WO2020088151A1 - 一种用于热分析仪器的炉体及具备该炉体的热分析仪器 - Google Patents
一种用于热分析仪器的炉体及具备该炉体的热分析仪器 Download PDFInfo
- Publication number
- WO2020088151A1 WO2020088151A1 PCT/CN2019/107495 CN2019107495W WO2020088151A1 WO 2020088151 A1 WO2020088151 A1 WO 2020088151A1 CN 2019107495 W CN2019107495 W CN 2019107495W WO 2020088151 A1 WO2020088151 A1 WO 2020088151A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- refrigerant
- furnace body
- thermal analysis
- analysis instrument
- instrument according
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N25/00—Investigating or analyzing materials by the use of thermal means
Definitions
- the invention relates to a furnace body used for a thermal analysis instrument and a thermal analysis instrument provided with the furnace body.
- thermal analysis technology is to measure the physical properties of a substance with temperature under program temperature control. It is used to study the physical, thermal, mechanical, acoustic, optical, electrical, magnetic and other physical parameters of a substance at a certain temperature. Change is a very important method of analysis and testing.
- different technical methods correspond to different thermal analysis instruments, but usually thermal analysis instruments include temperature controller, furnace body, physical detection unit, atmosphere controller and data processing system, etc., where the furnace body is the core component of the thermal analysis instrument , To provide the sample with an even temperature environment required for measurement to be supported.
- DSC Differential Scanning Calorimetry
- DTA Differential Thermal Analysis
- TGA Thermogravimetric Analyzer
- DMA Dynamic Thermomechanical Analysis
- the differential scanning calorimeter (hereinafter sometimes also referred to as DSC) required for differential scanning calorimetry is one of the above-mentioned thermal analysis instruments, and it is also the most widely used. It is to put the sample under program temperature control. A test instrument that observes the difference in heat flow between the sample and the reference as a function of temperature or time. In addition, the magnetic environment can also affect the material's phase formation and properties, and has important scientific value for the study of new phenomena and mechanisms of materials.
- An object of the present invention is to provide a furnace body for a thermal analysis instrument capable of realizing rapid temperature rise and fall and a thermal analysis instrument equipped with the furnace body.
- the invention provides a furnace body for a thermal analysis instrument, including: a hollow furnace body, a heating system located below the furnace body, and a refrigeration system located below the furnace body;
- the cross-sectional shape of the body of the furnace body is a dumbbell shape, two symmetrical sample chambers are provided inside, and a hole is provided in the central portion as a ventilation channel for gas circulation in the chamber;
- the heating system includes more than two heat conduction columns and more than two groups of heaters wound on the outer surface of the heat conduction column;
- the refrigerating system includes a hollow cooling guide with one end closed as a cooling surface and one open end.
- the refrigerant spray head that is hollow and nested inside the cooling guide with a gap is located at the open end of the cooling guide
- a plurality of the heat conducting columns are arranged under the two symmetrical sample chambers of the furnace body and are distributed axisymmetrically;
- the heater includes a heating wire symmetrically wound on the heat conducting column;
- the inner wall of the refrigerant nozzle and the transition joint form a refrigerant inner cavity
- the outer wall of the refrigerant nozzle and the inner wall of the cold guide member form an outer refrigerant cavity
- the refrigerant inlet tube communicates with the refrigerant inner cavity
- the refrigerant outlet tube communicates with the refrigerant outer cavity
- the present invention compared with the prior art, the present invention has the following technical effects:
- the body of the furnace body of the present invention adopts a dumbbell shape, which is smaller than the traditional circular shape, and has a compact structure, which effectively reduces the mass heat capacity.
- the sample is evenly wrapped, so that the sample itself is heated symmetrically;
- the heating system of the present invention uses multiple heat conducting columns for heat conduction. Compared with the traditional single cylinder, the heat conduction area is effectively increased, and the heat is moved closer to the furnace center to reduce heat loss and increase the heating rate;
- the number of heat conduction columns and heaters of the heating system of the present invention are more than two, so while increasing the heat transfer area, high-power heating can be achieved, and the heating is more uniform;
- the refrigeration system of the present invention uses an ingenious double-layer structure. Compared with the traditional refrigeration system, the cooling transmission path is short, the cooling transmission efficiency is high, and the cooling effect can be greatly improved;
- the heating system and the refrigeration system of the present invention are vertically arranged directly under the furnace body, with a compact structure and a small volume of the furnace body, which is convenient for installation in a narrow magnet gap hole and prepares hardware conditions for the measurement of the magnetic environment.
- the heating wire is a double strand.
- the heater is wound on the corresponding thermally conductive column by double strands, specifically, a heating wire is folded into two strands synchronously wound on the thermally conductive column, that is, the heating current flows in from the first strand and Next to another outflow.
- the magnetic effect caused by the heating wire itself is eliminated, and the interference of the heating wire to the external magnetic environment is reduced.
- the components or materials of the furnace body are all non-magnetic materials. With this, it can be applied to the measurement in the magnetic environment, eliminate the magnetic interference caused by the instrument material itself, and improve the measurement accuracy.
- a cooling system is connected below the heat conduction column, and a lower surface of the heat conduction column is a cold conduction surface. With this, the furnace body can realize low temperature measurement.
- the heat conducting column and the furnace body main body are connected separately by expansion, screwing or welding, or integrally processed as one body.
- the materials of the furnace body and the heat conduction column are both materials with high thermal conductivity. With this, the furnace body can quickly achieve temperature uniformity, providing a stable temperature uniformity environment for sample measurement.
- the heater is a resistance heating wire, which is wound on the thermally conductive post after being insulated.
- the resistance of the heater is relatively stable during the heating process, which is convenient for stable temperature control.
- the resistance heating wire may be made of nickel-chromium alloy wire.
- the heater is not magnetic, eliminating its own influence on the measurement of the magnetic environment.
- the heater is not easily oxidized at high temperatures, extending the life of the heater.
- the insulation treatment is a single-hole short ceramic column, armor or insulation coating. With this, the heater can achieve reliable insulation.
- the cooling member includes a porous ring.
- the end of the refrigerant nozzle close to the cooling surface is provided with a fine hole.
- a small amount of refrigerant is sprayed and vaporized from the side wall surface of the refrigerant cavity, so that the component environment below the cooling surface in the cooler can be further pre-cooled, which has a further thermal insulation effect, so that the cooling capacity can be further fully transferred to the cooling Surface direction conduction.
- a first gap and a second gap are formed on the transition joint, the first gap is used as a channel connecting the refrigerant inner cavity and the refrigerant inlet pipe, and the second gap It is used as a channel connecting the refrigerant external cavity to the refrigerant outlet tube.
- the refrigerant inlet tube is hermetically connected and communicated with the refrigerant through the transition joint in the extending direction of the refrigerant inner cavity, and the refrigerant outlet tube is in the extending direction of the refrigerant outer cavity , Through the transition joint and hermetic connection and communication.
- the refrigerant inlet pipe and the refrigerant outlet pipe of the present invention are arranged in the extending direction of the inner and outer chambers. Therefore, compared with traditional refrigeration components, this configuration can achieve a compact structure, reduce the overall size, and improve the adaptation Sex and other advantages.
- the refrigerant inlet pipe, the refrigerant nozzle, the cold guide, the transition joint, and the refrigerant outlet pipe may be processed separately, and then assembled into the cooler.
- the refrigerant inlet pipe, the refrigerant nozzle, the cold guide, the transition joint, and the refrigerant outlet pipe may be integrally formed.
- the integrated molding is 3D stereo printing.
- the present invention also provides a thermal analysis instrument provided with the furnace body.
- the furnace body for a thermal analysis instrument can not only realize rapid temperature rise and fall, but also perform accurate test and measurement under magnetic and non-magnetic environments.
- FIG. 1 is a perspective view of a furnace body for a thermal analysis instrument according to the present invention
- FIG. 2 is a front view of the furnace body shown in FIG. 1;
- FIG. 3 is a side view of the furnace body shown in FIG. 1;
- FIG. 4 is a top view of the furnace body shown in FIG. 1;
- Figure 5 is a cross-sectional view taken along line A-A;
- FIG. 6 is a cross-sectional view of the refrigeration system in the furnace shown in FIG. 1;
- FIG. 7 is a partial cross-sectional view of the furnace body according to the present invention applied to a differential scanning calorimeter
- FIG. 8 is a schematic diagram of the overall structure of a differential scanning calorimeter installed with the furnace body of the present invention.
- FIG. 10 is a schematic diagram of the furnace body according to the present invention placed in a superconducting magnet
- FIG. 11 (a) -FIG. 11 (e) are the original experimental data tables of the temperature rise and fall curves experimentally verified on the differential scanning calorimeter according to the furnace body of the present invention.
- FIG. 1 is a perspective view of the furnace body according to the present invention.
- Fig. 2 is a front view of the furnace body shown in Fig. 1.
- Fig. 3 is a side view of the furnace body shown in Fig. 1.
- Fig. 4 is a plan view of the furnace body shown in Fig. 1.
- Fig. 5 is a cross-sectional view taken along line A-A. 6 is a cross-sectional view of the refrigeration system in the furnace shown in FIG. 1.
- the furnace body for a thermal analysis instrument includes: a hollow furnace body 100, a heating system 90 located below the furnace body 100, and a refrigeration located below the furnace body 100 System 80.
- the cross-sectional shape of the furnace body 100 is a dumbbell shape, and two symmetrical sample chambers, namely a right chamber 5 and a left chamber 6 are provided inside. But the shape is not limited to this, as long as it is a symmetric structure.
- the right and left chambers 5 and 6 are respectively symmetrically placed with heat flow sensors 9, and then the left crucible 15 and the right crucible 16 are placed symmetrically on the upper surface of the heat flow sensor 9.
- the left crucible 15 and the right crucible 16 are located Inside the left chamber 6 and the right chamber 5.
- a hole 7 for gas flow in the chamber is provided at the center of the furnace body 100, that is, between the right and left chambers 5, 6, a hole 7 for gas flow in the chamber.
- the gas pipe 13 shown in FIG. 7 described later is connected to the hole 7, and the temperature control sensor 10 shown in FIG. 3 is embedded in the bottom of the furnace body 100.
- the gas pipe 13 passes through the area of the heating system 90 and passes through the area of the refrigeration system 80 to produce a preheating or precooling effect on the gas.
- the temperature control sensor 10 is embedded in the bottom of the furnace body, which can accurately reflect the temperature of the sample chamber.
- the heating system 90 is composed of two racetrack-shaped heat conduction columns, namely a right heat conduction column 1 and a left heat conduction column 2, which are arranged symmetrically below the furnace body 100.
- the heating system 90 and the furnace body 100 can be connected separately by means of expansion, screwing or welding, or can be made integrally by integral processing.
- the side surface of the heat conduction column is a heat conduction surface
- the cross section of the heat conduction column is a heat transfer area.
- the lower end surface of the heating system 90 is a cooling surface 8 and closely adheres to the cooling surface 11 which is the upper end surface of the refrigeration system.
- the material of the heat conduction column of the heating system 90 and the furnace body 100 should be a material with high thermal conductivity, such as silver, but it is not limited thereto, as long as the thermal conductivity is not less than 100 W / m ⁇ K.
- the materials with high thermal conductivity include silver, copper, aluminum, etc., and the furnace body and the heat conducting column need not be the same material.
- the number and shape of the heat-conducting columns of the heating system 90 are not limited to this, for example, it may be two or more, as long as it is formed into a structure that can conduct heat symmetrically and uniformly.
- the heater of the heating system 90 is also composed of two groups, namely a left heater 3 and a right heater 4, but it is not limited to this, as long as the number of heaters is not more than heat conduction The number of columns is sufficient.
- the heater is composed of a double-strand resistance heating wire, which is wound on the heat conducting column symmetrically after insulation treatment. Specifically, the resistance heating wires constituting the heater pass through the short ceramic pillars to achieve insulation, and the insulated resistance heating wires are wound in double strands on the corresponding right thermal conduction column 1 and left thermal conduction column 2, respectively, thereby forming a heating system 90 Heater.
- the resistance heating wire used by the heater is a non-magnetic nickel-chromium alloy wire, but it is not limited to this.
- a non-magnetic nickel-chromium alloy wire is non-magnetic, which can eliminate its own influence on the measurement of the magnetic environment. And it is not easy to oxidize at high temperature, extending the life of the heater.
- the heaters of the heating system 90 are not limited to two groups, as long as uniform heating can be achieved, there is no limit in number, and the heaters of each group can be connected in series or in parallel.
- the number of heaters does not correspond to the number of thermally conductive columns, and the number of heaters is at most the number of thermally conductive columns.
- the number of heating wire strands of the heater is not unique, and the double strand is the optimal solution, the purpose is to cancel each other's magnetic field.
- the above-mentioned insulation treatment can also be a single-hole short ceramic column, armor or insulation coating.
- a single-hole short ceramic column is preferred for insulation treatment, that is, a number of short ceramic columns are fitted on the outer circle of the heating wire to achieve electrical isolation measures between the heater and the heat conduction column. With this, the heater can achieve reliable insulation.
- the small gap between the short ceramic columns solves the influence of the heater's thermal expansion and contraction geometric size changes.
- the ceramic column conducts heat quickly and can quickly transfer the heat of the heating wire to the heat conduction
- the gap between the column and the short ceramic column can also enhance the heat exchange with the thermally conductive column by convection.
- insulation can also be achieved by armoring and insulating coatings.
- the refrigeration system 80 has a double-layer structure, and is composed of a refrigerant inlet pipe 17, a refrigerant nozzle 19, a cooling guide 20, a transition joint 23, a refrigerant outlet pipe 18, and the like.
- the refrigerant enters the refrigerant inner cavity 81 from the refrigerant inlet tube 17, and is then sprayed onto the inner surface of the cold guide 20 through the refrigerant nozzle 19 to be vaporized, and the vaporized refrigerant enters the refrigerant outer cavity After 82, it is discharged from the refrigerant outlet pipe 18.
- the cold guide 20 is a hollow long cylindrical member, one end is closed, the other end is open, the closed end is the cooling surface 11, and the open end is the female port 22.
- the cold guide 20 transfers the cooling capacity of the cooling medium to the furnace body through the thin-walled cooling surface 11, whereby the internal cooling path is greatly shortened compared with the conventional refrigeration components, and the cooling capacity can be quickly Conducted to the furnace body of the thermal analysis instrument.
- the cooling surface 11 may be formed as a smooth surface with low manufacturing cost, or may be formed as an uneven surface with a large heat exchange area.
- the cooling member 20 may further include a porous ring 21, which can make the refrigerant medium flowing down along the inner wall of the cooling member 20 perform secondary vaporization, so that the refrigerant medium is vaporized more fully, and the cooling capacity is more efficiently transferred to ⁇ ⁇ ⁇ 20 ⁇ The cold guide 20.
- the refrigerant medium may be a refrigeration working medium for mechanical refrigeration, or may be liquid nitrogen or liquid helium.
- the transition joint 23 is formed with: a stop 24 corresponding to the refrigerant nozzle 19, a male port 25 corresponding to the cold guide 20 and located below the stop 24, a first gap 28 as a communication channel and independent of each other The second gap 29 and the first interface 26 and the second interface 27 connected to the first gap 28 and the second gap 29, respectively.
- the female port 22 of the cooling member 20 is sealedly connected to the male port 25 of the transition joint 23, for example, it may be screw seal, welding, etc., but it is not limited thereto.
- the first notch 28 is a through-hole structure, and serves as a channel for connecting the refrigerant inner cavity 81 and the refrigerant inlet tube 17, one end of which leads to the refrigerant inner cavity 81, and one end communicates with the first port 26.
- the second notch 29 is a blind hole structure, and a notch 29a is formed on the bottom side of the blind hole, the notch 29a communicates with the refrigerant outer cavity 82, and the other end of the second notch 29 communicates with the second interface 27 to communicate with the refrigerant
- the outer chamber 82 flows to the passage of the refrigerant outlet pipe 18. With this, the transition joint 23 skillfully completes the channel flow direction of the double-layer structure, the structure is compact, and the local size is reduced.
- the refrigerant nozzle 19 is a hollow long cylindrical member with a diameter smaller than that of the cooling guide 20, and is nested inside the cooling guide 20 through a gap.
- the end of the refrigerant nozzle 19 near the cooling surface 11 is provided with a fine hole for spraying Cold medium.
- fine holes are provided on the upper end surface of the one end and the side wall surface near the upper end surface respectively. In the present invention, according to specific requirements, more fine holes may be provided on the upper end surface, but only on the side wall surface A small amount of pores is enough.
- the other end of the refrigerant nozzle 19 (that is, the end away from the fine hole) is hermetically connected to the stop 24 of the transition joint 23, such as welding, screw connection, etc., but is not limited thereto.
- the inner wall of the refrigerant nozzle 19 and the transition joint 23 form a refrigerant inner cavity 81
- the outer wall of the refrigerant nozzle 19 and the inner wall of the heat guide 20 form a refrigerant outer cavity 82.
- the first port 26 of the transition joint 23 is a port connected to the refrigerant inlet pipe 17, and should be a sealed connection, such as screw connection, welding, etc., but is not limited thereto.
- the second interface 27 of the transition joint 23 is a port connected to the refrigerant outlet pipe 18, and should be a sealed connection, such as screw connection, welding, etc., but is not limited thereto.
- the refrigerant inlet pipe 17 communicates with the refrigerant cavity 81 through the first gap 28 and the first port 26 on the transition joint 23, and the refrigerant outlet tube 18 passes through the second gap 29 and the second port 27 on the transition joint 23 It communicates with the refrigerant outer chamber 82 to form an inner and outer double-layer structure. Compared with the traditional structure, it can greatly improve the cooling effect.
- the refrigerant inlet tube 17 and the refrigerant outlet tube 18 are located at the same end and extend in the extending direction of the inner and outer double-layer cavities (that is, in the vertical direction in this embodiment) through the transition joint 23 and the refrigerant inner cavity 81 and the refrigerant The cavities 82 are in communication with each other.
- the refrigerant inlet pipe 17 and the refrigerant outlet pipe 18 are arranged substantially perpendicular to the lower part of the refrigeration system.
- the refrigerant inlet tube 17 and the refrigerant outlet tube 18 are formed in a vertically arranged and substantially side-by-side structure, so compared with traditional refrigeration components, this configuration can achieve a compact structure, reduce the overall size, improve the adaptability and other advantages .
- the refrigerant inlet pipe 17, the refrigerant nozzle 19, the cold guide 20, the transition joint 23, and the refrigerant outlet pipe 18 can be separately processed, and then assembled into the refrigeration system 80.
- This not only reduces manufacturing costs, but also facilitates disassembly and maintenance, but also facilitates local replacement and saves manpower and material resources.
- the refrigerant inlet tube 17, the refrigerant spray head 19, the cold guide 20, the transition joint 23, and the refrigerant outlet tube 18 may be integrally formed, for example, 3D stereo printing. As a result, assembly errors between components can be greatly reduced, and sealing performance can be ensured to the greatest extent.
- the refrigeration system of the present embodiment the surface of the closed end of the heat conducting member is the cooling surface, and the cooling capacity is transmitted to the furnace body through the thin-walled plane, so the cooling path is short, compared with the traditional refrigeration components, The cooling capacity can be quickly transferred to the furnace body of the thermal analysis instrument.
- the refrigerant inlet pipe communicates with the refrigerant inner cavity through the transition joint
- the refrigerant outlet pipe communicates with the refrigerant outer cavity through the transition joint, thereby forming an internal and external double-layer structure.
- a large amount of fine The hole allows the refrigerant to fully vaporize through the inner layer and enter the outer layer at the instant to release the latent heat of vaporization.
- the gas vaporized by the refrigerant is discharged through the outer layer structure.
- the outer layer structure is arranged below the cooling surface and has a certain thermal insulation effect.
- the cooling capacity can be fully transmitted to the direction of the cooling surface, so that the cooling capacity can be fully transmitted to the furnace body of the thermal analyzer.
- each member is made of non-magnetic material. With this, it is applied to the measurement in the magnetic environment.
- FIG. 7 is a partial cross-sectional view of applying the furnace body according to the present invention to a differential scanning calorimeter.
- 8 is a schematic diagram of the overall structure of a differential scanning calorimeter equipped with the furnace body of the present invention.
- the heat insulation layer 12 is located on the outer periphery of the furnace body 100, the heating system 90, and the refrigeration system 80, in other words, wraps the above-mentioned components with a certain space.
- the furnace cover 14 covers the upper surface of the furnace body 100.
- the refrigeration system 80 may be a refrigeration component with liquid nitrogen as a refrigerant, or a mechanical refrigeration component.
- the lower surface of the heat conduction column of the heating system 90 is connected to the upper end surface of the refrigeration system 80, and the connection method may be screw connection or welding, which is not limited, as long as the contact surfaces are closely attached to ensure a seal.
- the structure of the heat insulation layer 12 is that the inner layer adopts a stainless steel heat shield, and the outer layer adopts a heat insulating material with low thermal conductivity, such as aerogel, etc., which effectively blocks the heat radiation part in the high temperature region and the heat conduction part in the low temperature region.
- the furnace cover 14 realizes the sealing and heat preservation effect on the furnace body 100.
- the temperature control sensor 10 is installed in the lower part of the furnace body 100, embedded in its hole, and can be fixed with a high-temperature adhesive to measure the temperature of the furnace body.
- the heat flow sensor 9 is installed in the chamber of the furnace body 100, and a through hole is provided at the center of the heat flow sensor 9, which is connected to the furnace body 100 by screws, and is used to measure the heat flow difference between the left crucible 15 and the right crucible 16. At the same time, a through hole is set in the center of the screw at the same time, which is the air passage.
- the upper end surface of the air pipe 13 has an internal thread, which is connected with the connecting screw of the heat flow sensor 9 and is used to pass the purge gas to the left chamber 6 and the right chamber 5.
- the overall structure of the differential scanning calorimeter is schematically shown.
- the sample to be tested is placed in the left crucible 15, and the right crucible 16 is an empty crucible as a reference.
- the CPU 50 issues instructions according to the program control temperature required by the sample to be tested.
- the temperature control system 51 controls the heating power supply 52 and the refrigerant 53 to perform a temperature increase or decrease experiment on the furnace body 100.
- Purge gas flow control The gas path control unit 55 purges the chamber of the furnace body 100 at a constant flow rate.
- the furnace temperature 56 is the actual temperature of the furnace body 100 read by the temperature control sensor 10.
- the temperature control system compares the value of the furnace temperature 56 with the target temperature in real time and adopts a PID temperature control algorithm to the furnace body
- the furnace temperature 56 of 100 is precisely controlled to provide an accurate temperature-averaged environment for sample measurement.
- the heat flow difference signal 57 measured by the heat flow sensor 9 is collected and output by the measurement unit 54 to complete the measurement task of the sample to be measured.
- the volume is smaller than that of the traditional circular shape, which effectively reduces the mass heat capacity, and can evenly wrap the sample to make it symmetrically heated.
- the heating system 90 conducts heat by adopting at least two heat conducting columns, thus effectively increasing the heat conducting area compared to the traditional single cylinder, the heat is moved closer to the center of the furnace, reducing heat loss and increasing the heating rate, in addition to the number of heaters There are at least two, so while increasing the heat transfer area, high-power heating can be achieved and the heating is uniform.
- the refrigeration system 80 adopts a double-layer structure with sufficient gasification and a short cooling path.
- the cooling capacity of the refrigerant can be more fully transmitted to the furnace body, greatly improving the transmission Cold efficiency.
- all the parts materials are made of non-magnetic materials, they can be applied to the measurement of the magnetic environment.
- the heater of the heating system 90 is double-wound on the corresponding thermal conductive column, the resistance heating can be further eliminated
- the magnetic effect brought by the wire itself reduces the interference of the heating wire to the external magnetic environment.
- the furnace body according to the present invention is applied to a differential scanning calorimeter, after the power source, refrigerant, gas and control system are connected, a temperature rise and fall experiment is performed on the furnace body to detect the temperature rise and fall ability of the furnace body.
- the constant power 892.5W is set to be heated from room temperature to 973K, and then the heating is stopped, and the liquid nitrogen cooling is opened to 88K.
- the experimental data curve diagram, in which the outlet pressure of the liquid nitrogen irrigation is about 0.16MPa, the furnace body Using a nitrogen atmosphere, the flow rate is about 50ml / min. 9 is an experimentally verified temperature rise and fall curve of the furnace body applied to the differential scanning calorimeter according to the present invention; FIG.
- the furnace body can achieve a temperature range of 87.98K to 1001K, in which the fastest heating rate is 8.333K / s (about 500K / min) and the fastest cooling Rate-6.283K / s (about -377K / min), before 973K can meet 4K / s (about 240K / min) heating rate, before 614K can meet -4K / s (about -240K / min) cooling rate, Before 300K, the cooling rate of -1.945K / s (about -116K / min) can be met. In the low temperature section, before 112K, the cooling rate of -0.894K / s (about -53K / min) can be met.
- FIG. 10 is a schematic diagram of measuring the furnace body according to the present invention in the superconducting magnet. As shown in FIG. 10, after applying the furnace body of the present invention to a differential scanning calorimeter, it is placed in a measuring hole of a superconducting magnet for measurement. The diameter of the measuring hole of the superconducting magnet 30 is relatively small, which requires a differential description.
- the overall size of the calorimeter must be small, and in order to protect the superconducting magnet, it is necessary to add a water-cooling jacket component to the periphery of the differential scanning calorimeter, as shown in the figure, the water-cooling jacket 32, so that the instrument volume needs to be further reduced, and the furnace body of the invention 31 is precisely due to its compact structure and small size, which meets this application requirement. It has been experimentally verified that it can meet the measurement under 5T magnetic field, and the DSC signal has good repeatability.
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analyzing Materials Using Thermal Means (AREA)
Abstract
一种可实现快速升降温的用于热分析仪器的炉体及具备该炉体的热分析仪器,该炉体包括:中空的炉体主体(100)、位于炉体主体(100)下方的加热系统(90)和制冷系统(80);炉体主体(100)的截面形状为哑铃形,内部设有两个对称的样品腔,并且在中央部位设置有孔(7),作为腔内气体流通的通气通道;加热系统(90)包括两个以上的导热柱和缠绕于导热柱外表面的两组以上的加热器;制冷系统(80)包括中空,且一端封闭为传冷面(11)、一端开放的导冷件(20),中空且隔着间隙嵌套于导冷件(20)内部的冷媒喷头(19),位于导冷件(20)的开放的一端侧的冷媒入口管(17)和冷媒出口管(18),以及与导冷件(20)的开放的一端、以及与冷媒喷头(19)中远离传冷面(11)的一端分别密封连接的过渡接头(23);多个导热柱排布于炉体主体(100)的两个对称的样品腔的下方并成轴对称分布;加热器包括对称缠绕在导热柱上的加热丝;冷媒喷头(19)的内壁与过渡接头(23)形成了冷媒内腔(81);冷媒喷头(19)的外壁与导冷件(20)的内壁形成了冷媒外腔(82);冷媒入口管(17)与冷媒内腔(81)相连通,冷媒出口管(18)与冷媒外腔(82)相连通。
Description
本发明涉及一种用于热分析仪器的炉体及具备该炉体的热分析仪器。
目前,热分析技术是在程序温度控制下测量物质的物理性质随温度的变化,用于研究物质在某一特定温度时所发生的热学、力学、声学、光学、电学、磁学等物理参数的变化,是一种十分重要的分析测试方法。此外,不同的技术方法对应不同的热分析仪器,但通常热分析仪器包括温度控制器、炉体、物理检测单元、气氛控制器和数据处理系统等,其中,炉体是热分析仪器的核心部件,为试样提供一个测量所需的均温环境得到支撑。
具体而言,可分为差示扫描量热法(Differential Scanning Calorimetry;DSC)、差热分析(Differential Thermal Analysis;DTA)、热重分析仪(Thermo
Gravimetric Analyzer;TGA)、以及动态热机械分析(Dynamic Thermomechanical
Analysis;DMA)等。
差示扫描量热法中所需的差示扫描量热仪(以下有时也会简称DSC)是上述热分析仪器的一种,也是应用最广泛的一种,是使样品处于程序温度控制下,观察样品和参比物之间热流差随温度或时间变化的测试仪器。另外,磁环境还能对材料的物相形成及性能产生影响,对材料新现象和机理研究具有重要的科学价值。
然而,商品化的热流型差示扫描量热仪的升降温速率大部分在100K/min范围内,且也不是在仪器的全温区范围内均能达到。另外,针对应用于磁环境的差示扫描量热仪的研究,也几乎处于起步阶段。
本发明的目的在于提供一种可实现快速升降温的用于热分析仪器的炉体及具备该炉体的热分析仪器。
本发明提供一种用于热分析仪器的炉体,包括:中空的炉体主体、位于所述炉体主体下方的加热系统、和位于炉体主体下方的制冷系统;
所述炉体主体的截面形状为哑铃形,内部设有两个对称的样品腔,并且在中央部位设置有孔,作为腔内气体流通的通气通道;
所述加热系统包括两个以上的导热柱和缠绕于所述导热柱外表面的两组以上的加热器;
所述制冷系统包括中空,且一端封闭为传冷面、一端开放的导冷件,中空且隔着间隙嵌套于所述导冷件内部的冷媒喷头,位于所述导冷件的开放的一端侧的冷媒入口管和冷媒出口管,以及与所述导冷件的开放的一端、以及与所述冷媒喷头中远离所述传冷面的一端分别密封连接的过渡接头;
多个所述导热柱排布于所述炉体主体的两个对称的样品腔的下方并成轴对称分布;
所述加热器包括对称缠绕在所述导热柱上的加热丝;
所述冷媒喷头的内壁与所述过渡接头形成了冷媒内腔;
所述冷媒喷头的外壁与所述导冷件的内壁形成了冷媒外腔;
所述冷媒入口管与所述冷媒内腔相连通,所述冷媒出口管与所述冷媒外腔相连通。
根据本发明,本发明与现有技术相比较,具有如下技术效果:
1、本发明的炉体主体采用哑铃形,与传统的圆形相比体积小,炉体结构紧凑,有效减小了质量热容,另外样品被包裹均匀,使样品本身对称受热;
2、本发明的加热系统采用了多导热柱进行导热,与传统的单根圆柱相比,有效增加了导热面积,热量向炉中心靠拢,减少热损失,提高了升温速率;
3、本发明的加热系统的导热柱和加热器数量均为二以上,因此在增加传热面积的同时,能实现大功率加热,且加热更加均匀;
4、本发明的制冷系统采用巧妙的双层结构,与传统制冷系统相比,传冷路径短,传冷效率高,能大幅提升制冷效果;
5、本发明的加热系统和制冷系统均垂直布置于炉体主体正下方,结构紧凑,炉体体积小,这样便于安装于狭窄的磁体间隙孔中,为实现磁环境的测量准备了硬件条件。
也可以是,本发明中,所述加热丝为双股。借助于此,加热器通过双股缠绕在对应的导热柱上,具体为,由一根加热丝对折为双股同步缠绕在所述导热柱上,即加热电流从第一股流入,并从相邻另一股流出。借助于此,消除了加热丝本身带来的磁效应,减少了加热丝对外部磁环境的干扰。
也可以是,本发明中,所述炉体的构件或材料均采用无磁材料。借助于此,可以应用于磁环境下的测量,消除仪器材料本身带来的磁干扰,提高测量精度。
也可以是,本发明中,所述导热柱的下方连接制冷系统,所述导热柱的下表面为导冷面。借助于此,炉体能够实现低温测量。
也可以是,本发明中,所述导热柱与所述炉体主体通过胀紧、螺纹或焊接方式分体连接,或者整体式加工为一体。
也可以是,本发明中,所述炉体主体和所述导热柱的材料均为高导热率的材料。借助于此,炉体可以快速实现均温,为样品的测量提供了一个稳定的均温环境。
也可以是,本发明中,所述加热器为电阻加热丝,经绝缘处理后缠绕于所述导热柱上。借助于此,加热器的电阻在升温过程中比较稳定,便于稳定控温。
也可以是,本发明中,所述电阻加热丝的材质为镍铬合金丝。借助于此,加热器没有磁性,消除本身对磁环境测量的影响,另外加热器在高温下不容易氧化,延长了加热器寿命。
也可以是,本发明中,所述绝缘处理为单孔短陶瓷柱、铠装或绝缘涂层。借助于此,加热器可以实现可靠的绝缘。
也可以是,本发明中,所述导冷件上包括多孔环。借助于此,能使沿导冷件的内壁流下的冷媒进行二次汽化,从而使冷媒汽化更充分,将冷量更高效地传递给导冷件。
也可以是,本发明中,所述冷媒喷头靠近所述传冷面的一端设有细孔。借助于此,有少量冷媒从冷媒内腔的侧壁面喷出汽化,从而可以进一步预冷冷却器中传冷面以下的构件环境,具有进一步的保温作用,使冷量能够进一步充分的向传冷面方向传导。
也可以是,本发明中,所述过渡接头上形成有第一缺口和第二缺口,所述第一缺口用作连通所述冷媒内腔和所述冷媒入口管的通道,所述第二缺口用作连通所述冷媒外腔流至所述冷媒出口管的通道。借助于此,本发明的过渡接头巧妙地完成双层结构的通道流向,结构紧凑,缩小了局部尺寸。
也可以是,本发明中,所述冷媒入口管在所述冷媒内腔的延伸方向上通过所述过渡接头与其密封连接并相连通,所述冷媒出口管在所述冷媒外腔的延伸方向上,通过所述过渡接头与其密封连接并相连通。借助于此,本发明的冷媒入口管和冷媒出口管在内外两个腔体的延伸方向上布置,因此与传统制冷部件相比,该配置方式能实现结构紧凑,缩小了整体尺寸,提高适配性等优点。
也可以是,本发明中,所述冷媒入口管、所述冷媒喷头、所述导冷件、所述过渡接头和所述冷媒出口管为分体加工,而后再组装成所述冷却器。借助于此,不仅能降低制造成本,而且便于拆卸和维修,也利于局部更换,节省人力物力。
也可以是,本发明中,所述冷媒入口管、所述冷媒喷头、所述导冷件、所述过渡接头和所述冷媒出口管为一体化成型。借助于此,能大幅地降低构件间的装配误差,最大程度保证密封性。
也可以是,本发明中,所述一体化成型为3D立体打印。
另一方面,本发明还提供了一种具备上述炉体的热分析仪器。
根据本发明的用于热分析仪器的炉体不仅能实现快速升降温、还能在有磁和无磁环境下进行准确的测试测量。根据下述具体实施方式并参考附图,将更好地理解本发明的上述内容及其它目的、特征和优点。
图1是根据本发明的用于热分析仪器的炉体的立体图;
图2是图1所示的炉体的主视图;
图3是图1所示的炉体的侧视图;
图4是图1所示的炉体的俯视图;
图5是沿A-A的向视剖视图;
图6是图1所示的炉体中的制冷系统的剖视图;
图7是将根据本发明的炉体应用于差示扫描量热仪上的局部剖视图;
图8是安装有本发明的炉体的差示扫描量热仪的整体结构示意图;
图9是根据本发明的炉体应用于差示扫描量热仪上实验验证的升降温曲线图;
图10是将根据本发明的炉体置于超导磁体中测量的示意图;
图11(a)-图11(e)是根据本发明的炉体应用于差示扫描量热仪上实验验证的升降温曲线图的原始实验数据表;
符号说明:
100 炉体主体
90
加热系统
80
制冷系统
81 冷媒内腔
82 冷媒外腔
1右导热柱
2
左导热柱
3
左加热器
4
右加热器
5
右腔室
6
左腔室
7
孔
8
导冷面
9
热流传感器
10
控温传感器
11
传冷面
12
保温层
13
气管
14
炉盖
15
左坩埚
16
右坩埚
17
冷媒入口管
18
冷媒出口管
19
冷媒喷头
20
导冷件
21
多孔环
22
母端口
23
过渡接头
24
止口
25
公端口
26
第一接口
27
第二接口
28
第一缺口
29
第二缺口
29a 缺口
30
超导磁体
31
炉体
32
水冷套
50
CPU
51
控温系统
52
加热电源
53
冷媒
54
测量单元
55
气路控制单元
56
炉温
57
热流差信号。
以下结合附图及下述实施方式进一步说明本发明,应理解,附图及下述实施方式仅用于说明本发明,而非限制本发明。在各图中相同或相应的附图标记表示同一部件,并省略重复说明。
在此公开一种用于热分析仪器的炉体,图1是根据本发明的炉体的立体图。图2是图1所示的炉体的主视图。图3是图1所示的炉体的侧视图。图4是图1所示的炉体的俯视图。图5是沿A-A的向视剖视图。图6是图1所示的炉体中的制冷系统的剖视图。
如图1至图6所示,根据本发明的用于热分析仪器的炉体包括:中空的炉体主体100、位于炉体主体100下方的加热系统90、和位于炉体主体100下方的制冷系统80。此外,炉体主体100的截面形状为哑铃形,且内部设有两个对称的样品腔,即右腔室5和左腔室6。但形状不限于此,只要是对称结构即可。
具体地,右、左腔室5、6内分别左右对称地放置有热流传感器9,而后分别在热流传感器9的上表面对称地放置左坩埚15和右坩埚16,左坩埚15和右坩埚16位于左腔室6和右腔室5内部。此外,在炉体主体100中心处,即右、左腔室5、6之间的部位,设置用于腔内气体流通的孔7。后述图7所示的气管13与该孔7连接,且图3所示的控温传感器10埋入炉体主体100底部。其中,气管13穿过加热系统90的区域,穿过制冷系统80区域,对气体产生预热或预冷作用,控温传感器10埋入炉体主体底部,可以准确地反映样品腔的温度。
本实施形态中,加热系统90由两根跑道形导热柱组成,分别为右导热柱1和左导热柱2,对称设置于炉体主体100的下方。加热系统90与炉体主体100可通过胀紧、螺纹或焊接方式分体连接,也可通过整体式加工进行一体化制成。又,导热柱的侧面为导热面,导热柱横截面为传热面积。又,加热系统90的下端面为导冷面8,与制冷系统的上端面即传冷面11紧密贴合。加热系统90的导热柱与炉体主体100的材料应为高导热率的材料,例如为银,但不限于此,只要导热系数不小于100W/m·K即可。其中,高导热率材料有银、铜、铝等,炉体主体和导热柱不需要为同样的材质。另,加热系统90的导热柱数量和形状也不限于此,例如,也可以是两个以上,只要形成为能对称且均匀地导热的结构即可。
本实施形态中,与上述结构相对应地,加热系统90的加热器也由两组组成,分别为左加热器3和右加热器4,但不限于此,只要加热器的数量不多于导热柱的数量即可。又,加热器由双股电阻加热丝组成,经绝缘处理后分别对称地缠绕在导热柱上。具体地,构成加热器的电阻加热丝穿过短陶瓷柱从而实现绝缘,而绝缘后的电阻加热丝分别双股缠绕在对应的右导热柱1和左导热柱2上,由此构成加热系统90的加热器。本实施形态中,加热器使用的电阻加热丝为无磁性的镍铬合金丝,但不限于此,具体地,使用无磁性的镍铬合金丝没有磁性,可消除本身对磁环境测量的影响,且在高温下不容易氧化,延长了加热器寿命。但若不考虑磁环境的应用,还可以选择其它材料,如铁铬铝等。
另,加热系统90的加热器也不限于两组,只要能实现均匀加热,则数量上不设限制,且各组加热器之间可串联或并联连接。此外,加热器的数量与导热柱的数量并不是一一对应的,加热器的数量最多为导热柱的数量。另,加热器的加热丝股数不唯一,双股是最优方案,目的是相互抵消自身产生的磁场。
又,上述绝缘处理还可为单孔短陶瓷柱、铠装或绝缘涂层等。本发明中,绝缘处理优先选用单孔短陶瓷柱,即在加热丝外圆上套装若干只短陶瓷柱实现加热器与导热柱间的电隔离措施。借助于此,加热器可以实现可靠的绝缘,短陶瓷柱间的微小间隙解决了加热器热胀冷缩几何尺寸变化带来的影响,陶瓷柱导热快,可快速将加热丝的热量传导给导热柱,另外短陶瓷柱间的间隙也可通过对流方式加强与导热柱之间的换热。但除单孔短陶瓷柱外,也可以通过铠装和绝缘涂层实现绝缘。
本实施形态中,制冷系统80是一种双层结构,由冷媒入口管17、冷媒喷头19、导冷件20、过渡接头23和冷媒出口管18等构成。如图6中的箭头所示,冷媒介质从冷媒入口管17进入至冷媒内腔81内,再经冷媒喷头19喷射至导冷件20的内表面从而汽化,汽化后的冷媒介质进入冷媒外腔82后由冷媒出口管18排出。
本实施形态中,导冷件20为中空的长筒状构件,一端封闭,另一端开放,封闭的一端为传冷面11,开放的一端为母端口22。具体地,导冷件20通过该薄壁的传冷面11将冷媒介质的冷量传递给炉体,由此,内部的传冷路径与传统的制冷部件相比大大缩短,可快速将冷量传导给热分析仪器的炉体。又,传冷面11可以形成为制造成本较低的平滑面的结构,也可以形成为热交换面积较大的凹凸面的结构。又,导冷件20上还可包括多孔环21,由此能使沿导冷件20的内壁流下的冷媒介质进行二次汽化,从而使冷媒介质汽化更充分,将冷量更高效地传递给导冷件20。又,本发明中,冷媒介质可以为机械制冷的制冷工质,也可以为液氮或液氦等。
过渡接头23上形成有:尺寸与冷媒喷头19相对应的止口24、尺寸与导冷件20相对应且位于止口24下方的公端口25、作为连通通道且彼此独立的第一缺口28和第二缺口29、以及分别与第一缺口28和第二缺口29连接的第一接口26和第二接口27。其中,导冷件20的母端口22与过渡接头23的公端口25密封连接,例如可为螺纹密封、焊接等,但不限于此。本实施形态中,第一缺口28为一通孔结构,用作连通冷媒内腔81和冷媒入口管17的通道,其一端通向冷媒内腔81,一端连通第一接口26。第二缺口29为一盲孔结构,且在盲孔的底部侧面开一缺口29a,该缺口29a与冷媒外腔82连通,第二缺口29的另一端与第二接口27连通,用作连通冷媒外腔82流至冷媒出口管18的通道。借助于此,过渡接头23巧妙地完成双层结构的通道流向,结构紧凑,缩小了局部尺寸。
冷媒喷头19为直径小于导冷件20的中空的长筒状构件,并隔着间隙嵌套于导冷件20内部,冷媒喷头19中靠近传冷面11的一端设有细孔,用于喷射冷媒介质。具体而言,分别在该一端的上端面和靠近上端面的侧壁面上设有细孔,本发明中,根据具体需求,可能需在上端面设置较多细孔,但在侧壁面仅设有少量细孔即可。冷媒喷头19的另一端(即远离细孔的一端)与过渡接头23的止口24密封连接,例如焊接、螺纹连接等,但不限于此。
又,如图6所示,冷媒喷头19的内壁与过渡接头23形成了冷媒内腔81,冷媒喷头19的外壁与导冷件20的内壁形成了冷媒外腔82。过渡接头23的第一接口26是与冷媒入口管17连接的端口,应为密封连接,例如可为螺纹连接、焊接等,但不限于此。过渡接头23的第二接口27是与冷媒出口管18连接的端口,应为密封连接,例如可为螺纹连接、焊接等,但不限于此。具体而言,冷媒入口管17通过过渡接头23上的第一缺口28和第一接口26与冷媒内腔81相连通,冷媒出口管18通过过渡接头23上的第二缺口29和第二接口27与冷媒外腔82相连通,从而形成内外双层的结构,与传统结构相比,能大幅度提升制冷效果。
又,冷媒入口管17和冷媒出口管18位于同一端并在内外双层腔体的延伸方向上(即本实施形态中为竖直方向上)分别通过过渡接头23与冷媒内腔81和冷媒外腔82各自相连通。冷媒入口管17与冷媒出口管18大致垂直布置于制冷系统的下部。由此,冷媒入口管17和冷媒出口管18形成为竖直布置且大致并排的结构,因此与传统制冷部件相比,该配置方式能实现结构紧凑,缩小了整体尺寸,提高适配性等优点。
另,本发明中,可分体加工冷媒入口管17、冷媒喷头19、导冷件20、过渡接头23和冷媒出口管18,而后再组装成制冷系统80。由此不仅能降低制造成本,而且便于拆卸和维修,也利于局部更换,节省人力物力。但也可使冷媒入口管17、冷媒喷头19、导冷件20、过渡接头23和冷媒出口管18一体化成型,例如3D立体打印等。由此,能大幅地降低构件间的装配误差,最大程度保证密封性。
由上,本实施形态的制冷系统:导冷件的封闭一端的表面为传冷面,通过该薄壁平面将冷量传递给炉体,因此传冷路径短,与传统的制冷部件相比,可快速将冷量传导给热分析仪器的炉体。又,冷媒入口管通过过渡接头与冷媒内腔相连通,冷媒出口管通过过渡接头与冷媒外腔相连通,从而形成内外双层的结构,在内层结构中,冷媒喷头上端面设有大量细孔,可使冷媒通过内层进入外层这个瞬间使其充分汽化释放出汽化潜热,冷媒汽化后的气体通过外层结构排出,外层结构布置于传冷面的下方,具有一定的保温作用,使冷量能够充分的向传冷面方向传导,从而使冷量充分传导给热分析仪炉体。
另,本发明中,各构件均为无磁材料制成。借助于此,应用于磁环境下的测量。
图7是将根据本发明的炉体应用于差示扫描量热仪上的局部剖视图。图8是安装有本发明的炉体的差示扫描量热仪的整体结构示意图。如图所示,保温层12位于炉体主体100、加热系统90和制冷系统80的外周,换言之隔着一定空间地包裹上述各构件。炉盖14覆盖于炉体主体100的上表面。其中,制冷系统80可以是液氮作为冷媒的制冷部件,或机械制冷部件。又,加热系统90的导热柱的下表面与制冷系统80的上端面相连接,其连接方式可以是螺纹连接,也可以焊接,不做限定,只要接触面贴合紧密,确保密封即可。
保温层12的结构是内层采用不锈钢的隔热屏,外层采用低导热率的隔热材料,如气凝胶等,这样有效阻挡了高温区的热辐射部分和低温区的热传导部分。炉盖14对炉体主体100实现密封和保温作用。
又,如图3所示,控温传感器10安装于炉体主体100的下部,内嵌于其孔中,并可采用高温粘接剂固定,用来测量炉体的温度。如图7所示,热流传感器9安装于炉体主体100的腔室内,热流传感器9中央处设一通孔,与炉体主体100通过螺钉连接,用来测量左坩埚15和右坩埚16的热流差信号,与此同时在螺钉中心另设一通孔,为走气通道。气管13的上端面有一内螺纹,与热流传感器9的连接螺钉连接,用来对左腔室6和右腔室5通吹扫气体。上述均为本领域公知结构,并非限定,可根据需求而灵活变动。
如图8所示,概略地示出了差示扫描量热仪的整体结构。具体操作时,在左坩埚15内放置待测样品,右坩埚16为空坩埚,作为参比物。随后,CPU50根据待测样品所需的程序控制温度而发出指令,控温系统51接收指令后控制加热电源52和冷媒53对炉体主体100进行升温或者降温实验,同时CPU50根据待测样品所需吹扫气体流量控制气路控制单元55对炉体主体100的腔室按照一定的流量进行吹扫。在此过程中,炉温56即是控温传感器10读取的炉体主体100的实际温度,控温系统通过炉温56的数值与目标温度值实时比较,采用PID控温算法对炉体主体100的炉温56进行精确控制,为样品的测量提供一个精确的均温环境,热流传感器9测量所得的热流差信号57被测量单元54采集并输出,从而完成了对待测样品的测量任务。
根据本发明的炉体,因采用哑铃形的炉体主体100而与传统的圆形相比体积小,有效减小了质量热容,而且能均匀包裹样品使其对称受热。又,加热系统90通过采用至少两个导热柱进行导热,因而与传统的单根圆柱相比有效增加了导热面积,热量向炉中心靠拢,减少热损失,提高了升温速率,此外加热器的数量也为至少两个,因此在增加传热面积的同时,能实现大功率加热,且加热均匀。又,制冷系统80采用双层结构,气化充分,传冷路径短,又由于多孔环的二次气化及保冷作用,冷媒的冷量可以更充分向炉体主体方向传递,大幅提高了传冷效率。另,本发明中,由于零件材料全都采用无磁材料,因而能应用于磁环境的测量,此外由于加热系统90的加热器是双股缠绕在对应的导热柱上,由此能进一步消除电阻加热丝本身带来的磁效应,减少了加热丝对外部磁环境的干扰。
下面进一步例举实施例以详细说明本发明。
同样应理解,以下实施例只用于对本发明进行进一步说明,不能理解为对本发明保护范围的限制,本领域的技术人员根据本发明的上述内容作出的一些非本质的改进和调整均属于本发明的保护范围。下述示例具体的工艺参数等也仅是合适范围中的一个示例,即本领域技术人员可以通过本文的说明做合适的范围内选择,而并非要限定于下文示例的具体数值。
将根据本发明的炉体应用于差示扫描量热仪上后,接上电源、冷媒、气体和控制系统后,对该炉体进行升降温实验,检测炉体的升降温能力。具体地,本实施例中,设置定功率892.5W加热从室温升至973K后停止加热,开启液氮制冷至88K的实验数据曲线图,其中液氮灌的出口压力为0.16MPa左右,炉体使用氮气气氛,流量约50ml/min。图9是根据本发明的炉体应用于差示扫描量热仪上实验验证的升降温曲线图;图11(a)-图11(e)是根据本发明的炉体应用于差示扫描量热仪上实验验证的升降温曲线图的原始实验数据表。参考图9和图11(a)-图11(e)可知,炉体可实现87.98K至1001K的温区范围,其中最快升温速度为8.333K/s(约500K/min),最快降温速率-6.283K/s(约-377K/min),973K前可以满足4K/s(约240K/min)的升温速率,614K前可满足-4K/s(约-240K/min)的降温速率,300K前可以满足-1.945K/s(约-116K/min)的降温速率,在低温区间段,112K以前可以满足-0.894K/s(约-53K/min)的降温速率。
进一步而言,本发明的炉体能安装于超导磁体间隙中,图10是将根据本发明的炉体置于超导磁体中测量的示意图。如图10所示,将本发明的炉体应用于差示扫描量热仪后,放置于超导磁体测量孔中进行测量,超导磁体30的测量孔孔径比较小,从而要求差示描述量热仪整体尺寸要小,且为了保护超导磁体,需要差示扫描量热仪外周增加水冷套部件,如图中所示水冷套32,这样便需进一步缩小仪器体积,而本发明的炉体31正是由于结构紧凑以致体积小巧而满足此应用要求,经实验验证可满足5T磁场下的测量,DSC信号重复性较好。
以上的具体实施方式对本发明的目的、技术方案和有益效果进行了进一步详细说明,应当理解的是,以上仅为本发明的一种具体实施方式而已,并不限于本发明的保护范围,在不脱离本发明的基本特征的宗旨下,本发明可体现为多种形式,因此本发明中的实施形态是用于说明而非限制,由于本发明的范围由权利要求限定而非由说明书限定,而且落在权利要求界定的范围,或其界定的范围的等价范围内的所有变化都应理解为包括在权利要求书中。凡在本发明的精神和原则之内的,所做出的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
Claims (15)
- 一种用于热分析仪器的炉体,包括:中空的炉体主体、位于所述炉体主体下方的加热系统、和位于炉体主体下方的制冷系统;所述炉体主体的截面形状为哑铃形,内部设有两个对称的样品腔,并且在中央部位设置有孔,作为腔内气体流通的通气通道;所述加热系统包括两个以上的导热柱和缠绕于所述导热柱外表面的两组以上的加热器;所述制冷系统包括中空,且一端封闭为传冷面、一端开放的导冷件,中空且隔着间隙嵌套于所述导冷件内部的冷媒喷头,位于所述导冷件的开放的一端侧的冷媒入口管和冷媒出口管,以及与所述导冷件的开放的一端和所述冷媒喷头中远离所述传冷面的一端分别密封连接的过渡接头;多个所述导热柱排布于所述炉体主体的两个对称的样品腔的下方并成轴对称分布;所述加热器包括对称缠绕在所述导热柱上的加热丝;所述冷媒喷头的内壁与所述过渡接头形成了冷媒内腔;所述冷媒喷头的外壁与所述导冷件的内壁形成了冷媒外腔;所述冷媒入口管与所述冷媒内腔相连通,所述冷媒出口管与所述冷媒外腔相连通。
- 根据权利要求1所述的用于热分析仪器的炉体,其特征在于,所述加热丝为双股。
- 根据权利要求1所述的用于热分析仪器的炉体,其特征在于,所述炉体的构件或材料均采用无磁材料。
- 根据权利要求1所述的用于热分析仪器的炉体,其特征在于,所述导热柱的下方连接制冷系统,所述导热柱的下表面为导冷面。
- 根据权利要求1所述的用于热分析仪器的炉体,其特征在于,所述导热柱与所述炉体主体通过胀紧、螺纹或焊接方式分体连接,或者整体式加工为一体。
- 根据权利要求1所述的用于热分析仪器的炉体,其特征在于,所述炉体主体和所述导热柱的材料均为高导热率的材料。
- 根据权利要求1所述的用于热分析仪器的炉体,其特征在于,所述加热器为电阻加热丝,经绝缘处理后缠绕于所述导热柱上。
- 根据权利要求7所述的用于热分析仪器的炉体,其特征在于,所述绝缘处理为单孔短陶瓷柱、铠装或绝缘涂层。
- 根据权利要求1所述的用于热分析仪器的炉体,其特征在于,所述导冷件上包括多孔环。
- 根据权利要求1所述的用于热分析仪器的炉体,其特征在于,所述冷媒喷头靠近所述传冷面的一端设有细孔。
- 根据权利要求1所述的用于热分析仪器的炉体,其特征在于,所述过渡接头上形成有第一缺口和第二缺口,所述第一缺口用作连通所述冷媒内腔和所述冷媒入口管的通道,所述第二缺口用作连通所述冷媒外腔流至所述冷媒出口管的通道。
- 根据权利要求1所述的用于热分析仪器的炉体,其特征在于,所述冷媒入口管在所述冷媒内腔的延伸方向上通过所述过渡接头与其密封连接并相连通,所述冷媒出口管在所述冷媒外腔的延伸方向上,通过所述过渡接头与其密封连接并相连通。
- 根据权利要求1所述的用于热分析仪器的炉体,其特征在于,所述冷媒入口管、所述冷媒喷头、所述导冷件、所述过渡接头和所述冷媒出口管为分体加工,而后再组装成所述冷却器。
- 根据权利要求1所述的用于热分析仪器的炉体,其特征在于,所述冷媒入口管、所述冷媒喷头、所述导冷件、所述过渡接头和所述冷媒出口管为一体化成型。
- 一种具备权利要求1至14中任一项所述的炉体的热分析仪器。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020571465A JP7085652B2 (ja) | 2018-10-29 | 2019-09-24 | 熱分析装置用の炉体及びそれを備えた熱分析装置 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811267620.6A CN109164128B (zh) | 2018-10-29 | 2018-10-29 | 一种用于热分析仪器的炉体 |
CN201811267618.9 | 2018-10-29 | ||
CN201811267618.9A CN109164127B (zh) | 2018-10-29 | 2018-10-29 | 一种用于热分析仪器的冷却器 |
CN201811267620.6 | 2018-10-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020088151A1 true WO2020088151A1 (zh) | 2020-05-07 |
Family
ID=70464586
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/107495 WO2020088151A1 (zh) | 2018-10-29 | 2019-09-24 | 一种用于热分析仪器的炉体及具备该炉体的热分析仪器 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7085652B2 (zh) |
WO (1) | WO2020088151A1 (zh) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5842788A (en) * | 1996-11-01 | 1998-12-01 | Ta Instruments, Inc. | Differential scanning calorimeter |
CN101113965A (zh) * | 2006-07-26 | 2008-01-30 | 精工电子纳米科技有限公司 | 热分析系统及其干燥方法 |
CN101963588A (zh) * | 2010-08-24 | 2011-02-02 | 华东理工大学 | 一种冷凝传热效果评价系统 |
CN105588854A (zh) * | 2016-02-26 | 2016-05-18 | 中国计量学院 | 快速温度扫描筛选量热仪 |
JP5942889B2 (ja) * | 2013-02-19 | 2016-06-29 | 株式会社島津製作所 | 熱伝達機構及びこれを備えた熱分析装置 |
CN109164127A (zh) * | 2018-10-29 | 2019-01-08 | 中国科学院上海硅酸盐研究所 | 一种用于热分析仪器的冷却器 |
CN109164128A (zh) * | 2018-10-29 | 2019-01-08 | 中国科学院上海硅酸盐研究所 | 一种用于热分析仪器的炉体 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3279050B2 (ja) * | 1994-03-31 | 2002-04-30 | 株式会社島津製作所 | 熱分析装置 |
-
2019
- 2019-09-24 JP JP2020571465A patent/JP7085652B2/ja active Active
- 2019-09-24 WO PCT/CN2019/107495 patent/WO2020088151A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5842788A (en) * | 1996-11-01 | 1998-12-01 | Ta Instruments, Inc. | Differential scanning calorimeter |
CN101113965A (zh) * | 2006-07-26 | 2008-01-30 | 精工电子纳米科技有限公司 | 热分析系统及其干燥方法 |
CN101963588A (zh) * | 2010-08-24 | 2011-02-02 | 华东理工大学 | 一种冷凝传热效果评价系统 |
JP5942889B2 (ja) * | 2013-02-19 | 2016-06-29 | 株式会社島津製作所 | 熱伝達機構及びこれを備えた熱分析装置 |
CN105588854A (zh) * | 2016-02-26 | 2016-05-18 | 中国计量学院 | 快速温度扫描筛选量热仪 |
CN109164127A (zh) * | 2018-10-29 | 2019-01-08 | 中国科学院上海硅酸盐研究所 | 一种用于热分析仪器的冷却器 |
CN109164128A (zh) * | 2018-10-29 | 2019-01-08 | 中国科学院上海硅酸盐研究所 | 一种用于热分析仪器的炉体 |
Also Published As
Publication number | Publication date |
---|---|
JP7085652B2 (ja) | 2022-06-16 |
JP2021527827A (ja) | 2021-10-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106841297B (zh) | 一种多功能固体材料热物性测试装置及方法 | |
CN113049145B (zh) | 一种对温度测量系统进行全系统宽低温综合校准的设备 | |
CN101665236B (zh) | 一种具有可控范围77k至400k温度的可控温度样品台 | |
CN103925759B (zh) | 用于热物性测量的宽温区控温恒温装置 | |
CN106770440B (zh) | 一种陶瓷球床有效热导率测试平台 | |
CN106969792B (zh) | 一种球床综合实验测量装置及方法 | |
CN104846346A (zh) | 衬底温度的控制方法、装置及薄膜沉积设备 | |
CN201269841Y (zh) | 强磁场液态金属扩散装置 | |
CN103728337A (zh) | 测量物体内部热流密度的热流密度探针以及测量方法 | |
CN111116013A (zh) | 一种氟磷酸盐光学玻璃的成型冷却装置及方法 | |
CN111307337B (zh) | 一种强制风循环温度校准装置 | |
CN107213932B (zh) | 一种用于小角散射实验的多样品恒温器 | |
CN111830080A (zh) | 一种精密绝热量热计及其量热方法 | |
CN101788347B (zh) | 准绝热密封型氩三相点复现装置 | |
WO2020088151A1 (zh) | 一种用于热分析仪器的炉体及具备该炉体的热分析仪器 | |
CN109164128B (zh) | 一种用于热分析仪器的炉体 | |
CN104344900A (zh) | 一种黑体辐射源 | |
CN113049144A (zh) | 一种用于温度测量系统进行全系统宽低温综合校准设备的隔热腔 | |
CN109164127B (zh) | 一种用于热分析仪器的冷却器 | |
CN116222824A (zh) | 一种高精度低温温度传感器校准装置及校准方法 | |
CN110174630A (zh) | 一种高温核磁共振探头及系统 | |
CN110096079A (zh) | 一种低温样品台的控制系统及方法 | |
CN108663399B (zh) | 建筑玻璃的热导测量装置 | |
CN209640268U (zh) | 非稳态超高温隔热性能试验装置 | |
CN210294186U (zh) | 一种气相色谱仪的色谱柱装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19880006 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020571465 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19880006 Country of ref document: EP Kind code of ref document: A1 |