WO2021210455A1 - Ni PASTE AND MULTILAYER CERAMIC CAPACITOR - Google Patents

Ni PASTE AND MULTILAYER CERAMIC CAPACITOR Download PDF

Info

Publication number
WO2021210455A1
WO2021210455A1 PCT/JP2021/014652 JP2021014652W WO2021210455A1 WO 2021210455 A1 WO2021210455 A1 WO 2021210455A1 JP 2021014652 W JP2021014652 W JP 2021014652W WO 2021210455 A1 WO2021210455 A1 WO 2021210455A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
parts
paste
range
ceramic
Prior art date
Application number
PCT/JP2021/014652
Other languages
French (fr)
Japanese (ja)
Inventor
寛志 岡村
隼人 立野
Original Assignee
昭栄化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭栄化学工業株式会社 filed Critical 昭栄化学工業株式会社
Priority to JP2022515323A priority Critical patent/JPWO2021210455A1/ja
Publication of WO2021210455A1 publication Critical patent/WO2021210455A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors

Definitions

  • the present invention relates to a Ni paste for forming an internal electrode for manufacturing a highly reliable multilayer ceramic capacitor, and a multilayer ceramic capacitor manufactured by using the Ni paste.
  • the dielectric layer constituting the multilayer ceramic capacitor is being thinned.
  • the electric field strength applied to each layer becomes relatively high. Therefore, it is required to improve the reliability when a voltage is applied.
  • the multilayer ceramic capacitor is generally manufactured as follows. First, a dielectric ceramic raw material powder is dispersed in a resin binder and formed into a sheet, which is then formed into a ceramic green sheet. The conductive paste of No. 1 is printed in a predetermined pattern and dried to remove the powder to form an internal electrode drying film. Next, a plurality of ceramic sheets having the obtained internal electrode dry film are stacked, pressure-bonded to form a laminate, cut into a predetermined shape, and then fired at a high temperature to obtain a ceramic element. After that, a conductive paste for an external electrode is applied to both end faces of the ceramic element and then fired to obtain a monolithic ceramic capacitor. The external electrode may be fired at the same time as the ceramic element by applying the paste for the external electrode to the unfired laminate. As the internal electrode, one using Ni as a main component is known (for example, Patent Document 1).
  • Patent Document 2 describes an invention in which the height of the electrical barrier at the interface between the dielectric layer and the electrode layer is changed by using an internal electrode in which Sn is dissolved in Ni, thereby achieving a high temperature load life. Is described.
  • an object of the present invention is to provide a Ni paste for an internal electrode that can improve the high temperature load life without lowering the continuity of the electrode film.
  • Another object of the present invention is to provide a multilayer ceramic capacitor that exhibits excellent reliability even when the dielectric layer is further thinned and a voltage having a high electric field strength is applied.
  • At least one selected from the group consisting of D2) Nb-containing additives, (D3) stabilized zirconia (SZ), and (D4) Al-containing additives is a conductive powder mainly containing (A) Ni.
  • the crystal structure of zirconia is stabilized by a stabilizer in the range of 0.05 ⁇ 10 -2 to 2.20 ⁇ 10 -2 mol per 100 g of the conductive powder mainly containing (A) Ni. Stabilized zirconia (SZ) and (D4) (A) Ni-based conductive powder per 100.0 parts by mass, within the range of 0.10 to 5.50 parts by mass in terms of Al 2 O 3. Containing at least one selected from the group consisting of additives containing Al, To provide a Ni paste characterized by.
  • the additive containing (D1) Ta when the additive containing (D1) Ta is contained, the additive containing (D1) Ta is added to the conductive powder containing (A) Ni as the main component by 100.0 mass. It provides the Ni paste of (1), which is characterized by containing in the range of 0.025 to 0.80 parts by mass in terms of Ta 2 O 5 per part.
  • the additive containing (D2) Nb when the additive containing (D2) Nb is contained, the additive containing (D2) Nb is added to the conductive powder containing (A) Ni as the main component by 100.0 mass. It provides the Ni paste of (1), which is characterized by containing in the range of 0.010 to 0.50 parts by mass in terms of Nb 2 O 5 per part.
  • the present invention when containing the (D3) stabilized zirconia (SZ), said stabilizing agent, Y 2 O 3, CaO, at least one selected from MgO and Sc 2 O 3 It provides the Ni paste of (1), which is characterized by being present.
  • SZ stabilized zirconia
  • the (D3) stabilized zirconia (SZ) when the (D3) stabilized zirconia (SZ) is contained, the (D3) stabilized zirconia (SZ) is more than 0.0 mol% and 45.0 mol% or less. It provides the Ni paste of (4), which is characterized by containing the stabilizer in a range.
  • the (D3) stabilized zirconia (SZ) when the (D3) stabilized zirconia (SZ) is contained, the (D3) stabilized zirconia (SZ) is stable in the range of 8.0 to 25.0 mol%. It provides the Ni paste of (4), which is characterized by containing an agent.
  • the (D3) stabilized zirconia (SZ) when the (D3) stabilized zirconia (SZ) is contained, the (D3) stabilized zirconia (SZ) is used per 100 g of the conductive powder mainly containing (A) Ni. , (1), (4) to (6), any of the Ni pastes, which are contained in the range of 0.05 ⁇ 10 ⁇ 2 to 1.40 ⁇ 10 ⁇ 2 mol.
  • the additive containing (D4) Al when the additive containing (D4) Al is contained, the additive containing (D4) Al is added to the conductive powder containing (A) Ni as the main component by 100.0 mass. It provides the Ni paste of (1), which is characterized by containing in the range of 0.10 to 2.30 parts by mass in terms of Al 2 O 3 per part.
  • the present invention (9) is characterized in that the content of the conductive powder mainly containing (A) Ni is 30.0 to 95.0% by mass, any of (1) to (8).
  • the Ni paste is provided.
  • the present invention (10) is a ceramic laminate in which a plurality of ceramic dielectric layers and a plurality of internal electrode layers containing Ni are alternately laminated.
  • An external electrode formed on the outer surface of the ceramic laminate and With The ceramic laminate (D1) Ta, which is in the range of 0.025 to 2.50 parts by mass in terms of Ta 2 O 5 per 100.0 parts by mass of the conductive component containing (A) Ni.
  • (D2) Nb in the range of 0.010 to 1.80 parts by mass in terms of Nb 2 O 5 per 100.0 parts by mass of the conductive component containing (A) Ni
  • Al in the range of 0.10 to 5.50 parts by mass in terms of Al 2 O 3 per 100.0 parts by mass of the conductive component containing Containing at least one selected from the group consisting of Provided is a monolithic ceramic capacitor characterized by the above.
  • the present invention (11) is a ceramic laminate in which a plurality of ceramic dielectric layers and a plurality of internal electrode layers containing Ni are alternately laminated.
  • An external electrode formed on the outer surface of the ceramic laminate and With At the interface between the adjacent internal electrode layer and the ceramic dielectric layer and its vicinity, a diffusion region of at least one element selected from the group consisting of Ta, Nb, Zr, a metal element in a stabilizer and Al.
  • a monolithic ceramic capacitor characterized by the above.
  • the present invention (12) also provides the multilayer ceramic capacitor (11), wherein the metal element in the stabilizer is one or more selected from Y, Ca, Mg and Sc. Is.
  • the present invention (13) is a ceramic laminate in which a plurality of ceramic dielectric layers and a plurality of internal electrode layers containing Ni are alternately laminated.
  • An external electrode formed on the outer surface of the ceramic laminate and With The internal electrode layer is formed of a fired product obtained by firing any of the Ni pastes (1) to (9) at 900 to 1400 ° C.
  • a monolithic ceramic capacitor characterized by the above.
  • Ni paste for an internal electrode that can improve the high temperature load life without lowering the continuity of the electrode film. Further, according to the present invention, it is possible to provide a monolithic ceramic capacitor showing excellent reliability even when the dielectric layer is further thinned and a voltage having a high electric field strength is applied.
  • the Ni paste of the present invention (A) Conductive powder mainly composed of Ni and (B) Binder resin and (C) Organic solvent and Contains, In addition (D1) Additive containing Ta in the range of 0.025 to 2.50 parts by mass in terms of Ta 2 O 5 per 100.0 parts by mass of the conductive powder mainly containing Ni (A). (D2) Additive containing Nb in the range of 0.010 to 1.80 parts by mass in terms of Nb 2 O 5 per 100.0 parts by mass of the conductive powder mainly containing (A) Ni.
  • the crystal structure of zirconia is stabilized by a stabilizer in the range of 0.05 ⁇ 10 -2 to 2.20 ⁇ 10 -2 mol per 100 g of the conductive powder mainly containing (A) Ni. Stabilized zirconia (SZ) and (D4) (A) Ni-based conductive powder per 100.0 parts by mass, within the range of 0.10 to 5.50 parts by mass in terms of Al 2 O 3. Containing at least one selected from the group consisting of additives containing Al, It is a Ni paste characterized by.
  • the Ni paste of the present invention contains (A) a conductive powder mainly containing Ni, (B) a binder resin, and (C) an organic solvent, and further (D1) the above (A).
  • the Ni paste of the present invention contains (A) a conductive powder mainly containing Ni, (B) a binder resin, and (C) an organic solvent, and further (D2) the above (A).
  • the Ni paste of the present invention contains (A) a conductive powder mainly containing Ni, (B) a binder resin, and (C) an organic solvent, and further (D3) the above (A).
  • the Ni paste of the present invention contains (A) a conductive powder mainly containing Ni, (B) a binder resin, and (C) an organic solvent, and further (D4) the above (A).
  • Ni paste of the present invention is suitably used for forming internal electrodes of multilayer ceramic capacitors, and can also be applied to other ceramic electronic components such as multilayer ceramic actuators.
  • the Ni paste of the present invention has at least (A) a conductive powder mainly containing Ni, (B) a binder resin, (C) an organic solvent, and "an additive containing (D1) Ta, (D2) Nb. At least one selected from the group consisting of additives containing (D3) stabilized zirconia (SZ) and (D4) Al. That is, the Ni paste of the present invention contains at least (A) a conductive powder mainly containing Ni, (B) a binder resin, (C) an organic solvent, and (D1) an additive containing Ta, (D2). It contains any one or more of an additive containing Nb, (D3) stabilized zirconia (SZ), and an additive containing (D4) Al.
  • the conductive powder mainly containing Ni according to the Ni paste of the present invention is used as a conductive powder in the Ni paste for forming an internal electrode and is a powder mainly containing Ni.
  • the conductive powder (A) mainly composed of Ni include a powder composed of only metallic Ni.
  • a composite powder of Ni and another compound, a mixed powder of Ni and another compound, and Ni and other compounds are used as the conductive powder mainly containing (A) Ni. Examples include alloy powder with metal.
  • Examples of the composite powder of Ni and other compounds include a composite powder in which the surface of the Ni powder is coated with a vitreous thin film, a composite powder in which the surface of the Ni powder is coated with an oxide, and a surface of the Ni powder. Examples thereof include composite powders surface-treated with organic metal compounds, surfactants, fatty acids and the like. Examples of the mixed powder of Ni and other compounds include a mixed powder of Ni powder and an oxide powder. Further, as other metals that can be used in the alloy powder, a metal that does not easily cause a melting point drop when alloying with Ni, or even a metal that causes a melting point drop does not cause the above-mentioned ball-up phenomenon.
  • the content may be any amount, and examples thereof include Cu, Ag, Pd, Pt, Rh, Ir, Re, Ru, Os, In, Ga, Zn, Bi, Pb, Fe, V, and Y.
  • the Ni content in the conductive powder mainly containing Ni is not particularly limited as long as the effects of the present invention are exhibited, but is preferably 60.0% by mass or more, particularly preferably 80.0% by mass. As mentioned above, it is more preferably 100.0% by mass.
  • the average particle size of the conductive powder mainly containing Ni is not particularly limited, but is preferably 0.05 to 1.0 ⁇ m.
  • A When the average particle size of the conductive powder mainly containing Ni is within the above range, it is dense and has high smoothness, and a thin internal electrode layer is easily formed.
  • the reference numeral "-" indicating a numerical range indicates a range including the numerical values described before and after the symbol "-" unless otherwise specified. That is, for example, the notation "0.05 to 1.0" is synonymous with "0.05 or more and 1.0 or less” unless otherwise specified.
  • the content of the conductive powder mainly composed of (A) Ni in the Ni paste of the present invention is not particularly limited, and is usually 30. In consideration of the finished viscosity, printability, storage stability, etc. of the Ni paste. It may be appropriately selected in the range of 0 to 95.0% by mass.
  • the binder resin (B) according to the Ni paste of the present invention is not particularly limited as long as it can be used as a conductive paste for forming an internal electrode.
  • the binder resin those generally used as a conductive paste for forming an internal electrode, for example, a cellulose resin such as ethyl cellulose, an acrylic resin, a methacrylic resin, a butyral resin, an epoxy resin, a phenol resin, etc. Examples include rosin.
  • the content ratio of the binder resin (B) in the Ni paste of the present invention is not particularly limited, and is usually 0.1 to 30.0 parts by mass per 100.0 parts by mass of the conductive powder mainly containing (A) Ni.
  • the ratio is preferably 1.0 to 15.0 parts by mass.
  • the (C) organic solvent according to the Ni paste of the present invention is not particularly limited as long as it dissolves the (B) binder resin, and for example, alcohol-based, ether-based, ester-based, hydrocarbon-based solvents and the like. Examples of the mixed solvent of.
  • the Ni paste of the present invention contains (A) a conductive powder mainly containing Ni, (B) a binder resin and (C) an organic solvent, (D1) an additive containing Ta, and (D2) an additive containing Nb. , (D3) Stabilized Zirconia (SZ), and (D4) Al contains at least one selected from the group consisting of additives.
  • the component (D1) according to the Ni paste of the present invention is an additive containing Ta.
  • the additive containing Ta is not particularly limited as long as Ta 2 O 5 can be obtained after firing the Ni paste, but as an example, in addition to pure metal (Ta), an oxide containing Ta (Ta 2) is used. It may be an inorganic compound such as O 5 , TaO 2 ), a sulfide (TaS 2 ), a halide (TaF 5, etc.), a boride (TaB), or an organic compound such as a metal carbonyl, a metal alkoxide, or a metal resinate. It may be a metal compound. In the present invention, Ta 2 O 5 is particularly preferable as the additive containing Ta.
  • the Ni paste of the present invention contains an additive containing (D1) Ta
  • the Ni paste of the present invention has (A) Ni when Ta in the additive containing Ta is converted into Ta 2 O 5.
  • the additive containing Ta is contained in a proportion of 0.025 to 2.50 parts by mass, preferably 0.025 to 0.80 parts by mass, per 100.0 parts by mass of the conductive powder mainly composed of.
  • the component (D2) according to the Ni paste of the present invention is an additive containing Nb.
  • the additive containing Nb is not particularly limited as long as Nb 2 O 5 can be obtained after firing the Ni paste, but as an example, in addition to pure metal (Nb), an oxide containing Nb (Nb 2) It may be an inorganic compound such as O 5 , NbO 2 ), a sulfide (NbS 2 ), a halide (NbF 5, etc.), a boride (NbB), or an organic compound such as a metal carbonyl, a metal alkoxide, or a metal resinate. It may be a metal compound. In the present invention, Nb 2 O 5 is particularly preferable as the additive containing Nb.
  • the Ni paste of the present invention contains an additive containing (D2) Nb
  • the Ni paste of the present invention has (A) Ni when Nb in the additive containing Nb is converted into Nb 2 O 5.
  • the additive containing Nb is contained in a proportion of 0.010 to 1.80 parts by mass, preferably 0.010 to 0.50 parts by mass, per 100.0 parts by mass of the conductive powder mainly composed of.
  • the component (D3) in the Ni paste of the present invention is stabilized zirconia (SZ) in which the crystal structure of zirconia is stabilized by a stabilizer.
  • Stabilized zirconia (SZ) has a crystal structure of zirconia (ZrO 2 ) by dissolving a stabilizer in zirconia (ZrO 2 ) and adding a divalent or trivalent metal element to the tetravalent Zr site. It is stabilized so that it does not change due to temperature changes.
  • the stabilizer is not particularly limited as long as it stabilizes zirconia (ZrO 2 ), but is an oxide of an alkaline earth metal such as MgO, CaO, SrO, BaO; Sc 2 O 3 , Y 2 O. 3 , La 2 O 3 , CeO 2 , Pr 2 O 3 , Nd 2 O 3 , Sm 2 O 3 , Eu 2 O 3 , Gd 2 O 3 , Tb 2 O 3 , Dy 2 O 3 , Er 2 O 3 , Oxides of rare earth elements such as Tm 2 O 3 and Yb 2 O 3 ; one or more oxides selected from Bi 2 O 3 and In 2 O 3 and the like can be mentioned.
  • ZrO 2 zirconia
  • the mixture is stabilized by one or more selected from yttria (Y 2 O 3 ), calcia (CaO), magnesia (MgO) and scandia (Sc 2 O 3).
  • the stabilizer used for stabilized zirconia (SZ) may be one kind or a combination of two or more kinds.
  • the stabilized zirconia when the intention of the stabilized zirconia in general which does not specify a stabilizer, the stabilized zirconia may be referred to as "SZ".
  • SZ stabilizing zirconia using yttria (Y 2 O 3 ), calcia (CaO), magnesia (MgO) and scandia (Sc 2 O 3 ) as stabilizers is intended, “YSZ” and “CSZ”, respectively. , “MSZ” and “ScSZ”.
  • stabilized zirconia (SZ) containing an X (mol%) stabilizer may be referred to as "X-SZ”.
  • "3.0-YSZ” means stabilized zirconia (YSZ) stabilized with 3.0 mol% yttria (Y 2 O 3).
  • the content of the stabilizer in the stabilized zirconia (SZ) is not particularly limited, but is preferably more than 0.0 mol% and 45.0 mol% or less, and more preferably more than 0.0 mol% and 40. It is 0.0 mol% or less, particularly preferably 8.0 to 25.0 mol%.
  • the content (X mol%) of the stabilizer in the stabilized zirconia (SZ) is obtained by converting Zr in the stabilized zirconia (SZ) and the metal element in the stabilizer into oxides, respectively.
  • Oxide-equivalent moles of metal elements in stabilizers Percentage of oxide-equivalent moles of metal elements in stabilizers to total oxide-equivalent moles of Zr and metal elements in stabilizers ((Oxide-equivalent moles of metal elements in stabilizers) / (Oxide-equivalent number of moles of metal element in stabilizer + Zr oxide-equivalent mole number in stabilized zirconia (SZ)) x 100).
  • oxide conversion for example, Zr is converted to ZrO 2 , Y is converted to Y 2 O 3 , Ca is converted to Ca O, Mg is converted to Mg O, and Sc is converted to Sc 2 O 3 , and the number of moles is calculated.
  • each metal element in the two or more kinds of stabilizers is converted into an oxide, and the total molar amount of the oxides is converted.
  • Let the number be the number of moles of the metal element in the stabilizer in terms of oxide.
  • the content of (D3) stabilized zirconia (SZ) in the Ni paste of the present invention is conductive mainly containing (A) Ni.
  • the amount is 0.05 ⁇ 10 -2 to 2.20 ⁇ 10-2 mol, preferably 0.05 ⁇ 10 -2 to 1.40 ⁇ 10 -2 mol, per 100.0 g of the sex powder.
  • Zr in stabilized zirconia (SZ) and the metal element in the stabilizer are converted into oxides, respectively, and Zr and stabilized.
  • the stabilized zirconia (SZ) in the Ni paste Calculate the content.
  • the component (D4) according to the Ni paste of the present invention is an additive containing Al.
  • the additive containing Al is not particularly limited as long as Al 2 O 3 can be obtained after firing Ni paste, but as an example, in addition to pure metal (Al), an oxide containing Al (Al 2).
  • Al 2 O 3 sulfide (Al 2 S 3), the halide (AlF 3, etc.), borides (AlB 2), nitride (AlN), carbide (Al 4 C 3), hydroxide (Al (OH) It may be an inorganic compound such as 3), a phosphate (AlPO 4 ), a sulfate (Al 2 (SO 4 ) 3 ), or an organic metal compound such as a metal alkoxide or a metal resinate. In the present invention, Al 2 O 3 is particularly preferable as the additive containing Al.
  • the Ni paste of the present invention contains an additive containing (D4) Al
  • the Ni paste of the present invention has (A) Ni when Al in the additive containing Al is converted into Al 2 O 3.
  • the additive containing Al is contained in a proportion of 0.10 to 5.50 parts by mass, preferably 0.10 to 2.30 parts by mass, per 100.0 parts by mass of the conductive powder mainly composed of.
  • the Ni paste of the present invention contains a combination of an additive containing (D1) Ta, an additive containing (D2) Nb, an additive containing (D3) stabilized zirconia (SZ), and (D4) Al. May be good.
  • the Ni paste of the present invention is selected from the group consisting of (D1) Ta-containing additives, (D2) Nb-containing additives, (D3) stabilized zirconia (SZ), and (D4) Al-containing additives.
  • the mechanism by which the above-mentioned effects of the present invention can be obtained by containing at least one of these in the above-mentioned content ratio is not clear. However, according to tests and studies by the present inventor, most of the Ta component, Nb component, stabilized zirconia (SZ) component or Al component contained in the Ni paste is ceramic dielectric during firing of the paste.
  • the term "interface and its vicinity” refers to the region from the interface between the ceramic dielectric layer and the internal electrode layer to the dielectric layer side up to 1/16 of the thickness of the ceramic dielectric layer, and from the interface to the internal electrode. It shall refer to the region up to 1/2 of the internal electrode layer thickness on the layer side.
  • the present inventor reduces the speed of movement of oxygen vacancies to the cathode side that occurs in the ceramic dielectric layer during the high temperature load life test, leading to an improvement in life. I'm guessing that there is.
  • the composition of the co-material powder is the same as or similar to that of the ceramic dielectric layer even when the co-material powder containing Zr is used. Therefore, even if it diffuses from the internal electrode layer to the ceramic dielectric layer side during firing, the element concentration distribution of Zr in the ceramic dielectric layer is hardly changed.
  • the formation of the diffusion region (diffusion layer) containing a high concentration of Zr and the metal element in the stabilizer observed at the interface between the ceramic dielectric layer and the internal electrode layer and its vicinity is separate from the co-material powder. It is considered that this is due to the stabilized zirconia (SZ) contained in the Ni paste. Moreover, stabilized zirconia (SZ) is obtained by introducing oxygen vacancies into zirconia (ZrO 2 ), and the more stabilizer there is, the larger the amount of oxygen vacancies. Therefore, stabilized zirconia (SZ) is added to the Ni paste.
  • the oxygen vacancy concentration in the vicinity of the interface can be increased as compared with the case where zirconia (ZrO 2) which is not stabilized is contained.
  • ZrO 2 zirconia
  • the oxygen vacancies inside the dielectric layer are less likely to move to the electrode interface (cathode) side, and the high temperature load life can be further improved, but the amount of stabilizer is excessive. If this is the case, the oxygen vacancies concentration becomes too high, and it is considered that the high temperature load life characteristic drops sharply due to this.
  • the content of the Ta component, the Nb component, the stabilized zirconia (SZ) component, or the Al component in the internal electrode layer after firing does not lower the melting point of Ni, and thus adversely affects the continuity of the electrode film. There is no such thing. However, if the concentration of the Ta component, Nb component, stabilized zirconia (SZ) component, or Al component in the diffusion layer in the ceramic dielectric layer becomes too large, the wettability with Ni decreases and the electrode film is continuous. May adversely affect sexuality.
  • the content of is less than the above range, the effect of improving the high temperature load life cannot be obtained, and if it exceeds the above range, the Ta component, the Nb component, and the stabilized zirconia (SZ) diffused in the ceramic dielectric layer are obtained.
  • Component or Al component causes crystal grain growth, which reduces the high temperature load life.
  • the Ni paste of the present invention can further contain a co-material powder that is usually added to the Ni paste for forming internal electrodes.
  • the optionally contained co-material powder is intended to approximate the sintering shrinkage behavior of the internal electrode to the dielectric layer, and the type of the co-material powder is not particularly limited, but is the same as that of the ceramic dielectric. It is desirable to select so that the change in the characteristics of the capacitor due to the reaction of is minimized.
  • the co-material powder the general formula: ABO 3 (where A is at least one of Ba, Ca and Sr, and B is Ti, Zr, as is usually used for Ni paste for forming an internal electrode.
  • Hf for example, perovskite-type oxide powders such as barium titanate, strontium zirconium, calcium zirconium, and those to which various additives are added. Is preferable.
  • the co-material powder those having the same composition as or similar to that of the dielectric ceramic raw material powder used as the main component of the dielectric layer are preferable.
  • the co-material powder may be attached to the surface of the conductive powder mainly composed of (A) Ni in advance, and then mixed with other components in the Ni paste.
  • the content ratio of the co-material powder in the Ni paste of the present invention is (A) per 100.0 parts by mass of the conductive powder mainly containing Ni.
  • the total ratio is 30.0 parts by mass or less.
  • the average particle size of the co-material powder is not particularly limited, but (A) 30% or less of the average particle size of the conductive powder mainly composed of Ni is a more excellent effect of suppressing sintering and improving density. It is preferable because it shows. Further, it is preferable that the total specific surface area of the co-material powder in the paste is larger than the total specific surface area of the conductive powder mainly composed of (A) Ni, because the effect of improving the high temperature load life is enhanced. By selecting the average particle size and content of the co-material powder, the total specific surface area of the co-material powder in the paste should be larger than the total specific surface area of the conductive powder mainly composed of (A) Ni. Can be done.
  • the average particle size of the material powder is preferably 0.01 ⁇ m or more.
  • the Ni paste of the present invention may contain a known compound containing a metal element other than the above as long as the effect of the present invention is not impaired.
  • a metal element other than the above as long as the effect of the present invention is not impaired.
  • CaO, ZrO 2 , Y 2 O 3 , Ti 4 O 7 Even if compounds such as TiO 2 , Co 3 O 4 , Fe 2 O 3 , La 2 O 3 , Li 2 O, MgO, MoO 3 , SrO, V 2 O 5 , WO 3 , CuO, etc. are added for various purposes. good.
  • the present invention does not exclude the inclusion of the Sn component. It is considered that Sn is alloyed with Ni during firing to lower the melting point and promote the sintering, so that the above-mentioned ball-up phenomenon occurs.
  • the additive containing (D1) Ta and (D2) Nb are used. It may be used in combination with an additive containing (D3) stabilized zirconia (SZ) or an additive containing (D4) Al.
  • the Ni paste of the present invention can contain additives such as plasticizers, dispersants, and surfactants that are usually added to the Ni paste for forming internal electrodes, if necessary. ..
  • the Ni paste of the present invention contains the above-mentioned (A) Ni-based conductive powder, (B) binder resin, (C) organic solvent, "(D1) Ta-containing additive, and (D2) Nb-containing additive. "At least one selected from the group consisting of additives, (D3) stabilized zirconia (SZ), and (D4) Al-containing additives", and other co-material powders and various additives added as needed. Is uniformly mixed and dispersed according to a conventional method.
  • the multilayer ceramic capacitor of the present invention is manufactured by the following method using the Ni paste of the present invention.
  • the dielectric ceramic raw material powder is dispersed in a resin binder, and a sheet is formed by a doctor blade method, a die coater method, or the like to prepare a ceramic green sheet containing the dielectric ceramic raw material powder.
  • a sheet is formed by a doctor blade method, a die coater method, or the like to prepare a ceramic green sheet containing the dielectric ceramic raw material powder.
  • perovskite-type oxides such as barium titanate, strontium zirconate, and calcium zircone strontium, or some of the metal elements constituting these are used.
  • a powder containing a normal perovskite-type oxide as a main component is used, such as those substituted with the metal element of. If necessary, various additives for adjusting the capacitor characteristics are added to these raw material powders.
  • the average particle size of the raw material powder for example, when the thickness of the dielectric ceramic layer is 5.0 ⁇ m or less, the average particle size is preferably about 0.05 to 0.4 ⁇ m.
  • the Ni paste of the present invention is applied onto the obtained ceramic green sheet by a usual method such as screen printing and dried to remove the solvent to form an internal electrode paste drying film having a predetermined pattern.
  • a predetermined number of ceramic green sheets on which the internal electrode paste film is formed are stacked and heat-bonded to prepare an unfired laminate.
  • the obtained laminated body is cut into a predetermined shape and then fired at a high temperature, and the dielectric layer and the electrode layer are sintered at the same time to obtain a laminated ceramic capacitor element.
  • terminal electrodes are baked on both end faces of the element body to form the monolithic ceramic capacitor of the present invention.
  • the terminal electrode may be attached before firing the above-mentioned laminated body and fired at the same time as the laminated body.
  • the multilayer ceramic capacitor of the present invention thus obtained comprises a ceramic laminate in which a plurality of ceramic dielectric layers and a plurality of internal electrode layers containing Ni are alternately laminated.
  • An external electrode formed on the outer surface of the ceramic laminate and With The ceramic laminate (D1) Ta, which is in the range of 0.025 to 2.50 parts by mass in terms of Ta 2 O 5 per 100.0 parts by mass of the conductive component containing (A) Ni.
  • (D2) Nb in the range of 0.010 to 1.80 parts by mass in terms of Nb 2 O 5 per 100.0 parts by mass of the conductive component containing (A) Ni, and (D4) the above (A) Ni.
  • Al in the range of 0.10 to 5.50 parts by mass in terms of Al 2 O 3 per 100.0 parts by mass of the conductive component containing Containing at least one selected from the group consisting of It is a monolithic ceramic capacitor characterized by.
  • the multilayer ceramic capacitor of the present invention includes a ceramic laminate in which a plurality of ceramic dielectric layers and a plurality of internal electrode layers containing Ni are alternately laminated.
  • An external electrode formed on the outer surface of the ceramic laminate and With Up to 1/16 of the thickness of the ceramic dielectric layer from the interface between the adjacent internal electrode layer and the ceramic dielectric layer and its vicinity, that is, from the interface between the ceramic dielectric layer and the internal electrode layer to the dielectric layer side. From the region to any portion of the region from the interface to the region up to 1/2 of the thickness of the internal electrode layer on the internal electrode layer side, from Ta, Nb, Zr, the metal element in the stabilizer, and Al.
  • a diffusion region having a concentration peak of at least one element selected from the group consisting of It is a monolithic ceramic capacitor characterized by.
  • the concentration of at least one element selected from the group consisting of Ta, Nb, Zr, a metal element in the stabilizer, and Al is transferred from the internal electrode layer side to the ceramic dielectric layer side. It is a region having a concentration distribution that increases in the direction toward the direction, reaches a concentration peak, and then decreases.
  • the metal element in the stabilizer is preferably one or more selected from Y, Ca, Mg and Sc.
  • the ceramic dielectric layer according to the multilayer ceramic capacitor of the present invention is a perovskite-type oxide such as barium titanate, strontium zirconate, or calcium zircone strontium as a dielectric ceramic raw material powder, or a metal element constituting these.
  • These dielectric ceramic raw material powders are sheet-molded using a powder containing a normal perovskite-type oxide as a main component, such as one in which a part of the above is replaced with another metal element, and 900 to 900 in a reducing atmosphere. It is formed by firing at 1400 ° C., preferably 1100 to 1300 ° C.
  • the multilayer ceramic capacitor of the present invention has an internal electrode layer containing Ni formed by using the Ni paste of the present invention, that is, a ceramic green for forming a dielectric layer by printing the Ni paste of the present invention by screen printing or the like. It is formed by molding on a sheet, drying, and firing. Most of the Ta component, Nb component, stable zirconia (SZ) component, or Al component contained in the Ni paste moves from the internal electrode layer to the ceramic dielectric layer side during firing as described above, and is inside. At the interface between the electrode layer and the ceramic dielectric layer and its vicinity, a diffusion region (diffusion layer) containing a high concentration of the metal element in Ta, Nb, Zr and the stabilizer, or Al is formed.
  • a diffusion region diffusion layer
  • the concentration distribution of Ta, Nb, Zr and the metal element in the stabilizer or Al in the diffusion region (diffusion layer) is not uniform, and the metal element or Al in Ta, Nb, Zr and the stabilizer is not uniform.
  • the concentration of zirconium increases in the direction from the internal electrode layer side toward the dielectric layer side, reaches a concentration peak, and then decreases. According to the research results up to this stage, the concentration peak is presumed to be near the interface, but its position has not been accurately identified. That is, the thickness of the diffusion layer, the shape of the concentration gradient, and the position of the concentration peak differ depending on the firing profile such as the firing temperature, the firing time, and the rate of temperature rise.
  • the Ta component diffuses from the internal electrode layer toward the dielectric layer and the dielectric is said.
  • a diffusion layer having a steep concentration gradient (concentration peak) in which Ta is unevenly distributed only at a position extremely close to the interface with the internal electrode layer in the body layer was formed.
  • a relatively broad Ta concentration gradient (concentration peak) is provided in the dielectric layer. A diffusion layer was formed.
  • the multilayer ceramic capacitor of the present invention has a Ta 2 O 5 conversion per 100.0 parts by mass of a conductive component containing (D1) and (A) Ni in a ceramic laminate in which a dielectric and an internal electrode layer are combined.
  • Al per 100.0 parts by mass of the conductive component containing Nb in the range of 0.010 to 1.80 parts by mass, preferably 0.010 to 0.50 parts by mass, and (D4) (A) Ni.
  • the multilayer ceramic capacitor of the present invention includes a ceramic laminate in which a plurality of ceramic dielectric layers and a plurality of internal electrode layers containing Ni are alternately laminated.
  • An external electrode formed on the outer surface of the ceramic laminate and With Diffusion of at least one element selected from the group consisting of Ta, Nb, Zr, a metal element in a stabilizer, and Al at the interface between the adjacent internal electrode layer and the ceramic dielectric layer and its vicinity. It is characterized by having a region (diffusion layer).
  • the metal element in the stabilizer is preferably one or more selected from Y, Ca, Mg and Sc.
  • the multilayer ceramic capacitor of the present invention has the above-mentioned characteristics and thus has an improved high-temperature load life. Therefore, even if the dielectric layer is further thinned and a voltage with a high electric field strength is applied, excellent reliability is achieved. show.
  • the dielectric layer and the internal electrode layer contain a Ta component, an Nb component, a stabilized zirconia (SZ) component, or an Al component, and they are higher in the direction from the internal electrode layer side to the ceramic dielectric layer side.
  • Having a diffusion region (diffusion layer) with a low concentration distribution after reaching a concentration peak means that SEM (scanning electron microscope), TEM (transmission electron microscope), or STEM (scanning transmission electron microscope) )
  • an element analysis method such as EDS (energy dispersion type X-ray spectroscopy), WDS (wavelength dispersion type X-ray spectroscopy), or EELS (electron energy loss spectroscopy).
  • the internal electrode layer containing Ni according to the multilayer ceramic capacitor of the present invention is formed by firing the Ni paste of the present invention at 900 to 1400 ° C., preferably 1100-1300 ° C. in a reducing atmosphere.
  • the external electrode of the multilayer ceramic capacitor of the present invention is not particularly limited as long as it can be used as an external electrode of the multilayer ceramic capacitor.
  • the multilayer ceramic capacitor of the present invention includes a ceramic laminate in which a plurality of ceramic dielectric layers and a plurality of internal electrode layers containing Ni are alternately laminated.
  • An external electrode formed on the outer surface of the ceramic laminate and With The internal electrode layer is formed of a fired product obtained by firing the Ni paste of the present invention at 900 to 1400 ° C. It is a monolithic ceramic capacitor characterized by.
  • the internal electrode layer is formed by molding the Ni paste of the present invention on a ceramic green sheet for forming a laminated layer by screen printing or the like, drying and firing. ..
  • the firing temperature of the Ni paste of the present invention is 900 to 1400 ° C., preferably 1100-1300 ° C., and the firing atmosphere is a reducing atmosphere. That is, the internal electrode layer is formed of a fired product of the Ni paste of the present invention at 900 to 1400 ° C, preferably 1100 to 1300 ° C.
  • a Ni paste was prepared by kneading using a 3-roll mill. Next, a polyvinyl butyral-based binder, ethanol, and an additive for adjusting the capacitor characteristics were added to BaTiO 3 powder having an average particle size of 0.2 ⁇ m, which is the main component of the ceramic green sheet, and wet-mixed with a media mill to prepare a ceramic slurry. bottom. This ceramic slurry was sheet-molded by the die coater method to prepare a ceramic green sheet having a thickness of 5.5 ⁇ m. Subsequently, a Ni paste was printed on this ceramic green sheet in a rectangular pattern of 1.5 mm ⁇ 3.0 mm, and then dried to form an internal electrode drying film.
  • the thickness of the internal electrode dry film was 1.5 ⁇ m.
  • Ceramic green sheets having an internal electrode dry film were stacked so that the effective dielectric layer was 50 layers, and pressure-bonded and molded by applying a pressure of 1250 kg / cm 2 at 90 ° C. to obtain an unfired ceramic laminate. ..
  • the ceramic laminate, N 2 in an atmosphere composed of -0.1% H 2 -H 2 O gas was heated to 700 ° C., after burning a binder, at 1220 ° C.
  • oxygen partial pressure 1 ⁇ 10 - in 8 atm of N 2 -0.1% H 2 -H 2 O gas consists in a reducing atmosphere, the temperature was raised, sintering densification and held for 2 hours at 1220 ° C.
  • the external dimensions of the obtained multilayer ceramic capacitor are width (W): 1.6 mm, length (L): 3.2 mm, thickness (T): 0.7 mm, and the thickness of the internal electrode layer is 1. It was 2 ⁇ m, and the thickness of the ceramic dielectric layer interposed between the internal electrodes was 4.0 ⁇ m. The area of the counter electrode per layer of the dielectric layer was 3.25 mm 2 .
  • Each multilayer ceramic capacitor (samples in Tables 1 and 2) produced as described above is subjected to a high-temperature load test by the method described below, the continuity of the internal electrode layer is evaluated, and the ceramic dielectric layer is evaluated.
  • the diffusion region (diffusion layer) in which the concentration of Ta or Nb increases in the direction from the internal electrode layer side toward the ceramic dielectric layer side, reaches a concentration peak, and then decreases. was confirmed to be formed.
  • (1) High-temperature load test Fifteen samples are sampled from each sample, and the high-temperature load test is performed under the conditions of 180 ° C. and 60 V. The time required for the insulation resistance to decrease by an order of magnitude is defined as the failure time of each multilayer ceramic capacitor. bottom.
  • Ta 2 O 5 or Nb 2 O 5 with respect to samples not mixed a defined range of Ta 2 O 5 or Nb 2 O 5 in the present invention MTTF increased in all the samples mixed in (Sample Nos. 2A-10A and 12A-20A).
  • the continuity of the internal electrodes was 90% or more for sample numbers 2A to 7A and 12A to 16A, and 80 to 90% for sample numbers 8A to 10A and 17A to 20A.
  • the sample mixture of Ta 2 O 5 or Nb 2 O 5 is in the sample (Sample No.
  • Example 2 and Comparative Example 1 ⁇ Manufacturing of Ni paste and multilayer ceramic capacitors> (Making Ni paste) As Comparative Example 1, ZrO 2 was prepared at a ratio of the number of moles shown in Table 3 with respect to 100.0 g of spherical nickel powder having an average particle size of 0.3 ⁇ m, and further, an average particle size of 0.05 ⁇ m as a co-material powder.
  • BaTiO 3 powder is mixed at a ratio of 10.0 g, ethyl cellulose (binder resin) 6.0 g, surfactant 2.0 g, plasticizer 1.0 g, and dihydroterpineol acetate (organic solvent) 100.0 g, and 3
  • a Ni paste was prepared by kneading using this roll mill. Further, as Example 2, in the same manner as in Comparative Example 1 except that 3.0 mol% yttria-stabilized zirconia (3.0-YSZ) was used instead of ZrO 2 at a ratio of the number of moles shown in Table 4. A Ni paste was prepared.
  • the thickness of the internal electrode dry film was 1.5 ⁇ m.
  • Ceramic green sheets having an internal electrode dry film were stacked so that the effective dielectric layer was 50 layers, and pressure-bonded and molded by applying a pressure of 1250 kg / cm 2 at 90 ° C. to obtain an unfired ceramic laminate. ..
  • the ceramic laminate, N 2 in an atmosphere composed of -0.1% H 2 -H 2 O gas was heated to 700 ° C., after burning a binder, at 1220 ° C.
  • oxygen partial pressure 1 ⁇ 10 - in 8 atm of N 2 -0.1% H 2 -H 2 O gas consists in a reducing atmosphere, the temperature was raised, sintering densification and held for 2 hours at 1220 ° C.
  • the samples marked with * in the sample numbers are comparative examples that do not satisfy the requirements of the present invention.
  • the external dimensions of the obtained multilayer ceramic capacitor are width (W): 1.6 mm, length (L): 3.2 mm, thickness (T): 0.7 mm, and the thickness of the internal electrode layer is 1. It was 2 ⁇ m, and the thickness of the ceramic dielectric layer interposed between the internal electrodes was 4.0 ⁇ m.
  • the area of the counter electrode per layer of the dielectric layer was 3.25 mm 2 .
  • Each multilayer ceramic capacitor (sample in Table 3 or Table 4) produced as described above is subjected to a high-temperature load test by the method described below, the continuity of the internal electrode layer is evaluated, and the ceramic dielectric layer is evaluated.
  • the concentration of Y which is a metal element in Zr and / or the stabilizer, increases in the direction from the internal electrode layer side toward the ceramic dielectric layer side, and reaches a concentration peak. After that, it was confirmed that a lower diffusion region (diffusion layer) was formed.
  • MTTF increased in all samples (Samples 12B-20B) in which zirconia (3.0-YSZ) was mixed within the range specified in the present invention. Further, all the samples (Sample 12B) in which stabilized zirconia (3.0-YSZ) was mixed within the range specified in the present invention were also mixed with the samples (Samples 2B to 10B) to which the same molar amount of zirconia (ZrO 2) was added. MTTF increased in ⁇ 20B).
  • the continuity of the internal electrodes was 90% or more in the samples 12B to 18B, and 80 to 90% in the samples 19B to 20B.
  • the MTTF is lower than that of the sample (Sample 11B) in which zirconia (ZrO 2) is mixed.
  • the continuity of the internal electrodes was less than 80%. From the above, by mixing 0.05 ⁇ 10-2 to 2.20 ⁇ 10-2 mol of stabilized zirconia (3.0-YSZ) per 100 g of spherical nickel powder, no additives and zirconia (ZrO 2) were added.
  • High temperature load life can be improved compared to the case of addition, and if it is within the range of 0.05 ⁇ 10 -2 to 1.40 ⁇ 10 -2 mol, it is high without impairing the continuity of the internal electrodes. It becomes possible to further improve the load life.
  • Example 3 ⁇ Manufacturing of Ni paste and multilayer ceramic capacitors> (Preparation of Ni paste) Against the spherical nickel powder 100.0g of an average particle diameter of 0.3 [mu] m, the content (X mole%) of yttria (Y 2 O 3) stabilized with stabilized zirconia (X-YSZ) powder shown in Table 6 Prepared at a ratio of 0.80 ⁇ 10-2 mol, 10.0 g of BaTiO 3 powder having an average particle size of 0.05 ⁇ m as a co-material powder, 6.0 g of ethyl cellulose (binder resin), 2.0 g of surfactant, A Ni paste was prepared by mixing 1.0 g of a plasticizer and 100.0 g of dihydroterpineol acetate (organic solvent) and kneading using a three-roll mill.
  • X-YSZ stabilized zirconia
  • MTTF (Sample 16B, 22B-28B) of similarly stabilized zirconia (X-YSZ) to MTTF (Sample 6B) to which the same amount of zirconia (ZrO 2) was added, that is, MTTF (X-YSZ). / MTTF (ZrO 2 ) is indicated by a square (vertical axis is on the right side) in FIG.
  • X refers to the molar% of Y 2 O 3 contained in stabilized zirconia (YSZ). 2) Ratio of MTTF of each sample to MTTF of sample 1B (additive-free) (MTTF of each sample / MTTF of sample 1B) 3) Ratio of MTTF of each sample to sample 6B to which the same mole of ZrO 2 was added (MTTF of each sample / MTTF of sample 6B)
  • the content of the stabilizer (Y 2 O 3 ) is in the range of more than 0.0 mol% and 45.0 mol% or less.
  • the range of more than 0.0 mol% and 40.0 mol% or less is preferable, and the range of 8.0 to 25.0 mol% is particularly preferable.
  • Example 4 ⁇ Manufacturing of Ni paste and multilayer ceramic capacitors> (Preparation of Ni paste) 0.80 of stabilized zirconia (10.0-SZ) powder containing 10.0 mol% of the stabilizers of the types shown in Table 7 with respect to 100.0 g of spherical nickel powder having an average particle size of 0.3 ⁇ m. Prepared at a ratio of ⁇ 10-2 mol, and 10.0 g of BaTiO 3 powder having an average particle size of 0.05 ⁇ m, 6.0 g of ethyl cellulose (binder resin), 2.0 g of surfactant, and 1 plasticizer as co-material powder. A Ni paste was prepared by mixing at a ratio of 0.0 g and 100.0 g of dihydroterpineol acetate (organic solvent) and kneading using a three-roll mill.
  • a Ni paste was prepared by kneading. Next, a polyvinyl butyral-based binder, ethanol, and an additive for adjusting the capacitor characteristics were added to BaTiO 3 powder having an average particle size of 0.2 ⁇ m, which is the main component of the ceramic green sheet, and wet-mixed with a media mill to prepare a ceramic slurry. bottom.
  • This ceramic slurry was sheet-molded by the die coater method to prepare a ceramic green sheet having a thickness of 5.5 ⁇ m. Subsequently, a Ni paste was printed on this ceramic green sheet in a rectangular pattern of 1.5 mm ⁇ 3.0 mm, and then dried to form an internal electrode drying film. The thickness of the internal electrode dry film was 1.5 ⁇ m.
  • Ceramic green sheets having an internal electrode dry film were stacked so that the effective dielectric layer was 50 layers, and pressure was applied at 90 ° C. at 1250 kg / cm 2 to crimp and cut to obtain an unfired ceramic laminate. ..
  • the ceramic laminate, N 2 in an atmosphere composed of -0.1% H 2 -H 2 O gas was heated to 700 ° C., after burning a binder, at 1220 ° C.
  • oxygen partial pressure 1 ⁇ 10 - in 8 atm of N 2 -0.1% H 2 -H 2 O gas consists in a reducing atmosphere, the temperature was raised, sintering densification and held for 2 hours at 1220 ° C. at a heating rate of 5 ° C.
  • the external dimensions of the obtained multilayer ceramic capacitor are width (W): 1.6 mm, length (L): 3.2 mm, thickness (T): 0.7 mm, and the thickness of the internal electrode layer is 1. It was 2 ⁇ m, and the thickness of the ceramic dielectric layer interposed between the internal electrodes was 4.0 ⁇ m. The area of the counter electrode per layer of the dielectric layer was 3.25 mm 2 .
  • Each multilayer ceramic capacitor (sample in Table 8) produced as described above is subjected to a high-temperature load test by the method described below, the continuity of the internal electrode layer is evaluated, and the dielectric layer and the internal electrode layer are evaluated. By observing the vicinity of the interface, the concentration of Al increases in the direction from the internal electrode layer side toward the ceramic dielectric layer side, and after reaching the concentration peak, a diffusion region (diffusion layer) is formed. It was confirmed.
  • (1) High-temperature load test Fifteen samples are sampled from each sample, and the high-temperature load test is performed under the conditions of 180 ° C. and 60 V. The time required for the insulation resistance to decrease by an order of magnitude is defined as the failure time of each multilayer ceramic capacitor. bottom.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Capacitors (AREA)
  • Conductive Materials (AREA)

Abstract

An Ni paste which is characterized by containing (A) a conductive powder that is mainly composed of Ni, (B) a binder resin and (C) an organic solvent, and by additionally containing at least one substance that is selected from the group consisting of (D1) an additive that contains Ta in an amount within the range of from 0.025 to 2.50 parts by mass in terms of Ta2O5 per 100.0 parts by mass of the conductive powder (A) that is mainly composed of Ni, (D2) an additive that contains Nb in an amount within the range of from 0.010 to 1.80 parts by mass in terms of Nb2O5 per 100.0 parts by mass of the conductive powder (A) that is mainly composed of Ni, (D3) a stabilized zirconia (SZ) in an amount within the range of from 0.05 × 10-2 to 2.20 × 10-2 mol per 100 g of the conductive powder (A) that is mainly composed of Ni, said stabilized zirconia being obtained by stabilizing the crystal structure of zirconia by means of a stabilizer, and (D4) an additive that contains Al in an amount within the range of from 0.10 to 5.50 parts by mass in terms of A12O3 per 100.0 parts by mass of the conductive powder (A) that is mainly composed of Ni. The present invention is able to provide an Ni paste for internal electrodes, said Ni paste being capable of improving the high temperature load life without lowering the continuity of an electrode film.

Description

Niペーストおよび積層セラミックコンデンサNi paste and multilayer ceramic capacitors
 本発明は、信頼性の高い積層セラミックコンデンサを製造するための内部電極形成用等のNiペーストと、これを用いて製造される積層セラミックコンデンサに関する。 The present invention relates to a Ni paste for forming an internal electrode for manufacturing a highly reliable multilayer ceramic capacitor, and a multilayer ceramic capacitor manufactured by using the Ni paste.
 近年のエレクトロニクス技術の発展に伴い、積層セラミックコンデンサに対する小型化および大容量化の要求がさらに高まっている。これらの要求を満たすために、積層セラミックコンデンサを構成する誘電体層の薄層化が進められている。しかし、誘電体層を薄層化すると、1層あたりに加わる電界強度が相対的に高くなる。そこで、電圧印加時における信頼性の向上が求められる。 With the development of electronics technology in recent years, the demand for smaller size and larger capacity for multilayer ceramic capacitors is increasing. In order to meet these demands, the dielectric layer constituting the multilayer ceramic capacitor is being thinned. However, when the dielectric layer is thinned, the electric field strength applied to each layer becomes relatively high. Therefore, it is required to improve the reliability when a voltage is applied.
 ここで、積層セラミックコンデンサは、一般に次のようにして製造される。先ず、誘電体セラミック原料粉末を樹脂バインダ中に分散させ、シート化してなるセラミックグリーンシートに、導電性粉末と所望によりセラミック粉末等を含む無機粉末、樹脂バインダおよび溶剤を主成分とする内部電極用の導電性ペーストを所定のパターンで印刷し、乾燥して溶剤を除去し、内部電極乾燥膜を形成する。次いで、得られた内部電極乾燥膜を有するセラミックシートを複数枚積み重ね、圧着して積層体とし、所定の形状に切断した後、高温で焼成してセラミック素体を得る。この後、セラミック素体の両端面に外部電極用の導電性ペーストを塗布した後、焼成して積層セラミックコンデンサを得る。なお、外部電極は、未焼成の積層体に外部電極用ペーストを塗布し、セラミック素体と同時に焼成されることもある。そして、内部電極としてはNiを主成分として用いたものが知られている(例えば、特許文献1)。 Here, the multilayer ceramic capacitor is generally manufactured as follows. First, a dielectric ceramic raw material powder is dispersed in a resin binder and formed into a sheet, which is then formed into a ceramic green sheet. The conductive paste of No. 1 is printed in a predetermined pattern and dried to remove the powder to form an internal electrode drying film. Next, a plurality of ceramic sheets having the obtained internal electrode dry film are stacked, pressure-bonded to form a laminate, cut into a predetermined shape, and then fired at a high temperature to obtain a ceramic element. After that, a conductive paste for an external electrode is applied to both end faces of the ceramic element and then fired to obtain a monolithic ceramic capacitor. The external electrode may be fired at the same time as the ceramic element by applying the paste for the external electrode to the unfired laminate. As the internal electrode, one using Ni as a main component is known (for example, Patent Document 1).
 内部電極にNiを主成分として用いた積層セラミックコンデンサを製造する際には、Niの酸化を防止するために還元雰囲気で焼成を行う必要があるが、この際、誘電体層に酸素空孔が導入されてしまい、それが高温負荷寿命の低下を引き起こすという問題があった。 When manufacturing a multilayer ceramic capacitor using Ni as the main component for the internal electrode, it is necessary to perform firing in a reducing atmosphere in order to prevent oxidation of Ni. At this time, oxygen vacancies are formed in the dielectric layer. There was a problem that it was introduced and it caused a decrease in high temperature load life.
 そこで、特許文献2には、NiにSnが固溶した内部電極を用いることにより、誘電体層と電極層の界面の電気的障壁の高さが変化し、高温負荷寿命を達成しようとしている発明が記載されている。 Therefore, Patent Document 2 describes an invention in which the height of the electrical barrier at the interface between the dielectric layer and the electrode layer is changed by using an internal electrode in which Sn is dissolved in Ni, thereby achieving a high temperature load life. Is described.
特開2001-101926JP 2001-101926 WO2012/111592WO2012 / 111592
 しかしながら、NiにSnが固溶するとNiの融点が低下し焼結が促進されるため、焼成時に電極層の各所でボールアップが起こり易くなり、電極膜の連続性を低下させることとなる。そして、電極膜の連続性の低下はコンデンサの容量低下を招く。 However, when Sn is dissolved in Ni as a solid solution, the melting point of Ni is lowered and sintering is promoted, so that ball-up is likely to occur in various parts of the electrode layer during firing, and the continuity of the electrode film is lowered. Then, the decrease in the continuity of the electrode film causes a decrease in the capacitance of the capacitor.
 そこで、本発明の目的は、電極膜の連続性を低下させることなく、高温負荷寿命を向上することができる内部電極用のNiペーストを提供することにある。また、本発明の目的は、誘電体層の更なる薄層化および高電界強度の電圧印加が行われても、優れた信頼性を示す積層セラミックコンデンサを提供することにある。 Therefore, an object of the present invention is to provide a Ni paste for an internal electrode that can improve the high temperature load life without lowering the continuity of the electrode film. Another object of the present invention is to provide a multilayer ceramic capacitor that exhibits excellent reliability even when the dielectric layer is further thinned and a voltage having a high electric field strength is applied.
 本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、(A)Niを主とする導電性粉末を含む内部電極用のNiペーストに、(D1)Taを含む添加剤、(D2)Nbを含む添加剤、(D3)安定化ジルコニア(SZ)、及び(D4)Alを含む添加剤からなる群から選択される少なくとも1種を、(A)Niを主とする導電性粉末に対し、所定の割合で含有させることにより、電極膜の連続性を低下させることなく、高温負荷寿命を向上することができることを見出し、本発明を完成させるに至った。 As a result of diligent studies to solve the above problems, the present inventors have made (A) an additive containing (D1) Ta in a Ni paste for an internal electrode containing a conductive powder mainly containing Ni. At least one selected from the group consisting of D2) Nb-containing additives, (D3) stabilized zirconia (SZ), and (D4) Al-containing additives is a conductive powder mainly containing (A) Ni. On the other hand, they have found that the high temperature load life can be improved without lowering the continuity of the electrode film by containing the mixture in a predetermined ratio, and have completed the present invention.
 すなわち、本発明(1)は、(A)Niを主とする導電性粉末と、
(B)バインダ樹脂と、
(C)有機溶剤と、
を含有し、
 更に、
(D1)前記(A)Niを主とする導電性粉末100.0質量部当たり、Ta換算で0.025~2.50質量部の範囲内のTaを含む添加剤、
(D2)前記(A)Niを主とする導電性粉末100.0質量部当たり、Nb換算で0.010~1.80質量部の範囲内のNbを含む添加剤、
(D3)前記(A)Niを主とする導電性粉末100g当たり、0.05×10-2~2.20×10-2モルの範囲内の、安定化剤によりジルコニアの結晶構造が安定化された安定化ジルコニア(SZ)、及び
(D4)前記(A)Niを主とする導電性粉末100.0質量部当たり、Al換算で0.10~5.50質量部の範囲内のAlを含む添加剤
からなる群から選択される少なくとも1種を含有すること、
を特徴とするNiペーストを提供するものである。
That is, in the present invention (1), (A) a conductive powder mainly containing Ni and
(B) Binder resin and
(C) Organic solvent and
Contains,
In addition
(D1) Additive containing Ta in the range of 0.025 to 2.50 parts by mass in terms of Ta 2 O 5 per 100.0 parts by mass of the conductive powder mainly containing Ni (A).
(D2) Additive containing Nb in the range of 0.010 to 1.80 parts by mass in terms of Nb 2 O 5 per 100.0 parts by mass of the conductive powder mainly containing (A) Ni.
(D3) The crystal structure of zirconia is stabilized by a stabilizer in the range of 0.05 × 10 -2 to 2.20 × 10 -2 mol per 100 g of the conductive powder mainly containing (A) Ni. Stabilized zirconia (SZ) and (D4) (A) Ni-based conductive powder per 100.0 parts by mass, within the range of 0.10 to 5.50 parts by mass in terms of Al 2 O 3. Containing at least one selected from the group consisting of additives containing Al,
To provide a Ni paste characterized by.
 また、本発明(2)は、前記(D1)Taを含む添加剤を含有する場合、前記(D1)Taを含む添加剤を、前記(A)Niを主とする導電性粉末100.0質量部当たり、Ta換算で0.025~0.80質量部の範囲内で含有することを特徴とする(1)のNiペーストを提供するものである。 Further, in the present invention (2), when the additive containing (D1) Ta is contained, the additive containing (D1) Ta is added to the conductive powder containing (A) Ni as the main component by 100.0 mass. It provides the Ni paste of (1), which is characterized by containing in the range of 0.025 to 0.80 parts by mass in terms of Ta 2 O 5 per part.
 また、本発明(3)は、前記(D2)Nbを含む添加剤を含有する場合、前記(D2)Nbを含む添加剤を、前記(A)Niを主とする導電性粉末100.0質量部当たり、Nb換算で0.010~0.50質量部の範囲内で含有することを特徴とする(1)のNiペーストを提供するものである。 Further, in the present invention (3), when the additive containing (D2) Nb is contained, the additive containing (D2) Nb is added to the conductive powder containing (A) Ni as the main component by 100.0 mass. It provides the Ni paste of (1), which is characterized by containing in the range of 0.010 to 0.50 parts by mass in terms of Nb 2 O 5 per part.
 また、本発明(4)は、前記(D3)安定化ジルコニア(SZ)を含有する場合、前記安定化剤が、Y、CaO、MgO及びScから選ばれる1種以上であることを特徴とする(1)のNiペーストを提供するものである。 Further, the present invention (4), when containing the (D3) stabilized zirconia (SZ), said stabilizing agent, Y 2 O 3, CaO, at least one selected from MgO and Sc 2 O 3 It provides the Ni paste of (1), which is characterized by being present.
 また、本発明(5)は、前記(D3)安定化ジルコニア(SZ)を含有する場合、前記(D3)安定化ジルコニア(SZ)が、0.0モル%を超え45.0モル%以下の範囲で前記安定化剤を含有していることを特徴とする(4)のNiペーストを提供するものである。 Further, in the present invention (5), when the (D3) stabilized zirconia (SZ) is contained, the (D3) stabilized zirconia (SZ) is more than 0.0 mol% and 45.0 mol% or less. It provides the Ni paste of (4), which is characterized by containing the stabilizer in a range.
 また、本発明(6)は、前記(D3)安定化ジルコニア(SZ)を含有する場合、前記(D3)安定化ジルコニア(SZ)が、8.0~25.0モル%の範囲で前記安定化剤を含有していることを特徴とする(4)のNiペーストを提供するものである。 Further, in the present invention (6), when the (D3) stabilized zirconia (SZ) is contained, the (D3) stabilized zirconia (SZ) is stable in the range of 8.0 to 25.0 mol%. It provides the Ni paste of (4), which is characterized by containing an agent.
 また、本発明(7)は、前記(D3)安定化ジルコニア(SZ)を含有する場合、前記(D3)安定化ジルコニア(SZ)を、前記(A)Niを主とする導電性粉末100g当たり、0.05×10-2~1.40×10-2モルの範囲で含有することを特徴とする(1)、(4)~(6)いずれかのNiペーストを提供するものである。 Further, in the present invention (7), when the (D3) stabilized zirconia (SZ) is contained, the (D3) stabilized zirconia (SZ) is used per 100 g of the conductive powder mainly containing (A) Ni. , (1), (4) to (6), any of the Ni pastes, which are contained in the range of 0.05 × 10 −2 to 1.40 × 10 −2 mol.
 また、本発明(8)は、前記(D4)Alを含む添加剤を含有する場合、前記(D4)Alを含む添加剤を、前記(A)Niを主とする導電性粉末100.0質量部当たり、Al換算で0.10~2.30質量部の範囲内で含有することを特徴とする(1)のNiペーストを提供するものである。 Further, in the present invention (8), when the additive containing (D4) Al is contained, the additive containing (D4) Al is added to the conductive powder containing (A) Ni as the main component by 100.0 mass. It provides the Ni paste of (1), which is characterized by containing in the range of 0.10 to 2.30 parts by mass in terms of Al 2 O 3 per part.
 また、本発明(9)は、前記(A)Niを主とする導電性粉末の含有量が、30.0~95.0質量%であることを特徴とする(1)~(8)いずれかのNiペーストを提供するものである。 Further, the present invention (9) is characterized in that the content of the conductive powder mainly containing (A) Ni is 30.0 to 95.0% by mass, any of (1) to (8). The Ni paste is provided.
 また、本発明(10)は、複数のセラミック誘電体層と、Niを含む複数の内部電極層と、が交互に積層されているセラミック積層体と、
 前記セラミック積層体の外表面に形成されている外部電極と、
を備え、
 前記セラミック積層体が、
(D1)前記(A)Niを含む導電性成分100.0質量部当たり、Ta換算で0.025~2.50質量部の範囲内のTa、
(D2)前記(A)Niを含む導電性成分100.0質量部当たり、Nb換算で0.010~1.80質量部の範囲内のNb、及び
(D4)前記(A)Niを含む導電性成分100.0質量部当たり、Al換算で0.10~5.50質量部の範囲内のAl
からなる群から選択される少なくとも1種を含有すること、
を特徴とする積層セラミックコンデンサを提供するものである。
Further, the present invention (10) is a ceramic laminate in which a plurality of ceramic dielectric layers and a plurality of internal electrode layers containing Ni are alternately laminated.
An external electrode formed on the outer surface of the ceramic laminate and
With
The ceramic laminate
(D1) Ta, which is in the range of 0.025 to 2.50 parts by mass in terms of Ta 2 O 5 per 100.0 parts by mass of the conductive component containing (A) Ni.
(D2) Nb in the range of 0.010 to 1.80 parts by mass in terms of Nb 2 O 5 per 100.0 parts by mass of the conductive component containing (A) Ni, and (D4) the above (A) Ni. Al in the range of 0.10 to 5.50 parts by mass in terms of Al 2 O 3 per 100.0 parts by mass of the conductive component containing
Containing at least one selected from the group consisting of
Provided is a monolithic ceramic capacitor characterized by the above.
 また、本発明(11)は、複数のセラミック誘電体層と、Niを含む複数の内部電極層と、が交互に積層されているセラミック積層体と、
 前記セラミック積層体の外表面に形成されている外部電極と、
を備え、
 隣接する前記内部電極層と前記セラミック誘電体層との界面及びその近傍に、Ta、Nb、Zr、安定化剤中の金属元素及びAlからなる群から選択される少なくとも1種の元素の拡散領域を有すること、
を特徴とする積層セラミックコンデンサを提供するものである。
Further, the present invention (11) is a ceramic laminate in which a plurality of ceramic dielectric layers and a plurality of internal electrode layers containing Ni are alternately laminated.
An external electrode formed on the outer surface of the ceramic laminate and
With
At the interface between the adjacent internal electrode layer and the ceramic dielectric layer and its vicinity, a diffusion region of at least one element selected from the group consisting of Ta, Nb, Zr, a metal element in a stabilizer and Al. To have
Provided is a monolithic ceramic capacitor characterized by the above.
 また、本発明(12)は、前記安定化剤中の金属元素が、Y、Ca、Mg及びScから選ばれる1種以上であることを特徴とする(11)の積層セラミックコンデンサを提供するものである。 The present invention (12) also provides the multilayer ceramic capacitor (11), wherein the metal element in the stabilizer is one or more selected from Y, Ca, Mg and Sc. Is.
 また、本発明(13)は、複数のセラミック誘電体層と、Niを含む複数の内部電極層と、が交互に積層されているセラミック積層体と、
 前記セラミック積層体の外表面に形成されている外部電極と、
を備え、
 前記内部電極層が、(1)~(9)いずれかのNiペーストが900~1400℃で焼成された焼成物で形成されていること、
を特徴とする積層セラミックコンデンサを提供するものである。
Further, the present invention (13) is a ceramic laminate in which a plurality of ceramic dielectric layers and a plurality of internal electrode layers containing Ni are alternately laminated.
An external electrode formed on the outer surface of the ceramic laminate and
With
The internal electrode layer is formed of a fired product obtained by firing any of the Ni pastes (1) to (9) at 900 to 1400 ° C.
Provided is a monolithic ceramic capacitor characterized by the above.
 本発明によれば、電極膜の連続性を低下させることなく、高温負荷寿命を向上することができる内部電極用のNiペーストを提供することができる。また、本発明によれば、誘電体層の更なる薄層化および高電界強度の電圧印加が行われても、優れた信頼性を示す積層セラミックコンデンサを提供することができる。 According to the present invention, it is possible to provide a Ni paste for an internal electrode that can improve the high temperature load life without lowering the continuity of the electrode film. Further, according to the present invention, it is possible to provide a monolithic ceramic capacitor showing excellent reliability even when the dielectric layer is further thinned and a voltage having a high electric field strength is applied.
実施例1の表1のTaとMTTF(Ta添加)/MTTF(無添加)との関係を示すグラフである。It is a graph which shows the relationship between Ta 2 O 5 of Table 1 of Example 1 and MTTF ( addition of Ta 2 O 5) / MTTF (without addition). 実施例1の表2のNbとMTTF(Nb添加)/MTTF(無添加)との関係を示すグラフである。It is a graph which shows the relationship between Nb 2 O 5 of Table 2 of Example 1 and MTTF ( addition of Nb 2 O 5) / MTTF (without addition). 比較例1のMTTF(ZrO添加)/MTTF(無添加)、及び実施例2のMTTF(YSZ添加)/MTTF(無添加)の関係を示すグラフである。It is a graph which shows the relationship of MTTF (ZrO 2 addition) / MTTF (no addition) of Comparative Example 1, and MTTF (YSZ addition) / MTTF (no addition) of Example 2. 実施例2のMTTF(YSZ添加)/比較例1のMTTF(ZrO添加)の関係を示すグラフである。It is a graph which shows the relationship of MTTF (YSZ addition) of Example 2 / MTTF (ZrO 2 addition) of Comparative Example 1. 実施例3のMTTF(YSZ添加)/MTTF(無添加)、及び実施例3のMTTF(YSZ添加)/MTTF(ZrO添加)の関係を示すグラフである。It is a graph which shows the relationship of MTTF (YSZ addition) / MTTF (no addition) of Example 3 and MTTF (YSZ addition) / MTTF (ZrO 2 addition) of Example 3. 実施例5の表8のAlとMTTF(Al添加)/MTTF(無添加)との関係を示すグラフである。It is a graph which shows the relationship between Al 2 O 3 of Table 8 of Example 5 and MTTF ( addition of Al 2 O 3) / MTTF (without addition).
 本発明のNiペーストは、
(A)Niを主とする導電性粉末と、
(B)バインダ樹脂と、
(C)有機溶剤と、
を含有し、
 更に、
(D1)前記(A)Niを主とする導電性粉末100.0質量部当たり、Ta換算で0.025~2.50質量部の範囲内のTaを含む添加剤、
(D2)前記(A)Niを主とする導電性粉末100.0質量部当たり、Nb換算で0.010~1.80質量部の範囲内のNbを含む添加剤、
(D3)前記(A)Niを主とする導電性粉末100g当たり、0.05×10-2~2.20×10-2モルの範囲内の、安定化剤によりジルコニアの結晶構造が安定化された安定化ジルコニア(SZ)、及び
(D4)前記(A)Niを主とする導電性粉末100.0質量部当たり、Al換算で0.10~5.50質量部の範囲内のAlを含む添加剤
からなる群から選択される少なくとも1種を含有すること、
を特徴とするNiペーストである。
The Ni paste of the present invention
(A) Conductive powder mainly composed of Ni and
(B) Binder resin and
(C) Organic solvent and
Contains,
In addition
(D1) Additive containing Ta in the range of 0.025 to 2.50 parts by mass in terms of Ta 2 O 5 per 100.0 parts by mass of the conductive powder mainly containing Ni (A).
(D2) Additive containing Nb in the range of 0.010 to 1.80 parts by mass in terms of Nb 2 O 5 per 100.0 parts by mass of the conductive powder mainly containing (A) Ni.
(D3) The crystal structure of zirconia is stabilized by a stabilizer in the range of 0.05 × 10 -2 to 2.20 × 10 -2 mol per 100 g of the conductive powder mainly containing (A) Ni. Stabilized zirconia (SZ) and (D4) (A) Ni-based conductive powder per 100.0 parts by mass, within the range of 0.10 to 5.50 parts by mass in terms of Al 2 O 3. Containing at least one selected from the group consisting of additives containing Al,
It is a Ni paste characterized by.
 そして、本発明のNiペーストとしては、(A)Niを主とする導電性粉末と、(B)バインダ樹脂と、(C)有機溶剤と、を含有し、更に、(D1)前記(A)Niを主とする導電性粉末100.0質量部当たり、Ta換算で0.025~2.50質量部の範囲内のTaを含む添加剤を含有すること、を特徴とするNiペーストが挙げられる。
 また、本発明のNiペーストとしては、(A)Niを主とする導電性粉末と、(B)バインダ樹脂と、(C)有機溶剤と、を含有し、更に、(D2)前記(A)Niを主とする導電性粉末100.0質量部当たり、Nb換算で0.010~1.80質量部の範囲内のNbを含む添加剤を含有すること、を特徴とするNiペーストが挙げられる。
 また、本発明のNiペーストとしては、(A)Niを主とする導電性粉末と、(B)バインダ樹脂と、(C)有機溶剤と、を含有し、更に、(D3)前記(A)Niを主とする導電性粉末100g当たり、0.05×10-2~2.20×10-2モルの範囲内の、安定化剤によりジルコニアの結晶構造が安定化された安定化ジルコニア(SZ)を含有すること、を特徴とするNiペーストが挙げられる。
 また、本発明のNiペーストとしては、(A)Niを主とする導電性粉末と、(B)バインダ樹脂と、(C)有機溶剤と、を含有し、更に、(D4)前記(A)Niを主とする導電性粉末100.0質量部当たり、Al換算で0.10~5.50質量部の範囲内のAlを含む添加剤を含有すること、を特徴とするNiペーストが挙げられる。
The Ni paste of the present invention contains (A) a conductive powder mainly containing Ni, (B) a binder resin, and (C) an organic solvent, and further (D1) the above (A). A Ni paste characterized by containing an additive containing Ta in the range of 0.025 to 2.50 parts by mass in terms of Ta 2 O 5 per 100.0 parts by mass of a conductive powder mainly containing Ni. Can be mentioned.
Further, the Ni paste of the present invention contains (A) a conductive powder mainly containing Ni, (B) a binder resin, and (C) an organic solvent, and further (D2) the above (A). A Ni paste characterized by containing an additive containing Nb in the range of 0.010 to 1.80 parts by mass in terms of Nb 2 O 5 per 100.0 parts by mass of a conductive powder mainly containing Ni. Can be mentioned.
Further, the Ni paste of the present invention contains (A) a conductive powder mainly containing Ni, (B) a binder resin, and (C) an organic solvent, and further (D3) the above (A). Stabilized zirconia (SZ) in which the crystal structure of zirconia is stabilized by a stabilizer in the range of 0.05 × 10 -2 to 2.20 × 10 -2 mol per 100 g of conductive powder mainly containing Ni. ) Is contained, and examples thereof include Ni paste.
Further, the Ni paste of the present invention contains (A) a conductive powder mainly containing Ni, (B) a binder resin, and (C) an organic solvent, and further (D4) the above (A). A Ni paste characterized by containing an additive containing Al in the range of 0.10 to 5.50 parts by mass in terms of Al 2 O 3 per 100.0 parts by mass of a conductive powder mainly containing Ni. Can be mentioned.
 本発明のNiペーストは、積層セラミックコンデンサの内部電極形成用途に好適に用いられ、また、積層セラミックアクチュエータ等の他のセラミック電子部品へも適用可能である。 The Ni paste of the present invention is suitably used for forming internal electrodes of multilayer ceramic capacitors, and can also be applied to other ceramic electronic components such as multilayer ceramic actuators.
 本発明のNiペーストは、少なくとも、(A)Niを主とする導電性粉末と、(B)バインダ樹脂と、(C)有機溶剤と、「(D1)Taを含む添加剤、(D2)Nbを含む添加剤、(D3)安定化ジルコニア(SZ)、及び(D4)Alを含む添加剤からなる群から選択される少なくとも1種」と、を含有する。つまり、本発明のNiペーストは、少なくとも、(A)Niを主とする導電性粉末と、(B)バインダ樹脂と、(C)有機溶剤と、(D1)Taを含む添加剤、(D2)Nbを含む添加剤、(D3)安定化ジルコニア(SZ)、及び(D4)Alを含む添加剤のうちのいずれか1種又は2種以上と、を含有する。 The Ni paste of the present invention has at least (A) a conductive powder mainly containing Ni, (B) a binder resin, (C) an organic solvent, and "an additive containing (D1) Ta, (D2) Nb. At least one selected from the group consisting of additives containing (D3) stabilized zirconia (SZ) and (D4) Al. That is, the Ni paste of the present invention contains at least (A) a conductive powder mainly containing Ni, (B) a binder resin, (C) an organic solvent, and (D1) an additive containing Ta, (D2). It contains any one or more of an additive containing Nb, (D3) stabilized zirconia (SZ), and an additive containing (D4) Al.
 本発明のNiペーストに係る(A)Niを主とする導電性粉末は、内部電極の形成用のNiペーストにおいて、導電性粉末として用いられ、Niを主として含有する粉末である。(A)Niを主とする導電性粉末としては、金属Niのみからなる粉末が挙げられる。また、(A)Niを主とする導電性粉末としては、本発明の作用効果を奏する限りにおいて、Niと他の化合物との複合粉末、Niと他の化合物との混合粉末、Niと他の金属との合金粉末等が挙げられる。Niと他の化合物との複合粉末としては、例えば、Ni粉末の表面がガラス質薄膜で被覆されている複合粉末、Ni粉末の表面が酸化物で被覆されている複合粉末、Ni粉末の表面が有機金属化合物、界面活性剤、脂肪酸類などで表面処理された複合粉末が挙げられる。Niと他の化合物との混合粉末としては、例えば、Ni粉末と、酸化物粉末などとの混合粉末が挙げられる。また合金粉末において利用可能な他の金属としては、Niと合金化する際に融点降下を生じにくい金属であるか、仮に融点降下を生じる金属であっても既出のボールアップ現象が生じない程度の含有量であれば良く、一例としてCu、Ag、Pd、Pt、Rh、Ir、Re、Ru、Os、In、Ga、Zn、Bi、Pb、Fe、V、Y等が挙げられる。(A)Niを主とする導電性粉末中のNi含有量は、本発明の作用効果を奏する限りにおいて、特に制限されないが、好ましくは60.0質量%以上、特に好ましくは80.0質量%以上、更に好ましくは100.0質量%である。 (A) The conductive powder mainly containing Ni according to the Ni paste of the present invention is used as a conductive powder in the Ni paste for forming an internal electrode and is a powder mainly containing Ni. Examples of the conductive powder (A) mainly composed of Ni include a powder composed of only metallic Ni. Further, as the conductive powder mainly containing (A) Ni, as long as the action and effect of the present invention are exhibited, a composite powder of Ni and another compound, a mixed powder of Ni and another compound, and Ni and other compounds are used. Examples include alloy powder with metal. Examples of the composite powder of Ni and other compounds include a composite powder in which the surface of the Ni powder is coated with a vitreous thin film, a composite powder in which the surface of the Ni powder is coated with an oxide, and a surface of the Ni powder. Examples thereof include composite powders surface-treated with organic metal compounds, surfactants, fatty acids and the like. Examples of the mixed powder of Ni and other compounds include a mixed powder of Ni powder and an oxide powder. Further, as other metals that can be used in the alloy powder, a metal that does not easily cause a melting point drop when alloying with Ni, or even a metal that causes a melting point drop does not cause the above-mentioned ball-up phenomenon. The content may be any amount, and examples thereof include Cu, Ag, Pd, Pt, Rh, Ir, Re, Ru, Os, In, Ga, Zn, Bi, Pb, Fe, V, and Y. (A) The Ni content in the conductive powder mainly containing Ni is not particularly limited as long as the effects of the present invention are exhibited, but is preferably 60.0% by mass or more, particularly preferably 80.0% by mass. As mentioned above, it is more preferably 100.0% by mass.
 (A)Niを主とする導電性粉末の平均粒径は、特に限定されないが、好ましくは0.05~1.0μmである。(A)Niを主とする導電性粉末の平均粒径が上記範囲内にあることにより、緻密で平滑性が高く、薄い内部電極層が形成され易くなる。なお、本明細書において数値範囲を示す符号「~」は、特に断らない限り、符号「~」の前後に記載された数値を含む範囲を示すものとする。すなわち、例えば「0.05~1.0」という表記は、特に断らない限り、「0.05以上1.0以下」と同義である。 (A) The average particle size of the conductive powder mainly containing Ni is not particularly limited, but is preferably 0.05 to 1.0 μm. (A) When the average particle size of the conductive powder mainly containing Ni is within the above range, it is dense and has high smoothness, and a thin internal electrode layer is easily formed. In the present specification, the reference numeral "-" indicating a numerical range indicates a range including the numerical values described before and after the symbol "-" unless otherwise specified. That is, for example, the notation "0.05 to 1.0" is synonymous with "0.05 or more and 1.0 or less" unless otherwise specified.
 本発明のNiペースト中、(A)Niを主とする導電性粉末の含有量は、特に制限されず、Niペーストの仕上がり粘度、印刷性、保存安定性等々を考慮して、通常は30.0~95.0質量%の範囲で、適宜選択されてもよい。 The content of the conductive powder mainly composed of (A) Ni in the Ni paste of the present invention is not particularly limited, and is usually 30. In consideration of the finished viscosity, printability, storage stability, etc. of the Ni paste. It may be appropriately selected in the range of 0 to 95.0% by mass.
 本発明のNiペーストに係る(B)バインダ樹脂は、内部電極形成用の導電性ペーストに使用可能なものであれば、特に制限されない。(B)バインダ樹脂としては、内部電極形成用の導電性ペーストとして一般的に使用されているもの、例えば、エチルセルロースなどのセルロース系樹脂、アクリル樹脂、メタクリル樹脂、ブチラール樹脂、エポキシ樹脂、フェノール樹脂、ロジン等が挙げられる。 The binder resin (B) according to the Ni paste of the present invention is not particularly limited as long as it can be used as a conductive paste for forming an internal electrode. (B) As the binder resin, those generally used as a conductive paste for forming an internal electrode, for example, a cellulose resin such as ethyl cellulose, an acrylic resin, a methacrylic resin, a butyral resin, an epoxy resin, a phenol resin, etc. Examples include rosin.
 本発明のNiペーストにおける(B)バインダ樹脂の含有割合は、特に制限されず、(A)Niを主とする導電性粉末100.0質量部当たり、通常は0.1~30.0質量部、好ましくは1.0~15.0質量部となる割合である。 The content ratio of the binder resin (B) in the Ni paste of the present invention is not particularly limited, and is usually 0.1 to 30.0 parts by mass per 100.0 parts by mass of the conductive powder mainly containing (A) Ni. The ratio is preferably 1.0 to 15.0 parts by mass.
 本発明のNiペーストに係る(C)有機溶剤は、(B)バインダ樹脂を溶解するものであれば特に限定されず、例えば、アルコール系、エーテル系、エステル系、炭化水素系等の溶剤やこれらの混合溶剤が挙げられる。 The (C) organic solvent according to the Ni paste of the present invention is not particularly limited as long as it dissolves the (B) binder resin, and for example, alcohol-based, ether-based, ester-based, hydrocarbon-based solvents and the like. Examples of the mixed solvent of.
 本発明のNiペーストは、(A)Niを主とする導電性粉末、(B)バインダ樹脂及び(C)有機溶剤に加え、(D1)Taを含む添加剤、(D2)Nbを含む添加剤、(D3)安定化ジルコニア(SZ)、及び(D4)Alを含む添加剤からなる群から選択される少なくとも1種を含有する。 The Ni paste of the present invention contains (A) a conductive powder mainly containing Ni, (B) a binder resin and (C) an organic solvent, (D1) an additive containing Ta, and (D2) an additive containing Nb. , (D3) Stabilized Zirconia (SZ), and (D4) Al contains at least one selected from the group consisting of additives.
 本発明のNiペーストに係る(D1)成分は、Taを含む添加剤である。Taを含む添加剤としては、Niペーストを焼成した後にTaが得られるものであれば特に限定は無いが、一例としては純金属(Ta)の他、Taを含む酸化物(Ta、TaO)、硫化物(TaS)、ハロゲン化物(TaF等)、ホウ化物(TaB)等の無機化合物であってもよく、また、金属カルボニル、金属アルコキシド、金属レジネート等の有機金属化合物であっても良い。本発明においてTaを含む添加剤としてはTaが特に好ましい。 The component (D1) according to the Ni paste of the present invention is an additive containing Ta. The additive containing Ta is not particularly limited as long as Ta 2 O 5 can be obtained after firing the Ni paste, but as an example, in addition to pure metal (Ta), an oxide containing Ta (Ta 2) is used. It may be an inorganic compound such as O 5 , TaO 2 ), a sulfide (TaS 2 ), a halide (TaF 5, etc.), a boride (TaB), or an organic compound such as a metal carbonyl, a metal alkoxide, or a metal resinate. It may be a metal compound. In the present invention, Ta 2 O 5 is particularly preferable as the additive containing Ta.
 本発明のNiペーストが(D1)Taを含む添加剤を含有する場合、本発明のNiペーストは、Taを含む添加剤中のTaを、Taに換算したときに、(A)Niを主とする導電性粉末100.0質量部当たり、0.025~2.50質量部、好ましくは0.025~0.80質量部となる割合で、Taを含む添加剤を含有する。 When the Ni paste of the present invention contains an additive containing (D1) Ta, the Ni paste of the present invention has (A) Ni when Ta in the additive containing Ta is converted into Ta 2 O 5. The additive containing Ta is contained in a proportion of 0.025 to 2.50 parts by mass, preferably 0.025 to 0.80 parts by mass, per 100.0 parts by mass of the conductive powder mainly composed of.
 本発明のNiペーストに係る(D2)成分は、Nbを含む添加剤である。Nbを含む添加剤としては、Niペーストを焼成した後にNbが得られるものであれば特に限定は無いが、一例としては純金属(Nb)の他、Nbを含む酸化物(Nb、NbO)、硫化物(NbS)、ハロゲン化物(NbF等)、ホウ化物(NbB)等の無機化合物であってもよく、また、金属カルボニル、金属アルコキシド、金属レジネート等の有機金属化合物であっても良い。本発明において、Nbを含む添加剤としてはNbが特に好ましい。 The component (D2) according to the Ni paste of the present invention is an additive containing Nb. The additive containing Nb is not particularly limited as long as Nb 2 O 5 can be obtained after firing the Ni paste, but as an example, in addition to pure metal (Nb), an oxide containing Nb (Nb 2) It may be an inorganic compound such as O 5 , NbO 2 ), a sulfide (NbS 2 ), a halide (NbF 5, etc.), a boride (NbB), or an organic compound such as a metal carbonyl, a metal alkoxide, or a metal resinate. It may be a metal compound. In the present invention, Nb 2 O 5 is particularly preferable as the additive containing Nb.
 本発明のNiペーストが(D2)Nbを含む添加剤を含有する場合、本発明のNiペーストは、Nbを含む添加剤中のNbを、Nbに換算したときに、(A)Niを主とする導電性粉末100.0質量部当たり、0.010~1.80質量部、好ましくは0.010~0.50質量部となる割合で、Nbを含む添加剤を含有する。 When the Ni paste of the present invention contains an additive containing (D2) Nb, the Ni paste of the present invention has (A) Ni when Nb in the additive containing Nb is converted into Nb 2 O 5. The additive containing Nb is contained in a proportion of 0.010 to 1.80 parts by mass, preferably 0.010 to 0.50 parts by mass, per 100.0 parts by mass of the conductive powder mainly composed of.
 本発明のNiペーストにおける(D3)成分は、安定化剤によりジルコニアの結晶構造が安定化された安定化ジルコニア(SZ)である。安定化ジルコニア(SZ)は、ジルコニア(ZrO)に安定化剤を固溶させ、4価のZrサイトに2価又は3価の金属元素が入ることで、ジルコニア(ZrO)の結晶構造が温度変化によって変わらないよう安定化させたものである。 The component (D3) in the Ni paste of the present invention is stabilized zirconia (SZ) in which the crystal structure of zirconia is stabilized by a stabilizer. Stabilized zirconia (SZ) has a crystal structure of zirconia (ZrO 2 ) by dissolving a stabilizer in zirconia (ZrO 2 ) and adding a divalent or trivalent metal element to the tetravalent Zr site. It is stabilized so that it does not change due to temperature changes.
 安定化剤としては、ジルコニア(ZrO)を安定化させるものであれば、特に制限されないが、MgO、CaO、SrO、BaO等のアルカリ土類金属の酸化物;Sc、Y、La、CeO、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Er、Tm、Yb等の希土類元素の酸化物;Bi、In等から選ばれる1種又は2種以上の酸化物が挙げられる。 The stabilizer is not particularly limited as long as it stabilizes zirconia (ZrO 2 ), but is an oxide of an alkaline earth metal such as MgO, CaO, SrO, BaO; Sc 2 O 3 , Y 2 O. 3 , La 2 O 3 , CeO 2 , Pr 2 O 3 , Nd 2 O 3 , Sm 2 O 3 , Eu 2 O 3 , Gd 2 O 3 , Tb 2 O 3 , Dy 2 O 3 , Er 2 O 3 , Oxides of rare earth elements such as Tm 2 O 3 and Yb 2 O 3 ; one or more oxides selected from Bi 2 O 3 and In 2 O 3 and the like can be mentioned.
 それらの中でも、本発明においてはイットリア(Y)、カルシア(CaO)、マグネシア(MgO)及びスカンジア(Sc)から選ばれる1種以上で安定化されていることが好ましい。安定化ジルコニア(SZ)に用いられた安定化剤は、1種であっても、2種以上の組み合わせであってもよい。 Among them, in the present invention, it is preferable that the mixture is stabilized by one or more selected from yttria (Y 2 O 3 ), calcia (CaO), magnesia (MgO) and scandia (Sc 2 O 3). The stabilizer used for stabilized zirconia (SZ) may be one kind or a combination of two or more kinds.
 なお、本明細書においては、安定化剤を特定しない安定化ジルコニア全般を意図する場合、安定化ジルコニアを“SZ”と記すことがある。また安定化剤としてイットリア(Y)、カルシア(CaO)、マグネシア(MgO)及びスカンジア(Sc)を用いた安定化ジルコニアを意図する場合に、それぞれ“YSZ”、“CSZ”、“MSZ”及び“ScSZ”と記すことがある。更に、X(モル%)の安定化剤が含まれている安定化ジルコニア(SZ)を “X-SZ”と記すことがある。例えば“3.0-YSZ”は、3.0モル%のイットリア(Y)で安定化された安定化ジルコニア(YSZ)を意味する。 In addition, in this specification, when the intention of the stabilized zirconia in general which does not specify a stabilizer, the stabilized zirconia may be referred to as "SZ". In addition, when stabilizing zirconia using yttria (Y 2 O 3 ), calcia (CaO), magnesia (MgO) and scandia (Sc 2 O 3 ) as stabilizers is intended, “YSZ” and “CSZ”, respectively. , "MSZ" and "ScSZ". Further, stabilized zirconia (SZ) containing an X (mol%) stabilizer may be referred to as "X-SZ". For example, "3.0-YSZ" means stabilized zirconia (YSZ) stabilized with 3.0 mol% yttria (Y 2 O 3).
 安定化ジルコニア(SZ)中の安定化剤の含有量は、特に制限されないが、好ましくは0.0モル%を超えて45.0モル%以下、より好ましくは0.0モル%を超えて40.0モル%以下、特に好ましくは8.0~25.0モル%である。安定化ジルコニア(SZ)中の安定化剤の含有量が、上記範囲にあることにより、高温負荷寿命を向上させ易くなる。なお、安定化ジルコニア(SZ)中の安定化剤の含有量(Xモル%)は、安定化ジルコニア(SZ)中のZr及び安定化剤中の金属元素を、それぞれ、酸化物に換算し、Zr及び安定化剤中の金属元素の酸化物換算の合計モル数に対する安定化剤中の金属元素の酸化物換算のモル数の百分率((安定化剤中の金属元素の酸化物換算のモル数/(安定化剤中の金属元素の酸化物換算のモル数+安定化ジルコニア(SZ)中のZrの酸化物換算のモル数))×100)で算出される値である。酸化物換算に当たっては、例えば、ZrはZrOに、YはYに、CaはCaOに、MgはMgOに、ScはScに換算して、モル数を計算する。また、安定化ジルコニア(SZ)が2種以上の安定化剤を含有する場合は、2種以上の安定化剤中の各金属元素を、それぞれ酸化物換算し、それらの酸化物換算の合計モル数を、安定化剤中の金属元素の酸化物換算のモル数とする。 The content of the stabilizer in the stabilized zirconia (SZ) is not particularly limited, but is preferably more than 0.0 mol% and 45.0 mol% or less, and more preferably more than 0.0 mol% and 40. It is 0.0 mol% or less, particularly preferably 8.0 to 25.0 mol%. When the content of the stabilizer in the stabilized zirconia (SZ) is in the above range, the high temperature load life can be easily improved. The content (X mol%) of the stabilizer in the stabilized zirconia (SZ) is obtained by converting Zr in the stabilized zirconia (SZ) and the metal element in the stabilizer into oxides, respectively. Percentage of oxide-equivalent moles of metal elements in stabilizers to total oxide-equivalent moles of Zr and metal elements in stabilizers ((Oxide-equivalent moles of metal elements in stabilizers) / (Oxide-equivalent number of moles of metal element in stabilizer + Zr oxide-equivalent mole number in stabilized zirconia (SZ)) x 100). In terms of oxide conversion, for example, Zr is converted to ZrO 2 , Y is converted to Y 2 O 3 , Ca is converted to Ca O, Mg is converted to Mg O, and Sc is converted to Sc 2 O 3 , and the number of moles is calculated. When the stabilized zirconia (SZ) contains two or more kinds of stabilizers, each metal element in the two or more kinds of stabilizers is converted into an oxide, and the total molar amount of the oxides is converted. Let the number be the number of moles of the metal element in the stabilizer in terms of oxide.
 本発明のNiペーストが(D3)安定化ジルコニア(SZ)を含有する場合、本発明のNiペースト中の(D3)安定化ジルコニア(SZ)の含有量は、(A)Niを主とする導電性粉末100.0g当たり、0.05×10-2~2.20×10-2モル、好ましくは0.05×10-2~1.40×10-2モルである。(D3)安定化ジルコニア(SZ)の含有量が、上記範囲にあることにより、高温負荷寿命を向上させることができる。なお、Niペースト中の安定化ジルコニア(SZ)の含有量であるが、安定化ジルコニア(SZ)中のZr及び安定化剤中の金属元素を、それぞれ、酸化物に換算し、Zr及び安定化剤中の金属元素の酸化物換算の合計モルを求め、(A)Niを主とする導電性粉末100.0g当たりのモル数を計算することによって、Niペースト中の安定化ジルコニア(SZ)の含有量を算出する。 When the Ni paste of the present invention contains (D3) stabilized zirconia (SZ), the content of (D3) stabilized zirconia (SZ) in the Ni paste of the present invention is conductive mainly containing (A) Ni. The amount is 0.05 × 10 -2 to 2.20 × 10-2 mol, preferably 0.05 × 10 -2 to 1.40 × 10 -2 mol, per 100.0 g of the sex powder. When the content of (D3) stabilized zirconia (SZ) is in the above range, the high temperature load life can be improved. Regarding the content of stabilized zirconia (SZ) in Ni paste, Zr in stabilized zirconia (SZ) and the metal element in the stabilizer are converted into oxides, respectively, and Zr and stabilized. By determining the total moles of metal elements in the agent in terms of oxides and calculating the number of moles per 100.0 g of (A) Ni-based conductive powder, the stabilized zirconia (SZ) in the Ni paste Calculate the content.
 本発明のNiペーストに係る(D4)成分は、Alを含む添加剤である。Alを含む添加剤としては、Niペーストを焼成した後にAlが得られるものであれば特に限定は無いが、一例としては純金属(Al)の他、Alを含む酸化物(Al)、硫化物(Al)、ハロゲン化物(AlF等)、ホウ化物(AlB)、窒化物(AlN)、炭化物(Al)、水酸化物(Al(OH))、リン酸塩(AlPO)、硫酸塩(Al(SO)等の無機化合物であってもよく、また、金属アルコキシド、金属レジネート等の有機金属化合物であっても良い。本発明においてAlを含む添加剤としてはAlが特に好ましい。 The component (D4) according to the Ni paste of the present invention is an additive containing Al. The additive containing Al is not particularly limited as long as Al 2 O 3 can be obtained after firing Ni paste, but as an example, in addition to pure metal (Al), an oxide containing Al (Al 2). O 3), sulfide (Al 2 S 3), the halide (AlF 3, etc.), borides (AlB 2), nitride (AlN), carbide (Al 4 C 3), hydroxide (Al (OH) It may be an inorganic compound such as 3), a phosphate (AlPO 4 ), a sulfate (Al 2 (SO 4 ) 3 ), or an organic metal compound such as a metal alkoxide or a metal resinate. In the present invention, Al 2 O 3 is particularly preferable as the additive containing Al.
 本発明のNiペーストが(D4)Alを含む添加剤を含有する場合、本発明のNiペーストは、Alを含む添加剤中のAlを、Alに換算したときに、(A)Niを主とする導電性粉末100.0質量部当たり、0.10~5.50質量部、好ましくは0.10~2.30質量部となる割合で、Alを含む添加剤を含有する。 When the Ni paste of the present invention contains an additive containing (D4) Al, the Ni paste of the present invention has (A) Ni when Al in the additive containing Al is converted into Al 2 O 3. The additive containing Al is contained in a proportion of 0.10 to 5.50 parts by mass, preferably 0.10 to 2.30 parts by mass, per 100.0 parts by mass of the conductive powder mainly composed of.
 本発明のNiペーストは、(D1)Taを含む添加剤、(D2)Nbを含む添加剤、(D3)安定化ジルコニア(SZ)、及び(D4)Alを含む添加剤を組み合わせて含有してもよい。 The Ni paste of the present invention contains a combination of an additive containing (D1) Ta, an additive containing (D2) Nb, an additive containing (D3) stabilized zirconia (SZ), and (D4) Al. May be good.
 本発明のNiペーストが、(D1)Taを含む添加剤、(D2)Nbを含む添加剤、(D3)安定化ジルコニア(SZ)、及び(D4)Alを含む添加剤からなる群から選択される少なくとも1種を上記含有割合で含有することにより、上述した本発明の作用効果が得られるメカニズムは定かではない。しかしながら本発明者による試験及び研究によれば、Niペースト中に含まれているTa成分、Nb成分、安定化ジルコニア(SZ)成分又はAl成分の多くは、ペーストを焼成している間にセラミック誘電体層側へと移動し、その結果、焼成後のセラミック誘電体層と内部電極層との界面及びその近傍において、Ta、Nb、Zr及び安定化剤中の金属元素、又はAlを高濃度に含む拡散領域(拡散層)が形成されている様子が観察された。なお、本発明において「界面及びその近傍」とは、セラミック誘電体層と内部電極層との界面から誘電体層側にセラミック誘電体層厚の1/16までの領域から、当該界面から内部電極層側に内部電極層厚の1/2までの領域までを指すものとする。
 本発明者は、この拡散領域(拡散層)の存在により、高温負荷寿命試験中にセラミック誘電体層中で起こる酸素空孔のカソード側への移動の速度が低下し、寿命の向上につながっているのではないかと推測している。
 なお、(D3)安定化ジルコニア(SZ)を使用するNiペーストにおいて、Zrを含む共材粉末を使用した場合であっても、共材粉末の組成はセラミック誘電体層と同一の組成、または近似した組成であるため、焼成中に内部電極層からセラミック誘電体層側へ拡散したとしてもセラミック誘電体層中のZrの元素濃度分布にはほとんど変化を及ぼさない。従って、セラミック誘電体層と内部電極層との界面及びその近傍において観察されるZr及び安定化剤中の金属元素を高濃度に含む拡散領域(拡散層)の形成は、共材粉末とは別にNiペースト中に含有させた安定化ジルコニア(SZ)によるものであると考えられる。
 しかも安定化ジルコニア(SZ)は、ジルコニア(ZrO)に酸素空孔を導入したものであり、安定化剤が多いほど酸素空孔量が多くなるため、Niペーストに安定化ジルコニア(SZ)を含有させることにより、安定化していないジルコニア(ZrO)を含有させた場合よりも、界面近傍の酸素空孔濃度を高めることができる。その結果、高温負荷寿命試験において、誘電体層内部の酸素空孔が電極界面(カソード)側へ移動し難くなり、より一層、高温負荷寿命を向上することができる一方、安定化剤量が過度である場合には酸素空孔濃度が高くなり過ぎ、これに起因して高温負荷寿命特性が急激に下がると考えられる。
 また、焼成後における内部電極層中のTa成分、Nb成分、安定化ジルコニア(SZ)成分、又はAl成分の含有は、Niの融点の低下をもたらさないため、電極膜の連続性に悪影響を与えることもない。ただし、セラミック誘電体層中の上記拡散層におけるTa成分、Nb成分、安定化ジルコニア(SZ)成分、又はAl成分の濃度が大きくなりすぎると、Niとの濡れ性が低下し、電極膜の連続性に悪影響を及ぼすことがある。
 Niペースト中の(D1)Taを含む添加剤の含有量、(D2)Nbを含む添加剤の含有量、(D3)安定化ジルコニア(SZ)の含有量、又は(D4)Alを含む添加剤の含有量が、上記範囲未満だと、上記高温負荷寿命の向上効果が得られず、また、上記範囲を超えると、セラミック誘電体層中に拡散したTa成分、Nb成分、安定化ジルコニア(SZ)成分、又はAl成分によって結晶粒成長が生じ、高温負荷寿命が低下する。
The Ni paste of the present invention is selected from the group consisting of (D1) Ta-containing additives, (D2) Nb-containing additives, (D3) stabilized zirconia (SZ), and (D4) Al-containing additives. The mechanism by which the above-mentioned effects of the present invention can be obtained by containing at least one of these in the above-mentioned content ratio is not clear. However, according to tests and studies by the present inventor, most of the Ta component, Nb component, stabilized zirconia (SZ) component or Al component contained in the Ni paste is ceramic dielectric during firing of the paste. It moves to the body layer side, and as a result, at the interface between the ceramic dielectric layer and the internal electrode layer after firing and its vicinity, Ta, Nb, Zr and metal elements in the stabilizer, or Al are concentrated in high concentration. It was observed that the including diffusion region (diffusion layer) was formed. In the present invention, the term "interface and its vicinity" refers to the region from the interface between the ceramic dielectric layer and the internal electrode layer to the dielectric layer side up to 1/16 of the thickness of the ceramic dielectric layer, and from the interface to the internal electrode. It shall refer to the region up to 1/2 of the internal electrode layer thickness on the layer side.
Due to the presence of this diffusion region (diffusion layer), the present inventor reduces the speed of movement of oxygen vacancies to the cathode side that occurs in the ceramic dielectric layer during the high temperature load life test, leading to an improvement in life. I'm guessing that there is.
In the Ni paste using (D3) stabilized zirconia (SZ), the composition of the co-material powder is the same as or similar to that of the ceramic dielectric layer even when the co-material powder containing Zr is used. Therefore, even if it diffuses from the internal electrode layer to the ceramic dielectric layer side during firing, the element concentration distribution of Zr in the ceramic dielectric layer is hardly changed. Therefore, the formation of the diffusion region (diffusion layer) containing a high concentration of Zr and the metal element in the stabilizer observed at the interface between the ceramic dielectric layer and the internal electrode layer and its vicinity is separate from the co-material powder. It is considered that this is due to the stabilized zirconia (SZ) contained in the Ni paste.
Moreover, stabilized zirconia (SZ) is obtained by introducing oxygen vacancies into zirconia (ZrO 2 ), and the more stabilizer there is, the larger the amount of oxygen vacancies. Therefore, stabilized zirconia (SZ) is added to the Ni paste. By containing it, the oxygen vacancy concentration in the vicinity of the interface can be increased as compared with the case where zirconia (ZrO 2) which is not stabilized is contained. As a result, in the high temperature load life test, the oxygen vacancies inside the dielectric layer are less likely to move to the electrode interface (cathode) side, and the high temperature load life can be further improved, but the amount of stabilizer is excessive. If this is the case, the oxygen vacancies concentration becomes too high, and it is considered that the high temperature load life characteristic drops sharply due to this.
Further, the content of the Ta component, the Nb component, the stabilized zirconia (SZ) component, or the Al component in the internal electrode layer after firing does not lower the melting point of Ni, and thus adversely affects the continuity of the electrode film. There is no such thing. However, if the concentration of the Ta component, Nb component, stabilized zirconia (SZ) component, or Al component in the diffusion layer in the ceramic dielectric layer becomes too large, the wettability with Ni decreases and the electrode film is continuous. May adversely affect sexuality.
The content of the additive containing (D1) Ta, the content of the additive containing (D2) Nb, the content of (D3) stabilized zirconia (SZ), or the additive containing (D4) Al in the Ni paste. If the content of is less than the above range, the effect of improving the high temperature load life cannot be obtained, and if it exceeds the above range, the Ta component, the Nb component, and the stabilized zirconia (SZ) diffused in the ceramic dielectric layer are obtained. ) Component or Al component causes crystal grain growth, which reduces the high temperature load life.
 本発明のNiペーストは更に、通常、内部電極形成用のNiペーストに添加されている共材粉末を含有することができる。任意に含有される共材粉末は、内部電極の焼結収縮挙動を誘電体層に近似させることを目的としたものであり、この共材粉末の種類は、特に限定されないが、セラミック誘電体との反応によるコンデンサの特性変化が最小になるように選択されることが望ましい。共材粉末としては、通常内部電極形成用のNiペーストに使用されているような、一般式:ABO3(但し、AはBa、CaおよびSrの少なくとも1種であり、Bは、Ti、ZrおよびHfの少なくとも1種である。)で表されるセラミック粉末、例えば、チタン酸バリウム、ジルコン酸ストロンチウム、ジルコン酸カルシウム等のペロブスカイト型酸化物粉末や、これらに種々の添加剤が添加されたものが好ましい。また、共材粉末としては、誘電体層の主成分として使用される誘電体セラミック原料粉末と同一の組成、又は近似した組成のものが、好ましい。なお、予め(A)Niを主とする導電性粉末の表面に共材粉末を付着させてから、Niペースト中の他の成分と混合してもよい。 The Ni paste of the present invention can further contain a co-material powder that is usually added to the Ni paste for forming internal electrodes. The optionally contained co-material powder is intended to approximate the sintering shrinkage behavior of the internal electrode to the dielectric layer, and the type of the co-material powder is not particularly limited, but is the same as that of the ceramic dielectric. It is desirable to select so that the change in the characteristics of the capacitor due to the reaction of is minimized. As the co-material powder, the general formula: ABO 3 (where A is at least one of Ba, Ca and Sr, and B is Ti, Zr, as is usually used for Ni paste for forming an internal electrode. And at least one of Hf), for example, perovskite-type oxide powders such as barium titanate, strontium zirconium, calcium zirconium, and those to which various additives are added. Is preferable. Further, as the co-material powder, those having the same composition as or similar to that of the dielectric ceramic raw material powder used as the main component of the dielectric layer are preferable. The co-material powder may be attached to the surface of the conductive powder mainly composed of (A) Ni in advance, and then mixed with other components in the Ni paste.
 本発明のNiペーストが共材粉末を含有する場合、本発明のNiペースト中、共材粉末の含有割合は、(A)Niを主とする導電性粉末100.0質量部当たり、共材粉末合計で30.0質量部以下となる割合である。Niペースト中の共材粉末の含有割合が、上記範囲を超えると、電極層が厚くなり、構造欠陥を生じ易くなる他、電極層が不連続膜になる。 When the Ni paste of the present invention contains the co-material powder, the content ratio of the co-material powder in the Ni paste of the present invention is (A) per 100.0 parts by mass of the conductive powder mainly containing Ni. The total ratio is 30.0 parts by mass or less. When the content ratio of the co-material powder in the Ni paste exceeds the above range, the electrode layer becomes thick and structural defects are likely to occur, and the electrode layer becomes a discontinuous film.
 共材粉末の平均粒径は、特に限定されないが、(A)Niを主とする導電性粉末の平均粒径の30%以下であることが、より優れた焼結抑制効果および緻密性向上効果を示すので好ましい。更に、ペースト中における共材粉末の総比表面積が、(A)Niを主とする導電性粉末の総比表面積よりも大きいことが、高温負荷寿命の向上効果が高まる点で好ましい。なお、共材粉末の平均粒径及び含有量を選択することにより、ペースト中における共材粉末の総比表面積を、(A)Niを主とする導電性粉末の総比表面積よりも大きくすることができる。ただし、共材粉末の平均粒径が小さ過ぎると、表面積の増大により伴い、粉末自身の焼結が速くなり過ぎるため、Niを主とする導電性粉末の焼結抑制効果が低くなるので、共材粉末の平均粒径は0.01μm以上であることが好ましい。 The average particle size of the co-material powder is not particularly limited, but (A) 30% or less of the average particle size of the conductive powder mainly composed of Ni is a more excellent effect of suppressing sintering and improving density. It is preferable because it shows. Further, it is preferable that the total specific surface area of the co-material powder in the paste is larger than the total specific surface area of the conductive powder mainly composed of (A) Ni, because the effect of improving the high temperature load life is enhanced. By selecting the average particle size and content of the co-material powder, the total specific surface area of the co-material powder in the paste should be larger than the total specific surface area of the conductive powder mainly composed of (A) Ni. Can be done. However, if the average particle size of the co-material powder is too small, the surface area will increase and the powder itself will be sintered too quickly, which will reduce the sintering suppression effect of the conductive powder mainly containing Ni. The average particle size of the material powder is preferably 0.01 μm or more.
 本発明のNiペーストは、本発明の効果を阻害しない限り、上記以外の金属元素を含む公知の化合物を含んでいてもよく、例えば、CaO、ZrO、Y、Ti、TiO、Co、Fe、La、LiO、MgO、MoO、SrO、V、WO、CuO等々の化合物を種々の目的で添加しても良い。また、本発明は、Sn成分の含有を除外しない。Snは焼成中にNiと合金化して融点を下げ、焼結を促進するために前述したボールアップ現象が生じると考えられる。従ってSn化合物としてNiと合金化しないものを使用するか、或いは、合金化したとしてもボールアップ現象が生じない程度の含有量であれば、(D1)Taを含む添加剤、(D2)Nbを含む添加剤、(D3)安定化ジルコニア(SZ)、又は(D4)Alを含む添加剤と併用しても構わない。 The Ni paste of the present invention may contain a known compound containing a metal element other than the above as long as the effect of the present invention is not impaired. For example, CaO, ZrO 2 , Y 2 O 3 , Ti 4 O 7 , Even if compounds such as TiO 2 , Co 3 O 4 , Fe 2 O 3 , La 2 O 3 , Li 2 O, MgO, MoO 3 , SrO, V 2 O 5 , WO 3 , CuO, etc. are added for various purposes. good. Further, the present invention does not exclude the inclusion of the Sn component. It is considered that Sn is alloyed with Ni during firing to lower the melting point and promote the sintering, so that the above-mentioned ball-up phenomenon occurs. Therefore, as the Sn compound, a compound that does not alloy with Ni is used, or if the content is such that the ball-up phenomenon does not occur even if alloyed, the additive containing (D1) Ta and (D2) Nb are used. It may be used in combination with an additive containing (D3) stabilized zirconia (SZ) or an additive containing (D4) Al.
 本発明のNiペーストは、上記の他、内部電極形成用のNiペーストに通常添加されることのある可塑剤、分散剤、界面活性剤等の添加剤を、必要に応じて含有することができる。 In addition to the above, the Ni paste of the present invention can contain additives such as plasticizers, dispersants, and surfactants that are usually added to the Ni paste for forming internal electrodes, if necessary. ..
 本発明のNiペーストは、上述した(A)Niを主とする導電性粉末、(B)バインダ樹脂、(C)有機溶剤、「(D1)Taを含む添加剤、(D2)Nbを含む添加剤、(D3)安定化ジルコニア(SZ)、及び(D4)Alを含む添加剤からなる群から選択される少なくとも1種」、及びその他必要に応じて添加される共材粉末や種々の添加剤を、常法に従って均一に混合分散させることにより、調製される。 The Ni paste of the present invention contains the above-mentioned (A) Ni-based conductive powder, (B) binder resin, (C) organic solvent, "(D1) Ta-containing additive, and (D2) Nb-containing additive. "At least one selected from the group consisting of additives, (D3) stabilized zirconia (SZ), and (D4) Al-containing additives", and other co-material powders and various additives added as needed. Is uniformly mixed and dispersed according to a conventional method.
 本発明の積層セラミックコンデンサは、本発明のNiペーストを用いて、以下のような方法で製造される。 The multilayer ceramic capacitor of the present invention is manufactured by the following method using the Ni paste of the present invention.
 先ず、誘電体セラミック原料粉末を、樹脂バインダ中に分散させ、ドクターブレード法やダイコーター法等でシート成形し、誘電体セラミック原料粉末を含むセラミックグリーンシートを作製する。誘電体層を形成するための誘電体セラミック原料粉末としては、チタン酸バリウム系、ジルコン酸ストロンチウム系、ジルコン酸カルシウムストロンチウム系などのペロブスカイト型酸化物、又はこれらを構成する金属元素の一部を他の金属元素で置換したものなど、通常のペロブスカイト型酸化物を主成分とする粉末が使用される。必要に応じて、これらの原料粉末に、コンデンサ特性を調整するための各種添加剤が配合される。原料粉末の粒径は、例えば誘電体セラミック層の厚みを5.0μm以下とする場合、平均粒径が0.05~0.4μm程度が好ましい。次いで、得られるセラミックグリーンシート上に、本発明のNiペーストをスクリーン印刷等の通常の方法で塗布し、乾燥して溶剤を除去し、所定のパターンの内部電極ペースト乾燥膜を形成する。次いで、内部電極ペースト膜が形成されたセラミックグリーンシートを所定の枚数だけ積み重ね、加熱圧着して、未焼成の積層体を作製する。次いで、得られる積層体を所定の形状に切断した後、高温で焼成し、誘電体層と電極層を同時に焼結し、積層セラミックコンデンサ素体を得る。その後、素体の両端面に端子電極を焼付けて形成して、本発明の積層セラミックコンデンサを得る。なお、端子電極は、上記の積層体の焼成前に取付けて積層体と同時に焼成してもよい。 First, the dielectric ceramic raw material powder is dispersed in a resin binder, and a sheet is formed by a doctor blade method, a die coater method, or the like to prepare a ceramic green sheet containing the dielectric ceramic raw material powder. As the dielectric ceramic raw material powder for forming the dielectric layer, perovskite-type oxides such as barium titanate, strontium zirconate, and calcium zircone strontium, or some of the metal elements constituting these are used. A powder containing a normal perovskite-type oxide as a main component is used, such as those substituted with the metal element of. If necessary, various additives for adjusting the capacitor characteristics are added to these raw material powders. As for the particle size of the raw material powder, for example, when the thickness of the dielectric ceramic layer is 5.0 μm or less, the average particle size is preferably about 0.05 to 0.4 μm. Next, the Ni paste of the present invention is applied onto the obtained ceramic green sheet by a usual method such as screen printing and dried to remove the solvent to form an internal electrode paste drying film having a predetermined pattern. Next, a predetermined number of ceramic green sheets on which the internal electrode paste film is formed are stacked and heat-bonded to prepare an unfired laminate. Next, the obtained laminated body is cut into a predetermined shape and then fired at a high temperature, and the dielectric layer and the electrode layer are sintered at the same time to obtain a laminated ceramic capacitor element. Then, terminal electrodes are baked on both end faces of the element body to form the monolithic ceramic capacitor of the present invention. The terminal electrode may be attached before firing the above-mentioned laminated body and fired at the same time as the laminated body.
 このようにして得られる本発明の積層セラミックコンデンサは、複数のセラミック誘電体層と、Niを含む複数の内部電極層と、が交互に積層されているセラミック積層体と、
 前記セラミック積層体の外表面に形成されている外部電極と、
を備え、
 前記セラミック積層体が、
(D1)前記(A)Niを含む導電性成分100.0質量部当たり、Ta換算で0.025~2.50質量部の範囲内のTa、
(D2)前記(A)Niを含む導電性成分100.0質量部当たり、Nb換算で0.010~1.80質量部の範囲内のNb、及び
(D4)前記(A)Niを含む導電性成分100.0質量部当たり、Al換算で0.10~5.50質量部の範囲内のAl
からなる群から選択される少なくとも1種を含有すること、
を特徴とする積層セラミックコンデンサである。
The multilayer ceramic capacitor of the present invention thus obtained comprises a ceramic laminate in which a plurality of ceramic dielectric layers and a plurality of internal electrode layers containing Ni are alternately laminated.
An external electrode formed on the outer surface of the ceramic laminate and
With
The ceramic laminate
(D1) Ta, which is in the range of 0.025 to 2.50 parts by mass in terms of Ta 2 O 5 per 100.0 parts by mass of the conductive component containing (A) Ni.
(D2) Nb in the range of 0.010 to 1.80 parts by mass in terms of Nb 2 O 5 per 100.0 parts by mass of the conductive component containing (A) Ni, and (D4) the above (A) Ni. Al in the range of 0.10 to 5.50 parts by mass in terms of Al 2 O 3 per 100.0 parts by mass of the conductive component containing
Containing at least one selected from the group consisting of
It is a monolithic ceramic capacitor characterized by.
 また、本発明の積層セラミックコンデンサは、複数のセラミック誘電体層と、Niを含む複数の内部電極層と、が交互に積層されているセラミック積層体と、
 前記セラミック積層体の外表面に形成されている外部電極と、
を備え、
 隣接する前記内部電極層と前記セラミック誘電体層との界面及びその近傍に、すなわち、セラミック誘電体層と内部電極層との界面から誘電体層側にセラミック誘電体層厚の1/16までの領域から、当該界面から内部電極層側に内部電極層厚の1/2までの領域までの範囲のうちのいずれかの部分に、Ta、Nb、Zr、安定化剤中の金属元素及びAlからなる群から選択される少なくとも1種の元素の濃度ピークを有する拡散領域(拡散層)を有すること、
を特徴とする積層セラミックコンデンサである。
 前記拡散領域は、Ta、Nb、Zr、安定化剤中の金属元素、及びAlからなる群から選択される少なくとも1種の元素の濃度が、前記内部電極層側から前記セラミック誘電体層側に向かう方向に高くなり、濃度ピークを迎えた後、低くなる濃度分布を有する領域である。
 また、前記安定化剤中の金属元素は、Y、Ca、Mg及びScから選ばれる1種以上であることが好ましい。
Further, the multilayer ceramic capacitor of the present invention includes a ceramic laminate in which a plurality of ceramic dielectric layers and a plurality of internal electrode layers containing Ni are alternately laminated.
An external electrode formed on the outer surface of the ceramic laminate and
With
Up to 1/16 of the thickness of the ceramic dielectric layer from the interface between the adjacent internal electrode layer and the ceramic dielectric layer and its vicinity, that is, from the interface between the ceramic dielectric layer and the internal electrode layer to the dielectric layer side. From the region to any portion of the region from the interface to the region up to 1/2 of the thickness of the internal electrode layer on the internal electrode layer side, from Ta, Nb, Zr, the metal element in the stabilizer, and Al. Having a diffusion region (diffusion layer) having a concentration peak of at least one element selected from the group consisting of
It is a monolithic ceramic capacitor characterized by.
In the diffusion region, the concentration of at least one element selected from the group consisting of Ta, Nb, Zr, a metal element in the stabilizer, and Al is transferred from the internal electrode layer side to the ceramic dielectric layer side. It is a region having a concentration distribution that increases in the direction toward the direction, reaches a concentration peak, and then decreases.
Further, the metal element in the stabilizer is preferably one or more selected from Y, Ca, Mg and Sc.
 本発明の積層セラミックコンデンサに係るセラミック誘電体層は、誘電体セラミック原料粉末として、チタン酸バリウム系、ジルコン酸ストロンチウム系、ジルコン酸カルシウムストロンチウム系などのペロブスカイト型酸化物、又はこれらを構成する金属元素の一部を他の金属元素で置換したものなど、通常のペロブスカイト型酸化物を主成分とする粉末を用いて、これらの誘電体セラミック原料粉末をシート成形し、還元性雰囲気下で、900~1400℃、好ましくは1100~1300℃で焼成することにより、形成されたものである。 The ceramic dielectric layer according to the multilayer ceramic capacitor of the present invention is a perovskite-type oxide such as barium titanate, strontium zirconate, or calcium zircone strontium as a dielectric ceramic raw material powder, or a metal element constituting these. These dielectric ceramic raw material powders are sheet-molded using a powder containing a normal perovskite-type oxide as a main component, such as one in which a part of the above is replaced with another metal element, and 900 to 900 in a reducing atmosphere. It is formed by firing at 1400 ° C., preferably 1100 to 1300 ° C.
 本発明の積層セラミックコンデンサは、Niを含む内部電極層が、本発明のNiペーストを用いて形成されたもの、すなわち、本発明のNiペーストをスクリーン印刷等により、誘電体層形成用のセラミックグリーンシート上に成形し、乾燥し、焼成することにより形成されたものである。Niペースト中に含まれているTa成分、Nb成分、安定ジルコニア(SZ)成分、又はAl成分の多くは、前述したように焼成中に内部電極層からセラミック誘電体層側へと移動し、内部電極層とセラミック誘電体層との界面及びその近傍において、Ta、Nb、Zr及び安定化剤中の金属元素、又はAlを高濃度に含んだ拡散領域(拡散層)を形成する。なお、拡散領域(拡散層)中においてTa、Nb、Zr及び安定化剤中の金属元素、又はAlの濃度分布は均一ではなく、Ta、Nb、Zr及び安定化剤中の金属元素、又はAlの濃度が、内部電極層側から誘電体層側に向かう方向に高くなり、濃度ピークを迎えた後、低くなる濃度分布となっている。現段階までの研究結果では、当該濃度ピークは界面の近傍にあると推測されるが、その位置を正確に特定するまでには至っていない。すなわち、拡散層の厚み、濃度勾配の形状、濃度ピークの位置は、焼成温度や焼成時間、昇温速度といった焼成プロファイルによって異なっている。例えば、Taを含む添加剤を用いた実験例において、急速に昇温して短時間焼成を行った場合には、Ta成分は内部電極層から誘電体層へ向かって拡散し、且つ、当該誘電体層中において内部電極層との界面に極めて近い位置のみにTaが偏在する急峻な濃度勾配(濃度ピーク)を備える拡散層が形成されていた。また別の実験例として、長時間にわたって焼成を行った場合には、内部電極層中にはTaが殆ど観察されず、誘電体層中に比較的ブロードなTaの濃度勾配(濃度ピーク)を備える拡散層が形成されていた。 The multilayer ceramic capacitor of the present invention has an internal electrode layer containing Ni formed by using the Ni paste of the present invention, that is, a ceramic green for forming a dielectric layer by printing the Ni paste of the present invention by screen printing or the like. It is formed by molding on a sheet, drying, and firing. Most of the Ta component, Nb component, stable zirconia (SZ) component, or Al component contained in the Ni paste moves from the internal electrode layer to the ceramic dielectric layer side during firing as described above, and is inside. At the interface between the electrode layer and the ceramic dielectric layer and its vicinity, a diffusion region (diffusion layer) containing a high concentration of the metal element in Ta, Nb, Zr and the stabilizer, or Al is formed. The concentration distribution of Ta, Nb, Zr and the metal element in the stabilizer or Al in the diffusion region (diffusion layer) is not uniform, and the metal element or Al in Ta, Nb, Zr and the stabilizer is not uniform. The concentration of zirconium increases in the direction from the internal electrode layer side toward the dielectric layer side, reaches a concentration peak, and then decreases. According to the research results up to this stage, the concentration peak is presumed to be near the interface, but its position has not been accurately identified. That is, the thickness of the diffusion layer, the shape of the concentration gradient, and the position of the concentration peak differ depending on the firing profile such as the firing temperature, the firing time, and the rate of temperature rise. For example, in an experimental example using an additive containing Ta, when the temperature is rapidly raised and firing is performed for a short time, the Ta component diffuses from the internal electrode layer toward the dielectric layer and the dielectric is said. A diffusion layer having a steep concentration gradient (concentration peak) in which Ta is unevenly distributed only at a position extremely close to the interface with the internal electrode layer in the body layer was formed. As another experimental example, when firing is performed for a long time, almost no Ta is observed in the internal electrode layer, and a relatively broad Ta concentration gradient (concentration peak) is provided in the dielectric layer. A diffusion layer was formed.
 そのため、本発明の積層セラミックコンデンサは、誘電体と内部電極層を合わせたセラミック積層体中に、(D1)(A)Niを含む導電性成分100.0質量部当たり、Ta換算で0.025~2.50質量部、好ましくは0.025~0.80質量部の範囲内のTa、(D2)(A)Niを含む導電性成分100.0質量部当たり、Nb換算で0.010~1.80質量部、好ましくは0.010~0.50質量部の範囲内のNb、及び(D4)(A)Niを含む導電性成分100.0質量部当たり、Al換算で0.10~5.50質量部、好ましくは0.10~2.30質量部の範囲内のAlからなる群から選択される少なくとも1種を含有することによって特徴づけられる。
 また、本発明の積層セラミックコンデンサは、複数のセラミック誘電体層と、Niを含む複数の内部電極層と、が交互に積層されているセラミック積層体と、
 前記セラミック積層体の外表面に形成されている外部電極と、
を備え、
 隣接する前記内部電極層と前記セラミック誘電体層との界面及びその近傍に、Ta、Nb、Zr、安定化剤中の金属元素、及びAlからなる群から選択される少なくとも1種の元素の拡散領域(拡散層)を有することによって特徴づけられる。前記安定化剤中の金属元素は、Y、Ca、Mg及びScから選ばれる1種以上であることが好ましい。
 そして、本発明の積層セラミックコンデンサは、上記の特徴により、高温負荷寿命が向上するので、誘電体層の更なる薄層化および高電界強度の電圧印加が行われても、優れた信頼性を示す。
Therefore, the multilayer ceramic capacitor of the present invention has a Ta 2 O 5 conversion per 100.0 parts by mass of a conductive component containing (D1) and (A) Ni in a ceramic laminate in which a dielectric and an internal electrode layer are combined. Nb 2 O 5 per 100.0 parts by mass of the conductive component containing Ta, (D2) and (A) Ni in the range of 0.025 to 2.50 parts by mass, preferably 0.025 to 0.80 parts by mass. In terms of conversion, Al per 100.0 parts by mass of the conductive component containing Nb in the range of 0.010 to 1.80 parts by mass, preferably 0.010 to 0.50 parts by mass, and (D4) (A) Ni. 0.10 to 5.50 parts by mass 2 O 3 in terms of, preferably characterized by containing at least one member selected from the group consisting of Al in the range of 0.10 to 2.30 parts by weight.
Further, the multilayer ceramic capacitor of the present invention includes a ceramic laminate in which a plurality of ceramic dielectric layers and a plurality of internal electrode layers containing Ni are alternately laminated.
An external electrode formed on the outer surface of the ceramic laminate and
With
Diffusion of at least one element selected from the group consisting of Ta, Nb, Zr, a metal element in a stabilizer, and Al at the interface between the adjacent internal electrode layer and the ceramic dielectric layer and its vicinity. It is characterized by having a region (diffusion layer). The metal element in the stabilizer is preferably one or more selected from Y, Ca, Mg and Sc.
The multilayer ceramic capacitor of the present invention has the above-mentioned characteristics and thus has an improved high-temperature load life. Therefore, even if the dielectric layer is further thinned and a voltage with a high electric field strength is applied, excellent reliability is achieved. show.
 なお、誘電体層及び内部電極層がTa成分、Nb成分、安定化ジルコニア(SZ)成分、又はAl成分を含有することや、それらが内部電極層側からセラミック誘電体層側に向かう方向に高くなり、濃度ピークを迎えた後、低くなる濃度分布を有する拡散領域(拡散層)を持つことは、SEM(走査型電子顕微鏡)やTEM(透過型電子顕微鏡)、またはSTEM(走査透過型電子顕微鏡)と、EDS(エネルギー分散型X線分光法)やWDS(波長分散型X線分光法)、またはEELS(電子エネルギー損失分光法)などの元素分析手法を組み合わせることにより確認できる。 The dielectric layer and the internal electrode layer contain a Ta component, an Nb component, a stabilized zirconia (SZ) component, or an Al component, and they are higher in the direction from the internal electrode layer side to the ceramic dielectric layer side. Having a diffusion region (diffusion layer) with a low concentration distribution after reaching a concentration peak means that SEM (scanning electron microscope), TEM (transmission electron microscope), or STEM (scanning transmission electron microscope) ) And an element analysis method such as EDS (energy dispersion type X-ray spectroscopy), WDS (wavelength dispersion type X-ray spectroscopy), or EELS (electron energy loss spectroscopy).
 本発明の積層セラミックコンデンサに係るNiを含む内部電極層は、本発明のNiペーストを、還元性雰囲気下、900~1400℃、好ましくは1100~1300℃で焼成して形成されたものである。 The internal electrode layer containing Ni according to the multilayer ceramic capacitor of the present invention is formed by firing the Ni paste of the present invention at 900 to 1400 ° C., preferably 1100-1300 ° C. in a reducing atmosphere.
 本発明の積層セラミックコンデンサに係る外部電極は、積層セラミックコンデンサの外部電極として用いることができるものであれば、特に制限されない。 The external electrode of the multilayer ceramic capacitor of the present invention is not particularly limited as long as it can be used as an external electrode of the multilayer ceramic capacitor.
 また、本発明の積層セラミックコンデンサは、複数のセラミック誘電体層と、Niを含む複数の内部電極層と、が交互に積層されているセラミック積層体と、
 前記セラミック積層体の外表面に形成されている外部電極と、
を備え、
 前記内部電極層が、本発明のNiペーストが900~1400℃で焼成された焼成物で形成されていること、
を特徴とする積層セラミックコンデンサである。
Further, the multilayer ceramic capacitor of the present invention includes a ceramic laminate in which a plurality of ceramic dielectric layers and a plurality of internal electrode layers containing Ni are alternately laminated.
An external electrode formed on the outer surface of the ceramic laminate and
With
The internal electrode layer is formed of a fired product obtained by firing the Ni paste of the present invention at 900 to 1400 ° C.
It is a monolithic ceramic capacitor characterized by.
 本発明の積層セラミックコンデンサにおいて、内部電極層は、本発明のNiペーストをスクリーン印刷等により、積層層形成用のセラミックグリーンシート上に成形し、乾燥し、焼成することにより形成されたものである。本発明のNiペーストの焼成温度は、900~1400℃、好ましくは1100~1300℃であり、焼成雰囲気は、還元性雰囲気である。つまり、内部電極層は、本発明のNiペーストの900~1400℃、好ましくは1100~1300℃での焼成物で形成されている。 In the multilayer ceramic capacitor of the present invention, the internal electrode layer is formed by molding the Ni paste of the present invention on a ceramic green sheet for forming a laminated layer by screen printing or the like, drying and firing. .. The firing temperature of the Ni paste of the present invention is 900 to 1400 ° C., preferably 1100-1300 ° C., and the firing atmosphere is a reducing atmosphere. That is, the internal electrode layer is formed of a fired product of the Ni paste of the present invention at 900 to 1400 ° C, preferably 1100 to 1300 ° C.
 以下、本発明を具体的な実験例に基づき説明するが、本発明は、これらに限定されるものではない。 Hereinafter, the present invention will be described based on specific experimental examples, but the present invention is not limited thereto.
<<(D1)Taを含む添加剤及び(D2)Nbを含む添加剤>>
(実施例1)
<Niペースト及び積層セラミックコンデンサの製造>
 平均粒径0.3μmの球状ニッケル粉末100.0gに対して、表1又は表2に示す質量部となる割合で、Ta又はNbを、共材粉末として平均粒径0.05μmのBaTiO粉末を10.0g、エチルセルロース(バインダ樹脂)6.0g、界面活性剤2.0g、可塑剤1.0g、及びジヒドロターピネオールアセテート(有機溶剤)100.0gとなる割合で混合し、3本ロールミルを使用して混練することによってNiペーストを作製した。
 次に、セラミックグリーンシートの主成分となる平均粒径0.2μmのBaTiO粉末にポリビニルブチラール系バインダとエタノールとコンデンサ特性を調整する添加剤を加えてメディアミルにより湿式混合し、セラミックスラリーを調製した。
 このセラミックスラリーをダイコーター法によりシート成形し、厚み5.5μmのセラミックグリーンシートを準備した。
 続いて、このセラミックグリーンシート上に、Niペーストを1.5mm×3.0mmの矩形のパターンに印刷した後、乾燥することにより、内部電極乾燥膜を形成した。内部電極乾燥膜の厚さは1.5μmであった。内部電極乾燥膜を有するセラミックグリーンシートを、誘電体有効層が50層になるように積み重ね、90℃で1250kg/cmの圧力を加えて圧着及び成形して未焼成のセラミック積層体を得た。
 このセラミック積層体を、N-0.1%H-HOガスからなる雰囲気中で700℃に加熱し、バインダを燃焼させた後、1220℃での酸素分圧が1×10-8atmのN-0.1%H-HOガスからなる還元雰囲気中において、5℃/minの昇温速度で昇温し、1220℃にて2時間保持して焼結緻密化させ、その後、冷却段階にてN-HOガス雰囲気中で1000℃にて3時間の再酸化処理を行うことによって積層セラミック素体を得た。
 次いで、積層セラミック素体の両端面に、Cu粉末とBaO系ガラスフリットを含む外部電極形成用のCuペーストを塗布し、N雰囲気中、780℃の温度で焼き付けて外部電極を形成することにより積層セラミックコンデンサを作製した。
 これを前出のNiペースト全てに対して行うことにより、表1又は表2の試料を得た。なお、表1又は表2において、試料番号に*を付した試料は本発明の要件を満たさない比較例である。
 得られた積層セラミックコンデンサの外形寸法は、幅(W):1.6mm、長さ (L):3.2mm、厚さ(T):0.7mmであり、内部電極層の厚みは1.2μmであり、内部電極間に介在するセラミック誘電体層の厚みは4.0μmであった。また、誘電体層の1層あたりの対向電極の面積は3.25mmであった。
<< Additives containing (D1) Ta and Additives containing (D2) Nb >>
(Example 1)
<Manufacturing of Ni paste and multilayer ceramic capacitors>
Ta 2 O 5 or Nb 2 O 5 is used as a co-material powder with an average particle size of 0 in a proportion of 100.0 g of spherical nickel powder having an average particle size of 0.3 μm, which is a part by mass shown in Table 1 or Table 2. .05 μm BaTIO 3 powder is mixed at a ratio of 10.0 g, ethyl cellulose (binder resin) 6.0 g, surfactant 2.0 g, plasticizer 1.0 g, and dihydroterpineol acetate (organic solvent) 100.0 g. A Ni paste was prepared by kneading using a 3-roll mill.
Next, a polyvinyl butyral-based binder, ethanol, and an additive for adjusting the capacitor characteristics were added to BaTiO 3 powder having an average particle size of 0.2 μm, which is the main component of the ceramic green sheet, and wet-mixed with a media mill to prepare a ceramic slurry. bottom.
This ceramic slurry was sheet-molded by the die coater method to prepare a ceramic green sheet having a thickness of 5.5 μm.
Subsequently, a Ni paste was printed on this ceramic green sheet in a rectangular pattern of 1.5 mm × 3.0 mm, and then dried to form an internal electrode drying film. The thickness of the internal electrode dry film was 1.5 μm. Ceramic green sheets having an internal electrode dry film were stacked so that the effective dielectric layer was 50 layers, and pressure-bonded and molded by applying a pressure of 1250 kg / cm 2 at 90 ° C. to obtain an unfired ceramic laminate. ..
The ceramic laminate, N 2 in an atmosphere composed of -0.1% H 2 -H 2 O gas was heated to 700 ° C., after burning a binder, at 1220 ° C. oxygen partial pressure 1 × 10 - in 8 atm of N 2 -0.1% H 2 -H 2 O gas consists in a reducing atmosphere, the temperature was raised, sintering densification and held for 2 hours at 1220 ° C. at a heating rate of 5 ° C. / min It is allowed, then to obtain a laminated ceramic body by performing re-oxidation treatment for 3 hours at 1000 ° C. in N 2 -H 2 O gas atmosphere in a cooling step.
Then, the both end surfaces of the laminated ceramic body is coated with a Cu paste for external electrode formation containing Cu powder and BaO-based glass frit, an N 2 atmosphere, by forming the external electrodes by baking at a temperature of 780 ° C. A monolithic ceramic capacitor was manufactured.
By performing this for all of the above-mentioned Ni pastes, the samples shown in Table 1 or Table 2 were obtained. In Table 1 or Table 2, the samples marked with * in the sample numbers are comparative examples that do not satisfy the requirements of the present invention.
The external dimensions of the obtained multilayer ceramic capacitor are width (W): 1.6 mm, length (L): 3.2 mm, thickness (T): 0.7 mm, and the thickness of the internal electrode layer is 1. It was 2 μm, and the thickness of the ceramic dielectric layer interposed between the internal electrodes was 4.0 μm. The area of the counter electrode per layer of the dielectric layer was 3.25 mm 2 .
<特性の評価>
 上述のようにして作製した各積層セラミックコンデンサ(表1及び表2の試料)について、以下に説明する方法で、高温負荷試験を行うとともに、内部電極層の連続性の評価、及びセラミック誘電体層と内部電極層の界面近傍を観察し、Ta又はNbの濃度が、内部電極層側からセラミック誘電体層側に向かう方向に高くなり、濃度ピークを迎えた後、低くなる拡散領域(拡散層)が形成されていることを確認した。
(1)高温負荷試験
 各試料からそれぞれ15個をサンプリングし、180℃、60Vの条件で高温負荷試験を行い、絶縁抵抗が1桁低下するまでに要する時間を、各積層セラミックコンデンサの故障時間とした。そして、この故障時間をワイブルプロットし、MTTF(平均故障時間)を求めた。MTTFの評価結果を表1又は表2に併記すると共にそれぞれを図1、図2にまとめた。
(2)内部電極層の連続性評価
 各試料のそれぞれの積層セラミックコンデンサを、内部電極層に直交する面で切断してSEM(走査型電子顕微鏡)にて観察を行った。観察倍率は1000倍で、観察視野の中から内部電極を無作為に10本選択し、電極が存在している部分の、全体の長さに対する割合を計測して、連続性として評価した。ここでは連続性が90%以上を◎とし、80~90%を○とし、80%未満を×として表1又は表2に併記した。
<Evaluation of characteristics>
Each multilayer ceramic capacitor (samples in Tables 1 and 2) produced as described above is subjected to a high-temperature load test by the method described below, the continuity of the internal electrode layer is evaluated, and the ceramic dielectric layer is evaluated. The diffusion region (diffusion layer) in which the concentration of Ta or Nb increases in the direction from the internal electrode layer side toward the ceramic dielectric layer side, reaches a concentration peak, and then decreases. Was confirmed to be formed.
(1) High-temperature load test Fifteen samples are sampled from each sample, and the high-temperature load test is performed under the conditions of 180 ° C. and 60 V. The time required for the insulation resistance to decrease by an order of magnitude is defined as the failure time of each multilayer ceramic capacitor. bottom. Then, this failure time was weibull plotted to obtain MTTF (Mean Time Between Failure). The MTTF evaluation results are shown in Table 1 or Table 2 and summarized in FIGS. 1 and 2, respectively.
(2) Evaluation of Continuity of Internal Electrode Layer Each laminated ceramic capacitor of each sample was cut at a plane orthogonal to the internal electrode layer and observed with an SEM (scanning electron microscope). The observation magnification was 1000 times, 10 internal electrodes were randomly selected from the observation field of view, and the ratio of the portion where the electrodes were present to the total length was measured and evaluated as continuity. Here, 90% or more of continuity is marked with ⊚, 80 to 90% is marked with ◯, and less than 80% is marked with x, which are also shown in Table 1 or Table 2.
Figure JPOXMLDOC01-appb-T000001
1)球状ニッケル粉末100質量部当たりの質量部
2)試料1A(Ta無添加)のMTFFに対する各試料のMTFFの比(各試料のMTFF/試料1AのMTTF)
Figure JPOXMLDOC01-appb-T000001
1) Mass parts per 100 parts by mass of spherical nickel powder 2) Ratio of MTFF of each sample to MTFF of sample 1A (without Ta 2 O 5 added) (MTFF of each sample / MTTF of sample 1A)
Figure JPOXMLDOC01-appb-T000002
1)球状ニッケル粉末100質量部当たりの質量部
2)試料1A(Nb無添加)のMTFFに対する各試料のMTFFの比(各試料のMTFF/試料1AのMTTF)
Figure JPOXMLDOC01-appb-T000002
1) Mass parts per 100 parts by mass of spherical nickel powder 2) Ratio of MTFF of each sample to MTFF of sample 1A (without Nb 2 O 5 added) (MTFF of each sample / MTTF of sample 1A)
 表1及び表2に示すように、Ta又はNbを混合していない試料(試料番号1A)に対して、Ta又はNbを本発明に規定の範囲で混合した全ての試料(試料番号2A~10A及び12A~20A)においてMTTFが増加した。
 また、内部電極の連続性は試料番号2A~7A及び12A~16Aで90%以上を示し、試料番号8A~10A及び17A~20Aで80~90%を示した。
 一方、Ta又はNbの混合が本発明に規定の範囲を超える試料(試料番号11A及び21A)においては、Ta又はNbを混合していない試料(試料番号1A)よりも、MTTFが低くなり、且つ、内部電極の連続性が80%未満となった。
 以上のことから、高温負荷寿命を向上させるためには、球状ニッケル粉末100質量部当たり、Taの場合は0.025~2.50質量部、Nbの場合は0.01~1.80質量部混合するのが良く、更にTaの場合は0.025~0.80質量部、Nbの場合は0.01~0.50質量部の範囲内であれば、内部電極の連続性を損なうことなく高負荷寿命を更に向上させることが可能になる。
As shown in Table 1 and Table 2, Ta 2 O 5 or Nb 2 O 5 with respect to samples not mixed (sample No. 1A), a defined range of Ta 2 O 5 or Nb 2 O 5 in the present invention MTTF increased in all the samples mixed in (Sample Nos. 2A-10A and 12A-20A).
The continuity of the internal electrodes was 90% or more for sample numbers 2A to 7A and 12A to 16A, and 80 to 90% for sample numbers 8A to 10A and 17A to 20A.
On the other hand, the sample mixture of Ta 2 O 5 or Nb 2 O 5 is in the sample (Sample No. 11A and 21A) that exceeds the range specified in the present invention, which is not a mixture of Ta 2 O 5 or Nb 2 O 5 (Sample The MTTF was lower than that of No. 1A), and the continuity of the internal electrodes was less than 80%.
From the above, in order to improve the high temperature load life, 0.025 to 2.50 parts by mass for Ta 2 O 5 and 0.01 for Nb 2 O 5 per 100 parts by mass of spherical nickel powder. It is good to mix up to 1.80 parts by mass, and in the case of Ta 2 O 5 , it is within the range of 0.025 to 0.80 parts by mass, and in the case of Nb 2 O 5 , it is within the range of 0.01 to 0.50 parts by mass. If there is, it becomes possible to further improve the high load life without impairing the continuity of the internal electrodes.
<<(D3)安定化ジルコニア(SZ)>>
(実施例2及び比較例1)
<Niペースト及び積層セラミックコンデンサの製造>
(Niペーストの作製)
 比較例1として、平均粒径0.3μmの球状ニッケル粉末100.0gに対して、表3に示すモル数となる割合で、ZrOを準備し、更に共材粉末として平均粒径0.05μmのBaTiO粉末を10.0g、エチルセルロース(バインダ樹脂)6.0g、界面活性剤2.0g、可塑剤1.0g、及びジヒドロターピネオールアセテート(有機溶剤)100.0gとなる割合で混合し、3本ロールミルを使用して混練することによってNiペーストを作製した。
 また、実施例2として、ZrOに代わりに、表4に示すモル数となる割合で3.0モル%イットリア安定化ジルコニア(3.0-YSZ)を用いる以外は比較例1と同様にしてNiペーストを作製した。
<< (D3) Stabilized Zirconia (SZ) >>
(Example 2 and Comparative Example 1)
<Manufacturing of Ni paste and multilayer ceramic capacitors>
(Making Ni paste)
As Comparative Example 1, ZrO 2 was prepared at a ratio of the number of moles shown in Table 3 with respect to 100.0 g of spherical nickel powder having an average particle size of 0.3 μm, and further, an average particle size of 0.05 μm as a co-material powder. BaTiO 3 powder is mixed at a ratio of 10.0 g, ethyl cellulose (binder resin) 6.0 g, surfactant 2.0 g, plasticizer 1.0 g, and dihydroterpineol acetate (organic solvent) 100.0 g, and 3 A Ni paste was prepared by kneading using this roll mill.
Further, as Example 2, in the same manner as in Comparative Example 1 except that 3.0 mol% yttria-stabilized zirconia (3.0-YSZ) was used instead of ZrO 2 at a ratio of the number of moles shown in Table 4. A Ni paste was prepared.
(積層セラミックコンデンサの製造)
 次に、セラミックグリーンシートの主成分となる平均粒径0.2μmのBaTiO粉末にポリビニルブチラール系バインダとエタノールとコンデンサ特性を調整する添加剤を加えてメディアミルにより湿式混合し、セラミックスラリーを調製した。
 このセラミックスラリーをダイコーター法によりシート成形し、厚み5.5μmのセラミックグリーンシートを準備した。
 続いて、このセラミックグリーンシート上に、実施例2及び比較例1のNiペーストを1.5mm×3.0mmの矩形のパターンに印刷した後、乾燥することにより、内部電極乾燥膜を形成した。内部電極乾燥膜の厚さは1.5μmであった。内部電極乾燥膜を有するセラミックグリーンシートを、誘電体有効層が50層になるように積み重ね、90℃で1250kg/cmの圧力を加えて圧着及び成形して未焼成のセラミック積層体を得た。
 このセラミック積層体を、N-0.1%H-HOガスからなる雰囲気中で700℃に加熱し、バインダを燃焼させた後、1220℃での酸素分圧が1×10-8atmのN-0.1%H-HOガスからなる還元雰囲気中において、5℃/minの昇温速度で昇温し、1220℃にて2時間保持して焼結緻密化させ、その後、冷却段階にてN-HOガス雰囲気中で1000℃にて3時間の再酸化処理を行うことによって積層セラミック素体を得た。
 次いで、積層セラミック素体の両端面に、Cu粉末とBaO系ガラスフリットを含む外部電極形成用のCuペーストを塗布し、N雰囲気中、780℃の温度で焼き付けて外部電極を形成することにより積層セラミックコンデンサを作製した。
 これを前出のNiペースト全てに対して行うことにより、表3又は表4の試料1B~21Bを得た。なお、表3又は表4において、試料番号に*を付した試料は本発明の要件を満たさない比較例である。
 得られた積層セラミックコンデンサの外形寸法は、幅(W):1.6mm、長さ (L):3.2mm、厚さ(T):0.7mmであり、内部電極層の厚みは1.2μmであり、内部電極間に介在するセラミック誘電体層の厚みは4.0μmであった。また、誘電体層の1層あたりの対向電極の面積は3.25mmであった。
(Manufacturing of multilayer ceramic capacitors)
Next, a polyvinyl butyral-based binder, ethanol, and an additive for adjusting the capacitor characteristics were added to BaTiO 3 powder having an average particle size of 0.2 μm, which is the main component of the ceramic green sheet, and wet-mixed with a media mill to prepare a ceramic slurry. bottom.
This ceramic slurry was sheet-molded by the die coater method to prepare a ceramic green sheet having a thickness of 5.5 μm.
Subsequently, the Ni pastes of Example 2 and Comparative Example 1 were printed on this ceramic green sheet in a rectangular pattern of 1.5 mm × 3.0 mm and then dried to form an internal electrode drying film. The thickness of the internal electrode dry film was 1.5 μm. Ceramic green sheets having an internal electrode dry film were stacked so that the effective dielectric layer was 50 layers, and pressure-bonded and molded by applying a pressure of 1250 kg / cm 2 at 90 ° C. to obtain an unfired ceramic laminate. ..
The ceramic laminate, N 2 in an atmosphere composed of -0.1% H 2 -H 2 O gas was heated to 700 ° C., after burning a binder, at 1220 ° C. oxygen partial pressure 1 × 10 - in 8 atm of N 2 -0.1% H 2 -H 2 O gas consists in a reducing atmosphere, the temperature was raised, sintering densification and held for 2 hours at 1220 ° C. at a heating rate of 5 ° C. / min It is allowed, then to obtain a laminated ceramic body by performing re-oxidation treatment for 3 hours at 1000 ° C. in N 2 -H 2 O gas atmosphere in a cooling step.
Then, the both end surfaces of the laminated ceramic body is coated with a Cu paste for external electrode formation containing Cu powder and BaO-based glass frit, an N 2 atmosphere, by forming the external electrodes by baking at a temperature of 780 ° C. A monolithic ceramic capacitor was manufactured.
By performing this for all of the above-mentioned Ni pastes, samples 1B to 21B of Table 3 or Table 4 were obtained. In Table 3 or Table 4, the samples marked with * in the sample numbers are comparative examples that do not satisfy the requirements of the present invention.
The external dimensions of the obtained multilayer ceramic capacitor are width (W): 1.6 mm, length (L): 3.2 mm, thickness (T): 0.7 mm, and the thickness of the internal electrode layer is 1. It was 2 μm, and the thickness of the ceramic dielectric layer interposed between the internal electrodes was 4.0 μm. The area of the counter electrode per layer of the dielectric layer was 3.25 mm 2 .
<特性の評価>
 上述のようにして作製した各積層セラミックコンデンサ(表3又は表4の試料)について、以下に説明する方法で、高温負荷試験を行うとともに、内部電極層の連続性の評価、及びセラミック誘電体層と内部電極層の界面近傍を観察し、Zr及び/又は安定化剤中の金属元素であるYの濃度が、内部電極層側からセラミック誘電体層側に向かう方向に高くなり、濃度ピークを迎えた後、低くなる拡散領域(拡散層)が形成されていることを確認した。
<Evaluation of characteristics>
Each multilayer ceramic capacitor (sample in Table 3 or Table 4) produced as described above is subjected to a high-temperature load test by the method described below, the continuity of the internal electrode layer is evaluated, and the ceramic dielectric layer is evaluated. The concentration of Y, which is a metal element in Zr and / or the stabilizer, increases in the direction from the internal electrode layer side toward the ceramic dielectric layer side, and reaches a concentration peak. After that, it was confirmed that a lower diffusion region (diffusion layer) was formed.
(1)高温負荷試験
 各試料からそれぞれ15個をサンプリングし、180℃、60Vの条件で高温負荷試験を行い、絶縁抵抗が1桁低下するまでに要する時間を、各積層セラミックコンデンサの故障時間とした。そして、この故障時間をワイブルプロットし、MTTF(平均故障時間)を求めた。MTTFの評価結果を表3又は表4に併記する。
 また、比較例1と実施例2を対比するため、それぞれのMTTFを図3にまとめた。
 更に、比較例1のジルコニア(ZrO)添加のMTTFに対する安定化ジルコニア(3.0-YSZ)添加のMTTFを求め、その結果を表5及び図4にまとめた。
(1) High-temperature load test Fifteen samples are sampled from each sample, and the high-temperature load test is performed under the conditions of 180 ° C. and 60 V. The time required for the insulation resistance to decrease by an order of magnitude is defined as the failure time of each multilayer ceramic capacitor. bottom. Then, this failure time was weibull plotted to obtain MTTF (Mean Time Between Failure). The MTTF evaluation results are also shown in Table 3 or Table 4.
Further, in order to compare Comparative Example 1 and Example 2, each MTTF is summarized in FIG.
Further, the MTTF to which stabilized zirconia (3.0-YSZ) was added to the MTTF to which zirconia (ZrO 2 ) was added in Comparative Example 1 was obtained, and the results are summarized in Table 5 and FIG.
(2)内部電極層の連続性評価
 各試料のそれぞれの積層セラミックコンデンサを、内部電極層に直交する面で切断してSEM(走査型電子顕微鏡)にて観察を行った。観察倍率は1000倍で、観察視野の中から内部電極を無作為に10本選択し、電極が存在している部分の、全体の長さに対する割合を計測して、連続性として評価した。ここでは連続性が90%以上を◎とし、80~90%を○とし、80%未満を×として表3又は表4に併記した。
(2) Evaluation of Continuity of Internal Electrode Layer Each laminated ceramic capacitor of each sample was cut at a plane orthogonal to the internal electrode layer and observed with an SEM (scanning electron microscope). The observation magnification was 1000 times, 10 internal electrodes were randomly selected from the observation field of view, and the ratio of the portion where the electrodes were present to the total length was measured and evaluated as continuity. Here, 90% or more of the continuity is marked with ⊚, 80 to 90% is marked with ◯, and less than 80% is marked with x, which are also shown in Table 3 or Table 4.
Figure JPOXMLDOC01-appb-T000003
1)球状ニッケル粉末100g当たりのモル数
2)試料1B(無添加)のMTTFに対する各試料のMTTFの比(各試料のMTTF/試料1BのMTTF)
Figure JPOXMLDOC01-appb-T000003
1) Number of moles per 100 g of spherical nickel powder 2) Ratio of MTTF of each sample to MTTF of sample 1B (without addition) (MTTF of each sample / MTTF of sample 1B)
Figure JPOXMLDOC01-appb-T000004
1)球状ニッケル粉末100g当たりのモル数
2)試料1B(無添加)のMTTFに対する各試料のMTTFの比(各試料のMTTF/試料1BのMTTF)
Figure JPOXMLDOC01-appb-T000004
1) Number of moles per 100 g of spherical nickel powder 2) Ratio of MTTF of each sample to MTTF of sample 1B (without addition) (MTTF of each sample / MTTF of sample 1B)
Figure JPOXMLDOC01-appb-T000005
1)添加量が同モルのZrO添加試料に対する3.0-YSZ添加試料のMTTFの比(3.0-YSZ添加試料のMTTF/同モルZrO添加試料のMTTF)
Figure JPOXMLDOC01-appb-T000005
1) The ratio of MTTF of 3.0-YSZ sample addition amount added for the same mole of ZrO 2 added samples (3.0-YSZ sample added MTTF / same molar ZrO 2 MTTF addition sample)
 表3~表5、及び図3~図4に示されるように、ZrO及び安定化ジルコニア(3.0-YSZ)を混合していない無添加の試料(試料1B)に対して、安定化ジルコニア(3.0-YSZ)を本発明に規定の範囲で混合した全ての試料(試料12B~20B)においてMTTFが増加した。また、ジルコニア(ZrO)を同モル添加した試料(試料2B~10B)に対しても、安定化ジルコニア(3.0-YSZ)を本発明に規定の範囲で混合した全ての試料(試料12B~20B)においてMTTFが高くなった。
 また、内部電極の連続性は試料12B~18Bで90%以上を示し、試料19B~20Bで80~90%を示した。
 一方、安定化ジルコニア(3.0-YSZ)の混合が本発明に規定の範囲を超える試料(試料21B)においては、ジルコニア(ZrO)を混合した試料(試料11B)よりも、MTTFが低くなり、且つ、内部電極の連続性が80%未満となった。
 以上のことから、球状ニッケル粉末100g当たり、安定化ジルコニア(3.0-YSZ)を0.05×10-2~2.20×10-2モル混合することにより、無添加並びにジルコニア(ZrO)添加の場合よりも高温負荷寿命を向上させることができ、更に0.05×10-2~1.40×10-2モルの範囲内であれば、内部電極の連続性を損なうことなく高負荷寿命を更に向上させることが可能になる。
Stabilized with respect to the additive-free sample (Sample 1B) in which ZrO 2 and stabilized zirconia (3.0-YSZ) were not mixed, as shown in Tables 3 to 5 and FIGS. 3 to 4. MTTF increased in all samples (Samples 12B-20B) in which zirconia (3.0-YSZ) was mixed within the range specified in the present invention. Further, all the samples (Sample 12B) in which stabilized zirconia (3.0-YSZ) was mixed within the range specified in the present invention were also mixed with the samples (Samples 2B to 10B) to which the same molar amount of zirconia (ZrO 2) was added. MTTF increased in ~ 20B).
The continuity of the internal electrodes was 90% or more in the samples 12B to 18B, and 80 to 90% in the samples 19B to 20B.
On the other hand, in the sample (Sample 21B) in which the mixture of stabilized zirconia (3.0-YSZ) exceeds the range specified in the present invention, the MTTF is lower than that of the sample (Sample 11B) in which zirconia (ZrO 2) is mixed. And the continuity of the internal electrodes was less than 80%.
From the above, by mixing 0.05 × 10-2 to 2.20 × 10-2 mol of stabilized zirconia (3.0-YSZ) per 100 g of spherical nickel powder, no additives and zirconia (ZrO 2) were added. ) High temperature load life can be improved compared to the case of addition, and if it is within the range of 0.05 × 10 -2 to 1.40 × 10 -2 mol, it is high without impairing the continuity of the internal electrodes. It becomes possible to further improve the load life.
(実施例3)
<Niペースト及び積層セラミックコンデンサの製造>
(Niペーストの調製)
 平均粒径0.3μmの球状ニッケル粉末100.0gに対して、表6に示す含有量(Xモル%)のイットリア(Y)で安定化した安定化ジルコニア(X-YSZ)粉末を0.80×10-2モルの割合で準備し、更に共材粉末として平均粒径0.05μmのBaTiO粉末を10.0g、エチルセルロース(バインダ樹脂)6.0g、界面活性剤2.0g、可塑剤1.0g、及びジヒドロターピネオールアセテート(有機溶剤)100.0gとなる割合で混合し、3本ロールミルを使用して混練することによってNiペーストを作製した。
(Example 3)
<Manufacturing of Ni paste and multilayer ceramic capacitors>
(Preparation of Ni paste)
Against the spherical nickel powder 100.0g of an average particle diameter of 0.3 [mu] m, the content (X mole%) of yttria (Y 2 O 3) stabilized with stabilized zirconia (X-YSZ) powder shown in Table 6 Prepared at a ratio of 0.80 × 10-2 mol, 10.0 g of BaTiO 3 powder having an average particle size of 0.05 μm as a co-material powder, 6.0 g of ethyl cellulose (binder resin), 2.0 g of surfactant, A Ni paste was prepared by mixing 1.0 g of a plasticizer and 100.0 g of dihydroterpineol acetate (organic solvent) and kneading using a three-roll mill.
(積層セラミックコンデンサの製造)
 上記Niペーストを用いること以外は、実施例2と同様にした。
 これを前出のNiペースト全てに対して行うことにより、表6の試料22B~28Bを得た。
(Manufacturing of multilayer ceramic capacitors)
The procedure was the same as in Example 2 except that the Ni paste was used.
By performing this for all of the above-mentioned Ni pastes, samples 22B to 28B in Table 6 were obtained.
<特性評価>
 上記で得た試料を用いること以外は、実施例2と同様に行った。その結果を表6に併記する。
<Characteristic evaluation>
The procedure was the same as in Example 2 except that the sample obtained above was used. The results are also shown in Table 6.
 ジルコニア(ZrO)及び安定化ジルコニア(YSZ)を共に無添加の場合のMTTF(試料1B)に対する、安定化ジルコニア(X-YSZ)の含有量を変えることなく、安定化剤含有量のみを変化させた場合のMTTF(試料16B、22B~28B)の比、すなわちMTTF(X-YSZ)/MTTF(無添加)を、図5の黒丸(縦軸は左側)で示す。
 また、同量のジルコニア(ZrO)を添加したMTTF(試料6B)に対する、同様に安定化ジルコニア(X-YSZ)のMTTF(試料16B、22B~28B)の比、すなわちMTTF(X-YSZ)/MTTF(ZrO)を、図5の四角(縦軸は右側)で示す。
Only the stabilizer content is changed without changing the content of stabilized zirconia (X-YSZ) with respect to MTTF (Sample 1B) when both zirconia (ZrO 2) and stabilized zirconia (YSZ) are not added. The ratio of MTTFs (samples 16B, 22B to 28B), that is, MTTF (X-YSZ) / MTTF (without additives) is shown by black circles (vertical axis is on the left side) in FIG.
Also, the ratio of MTTF (Sample 16B, 22B-28B) of similarly stabilized zirconia (X-YSZ) to MTTF (Sample 6B) to which the same amount of zirconia (ZrO 2) was added, that is, MTTF (X-YSZ). / MTTF (ZrO 2 ) is indicated by a square (vertical axis is on the right side) in FIG.
Figure JPOXMLDOC01-appb-T000006
1)Xは安定化ジルコニア(YSZ)中のYの含有モル%を指す。
2)試料1B(無添加)のMTTFに対する各試料のMTTFの比(各試料のMTTF/試料1BのMTTF)
3)同モルのZrOを添加した試料6Bに対する各試料のMTTFの比(各試料のMTTF/試料6BのMTTF)
Figure JPOXMLDOC01-appb-T000006
1) X refers to the molar% of Y 2 O 3 contained in stabilized zirconia (YSZ).
2) Ratio of MTTF of each sample to MTTF of sample 1B (additive-free) (MTTF of each sample / MTTF of sample 1B)
3) Ratio of MTTF of each sample to sample 6B to which the same mole of ZrO 2 was added (MTTF of each sample / MTTF of sample 6B)
 表6及び図5に示されるように、安定化ジルコニア(YSZ)中の安定化剤(Y)の含有量と電極膜の連続性との間に相関は見られなかった。但し、安定化剤(Y)の含有量が50.0モル%以上になると、ジルコニア(ZrO)添加の比較例(試料6B)並びに無添加の比較例(試料1B)に対してMTTFが低くなる。従って、本発明の安定化ジルコニア(YSZ)においては、安定化剤(Y)の含有量が0.0モル%を超え45.0モル%以下の範囲であれば良好な結果が得られ、0.0モル%を超え40.0モル%以下の範囲が好ましく、8.0~25.0モル%の範囲が特に好ましい。 As shown in Table 6 and FIG. 5, no correlation was found between the content of the stabilizer (Y 2 O 3 ) in the stabilized zirconia (YSZ) and the continuity of the electrode film. However, when the content of the stabilizer (Y 2 O 3 ) becomes 50.0 mol% or more, it is compared with the comparative example (sample 6B) in which zirconia (ZrO 2 ) is added and the comparative example (sample 1B) in which no zirconia (ZrO 2) is added. MTTF is low. Therefore, in the stabilized zirconia (YSZ) of the present invention, good results can be obtained if the content of the stabilizer (Y 2 O 3 ) is in the range of more than 0.0 mol% and 45.0 mol% or less. The range of more than 0.0 mol% and 40.0 mol% or less is preferable, and the range of 8.0 to 25.0 mol% is particularly preferable.
(実施例4)
<Niペースト及び積層セラミックコンデンサの製造>
(Niペーストの調製)
 平均粒径0.3μmの球状ニッケル粉末100.0gに対して、表7に示す種類の安定化剤を10.0モル%で含有する安定化ジルコニア(10.0-SZ)粉末を0.80×10-2モルの割合で準備し、更に共材粉末として平均粒径0.05μmのBaTiO粉末を10.0g、エチルセルロース(バインダ樹脂)6.0g、界面活性剤2.0g、可塑剤1.0g、及びジヒドロターピネオールアセテート(有機溶剤)100.0gとなる割合で混合し、3本ロールミルを使用して混練することによってNiペーストを作製した。
(Example 4)
<Manufacturing of Ni paste and multilayer ceramic capacitors>
(Preparation of Ni paste)
0.80 of stabilized zirconia (10.0-SZ) powder containing 10.0 mol% of the stabilizers of the types shown in Table 7 with respect to 100.0 g of spherical nickel powder having an average particle size of 0.3 μm. Prepared at a ratio of × 10-2 mol, and 10.0 g of BaTiO 3 powder having an average particle size of 0.05 μm, 6.0 g of ethyl cellulose (binder resin), 2.0 g of surfactant, and 1 plasticizer as co-material powder. A Ni paste was prepared by mixing at a ratio of 0.0 g and 100.0 g of dihydroterpineol acetate (organic solvent) and kneading using a three-roll mill.
(積層セラミックコンデンサの製造)
 上記Niペーストを用いること以外は、実施例2と同様にした。
 これを前出のNiペースト全てに対して行うことにより、表7の試料29B~31Bを得た。
(Manufacturing of multilayer ceramic capacitors)
The procedure was the same as in Example 2 except that the Ni paste was used.
By performing this for all of the above-mentioned Ni pastes, samples 29B to 31B in Table 7 were obtained.
<特性評価>
 上記で得た試料を用いること以外は、実施例2と同様に行った。その結果を表7に併記する。
<Characteristic evaluation>
The procedure was the same as in Example 2 except that the sample obtained above was used. The results are also shown in Table 7.
Figure JPOXMLDOC01-appb-T000007
1)試料1B(無添加)のMTTFに対する各試料のMTTFの比(各試料のMTTF/試料1BのMTTF)
2)同モルのZrOを添加した試料6Bに対する各試料のMTTFの比(各試料のMTTF/試料6BのMTTF)
Figure JPOXMLDOC01-appb-T000007
1) Ratio of MTTF of each sample to MTTF of sample 1B (additive-free) (MTTF of each sample / MTTF of sample 1B)
2) Ratio of MTTF of each sample to sample 6B to which the same mole of ZrO 2 was added (MTTF of each sample / MTTF of sample 6B)
 表7の結果から、安定化剤としてカルシア(CaO)、マグネシア(MgO)、スカンジア(Sc)を用いても、イットリア(Y)と同様、内部電極膜の連続性を低下させることなく高温負荷寿命を向上させることができることがわかった。 From the results in Table 7, even if calcia (CaO), magnesia (MgO), or scandia (Sc 2 O 3 ) is used as the stabilizer, the continuity of the internal electrode film is reduced as in yttria (Y 2 O 3). It was found that the high temperature load life can be improved without causing the problem.
<<(D4)Alを含む添加剤>>
(実施例5)
<Niペースト及び積層セラミックコンデンサの製造>
 平均粒径0.3μmの球状ニッケル粉末100.0gに対して、表8に示す質量部となる割合で、Alを、共材粉末として平均粒径0.05μmのBaTiO粉末を10.0g、エチルセルロース(バインダ樹脂)6.0g、界面活性剤2.0g、可塑剤1.0g、及びジヒドロターピネオールアセテート(有機溶剤)100.0gとなる割合で混合し、3本ロールミルを使用して混練することによってNiペーストを作製した。
 次に、セラミックグリーンシートの主成分となる平均粒径0.2μmのBaTiO粉末にポリビニルブチラール系バインダとエタノールとコンデンサ特性を調整する添加剤を加えてメディアミルにより湿式混合し、セラミックスラリーを調製した。
 このセラミックスラリーをダイコーター法によりシート成形し、厚み5.5μmのセラミックグリーンシートを準備した。
 続いて、このセラミックグリーンシート上に、Niペーストを1.5mm×3.0mmの矩形のパターンに印刷した後、乾燥することにより、内部電極乾燥膜を形成した。内部電極乾燥膜の厚さは1.5μmであった。内部電極乾燥膜を有するセラミックグリーンシートを、誘電体有効層が50層になるように積み重ね、90℃で1250kg/cmの圧力を加えて圧着及び切断して未焼成のセラミック積層体を得た。
 このセラミック積層体を、N-0.1%H-HOガスからなる雰囲気中で700℃に加熱し、バインダを燃焼させた後、1220℃での酸素分圧が1×10-8atmのN-0.1%H-HOガスからなる還元雰囲気中において、5℃/minの昇温速度で昇温し、1220℃にて2時間保持して焼結緻密化させ、その後、冷却段階にてN-HOガス雰囲気中で1000℃にて3時間の再酸化処理を行うことによって積層セラミック素体を得た。
 次いで、積層セラミック素体の両端面に、Cu粉末とBaO系ガラスフリットを含む外部電極形成用のCuペーストを塗布し、N雰囲気中、780℃の温度で焼き付けて外部電極を形成することにより積層セラミックコンデンサを作製した。
 これを前出のNiペースト全てに対して行うことにより、表8の試料を得た。なお、表8において、試料番号に*を付した試料は本発明の要件を満たさない比較例である。
 得られた積層セラミックコンデンサの外形寸法は、幅(W):1.6mm、長さ (L):3.2mm、厚さ(T):0.7mmであり、内部電極層の厚みは1.2μmであり、内部電極間に介在するセラミック誘電体層の厚みは4.0μmであった。また、誘電体層の1層あたりの対向電極の面積は3.25mmであった。
<< Additives containing (D4) Al >>
(Example 5)
<Manufacturing of Ni paste and multilayer ceramic capacitors>
To 100.0 g of spherical nickel powder having an average particle size of 0.3 μm, Al 2 O 3 was used as a co-material powder at a ratio of parts by mass shown in Table 8, and BaTiO 3 powder having an average particle size of 0.05 μm was used as 10 parts. Mix at a ratio of 0.0 g, ethyl cellulose (binder resin) 6.0 g, surfactant 2.0 g, plasticizer 1.0 g, and dihydroterpineol acetate (organic solvent) 100.0 g, and use a 3-roll mill. A Ni paste was prepared by kneading.
Next, a polyvinyl butyral-based binder, ethanol, and an additive for adjusting the capacitor characteristics were added to BaTiO 3 powder having an average particle size of 0.2 μm, which is the main component of the ceramic green sheet, and wet-mixed with a media mill to prepare a ceramic slurry. bottom.
This ceramic slurry was sheet-molded by the die coater method to prepare a ceramic green sheet having a thickness of 5.5 μm.
Subsequently, a Ni paste was printed on this ceramic green sheet in a rectangular pattern of 1.5 mm × 3.0 mm, and then dried to form an internal electrode drying film. The thickness of the internal electrode dry film was 1.5 μm. Ceramic green sheets having an internal electrode dry film were stacked so that the effective dielectric layer was 50 layers, and pressure was applied at 90 ° C. at 1250 kg / cm 2 to crimp and cut to obtain an unfired ceramic laminate. ..
The ceramic laminate, N 2 in an atmosphere composed of -0.1% H 2 -H 2 O gas was heated to 700 ° C., after burning a binder, at 1220 ° C. oxygen partial pressure 1 × 10 - in 8 atm of N 2 -0.1% H 2 -H 2 O gas consists in a reducing atmosphere, the temperature was raised, sintering densification and held for 2 hours at 1220 ° C. at a heating rate of 5 ° C. / min It is allowed, then to obtain a laminated ceramic body by performing re-oxidation treatment for 3 hours at 1000 ° C. in N 2 -H 2 O gas atmosphere in a cooling step.
Then, the both end surfaces of the laminated ceramic body is coated with a Cu paste for external electrode formation containing Cu powder and BaO-based glass frit, an N 2 atmosphere, by forming the external electrodes by baking at a temperature of 780 ° C. A monolithic ceramic capacitor was manufactured.
By doing this for all of the Ni pastes mentioned above, the samples shown in Table 8 were obtained. In Table 8, the samples marked with * in the sample numbers are comparative examples that do not satisfy the requirements of the present invention.
The external dimensions of the obtained multilayer ceramic capacitor are width (W): 1.6 mm, length (L): 3.2 mm, thickness (T): 0.7 mm, and the thickness of the internal electrode layer is 1. It was 2 μm, and the thickness of the ceramic dielectric layer interposed between the internal electrodes was 4.0 μm. The area of the counter electrode per layer of the dielectric layer was 3.25 mm 2 .
<特性の評価>
 上述のようにして作製した各積層セラミックコンデンサ(表8の試料)について、以下に説明する方法で、高温負荷試験を行うとともに、内部電極層の連続性の評価、及び誘電体層と内部電極層の界面近傍を観察し、Alの濃度が、内部電極層側からセラミック誘電体層側に向かう方向に高くなり、濃度ピークを迎えた後、低くなる拡散領域(拡散層)が形成されていることを確認した。
(1)高温負荷試験
 各試料からそれぞれ15個をサンプリングし、180℃、60Vの条件で高温負荷試験を行い、絶縁抵抗が1桁低下するまでに要する時間を、各積層セラミックコンデンサの故障時間とした。そして、この故障時間をワイブルプロットし、MTTF(平均故障時間)を求めた。MTTFの評価結果を表8に併記すると共に図6にまとめた。
(2)内部電極層の連続性評価
 各試料のそれぞれの積層セラミックコンデンサを、内部電極層に直交する面で切断してSEM(走査型電子顕微鏡)にて観察を行った。観察倍率は1000倍で、観察視野の中から内部電極を無作為に10本選択し、電極が存在している部分の、全体の長さに対する割合を計測して、連続性として評価した。ここでは連続性が90%以上を◎とし、80~90%を○とし、80%未満を×として表8に併記した。
<Evaluation of characteristics>
Each multilayer ceramic capacitor (sample in Table 8) produced as described above is subjected to a high-temperature load test by the method described below, the continuity of the internal electrode layer is evaluated, and the dielectric layer and the internal electrode layer are evaluated. By observing the vicinity of the interface, the concentration of Al increases in the direction from the internal electrode layer side toward the ceramic dielectric layer side, and after reaching the concentration peak, a diffusion region (diffusion layer) is formed. It was confirmed.
(1) High-temperature load test Fifteen samples are sampled from each sample, and the high-temperature load test is performed under the conditions of 180 ° C. and 60 V. The time required for the insulation resistance to decrease by an order of magnitude is defined as the failure time of each multilayer ceramic capacitor. bottom. Then, this failure time was weibull plotted to obtain MTTF (Mean Time Between Failure). The MTTF evaluation results are also shown in Table 8 and summarized in FIG.
(2) Evaluation of Continuity of Internal Electrode Layer Each laminated ceramic capacitor of each sample was cut at a plane orthogonal to the internal electrode layer and observed with an SEM (scanning electron microscope). The observation magnification was 1000 times, 10 internal electrodes were randomly selected from the observation field of view, and the ratio of the portion where the electrodes were present to the total length was measured and evaluated as continuity. Here, 90% or more of continuity is marked with ⊚, 80 to 90% is marked with ◯, and less than 80% is marked with x, which are also shown in Table 8.
Figure JPOXMLDOC01-appb-T000008
1)球状ニッケル粉末100質量部当たりの質量部
2)試料1C(Al無添加)のMTFFに対する各試料のMTFFの比(各試料のMTFF/試料1CのMTTF)
Figure JPOXMLDOC01-appb-T000008
1) Mass parts per 100 parts by mass of spherical nickel powder 2) Ratio of MTFF of each sample to MTFF of sample 1C (without addition of Al 2 O 3 ) (MTFF of each sample / MTTF of sample 1C)
 表8に示すように、Alを混合していない試料(試料番号1C)に対して、Alを本発明に規定の範囲で混合した全ての試料(試料番号2C~15C)においてMTTFが増加した。
 また、内部電極の連続性は試料番号2C~11Cで90%以上を示し、試料番号12C~15Cで80~90%を示した。
 一方、Alの混合が本発明に規定の範囲を超える試料(試料番号16C)においては、Alを混合していない試料(試料番号1C)よりも、MTTFが低くなり、且つ、内部電極の連続性が80%未満となった。
 以上のことから、高温負荷寿命を向上させるためには、球状ニッケル粉末100質量部当たり、Alを0.10~5.50質量部混合するのが良く、0.10~2.30質量部の範囲内であれば、内部電極の連続性を損なうことなく高負荷寿命を更に向上させることが可能になる。
As shown in Table 8, all the samples (sample numbers 2C to 15C) in which Al 2 O 3 is mixed within the range specified in the present invention with respect to the sample (sample number 1C) not mixed with Al 2 O 2. MTTF increased in.
The continuity of the internal electrodes was 90% or more for sample numbers 2C to 11C, and 80 to 90% for sample numbers 12C to 15C.
On the other hand, in the sample (Sample No. 16C) mixing of Al 2 O 3 exceeds the range specified in the present invention, than the sample not mixed with Al 2 O 3 (Sample No. 1C), MTTF is lowered, and , The continuity of the internal electrodes was less than 80%.
From the above, in order to improve the high temperature load life, it is preferable to mix 0.10 to 5.50 parts by mass of Al 2 O 3 per 100 parts by mass of the spherical nickel powder, and 0.10 to 2.30 parts by mass. If it is within the range of parts by mass, it is possible to further improve the high load life without impairing the continuity of the internal electrodes.

Claims (13)

  1. (A)Niを主とする導電性粉末と、
    (B)バインダ樹脂と、
    (C)有機溶剤と、
    を含有し、
     更に、
    (D1)前記(A)Niを主とする導電性粉末100.0質量部当たり、Ta換算で0.025~2.50質量部の範囲内のTaを含む添加剤、
    (D2)前記(A)Niを主とする導電性粉末100.0質量部当たり、Nb換算で0.010~1.80質量部の範囲内のNbを含む添加剤、
    (D3)前記(A)Niを主とする導電性粉末100g当たり、0.05×10-2~2.20×10-2モルの範囲内の、安定化剤によりジルコニアの結晶構造が安定化された安定化ジルコニア(SZ)、及び
    (D4)前記(A)Niを主とする導電性粉末100.0質量部当たり、Al換算で0.10~5.50質量部の範囲内のAlを含む添加剤
    からなる群から選択される少なくとも1種を含有すること、
    を特徴とするNiペースト。
    (A) Conductive powder mainly composed of Ni and
    (B) Binder resin and
    (C) Organic solvent and
    Contains,
    In addition
    (D1) Additive containing Ta in the range of 0.025 to 2.50 parts by mass in terms of Ta 2 O 5 per 100.0 parts by mass of the conductive powder mainly containing Ni (A).
    (D2) Additive containing Nb in the range of 0.010 to 1.80 parts by mass in terms of Nb 2 O 5 per 100.0 parts by mass of the conductive powder mainly containing (A) Ni.
    (D3) The crystal structure of zirconia is stabilized by a stabilizer in the range of 0.05 × 10 -2 to 2.20 × 10 -2 mol per 100 g of the conductive powder mainly containing (A) Ni. Stabilized zirconia (SZ) and (D4) (A) Ni-based conductive powder per 100.0 parts by mass, within the range of 0.10 to 5.50 parts by mass in terms of Al 2 O 3. Containing at least one selected from the group consisting of additives containing Al,
    Ni paste characterized by.
  2.  前記(D1)Taを含む添加剤を含有する場合、前記(D1)Taを含む添加剤を、前記(A)Niを主とする導電性粉末100.0質量部当たり、Ta換算で0.025~0.80質量部の範囲内で含有することを特徴とする請求項1記載のNiペースト。 When the additive containing (D1) Ta is contained, the additive containing (D1) Ta is added to the additive containing (D1) Ta in terms of Ta 2 O 5 per 100.0 parts by mass of the conductive powder mainly containing (A) Ni. The Ni paste according to claim 1, wherein the Ni paste is contained in the range of 0.025 to 0.80 parts by mass.
  3.  前記(D2)Nbを含む添加剤を含有する場合、前記(D2)Nbを含む添加剤を、前記(A)Niを主とする導電性粉末100.0質量部当たり、Nb換算で0.010~0.50質量部の範囲内で含有することを特徴とする請求項1記載のNiペースト。 When the additive containing (D2) Nb is contained, the additive containing (D2) Nb is added to the additive containing (D2) Nb in terms of Nb 2 O 5 per 100.0 parts by mass of the conductive powder mainly containing (A) Ni. The Ni paste according to claim 1, wherein the Ni paste is contained in the range of 0.010 to 0.50 parts by mass.
  4.  前記(D3)安定化ジルコニア(SZ)を含有する場合、前記安定化剤が、Y、CaO、MgO及びScから選ばれる1種以上であることを特徴とする請求項1記載のNiペースト。 When the (D3) stabilized zirconia (SZ) is contained, the stabilizer is at least one selected from Y 2 O 3 , Ca O, Mg O and Sc 2 O 3. The described Ni paste.
  5.  前記(D3)安定化ジルコニア(SZ)を含有する場合、前記(D3)安定化ジルコニア(SZ)が、0.0モル%を超え45.0モル%以下の範囲で前記安定化剤を含有していることを特徴とする請求項4記載のNiペースト。 When the (D3) stabilized zirconia (SZ) is contained, the (D3) stabilized zirconia (SZ) contains the stabilizer in a range of more than 0.0 mol% and 45.0 mol% or less. The Ni paste according to claim 4, wherein the Ni paste is characterized by the above.
  6.  前記(D3)安定化ジルコニア(SZ)を含有する場合、前記(D3)安定化ジルコニア(SZ)が、8.0~25.0モル%の範囲で前記安定化剤を含有していることを特徴とする請求項4記載のNiペースト。 When the (D3) stabilized zirconia (SZ) is contained, the fact that the (D3) stabilized zirconia (SZ) contains the stabilizer in the range of 8.0 to 25.0 mol%. The Ni paste according to claim 4, which is characteristic.
  7.  前記(D3)安定化ジルコニア(SZ)を含有する場合、前記(D3)安定化ジルコニア(SZ)を、前記(A)Niを主とする導電性粉末100g当たり、0.05×10-2~1.40×10-2モルの範囲で含有することを特徴とする請求項1、4~6いずれか1項記載のNiペースト。 When the (D3) stabilized zirconia (SZ) is contained, the said (D3) stabilized zirconia (SZ) is added to the above (A) Ni-based conductive powder from 0.05 × 10 -2- The Ni paste according to any one of claims 1, 4 to 6, wherein the Ni paste is contained in a range of 1.40 × 10-2 mol.
  8.  前記(D4)Alを含む添加剤を含有する場合、前記(D4)Alを含む添加剤を、前記(A)Niを主とする導電性粉末100.0質量部当たり、Al換算で0.10~2.30質量部の範囲内で含有することを特徴とする請求項1記載のNiペースト。 When the additive containing (D4) Al is contained, the additive containing (D4) Al is added to the additive containing (D4) Al in terms of Al 2 O 3 per 100.0 parts by mass of the conductive powder mainly containing (A) Ni. The Ni paste according to claim 1, wherein the Ni paste is contained in the range of 0.10 to 2.30 parts by mass.
  9.  前記(A)Niを主とする導電性粉末の含有量が、30.0~95.0質量%であることを特徴とする請求項1~8いずれか1項記載のNiペースト。 The Ni paste according to any one of claims 1 to 8, wherein the content of the conductive powder mainly containing (A) Ni is 30.0 to 95.0% by mass.
  10.  複数のセラミック誘電体層と、Niを含む複数の内部電極層と、が交互に積層されているセラミック積層体と、
     前記セラミック積層体の外表面に形成されている外部電極と、
    を備え、
     前記セラミック積層体が、
    (D1)前記(A)Niを含む導電性成分100.0質量部当たり、Ta換算で0.025~2.50質量部の範囲内のTa、
    (D2)前記(A)Niを含む導電性成分100.0質量部当たり、Nb換算で0.010~1.80質量部の範囲内のNb、及び
    (D4)前記(A)Niを含む導電性成分100.0質量部当たり、Al換算で0.10~5.50質量部の範囲内のAl
    からなる群から選択される少なくとも1種を含有すること、
    を特徴とする積層セラミックコンデンサ。
    A ceramic laminate in which a plurality of ceramic dielectric layers and a plurality of internal electrode layers containing Ni are alternately laminated, and a ceramic laminate.
    An external electrode formed on the outer surface of the ceramic laminate and
    With
    The ceramic laminate
    (D1) Ta, which is in the range of 0.025 to 2.50 parts by mass in terms of Ta 2 O 5 per 100.0 parts by mass of the conductive component containing (A) Ni.
    (D2) Nb in the range of 0.010 to 1.80 parts by mass in terms of Nb 2 O 5 per 100.0 parts by mass of the conductive component containing (A) Ni, and (D4) the above (A) Ni. Al in the range of 0.10 to 5.50 parts by mass in terms of Al 2 O 3 per 100.0 parts by mass of the conductive component containing
    Containing at least one selected from the group consisting of
    A multilayer ceramic capacitor characterized by.
  11.  複数のセラミック誘電体層と、Niを含む複数の内部電極層と、が交互に積層されているセラミック積層体と、
     前記セラミック積層体の外表面に形成されている外部電極と、
    を備え、
     隣接する前記内部電極層と前記セラミック誘電体層との界面及びその近傍に、Ta、Nb、Zr、安定化剤中の金属元素、及びAlからなる群から選択される少なくとも1種の元素の拡散領域を有すること、
    を特徴とする積層セラミックコンデンサ。
    A ceramic laminate in which a plurality of ceramic dielectric layers and a plurality of internal electrode layers containing Ni are alternately laminated, and a ceramic laminate.
    An external electrode formed on the outer surface of the ceramic laminate and
    With
    Diffusion of at least one element selected from the group consisting of Ta, Nb, Zr, a metal element in a stabilizer, and Al at and near the interface between the adjacent internal electrode layer and the ceramic dielectric layer. Having an area,
    A multilayer ceramic capacitor characterized by.
  12.  前記安定化剤中の金属元素が、Y、Ca、Mg及びScから選ばれる1種以上であることを特徴とする請求項11記載の積層セラミックコンデンサ。 The multilayer ceramic capacitor according to claim 11, wherein the metal element in the stabilizer is at least one selected from Y, Ca, Mg and Sc.
  13.  複数のセラミック誘電体層と、Niを含む複数の内部電極層と、が交互に積層されているセラミック積層体と、
     前記セラミック積層体の外表面に形成されている外部電極と、
    を備え、
     前記内部電極層が、請求項1~9いずれか1項記載のNiペーストが900~1400℃で焼成された焼成物で形成されていること、
    を特徴とする積層セラミックコンデンサ。
    A ceramic laminate in which a plurality of ceramic dielectric layers and a plurality of internal electrode layers containing Ni are alternately laminated, and a ceramic laminate.
    An external electrode formed on the outer surface of the ceramic laminate and
    With
    The internal electrode layer is formed of a fired product obtained by firing the Ni paste according to any one of claims 1 to 9 at 900 to 1400 ° C.
    A multilayer ceramic capacitor characterized by.
PCT/JP2021/014652 2020-04-13 2021-04-06 Ni PASTE AND MULTILAYER CERAMIC CAPACITOR WO2021210455A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022515323A JPWO2021210455A1 (en) 2020-04-13 2021-04-06

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2020-071829 2020-04-13
JP2020071829 2020-04-13
JP2020-119273 2020-07-10
JP2020119273 2020-07-10
JP2020-205713 2020-12-11
JP2020205713 2020-12-11

Publications (1)

Publication Number Publication Date
WO2021210455A1 true WO2021210455A1 (en) 2021-10-21

Family

ID=78085331

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/014652 WO2021210455A1 (en) 2020-04-13 2021-04-06 Ni PASTE AND MULTILAYER CERAMIC CAPACITOR

Country Status (3)

Country Link
JP (1) JPWO2021210455A1 (en)
TW (1) TW202147346A (en)
WO (1) WO2021210455A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08241828A (en) * 1995-03-02 1996-09-17 Murata Mfg Co Ltd Multilayer ceramic capacitor
JPH1121644A (en) * 1997-07-02 1999-01-26 Sumitomo Metal Mining Co Ltd Ni powder, and ni paste using the same
JP2000049031A (en) * 1998-07-30 2000-02-18 Toshiba Corp Electrode composition of capacitor and electrode paste using it
JP2004178866A (en) * 2002-11-25 2004-06-24 Tdk Corp Conductive composition and ceramic electronic component
JP2005129425A (en) * 2003-10-27 2005-05-19 Murata Mfg Co Ltd Conductive paste and laminated ceramic electronic component
WO2006041030A1 (en) * 2004-10-08 2006-04-20 Mitsui Mining & Smelting Co., Ltd. Conductive ink
JP2014232850A (en) * 2013-05-30 2014-12-11 京セラ株式会社 Lamination type electronic part

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08241828A (en) * 1995-03-02 1996-09-17 Murata Mfg Co Ltd Multilayer ceramic capacitor
JPH1121644A (en) * 1997-07-02 1999-01-26 Sumitomo Metal Mining Co Ltd Ni powder, and ni paste using the same
JP2000049031A (en) * 1998-07-30 2000-02-18 Toshiba Corp Electrode composition of capacitor and electrode paste using it
JP2004178866A (en) * 2002-11-25 2004-06-24 Tdk Corp Conductive composition and ceramic electronic component
JP2005129425A (en) * 2003-10-27 2005-05-19 Murata Mfg Co Ltd Conductive paste and laminated ceramic electronic component
WO2006041030A1 (en) * 2004-10-08 2006-04-20 Mitsui Mining & Smelting Co., Ltd. Conductive ink
JP2014232850A (en) * 2013-05-30 2014-12-11 京セラ株式会社 Lamination type electronic part

Also Published As

Publication number Publication date
JPWO2021210455A1 (en) 2021-10-21
TW202147346A (en) 2021-12-16

Similar Documents

Publication Publication Date Title
US9966190B2 (en) Dielectric ceramic composition and multilayer ceramic capacitor
CN107266063B (en) Dielectric ceramic composition and multilayer ceramic capacitor
JP5434407B2 (en) Ceramic electronic component and manufacturing method thereof
JP2007331958A (en) Electronic component, dielectric ceramic composition and method for producing the same
JP2007331956A (en) Electronic component, dielectric ceramic composition and method for producing the same
CN107793148B (en) Dielectric composition and laminated electronic component
JP2014036140A (en) Multilayer ceramic capacitor
KR102163417B1 (en) Multi-layered ceramic capacitor
JP2008247656A (en) Method for producing dielectric porcelain composition and method for manufacturing electronic component
US10141113B2 (en) Ceramic electronic component
JP6409632B2 (en) Dielectric ceramic composition and ceramic electronic component
JP2018090458A (en) Dielectric ceramic composition and manufacturing method therefor, and ceramic electronic component
CN110092659B (en) Dielectric ceramic composition and laminated ceramic capacitor
JPWO2012023406A1 (en) Multilayer ceramic electronic components
JPH0684692A (en) Multilayer ceramic chip capacitor
WO2021210455A1 (en) Ni PASTE AND MULTILAYER CERAMIC CAPACITOR
TWI812799B (en) Ni PASTE AND LAMINATED CERAMIC CAPACITOR
WO2021256253A1 (en) Ni paste and multilayer ceramic capacitor
JP2022122145A (en) Dielectric composition, electronic part, and multilayer electronic part
JP4893361B2 (en) Dielectric porcelain composition and electronic component
US11854743B2 (en) Dielectric composition, electronic device, and multilayer electronic device
WO2021235238A1 (en) Capacitor
TW202239732A (en) Ceramic electronic device and manufacturing method of ceramic electronic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21788240

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022515323

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21788240

Country of ref document: EP

Kind code of ref document: A1