WO2020087887A1 - 预应力frp加固结构的预警装置及延性调控方法 - Google Patents

预应力frp加固结构的预警装置及延性调控方法 Download PDF

Info

Publication number
WO2020087887A1
WO2020087887A1 PCT/CN2019/083983 CN2019083983W WO2020087887A1 WO 2020087887 A1 WO2020087887 A1 WO 2020087887A1 CN 2019083983 W CN2019083983 W CN 2019083983W WO 2020087887 A1 WO2020087887 A1 WO 2020087887A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
self
frp
tension
locking plate
Prior art date
Application number
PCT/CN2019/083983
Other languages
English (en)
French (fr)
Inventor
周英武
邢锋
隋莉莉
王小威
黄振宇
Original Assignee
深圳大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201811283912.9A external-priority patent/CN109235923B/zh
Priority claimed from CN201811283915.2A external-priority patent/CN109235924B/zh
Application filed by 深圳大学 filed Critical 深圳大学
Priority to US16/626,000 priority Critical patent/US11186991B2/en
Publication of WO2020087887A1 publication Critical patent/WO2020087887A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/07Reinforcing elements of material other than metal, e.g. of glass, of plastics, or not exclusively made of metal
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/08Members specially adapted to be used in prestressed constructions
    • E04C5/085Tensile members made of fiber reinforced plastics
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/08Members specially adapted to be used in prestressed constructions
    • E04C5/12Anchoring devices
    • E04C5/127The tensile members being made of fiber reinforced plastics
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G21/00Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
    • E04G21/12Mounting of reinforcing inserts; Prestressing
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G23/00Working measures on existing buildings
    • E04G23/02Repairing, e.g. filling cracks; Restoring; Altering; Enlarging
    • E04G23/0218Increasing or restoring the load-bearing capacity of building construction elements

Definitions

  • the invention relates to the technical field of FRP reinforced concrete structures, in particular to an early warning device and ductility control method of a prestressed FRP reinforced structure.
  • FRP Fiber / Reinforced Polymer / Plastic
  • the current FRP prestressed reinforced concrete structure has significant shortcomings: (1) the ductility is poor, although the bearing capacity is improved compared with ordinary concrete members, but the ductility is reduced to a certain extent, and the failure is not early warning; (2) FRP When the prestressed fiber cloth is prestressed, the carbon fiber board and the anchorage are likely to slip relative to each other. As the stress continues to increase, the carbon fiber is detached from the anchorage, and the prestressing fails and cannot be played. Due to the reinforcement effect; (3) The tension anchoring device has a heavy structure, complicated process, high technical requirements and high cost, and cannot be reused.
  • the purpose of the present invention is to provide an early warning device and ductility control method of a prestressed FRP reinforced structure, while improving the bearing capacity and ductility of the reinforced structure, and at the same time, solving the problem of easy disconnection between the FRP and the anchor and brittle failure, The utilization rate and structural safety of FRP have been greatly improved.
  • the present invention provides the following solutions:
  • the invention discloses a pre-stressed FRP reinforced structure early warning device for tensioning screws, which includes a fixing plate, an FRP strip, a self-locking plate, an anchoring plate, at least one tensioning screw, a nut and an expansion bolt.
  • the anchor plates are located on both sides of the self-locking plate, one end of the FRP strip is fixedly connected to the fixing plate, and the other end of the FRP strip is fixedly connected to the self-locking plate, at least one of the The pulling screw passes through the self-locking plate and the anchoring plate, the nut is plural and is threadably connected with the tensioning screw, and the nut is used to lock the two sides of the self-locking plate and the On both sides of the anchoring plate, the expansion bolts are used to fix the fixing plate, the self-locking plate and the anchoring plate on the concrete base, and the self-locking plate is used for installing the through holes of the expansion bolt It is an oblong hole, and the oblong hole is arranged parallel to the tension screw.
  • the invention also discloses a pre-stressed FRP reinforced structure single-rod early warning device, which includes a fixed plate, an FRP strip, a self-locking plate, an anchor plate, a tension screw, a nut and an expansion bolt, the fixed plate and the anchor
  • the plates are located on both sides of the self-locking plate, one end of the FRP strip is fixedly connected to the fixing plate, the other end of the FRP strip is fixedly connected to the self-locking plate, and the tension screw passes through
  • the expansion bolt is used to fix the fixing plate, the self-locking plate and the anchoring plate on a concrete base body, and the through hole for installing the expansion bolt on the self-locking plate is an oblong hole, The oblong hole is parallel to the tension screw.
  • the fixing plate and the self-locking plate are provided with two parallel strip grooves, the strip groove is used for the FRP strip to pass through, and both ends of the FRP strip
  • the fixed plate and the self-locking plate are fixedly connected by a self-locking winding structure.
  • the self-locking plate is T-shaped, the self-locking plate includes a connecting section and a fixing section, the fixing section is perpendicular to the connecting section and symmetrical about the connecting section, the connecting section is used to connect the At one end of the FRP strip, the strip groove is provided on the connecting section, and the oblong hole is provided on the fixing section.
  • the center line of the FRP strip coincides with the center line of the tension screw.
  • the length of the oblong hole is greater than twice the maximum elongation of the tension screw.
  • the edge of the strip groove is a smooth transition structure.
  • the invention also discloses a ductility control method of the prestressed FRP reinforced structure.
  • the above single-rod early warning device includes the following steps:
  • the anchoring plate is fixed on the concrete substrate through expansion bolts;
  • both ends of the FRP strip are respectively fixed to the fixing plate and the self-locking plate by a self-locking winding method.
  • the invention also discloses a pre-stressed FRP reinforced structure double-rod early warning device, which includes a fixed plate, an FRP strip, a self-locking plate, an anchor plate, a tension plate, a tension screw, a nut and an expansion bolt.
  • the screw includes a first tensioning screw and a second tensioning screw arranged in parallel, the fixing plate, the self-locking plate, the anchoring plate and the tensioning plate are sequentially arranged from left to right, and the FRP strip One end is fixedly connected to the fixing plate, the other end of the FRP strip is fixedly connected to the self-locking plate, and the tensioning screw passes through the self-locking plate, the anchoring plate and the tensioning plate ,
  • the nut is plural and threadedly connected with the tension screw, the nut is used to lock on both sides of the self-locking plate, both sides of the anchor plate and both sides of the tension plate ,
  • the expansion bolt is used to fix the fixing plate, the self-locking plate and the anchoring plate on the concrete base body, and the through hole for installing the expansion bolt on the self-locking plate is an oblong hole, so The oblong hole is parallel to the tension screw.
  • the fixing plate and the self-locking plate are provided with two parallel strip grooves, the strip groove is used for the FRP strip to pass through, and both ends of the FRP strip
  • the fixed plate and the self-locking plate are fixedly connected by a self-locking winding structure.
  • the self-locking plate is T-shaped, the self-locking plate includes a connecting section and a fixing section, the fixing section is perpendicular to the connecting section and symmetrical about the connecting section, the connecting section is used to connect the At one end of the FRP strip, the strip groove is provided on the connecting section, and the oblong hole is provided on the fixing section.
  • the center line of the FRP strip and the center line of the resultant force of the tension screw coincide.
  • the length of the oblong hole is greater than twice the maximum elongation of the tension screw.
  • the edge of the strip groove is a smooth transition structure.
  • the invention also discloses a ductility control method of the prestressed FRP reinforced structure.
  • the above double-rod early warning device includes the following steps:
  • the anchoring plate is fixed on the concrete substrate through expansion bolts;
  • both ends of the FRP strip are respectively fixed to the fixing plate and the self-locking plate by a self-locking winding method.
  • step S4 the distance between the tension plate and the anchor plate is enlarged by a hydraulic jack.
  • step S4 the third tension screw is passed through the tension plate and the nut is used to lock the third tension screw and the tension plate to each other, and the tension is extended by stretching the end of the third tension screw away from the anchor plate The distance between the pull plate and the anchor plate.
  • the tensioning device has simple structure, clear construction process, low technical requirements, low cost, and convenient construction, suitable for construction on site;
  • the overall structure is easy to process and produce, can meet the needs of industrial production, and is convenient for large-scale promotion and application in the field of engineering reinforcement.
  • 1 is a plan view of the connection mode of one end of the fixed plate of the single rod early warning device of the present invention
  • FIG. 2 is a side view of the connection mode of one end of the fixed plate of the single rod early warning device of the present invention
  • 3 is a plan view of the connection mode of one end of the anchor plate of the single-rod early warning device of the present invention
  • FIG. 4 is a side view of the connection mode of one end of the anchor plate of the single-rod early warning device of the present invention
  • FIG. 5 is a plan view of the single-rod warning device of the present invention.
  • FIG. 6 is a side view of the single-rod warning device of the present invention.
  • FIG. 7 is a schematic diagram of the FRP strip fixing method at one end of the fixing plate of the single-rod early warning device of the present invention.
  • FIG. 8 is a simplified schematic diagram of FIG. 7;
  • FIG. 9 is a plan view of the connection mode of one end of the fixed plate of the double-rod early warning device of the present invention.
  • FIG. 10 is a side view of the connection mode of one end of the fixed plate of the double-rod early warning device of the present invention.
  • 11 is a plan view of the connection mode of one end of the anchor plate of the double-rod early warning device of the present invention.
  • FIG. 12 is a side view of the connection mode of one end of the anchor plate of the double-rod early warning device of the present invention.
  • FIG. 13 is a plan view of the double-rod warning device of the present invention.
  • 15 is a plan view of the improved double-rod early warning device of the present invention.
  • 16 is a side view of the improved double-rod warning device of the present invention.
  • 17 is a schematic diagram of the FRP strip fixing method at one end of the fixing plate of the double-pole early warning device of the present invention.
  • FIG. 18 is a simplified schematic diagram of FIG. 17;
  • Figure 19 is a schematic diagram of the slip curve of prestressed tensile anchor load
  • 20 is a schematic cross-sectional view of the beam of the improved installation method of the single-rod early warning device and the double-rod early warning device of the present invention
  • Figure 21 is the stress-strain curve of FRP strip and tension screw
  • 22 is a schematic diagram of the invention concept of the early warning device
  • the purpose of the present invention is to provide an early warning device and ductility control method of a prestressed FRP reinforced structure, while improving the bearing capacity and ductility of the reinforced structure, and at the same time, solving the problem of easy disconnection between the FRP and the anchor and brittle failure, The utilization rate and structural safety of FRP have been greatly improved.
  • This embodiment provides a pre-stressed FRP reinforcement structure early warning device for tensioning screws, including a fixing plate, an FRP strip, a self-locking plate, an anchoring plate, at least one tensioning screw, a nut, and an expansion bolt.
  • the fixing plate and the anchoring plate are located at On both sides of the self-locking plate, one end of the FRP strip is fixedly connected to the fixing plate, and the other end of the FRP strip is fixedly connected to the self-locking plate. At least one tension screw passes through the self-locking plate and the anchor plate.
  • the through hole for installing the expansion bolt is an oblong hole, and the oblong hole is arranged parallel to the tension screw.
  • tension screws There may be one or more tension screws.
  • the tensioning is more convenient, and the tensioning screw can be directly tensioned; when there are multiple tensioning screws, in order to ensure the simultaneous tensioning of each tensioning screw, each tensioning screw can be kept away from After one end of the lock plate passes through the anchor plate, pass a tension plate, and use a nut to lock the tension screw to the two ends of the tension plate. By moving the tension plate, synchronization of the tension screws can be achieved La Zhang.
  • the early-warning device 301 composed of a single or multiple tensioning screws and a self-locking plate, an anchor plate and a nut is used to achieve ductility control.
  • the early-warning device 301 is replaceable and has various forms, and its function is equivalent to a fuse.
  • a fixing device 302 fixedly connected to the early warning device 301 is provided at one end of the early warning device 301. The fixing device 302 is used to tension the tension screw and fix one end of the tension screw after the tension is completed.
  • the tension screw and the self-locking plate are the key to the ductility control of this embodiment.
  • the elongation of the tensioning screw is used to improve the ductility of the overall structure.
  • the material and diameter of the tensioning screw can be adjusted to control the utilization and ductility of the FRP strip;
  • the expansion bolt is not locked until the tension screw is broken, so that the self-locking plate can move to the right with the extension of the tension screw, and can be moved to the left and left with the pulling of the FRP strip after the tension screw is broken Move to the end of the oblong hole and then lock the expansion bolt.
  • the entire structure is converted from prestressed reinforcement to non-prestressed reinforcement, and the structure is still in a safe state.
  • the material of the tension screw can be a shape memory alloy. After plastic deformation occurs, the shape before deformation can be restored after a suitable thermal process.
  • the degree of load loading is within the bearing range of the screw, the entire tensioning device performs tensile reinforcement according to the expected effect, and can be reused by heating the tensile screw after plastic deformation, which can significantly save costs.
  • the degree of load loading exceeds the tensile screw's bearing range, the tensile screw is broken and fails, and the tensile device can be reused only by replacing the fuse, so that the tensile screw protects the entire tensile device like a "fuse".
  • the FRP strip and the concrete substrate can be in two forms, bonded or unbonded, and those skilled in the art can choose according to actual needs. Calculations show that the FRP strip can increase the cross-section of the beam and increase the bending rigidity after the distance from the ground is increased. The installation of this tensioning device is relatively simple and the damage to the original structure is relatively small.
  • this embodiment provides a pre-stressed FRP reinforced single-rod early warning device, which includes a fixed plate 101, an FRP strip 102, a self-locking plate 103, an anchor plate 104, a tension screw 105, and a nut 106 and expansion bolt 107.
  • the fixing plate 101, the self-locking plate 103 and the anchoring plate 104 are all low carbon steel structures
  • the FRP strip 102 is used to connect the fixing plate 101 and the self-locking plate 103
  • the tension screw 105 is used to connect the self-locking plate 103 and the anchor
  • the plate 104 and the nut 106 are threadedly connected to the tension screw 105.
  • the nut 106 is used to lock the tension screw 105 to the self-locking plate 103 and the anchor plate 104.
  • the expansion bolt 107 is used to lock the fixing plate 101, the self-locking plate 103 and The anchor plate 104 is fixed on the concrete base.
  • the fixing plate 101 and the anchoring plate 104 are located on the left and right sides of the self-locking plate 103 respectively.
  • One end of the FRP strip 102 is fixedly connected to the fixing plate 101, and the other end of the FRP strip 102 is fixedly connected to the self-locking plate 103.
  • Tension bolts 105 pass through the self-locking plate 103 and the anchoring plate 104, and there are a plurality of nuts 106 for locking the two sides of the self-locking plate 103 and the two sides of the anchoring plate 104.
  • the through hole on the self-locking plate 103 for installing the expansion bolt 107 is an oblong hole, and the oblong hole is parallel to the tension screw 105.
  • the length of the oblong hole is greater than twice the maximum elongation of the tension screw 105, and the purpose is to fully exert the deformation of the tension screw 105 so as to fully utilize the extension of the tension screw 105 to improve the ductility of the entire member.
  • the fixing plate 101 and the self-locking plate 103 are provided with two parallel strip grooves, the strip groove is used for the FRP strip 102 to pass through
  • both ends of the FRP strip 102 are fixedly connected to the fixing plate 101 and the self-locking plate 103 through a self-locking winding structure.
  • the strip grooves are smoothed to prevent the FRP strip 102 from being cut due to stress concentration during winding.
  • the arrows in the figure show the sliding tendency of the FRP strip 102 when the external force is stretched.
  • the FRP strip 102 will generate a movement trend as shown by the arrow in the figure under the action of an external force T 0. If there is no friction on each contact surface, the FRP strip 102 will be pulled out. It is precisely because of the existence of the friction resistance between the inner and outer FRP strips 102 and the FRP strips 102 and the steel plate that it can self-lock around the rod.
  • the FRP strip 102 has a large width and a small thickness, and causes eccentric stress during installation and assembly, which easily causes the side with the larger stress to break first and then the small side to break later.
  • the bundles of fiber filaments between the FRP strips 102 are connected as a whole, and the force is uniform. According to the winding direction of Figs. 7-8, the FRP strip 102 is pasted.
  • connection position of the FRP strip 102 can be adjusted appropriately to achieve a good connection position and prevent adverse effects such as eccentricity.
  • the connection performance will gradually improve, thereby solving the problem of loose connection of the FRP strip 102 and achieving a good effect of improving the carrying capacity of the reinforcement.
  • the FRP strip 102 and the concrete substrate may be in two forms, bonded or unbonded, and those skilled in the art may choose according to actual needs.
  • the self-locking plate 103 is T-shaped.
  • the self-locking plate 103 includes a connecting section and a fixing section.
  • the fixing section is perpendicular to the connecting section and symmetrical about the connecting section.
  • the connecting section is used to connect the FRP strip 102.
  • the connecting section is provided with a strip groove, and the fixed section is provided with an oblong hole.
  • the center line of the FRP strip 102 and the center line of the tension screw 105 coincide, so that the FRP strip 102 and the tension screw 105 are approximately at the same height.
  • This embodiment also provides a method for controlling ductility of a prestressed FRP reinforced structure.
  • the above single-rod early warning device is used, and the specific steps are as follows:
  • the anchor plate 104 is fixed to the concrete base body through the expansion bolt 107;
  • Steps S1 to S3 are the pre-stress design process. After the pre-stress design is completed, the obtained single-rod early warning device can be used for component loading. In the prestressed design, for the tensioning process of step S3, the tensioning phenomenon of the tensioning screw 105 does not occur, and the tensioning of the tensioning screw 105 can only occur during the loading process of the component.
  • step S2 the FRP strip 102 is preferably fixed to the fixing plate 101 and the self-locking plate 103 by self-locking winding to improve the connection method of the FRP strip 102 and the reliability of the connection.
  • the specific winding The structure is shown in Figure 7-8.
  • step S4 the length of the oblong hole is ⁇ L 1 + ⁇ L 2 , where ⁇ L 1 is the distance between the expansion bolt 107 and the left end of the oblong hole, and ⁇ L 2 is the distance between the expansion bolt 107 and the right end of the oblong hole.
  • ⁇ L 1 the distance between the expansion bolt 107 and the left end of the oblong hole
  • ⁇ L 2 the distance between the expansion bolt 107 and the right end of the oblong hole.
  • the self-locking plate 103 When the tension screw 105 is broken, the self-locking plate 103 will gradually move to the left until it moves to the position of the expansion bolt 107, that is, ⁇ L 2 on the right side of the expansion bolt 107 becomes 0. Then tighten the nut 106 of the expansion bolt 107. At this time, the expansion bolt 107 plays a role of fixing the self-locking section. Prestressed reinforcement can be converted into non-prestressed reinforcement, and the structure is still in a safe state to achieve control of the ductility of the component. There are various traction structures for stretching the tension screw 105, which are conventional means in the art and will not be described in detail.
  • the length of the oblong hole is greater than twice the maximum extension of the tension screw 105, ensuring that the displacement of the self-locking section of the tension end is greater than the extension of the fuse, so that the extension of the tension screw 105 is fully utilized to improve the Ductility.
  • the tension screw 105 is a cylindrical threaded rod made of ductile material.
  • the deformation of the tension screw 105 is the key to the overall ductility control.
  • the material and diameter of the tension screw 105 can be adjusted according to the actual reinforcement project. , Shape design to meet the needs of different types of reinforcement projects.
  • the material of the tension threaded rod is preferably a shape memory alloy.
  • the advantage of the shape memory alloy is fatigue resistance.
  • the characteristic of the shape memory alloy is that after plastic deformation occurs, it can recover the shape before deformation through a suitable thermal process. Therefore, the tension screw 105 in this embodiment can be restored to its original state by heating to achieve the recycling of the tension screw, which can significantly save costs, and can also be replaced after being broken, without affecting the use of the entire tension structure.
  • this embodiment provides a pre-stressed FRP reinforced structure double-rod early warning device, which includes a fixed plate 201, an FRP strip 202, a self-locking plate 203, an anchor plate 204, a tension plate 205, a tension plate
  • the tensioning screw, the nut 209 and the expansion bolt 210, the tensioning screw includes a first tensioning screw 206 and a second tensioning screw 207 arranged in parallel and equal height.
  • the fixing plate 201, the self-locking plate 203 and the anchoring plate 204 are all low carbon steel structures
  • the FRP strip 202 is used to connect the fixing plate 201 and the self-locking plate 203
  • the tension screw is used to connect the self-locking plate 203 and the anchoring plate 204 and the tension plate 205
  • the nut 209 is threadedly connected to the tension screw
  • the nut 209 is used to lock the tension screw with the self-locking plate 203, the anchor plate 204 and the tension plate 205
  • the expansion bolt 210 is used to fix
  • the plate 201, the self-locking plate 203 and the anchor plate 204 are fixed on the concrete base.
  • the fixing plate 201, the self-locking plate 203, the anchoring plate 204, and the tension plate 205 are sequentially arranged from left to right.
  • One end of the FRP strip 202 is fixedly connected to the fixing plate 201, and the other end of the FRP strip 202 is fixed to the self-locking plate 203 connection.
  • the tension screw passes through the self-locking plate 203, the anchoring plate 204, and the tensioning plate 205.
  • the nut 209 is plural and is used to lock the two sides of the self-locking plate 203, the anchoring plate 204, and the tensioning plate 205. On both sides.
  • the through hole on the self-locking plate 203 for installing the expansion bolt 210 is an oblong hole, and the oblong hole is arranged parallel to the tension screw.
  • the length of the oblong hole is greater than twice the maximum elongation of the tension screw. The purpose is to fully exert the deformation of the tension screw, so as to make full use of the extension of the tension screw to improve the ductility of the entire member.
  • the fixing plate 201 and the self-locking plate 203 are provided with two parallel strip grooves, the strip groove is used for the FRP strip 202 to pass through
  • both ends of the FRP strip 202 are fixedly connected to the fixing plate 201 and the self-locking plate 203 through a self-locking winding structure.
  • the strip groove is smoothed to prevent the FRP strip 202 from being cut due to stress concentration during winding.
  • the arrow in the figure shows the sliding tendency of the FRP strip 202 when the external force is stretched.
  • the FRP strip 202 will have a movement trend as shown by the arrow in the figure under the action of an external force T 0.
  • the FRP strip 202 will be pulled out. It is precisely because of the existence of the friction resistance between the inner and outer layer FRP strip 202 and the FRP strip 202 and the steel plate that it can generate self-locking around the rod.
  • the FRP strip 202 has a large width and a small thickness, and causes eccentric stress during installation and assembly, which easily causes the side with the larger stress to break first and then the small side to break later.
  • the bundles of fiber filaments between the FRP strips 202 are connected as a whole, and the force is uniform. Attach the FRP tape 202 according to the winding direction of FIGS. 17-18.
  • connection position of the FRP tape 202 can be adjusted appropriately to achieve a good connection position and prevent adverse effects such as eccentricity.
  • the connection performance will gradually improve, thereby solving the problem of loose connection of the FRP tape 202 and achieving a good effect of improving the carrying capacity of the reinforcement.
  • the FRP strip 202 and the concrete matrix can be in two forms, bonded or unbonded, and those skilled in the art can choose according to actual needs.
  • the self-locking plate 203 is T-shaped.
  • the self-locking plate 203 includes a connecting section and a fixing section.
  • the fixing section is perpendicular to the connecting section and is symmetrical about the connecting section.
  • the connecting section is used to connect the FRP strip 202.
  • the connecting section is provided with a strip groove, and the fixed section is provided with an oblong hole.
  • the horizontal distance from the center line of the FRP strip 202 to the first tension screw 206 is equal to the horizontal distance to the second tension screw 207, and the FRP strip 202 and the tension screw are approximately at the same height.
  • the center line of the combined force of the FRP strip 202 and the tension screw coincides with the center line.
  • the installation method of the FRP strip 202 and the tension screw of FIG. 6 in Example 2 and FIG. 14 in Example 3 is a bonded installation method close to the concrete substrate. This method is not the preferred installation method.
  • FRP The distance between the strip 202 and the concrete matrix can be adjusted according to actual needs.
  • the cross-sectional schematic diagram of the improved installation method is shown in Figure 16 and Figure 20.
  • the FRP strip 202 and the tension screw are preferably at a certain height ( ⁇ h) from the concrete matrix. With the increase of ⁇ h, the calculated cross-section can be increased. Height, which in turn increases the moment of inertia of the cross section, thereby increasing the bending stiffness.
  • the details are as follows:
  • B s is the bending stiffness
  • I 0 is the moment of inertia.
  • the bending stiffness B s increases with the increase of the cross-sectional inertia moment (I 0 ).
  • I 0 is the moment of inertia of the cross section of the unreinforced beam
  • I 1 is the moment of inertia of the beam cross section after the improved installation method
  • ⁇ I is the increased moment of inertia. It can be seen from the above formula that ⁇ I increases as ⁇ h increases, so this installation scheme increases ⁇ I by increasing ⁇ h, and increases B s by increasing ⁇ I.
  • This embodiment also provides a ductility control method of a prestressed FRP reinforced structure, using the above double-rod early warning device, the specific steps are as follows:
  • the anchor plate 204 is fixed to the concrete base body through the expansion bolt 210;
  • Steps S1 to S5 are the pre-stress design process. After the pre-stress design is completed, the obtained double-rod early warning device can be used for component loading. In the prestressed design, for the tensioning process in step S4, the tensioning bolt breakage phenomenon does not occur, and the tensioning bolt breakage occurs only during the component loading process.
  • the tension screws in Examples 2 and 3 should be made of materials with elastic and plastic deformation capabilities (Figure 21), which requires the elastic modulus of the tension screw (E 2 is greater than or equal to the elastic modulus of FRP (E 1 ), and its fracture deformation ( ⁇ u see Fig. 21) and plastic deformation ( ⁇ y see Fig. 21), ie ⁇ u / ⁇ y, should meet the structural ductility requirements.
  • Example 2 and Example 3 the tension screw has the same warning function as the "fuse" during use, and the tension screw has the functions of "replaceable” and “recoverable”.
  • step S2 the FRP strip 202 is preferably fixed to the fixing plate 201 and the self-locking plate 203 by self-locking winding to improve the connection method of the FRP strip 202 and the reliability of the connection.
  • the specific winding The structure is shown in Figure 17-18.
  • step S5 the length of the oblong hole is ⁇ L 1 + ⁇ L 2 , where ⁇ L 1 is the distance between the expansion bolt 210 and the left end of the oblong hole, and ⁇ L 2 is the distance between the expansion bolt 210 and the right end of the oblong hole.
  • ⁇ L 1 the distance between the expansion bolt 210 and the left end of the oblong hole
  • ⁇ L 2 the distance between the expansion bolt 210 and the right end of the oblong hole.
  • the self-locking plate 203 When the tension screw 5 is broken, the self-locking plate 203 will gradually move to the left until it reaches the position of the expansion bolt 210, that is, ⁇ L 2 on the right side of the expansion bolt 210 becomes 0. Then tighten the nut 209 of the expansion bolt 210. At this time, the expansion bolt 210 plays a role of fixing the self-locking section.
  • the prestressed reinforcement can be converted into non-prestressed reinforcement, and the structure is still in a safe state to realize the control of the ductility of the component.
  • the distance between the tensioning plate 205 and the anchoring plate 204 can be enlarged by the hydraulic jack 211 to achieve the tensioning of the tensioning screw; and
  • the third tension screw 208 can be passed through the tension plate 205 and the nut 209 can be used to lock the third tension screw 208 and the tension plate 205 to each other.
  • the end of 208 away from the anchoring plate 204 enlarges the distance between the tensioning plate 205 and the anchoring plate 204, so that the tensioning screw is stretched.
  • the length of the oblong hole is greater than twice the maximum elongation of the tension screw, ensuring that the displacement of the self-locking section of the tension end is greater than the elongation of the fuse, thereby fully utilizing the elongation of the tension screw to improve the ductility of the entire member.
  • Example 2 and Example 3 prestressed tension anchor slip load curve shown in Figure 19 P u3 is prestressed after carrying capacity, P u2 after unloading prestressed tension after the end segments are self-locking expansion bolt anchors It can also be considered that the self-locking section of the tension end reinforces the FRP.
  • P u1 is the bearing capacity of the unstressed member
  • ⁇ P 1 is the portion where the prestress is increased
  • ⁇ P 2 is the bearing capacity of the carbon fiber reinforced member after the prestress is unloaded
  • ⁇ L 3 is the extension of the tension screw . It can be seen from FIG.
  • the tensioning device and the tensioning method provided in this embodiment can significantly improve the ductility of the prestressed structure, and realize controllable and controllable ductility.
  • the prestressed reinforcement can be converted to non-prestressed reinforcement, and the structure is still in a safe state.
  • the traditional prestressed reinforcement improves the early stiffness of the component at the expense of ductility, and this embodiment not only improves the early stiffness of the component, but also increases the ductility of the component and increases the safety of the component.
  • the tension screw is a cylindrical threaded rod made of ductile material.
  • the deformation of the tension screw is the key to the overall ductility control.
  • the material and diameter of the tension screw can be adjusted according to the actual reinforcement engineering situation.
  • the size and shape are designed to meet the needs of different types of reinforcement projects.
  • the material of the tension threaded rod is preferably a shape memory alloy.
  • the advantage of the shape memory alloy is fatigue resistance.
  • the characteristic of the shape memory alloy is that after plastic deformation occurs, it can recover the shape before deformation through a suitable thermal process. Therefore, the tensioning screw in this embodiment can be restored to its original state by heating to achieve the recycling of the tensioning screw, which can significantly save costs, and can also be replaced after being broken, without affecting the use of the entire tensioning structure.

Abstract

一种预应力FRP加固结构的张拉螺杆预警装置及延性调控方法,其中,预应力FRP加固结构的张拉螺杆预警装置,包括固定板(101、201)、FRP条带(102、202)、自锁板(103、203)、锚固板(104、204)、至少一个张拉螺杆(105、206、207、208)、螺母(106、209)和膨胀螺栓(107、210),固定板(101、201)和锚固板(104、204)位于自锁板(103、203)的两侧,FRP条带(102、202)的一端与固定板(101、201)固定连接,FRP条带(102、202)的另一端与自锁板(103、203)固定连接,至少一个张拉螺杆(105、206、207、208)穿过自锁板(103、203)和锚固板(104、204),螺母(106、209)为多个且与张拉螺杆(105、206、207、208)螺纹连接,膨胀螺栓(107、210)将固定板(101、201)、自锁板(103、203)和锚固板(104、204)固定于混凝土基体上,自锁板(103、203)上用于安装膨胀螺栓的通孔为长圆孔,长圆孔与张拉螺杆(105、206、207、208)平行设置;该延性调控方法,采用该张拉螺杆预警装置,对FRP条带(102、202)张拉、锁紧,膨胀螺栓(107、210)并未锁死拧紧。该预应力FRP加固结构的张拉螺杆预警装置实现了延性可控设计,解决了FRP与锚具之间易脱离的连接和脆性破坏问题,提高了结构安全性。

Description

预应力FRP加固结构的预警装置及延性调控方法 技术领域
本发明涉及FRP加固混凝土结构技术领域,特别是涉及一种预应力FRP加固结构的预警装置及延性调控方法。
背景技术
随着混凝土结构加固工艺的发展,FRP(Fiber Reinforced Polymer/Plastic)的卓越性能被越来越多的人所熟知,FRP加固混凝土结构也被越来越多的人所青睐。
然而,目前的FRP预应力加固混凝土结构中存在显著的缺点:(1)延性较差,和普通混凝土构件相比承载力虽然提高,但是延性在一定程度上降低,破坏缺乏预警;(2)FRP的脱锚和滑移,预应力纤维布在施加预应力时,碳纤维板与锚具易发生相对滑移,随着应力的不断增大,碳纤维从锚具中脱离,预应力失效,无法起到应有的加固效果;(3)张拉锚固装置结构繁重、工艺复杂,技术要求高、造价高,不能重复利用。
因此,如何提供一种张拉装置及方法,用以解决现有技术中FRP预应力加固混凝土结构的上述缺点,是本领域技术人员亟待解决的技术问题。
发明内容
本发明的目的是提供一种预应力FRP加固结构的预警装置及延性调控方法,在提高加固结构的承载力和延性的同时,解决了FRP与锚具之间易脱离的连接和脆性破坏问题,较大幅度地提高了FRP的利用率和结构安全性。
为实现上述目的,本发明提供了如下方案:
本发明公开了一种预应力FRP加固结构的张拉螺杆预警装置,包括固定板、FRP条带、自锁板、锚固板、至少一个张拉螺杆、螺母和膨胀螺栓,所述固定板和所述锚固板位于所述自锁板的两侧,所述FRP条带的一端与所述固定板固定连接,所述FRP条带的另一端与所述自锁板固定连接,至少一个所述张拉螺杆穿过所述自锁板和所述锚固板,所述螺母 为多个且与所述张拉螺杆螺纹连接,所述螺母用以锁紧于所述自锁板的两侧和所述锚固板的两侧,所述膨胀螺栓用以将所述固定板、所述自锁板和所述锚固板固定于混凝土基体上,所述自锁板上用于安装所述膨胀螺栓的通孔为长圆孔,所述长圆孔与所述张拉螺杆平行设置。
本发明还公开了一种预应力FRP加固结构的单杆预警装置,包括固定板、FRP条带、自锁板、锚固板、张拉螺杆、螺母和膨胀螺栓,所述固定板和所述锚固板位于所述自锁板的两侧,所述FRP条带的一端与所述固定板固定连接,所述FRP条带的另一端与所述自锁板固定连接,所述张拉螺杆穿过所述自锁板和所述锚固板,所述螺母为多个且与所述张拉螺杆螺纹连接,所述螺母用以锁紧于所述自锁板的两侧和所述锚固板的两侧,所述膨胀螺栓用以将所述固定板、所述自锁板和所述锚固板固定于混凝土基体上,所述自锁板上用于安装所述膨胀螺栓的通孔为长圆孔,所述长圆孔与所述张拉螺杆平行设置。
优选地,所述固定板和所述自锁板上均设置有两个相互平行的条形槽,所述条形槽用以供所述FRP条带穿过,所述FRP条带的两端通过自锁式缠绕结构与所述固定板和所述自锁板固定连接。
优选地,所述自锁板为T形,所述自锁板包括连接段和固定段,所述固定段垂直于所述连接段且关于所述连接段对称,所述连接段用以连接所述FRP条带的一端,所述连接段上设置有所述条形槽,所述固定段上设置有所述长圆孔。
优选地,所述FRP条带的中心线和所述张拉螺杆的中心线重合优选地,所述长圆孔的长度大于所述张拉螺杆的最大伸长量的两倍。
优选地,所述条形槽的边缘为光滑过渡结构。
本发明还公开了一种预应力FRP加固结构的延性调控方法,使用上述的单杆预警装置,包括如下步骤:
S1、将锚固板通过膨胀螺栓固定于混凝土基体上;
S2、将FRP条带的两端分别固定于固定板和自锁板上;
S3、根据张拉应力的设计水平,选择张拉螺杆的直径和材料,将张拉螺杆穿过锚固板和自锁板,将膨胀螺栓穿过自锁板的长圆孔的中点位置并固定于混凝土基体上,此时自锁板上的膨胀螺栓上的螺母没有拧紧,使 用螺母将张拉螺杆与自锁板相互锁紧,同时拧紧固定板上的膨胀螺栓的螺母,然后开始施加张拉力,当预应力张拉到设计水平时,使用螺母将张拉螺杆与锚固板相互锁紧,最后停止张拉。
优选地,在步骤S2中,FRP条带的两端分别通过自锁式缠绕方式固定于固定板和自锁板上。
本发明还公开了一种预应力FRP加固结构的双杆预警装置,包括固定板、FRP条带、自锁板、锚固板、张拉板、张拉螺杆、螺母和膨胀螺栓,所述张拉螺杆包括平行设置的第一张拉螺杆和第二张拉螺杆,所述固定板、所述自锁板、所述锚固板和所述张拉板由左至右依次设置,所述FRP条带的一端与所述固定板固定连接,所述FRP条带的另一端与所述自锁板固定连接,所述张拉螺杆穿过所述自锁板、所述锚固板和所述张拉板,所述螺母为多个且与所述张拉螺杆螺纹连接,所述螺母用以锁紧于所述自锁板的两侧、所述锚固板的两侧和所述张拉板的两侧,所述膨胀螺栓用以将所述固定板、所述自锁板和所述锚固板固定于混凝土基体上,所述自锁板上用于安装所述膨胀螺栓的通孔为长圆孔,所述长圆孔与所述张拉螺杆平行设置。
优选地,所述固定板和所述自锁板上均设置有两个相互平行的条形槽,所述条形槽用以供所述FRP条带穿过,所述FRP条带的两端通过自锁式缠绕结构与所述固定板和所述自锁板固定连接。
优选地,所述自锁板为T形,所述自锁板包括连接段和固定段,所述固定段垂直于所述连接段且关于所述连接段对称,所述连接段用以连接所述FRP条带的一端,所述连接段上设置有所述条形槽,所述固定段上设置有所述长圆孔。
优选地,所述FRP条带的中心线和所述张拉螺杆的合力作用中心线重合。
优选地,所述长圆孔的长度大于所述张拉螺杆的最大伸长量的两倍。
优选地,所述条形槽的边缘为光滑过渡结构。
本发明还公开了一种预应力FRP加固结构的延性调控方法,使用上述双杆预警装置,包括如下步骤:
S1、将锚固板通过膨胀螺栓固定于混凝土基体上;
S2、将FRP条带的两端分别固定于固定板和自锁板上;
S3、根据张拉应力的设计水平,选择张拉螺杆的直径和材料,将张拉螺杆穿过自锁板、锚固板和张拉板,使用螺母将张拉螺杆与自锁板相互锁紧,使用螺母将张拉螺杆与张拉板相互锁紧;
S4、扩大张拉板与锚固板之间的距离,从而对张拉螺杆进行张拉,当预应力张拉到设计水平时,使用螺母将张拉螺杆与锚固板相互锁紧,并停止张拉;
S5、将膨胀螺栓通过自锁板的长圆孔安装在混凝土基体上,保持膨胀螺栓固定于自锁板上长圆孔的中心处,此时膨胀螺栓没有锁死拧紧。
优选地,在步骤S2中,FRP条带的两端分别通过自锁式缠绕方式固定于固定板和自锁板上。
优选地,步骤S4中,通过液压千斤顶扩大张拉板与锚固板之间的距离。
优选地,步骤S4中,将第三张拉螺杆穿过张拉板并使用螺母将第三张拉螺杆与张拉板相互锁紧,通过拉伸第三张拉螺杆远离锚固板的一端扩大张拉板与锚固板之间的距离。
本发明相对于现有技术取得了以下技术效果:
(1)该张拉装置结构简单、施工工艺明确,技术要求低、造价低,同时施工方便,适合工程现场施工;
(2)能够显著提高预应力加固混凝土结构的延性,解决FRP条带与夹具之间的松弛问题;
(3)提高了FRP条带利用率和加固装置的可靠性,节约了FRP材料,为加固工程节约了成本;
(4)通过张拉螺杆的弹塑性变形实现了结构超载的自我预警功能;
(5)整体结构易于加工生产,可以满足产业化生产的需要,便于在工程加固领域大面积推广与应用。
(6)使用双杆进行张拉时,整体稳定性更好,加载过程更平稳。
附图说明
图1为本发明单杆预警装置的固定板一端的连接方式俯视图;
图2为本发明单杆预警装置的固定板一端的连接方式侧视图;
图3为本发明单杆预警装置的锚固板一端的连接方式俯视图;
图4为本发明单杆预警装置的锚固板一端的连接方式侧视图;
图5为本发明单杆预警装置的俯视图;
图6为本发明单杆预警装置的侧视图;
图7为本发明单杆预警装置的固定板一端的FRP条带固定方式示意图;
图8为图7的简化示意图;
图9为本发明双杆预警装置的固定板一端的连接方式俯视图;
图10为本发明双杆预警装置的固定板一端的连接方式侧视图;
图11为本发明双杆预警装置的锚固板一端的连接方式俯视图;
图12为本发明双杆预警装置的锚固板一端的连接方式侧视图;
图13为本发明双杆预警装置的俯视图;
图14为本发明双杆预警装置的侧视图;
图15为本发明双杆预警装置改进后的俯视图;
图16为本发明双杆预警装置改进后的侧视图;
图17为本发明双杆预警装置固定板一端的FRP条带固定方式示意图;
图18为图17的简化示意图;
图19为预应力张拉锚固荷载滑移曲线示意图;
图20为本发明单杆预警装置和双杆预警装置改进安装方法梁的横截面示意图;
图21为FRP条带和张拉螺杆的应力应变曲线;
图22为预警装置发明构思示意图;
附图标记说明:101固定板;102FRP条带;103自锁板;104锚固板;105张拉螺杆;106螺母;107膨胀螺栓;201固定板;202FRP条带;203自锁板;204锚固板;205张拉板;206第一张拉螺杆;207第二张拉螺杆;208第三张拉螺杆;209螺母;210膨胀螺栓;211液压千斤顶;301预警装置;302固定装置。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进 行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的目的是提供一种预应力FRP加固结构的预警装置及延性调控方法,在提高加固结构的承载力和延性的同时,解决了FRP与锚具之间易脱离的连接和脆性破坏问题,较大幅度地提高了FRP的利用率和结构安全性。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
实施例1、
本实施例提供一种预应力FRP加固结构的张拉螺杆预警装置,包括固定板、FRP条带、自锁板、锚固板、至少一个张拉螺杆、螺母和膨胀螺栓,固定板和锚固板位于自锁板的两侧,FRP条带的一端与固定板固定连接,FRP条带的另一端与自锁板固定连接,至少一个张拉螺杆穿过自锁板和锚固板,螺母为多个且与张拉螺杆螺纹连接,螺母用以锁紧于自锁板的两侧和锚固板的两侧,膨胀螺栓用以将固定板、自锁板和锚固板固定于混凝土基体上,自锁板上用于安装膨胀螺栓的通孔为长圆孔,长圆孔与张拉螺杆平行设置。
上述的张拉螺杆可以是一个,也可以是多个。当张拉螺杆为一个时,张拉较为方便,可直接对张拉螺杆进行张拉;当张拉螺杆为多个时,为了保证各张拉螺杆同步张拉,可使各张拉螺杆远离自锁板的一端在穿过锚固板后再穿过一个张拉板,并使用螺母将张拉螺杆锁紧于张拉板的两端,通过移动张拉板即可实现对各个张拉螺杆的同步张拉。
如图22所示,本实施例通过单个或多个张拉螺杆与自锁板、锚固板和螺母组成的预警装置301实现延性控制,预警装置301可更换且形式多样,其作用相当于保险丝,在预警装置301的一端设置有和预警装置301固定相连的固定装置302,固定装置302用以对张拉螺杆进行张拉并在张拉完成后使张拉螺杆的一端固定不动。
需要说明的是,张拉螺杆和自锁板是本实施例延性控制的关键。本实施例通过张拉螺杆的伸长来实现整体结构延性的提高,可以通过调整变张拉螺杆的材料和直径来实现对FRP条带利用率以及延性的控制;自锁板上长圆孔内的膨胀螺栓在张拉螺杆被拉断之前不锁紧,使得自锁板可随张拉螺杆的伸长向右移动,在张拉螺杆被拉断后可随FRP条带的拉动向左移动,向左移动至长圆孔的端部后再锁紧该膨胀螺栓,整个结构由预应力加固转换为非预应力加固,结构仍处于安全状态。
张拉螺杆的材料可以选择形状记忆合金,在发生了塑性变形后,经过合适的热过程,即可恢复变形前的形状。当荷载加载的程度在螺杆的承受范围以内时,整个张拉装置按照预期的效果进行张拉加固,并能够在塑性变形后通过加热张拉螺杆对其重复利用,可显著节省成本。当荷载加载的程度超过张拉螺杆的承受范围,张拉螺杆被拉断而失效,只需要更换保险丝即可重复利用张拉装置,使得张拉螺杆像“保险丝”一样保护整个张拉装置。
FRP条带与混凝土基体可以采用有粘结或者无粘结两种形式,本领域技术人员可以根据实际需要进行选择。经计算表明,FRP条带离地距离增大后能够增大梁的横截面,提高抗弯刚度,这种张拉装置安装相对简单,对原有结构损害相对较小。
实施例2、
如图1-8所示,本实施例提供一种预应力FRP加固结构的单杆预警装置,包括固定板101、FRP条带102、自锁板103、锚固板104、张拉螺杆105、螺母106和膨胀螺栓107。其中,固定板101、自锁板103和锚固板104均为低碳钢结构,FRP条带102用以连接固定板101和自锁板103,张拉螺杆105用以连接自锁板103和锚固板104,螺母106与张拉螺杆105螺纹连接,螺母106用以将张拉螺杆105与自锁板103及锚固板104相互锁紧,膨胀螺栓107用以将固定板101、自锁板103和锚固板104固定于混凝土基体上。
固定板101和锚固板104分别位于自锁板103的左右两侧,FRP条带102的一端与固定板101固定连接,FRP条带102的另一端与自锁板 103固定连接。张拉螺杆105穿过自锁板103和锚固板104,螺母106为多个且用以锁紧于自锁板103的两侧和锚固板104的两侧。自锁板103上用于安装膨胀螺栓107的通孔为长圆孔,长圆孔与张拉螺杆105平行设置。长圆孔的长度大于张拉螺杆105的最大伸长量的两倍,目的在于使张拉螺杆105的变形得到充分发挥,以充分利用张拉螺杆105的伸长提高整个构件的延性。
FRP条带102的端部固定方式有多种,本实施例中,固定板101和自锁板103上均设置有两个相互平行的条形槽,条形槽用以供FRP条带102穿过,FRP条带102的两端通过自锁式缠绕结构与固定板101和自锁板103固定连接。条形槽做光滑处理,防止FRP条带102在缠绕时因应力集中被割断。如图7-8所示,图中箭头所示是FRP条带102在外力张拉时的滑动趋势。FRP条带102在外力拉力T 0作用下会产生如图中箭头所示的运动趋势,若各个接触面无摩擦,则FRP条带102将被拉出。正是因为内外层FRP条带102及FRP条带102和钢板之间的摩擦阻力的存在,使其可以产生绕杆自锁。
FRP条带102的两端在固定板101和自锁板103上缠绕之前,可在固定板101和自锁板103上的长圆孔处和FRP条带102上涂上结构胶,这主要考虑到FRP条带102宽度大、厚度小,在安装以及装配过程中产生偏心受力,易导致应力大的一侧先破坏,小的一侧后破坏。而涂上结构胶以后,FRP条带102之间的各束纤维丝连成整体,受力均匀。按照图7-8的缠绕方向进行FRP条带102的粘贴,在结构胶硬化以前可以对FRP条带102的连接位置做适当的调整以达到良好的连接位置,防止发生偏心等不利影响。随着FRP条带102缠绕厚度的增加,连接性能会逐渐提高,从而解决FRP条带102连接松弛的问题,达到提高加固承载力的良好效果。FRP条带102与混凝土基体可以采用有粘结或者无粘结两种形式,本领域技术人员可根据实际需要进行选择。
为了便于与FRP条带102连接,自锁板103为T形,自锁板103包括连接段和固定段,固定段垂直于连接段且关于连接段对称,连接段用以连接FRP条带102的一端,连接段上设置有条形槽,固定段上设置有长 圆孔。
为了使整体结构更稳定,FRP条带102的中心线和张拉螺杆105的中心线重合,使FRP条带102与张拉螺杆105近似位于同一高度。
本实施例还提供一种预应力FRP加固结构的延性调控方法,使用上述单杆预警装置,其具体步骤如下:
S1、将锚固板104通过膨胀螺栓107固定于混凝土基体上;
S2、将FRP条带102的两端分别固定于固定板101和自锁板103上;
S3、根据张拉应力的设计水平,选择张拉螺杆105的直径和材料,将张拉螺杆105穿过锚固板104和自锁板103,将膨胀螺栓107穿过自锁板103的长圆孔的中点位置并固定于混凝土基体上,此时自锁板103上的膨胀螺栓107上的螺母106没有拧紧,使用螺母106将张拉螺杆105与自锁板103相互锁紧,同时拧紧固定板101上的膨胀螺栓107的螺母106,然后开始施加张拉力,当预应力张拉到设计水平时,使用螺母106将张拉螺杆105与锚固板104相互锁紧,最后停止张拉。
步骤S1至S3为预应力设计过程,在预应力设计完毕后,得到的单杆预警装置可用于进行构件加载。在预应力设计时,对于步骤S3的张拉过程,不会发生张拉螺杆105的拉断现象,张拉螺杆105的拉断只会发生在构件加载过程中。
在步骤S2中,FRP条带102优选为通过自锁式缠绕的方式与固定板101和自锁板103相互固定,用以改善FRP条带102的连接方式,提高连接的可靠性,其具体缠绕结构如图7-8所示。
在步骤S4中,长圆孔的长度为△L 1+△L 2,其中△L 1为膨胀螺栓107与长圆孔左端的距离,△L 2为膨胀螺栓107与长圆孔右端的距离。随着自锁板103的移动,△L 1和△L 2的大小是不断变化的,其长度和保持不变。将膨胀螺栓107穿过自锁板103的长圆孔的中点位置并固定于混凝土基体上时,△L 1=△L 2。当张拉螺杆105拉断以后,自锁板103会逐渐向左移动,直到移动到膨胀螺栓107位置为止,即膨胀螺栓107右边的△L 2变为0。然后拧紧膨胀螺栓107的螺母106,这时膨胀螺栓107起固定自锁段的作用,预应力加固可转换为非预应力加固,结构仍处于安全状态, 实现对构件延性的控制。实现张拉螺杆105拉伸的牵引结构有多种,此为本领域的常规手段,不再赘述。
长圆孔的长度大于张拉螺杆105的最大伸长量的两倍,保证张拉端自锁段滑移的位移大于保险丝的伸长量,从而充分利用张拉螺杆105的伸长提高整个构件的延性。
本实施例中,张拉螺杆105是延性材料铸成的圆柱形螺纹杆,张拉螺杆105的变形是整体延性控制的关键,可以根据实际加固工程情况来对张拉螺杆105的材料和直径大小、形状进行设计来满足不同种类加固工程的需求。张拉螺纹杆材料优选为形状记忆合金,形状记忆合金优点是抗疲劳,形状记忆合金特点是在发生了塑性变形后,经过合适的热过程,能够恢复变形前的形状。因而,本实施例中的张拉螺杆105可通过加热恢复原状,实现张拉螺杆的循环利用,可显著节省成本,也可在拉断后进行替换,并不影响整个张拉结构的使用。
实施例3、
如图9-18所示,本实施例提供一种预应力FRP加固结构的双杆预警装置,包括固定板201、FRP条带202、自锁板203、锚固板204、张拉板205、张拉螺杆、螺母209和膨胀螺栓210,张拉螺杆包括平行等高设置的第一张拉螺杆206和第二张拉螺杆207。其中,固定板201、自锁板203和锚固板204均为低碳钢结构,FRP条带202用以连接固定板201和自锁板203,张拉螺杆用以连接自锁板203、锚固板204和张拉板205,螺母209与张拉螺杆螺纹连接,螺母209用以将张拉螺杆分别与自锁板203、锚固板204及张拉板205相互锁紧,膨胀螺栓210用以将固定板201、自锁板203和锚固板204固定于混凝土基体上。
固定板201、自锁板203、锚固板204和张拉板205由左至右依次设置,FRP条带202的一端与固定板201固定连接,FRP条带202的另一端与自锁板203固定连接。张拉螺杆穿过自锁板203、锚固板204和张拉板205,螺母209为多个且用以锁紧于自锁板203的两侧、锚固板204的两侧和张拉板205的两侧。自锁板203上用于安装膨胀螺栓210的通孔为长圆孔,长圆孔与张拉螺杆平行设置。长圆孔的长度大于张拉螺杆的最大 伸长量的两倍,目的在于使张拉螺杆的变形得到充分发挥,以充分利用张拉螺杆的伸长提高整个构件的延性。
FRP条带202的端部固定方式有多种,本实施例中,固定板201和自锁板203上均设置有两个相互平行的条形槽,条形槽用以供FRP条带202穿过,FRP条带202的两端通过自锁式缠绕结构与固定板201和自锁板203固定连接。条形槽做光滑处理,防止FRP条带202在缠绕时因应力集中被割断。如图17-18所示,图中箭头所示是FRP条带202在外力张拉时的滑动趋势。FRP条带202在外力拉力T 0作用下会产生如图中箭头所示的运动趋势,若各个接触面无摩擦,则FRP条带202将被拉出。正是因为内外层FRP条带202及FRP条带202和钢板之间的摩擦阻力的存在,使其可以产生绕杆自锁。
FRP条带202的两端在固定板201和自锁板203上缠绕之前,可在固定板201和自锁板203上的长圆孔处和FRP条带202上涂上结构胶,这主要考虑到FRP条带202宽度大、厚度小,在安装以及装配过程中产生偏心受力,易导致应力大的一侧先破坏,小的一侧后破坏。而涂上结构胶以后,FRP条带202之间的各束纤维丝连成整体,受力均匀。按照图17-18的缠绕方向进行FRP条带202的粘贴,在结构胶硬化以前可以对FRP条带202的连接位置做适当的调整以达到良好的连接位置,防止发生偏心等不利影响。随着FRP条带202缠绕厚度的增加,连接性能会逐渐提高,从而解决FRP条带202连接松弛的问题,达到提高加固承载力的良好效果。FRP条带202与混凝土基体可以采用有粘结或者无粘结两种形式,本领域技术人员可根据实际需要进行选择。
为了便于与FRP条带202连接,自锁板203为T形,自锁板203包括连接段和固定段,固定段垂直于连接段且关于连接段对称,连接段用以连接FRP条带202的一端,连接段上设置有条形槽,固定段上设置有长圆孔。
为了使整体结构更稳定,FRP条带202的中心线到第一张拉螺杆206的水平距离与到第二张拉螺杆207的水平距离相等,FRP条带202与张拉螺杆近似位于同一高度,使FRP条带202的中心线和张拉螺杆的合力 作用中心线重合。
需要说明的是,实施例2中图6和实施例3中图14的FRP条带202和张拉螺杆的安装方式为贴近混凝土基体的有粘结安装方式,此种方式并非优选安装方式,FRP条带202与混凝土基体之间的距离是可以根据实际需要调整的。改进安装方法梁的横截面示意图如图16及图20所示,FRP条带202和张拉螺杆优选为距离混凝土基体一定高度(△h),随着△h的增大,可以增加计算截面的高度,进而提高截面惯性矩,从而提高抗弯刚度。具体阐述如下:
根据《混凝土结构加固设计规范》(GB50367-2013)得预应力碳纤维受弯构件:
(1):不出现裂缝的受弯构件:
B s=0.85E cI 0
(2):出现裂缝的受弯构件:
Figure PCTCN2019083983-appb-000001
注释:B s为抗弯刚度,I 0为惯性矩。
Figure PCTCN2019083983-appb-000002
Figure PCTCN2019083983-appb-000003
Figure PCTCN2019083983-appb-000004
所以抗弯刚度B s都随着截面惯性矩(I 0)的增大为增大。I 0为未加固梁横截面的惯性矩,I 1为改进安装方法以后梁横截面的惯性矩,ΔI为增加的惯性矩。通过上述公式可以看出,ΔI随着Δh的增加而增大,故这种安装方案通过增加Δh而增大ΔI,增大ΔI而增大B s
本实施例还提供一种预应力FRP加固结构的延性调控方法,使用上述双杆预警装置,其具体步骤如下:
S1、将锚固板204通过膨胀螺栓210固定于混凝土基体上;
S2、将FRP条带202的两端分别固定于固定板201和自锁板203上;
S3、根据张拉应力的设计水平,选择张拉螺杆的直径和材料,将张拉螺杆穿过自锁板203、锚固板204和张拉板205,使用螺母209将张拉螺杆与自锁板203相互锁紧,使用螺母209将张拉螺杆与张拉板205相互锁紧;
S4、扩大张拉板205与锚固板204之间的距离,从而对张拉螺杆进行张拉,当预应力张拉到设计水平时,使用螺母209将张拉螺杆与锚固板204相互锁紧,并停止张拉;
S5、用膨胀螺栓210将自锁板203固定于混凝土基体上,膨胀螺栓210固定于自锁板203上长圆孔的中心处,此时膨胀螺栓210没有锁死拧紧。
步骤S1至S5为预应力设计过程,在预应力设计完毕后,得到的双杆预警装置可用于进行构件加载。在预应力设计时,对于步骤S4的张拉过程,不会发生张拉螺杆的拉断现象,张拉螺杆的拉断只会发生在构件加载过程中。
为了提升结构的延性、实现结构的自我预警功能,实施例2和实施例3中的张拉螺杆应选用有具有弹塑性变形能力的材料制成(图21),要求张拉螺杆的弹性模量(E 2大于等于FRP的弹性模量(E 1),且其断裂变形量(ε u见图21)与塑性变形量(ε y见图21)即ε uy应满足结构延性需求。
实施例2和实施例3中,张拉螺杆在使用过程中具有与“保险丝”相同的预警作用,同时张拉螺杆具有“可更换”、“可恢复”的功能,通过检测张拉螺杆的伸长量来预警整个预应力加固过程;由于张拉螺杆是塑性材料,张拉到一定水平时,承受荷载几乎不变,张拉螺杆的变形量持续增大,变形量达到一定程度,即认为张拉螺杆已经失效,可以更换张拉螺杆并再次进行预应力加固。
在步骤S2中,FRP条带202优选为通过自锁式缠绕的方式与固定板201和自锁板203相互固定,用以改善FRP条带202的连接方式,提高连接的可靠性,其具体缠绕结构如图17-18所示。
在步骤S5中,长圆孔的长度为△L 1+△L 2,其中△L 1为膨胀螺栓210 与长圆孔左端的距离,△L 2为膨胀螺栓210与长圆孔右端的距离。随着自锁板203的移动,△L 1和△L 2的大小是不断变化的,其长度和保持不变。将膨胀螺栓210穿过自锁板203的长圆孔的中点位置并固定于混凝土基体上时,△L 1=△L 2。当张拉螺杆5拉断以后,自锁板203会逐渐向左移动,直到移动到膨胀螺栓210位置为止,即膨胀螺栓210右边的△L 2变为0。然后拧紧膨胀螺栓210的螺母209,这时膨胀螺栓210起固定自锁段的作用,预应力加固可转换为非预应力加固,结构仍处于安全状态,实现对构件延性的控制。
实现张拉螺杆拉伸的牵引结构有多种,如图13-14所示,可通过液压千斤顶211扩大张拉板205与锚固板204之间的距离,从而实现张拉螺杆的拉伸;又如图15-16所示,可将第三张拉螺杆208穿过张拉板205并使用螺母209将第三张拉螺杆208与张拉板205相互锁紧,通过拉伸第三张拉螺杆208远离锚固板204的一端扩大张拉板205与锚固板204之间的距离,从而实现张拉螺杆的拉伸。
长圆孔的长度大于张拉螺杆的最大伸长量的两倍,保证张拉端自锁段滑移的位移大于保险丝的伸长量,从而充分利用张拉螺杆的伸长提高整个构件的延性。
实施例2和实施例3的预应力张拉锚固荷载滑移曲线见图19,P u3是施加预应力以后的承载力,P u2是预应力卸载以后张拉端的自锁段被膨胀螺栓锚固后的承载力,也可以认为张拉端的自锁段对FRP进行端部加固。P u1是未施加预应力构件的承载力,△P 1是施加预应力增加的部分,△P 2是预应力卸载以后碳纤维加固的构件的承载力,△L 3是张拉螺杆的伸长量。由图19可知,本实施例提供的张拉装置和张拉方法能够显著提升预应力结构的延性,实现延性可控可设计。张拉螺杆失效时预应力加固可转换为非预应力加固,结构仍处于安全状态。需要说明的是,传统预应力加固是以牺牲延性来提高构件的前期刚度,而本实施例不仅提高了构件早期刚度,而且提高了构件的延性,增加了构件的安全性。
实施例2和实施例3中,张拉螺杆是延性材料铸成的圆柱形螺纹杆,张拉螺杆的变形是整体延性控制的关键,可以根据实际加固工程情况来对 张拉螺杆的材料和直径大小、形状进行设计来满足不同种类加固工程的需求。张拉螺纹杆材料优选为形状记忆合金,形状记忆合金优点是抗疲劳,形状记忆合金特点是在发生了塑性变形后,经过合适的热过程,能够恢复变形前的形状。因而,本实施例中的张拉螺杆可通过加热恢复原状,实现张拉螺杆的循环利用,可显著节省成本,也可在拉断后进行替换,并不影响整个张拉结构的使用。
本说明书中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。

Claims (19)

  1. 一种预应力FRP加固结构的张拉螺杆预警装置,其特征在于,包括固定板、FRP条带、自锁板、锚固板、至少一个张拉螺杆、螺母和膨胀螺栓,所述固定板和所述锚固板位于所述自锁板的两侧,所述FRP条带的一端与所述固定板固定连接,所述FRP条带的另一端与所述自锁板固定连接,至少一个所述张拉螺杆穿过所述自锁板和所述锚固板,所述螺母为多个且与所述张拉螺杆螺纹连接,所述螺母用以锁紧于所述自锁板的两侧和所述锚固板的两侧,所述膨胀螺栓用以将所述固定板、所述自锁板和所述锚固板固定于混凝土基体上,所述自锁板上用于安装所述膨胀螺栓的通孔为长圆孔,所述长圆孔与所述张拉螺杆平行设置。
  2. 一种预应力FRP加固结构的单杆预警装置,其特征在于,包括固定板、FRP条带、自锁板、锚固板、张拉螺杆、螺母和膨胀螺栓,所述固定板和所述锚固板位于所述自锁板的两侧,所述FRP条带的一端与所述固定板固定连接,所述FRP条带的另一端与所述自锁板固定连接,所述张拉螺杆穿过所述自锁板和所述锚固板,所述螺母为多个且与所述张拉螺杆螺纹连接,所述螺母用以锁紧于所述自锁板的两侧和所述锚固板的两侧,所述膨胀螺栓用以将所述固定板、所述自锁板和所述锚固板固定于混凝土基体上,所述自锁板上用于安装所述膨胀螺栓的通孔为长圆孔,所述长圆孔与所述张拉螺杆平行设置。
  3. 根据权利要求2所述的预应力FRP加固结构的单杆预警装置,其特征在于,所述固定板和所述自锁板上均设置有两个相互平行的条形槽,所述条形槽用以供所述FRP条带穿过,所述FRP条带的两端通过自锁式缠绕结构与所述固定板和所述自锁板固定连接。
  4. 根据权利要求3所述的预应力FRP加固结构的单杆预警装置,其特征在于,所述自锁板为T形,所述自锁板包括连接段和固定段,所述固定段垂直于所述连接段且关于所述连接段对称,所述连接段用以连接所述FRP条带的一端,所述连接段上设置有所述条形槽,所述固定段上设置有所述长圆孔。
  5. 根据权利要求2所述的预应力FRP加固结构的单杆预警装置,其 特征在于,所述FRP条带的中心线和所述张拉螺杆的中心线重合。
  6. 根据权利要求2所述的预应力FRP加固结构的单杆预警装置,其特征在于,所述长圆孔的长度大于所述张拉螺杆的最大伸长量的两倍。
  7. 根据权利要求3所述的预应力FRP加固结构的单杆预警装置,其特征在于,所述条形槽的边缘为光滑过渡结构。
  8. 一种预应力FRP加固结构的延性调控方法,其特征在于,使用如权利要求2所述的单杆预警装置,包括如下步骤:
    S1、将锚固板通过膨胀螺栓固定于混凝土基体上;
    S2、将FRP条带的两端分别固定于固定板和自锁板上;
    S3、根据张拉应力的设计水平,选择张拉螺杆的直径和材料,将张拉螺杆穿过锚固板和自锁板,将膨胀螺栓穿过自锁板的长圆孔的中点位置并固定于混凝土基体上,此时自锁板上的膨胀螺栓上的螺母没有拧紧,使用螺母将张拉螺杆与自锁板相互锁紧,同时拧紧固定板上的膨胀螺栓的螺母,然后开始施加张拉力,当预应力张拉到设计水平时,使用螺母将张拉螺杆与锚固板相互锁紧,最后停止张拉。
  9. 根据权利要求8所述的预应力FRP加固结构的延性调控方法,其特征在于,在步骤S2中,FRP条带的两端分别通过自锁式缠绕方式固定于固定板和自锁板上。
  10. 一种预应力FRP加固结构的双杆预警装置,其特征在于,包括固定板、FRP条带、自锁板、锚固板、张拉板、张拉螺杆、螺母和膨胀螺栓,所述张拉螺杆包括平行设置的第一张拉螺杆和第二张拉螺杆,所述固定板、所述自锁板、所述锚固板和所述张拉板由左至右依次设置,所述FRP条带的一端与所述固定板固定连接,所述FRP条带的另一端与所述自锁板固定连接,所述张拉螺杆穿过所述自锁板、所述锚固板和所述张拉板,所述螺母为多个且与所述张拉螺杆螺纹连接,所述螺母用以锁紧于所述自锁板的两侧、所述锚固板的两侧和所述张拉板的两侧,所述膨胀螺栓用以将所述固定板、所述自锁板和所述锚固板固定于混凝土基体上,所述自锁板上用于安装所述膨胀螺栓的通孔为长圆孔,所述长圆孔与所述张拉螺杆平行设置。
  11. 根据权利要求10所述的一种预应力FRP加固结构的双杆预警装置,其特征在于,所述固定板和所述自锁板上均设置有两个相互平行的条形槽,所述条形槽用以供所述FRP条带穿过,所述FRP条带的两端通过自锁式缠绕结构与所述固定板和所述自锁板固定连接。
  12. 根据权利要求11所述的一种预应力FRP加固结构的双杆预警装置,其特征在于,所述自锁板为T形,所述自锁板包括连接段和固定段,所述固定段垂直于所述连接段且关于所述连接段对称,所述连接段用以连接所述FRP条带的一端,所述连接段上设置有所述条形槽,所述固定段上设置有所述长圆孔。
  13. 根据权利要求10所述的一种预应力FRP加固结构的双杆预警装置,其特征在于,所述FRP条带的中心线和所述张拉螺杆的合力作用中心线重合。
  14. 根据权利要求10所述的一种预应力FRP加固结构的双杆预警装置,其特征在于,所述长圆孔的长度大于所述张拉螺杆的最大伸长量的两倍。
  15. 根据权利要求11所述的一种预应力FRP加固结构的双杆预警装置,其特征在于,所述条形槽的边缘为光滑过渡结构。
  16. 一种预应力FRP加固结构的延性调控方法,其特征在于,使用如权利要求10所述的双杆预警装置,包括如下步骤:
    S1、将锚固板通过膨胀螺栓固定于混凝土基体上;
    S2、将FRP条带的两端分别固定于固定板和自锁板上;
    S3、根据张拉应力的设计水平,选择张拉螺杆的直径和材料,将张拉螺杆穿过自锁板、锚固板和张拉板,使用螺母将张拉螺杆与自锁板相互锁紧,使用螺母将张拉螺杆与张拉板相互锁紧;
    S4、扩大张拉板与锚固板之间的距离,从而对张拉螺杆进行张拉,当预应力张拉到设计水平时,使用螺母将张拉螺杆与锚固板相互锁紧,并停止张拉;
    S5、将膨胀螺栓通过自锁板的长圆孔安装在混凝土基体上,保持膨胀螺栓固定于自锁板上长圆孔的中心处,此时膨胀螺栓没有锁死拧紧。
  17. 根据权利要求16所述的提高FRP加固结构延性实现超载预警的方法,其特征在于,在步骤S2中,FRP条带的两端分别通过自锁式缠绕方式固定于固定板和自锁板上。
  18. 根据权利要求16所述的预应力FRP加固结构的延性调控方法,其特征在于,步骤S4中,通过液压千斤顶扩大张拉板与锚固板之间的距离。
  19. 根据权利要求16所述的预应力FRP加固结构的延性调控方法,其特征在于,步骤S4中,将第三张拉螺杆穿过张拉板并使用螺母将第三张拉螺杆与张拉板相互锁紧,通过拉伸第三张拉螺杆远离锚固板的一端扩大张拉板与锚固板之间的距离。
PCT/CN2019/083983 2018-10-31 2019-04-24 预应力frp加固结构的预警装置及延性调控方法 WO2020087887A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/626,000 US11186991B2 (en) 2018-10-31 2019-04-24 Early warning device and ductility control method for prestressed FRP reinforced structure

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201811283912.9A CN109235923B (zh) 2018-10-31 2018-10-31 预应力frp加固结构的单杆预警装置及延性调控方法
CN201811283912.9 2018-10-31
CN201811283915.2 2018-10-31
CN201811283915.2A CN109235924B (zh) 2018-10-31 2018-10-31 预应力frp加固结构的双杆预警装置及延性调控方法

Publications (1)

Publication Number Publication Date
WO2020087887A1 true WO2020087887A1 (zh) 2020-05-07

Family

ID=70461955

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/083983 WO2020087887A1 (zh) 2018-10-31 2019-04-24 预应力frp加固结构的预警装置及延性调控方法

Country Status (2)

Country Link
US (1) US11186991B2 (zh)
WO (1) WO2020087887A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112942684A (zh) * 2021-02-04 2021-06-11 北京工业大学 一种具有多重锚固能力的条带式构件张拉锚固一体化装置
CN113417679A (zh) * 2021-05-31 2021-09-21 哈尔滨工业大学 用于纤维增强树脂复合材料杆体的锚固装置及锚固方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113431365A (zh) * 2021-06-30 2021-09-24 中国建筑第八工程局有限公司 Frp板锚具与构件的连接结构及其使用方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4303569B2 (ja) * 2003-11-21 2009-07-29 株式会社ピーエス三菱 Frp緊張材の定着方法
CN103321430A (zh) * 2013-06-07 2013-09-25 华北水利水电大学 预应力碳纤维片材加固大跨混凝土结构的施工方法
JP2014227743A (ja) * 2013-05-23 2014-12-08 国立大学法人豊橋技術科学大学 鋼材の補修構造
CN104895251A (zh) * 2014-03-04 2015-09-09 五邑大学 用于纤维片材的绕回式波形锚及其预张拉方法
CN204899230U (zh) * 2015-06-19 2015-12-23 深圳市威士邦建筑新材料科技有限公司 牵引式预应力碳纤维板张拉装置
CN205206350U (zh) * 2015-10-26 2016-05-04 四川省建筑科学研究院 一种预应力碳纤维板张拉锚固装置
CN109235924A (zh) * 2018-10-31 2019-01-18 深圳大学 预应力frp加固结构的双杆预警装置及延性调控方法
CN109235923A (zh) * 2018-10-31 2019-01-18 深圳大学 预应力frp加固结构的单杆预警装置及延性调控方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19742210A1 (de) * 1997-09-24 1999-03-25 Goehler Bernhard Dipl Ing Verfahren und bandförmiges Zugglied zur Ertüchtigung und/oder Sanierung von Stahlbeton- oder Spannbeton-Tragwerken sowie Vorrichtung zur Durchführung des Vefahrens
DE19849605A1 (de) * 1998-10-28 2000-05-04 Goehler Andrae Und Partner Ber Spannvorrichtung für ein bandförmiges Zugglied
DE10129216C1 (de) * 2001-06-19 2003-05-15 Leonhardt Andrae Und Partner B Spannanker für bandförmige Zugglieder im Bauwesen
DE10237968B3 (de) * 2002-08-20 2004-02-05 Leonhardt, Andrä und Partner Beratende Ingenieure VBI GmbH Verfahren zum Anbringen von Zuggliedern an Tragwerken sowie Vorrichtung zur Durchführung des Verfahrens
DE10249266B3 (de) * 2002-10-23 2004-04-08 Leonhardt, Andrä und Partner Beratende Ingenieure VBI GmbH Spannvorrichtung für bandförmige Zugglieder
US8904721B2 (en) * 2008-06-12 2014-12-09 University Of Utah Research Foundation Anchoring, splicing and tensioning elongated reinforcement members
CN102159768A (zh) * 2008-06-12 2011-08-17 犹他大学研究基金会 细长加强构件的锚固、拼接和张紧
KR101011376B1 (ko) * 2008-12-10 2011-01-28 한국건설기술연구원 에프알피 판 정착장치 및 이를 이용한 에프알피 판 긴장방법
GB0916073D0 (en) * 2009-09-14 2009-10-28 Cintec Int Ltd Improvements in and relating to building anchor systems
EP2447446A1 (de) * 2010-10-28 2012-05-02 Sika Technology AG Endverankerung von Zuggliedern an Stahlbetonträgern
EP2631392A1 (de) * 2012-02-21 2013-08-28 Sika Technology AG Vorrichtung zur Krafteinleitung in Zugglieder aus faserverstärkten Kunststoff-Flachbandlamellen
ES2942845T3 (es) * 2012-09-17 2023-06-07 Cpc Ag Elemento de armadura para la fabricación de componentes de hormigón pretensados, componente de hormigón y procedimiento de fabricación
US9546497B2 (en) * 2014-07-18 2017-01-17 Robert Semaan Link-plate connection for monopole reinforcing bars
CA2970576C (en) * 2014-11-21 2023-02-28 Danmarks Tekniske Universitet A reinforcement system and a method of reinforcing a structure with a tendon
US10323427B2 (en) * 2015-06-26 2019-06-18 Danmarks Tekniske Universitet Anchorage device
DK3418465T3 (da) * 2017-06-23 2022-05-30 Solidian Gmbh Fremgangsmåde til fremstilling af en tekstilarmeret byggematerialekomponent samt anvendelse af en spændeindretning dertil

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4303569B2 (ja) * 2003-11-21 2009-07-29 株式会社ピーエス三菱 Frp緊張材の定着方法
JP2014227743A (ja) * 2013-05-23 2014-12-08 国立大学法人豊橋技術科学大学 鋼材の補修構造
CN103321430A (zh) * 2013-06-07 2013-09-25 华北水利水电大学 预应力碳纤维片材加固大跨混凝土结构的施工方法
CN104895251A (zh) * 2014-03-04 2015-09-09 五邑大学 用于纤维片材的绕回式波形锚及其预张拉方法
CN204899230U (zh) * 2015-06-19 2015-12-23 深圳市威士邦建筑新材料科技有限公司 牵引式预应力碳纤维板张拉装置
CN205206350U (zh) * 2015-10-26 2016-05-04 四川省建筑科学研究院 一种预应力碳纤维板张拉锚固装置
CN109235924A (zh) * 2018-10-31 2019-01-18 深圳大学 预应力frp加固结构的双杆预警装置及延性调控方法
CN109235923A (zh) * 2018-10-31 2019-01-18 深圳大学 预应力frp加固结构的单杆预警装置及延性调控方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112942684A (zh) * 2021-02-04 2021-06-11 北京工业大学 一种具有多重锚固能力的条带式构件张拉锚固一体化装置
CN113417679A (zh) * 2021-05-31 2021-09-21 哈尔滨工业大学 用于纤维增强树脂复合材料杆体的锚固装置及锚固方法
CN113417679B (zh) * 2021-05-31 2022-06-24 哈尔滨工业大学 用于纤维增强树脂复合材料杆体的锚固装置及锚固方法

Also Published As

Publication number Publication date
US11186991B2 (en) 2021-11-30
US20210131105A1 (en) 2021-05-06

Similar Documents

Publication Publication Date Title
WO2020087887A1 (zh) 预应力frp加固结构的预警装置及延性调控方法
CN109235924B (zh) 预应力frp加固结构的双杆预警装置及延性调控方法
CN111827712B (zh) 一种装配式混凝土桁架建筑结构加固设备
CN104153584A (zh) 张拉锚固装置及其使用方法
CN109653531B (zh) 一种体外预应力钢绞线连接器及配套张拉装置
CN109235923B (zh) 预应力frp加固结构的单杆预警装置及延性调控方法
CN109881842A (zh) 一种frp片材变夹持力波形夹板锚
CN215107609U (zh) 一种高效适用的预应力碳纤维板张拉夹具
CN101487344B (zh) 预应力纤维布加固混凝土柱的横向张拉方法
CN106544962B (zh) 混凝土结构的预应力加固施工方法
CN104775629B (zh) 自控式纤维布预应力张拉的方法和设备
CN202047370U (zh) 混凝土桥梁的预应力筋张拉设备及预应力张拉系统
CN101487346A (zh) 预应力纤维布加固混凝土梁的横向张拉方法
JP3597168B2 (ja) 橋梁の補強構造
CN107059664B (zh) 预应力纤维布旋转自锁式张拉锚固装置
CN115680313A (zh) 用于张弦桁架结构的叉戟式拉索智能更换及索力监测装置
CN113846868A (zh) 一种基于多层纤维布预应力施加的加固装置及加固方法
CN111622136A (zh) 一种预应力碳纤维柔性材料张拉锚固装置及其施工方法
CN110029593B (zh) 一种多层预应力纤维布加固梁的张拉和锚固装置
CN214737480U (zh) 一种自锁式多层预应力cfrp加固系统
CN212453755U (zh) 一种新型预应力碳纤维板张拉装置
CN213449605U (zh) 一种可双张拉预应力碳纤维板的锚具系统
CN112854029A (zh) 一种自锁式多层预应力cfrp加固系统及施工工艺
CN218623403U (zh) 一种用于t梁浇筑的张拉梁端底部防崩裂装置
CN114809704B (zh) 一种收紧式体外预应力cfrp材料加固体系及施工方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19879753

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 25.08.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19879753

Country of ref document: EP

Kind code of ref document: A1