WO2020088266A1 - 非激活频率资源的信道测量方法、基站及终端 - Google Patents

非激活频率资源的信道测量方法、基站及终端 Download PDF

Info

Publication number
WO2020088266A1
WO2020088266A1 PCT/CN2019/111839 CN2019111839W WO2020088266A1 WO 2020088266 A1 WO2020088266 A1 WO 2020088266A1 CN 2019111839 W CN2019111839 W CN 2019111839W WO 2020088266 A1 WO2020088266 A1 WO 2020088266A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency resource
indication information
terminal
reference signal
target frequency
Prior art date
Application number
PCT/CN2019/111839
Other languages
English (en)
French (fr)
Inventor
缪德山
郑方政
Original Assignee
电信科学技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院有限公司 filed Critical 电信科学技术研究院有限公司
Publication of WO2020088266A1 publication Critical patent/WO2020088266A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • H04L5/0098Signalling of the activation or deactivation of component carriers, subcarriers or frequency bands
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to the field of wireless communication technology, and in particular, to a channel measurement method for inactive frequency resources, a base station, and a terminal.
  • the power saving design of the terminal UE becomes very necessary, mainly because 5G supports larger bandwidth and more complex services.
  • the optimized design of power saving can save the power consumption of the terminal and extend the life of the battery. Thereby improving the user's experience.
  • users transmit small data packets they can work on a relatively small bandwidth.
  • the UE can quickly switch to a large bandwidth or multi-carrier mode, which makes the UE The working bandwidth and service model are matched to obtain the effect of power saving.
  • CSI Channel State Information
  • one carrier can be divided into BWP, and one BWP occupies part of the bandwidth, and the UE can reside on a BWP at a certain moment, saving the UE's power consumption.
  • the UE has quickly switched BWP and used dynamic downlink control information indication (Downlink Control Information, DCI), but there is no corresponding mechanism guarantee for the synchronous tracking and CSI measurement of the new BWP.
  • DCI Downlink Control Information
  • MAC Media Access Control
  • a connection link corresponds to a new carrier. If a connection is to be activated, a long preparation time is required and the power consumption of the UE is relatively large.
  • the purpose of the present disclosure is to provide a channel measurement method for inactive frequency resources, a base station, and a terminal, which are used to implement rapid switching of BWP or carrier to reduce the power consumption of the UE and meet the requirements of low latency.
  • Some embodiments of the present disclosure provide a channel measurement method for inactive frequency resources, which is applied to a base station, where the method includes:
  • the indication information includes first indication information for instructing the terminal to perform downlink channel measurement on the inactive target frequency resource and / or for instructing the terminal to Sending second indication information of the uplink channel sounding reference signal SRS on the target frequency resource.
  • the method when the indication information includes the first indication information, the method further includes:
  • the reference signal includes multiple reference signal resources, and each reference signal resource is used for downlink channel tracking or channel state information CSI measurement;
  • the reference signal includes a reference signal resource used for downlink channel tracking and channel state information CSI measurement;
  • the reference signal includes a reference signal resource used for downlink channel tracking or channel state information CSI measurement.
  • the channel measurement method wherein, when the indication information includes the second indication information, after the indication information is sent to the terminal on the currently activated frequency resource, the method further includes:
  • the method further includes:
  • the channel measurement method wherein the method further includes:
  • signaling is sent to the terminal to instruct the terminal to activate the target frequency resource and perform data signal and / or control signal processing on the target frequency resource.
  • the target frequency resource includes one or more carrier resources or one or more bandwidth part BWP.
  • the channel measurement method wherein the method further includes:
  • All possible signal resources of downlink reference signals and / or signal resources of uplink SRS on the target frequency resource are configured through radio resource control RRC signaling.
  • the indication information is carried by a sequence signal, a physical downlink control channel PDCCH signal or a reference signal.
  • Some embodiments of the present disclosure also provide a channel measurement method for inactive frequency resources, which is applied to a terminal.
  • the method includes:
  • indication information sent by the base station on the currently activated frequency resource wherein the indication information includes first indication information for instructing the terminal to perform downlink channel measurement on the inactive target frequency resource and / or for instructing the terminal to Sending second indication information of an uplink channel sounding reference signal SRS on the target frequency resource.
  • the method when the indication information includes the first indication information, the method further includes:
  • the method further includes:
  • the reference signal includes multiple reference signal resources, and each reference signal resource is used for downlink channel tracking or channel state information CSI measurement;
  • the reference signal includes a reference signal resource used for downlink channel tracking and channel state information CSI measurement;
  • the reference signal includes a reference signal resource used for downlink channel tracking or channel state information CSI measurement.
  • the method further includes:
  • the method further includes:
  • the method further includes:
  • the channel measurement method wherein the method further includes:
  • the receiving base station After completing the channel state measurement, the receiving base station sends signaling to the terminal to instruct the terminal to activate the target frequency resource;
  • the target frequency resource is activated, and data signals and / or control signals are processed on the target frequency resource.
  • the target frequency resource includes one or more carriers, or includes one or more bandwidth parts BWP.
  • the channel measurement method wherein the method further includes:
  • the indication information is carried by a sequence signal, a physical downlink control channel PDCCH signal or a reference signal.
  • Some embodiments of the present disclosure also provide a base station, including: a memory, a processor, and a program stored on the memory and executable on the processor; wherein, when the processor executes the program, the following is realized step:
  • the indication information includes first indication information for instructing the terminal to perform downlink channel measurement on the inactive target frequency resource and / or for instructing the terminal to Sending second indication information of the uplink channel sounding reference signal SRS on the target frequency resource.
  • the base station wherein, when the indication information includes the first indication information, the processor is further configured to:
  • the base station wherein the reference signal includes multiple reference signal resources, and each reference signal resource is used for downlink channel tracking or channel state information CSI measurement; or
  • the reference signal includes a reference signal resource used for downlink channel tracking and channel state information CSI measurement;
  • the reference signal includes a reference signal resource used for downlink channel tracking or channel state information CSI measurement.
  • the base station wherein, when the indication information includes the second indication information, after the indication information is sent to the terminal on the currently activated frequency resource, the processor is further configured to:
  • the base station wherein, when the indication information includes the first indication information, after the indication information is sent to the terminal on the currently activated frequency resource, the processor is further configured to:
  • the base station wherein the processor is further used to:
  • signaling is sent to the terminal to instruct the terminal to activate the target frequency resource and process the data signal and / or control signal on the target frequency resource.
  • the target frequency resource includes one or more carrier resources or one or more bandwidth part BWP.
  • the base station wherein the processor is further used to:
  • All possible signal resources of downlink reference signals and / or signal resources of uplink SRS on the target frequency resource are configured through radio resource control RRC signaling.
  • the indication information is carried by a sequence signal, a physical downlink control channel PDCCH signal or a reference signal.
  • Some embodiments of the present disclosure also provide a terminal, including: a memory, a processor, and a program stored on the memory and executable on the processor; wherein, when the processor executes the program, the following is realized step:
  • indication information sent by the base station on the currently activated frequency resource wherein the indication information includes first indication information for instructing the terminal to perform downlink channel measurement on the inactive target frequency resource and / or for instructing the terminal to Sending second indication information of an uplink channel sounding reference signal SRS on the target frequency resource.
  • the processor when the indication information includes the first indication information, the processor is further configured to:
  • the processor is further configured to:
  • the reference signal includes multiple reference signal resources, and each reference signal resource is used for downlink channel tracking or channel state information CSI measurement; or
  • the reference signal includes a reference signal resource used for downlink channel tracking and channel state information CSI measurement;
  • the reference signal includes a reference signal resource used for downlink channel tracking or channel state information CSI measurement.
  • the processor is further configured to:
  • the processor is further configured to:
  • the processor is further configured to:
  • the processor is further used to:
  • the receiving base station After completing the channel state measurement, the receiving base station sends signaling to the terminal to instruct the terminal to activate the target frequency resource;
  • the target frequency resource is activated, and data signals and / or control signals are processed on the target frequency resource.
  • the target frequency resource includes one or more carrier resources or one or more bandwidth part BWP.
  • the processor is further used to:
  • the indication information is carried by a sequence signal, a physical downlink control channel PDCCH signal or a reference signal.
  • Some embodiments of the present disclosure also provide a channel measurement device for inactive frequency resources, which is applied to a base station, where the device includes:
  • the first processing module is configured to send indication information to the terminal on the currently activated frequency resource; wherein the indication information includes first indication information for instructing the terminal to perform downlink channel measurement on the inactive target frequency resource and / or Or second indication information used to instruct the terminal to send an uplink channel sounding reference signal SRS on the target frequency resource.
  • Some embodiments of the present disclosure also provide another channel measurement device for inactive frequency resources, which is applied to a terminal, where the device includes:
  • the second processing module is used to obtain indication information sent by the base station on the currently activated frequency resource; wherein the indication information includes first indication information for instructing the terminal to perform downlink channel measurement on the inactive target frequency resource and And / or second indication information used to instruct the terminal to send an uplink channel sounding reference signal SRS on the target frequency resource.
  • Some embodiments of the present disclosure also provide a computer-readable storage medium, wherein a computer program is stored on the computer-readable storage medium, and when the computer program is executed by a processor, the inactive frequency as described in any one of the above is realized Steps of resource channel measurement method.
  • the channel measurement method for inactive frequency resources described in some embodiments of the present disclosure is used to instruct the terminal to perform downlink channel measurement and / or transmission on the inactive frequency resources by sending indication information to the terminal on the currently activated frequency resources
  • the uplink channel sounding reference signal SRS is used to perform channel measurement on inactive frequency resources before handover, to achieve rapid switching of BWP or carrier, to reduce UE power consumption and meet the requirements of low latency.
  • FIG. 1 shows a schematic diagram of an application system architecture of a channel measurement method according to some embodiments of the present disclosure
  • FIG. 2 is a schematic flowchart of a first implementation manner of a channel measurement method for inactive frequency resources according to some embodiments of the present disclosure
  • FIG. 3 is a schematic flowchart of a second implementation manner of a channel measurement method for inactive frequency resources according to some embodiments of the present disclosure
  • FIG. 5 shows a second schematic flowchart of a part of the second embodiment of the channel measurement method according to some examples of the present disclosure
  • FIG. 6 shows a schematic diagram of a first implementation process of the channel measurement method according to some embodiments of the present disclosure
  • FIG. 7 is a schematic diagram of a second implementation process of the channel measurement method according to some embodiments of the present disclosure.
  • FIG. 8 shows a schematic structural diagram of a base station according to some embodiments of the present disclosure
  • FIG. 9 shows a schematic structural diagram of a terminal according to some embodiments of the present disclosure.
  • FIG. 10 shows a schematic diagram of a first implementation structure of a channel measurement device according to some embodiments of the present disclosure
  • FIG. 11 is a schematic diagram of a second implementation structure of a channel measurement device according to some embodiments of the present disclosure.
  • FIG. 1 is a schematic diagram of an application system architecture of the channel measurement method according to some embodiments of the present disclosure.
  • the channel measurement methods provided by some embodiments of the present disclosure may be applied to a wireless communication system, which may adopt a 5G system, or an evolved long-term evolution (Evolved Long Term Evolution, eLTE) system, or a subsequent evolution communication system.
  • a wireless communication system which may adopt a 5G system, or an evolved long-term evolution (Evolved Long Term Evolution, eLTE) system, or a subsequent evolution communication system.
  • eLTE evolved Long Term Evolution
  • the wireless communication system may include: a network-side device 10 and user equipment.
  • the user equipment may also be called a terminal, denoted as UE11, and UE11 may be in communication connection with the network-side device 10.
  • the connection between the above devices may be a wireless connection.
  • solid lines are used in FIG. 1.
  • the above communication system may include multiple UEs, and the network-side device may communicate with multiple UEs (transmit signaling or transmit data).
  • the network-side device 10 may be a base station, which may be a commonly used base station, an evolved base station (evolved node, base station, eNB), or a network-side device in a 5G system (For example, next generation base station (gNB) or transmission and reception point (TRP)) or cell cell and other equipment.
  • a base station which may be a commonly used base station, an evolved base station (evolved node, base station, eNB), or a network-side device in a 5G system (For example, next generation base station (gNB) or transmission and reception point (TRP)) or cell cell and other equipment.
  • gNB next generation base station
  • TRP transmission and reception point
  • the user equipment may be a mobile phone, a tablet computer, a notebook computer, an ultra-mobile personal computer (Ultra-Mobile Personal Computer, UMPC), a netbook, or a personal digital assistant (Personal Digital Assistant, PDA), etc.
  • UMPC Ultra-Mobile Personal Computer
  • PDA Personal Digital Assistant
  • the present disclosure provides a non-activation problem in the related art when the UE switches from the current working carrier to a new carrier or BWP, which requires long-term channel measurement and radio frequency calibration, resulting in problems of long switching time and high power consumption
  • the channel measurement method for frequency resources by sending indication information to the terminal on the currently activated frequency resource, is used to instruct the terminal to perform downlink channel measurement on the inactive frequency resource and / or send an uplink channel sounding reference signal (SoundingReferenceSignal, SRS), to perform channel measurement on inactive frequency resources before handover, to achieve rapid switching of BWP or carrier.
  • SRS uplink channel sounding reference signal
  • the provided channel measurement method for inactive frequency resources is applied to a base station. As shown in FIG. 2, the method includes:
  • S210 Send indication information to the terminal on the currently activated frequency resource; wherein the indication information includes first indication information for instructing the terminal to perform downlink channel measurement on the inactive target frequency resource and / or for instructing the terminal Sending second indication information of an uplink channel sounding reference signal SRS on the target frequency resource.
  • the frequency resource may be, but not limited to, a carrier or BWP.
  • the indication information sent to the terminal on the currently activated frequency resource may include only the first indication information, which is used to instruct the terminal to perform downlink channel measurement on the inactive target frequency resource, so that the terminal can obtain Downlink CSI, and feedback the downlink CSI to the base station; the indication information may also include only the second indication information, which is used to instruct the terminal to send an uplink SRS on the target frequency resource to assist the base station in performing an uplink channel quality indication (Channel Quality Indicator, CQI ) Measurement and synchronization correction to obtain the uplink CSI of the target frequency resource; further, the indication information may include both first indication information and second indication information for instructing the terminal to perform downlink channel measurement on the inactive target frequency resource, and Sending the uplink SRS on the target frequency resource enables the base station to obtain the downlink CSI of the target frequency resource fed back by the terminal, and can obtain the uplink CSI of the target frequency resource according to the uplink SRS sent by the terminal on the target frequency resource.
  • CQI Uplink channel quality indication
  • the base station may trigger the terminal to perform CSI measurement of the carrier or BWP of the target frequency resource before the carrier or BWP handover, and obtain uplink CSI and / or downlink CSI to perform further carrier or BWP handover.
  • the channel measurement method for inactive frequency resources described in some embodiments of the present disclosure can implement channel tracking and CSI measurement of inactive carriers or BWP to improve the flexibility of network scheduling; further, through the network's auxiliary reference signal
  • the transmission and aperiodic activation allows the UE to quickly switch to a new frequency resource, so the data service of the terminal is transmitted on the new carrier or BWP after the switch at the necessary time, thereby increasing the time for carrier switching or BWP switching .
  • the above target frequency resource is any one or more carrier resources in an inactive state, or includes one or more BWP.
  • the target frequency resource is the carrier or BWP in the inactive state used to indicate that the terminal needs to perform CSI measurement in the sent indication information.
  • step S210 in sending indication information to the terminal on the currently activated frequency resource, if the sent indication information includes the first indication information, the method further includes:
  • the transmitted reference signal may include one or more reference signal (Reference Signal, RS) resources, where:
  • Each reference signal resource is used for downlink channel tracking or CSI measurement
  • the reference signal includes a reference signal resource used for downlink channel tracking and channel state information CSI measurement;
  • the reference signal includes a reference signal resource used for downlink channel tracking or channel state information CSI measurement.
  • performing downlink channel measurement includes but is not limited to only including channel tracking and CSI measurement.
  • each reference signal resource can be used to complete the channel tracking function and the CSI measurement function respectively;
  • the one reference signal resource is used to complete both the channel tracking function and the CSI measurement function;
  • the one reference signal resource may also be used only for downlink channel tracking or only for Measurement of channel state information CSI.
  • the channel tracking includes channel fading information acquisition for automatic gain control (AGC) adjustment, and also includes time-frequency synchronization of the base station and the UE, In order to adjust through the reference signal; for CSI measurement, it mainly includes the acquisition of CQI, PMI, RI or beam beam information to help the network to perform resource scheduling.
  • AGC automatic gain control
  • step S210 when the indication information is sent to the terminal on the currently activated frequency resource, and the indication information includes second indication information, after step S210, the method further includes:
  • the terminal After receiving the instruction information sent by the base station, the terminal sends an uplink SRS to the base station to assist the base station in performing uplink CQI measurement and synchronization correction to obtain uplink CSI information.
  • step S210 when the indication information is sent to the terminal on the currently activated frequency resource, and the indication information includes the first indication information, after step S210, the method further includes:
  • the terminal switches to the inactive target frequency resource to monitor the RS signal according to the indication information, obtain the downlink CSI information, generate a CSI report, and further feed back the downlink CSI information to the base station on the inactive target frequency resource Or, you can re-awaken the currently activated frequency resource, switch back to the currently activated frequency resource, and feed back the downlink CSI information to the base station.
  • the above specific method for obtaining the downlink CSI information can be determined through pre-configuration or protocol agreement.
  • the base station After the base station obtains the downlink CSI information and / or uplink CSI information of the target frequency resource, it can determine whether it is necessary to instruct the UE to switch to the target frequency resource based on the obtained downlink CSI information and / or uplink CSI information.
  • the method further includes:
  • the terminal since the terminal has acquired the channel state information of the target frequency resource before activating the target frequency resource, channel measurement and radio frequency calibration during the handover process are avoided, and fast switching of BWP or carrier is realized to Reduce the power consumption of the UE to meet the requirements of low latency.
  • the base station may trigger the UE to measure the CSI information of multiple carriers or BWP before the carrier or BWP handover, and on this basis, it may further determine whether the terminal is currently activating the frequency resource Switching is required. When switching is required, it can be switched to which frequency resource, that is, to which carrier or BWP.
  • the transmitted instruction information is carried by a sequence of signals, or the instruction information is carried by a physical downlink control channel (Physical Downlink Control Channel, PDCCH) signal or a reference signal Bearer.
  • PDCCH Physical Downlink Control Channel
  • the indication information when the indication information is carried by the sequence signal, the indication information may be represented by the sequence ID and / or the scrambling code ID, and the sequence signal includes the resource information of the end user ID and the indicated target frequency resource, if the target resource Yes, you only need to carry the information of the specific user ID; when the indication information is carried by the reference signal, the reference signal can be carried by the time-frequency resource location and the sequence of the reference signal.
  • the sequence of the reference signal generally uses a pseudo-random sequence or In the ZC sequence, the reference signal needs to carry resource information including the end user ID and the indicated target frequency resource. Similarly, if the target resource is determined, only a specific user needs to be indicated.
  • the channel measurement method for inactive frequency resources further includes:
  • All possible signal resources of downlink reference signals and / or signal resources of uplink SRS on the target frequency resource are configured through radio resource control (Radio Resource Control, RRC) signaling.
  • RRC Radio Resource Control
  • the signal resources of the downlink reference signal and / or the signal resources of the uplink SRS may include ports and / or frequency domain positions.
  • the sent indication information may be sent through downlink control information (Downlink Control Information, DCI), where the DCI signaling includes at least a carrier or BWP address ID, or includes time domain
  • DCI Downlink Control Information
  • the offset information indicates the time domain interval between DCI and CSI-RS and / or SRS.
  • the antenna ports of the reference signals for the two functions may be different, and the CSI measurement reference signal may further include a zero-power reference signal And non-zero power reference signals.
  • the antenna port can be configured to 2 or 4 to meet the basic precoding matrix indicator (Precoding Matrix Indicator (PMI), rank indicator (rank indication, RI) and / or CQI and other information acquisition.
  • PMI Precoding Matrix Indicator
  • rank indicator rank indication, RI
  • CQI CQI and other information acquisition.
  • the downlink reference signal can be configured into multiple beam directions, and the UE can detect and report the selected beam direction and corresponding CSI information;
  • the uplink reference signal SRS can include one or more ports, and the signal resource can be a single or multiple time slots The slot is used to help the base station obtain the CSI information of the uplink frequency band;
  • the uplink reference signal can also be used to help the base station to perform uplink synchronization calibration and acquisition of timing advance. If the two carriers are not served by the same base station, the UE may have different uplink timing advances to different base stations.
  • the provided channel measurement method for inactive frequency resources is applied to a base station. As shown in FIG. 3, the method includes:
  • S310 Obtain indication information sent by the base station on the currently activated frequency resource; wherein the indication information includes first indication information for instructing the terminal to perform downlink channel measurement on the inactive target frequency resource and / or for indicating The terminal sends second indication information of the uplink channel sounding reference signal SRS on the target frequency resource.
  • the frequency resource may be, but not limited to, a carrier or BWP.
  • the indication information received by the terminal on the currently activated frequency may include only the first indication information for instructing the terminal to perform downlink channel measurement on the inactive target frequency resource, Enable the terminal to further obtain downlink CSI, and feed back the downlink CSI to the base station;
  • the indication information may also include only the second indication information, which is used to instruct the terminal to send the uplink SRS on the target frequency resource to assist the base station to perform uplink channel quality indication CQI measurement and synchronization correction to obtain the uplink CSI of the target frequency resource;
  • the indication information may include both first indication information and second indication information for instructing the terminal to perform downlink channel measurement on the inactive target frequency resource, and at the same time sending the uplink SRS on the target frequency resource, so that the base station can obtain the terminal
  • the downlink CSI of the target frequency resource is fed back, and the uplink CSI of the target frequency resource can be obtained according to the uplink SRS sent by the terminal on the target frequency resource.
  • the base station may trigger the terminal to perform CSI measurement of the carrier or BWP of the target frequency resource before the carrier or BWP handover, and obtain uplink CSI and / or downlink CSI to perform further carrier or BWP handover.
  • step S310 when the indication information includes the first indication information, as shown in FIG. 4, the method further includes:
  • S340 Feedback the downlink CSI to the base station on the currently activated frequency resource or the target frequency resource.
  • the reference signal includes multiple reference signal resources, each of which is used for downlink channel tracking or channel state information CSI measurement; or
  • the reference signal includes a reference signal resource used for downlink channel tracking and channel state information CSI measurement;
  • the reference signal includes a reference signal resource used for downlink channel tracking or channel state information CSI measurement.
  • the terminal switches to the inactive target frequency resource to monitor the RS signal, obtains downlink CSI information, generates a CSI report, and further feeds back the downlink CSI information to the base station on the inactive target frequency resource Or, you can re-awaken the currently activated frequency resource, switch back to the currently activated frequency resource, and feed back the downlink CSI information to the base station.
  • the above specific method for feeding back the downlink CSI to the base station may be determined through pre-configuration or protocol agreement.
  • the method further includes:
  • the terminal switches back to the originally activated frequency resource.
  • step S340 after the downlink CSI is fed back to the base station on the target frequency resource, the method further includes:
  • the terminal may not switch to the originally activated frequency resource, but continue to process data signals and / or control signals on the target frequency resource , That is, directly activate the target frequency resource.
  • step S310 when the indication information includes the second indication information, in step S310, after acquiring the indication information sent by the base station on the activated frequency resource, as shown in FIG. 5, The method also includes:
  • S350 Send an uplink SRS to the base station on the target frequency resource.
  • the terminal receives indication information sent by the base station, and the indication information includes second indication information for instructing the terminal to send uplink SRS on the target frequency resource, and sends the uplink SRS to the base station to assist the base station in performing uplink CQI measurement and synchronization correction To obtain uplink CSI information.
  • step S350 after sending the uplink SRS to the base station on the target frequency resource, the method further includes:
  • the terminal switches back to the originally activated frequency resource.
  • the terminal can directly process the data signal and / or control signal on the new target frequency resource without returning to the originally activated frequency resource.
  • the method further includes:
  • the receiving base station After completing the channel state measurement, the receiving base station sends signaling to the terminal to instruct the terminal to activate the target frequency resource;
  • the target frequency resource is activated, and data signals and / or control signals are intercepted on the target frequency resource.
  • the terminal switches from the currently activated frequency resource to the target frequency resource. Since the channel state information of the target frequency resource has been obtained before the terminal is activated to the target frequency resource, the channel during the switching process is avoided Measurement and radio frequency calibration to achieve rapid switching of BWP or carrier to reduce UE power consumption and meet the requirements of low latency.
  • the target frequency resource includes one or more carrier resources or one or more bandwidth part BWP.
  • the method further includes:
  • the indication information is carried by a sequence signal, or by a control channel PDCCH signal or a reference signal.
  • the indication information sent by the base station may be sent through downlink control information (Downlink Control Information, DCI), where the DCI signaling includes at least a carrier or BWP address ID, or contains time domain offset information, Indicates the time domain interval between DCI and CSI-RS and / or SRS.
  • DCI Downlink Control Information
  • the specific downlink CSI measurement process may be:
  • the terminal monitors the PDCCH under BWP1;
  • another embodiment of downlink CSI measurement may also be: after performing channel measurement and downlink CSI acquisition at BWP2, BWP2 still feeds back the downlink CSI to the base station, and then returns to BWP1.
  • the UE after the UE has measured the CSI in BWP2, the UE is allowed to work in BWP2, and BWP2 is changed to the current active carrier without switching back to BWP1.
  • the specific uplink CSI measurement process may be:
  • the terminal monitors the PDCCH under BWP1;
  • switch to BWP2 After receiving the DCI trigger signaling (including the second indication information), switch to BWP2 to send the SRS signal, which is used by the base station to perform uplink channel measurement and CSI acquisition;
  • the channel measurement method for inactive frequency resources described in some embodiments of the present disclosure is used to instruct the terminal to perform downlink channel measurement and / or transmission on the inactive frequency resources by sending indication information to the terminal on the currently activated frequency resources
  • the uplink channel sounding reference signal can realize channel tracking and CSI measurement of inactive carriers or BWP to improve the flexibility of network scheduling, and perform channel measurement on inactive frequency resources before handover to achieve BWP or carrier Quickly switch.
  • Some embodiments of the present disclosure also provide a base station, as shown in FIG. 8, including a transceiver 801, a memory 802, a processor 800, and a program stored on the memory 802 and executable on the processor 800;
  • the processor 800 calls and executes the programs and data stored in the memory 802.
  • the transceiver 801 receives and sends data under the control of the processor 800.
  • the processor 800 is used to read the program in the memory 802 and perform the following processes:
  • the indication information includes first indication information for instructing the terminal to perform downlink channel measurement on the inactive target frequency resource and / or for instructing the terminal to Sending second indication information of the uplink channel sounding reference signal SRS on the target frequency resource.
  • the processor 800 is further configured to:
  • the reference signal includes multiple reference signal resources, and each reference signal resource is used for downlink channel tracking or channel state information CSI measurement; or
  • the reference signal includes a reference signal resource used for downlink channel tracking and channel state information CSI measurement;
  • the reference signal includes a reference signal resource used for downlink channel tracking or channel state information CSI measurement.
  • the processor 800 is further configured to:
  • the processor 800 is further configured to:
  • processor 800 is also used to:
  • signaling is sent to the terminal to instruct the terminal to activate the target frequency resource and process the data signal and / or control signal on the target frequency resource.
  • the target frequency resource includes one or more carrier resources or one or more bandwidth part BWP.
  • processor 800 is also used to:
  • All possible signal resources of downlink reference signals and / or signal resources of uplink SRS on the target frequency resource are configured through radio resource control RRC signaling.
  • the indication information is carried by a sequence signal, a physical downlink control channel PDCCH signal or a reference signal.
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 800 and various circuits of the memory represented by the memory 802 are linked together.
  • the bus architecture can also link various other circuits such as peripheral devices, voltage regulators, and power management circuits, etc., which are well known in the art, and therefore, they will not be further described in this article.
  • the bus interface provides an interface.
  • the transceiver 801 may be a plurality of elements, including a transmitter and a receiver, and provides a unit for communicating with various other devices on a transmission medium.
  • the processor 800 is responsible for managing the bus architecture and general processing, and the memory 802 may store data used by the processor 800 when performing operations.
  • the terminal includes: a processor 901; and a memory 903 connected to the processor 901 through a bus interface 902, and the memory 903 is used to store Programs and data used by the processor 901 when performing operations, and the processor 901 calls and executes the programs and data stored in the memory 903.
  • the transceiver 904 is connected to the bus interface 902 and is used to receive and send data under the control of the processor 901.
  • the processor 901 is used to read the program in the memory 903 and perform the following processes:
  • indication information sent by the base station on the currently activated frequency resource wherein the indication information includes first indication information for instructing the terminal to perform downlink channel measurement on the inactive target frequency resource and / or for instructing the terminal to Sending second indication information of an uplink channel sounding reference signal SRS on the target frequency resource.
  • the processor 901 is further configured to:
  • the processor 901 is further configured to: after feeding back downlink CSI to the base station on the target frequency resource, activate the target frequency resource, and perform data signal and / or control signal processing on the target frequency resource .
  • the reference signal includes multiple reference signal resources, and each reference signal resource is used for downlink channel tracking or channel state information CSI measurement; or
  • the reference signal includes a reference signal resource used for downlink channel tracking and channel state information CSI measurement;
  • the reference signal includes a reference signal resource used for downlink channel tracking or channel state information CSI measurement.
  • the processor 901 is further configured to:
  • the processor 901 is further configured to:
  • the processor 901 is further configured to:
  • processor 901 is also used to:
  • the receiving base station After completing the channel state measurement, the receiving base station sends signaling to the terminal to instruct the terminal to activate the target frequency resource;
  • the target frequency resource is activated, and data signals and / or control signals are processed on the target frequency resource.
  • the target frequency resource includes one or more carrier resources or one or more bandwidth part BWP.
  • processor 901 is also used to:
  • the indication information is carried by a sequence signal, a physical downlink control channel PDCCH signal or a reference signal.
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 901 and various circuits of the memory represented by the memory 903 are linked together.
  • the bus architecture can also link various other circuits such as peripheral devices, voltage regulators, and power management circuits, etc., which are well known in the art, and therefore, they will not be further described in this article.
  • the bus interface provides an interface.
  • the transceiver 904 may be a plurality of elements, including a transmitter and a receiver, providing a unit for communicating with various other devices on a transmission medium.
  • the user interface 905 may also be an interface that can be externally connected to a required device.
  • the connected devices include, but are not limited to, a keypad, a display, a speaker, a microphone, and a joystick.
  • the processor 901 is responsible for managing the bus architecture and general processing, and the memory 903 may store data used by the processor 901 in performing operations.
  • Some embodiments of the present disclosure also provide an inactive frequency resource channel measurement device, which is applied to a base station. As shown in FIG. 10, the device includes:
  • the first processing module 1001 is configured to send indication information to the terminal on the currently activated frequency resource; wherein the indication information includes first indication information used to instruct the terminal to perform downlink channel measurement on the inactive target frequency resource And / or second indication information used to instruct the terminal to send an uplink channel sounding reference signal SRS on the target frequency resource.
  • the first processing module 1001 is further configured to:
  • the reference signal includes multiple reference signal resources, and each reference signal resource is used for downlink channel tracking or channel state information CSI measurement; or
  • the reference signal includes a reference signal resource used for downlink channel tracking and channel state information CSI measurement;
  • the reference signal includes a reference signal resource used for downlink channel tracking or channel state information CSI measurement.
  • the first processing module 1001 is further configured to:
  • the first processing module 1001 is further configured to:
  • the first processing module 1001 is also used to:
  • signaling is sent to the terminal to instruct the terminal to activate the target frequency resource and process the data signal and / or control signal on the target frequency resource.
  • the target frequency resource includes one or more carrier resources or one or more bandwidth part BWP.
  • the first processing module 1001 is also used to:
  • All possible signal resources of downlink reference signals and / or signal resources of uplink SRS on the target frequency resource are configured through radio resource control RRC signaling.
  • the indication information is carried by a sequence signal, a physical downlink control channel PDCCH signal or a reference signal.
  • Some embodiments of the present disclosure also provide an inactive frequency resource channel measurement device, which is applied to a terminal. As shown in FIG. 11, the device includes:
  • the second processing module 1101 is configured to obtain indication information sent by the base station on the currently activated frequency resource; wherein the indication information includes first indication information for instructing the terminal to perform downlink channel measurement on the inactive target frequency resource And / or second indication information for instructing the terminal to send an uplink channel sounding reference signal SRS on the target frequency resource.
  • the second processing module 1101 is further configured to:
  • the second processing module 1101 is further configured to: activate the target frequency resource and perform data signal and / or control signal on the target frequency resource The treatment
  • the reference signal includes multiple reference signal resources, and each reference signal resource is used for downlink channel tracking or channel state information CSI measurement; or
  • the reference signal includes a reference signal resource used for downlink channel tracking and channel state information CSI measurement;
  • the reference signal includes a reference signal resource used for downlink channel tracking or channel state information CSI measurement.
  • the second processing module 1101 is further configured to:
  • the second processing module 1101 is further configured to:
  • the processor 901 is further configured to:
  • the second processing module 1101 is also used to:
  • the receiving base station After completing the channel state measurement, the receiving base station sends signaling to the terminal to instruct the terminal to activate the target frequency resource;
  • the target frequency resource is activated, and data signals and / or control signals are processed on the target frequency resource.
  • the target frequency resource includes one or more carrier resources or one or more bandwidth part BWP.
  • the second processing module 1101 is also used to:
  • the indication information is carried by a sequence signal, a physical downlink control channel PDCCH signal or a reference signal.
  • Some embodiments of the present disclosure also provide a computer-readable storage medium that stores a computer program on the computer-readable storage medium, and when the computer program is executed by a processor, implements the channel measurement method of inactive frequency resources as described above
  • the computer-readable storage medium such as read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供一种非激活频率资源的信道测量方法、基站及终端。该方法包括:在当前激活的频率资源上向终端发送指示信息;其中,所述指示信息包括用于指示终端在非激活的目标频率资源上进行下行信道测量的第一指示信息和/或用于指示终端在所述目标频率资源上发送上行信道探测参考信号SRS的第二指示信息。

Description

非激活频率资源的信道测量方法、基站及终端
相关申请的交叉引用
本申请主张在2018年11月2日在中国提交的中国专利申请号No.201811303519.1的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及无线通信技术领域,尤其是指一种非激活频率资源的信道测量方法、基站及终端。
背景技术
在5G NR系统中,终端UE的省电设计变得十分必要,主要原因是由于5G支持更大的带宽和更复杂的业务,省电的优化设计能节省终端的功耗,延长电池的寿命,从而提高用户的体验。为了保持比较低的功耗,当用户进行小数据包传输时,可以工作在比较小的带宽上,当大的数据包到来时,UE可以快速切换到大带宽或者多载波模式下,这样使得UE的工作带宽和业务模型相匹配,获得省电的效果。
在载波切换中,为了能在新的载波或多个带宽部分(bandwidth part,BWP)进行数据传输,需要进行信道测量和同步跟踪,并必须进行信道状态信息(Channel State Information,CSI)反馈,在基站获得CSI信息后,才能进行数据调度。
在5G NR系统中,一个载波可以分为BWP,一个BWP占有部分带宽,UE可以在某一时刻驻留在一个BWP上,节省UE的功耗。在R15的标准中,已经支持UE快速的切换BWP,并使用动态下行控制信息指示(Downlink Control Information,DCI),但是对于新的BWP的同步追踪和CSI测量,并没有相应的机制保证。
如果对于不同的载波,UE如果要激活一个新的载波,则需要很长的时间,这段时间用于UE的载波频率校准和信道测量。显然,等待的时间越长,则会更加的耗电。一般使用媒体介入控制(Media Access Control,MAC)层信令 激活一个新的载波,不如动态DCI来的迅速。
同样的,在双连接(dual connectivity,DC)模式下,一个连接link对应一个新的载波,如果要激活一个连接,也需要很长的准备时间,UE的耗电也比较大。
因此,在相关技术的技术方案里,对于UE工作载波的切换,并没有一种快速的切换机制,主要在于UE如果工作在一个新的载波或频带里,需要长时间的信道测量和射频校准。如果网络侧能提供一些参考信号,将会加速UE的校准测量时间,加快切换,降低UE的功耗。而且,对于不同的业务场景,可能需要触发多个BWP或者多个载波,以支持多种不同的业务或特别大的数据包传输,这需要设计合适的机制如何触发不同的载波获得UE省电的效果,并满足低时延的要求。
发明内容
本公开的目的在于提供一种非激活频率资源的信道测量方法、基站及终端,用于实现BWP或者载波的快速切换,以降低UE的功耗,满足低时延的要求。
本公开的一些实施例提供一种非激活频率资源的信道测量方法,应用于基站,其中,所述方法包括:
在当前激活的频率资源上向终端发送指示信息;其中,所述指示信息包括用于指示终端在非激活的目标频率资源上进行下行信道测量的第一指示信息和/或用于指示终端在所述目标频率资源上发送上行信道探测参考信号SRS的第二指示信息。
可选地,所述的信道测量方法,其中,在所述指示信息包括所述第一指示信息时,所述方法还包括:
在所述目标频率资源上向终端发送参考信号。
可选地,所述的信道测量方法,其中,所述参考信号包括多个参考信号资源,每一参考信号资源分别用于下行信道的追踪或者信道状态信息CSI的测量;或者
所述参考信号包括一个参考信号资源,用于下行信道的追踪和信道状态 信息CSI的测量;或者
所述参考信号包括一个参考信号资源,用于下行信道的追踪或者信道状态信息CSI的测量。
可选地,所述的信道测量方法,其中,在所述指示信息包括所述第二指示信息时,所述在当前激活的频率资源上向终端发送指示信息之后,所述方法还包括:
在所述目标频率资源上监听终端发送的上行信道探测参考信号SRS;
根据所接收的上行SRS,进行上行CSI测量。
可选地,所述的信道测量方法,其中,在所述指示信息包括所述第一指示信息时,所述在当前激活的频率资源上向终端发送指示信息之后,所述方法还包括:
在当前激活的频率资源上接收终端反馈的下行CSI;或者,
在所述目标频率资源上接收终端反馈的下行CSI。
可选地,所述的信道测量方法,其中,所述方法还包括:
在完成信道状态测量之后,向终端发送用于指示终端激活所述目标频率资源,在所述目标频率资源上进行数据信号和/或控制信号处理的信令。
可选地,所述的信道测量方法,其中,所述目标频率资源包括一个或多个载波资源,或者包括一个或多个带宽部分BWP。
可选地,所述的信道测量方法,其中,所述方法还包括:
通过无线资源控制RRC信令配置所有可能的所述目标频率资源上的下行参考信号的信号资源和/或上行SRS的信号资源。
可选地,所述的信道测量方法,其中,所述指示信息通过序列信号、物理下行控制信道PDCCH信号或者参考信号进行承载。
本公开的一些实施例还一种非激活频率资源的信道测量方法,应用于终端,其中,所述方法包括:
获取基站在当前激活的频率资源上发送的指示信息;其中,所述指示信息包括用于指示终端在非激活的目标频率资源上进行下行信道测量的第一指示信息和/或用于指示终端在所述目标频率资源上发送上行信道探测参考信号SRS的第二指示信息。
可选地,所述的信道测量方法,其中,在所述指示信息包括所述第一指示信息时,所述方法还包括:
在所述目标频率资源上接收基站发送的参考信号;
根据所述参考信号,生成下行信道状态信息CSI;
在当前激活的频率资源上或者在所述目标频率资源上向基站反馈下行CSI。
可选地,所述的信道测量方法,其中,所述在所述目标频率资源上向基站反馈下行CSI之后,所述方法还包括:
激活所述目标频率资源,并在所述目标频率资源上进行数据信号和/或控制信号的处理。
可选地,所述的信道测量方法,其中,所述参考信号包括多个参考信号资源,每一参考信号资源分别用于下行信道的追踪或者信道状态信息CSI的测量;或者
所述参考信号包括一个参考信号资源,用于下行信道的追踪和信道状态信息CSI的测量;或者
所述参考信号包括一个参考信号资源,用于下行信道的追踪或者信道状态信息CSI的测量。
可选地,所述的信道测量方法,其中,在所述指示信息包括所述第二指示信息时,所述获取基站在激活频率资源上发送的指示信息之后,所述方法还包括:
在所述目标频率资源上向基站发送上行SRS。
可选地,所述的信道测量方法,其中,所述在所述目标频率资源上向基站发送上行SRS之后,所述方法还包括:
唤醒所述当前激活的频率资源,并在所述当前激活的频率资源上进行数据信号和/或控制信号的处理。
可选地,所述的信道测量方法,其中,在所述目标频率资源上向基站反馈下行CSI之后,所述方法还包括:
唤醒所述当前激活的频率资源,并在所述当前激活的频率资源上进行数据信号和/或控制信号的处理。
可选地,所述的信道测量方法,其中,所述方法还包括:
接收基站在完成信道状态测量之后,向终端发送用于指示终端激活所述目标频率资源的信令;
根据所述信令,激活所述目标频率资源,并在所述目标频率资源上进行数据信号和/或控制信号的处理。
可选地,所述的信道测量方法,其中,所述目标频率资源包括一个或多个载波,或者包括一个或多个带宽部分BWP。
可选地,所述的信道测量方法,其中,所述方法还包括:
获取基站通过无线资源控制RRC信令配置的所有可能的所述目标频率资源上的下行参考信号的信号资源和/或上行SRS的信号资源。
可选地,所述的信道测量方法,其中,所述指示信息通过序列信号、物理下行控制信道PDCCH信号或者参考信号进行承载。
本公开的一些实施例还提供一种基站,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序;其中,所述处理器执行所述程序时实现以下步骤:
在当前激活的频率资源上向终端发送指示信息;其中,所述指示信息包括用于指示终端在非激活的目标频率资源上进行下行信道测量的第一指示信息和/或用于指示终端在所述目标频率资源上发送上行信道探测参考信号SRS的第二指示信息。
可选地,所述的基站,其中,在所述指示信息包括所述第一指示信息时,所述处理器还用于:
在所述目标频率资源上向终端发送参考信号。
可选地,所述的基站,其中,所述参考信号包括多个参考信号资源,每一参考信号资源分别用于下行信道的追踪或者信道状态信息CSI的测量;或者
所述参考信号包括一个参考信号资源,用于下行信道的追踪和信道状态信息CSI的测量;或者
所述参考信号包括一个参考信号资源,用于下行信道的追踪或者信道状态信息CSI的测量。
可选地,所述的基站,其中,在所述指示信息包括所述第二指示信息时, 所述在当前激活的频率资源上向终端发送指示信息之后,所述处理器还用于:
在所述目标频率资源上监听终端发送的上行信道探测参考信号SRS;
根据所接收的上行SRS,进行上行CSI测量。
可选地,所述的基站,其中,在所述指示信息包括所述第一指示信息时,所述在当前激活的频率资源上向终端发送指示信息之后,所述处理器还用于:
在当前激活的频率资源上接收终端反馈的下行CSI;或者,
在所述目标频率资源上接收终端反馈的下行CSI。
可选地,所述的基站,其中,所述处理器还用于:
在完成信道状态测量之后,向终端发送用于指示终端激活所述目标频率资源,在所述目标频率资源上进行数据信号和/或控制信号的处理的信令。
可选地,所述的基站,其中,所述目标频率资源包括一个或多个载波资源,或者包括一个或多个带宽部分BWP。
可选地,所述的基站,其中,所述处理器还用于:
通过无线资源控制RRC信令配置所有可能的所述目标频率资源上的下行参考信号的信号资源和/或上行SRS的信号资源。
可选地,所述的基站,其中,所述指示信息通过序列信号、物理下行控制信道PDCCH信号或者参考信号进行承载。
本公开的一些实施例还提供一种终端,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序;其中,所述处理器执行所述程序时实现以下步骤:
获取基站在当前激活的频率资源上发送的指示信息;其中,所述指示信息包括用于指示终端在非激活的目标频率资源上进行下行信道测量的第一指示信息和/或用于指示终端在所述目标频率资源上发送上行信道探测参考信号SRS的第二指示信息。
可选地,所述的终端,其中,在所述指示信息包括所述第一指示信息时,所述处理器还用于:
在所述目标频率资源上接收基站发送的参考信号;
根据所述参考信号,生成下行信道状态信息CSI;
在当前激活的频率资源上或者在所述目标频率资源上向基站反馈下行 CSI。
可选地,所述的终端,其中,所述在所述目标频率资源上向基站反馈下行CSI之后,所述处理器还用于:
激活所述目标频率资源,并在所述目标频率资源上进行数据信号和/或控制信号的处理。
可选地,所述的终端,其中,所述参考信号包括多个参考信号资源,每一参考信号资源分别用于下行信道的追踪或者信道状态信息CSI的测量;或者
所述参考信号包括一个参考信号资源,用于下行信道的追踪和信道状态信息CSI的测量;或者
所述参考信号包括一个参考信号资源,用于下行信道的追踪或者信道状态信息CSI的测量。
可选地,所述的终端,其中,在所述指示信息包括所述第二指示信息时,所述获取基站在激活频率资源上发送的指示信息之后,所述处理器还用于:
在所述目标频率资源上向基站发送上行SRS。
可选地,所述的终端,其中,所述在所述目标频率资源上向基站发送上行SRS之后,所述处理器还用于:
唤醒所述当前激活的频率资源,并在所述当前激活的频率资源上进行数据信号和/或控制信号的处理。
可选地,所述的终端,其中,在所述目标频率资源上向基站反馈下行CSI之后,所述处理器还用于:
唤醒所述当前激活的频率资源,并在所述当前激活的频率资源上进行数据信号和/或控制信号的处理。
可选地,所述的终端,其中,所述处理器还用于:
接收基站在完成信道状态测量之后,向终端发送用于指示终端激活所述目标频率资源的信令;
根据所述信令,激活所述目标频率资源,并在所述目标频率资源上进行数据信号和/或控制信号的处理。
可选地,所述的终端,其中,所述目标频率资源包括一个或多个载波资源,或者包括一个或多个带宽部分BWP。
可选地,所述的终端,其中,所述处理器还用于:
获取基站通过无线资源控制RRC信令配置的所有可能的所述目标频率资源上的下行参考信号的信号资源和/或上行SRS的信号资源。
可选地,所述的终端,其中,所述指示信息通过序列信号、物理下行控制信道PDCCH信号或者参考信号进行承载。
本公开的一些实施例还提供一种非激活频率资源的信道测量装置,应用于基站,其中,所述装置包括:
第一处理模块,用于在当前激活的频率资源上向终端发送指示信息;其中,所述指示信息包括用于指示终端在非激活的目标频率资源上进行下行信道测量的第一指示信息和/或用于指示终端在所述目标频率资源上发送上行信道探测参考信号SRS的第二指示信息。
本公开的一些实施例还提供另一种非激活频率资源的信道测量装置,应用于终端,其中,所述装置包括:
第二处理模块,用于获取基站在当前激活的频率资源上发送的指示信息;其中,所述指示信息包括用于指示终端在非激活的目标频率资源上进行下行信道测量的第一指示信息和/或用于指示终端在所述目标频率资源上发送上行信道探测参考信号SRS的第二指示信息。
本公开的一些实施例还提供一种计算机可读存储介质,其中,所述计算机可读存储介质上存储计算机程序,所述计算机程序被处理器执行时实现如上任一项所述的非激活频率资源的信道测量方法的步骤。
本公开的上述技术方案至少具有如下有益效果:
本公开的一些实施例所述非激活频率资源的信道测量方法,通过在当前激活的频率资源上向终端发送指示信息,用于指示终端在非激活的频率资源上进行下行信道测量和/或发送上行信道探测参考信号SRS,以在切换之前进行非激活的频率资源上的信道测量,实现BWP或者载波的快速切换,以降低UE的功耗,满足低时延的要求。
附图说明
图1表示本公开的一些实施例所述信道测量方法的应用系统架构示意图;
图2表示本公开的一些实施例所述非激活频率资源的信道测量方法的第一实施方式的流程示意图;
图3表示本公开的一些实施例所述非激活频率资源的信道测量方法的第二实施方式的流程示意图;
图4表示本公开的一些实施例所述信道测量方法的第二实施方式中部分的流程示意图之一;
图5表示本公开的一些实施例所述信道测量方法的第二实施方式中部分的流程示意图之二;
图6表示本公开的一些实施例所述信道测量方法的第一实施过程的示意图;
图7表示本公开的一些实施例所述信道测量方法的第二实施过程的示意图;
图8表示本公开的一些实施例所述基站的结构示意图;
图9表示本公开的一些实施例所述终端的结构示意图;
图10表示本公开的一些实施例所述信道测量装置的第一实施结构的示意图;
图11表示本公开的一些实施例所述信道测量装置的第二实施结构的示意图。
具体实施方式
为使本公开要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。
本公开的一些实施例提供一种非激活频率资源的信道测量方法,如图1所示为本公开的一些实施例所述信道测量方法的应用系统架构示意图。本公开的一些实施例所提供的信道测量方法可以应用于无线通信系统中,该无线通信系统可以采用5G系统,或者演进型长期演进(Evolved Long Term Evolution,eLTE)系统,或者后续演进通信系统。
如图1所示,该无线通信系统可以包括:网络侧设备10和用户设备,例如用户设备也可以称为终端,记做UE11,UE11可以与网络侧设备10通讯连 接。在实际应用中上述各个设备之间的连接可以为无线连接,为了方便直观地表示各个设备之间的连接关系,图1中采用实线示意。
需要说明的是,上述通信系统可以包括多个UE,网络侧设备可以与多个UE通信(传输信令或传输数据)。
本公开的一些实施例提供的网络侧设备10可以为基站,该基站可以为通常所用的基站,也可以为演进型基站(evolved node base station,eNB),还可以为5G系统中的网络侧设备(例如下一代基站(next generation node base station,gNB)或发送和接收点(transmission and reception point,TRP))或者小区cell等设备。
本公开的一些实施例提供的用户设备可以为手机、平板电脑、笔记本电脑、超级移动个人计算机(Ultra-Mobile Personal Computer,UMPC)、上网本或者个人数字助理(Personal Digital Assistant,PDA)等。
本公开针对相关技术中UE从当前的工作载波切换至新的载波或BWP时,需要进行长时间的信道测量和射频校准,造成切换时间较长、功耗较高的问题,提供一种非激活频率资源的信道测量方法,通过在当前激活的频率资源上向终端发送指示信息,用于指示终端在非激活的频率资源上进行下行信道测量和/或发送上行信道探测参考信号(Sounding Reference Signal,SRS),以在切换之前进行非激活的频率资源上的信道测量,实现BWP或者载波的快速切换。
本公开的一些实施例的第一实施方式,所提供的非激活频率资源的信道测量方法,应用于基站,如图2所示,所述方法包括:
S210,在当前激活的频率资源上向终端发送指示信息;其中,所述指示信息包括用于指示终端在非激活的目标频率资源上进行下行信道测量的第一指示信息和/或用于指示终端在所述目标频率资源上发送上行信道探测参考信号SRS的第二指示信息。
需要说明的是,所述频率资源可以但不限于为载波或者BWP。
本公开的一些实施例中,在当前激活的频率资源上向终端发送的指示信息,可以仅包括第一指示信息,用于指示终端在非激活的目标频率资源上进行下行信道测量,使终端获得下行CSI,并向基站反馈该下行CSI;该指示信 息也可以仅包括第二指示信息,用于指示终端在目标频率资源上发送上行SRS,以辅助基站进行上行信道质量指示(Channel Quality Indicator,CQI)测量和同步校正,获得目标频率资源的上行CSI;进一步,该指示信息可以同时包括第一指示信息和第二指示信息,用于指示终端在非激活的目标频率资源上进行下行信道测量,同时在目标频率资源上发送上行SRS,使得基站能够获得终端反馈的目标频率资源的下行CSI,并能够根据终端在目标频率资源发送的上行SRS,获得目标频率资源的上行CSI。
基于上述方式,基站可以在载波或者BWP切换之前,触发终端进行目标频率资源的载波或者BWP的CSI测量,获得上行CSI和/或下行CSI,以执行进一步的载波或者BWP切换。
本公开的一些实施例所述非激活频率资源的信道测量方法,能够实现对非激活的载波或BWP的信道跟踪和CSI测量,以提高网络调度的灵活性;进一步地,通过网络的辅助参考信号的发送和非周期的激活,允许UE能够快速地切换到新的频率资源,因此在必要的时刻将终端的数据业务在切换后新的载波或BWP上传输,从而提高载波切换或BWP切换的时间。
本公开的一些实施例中,上述的目标频率资源为处于非激活状态的任一个或多个载波资源,或者包括一个或多个BWP。其中,在本公开中,该目标频率资源为所发送的指示信息中用于指示终端需要进行CSI测量的非激活状态的载波或者BWP。
进一步,本公开的一些实施例,在步骤S210,在当前激活的频率资源上向终端发送指示信息中,若所发送的指示信息包括第一指示信息,则所述方法还包括:
在目标频率资源上向终端发送参考信号。
具体地,所发送的参考信号可以包括一个或多个参考信号(Reference Signal,RS)资源,其中:
每一参考信号资源分别用于下行信道的追踪或者CSI的测量;或者
所述参考信号包括一个参考信号资源,用于下行信道的追踪和信道状态信息CSI的测量;或者
所述参考信号包括一个参考信号资源,用于下行信道的追踪或者信道状 态信息CSI的测量。
本公开的一些实施例中,执行下行信道测量包括但不限于仅包括信道追踪和CSI测量。上述的方式,当向终端发送的RS信号包括多个参考信号资源时,每一参考信号资源可以分别用于完成信道追踪功能和CSI测量功能;当向终端发送的RS信号包括一个参考信号资源时,该一个参考信号资源同时用于完成信道追踪功能和CSI测量功能;当向终端发送的RS信号包括一个参考信号资源时,该一个参考信号资源也可以仅用于下行信道的追踪或者仅用于信道状态信息CSI的测量。
需要说明的是,本公开的一些实施例中,所述信道跟踪包括信道衰落信息获取,以用于自动增益控制(Automatic Gain Control,AGC)的调整,也包括对基站和UE的时频同步,以通过参考信号进行调整;对于CSI测量,主要包括CQI、PMI、RI或者波束beam信息的获取,以帮助网络进行资源调度。
进一步,本公开的一些实施例中,在步骤S210,在当前激活的频率资源上向终端发送指示信息中,所述指示信息包括第二指示信息时,在步骤S210之后,所述方法还包括:
在所述目标频率资源上监听终端发送的上行SRS;
根据所接收的上行SRS,进行上行CSI测量。
其中,终端在接收到基站发送的指示信息后,向基站发送上行SRS,以辅助基站进行上行CQI测量和同步校正,获得上行CSI信息。
本公开的一些实施例中,在步骤S210,在当前激活的频率资源上向终端发送指示信息中,所述指示信息包括第一指示信息时,在步骤S210之后,所述方法还包括:
在当前激活的频率资源上接收终端反馈的下行CSI;或者,
在所述目标频率资源上接收终端反馈的下行CSI。
具体地,当终端根据指示信息,切换至非激活的目标频率资源上监测RS信号,获得下行CSI信息,生成CSI报告后,并进一步在该非激活的目标频率资源上向基站反馈该下行CSI信息,或者也可以重新唤醒上述当前激活的频率资源,重新切换至上述当前激活的频率资源,向基站反馈该下行CSI信息。
其中,上述获得下行CSI信息的具体方式,可以通过预先配置或者协议约定确定。
进一步地,当基站获得目标频率资源的下行CSI信息和/或上行CSI信息后,可以基于所获得的该下行CSI信息和/或上行CSI信息,确定是否需要指示UE切换至该目标频率资源上。
本公开的一些实施例中,当基站通过上述的方式,获得上行CSI信息和/或下行CSI信息后,也即完成信道状态测量之后,还进一步包括:
向终端发送用于指示终端激活所述目标频率资源,在所述目标频率资源上进行数据信号和/或控制信号的处理的信令。
可以理解的是,由于在使终端激活至目标频率资源之前,已经获取到该目标频率资源的信道状态信息,因此避免了切换过程中的信道测量和射频校准,实现BWP或者载波的快速切换,以降低UE的功耗,满足低时延的要求。
本公开的一些实施例中,基于上述的方式,基站可以在载波或BWP切换之前触发UE测量一个多个载波或BWP的CSI信息,在此基础上,可以进一步确定终端在当前激活的频率资源是否需要切换,当需要切换时,可以切换至哪一个频率资源上,也即切换至哪一载波或BWP上。
另外,本公开的一些实施例中,在步骤S210,所发送的指示信息为通过一序列信号进行承载,或者所述指示信息通过物理下行控制信道(Physical Downlink Control Channel,PDCCH)信号或参考信号进行承载。
举例说明,当通过序列信号承载指示信息时,可以通过序列ID和/或扰码ID表示所述指示信息,且序列信号中包括终端用户ID和所指示的目标频率资源的资源信息,如果目标资源是确定的,则仅需要携带特定用户ID的信息;当通过参考信号承载指示信息时,参考信号可以通过时频资源位置和参考信号的序列进行信息携带,参考信号的序列一般采用伪随机序列或ZC序列,参考信号需要携带包括终端用户ID和所指示的目标频率资源的资源信息,同样的,如果目标资源确定,则仅需要指示特定的用户即可。
本公开的一些实施例中,所述非激活频率资源的信道测量方法,还进一步包括:
通过无线资源控制(Radio Resource Control,RRC)信令配置所有可能的 所述目标频率资源上的下行参考信号的信号资源和/或上行SRS的信号资源。
其中上述的下行参考信号的信号资源和/或上行SRS的信号资源,可以包括端口和/或频域位置。
另外,本公开的一些实施例在步骤S210中,所发送的指示信息可以通过下行控制信息(Downlink Control Information,DCI)发送,其中该DCI信令至少包括载波或BWP地址ID,或者包含时域的偏移信息,指示DCI与CSI-RS和/或SRS之间的时域间隔。
另外,当下行参考信号分别配置用于信道追踪功能的参考信号和用于CSI测量功能的参考信号时,两种功能的参考信号的天线端口可以不同,CSI测量参考信号可以进一步包括零功率参考信号和非零功率参考信号。
当下行参考信号配置一种参考信号,用于同时完成信道追踪功能和CSI测量功能时,天线端口可以配置为2或4,以满足基本的预编码矩阵指示(Precoding Matrix Indicator,PMI)、秩指示(rank indication,RI)和/或CQI等信息获取。
另外,下行参考信号可以配置为多个波束方向,UE可以检测并报告选择的波束方向和相应的CSI信息;上行参考信号SRS可以包括一个或多个端口,信号资源可以是单个或多个时隙slot,用于帮助基站获得上行频带的CSI信息;上行参考信号也可以用于帮助基站进行上行同步校准和定时提前量的获取。如果两个载波不是由同一个基站提供服务,则UE到不同的基站可能有不同的上行定时提前量。
本公开的一些实施例的第二实施方式,所提供的非激活频率资源的信道测量方法,应用于基站,如图3所示,所述方法包括:
S310,获取基站在当前激活的频率资源上发送的指示信息;其中,所述指示信息包括用于指示终端在非激活的目标频率资源上进行下行信道测量的第一指示信息和/或用于指示终端在所述目标频率资源上发送上行信道探测参考信号SRS的第二指示信息。
需要说明的是,所述频率资源可以但不限于为载波或者BWP。
本公开的一些实施例中,在步骤S310,终端在当前激活的频率上所接收的指示信息,可以仅包括第一指示信息,用于指示终端在非激活的目标频率 资源上进行下行信道测量,使终端进一步获得下行CSI,并向基站反馈该下行CSI;
该指示信息也可以仅包括第二指示信息,用于指示终端在目标频率资源上发送上行SRS,以辅助基站进行上行信道质量指示CQI测量和同步校正,获得目标频率资源的上行CSI;
进一步,该指示信息可以同时包括第一指示信息和第二指示信息,用于指示终端在非激活的目标频率资源上进行下行信道测量,同时在目标频率资源上发送上行SRS,使得基站能够获得终端反馈的目标频率资源的下行CSI,并能够根据终端在目标频率资源发送的上行SRS,获得目标频率资源的上行CSI。
基于上述方式,基站可以在载波或者BWP切换之前,触发终端进行目标频率资源的载波或者BWP的CSI测量,获得上行CSI和/或下行CSI,以执行进一步的载波或者BWP切换。
进一步,本公开的一些实施例,在步骤S310,所述指示信息包括所述第一指示信息时,如图4所示,所述方法还包括:
S320,在所述目标频率资源上接收基站发送的参考信号;
S330,根据所述参考信号,生成下行信道状态信息CSI;
S340,在当前激活的频率资源上或者在所述目标频率资源上向基站反馈下行CSI。
具体地,所述参考信号包括多个参考信号资源,每一参考信号资源分别用于下行信道的追踪或者信道状态信息CSI的测量;或者
所述参考信号包括一个参考信号资源,用于下行信道的追踪和信道状态信息CSI的测量;或者
所述参考信号包括一个参考信号资源,用于下行信道的追踪或者信道状态信息CSI的测量。
具体地,终端接收到指示信息后,切换至非激活的目标频率资源上监测RS信号,获得下行CSI信息,生成CSI报告,并进一步在该非激活的目标频率资源上向基站反馈该下行CSI信息,或者也可以重新唤醒上述当前激活的频率资源,重新切换至上述当前激活的频率资源,向基站反馈该下行CSI信 息。
具体地,上述向基站反馈下行CSI的具体方式,可以通过预先配置或者协议约定确定。
本公开的一些实施例中,当在上述步骤S340,在所述目标频率资源上向基站反馈下行CSI之后,所述方法还包括:
唤醒所述当前激活的频率资源,并在所述当前激活的频率资源上进行数据信号或者控制信号的侦听。
通过上述的步骤,终端重新切换回原来所激活的频率资源上。
本公开的一些实施例另一方面,当在上述步骤S340,所述在所述目标频率资源上向基站反馈下行CSI之后,所述方法还包括:
激活所述目标频率资源,并在目标频率资源上进行数据信号和/或控制信号的处理。
需要说明的是,采用上述方式,终端可以在目标频率资源上测量完CSI后,不切换到原来所激活的频率资源上,而在该目标频率资源上继续进行数据信号和/或控制信号的处理,也即直接激活该目标频率资源。
本公开的一些实施例的另一实施方式中,当所述指示信息包括所述第二指示信息时,在步骤S310,获取基站在激活频率资源上发送的指示信息之后,如图5所示,所述方法还包括:
S350,在所述目标频率资源上向基站发送上行SRS。
其中,终端接收到基站发送的指示信息,该指示信息包括用于指示终端在目标频率资源上发送上行SRS的第二指示信息时,向基站发送上行SRS,以辅助基站进行上行CQI测量和同步校正,获得上行CSI信息。
进一步地,在步骤S350,在所述目标频率资源上向基站发送上行SRS之后,所述方法还包括:
唤醒所述当前激活的频率资源,并在所述当前激活的频率资源上进行数据信号或者控制信号的侦听。
通过上述的步骤,终端重新切换回原来所激活的频率资源上。
需要说明的是,作为一种可选的方案,终端可以直接在新的目标频率资源上进行数据信号和/或控制信号的处理,无需回到原来所激活的频率资源上。
本公开的一些实施例所述的信道测量方法,终端在根据基站在当前激活的频率资源上发送的指示信息,完成目标频率资源的信道测量之后,所述方法还包括:
接收基站在完成信道状态测量之后,向终端发送用于指示终端激活所述目标频率资源的信令;
根据所述信令,激活所述目标频率资源,并在所述目标频率资源上进行数据信号和/或控制信号的侦听。
基于上述的过程,终端从当前激活的频率资源切换至目标频率资源上,由于在使终端激活至目标频率资源之前,已经获取到该目标频率资源的信道状态信息,因此避免了切换过程中的信道测量和射频校准,实现BWP或者载波的快速切换,以降低UE的功耗,满足低时延的要求。
本公开的一些实施例中,所述目标频率资源包括一个或多个载波资源,或者包括一个或多个带宽部分BWP。
进一步地,所述方法还包括:
获取基站通过无线资源控制RRC信令配置的所有可能的所述目标频率资源上的下行参考信号的信号资源和/或上行SRS的信号资源。
另外,本公开的一些实施例中,所述指示信息通过序列信号进行承载,或者通过控制信道PDCCH信号或参考信号进行承载。
本公开的一些实施例中,基站所发送的指示信息可以通过下行控制信息(Downlink Control Information,DCI)发送,其中该DCI信令至少包括载波或BWP地址ID,或者包含时域的偏移信息,指示DCI与CSI-RS和/或SRS之间的时域间隔。
举例说明,结合图6所示,当前激活的频率资源为BWP1,非激活的目标频率资源为BWP2时,具体地下行CSI测量过程可以为:
终端在BWP1下监听PDCCH;
收到DCI触发信令后(包括第一指示信息),切换到BWP2监控CSI-RS,进行信道测量和下行CSI获取;
返回至BWP1,向基站反馈下行CSI。
可选地,下行CSI测量的另一实施方式也可以为:当在BWP2进行信道 测量和下行CSI获取之后,仍在BWP2向基站反馈下行CSI,之后再返回BWP1。
可选地,当UE在BWP2测量完CSI后,允许UE在BWP2进行工作,BWP2变更为当前的激活载波,无需切换回到BWP1。
结合图7所示,当前激活的频率资源为BWP1,非激活的目标频率资源为BWP2时,具体地上行CSI测量过程可以为:
终端在BWP1下监听PDCCH;
收到DCI触发信令后(包括第二指示信息),切换到BWP2发送SRS信号,用于基站进行上行信道测量和CSI获取;
重新返回至BWP1。
本公开的一些实施例所述非激活频率资源的信道测量方法,通过在当前激活的频率资源上向终端发送指示信息,用于指示终端在非激活的频率资源上进行下行信道测量和/或发送上行信道探测参考信号,能够实现对非激活的载波或BWP的信道跟踪和CSI测量,以提高网络调度的灵活性,并在切换之前进行非激活的频率资源上的信道测量,实现BWP或者载波的快速切换。
本公开的一些实施例还提供一种基站,如图8所示,包括收发机801、存储器802、处理器800及存储在所述存储器802上并可在所述处理器800上运行的程序;处理器800调用并执行存储器802中所存储的程序和数据。
收发机801在处理器800的控制下接收和发送数据,具体地,处理器800用于读取存储器802中的程序,执行下列过程:
在当前激活的频率资源上向终端发送指示信息;其中,所述指示信息包括用于指示终端在非激活的目标频率资源上进行下行信道测量的第一指示信息和/或用于指示终端在所述目标频率资源上发送上行信道探测参考信号SRS的第二指示信息。
可选地,在所述指示信息包括所述第一指示信息时,所述处理器800还用于:
在所述目标频率资源上向终端发送参考信号。
可选地,所述参考信号包括多个参考信号资源,每一参考信号资源分别用于下行信道的追踪或者信道状态信息CSI的测量;或者
所述参考信号包括一个参考信号资源,用于下行信道的追踪和信道状态信息CSI的测量;或者
所述参考信号包括一个参考信号资源,用于下行信道的追踪或者信道状态信息CSI的测量。
可选地,在所述指示信息包括所述第二指示信息时,所述在当前激活的频率资源上向终端发送指示信息之后,所述处理器800还用于:
在所述目标频率资源上监听终端发送的上行信道探测参考信号SRS;
根据所接收的上行SRS,进行上行CSI测量。
可选地,在所述指示信息包括所述第一指示信息时,所述在当前激活的频率资源上向终端发送指示信息之后,所述处理器800还用于:
在当前激活的频率资源上接收终端反馈的下行CSI;或者,
在所述目标频率资源上接收终端反馈的下行CSI。
可选地,所述处理器800还用于:
在完成信道状态测量之后,向终端发送用于指示终端激活所述目标频率资源,在所述目标频率资源上进行数据信号和/或控制信号的处理的信令。
可选地,所述目标频率资源包括一个或多个载波资源,或者包括一个或多个带宽部分BWP。
可选地,所述处理器800还用于:
通过无线资源控制RRC信令配置所有可能的所述目标频率资源上的下行参考信号的信号资源和/或上行SRS的信号资源。
可选地,所述指示信息通过序列信号、物理下行控制信道PDCCH信号或者参考信号进行承载。
其中,在图8中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器800代表的一个或多个处理器和存储器802代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机801可以是多个元件,即包括发送器和接收器,提供用于在传输介质上与各种其他装置通信的单元。处理器800负责管理总线架构和通常的处理,存储器802可以存储处理器800 在执行操作时所使用的数据。
本公开的一些实施例还提供一种终端,如图9所示,该终端包括:处理器901;以及通过总线接口902与所述处理器901相连接的存储器903,所述存储器903用于存储所述处理器901在执行操作时所使用的程序和数据,处理器901调用并执行所述存储器903中所存储的程序和数据。
其中,收发机904与总线接口902连接,用于在处理器901的控制下接收和发送数据,具体地,处理器901用于读取存储器903中的程序,执行下列过程:
获取基站在当前激活的频率资源上发送的指示信息;其中,所述指示信息包括用于指示终端在非激活的目标频率资源上进行下行信道测量的第一指示信息和/或用于指示终端在所述目标频率资源上发送上行信道探测参考信号SRS的第二指示信息。
可选地,在所述指示信息包括所述第一指示信息时,所述处理器901还用于:
在所述目标频率资源上接收基站发送的参考信号;
根据所述参考信号,生成下行信道状态信息CSI;
在当前激活的频率资源上或者在所述目标频率资源上向基站反馈下行CSI。
可选地,所述处理器901还用于:在所述目标频率资源上向基站反馈下行CSI之后,激活所述目标频率资源,并在目标频率资源上进行数据信号和/或控制信号的处理。
可选地,所述参考信号包括多个参考信号资源,每一参考信号资源分别用于下行信道的追踪或者信道状态信息CSI的测量;或者
所述参考信号包括一个参考信号资源,用于下行信道的追踪和信道状态信息CSI的测量;或者
所述参考信号包括一个参考信号资源,用于下行信道的追踪或者信道状态信息CSI的测量。
可选地,在所述指示信息包括所述第二指示信息时,所述获取基站在激活频率资源上发送的指示信息之后,所述处理器901还用于:
在所述目标频率资源上向基站发送上行SRS。
可选地,所述在所述目标频率资源上向基站发送上行SRS之后,所述处理器901还用于:
唤醒所述当前激活的频率资源,并在所述当前激活的频率资源上进行数据信号和/或控制信号的处理。
可选地,在所述目标频率资源上向基站反馈下行CSI之后,所述处理器901还用于:
唤醒所述当前激活的频率资源,并在所述当前激活的频率资源上进行数据信号或者控制信号的侦听。
可选地,所述处理器901还用于:
接收基站在完成信道状态测量之后,向终端发送用于指示终端激活所述目标频率资源的信令;
根据所述信令,激活所述目标频率资源,并在所述目标频率资源上进行数据信号和/或控制信号的处理。
可选地,所述目标频率资源包括一个或多个载波资源,或者包括一个或多个带宽部分BWP。
可选地,所述处理器901还用于:
获取基站通过无线资源控制RRC信令配置的所有可能的所述目标频率资源上的下行参考信号的信号资源和/或上行SRS的信号资源。
可选地,所述指示信息通过序列信号、物理下行控制信道PDCCH信号或者参考信号进行承载。
需要说明的是,在图9中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器901代表的一个或多个处理器和存储器903代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机904可以是多个元件,即包括发送器和接收器,提供用于在传输介质上与各种其他装置通信的单元。针对不同的终端,用户接口905还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆 等。处理器901负责管理总线架构和通常的处理,存储器903可以存储处理器901在执行操作时所使用的数据。
本领域技术人员可以理解,实现上述实施例的全部或者部分步骤可以通过硬件来完成,也可以通过程序来指示相关的硬件来完成,所述程序包括执行上述方法的部分或者全部步骤的指令;且该程序可以存储于一可读存储介质中,存储介质可以是任何形式的存储介质。
本公开的一些实施例还提供一种非激活频率资源的信道测量装置,应用于基站,如图10所示,所述装置包括:
第一处理模块1001,用于在当前激活的频率资源上向终端发送指示信息;其中,所述指示信息包括用于指示终端在非激活的目标频率资源上进行下行信道测量的第一指示信息和/或用于指示终端在所述目标频率资源上发送上行信道探测参考信号SRS的第二指示信息。
可选地,在所述指示信息包括所述第一指示信息时,第一处理模块1001还用于:
在所述目标频率资源上向终端发送参考信号。
可选地,所述参考信号包括多个参考信号资源,每一参考信号资源分别用于下行信道的追踪或者信道状态信息CSI的测量;或者
所述参考信号包括一个参考信号资源,用于下行信道的追踪和信道状态信息CSI的测量;或者
所述参考信号包括一个参考信号资源,用于下行信道的追踪或者信道状态信息CSI的测量。
可选地,在所述指示信息包括所述第二指示信息时,所述在当前激活的频率资源上向终端发送指示信息之后,第一处理模块1001还用于:
在所述目标频率资源上监听终端发送的上行信道探测参考信号SRS;
根据所接收的上行SRS,进行上行CSI测量。
可选地,在所述指示信息包括所述第一指示信息时,所述在当前激活的频率资源上向终端发送指示信息之后,第一处理模块1001还用于:
在当前激活的频率资源上接收终端反馈的下行CSI;或者,
在所述目标频率资源上接收终端反馈的下行CSI。
可选地,第一处理模块1001还用于:
在完成信道状态测量之后,向终端发送用于指示终端激活所述目标频率资源,在所述目标频率资源上进行数据信号和/或控制信号的处理的信令。
可选地,所述目标频率资源包括一个或多个载波资源,或者包括一个或多个带宽部分BWP。
可选地,第一处理模块1001还用于:
通过无线资源控制RRC信令配置所有可能的所述目标频率资源上的下行参考信号的信号资源和/或上行SRS的信号资源。
可选地,所述指示信息通过序列信号、物理下行控制信道PDCCH信号或者参考信号进行承载。
本公开的一些实施例还提供一种非激活频率资源的信道测量装置,应用于终端,如图11所示,所述装置包括:
第二处理模块1101,用于获取基站在当前激活的频率资源上发送的指示信息;其中,所述指示信息包括用于指示终端在非激活的目标频率资源上进行下行信道测量的第一指示信息和/或用于指示终端在所述目标频率资源上发送上行信道探测参考信号SRS的第二指示信息。
可选地,在所述指示信息包括所述第一指示信息时,第二处理模块1101还用于:
在所述目标频率资源上接收基站发送的参考信号;
根据所述参考信号,生成下行信道状态信息CSI;
在当前激活的频率资源上或者在所述目标频率资源上向基站反馈下行CSI。
可选地,所述在所述目标频率资源上向基站反馈下行CSI之后,第二处理模块1101还用于:激活所述目标频率资源,并在目标频率资源上进行数据信号和/或控制信号的处理
可选地,所述参考信号包括多个参考信号资源,每一参考信号资源分别用于下行信道的追踪或者信道状态信息CSI的测量;或者
所述参考信号包括一个参考信号资源,用于下行信道的追踪和信道状态信息CSI的测量;或者
所述参考信号包括一个参考信号资源,用于下行信道的追踪或者信道状态信息CSI的测量。
可选地,在所述指示信息包括所述第二指示信息时,所述获取基站在激活频率资源上发送的指示信息之后,第二处理模块1101还用于:
在所述目标频率资源上向基站发送上行SRS。
可选地,所述在所述目标频率资源上向基站发送上行SRS之后,第二处理模块1101还用于:
唤醒所述当前激活的频率资源,并在所述当前激活的频率资源上进行数据信号和/或控制信号的处理。
可选地,在所述目标频率资源上向基站反馈下行CSI之后,所述处理器901还用于:
唤醒所述当前激活的频率资源,并在所述当前激活的频率资源上进行数据信号和/或控制信号的处理。
可选地,第二处理模块1101还用于:
接收基站在完成信道状态测量之后,向终端发送用于指示终端激活所述目标频率资源的信令;
根据所述信令,激活所述目标频率资源,并在所述目标频率资源上进行数据信号和/或控制信号的处理。
可选地,所述目标频率资源包括一个或多个载波资源,或者包括一个或多个带宽部分BWP。
可选地,第二处理模块1101还用于:
获取基站通过无线资源控制RRC信令配置的所有可能的所述目标频率资源上的下行参考信号的信号资源和/或上行SRS的信号资源。
可选地,所述指示信息通过序列信号、物理下行控制信道PDCCH信号或者参考信号进行承载。
本公开的一些实施例还提供一种计算机可读存储介质,所述计算机可读存储介质上存储计算机程序,所述计算机程序被处理器执行时实现如上所述的非激活频率资源的信道测量方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质,如只 读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本公开的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本公开各个实施例所述的方法。
上面结合附图对本公开的实施例进行了描述,但是本公开并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本公开的启示下,在不脱离本公开宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本公开的保护之内。
以上所述是本公开的可选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开所述原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本公开的保护范围。

Claims (43)

  1. 一种非激活频率资源的信道测量方法,应用于基站,所述方法包括:
    在当前激活的频率资源上向终端发送指示信息;其中,所述指示信息包括用于指示终端在非激活的目标频率资源上进行下行信道测量的第一指示信息和/或用于指示终端在所述目标频率资源上发送上行信道探测参考信号SRS的第二指示信息。
  2. 根据权利要求1所述的信道测量方法,其中,在所述指示信息包括所述第一指示信息时,所述方法还包括:
    在所述目标频率资源上向终端发送参考信号。
  3. 根据权利要求2所述的信道测量方法,其中,所述参考信号包括多个参考信号资源,每一参考信号资源分别用于下行信道的追踪或者信道状态信息CSI的测量;或者
    所述参考信号包括一个参考信号资源,用于下行信道的追踪和信道状态信息CSI的测量;或者
    所述参考信号包括一个参考信号资源,用于下行信道的追踪或者信道状态信息CSI的测量。
  4. 根据权利要求1所述的信道测量方法,其中,在所述指示信息包括所述第二指示信息时,所述在当前激活的频率资源上向终端发送指示信息之后,所述方法还包括:
    在所述目标频率资源上监听终端发送的上行信道探测参考信号SRS;
    根据所接收的上行SRS,进行上行CSI测量。
  5. 根据权利要求2所述的信道测量方法,其中,在所述指示信息包括所述第一指示信息时,所述在当前激活的频率资源上向终端发送指示信息之后,所述方法还包括:
    在当前激活的频率资源上接收终端反馈的下行CSI;或者,
    在所述目标频率资源上接收终端反馈的下行CSI。
  6. 根据权利要求4或5所述的信道测量方法,还包括:
    在完成信道状态测量之后,向终端发送用于指示终端激活所述目标频率 资源,在所述目标频率资源上进行数据信号和/或控制信号处理的信令。
  7. 根据权利要求1所述的信道测量方法,其中,所述目标频率资源包括一个或多个载波资源,或者包括一个或多个带宽部分BWP。
  8. 根据权利要求1所述的信道测量方法,还包括:
    通过无线资源控制RRC信令配置所有可能的所述目标频率资源上的下行参考信号的信号资源和/或上行SRS的信号资源。
  9. 根据权利要求1所述的信道测量方法,其中,
    所述指示信息通过序列信号、物理下行控制信道PDCCH信号或者参考信号进行承载。
  10. 一种非激活频率资源的信道测量方法,应用于终端,所述方法包括:
    获取基站在当前激活的频率资源上发送的指示信息;其中,所述指示信息包括用于指示终端在非激活的目标频率资源上进行下行信道测量的第一指示信息和/或用于指示终端在所述目标频率资源上发送上行信道探测参考信号SRS的第二指示信息。
  11. 根据权利要求10所述的信道测量方法,其中,在所述指示信息包括所述第一指示信息时,所述方法还包括:
    在所述目标频率资源上接收基站发送的参考信号;
    根据所述参考信号,生成下行信道状态信息CSI;
    在当前激活的频率资源上或者在所述目标频率资源上向基站反馈下行CSI。
  12. 根据权利11所述的信道测量方法,其中,所述在所述目标频率资源上向基站反馈下行CSI之后,所述方法还包括:
    激活所述目标频率资源,并在所述目标频率资源上进行数据信号和/或控制信号的处理。
  13. 根据权利要求11所述的信道测量方法,其中,所述参考信号包括多个参考信号资源,每一参考信号资源分别用于下行信道的追踪或者信道状态信息CSI的测量;或者
    所述参考信号包括一个参考信号资源,用于下行信道的追踪和信道状态信息CSI的测量;或者
    所述参考信号包括一个参考信号资源,用于下行信道的追踪或者信道状态信息CSI的测量。
  14. 根据权利要求10所述的信道测量方法,其中,在所述指示信息包括所述第二指示信息时,所述获取基站在激活频率资源上发送的指示信息之后,所述方法还包括:
    在所述目标频率资源上向基站发送上行SRS。
  15. 根据权利要求14所述的信道测量方法,其中,所述在所述目标频率资源上向基站发送上行SRS之后,所述方法还包括:
    唤醒所述当前激活的频率资源,并在所述当前激活的频率资源上进行数据信号和/或控制信号的处理。
  16. 根据权利要求11所述的信道测量方法,其中,在所述目标频率资源上向基站反馈下行CSI之后,所述方法还包括:
    唤醒所述当前激活的频率资源,并在所述当前激活的频率资源上进行数据信号和/或控制信号的处理。
  17. 根据权利要求11或14所述的信道测量方法,还包括:
    接收基站在完成信道状态测量之后,向终端发送用于指示终端激活所述目标频率资源的信令;
    根据所述信令,激活所述目标频率资源,并在所述目标频率资源上进行数据信号和/或控制信号的处理。
  18. 根据权利要求10所述的信道测量方法,其中,所述目标频率资源包括一个或多个载波,或者包括一个或多个带宽部分BWP。
  19. 根据权利要求10所述的信道测量方法,还包括:
    获取基站通过无线资源控制RRC信令配置的所有可能的所述目标频率资源上的下行参考信号的信号资源和/或上行SRS的信号资源。
  20. 根据权利要求10所述的信道测量方法,其中,所述指示信息通过序列信号、物理下行控制信道PDCCH信号或者参考信号进行承载。
  21. 一种基站,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序;所述处理器执行所述程序时实现以下步骤:
    在当前激活的频率资源上向终端发送指示信息;其中,所述指示信息包 括用于指示终端在非激活的目标频率资源上进行下行信道测量的第一指示信息和/或用于指示终端在所述目标频率资源上发送上行信道探测参考信号SRS的第二指示信息。
  22. 根据权利要求21所述的基站,其中,在所述指示信息包括所述第一指示信息时,所述处理器还用于:
    在所述目标频率资源上向终端发送参考信号。
  23. 根据权利要求22所述的基站,其中,所述参考信号包括多个参考信号资源,每一参考信号资源分别用于下行信道的追踪或者信道状态信息CSI的测量;或者
    所述参考信号包括一个参考信号资源,用于下行信道的追踪和信道状态信息CSI的测量;或者
    所述参考信号包括一个参考信号资源,用于下行信道的追踪或者信道状态信息CSI的测量。
  24. 根据权利要求21所述的基站,其中,在所述指示信息包括所述第二指示信息时,所述在当前激活的频率资源上向终端发送指示信息之后,所述处理器还用于:
    在所述目标频率资源上监听终端发送的上行信道探测参考信号SRS;
    根据所接收的上行SRS,进行上行CSI测量。
  25. 根据权利要求22所述的基站,其中,在所述指示信息包括所述第一指示信息时,所述在当前激活的频率资源上向终端发送指示信息之后,所述处理器还用于:
    在当前激活的频率资源上接收终端反馈的下行CSI;或者,
    在所述目标频率资源上接收终端反馈的下行CSI。
  26. 根据权利要求24或25所述的基站,其中,所述处理器还用于:
    在完成信道状态测量之后,向终端发送用于指示终端激活所述目标频率资源,在所述目标频率资源上进行数据信号和/或控制信号的处理的信令。
  27. 根据权利要求21所述的基站,其中,所述目标频率资源包括一个或多个载波资源,或者包括一个或多个带宽部分BWP。
  28. 根据权利要求21所述的基站,其中,所述处理器还用于:
    通过无线资源控制RRC信令配置所有可能的所述目标频率资源上的下行参考信号的信号资源和/或上行SRS的信号资源。
  29. 根据权利要求21所述的基站,其中,
    所述指示信息通过序列信号、物理下行控制信道PDCCH信号或者参考信号进行承载。
  30. 一种终端,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序;所述处理器执行所述程序时实现以下步骤:
    获取基站在当前激活的频率资源上发送的指示信息;其中,所述指示信息包括用于指示终端在非激活的目标频率资源上进行下行信道测量的第一指示信息和/或用于指示终端在所述目标频率资源上发送上行信道探测参考信号SRS的第二指示信息。
  31. 根据权利要求30所述的终端,其中,在所述指示信息包括所述第一指示信息时,所述处理器还用于:
    在所述目标频率资源上接收基站发送的参考信号;
    根据所述参考信号,生成下行信道状态信息CSI;
    在当前激活的频率资源上或者在所述目标频率资源上向基站反馈下行CSI。
  32. 根据权利要求31所述的终端,其中,所述在所述目标频率资源上向基站反馈下行CSI之后,所述处理器还用于:
    激活所述目标频率资源,并在所述目标频率资源上进行数据信号和/或控制信号的处理。
  33. 根据权利要求31所述的终端,其中,所述参考信号包括多个参考信号资源,每一参考信号资源分别用于下行信道的追踪或者信道状态信息CSI的测量;或者
    所述参考信号包括一个参考信号资源,用于下行信道的追踪和信道状态信息CSI的测量;或者
    所述参考信号包括一个参考信号资源,用于下行信道的追踪或者信道状态信息CSI的测量。
  34. 根据权利要求30所述的终端,其中,在所述指示信息包括所述第二 指示信息时,所述获取基站在激活频率资源上发送的指示信息之后,所述处理器还用于:
    在所述目标频率资源上向基站发送上行SRS。
  35. 根据权利要求34所述的终端,其中,所述在所述目标频率资源上向基站发送上行SRS之后,所述处理器还用于:
    唤醒所述当前激活的频率资源,并在所述当前激活的频率资源上进行数据信号和/或控制信号的处理。
  36. 根据权利要求31所述的终端,其中,在所述目标频率资源上向基站反馈下行CSI之后,所述处理器还用于:
    唤醒所述当前激活的频率资源,并在所述当前激活的频率资源上进行数据信号和/或控制信号的处理。
  37. 根据权利要求31或34所述的终端,其中,所述处理器还用于:
    接收基站在完成信道状态测量之后,向终端发送用于指示终端激活所述目标频率资源的信令;
    根据所述信令,激活所述目标频率资源,并在所述目标频率资源上进行数据信号和/或控制信号的处理。
  38. 根据权利要求30所述的终端,其中,所述目标频率资源包括一个或多个载波资源,或者包括一个或多个带宽部分BWP。
  39. 根据权利要求30所述的终端,其中,所述处理器还用于:
    获取基站通过无线资源控制RRC信令配置的所有可能的所述目标频率资源上的下行参考信号的信号资源和/或上行SRS的信号资源。
  40. 根据权利要求30所述的终端,其中,所述指示信息通过序列信号、物理下行控制信道PDCCH信号或者参考信号进行承载。
  41. 一种非激活频率资源的信道测量装置,应用于基站,所述装置包括:
    第一处理模块,用于在当前激活的频率资源上向终端发送指示信息;其中,所述指示信息包括用于指示终端在非激活的目标频率资源上进行下行信道测量的第一指示信息和/或用于指示终端在所述目标频率资源上发送上行信道探测参考信号SRS的第二指示信息。
  42. 一种非激活频率资源的信道测量装置,应用于终端,所述装置包括:
    第二处理模块,用于获取基站在当前激活的频率资源上发送的指示信息;其中,所述指示信息包括用于指示终端在非激活的目标频率资源上进行下行信道测量的第一指示信息和/或用于指示终端在所述目标频率资源上发送上行信道探测参考信号SRS的第二指示信息。
  43. 一种计算机可读存储介质,所述计算机可读存储介质上存储计算机程序,所述计算机程序被处理器执行时实现如权利要求1至9中任一项所述的非激活频率资源的信道测量方法的步骤,或者实现如权利要求10至20任一项所述的非激活频率资源的信道测量方法的步骤。
PCT/CN2019/111839 2018-11-02 2019-10-18 非激活频率资源的信道测量方法、基站及终端 WO2020088266A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811303519.1 2018-11-02
CN201811303519.1A CN111147212B (zh) 2018-11-02 2018-11-02 非激活频率资源的信道测量方法、基站及终端

Publications (1)

Publication Number Publication Date
WO2020088266A1 true WO2020088266A1 (zh) 2020-05-07

Family

ID=70463483

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/111839 WO2020088266A1 (zh) 2018-11-02 2019-10-18 非激活频率资源的信道测量方法、基站及终端

Country Status (3)

Country Link
CN (1) CN111147212B (zh)
TW (1) TWI804690B (zh)
WO (1) WO2020088266A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114080009A (zh) * 2020-08-17 2022-02-22 维沃移动通信有限公司 传输控制方法、装置及相关设备
US20220070862A1 (en) * 2020-08-31 2022-03-03 Xidian University Method for mode selecting and switching in dual-frequency integrated system

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111901259A (zh) * 2020-05-18 2020-11-06 中兴通讯股份有限公司 下行信道状态信息估计方法、装置、设备和存储介质
CN113784398B (zh) * 2020-06-09 2023-03-14 维沃移动通信有限公司 数据的处理方法及装置、终端及网络侧设备
CN113922933B (zh) * 2020-07-10 2023-01-06 维沃移动通信有限公司 一种载波切换处理方法、装置及终端
CN113965995A (zh) * 2020-07-20 2022-01-21 中国电信股份有限公司 部分带宽选择方法、系统和基站
CN115484676A (zh) * 2021-05-31 2022-12-16 华为技术有限公司 数据传输方法及装置
WO2023122984A1 (zh) * 2021-12-28 2023-07-06 北京小米移动软件有限公司 一种srs触发方法、装置及存储介质

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110022197A (zh) * 2018-01-10 2019-07-16 维沃移动通信有限公司 参考信号的处理方法、网络设备和终端

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10075271B2 (en) * 2015-03-14 2018-09-11 Qualcomm Incorporated Reciprocal channel sounding reference signal allocation and configuration
KR20190089062A (ko) * 2016-12-27 2019-07-29 에프쥐 이노베이션 컴퍼니 리미티드 대역폭 부분(bwp) 지시자를 시그널링하는 방법 및 이를 이용하는 무선 통신 장비
US20180199343A1 (en) * 2017-01-10 2018-07-12 Samsung Electronics Co., Ltd. Method and system for supporting wide-band and multiple numerologies in wireless communication system
US10856174B2 (en) * 2017-03-16 2020-12-01 Ofinno, Llc Buffer status report control
US10863380B2 (en) * 2017-03-16 2020-12-08 Ofinno, Llc Buffer status reporting procedure in a wireless device and wireless network
US10873911B2 (en) * 2017-03-23 2020-12-22 Ofinno, LCC Uplink transmission power adjustment
US20180279289A1 (en) * 2017-03-23 2018-09-27 Huawei Technologies Co., Ltd. System and Method for Signaling for Resource Allocation for One or More Numerologies
WO2018184534A1 (en) * 2017-04-07 2018-10-11 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method for configuring resource, user equipment, network device and computer storage medium
US11469962B2 (en) * 2018-01-26 2022-10-11 Beijing Xiaomi Mobile Software Co., Ltd. Method and apparatus for configuring information of indicating time-frequency position of SSB, and method and apparatus for determining time-frequency position of SSB
RU2758926C1 (ru) * 2018-03-29 2021-11-03 Бейдзин Сяоми Мобайл Софтвэр Ко., Лтд. Способ и устройство для предоставления информации, а также способ и устройство для работы на основе частей полосы частот

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110022197A (zh) * 2018-01-10 2019-07-16 维沃移动通信有限公司 参考信号的处理方法、网络设备和终端

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Summary Ov Views on CSI Reporting v2", 3GPP DRAFT; R1-1807648, 25 May 2018 (2018-05-25), Busan, pages 1 - 18, XP051463279 *
VIVO: "Other aspects on bandwidth Parts", 3GPP DRAFT; R1-1719800, 1 December 2017 (2017-12-01), Reno, USA, pages 1 - 7, XP051369543 *
VIVO: "Remaining Issues on CSI Reporting, R1-1801519", 3GPP DRAFT; R1-1801519, 2 March 2018 (2018-03-02), Athens, Greece, pages 1 - 10, XP051396771 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114080009A (zh) * 2020-08-17 2022-02-22 维沃移动通信有限公司 传输控制方法、装置及相关设备
US20220070862A1 (en) * 2020-08-31 2022-03-03 Xidian University Method for mode selecting and switching in dual-frequency integrated system
US11917598B2 (en) * 2020-08-31 2024-02-27 Xidian University Method for mode selecting and switching in dual-frequency integrated system

Also Published As

Publication number Publication date
CN111147212A (zh) 2020-05-12
TWI804690B (zh) 2023-06-11
CN111147212B (zh) 2022-11-15
TW202037106A (zh) 2020-10-01

Similar Documents

Publication Publication Date Title
WO2020088266A1 (zh) 非激活频率资源的信道测量方法、基站及终端
US11064492B2 (en) Resource configuration method and apparatus
EP2827662B1 (en) Method and device for resource allocation
JP6312067B2 (ja) サービス制御方法、端末、及びネットワークデバイス
KR20220038486A (ko) 무선 리소스 구성 방법 및 장치, 및 저장 매체
EP3920580A1 (en) Method and device for measuring and reporting channel state information (csi)
US20210099270A1 (en) Resource Indicating Method, Device, And System
US11602007B2 (en) Signal transmission method for discontinuous reception, terminal device and network device
CN116438865A (zh) Ue发起的传播延迟补偿机制
US20220256461A1 (en) Communication method and apparatus
EP3806563B1 (en) Method and apparatus for configuring transmission bandwidth, and device
CN111757374B (zh) 一种波束管理方法及装置
WO2022078804A1 (en) Pdcch-based adaptation of uplink activity
TWI715837B (zh) 一種消息解碼方法、發送端設備和接收端設備
US20230421340A1 (en) Implicit update of activated tci states
JP2022505017A (ja) キャリア処理方法、端末、ネットワーク装置及び記憶媒体
JP7295241B2 (ja) 時間周波数リソース決定方法、装置、チップ及びコンピュータプログラム
WO2023202575A1 (zh) 一种信息处理方法、装置及可读存储介质
WO2023185221A1 (zh) Dtx传输方法、网络节点、网络设备和存储介质
WO2023202515A1 (zh) 信息处理方法、装置及可读存储介质
US20240107612A1 (en) Method for handling dl ul tci states
WO2022237540A1 (zh) 信息指示、获取方法及装置
WO2022100547A1 (zh) 信息确定、配置方法及装置
WO2022243978A1 (en) Systems and methods for tci state signalling for carrier aggregation
JP2024519474A (ja) スマート信号増幅器の作動モード構成方法、装置及び機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19879729

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19879729

Country of ref document: EP

Kind code of ref document: A1