の厚みを5.0μm以下とする場合、平均粒径が0.05~0.4μm程度が好ましい。次いで、得られるセラミックグリーンシート上に、本発明のNiペーストをスクリーン印刷等の通常の方法で塗布し、乾燥して溶剤を除去し、所定のパターンの内部電極ペースト乾燥膜を形成する。次いで、内部電極ペースト膜が形成されたセラミックグリーンシートを所定の枚数だけ積み重ね、加圧積層して、未焼成の積層体を作製する。次いで、得られる積層体を所定の形状に切断した後、高温で焼成し、誘電体層と電極層を同時に焼結し、積層セラミックコンデンサ素体を得る。その後、素体の両端面に端子電極を焼付けて形成して、本発明の積層セラミックコンデンサを得る。なお、端子電極は、上記の積層体の焼成前に取付けて積層体と同時に焼成してもよい。 First, the dielectric ceramic raw material powder is dispersed in a resin binder and formed into a sheet by a doctor blade method, a die coater method or the like to produce a ceramic green sheet containing the dielectric ceramic raw material powder. As the dielectric ceramic raw material powder for forming the dielectric layer, barium titanate-based, strontium zirconate-based, calcium strontium zirconate-based perovskite-type oxides, or some of the metal elements constituting these are used. A powder containing an ordinary perovskite-type oxide as a main component, such as one substituted with the metal element of, is used. If necessary, these raw material powders are mixed with various additives for adjusting the capacitor characteristics. The particle size of the raw material powder is preferably about 0.05 to 0.4 μm when the thickness of the dielectric ceramic layer is 5.0 μm or less. Then, the Ni paste of the present invention is applied on the obtained ceramic green sheet by a usual method such as screen printing and dried to remove the solvent, thereby forming an internal electrode paste dry film having a predetermined pattern. Next, a predetermined number of ceramic green sheets having the internal electrode paste film formed thereon are stacked and pressure-laminated to produce an unfired laminated body. Next, the obtained laminated body is cut into a predetermined shape and then fired at a high temperature to simultaneously sinter the dielectric layer and the electrode layer to obtain a laminated ceramic capacitor body. Thereafter, terminal electrodes are baked on both end faces of the element body to form the laminated ceramic capacitor of the present invention. The terminal electrode may be attached before firing the above-mentioned laminated body and fired at the same time as the laminated body.
 このようにして得られる本発明の積層セラミックコンデンサは、複数のセラミック誘電体層と、Niを含む複数の内部電極層と、が交互に積層されているセラミック積層体と、
 前記セラミック積層体の外表面に形成されている外部電極と、
を備え、
 前記セラミック誘電体層と前記内部電極層との界面に、Snと、Ta及びNbのうちのずれか一方又は両方と、を含む複合酸化物が存在すること、
を特徴とする積層セラミックコンデンサである。
The thus-obtained monolithic ceramic capacitor of the present invention is a ceramic laminate in which a plurality of ceramic dielectric layers and a plurality of internal electrode layers containing Ni are alternately laminated,
External electrodes formed on the outer surface of the ceramic laminate,
Equipped with
At the interface between the ceramic dielectric layer and the internal electrode layer, there is a complex oxide containing Sn and either or both of Ta and Nb.
Is a monolithic ceramic capacitor.
 本発明の積層セラミックコンデンサに係るセラミック誘電体層は、誘電体セラミック原料粉末として、チタン酸バリウム系、ジルコン酸ストロンチウム系、ジルコン酸カルシウムストロンチウム系などのペロブスカイト型酸化物、又はこれらを構成する金属元素の一部を他の金属元素で置換したものなど、通常のペロブスカイト型酸化物を主成分とする粉末を用いて、これらの誘電体セラミック原料粉末を成形し、還元性雰囲気下で、900~1400℃、好ましくは1100~1300℃で焼成することにより、形成されたものである。 The ceramic dielectric layer according to the monolithic ceramic capacitor of the present invention is, as the dielectric ceramic raw material powder, a perovskite type oxide such as barium titanate-based, strontium zirconate-based, calcium strontium zirconate-based, or a metal element constituting these. These dielectric ceramic raw material powders are molded by using a powder containing an ordinary perovskite type oxide as a main component, such as one in which a part of is replaced with another metal element, and 900 to 1400 in a reducing atmosphere. It is formed by baking at a temperature of 1,100 to 1,300 ° C.
 本発明の積層セラミックコンデンサは、Niを含む内部電極層が、本発明のNiペーストを用いて形成されたもの、すなわち、本発明のNiペーストをスクリーン印刷等により、誘電体層形成用のセラミックグリーンシート上に成形し、乾燥し、焼成することにより形成されたものである。そのため、本発明の積層セラミックコンデンサに係るNiを含む内部電極層は、セラミック誘電体層と内部電極層との界面に、「Snと、Ta及びNbのうちのずれか一方又は両方と、を含む複合酸化物」が存在する。そして、本発明の積層セラミックコンデンサは、セラミック誘電体層と内部電極層との界面に、「Snと、Ta及びNbのうちのずれか一方又は両方と、を含む複合酸化物」が存在することにより、NiへのSn固溶による融点降下を極力抑えられ、且つ、高温負荷寿命が向上するので、誘電体層の更なる薄層化および高電界強度の電圧印加が行われても、優れた信頼性を示す。 In the multilayer ceramic capacitor of the present invention, the internal electrode layers containing Ni are formed by using the Ni paste of the present invention, that is, the Ni paste of the present invention is screen-printed or the like to form a ceramic green for forming a dielectric layer. It is formed by molding on a sheet, drying and firing. Therefore, the internal electrode layer containing Ni according to the multilayer ceramic capacitor of the present invention includes “Sn and either or both of Ta and Nb, or both, at the interface between the ceramic dielectric layer and the internal electrode layer. "Composite oxides" are present. In the multilayer ceramic capacitor of the present invention, "a complex oxide containing Sn and one or both of Sn and Ta and Nb are present" is present at the interface between the ceramic dielectric layer and the internal electrode layer. By this, the melting point drop due to the solid solution of Sn in Ni is suppressed as much as possible and the high temperature load life is improved. Therefore, even if the dielectric layer is further thinned and a voltage with high electric field strength is applied, it is excellent. Demonstrate reliability.
 なお、セラミック誘電体層と内部電極層との界面に、「Snと、Ta及びNbのうちのずれか一方又は両方と、を含む複合酸化物」が存在することは、TEM(透過型電子顕微鏡)とEDS(エネルギー分散型X線分光法)やWDS(波長分散型X線分光法)、またはEELS(電子エネルギー損失分光法)などの元素分析手法を組み合わせることにより確認される。 It should be noted that the presence of "a complex oxide containing Sn and one or both of Sn and Ta or Nb" at the interface between the ceramic dielectric layer and the internal electrode layer means that TEM (transmission electron microscope) is present. ) And EDS (energy dispersive X-ray spectroscopy), WDS (wavelength dispersive X-ray spectroscopy), or EELS (electron energy loss spectroscopy).
 本発明の積層セラミックコンデンサに係るNiを含む内部電極層は、本発明のNiペーストを、還元性雰囲気下、900~1400℃、好ましくは1100~1300℃で焼成して形成されたものである。 The internal electrode layer containing Ni according to the laminated ceramic capacitor of the present invention is formed by firing the Ni paste of the present invention in a reducing atmosphere at 900 to 1400 ° C, preferably 1100 to 1300 ° C.
 本発明の積層セラミックコンデンサに係る外部電極は、積層セラミックコンデンサの外部電極として用いることができるものであれば、特に制限されない。 The external electrode of the monolithic ceramic capacitor of the present invention is not particularly limited as long as it can be used as the external electrode of the monolithic ceramic capacitor.
 また、本発明の積層セラミックコンデンサは、複数のセラミック誘電体層と、Niを含む複数の内部電極層と、が交互に積層されているセラミック積層体と、
 前記セラミック積層体の外表面に形成されている外部電極と、
を備え、
 前記内部電極層が、本発明のNiペーストが900~1400℃で焼成された焼成物で形成されていること、
を特徴とする積層セラミックコンデンサである。
Further, the laminated ceramic capacitor of the present invention is a ceramic laminated body in which a plurality of ceramic dielectric layers and a plurality of internal electrode layers containing Ni are alternately laminated,
External electrodes formed on the outer surface of the ceramic laminate,
Equipped with
The internal electrode layers are formed of a fired product obtained by firing the Ni paste of the present invention at 900 to 1400 ° C.,
Is a monolithic ceramic capacitor.
 本発明の積層セラミックコンデンサにおいて、内部電極層は、本発明のNiペーストをスクリーン印刷等により、積層層形成用のセラミックグリーンシート上に成形し、乾燥し、焼成することにより形成されたものである。本発明のNiペーストの焼成温度は、900~1400℃、好ましく1100~1300℃であり、焼成雰囲気は、還元性雰囲気である。 In the laminated ceramic capacitor of the present invention, the internal electrode layers are formed by molding the Ni paste of the present invention on a ceramic green sheet for forming a laminated layer by screen printing or the like, drying and firing. .. The firing temperature of the Ni paste of the present invention is 900 to 1400 ° C., preferably 1100 to 1300 ° C., and the firing atmosphere is a reducing atmosphere.
 以下、本発明を具体的な実験例に基づき説明するが、本発明は、これらに限定されるものではない。 Hereinafter, the present invention will be described based on specific experimental examples, but the present invention is not limited thereto.
(実施例1)
<Niペースト及び積層セラミックコンデンサの製造>
 先ず、組成Sn2Ta27のパイロクロア型酸化物を得るため、SnO粉末とTa25粉末をそれぞれ秤量及び混合し、N2-0.1%H2-H2Oガスからなる還元雰囲気中において1000℃で焼成した後、平均粒径が0.05μmになるまで粉砕してSnとTaを含むパイロクロア型酸化物を製造した。なお、得られたものがSnとTaを含むパイロクロア型酸化物であることを、XRD(X線回折)により確認した。
 次に、平均粒径0.3μmの球状ニッケル粉末100質量部に対して、共材粉末として平均粒径0.05μmのBaTiO3粉末を10.0質量部、エチルセルロース(バインダ樹脂)6.0質量部、界面活性剤2.0質量部、可塑剤1.0質量部、及びジヒドロターピネオールアセテート(有機溶剤)100質量部の比率で準備し、これに上記で得たSnとTaを含むパイロクロア型酸化物粉末を表1に示す量でそれぞれ混合し、3本ロールミルを使用して混練することによって12種のNiペーストを作製した。
 次に、セラミックグリーンシートの主成分となる平均粒径0.2μmのBaTiO3粉末にポリビニルブチラール系バインダとエタノールとコンデンサ特性を調整する添加剤を加えてメディアミルにより湿式混合し、セラミックスラリーを調製した。
 このセラミックスラリーをダイコーター法によりシート成形し、厚み5.5μmのセラミックグリーンシートを準備した。
 続いて、このセラミックグリーンシート上に、Niペーストを1.5mm×3.0mmの矩形のパターンに印刷した後、乾燥することにより、内部電極乾燥膜を形成した。内部電極乾燥膜の厚さは1.5μmであった。内部電極乾燥膜を有するセラミックグリーンシートを、誘電体有効層が50層になるように積み重ね、90℃で1250kg/cm2の圧力を加えて圧着及び成形して未焼成のセラミック積層体を得た。
 このセラミック積層体を、N2-0.1%H2-H2Oガスからなる雰囲気中で700℃に加熱し、バインダを燃焼させた後、1220℃での酸素分圧が1×10-8atmのN2-0.1%H2-H2Oガスからなる還元雰囲気中において、5℃/minの昇温速度で昇温し、1220℃にて2時間保持して焼結緻密化させ、その後、冷却段階にてN2-H2Oガス雰囲気中で1000℃にて3時間の再酸化処理を行うことによって積層セラミック素体を得た。
 次いで、積層セラミック素体の両端面に、Cu粉末とBaO系ガラスフリットを含む外部電極形成用のCuペーストを塗布し、N2雰囲気中、780℃の温度で焼き付けて外部電極を形成することにより積層セラミックコンデンサを作製した。
 これを前出の12種のNiペースト全てに対して行うことにより、表1の試料番号1~12の試料を得た。なお、表1において、試料番号に*を付した試料は本発明の要件を満たさない比較例である。
 得られた積層セラミックコンデンサの外形寸法は、幅(W):1.6mm、長さ (L):3.2mm、厚さ(T):0.7mmであり、内部電極層の厚みは1.2μmであり、内部電極間に介在するセラミック誘電体層の厚みは4.0μmであった。また、誘電体層の1層あたりの対向電極の面積は3.25mm2であった。
(Example 1)
<Production of Ni paste and multilayer ceramic capacitor>
First, in order to obtain a pyrochlore type oxide having a composition of Sn 2 Ta 2 O 7 , SnO powder and Ta 2 O 5 powder were weighed and mixed, respectively, and reduced with N 2 -0.1% H 2 -H 2 O gas. After firing in an atmosphere at 1000 ° C., it was ground until the average particle size became 0.05 μm to produce a pyrochlore type oxide containing Sn and Ta. It was confirmed by XRD (X-ray diffraction) that the obtained product was a pyrochlore type oxide containing Sn and Ta.
Next, with respect to 100 parts by mass of spherical nickel powder having an average particle size of 0.3 μm, 10.0 parts by mass of BaTiO 3 powder having an average particle size of 0.05 μm as an additive powder and 6.0 parts by mass of ethyl cellulose (binder resin) were used. Parts, 2.0 parts by mass of a surfactant, 1.0 part by mass of a plasticizer, and 100 parts by mass of dihydroterpineol acetate (organic solvent), and a pyrochlore-type oxidation containing Sn and Ta obtained above. The powders were mixed in the amounts shown in Table 1 and kneaded using a three-roll mill to prepare 12 kinds of Ni pastes.
Next, a polyvinyl butyral binder, ethanol, and an additive for adjusting the capacitor characteristics are added to BaTiO 3 powder having an average particle size of 0.2 μm, which is the main component of the ceramic green sheet, and wet mixed by a media mill to prepare a ceramic slurry. did.
This ceramic slurry was formed into a sheet by a die coater method to prepare a ceramic green sheet having a thickness of 5.5 μm.
Subsequently, an Ni electrode paste was printed on the ceramic green sheet in a rectangular pattern of 1.5 mm × 3.0 mm and then dried to form an internal electrode dry film. The thickness of the internal electrode dry film was 1.5 μm. Ceramic green sheets having a dry film of the internal electrodes were stacked so that the dielectric effective layer was 50 layers, and pressure and pressure of 1250 kg / cm 2 were applied at 90 ° C. for pressure bonding and molding to obtain an unfired ceramic laminate. ..
This ceramic laminate was heated to 700 ° C. in an atmosphere of N 2 -0.1% H 2 —H 2 O gas to burn the binder, and then the oxygen partial pressure at 1220 ° C. was 1 × 10 −. In a reducing atmosphere consisting of 8 atm of N 2 -0.1% H 2 -H 2 O gas, the temperature was raised at a heating rate of 5 ° C./min, and the temperature was maintained at 1220 ° C. for 2 hours to sinter and densify. After that, a multilayer ceramic body was obtained by performing reoxidation treatment at 1000 ° C. for 3 hours in a N 2 —H 2 O gas atmosphere in the cooling stage.
Then, a Cu paste for forming an external electrode containing Cu powder and a BaO-based glass frit is applied to both end faces of the monolithic ceramic body and baked at a temperature of 780 ° C. in an N 2 atmosphere to form an external electrode. A multilayer ceramic capacitor was produced.
By performing this for all of the above 12 kinds of Ni pastes, the samples of sample numbers 1 to 12 in Table 1 were obtained. In addition, in Table 1, the sample with * added to the sample number is a comparative example that does not satisfy the requirements of the present invention.
The external dimensions of the obtained monolithic ceramic capacitor were: width (W): 1.6 mm, length (L): 3.2 mm, thickness (T): 0.7 mm, and the internal electrode layer had a thickness of 1. It was 2 μm, and the thickness of the ceramic dielectric layer interposed between the internal electrodes was 4.0 μm. The area of the counter electrode per one dielectric layer was 3.25 mm 2 .
<特性の評価>
 上述のようにして作製した各積層セラミックコンデンサ(表1の試料番号1~12の試料)について、以下に説明する方法で、高温負荷試験を行うとともに、内部電極層の連続性の評価、及び誘電体層と内部電極層の界面近傍の観察を行った。
(1)高温負荷試験
 試料番号1~12の各試料からそれぞれ15個をサンプリングし、180℃、60Vの条件で高温負荷試験を行い、絶縁抵抗が1桁低下するまでに要する時間を、各積層セラミックコンデンサの故障時間とした。そして、この故障時間をワイブルプロットし、MTTF(平均故障時間)を求めた。
 また、ワイブルプロットから得られる形状パラメータm値は、故障時間のばらつきを評価するためのもので、このm値が大きいほど故障時間のばらつきが小さく、コンデンサとして望ましい。
 MTTFおよびm値の評価結果を表1に併記する。
(2)内部電極層の連続性評価
 試料番号1~12のそれぞれの積層セラミックコンデンサを、内部電極層に直交する面で切断してSEM(走査型電子顕微鏡)にて観察を行った。観察倍率は1000倍で、観察視野の中から内部電極を無作為に10本選択し、電極が存在している部分の、全体の長さに対する割合を計測して、連続性として評価した。ここでは連続性が95%以上を○とし、95%未満を×として表1に併記した。
(3)誘電体層と内部電極層の界面近傍の観察
 試料番号1~12のそれぞれの積層セラミックコンデンサ素体を、内部電極層に直交する面で切断し、チップの中央部にあたる領域について、FIB(集束イオンビーム)によるマイクロサンプリング加工法を用いて加工し、薄片化された分析用の試料を作製した。この試料を高分解能のTEM(透過型電子顕微鏡)で観察した。観察箇所は誘電体層と内部電極層の界面近傍とした。
<Evaluation of characteristics>
Each of the monolithic ceramic capacitors manufactured as described above (samples Nos. 1 to 12 in Table 1) was subjected to a high temperature load test by the method described below, and the continuity of the internal electrode layers was evaluated and the dielectric constant was measured. The vicinity of the interface between the body layer and the internal electrode layer was observed.
(1) High temperature load test 15 samples from each of the sample numbers 1 to 12 were sampled and subjected to a high temperature load test under the conditions of 180 ° C. and 60 V, and the time required for the insulation resistance to decrease by one digit was determined for each lamination. It was the failure time of the ceramic capacitor. Then, this failure time was Weibull plotted to obtain MTTF (mean failure time).
The shape parameter m value obtained from the Weibull plot is for evaluating the variation of the failure time. The larger this m value is, the smaller the variation of the failure time is, which is desirable as a capacitor.
Table 1 also shows the evaluation results of MTTF and m value.
(2) Evaluation of Continuity of Internal Electrode Layer Each of the laminated ceramic capacitors of Sample Nos. 1 to 12 was cut along a plane orthogonal to the internal electrode layer and observed with a SEM (scanning electron microscope). The observation magnification was 1000 times, 10 internal electrodes were randomly selected from the observation visual field, and the ratio of the portion where the electrodes were present to the entire length was measured and evaluated as continuity. Here, the continuity of 95% or more was marked with ◯, and the continuity of less than 95% was marked with x, which is also shown in Table 1.
(3) Observation of the vicinity of the interface between the dielectric layer and the internal electrode layer Each of the laminated ceramic capacitor element bodies of Sample Nos. 1 to 12 was cut along a plane orthogonal to the internal electrode layer, and a region corresponding to the central portion of the chip was measured by FIB. It processed using the micro sampling processing method by (focused ion beam), and produced the sample for analysis thinned. This sample was observed with a high resolution TEM (transmission electron microscope). The observation location was near the interface between the dielectric layer and the internal electrode layer.
Figure JPOXMLDOC01-appb-T000001
1)球状ニッケル粉末100質量部に対するSnとTaを含むパイロクロア型酸化物粉末の添加量(質量部)
Figure JPOXMLDOC01-appb-T000001
1) Addition amount (parts by mass) of pyrochlore type oxide powder containing Sn and Ta to 100 parts by mass of spherical nickel powder
 表1に示すように、Sn2Ta27のパイロクロア型酸化物を添加していない試料(試料番号1)に対して、Sn2Ta27のパイロクロア型酸化物を添加した全ての試料(試料番号2~12)においてMTTFが増加した。Sn2Ta27のパイロクロア型酸化物の添加量を、球状ニッケル粉末100質量部に対し、0.1質量部以上にすることで、MTTFは2倍以上に向上した。
 一方で、Sn2Ta27のパイロクロア型酸化物を添加した全ての試料(試料番号2~12)において誘電体層と内部電極層の間にSnとTaの複合酸化物層の存在を確認することができた。したがって、MTTFの向上はSnとTaの複合酸化物層の存在と相関があるといえる。
 また、故障時間のばらつきの指標であるm値は、Sn2Ta27のパイロクロア型酸化物の添加量が、球状ニッケル粉末100質量部に対して0.4質量部前後で極大を示し、そして、0.7質量部以上になるとm値は無添加のものよりも小さくなった。これは誘電体層において、誘電体層の内部領域よりも内部電極近傍で粒成長が促進されていたことと一致していた。
 また、内部電極の連続性は試料番号1~11で98%以上を示し、Sn2Ta27のパイロクロア型酸化物の添加量が、球状ニッケル粉末100質量部に対して3.0質量部であった試料番号12では連続性は93%であり、電極膜のボールアップが顕著になっていた。
 以上のことから、Niへの元素固溶による融点降下を極力抑えて高温負荷寿命を向上させるためには、球状ニッケル粉末100質量部に対して、Sn2Ta27のパイロクロア型酸化物の添加量が0.05~2.0質量部の範囲内であれば良く、更に0.1~0.6部の範囲内であれば、m値を低下させることなくMTTFを2倍以上に向上でき、効率良くかつ確実に高温負荷寿命を向上させることが可能になる。
As shown in Table 1, the sample with no added pyrochlore type oxide Sn 2 Ta 2 O 7 (Sample No. 1), all the samples was added pyrochlore type oxide Sn 2 Ta 2 O 7 MTTF increased in (Sample Nos. 2 to 12). When the addition amount of the pyrochlore-type oxide of Sn 2 Ta 2 O 7 was 0.1 part by mass or more with respect to 100 parts by mass of the spherical nickel powder, the MTTF was doubled or more.
On the other hand, in all the samples (Sample Nos. 2 to 12) to which the pyrochlore type oxide of Sn 2 Ta 2 O 7 was added, the existence of the compound oxide layer of Sn and Ta was confirmed between the dielectric layer and the internal electrode layer. We were able to. Therefore, it can be said that the improvement of MTTF correlates with the existence of the complex oxide layer of Sn and Ta.
Further, the m value, which is an index of the variation in failure time, shows a maximum when the amount of the pyrochlore-type oxide of Sn 2 Ta 2 O 7 added is about 0.4 parts by mass with respect to 100 parts by mass of the spherical nickel powder, Then, when it was 0.7 parts by mass or more, the m value became smaller than that of the non-added one. This was consistent with that in the dielectric layer, grain growth was promoted in the vicinity of the internal electrode rather than in the internal region of the dielectric layer.
Further, the continuity of the internal electrodes is 98% or more in the sample numbers 1 to 11, and the addition amount of the pyrochlore type oxide of Sn 2 Ta 2 O 7 is 3.0 parts by mass with respect to 100 parts by mass of the spherical nickel powder. In Sample No. 12, which was No. 2, the continuity was 93%, and the ball-up of the electrode film was remarkable.
From the above, in order to suppress the melting point lowering due to the solid solution to Ni as much as possible and improve the high temperature load life, 100 parts by mass of the spherical nickel powder is mixed with the pyrochlore type oxide of Sn 2 Ta 2 O 7 . The amount added should be in the range of 0.05 to 2.0 parts by mass, and if it is in the range of 0.1 to 0.6 parts, MTTF should be doubled or more without lowering the m value It is possible to improve the high temperature load life efficiently and surely.
(実施例2)
 Sn2Ta27のパイロクロア型酸化物の組成を、Sn2+ 1.865Ta26.865と、Sn2+ 1.75Ta1.75Sn4+ 0.256.625にした以外は、実施例1と同様の実験を行ったところ、両者とも実施例1と同様の結果が得られた。すなわち、SnとTaを含む単相のパイロクロア型酸化物をNiペースト中に含むことにより、本発明の作用効果を奏することを確認できた。
(Example 2)
The same experiment as in Example 1 was carried out except that the composition of the pyrochlore type oxide of Sn 2 Ta 2 O 7 was Sn 2+ 1.865 Ta 2 O 6.865 and Sn 2+ 1.75 Ta 1.75 Sn 4+ 0.25 O 6.625. As a result, both obtained the same results as in Example 1. That is, it was confirmed that the effect of the present invention was achieved by including the single-phase pyrochlore type oxide containing Sn and Ta in the Ni paste.

Claims (5)

  1. (A)Niを主とする導電性粉末と、
    (B)バインダ樹脂と、
    (C)有機溶剤と、
    (D)Snと、Ta及びNbのうちのずれか一方又は両方と、を含むパイロクロア型酸化物と、
    を含有し、
     前記パイロクロア型酸化物の含有量が、(A)Niを主とする導電性粉末100質量部に対して、0.05~2.0質量部であること、
    を特徴とするNiペースト。
    (A) a conductive powder mainly containing Ni,
    (B) a binder resin,
    (C) an organic solvent,
    (D) Pyrochlore-type oxide containing Sn and one or both of Ta and Nb, and
    Containing
    The content of the pyrochlore type oxide is 0.05 to 2.0 parts by mass with respect to 100 parts by mass of the conductive powder (A) Ni as a main component.
    Ni paste characterized by:
  2.  前記パイロクロア型酸化物の含有量が、前記(A)Niを主とする導電性粉末100質量部に対して、0.1~0.6質量部であることを特徴とする請求項1記載のNiペースト。 The content of the pyrochlore type oxide is 0.1 to 0.6 parts by mass with respect to 100 parts by mass of the conductive powder mainly containing (A) Ni. Ni paste.
  3.  前記パイロクロア型酸化物が、下記一般式(1):
       Sn2+ 2-xzSn4+ y7-x-y/2   (1)
    (式中、MはTa及びNbのうちのいずれか1種又は2種であり、xは0~0.6、yは0~0.5、y+z=2である。)
    で表されるパイロクロア型酸化物であることを特徴とする請求項1又は2いずれか1項記載のNiペースト。
    The pyrochlore type oxide has the following general formula (1):
    Sn 2+ 2-x M z Sn 4+ y O 7-xy / 2 (1)
    (In the formula, M is one or two of Ta and Nb, x is 0 to 0.6, y is 0 to 0.5, and y + z = 2.)
    The Ni paste according to claim 1, which is a pyrochlore-type oxide represented by:
  4.  複数のセラミック誘電体層と、Niを含む複数の内部電極層と、が交互に積層されているセラミック積層体と、
     前記セラミック積層体の外表面に形成されている外部電極と、
    を備え、
     前記セラミック誘電体層と前記内部電極層との界面に、Snと、Ta及びNbのうちのずれか一方又は両方と、を含む複合酸化物が存在すること、
    を特徴とする積層セラミックコンデンサ。
    A ceramic laminate in which a plurality of ceramic dielectric layers and a plurality of internal electrode layers containing Ni are alternately laminated;
    External electrodes formed on the outer surface of the ceramic laminate,
    Equipped with
    At the interface between the ceramic dielectric layer and the internal electrode layer, there is a complex oxide containing Sn and either or both of Ta and Nb.
    Is a multilayer ceramic capacitor.
  5.  複数のセラミック誘電体層と、Niを含む複数の内部電極層と、が交互に積層されているセラミック積層体と、
     前記セラミック積層体の外表面に形成されている外部電極と、
    を備え、
     前記内部電極層が、請求項1~3いずれか1項記載のNiペーストが900~1400℃で焼成された焼成物で形成されていること、
    を特徴とする積層セラミックコンデンサ。
    A ceramic laminate in which a plurality of ceramic dielectric layers and a plurality of internal electrode layers containing Ni are alternately laminated;
    External electrodes formed on the outer surface of the ceramic laminate,
    Equipped with
    The internal electrode layer is formed of a fired product obtained by firing the Ni paste according to any one of claims 1 to 3 at 900 to 1400 ° C.
    Is a multilayer ceramic capacitor.
PCT/JP2019/040151 2018-10-31 2019-10-11 Ni paste and layered ceramic capacitor WO2020090415A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020217015588A KR20210084536A (en) 2018-10-31 2019-10-11 Ni paste and multilayer ceramic capacitors
CN201980071072.6A CN112955980B (en) 2018-10-31 2019-10-11 Ni paste and multilayer ceramic capacitor
JP2020553736A JP7338634B2 (en) 2018-10-31 2019-10-11 Ni paste and multilayer ceramic capacitors

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018205568 2018-10-31
JP2018-205568 2018-10-31

Publications (1)

Publication Number Publication Date
WO2020090415A1 true WO2020090415A1 (en) 2020-05-07

Family

ID=70462272

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/040151 WO2020090415A1 (en) 2018-10-31 2019-10-11 Ni paste and layered ceramic capacitor

Country Status (5)

Country Link
JP (1) JP7338634B2 (en)
KR (1) KR20210084536A (en)
CN (1) CN112955980B (en)
TW (1) TWI812799B (en)
WO (1) WO2020090415A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021256253A1 (en) * 2020-06-18 2021-12-23 昭栄化学工業株式会社 Ni paste and multilayer ceramic capacitor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04305021A (en) * 1982-06-01 1992-10-28 E I Du Pont De Nemours & Co Method of manufacturing pyrochlore compound containing thin oxide
JP2000063901A (en) * 1998-08-24 2000-02-29 Sumitomo Metal Mining Co Ltd Powder material, its production, thick film electrically conductive paste using the power material and laminated ceramic capacitor using the paste
JP2010189252A (en) * 2008-08-07 2010-09-02 Murata Mfg Co Ltd Dielectric ceramic and laminated ceramic capacitor
JP2011199252A (en) * 2010-03-23 2011-10-06 Samsung Electro-Mechanics Co Ltd Laminated ceramic capacitor
WO2014024592A1 (en) * 2012-08-07 2014-02-13 株式会社村田製作所 Multilayer ceramic capacitor and method for manufacturing multilayer ceramic capacitor
JP2016145119A (en) * 2015-02-06 2016-08-12 株式会社村田製作所 Dielectric porcelain and method for producing the same
JP2017028246A (en) * 2015-07-22 2017-02-02 サムソン エレクトロ−メカニックス カンパニーリミテッド. Multilayer ceramic electronic component

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5518663A (en) * 1994-12-06 1996-05-21 E. I. Du Pont De Nemours And Company Thick film conductor compositions with improved adhesion
JP2001101926A (en) 1999-09-30 2001-04-13 Murata Mfg Co Ltd Conductive paste, and laminated ceramic capacitor and method for manufacturing it
EP1179826A1 (en) * 2000-07-12 2002-02-13 Littelfuse Ireland Development Company Limited An integrated passive device and a method for producing such a device
US7157023B2 (en) * 2001-04-09 2007-01-02 E. I. Du Pont De Nemours And Company Conductor compositions and the use thereof
JP4305021B2 (en) 2003-03-26 2009-07-29 ダイキン工業株式会社 Electric device and motor driving method
KR101581925B1 (en) 2011-02-14 2015-12-31 가부시키가이샤 무라타 세이사쿠쇼 Multilayer ceramic capacitor and multilayer ceramic capacitor manufacturing method
JP6716602B2 (en) * 2015-12-11 2020-07-01 国立大学法人北陸先端科学技術大学院大学 Oxide dielectric, manufacturing method thereof, solid-state electronic device and manufacturing method thereof
JP6939015B2 (en) * 2017-03-29 2021-09-22 住友金属鉱山株式会社 Conductive paste for gravure printing for internal electrodes of multilayer ceramic capacitors

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04305021A (en) * 1982-06-01 1992-10-28 E I Du Pont De Nemours & Co Method of manufacturing pyrochlore compound containing thin oxide
JP2000063901A (en) * 1998-08-24 2000-02-29 Sumitomo Metal Mining Co Ltd Powder material, its production, thick film electrically conductive paste using the power material and laminated ceramic capacitor using the paste
JP2010189252A (en) * 2008-08-07 2010-09-02 Murata Mfg Co Ltd Dielectric ceramic and laminated ceramic capacitor
JP2011199252A (en) * 2010-03-23 2011-10-06 Samsung Electro-Mechanics Co Ltd Laminated ceramic capacitor
WO2014024592A1 (en) * 2012-08-07 2014-02-13 株式会社村田製作所 Multilayer ceramic capacitor and method for manufacturing multilayer ceramic capacitor
JP2016145119A (en) * 2015-02-06 2016-08-12 株式会社村田製作所 Dielectric porcelain and method for producing the same
JP2017028246A (en) * 2015-07-22 2017-02-02 サムソン エレクトロ−メカニックス カンパニーリミテッド. Multilayer ceramic electronic component

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021256253A1 (en) * 2020-06-18 2021-12-23 昭栄化学工業株式会社 Ni paste and multilayer ceramic capacitor

Also Published As

Publication number Publication date
JPWO2020090415A1 (en) 2021-09-30
TW202029222A (en) 2020-08-01
CN112955980B (en) 2023-01-10
CN112955980A (en) 2021-06-11
JP7338634B2 (en) 2023-09-05
KR20210084536A (en) 2021-07-07
TWI812799B (en) 2023-08-21

Similar Documents

Publication Publication Date Title
WO2011024582A1 (en) Process for producing multilayered ceramic capacitor, and multilayered ceramic capacitor
JP5434407B2 (en) Ceramic electronic component and manufacturing method thereof
US20180040424A1 (en) Dielectric composition and electronic component
CN107793148B (en) Dielectric composition and laminated electronic component
US9922766B2 (en) Ceramic electronic component
JP7338963B2 (en) Multilayer ceramic capacitors and ceramic raw material powders
JP4942822B2 (en) X8R dielectric composition for nickel electrodes
JP2018181940A (en) Multilayer ceramic capacitor and manufacturing method thereof
CN112992538B (en) Dielectric composition and electronic component
KR20190121143A (en) Multi-layered ceramic capacitor
US10141113B2 (en) Ceramic electronic component
JP5870625B2 (en) Electrode sintered body, laminated electronic component, internal electrode paste, method for producing electrode sintered body, method for producing laminated electronic component
JP2013012418A (en) Oxide conductor paste using oxide conductor, and multilayer electronic component using the same
JP2019099427A (en) Dielectric composition, electronic component, and laminate electronic component
JP2018135254A (en) Dielectric composition and electronic component
JP7338634B2 (en) Ni paste and multilayer ceramic capacitors
JP6665709B2 (en) Dielectric composition and electronic component
JP6665710B2 (en) Dielectric composition and electronic component
WO2021256253A1 (en) Ni paste and multilayer ceramic capacitor
WO2021210455A1 (en) Ni PASTE AND MULTILAYER CERAMIC CAPACITOR
JP6658337B2 (en) Dielectric composition and electronic component
JP6665711B2 (en) Dielectric composition and electronic component
JP7035914B2 (en) Dielectric compositions and electronic components
JP4837721B2 (en) Method for manufacturing dielectric ceramic material
JP6915281B2 (en) Dielectric composition and electronic components

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19877612

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020553736

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217015588

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19877612

Country of ref document: EP

Kind code of ref document: A1