WO2020087845A1 - 基于gpr与改进的srckf的sins初始对准方法 - Google Patents
基于gpr与改进的srckf的sins初始对准方法 Download PDFInfo
- Publication number
- WO2020087845A1 WO2020087845A1 PCT/CN2019/079137 CN2019079137W WO2020087845A1 WO 2020087845 A1 WO2020087845 A1 WO 2020087845A1 CN 2019079137 W CN2019079137 W CN 2019079137W WO 2020087845 A1 WO2020087845 A1 WO 2020087845A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- error
- srckf
- state
- gpr
- sins
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 86
- 238000005259 measurement Methods 0.000 claims abstract description 73
- 239000011159 matrix material Substances 0.000 claims abstract description 65
- 230000008569 process Effects 0.000 claims abstract description 57
- 238000004422 calculation algorithm Methods 0.000 claims abstract description 19
- 230000006870 function Effects 0.000 claims description 27
- 239000013598 vector Substances 0.000 claims description 18
- 238000000354 decomposition reaction Methods 0.000 claims description 12
- 230000007704 transition Effects 0.000 claims description 12
- 238000004364 calculation method Methods 0.000 claims description 11
- 238000001914 filtration Methods 0.000 claims description 11
- 230000026676 system process Effects 0.000 claims description 9
- 238000005070 sampling Methods 0.000 claims description 6
- 230000001133 acceleration Effects 0.000 claims description 3
- 238000002939 conjugate gradient method Methods 0.000 claims description 3
- 238000010276 construction Methods 0.000 claims description 3
- 230000005484 gravity Effects 0.000 claims description 3
- 238000004088 simulation Methods 0.000 claims description 3
- 230000009466 transformation Effects 0.000 claims description 3
- 238000007781 pre-processing Methods 0.000 abstract description 2
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000007500 overflow downdraw method Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C25/00—Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass
- G01C25/005—Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass initial alignment, calibration or starting-up of inertial devices
Definitions
- the invention belongs to the technical field of initial alignment of a navigation system, and is a strapdown inertial navigation system (SINS) based on Gaussian Process Regression (GPR) and improved square root volume Kalman filter (Square-Root Cubature Kalman Filter, SRCKF). ) Initial alignment method.
- SINS strapdown inertial navigation system
- GPR Gaussian Process Regression
- SRCKF square root volume Kalman filter
- the inertial navigation system needs to perform initial alignment before starting the navigation solution.
- Initial alignment is the key technology of inertial navigation.
- the accuracy of the initial alignment largely determines the accuracy of the navigation, and the speed of the initial alignment affects the application range of the navigation system to a certain extent.
- the initial alignment of the inertial navigation system can be divided into coarse alignment and fine alignment, usually using analytical method, nonlinear filtering method, etc. for coarse alignment, and compass method, nonlinear filtering method, etc., for fine alignment.
- the initial attitude angle is obtained, thereby determining the initial attitude matrix required for the navigation solution.
- a nonlinear filtering method is often used for initial alignment in engineering.
- Common non-linear filtering methods include Extended Kalman Filter (EKF), Unscented Kalman Filter (UKF) and Volume Kalman Filter (Cubuture Kalman Filter, CKF) and Square Root Volume Kalman Filter (EKF) Square-Root Cubuture Kalman Filter (SRCKF), etc.
- EKF Extended Kalman Filter
- UKF Unscented Kalman Filter
- CKF Volume Kalman Filter
- EKF Square Root Volume Kalman Filter
- SRCKF Square-Root Cubuture Kalman Filter
- Traditional EKF, UKF and other nonlinear filtering methods have problems of low alignment accuracy and numerical instability for highly nonlinear systems.
- CKF also has numerical instability.
- SRCKF can improve numerical instability, but changes to the model , Or when the model is inaccurate, SRCKF cannot track the model correctly, and the SRCKF convergence process is slow, affecting its application.
- the present invention provides a SINS initial alignment method based on GPR and improved SRCKF, which can improve the adaptability of SINS and in the environment where quick alignment is required Perform a quick initial alignment.
- the SINS initial alignment method based on GPR and improved SRCKF includes the following steps:
- Step 1 Establish an initial alignment model of the navigation system.
- the alignment model includes a non-linear error model, a filtering model state model, and a measurement model of the strapdown inertial navigation system;
- Step 2 Discretize the state equation and measurement equation obtained in the step
- Step 3 Under the condition that fast alignment is not required, perform the time update process of the improved SRCKF with the state equation and the measurement equation to obtain the square root of the predicted estimate of the state and the covariance of the predicted error;
- Step 4 Iterate with the square root of the predicted value of the updated SRCKF time update and the prediction error covariance as the initial value, and iterate to the maximum number to complete the measurement update;
- Step 5 Extract the Euler angle platform estimation value and velocity estimation value from the state quantity obtained in Step 4 to modify the attitude matrix and velocity of the SINS solution, and use the corrected value as the initial value of the next SINS solution, and use the current Obtained gyroscope and accelerometer constant error estimates to correct the gyroscope output and accelerometer output at the next moment;
- Step 6 After the improved SRCKF runs for a certain period of time, save the system measurement data at a fixed time interval. After construction, it is necessary to quickly align the training data set required by the GPR model algorithm under the environment, and save a total of N sets of data;
- Step 7 In an environment that requires rapid alignment, the GPR model algorithm is used to learn according to the training data set D saved in the previous initial alignment process; at the same time, the measured data of the current SINS real-time calculation is used as the input, and the attitude error angle As an output, update the GPR training data set for learning to obtain the system state transition GPR model and measurement GPR model; then use the obtained system state transition GPR model and measurement GPR model to obtain the attitude error angle of the system's current alignment process And the error variance, complete the initial alignment of the system.
- step 1 specifically includes the following sub-steps:
- Step 1.1 Establish a nonlinear error model of strapdown inertial navigation system:
- Step 1.2 Establish the SINS state equation model as follows:
- the above-mentioned velocity-related components are Let the process noise vector Is zero-mean Gaussian white noise; the projection of the angular velocity of the earth's relative inertial system ⁇ ie in the n system L is the latitude of the carrier, the above equation of state can be written as:
- f (x, t) is a function obtained according to the previous state equation
- g (t) is a coefficient matrix determined according to the above system process noise vector
- Step 1.3 Establish the measurement equation as follows:
- v b is the true speed under the b system
- SINS will Convert to w z is a zero-mean Gaussian white noise process, only with The eastward and northward velocity error components in are used as matching information sources;
- h (x, t) is a function obtained according to the previous measurement equation.
- both the sampling period and the filtering period in step 2 are taken as T s , and this step discretizes the state equation and measurement equation in step 1 as:
- x k is the state quantity of the system at time k
- z k is the measured value of the system state at the time of k
- F (x k-1 ), G k-1 , H (x k-1 ) are the functions obtained by discretizing the equation corresponding to step 1.
- step 3 the specific steps of time update under the improved SRCKF framework in step 3 are as follows:
- Step 3.1 Set the initial value of the system state Initial error covariance matrix
- ° is an angle unit
- m / s is a speed unit
- h is a time unit
- ⁇ g 10 -6 g.
- Step 3.2 Select the sampling points of the improved SRCKF according to the SSR volume rule of the spherical surface, as follows:
- Step 3.3 Calculate the square root factor of the one-step predicted value of the state and the one-step predicted error covariance matrix:
- the current state volume point and the predicted state volume point are:
- Q k-1 is the system process noise variance matrix as described above.
- step 4 uses an iterative algorithm, and the specific steps are as follows:
- Step 4.1 Use the state prediction value obtained in Step 3 And the prediction error covariance S k
- Step 4.3 The termination condition of the iteration is Where ⁇ is a preset iteration threshold; or the number of iterations reaches the maximum value N max , if one of the above two conditions is not met, repeat the steps of claim 4;
- N max 1 is taken, that is, no iteration is performed.
- correction formula in step 5 is as follows:
- system measurement data in step 6 includes east and north speed errors, and the attitude error angle calculated by SINS.
- the steps 3-6 are repeatedly executed until the initial alignment of the SINS is completed.
- Step 7.1 In an environment that requires rapid alignment, perform GPR model learning based on the data training set D consisting of the N sets of input and output data saved in the previous initial alignment process to obtain the state transition GPR model and measurement GPR model of the system , More specific steps are:
- Step 7.1.2 Perform GPR model learning according to the data set of step 7.1.1, initialize GPR model: use Gaussian kernel function as the initialization kernel function of GPR model:
- ⁇ v p , ⁇ v q are any elements in the data training set measurement ⁇ V
- l 1 , l 2 are signal variances
- the above unknown parameter set is recorded as hyperparameters among them
- the data training set D e ( ⁇ V, ⁇ e )
- the input and output pairs of the GPR model establish the log-likelihood function of the training sample condition function p ( ⁇ e
- p, q 1, ..., N ⁇ is N ⁇ N order symmetric positive definite covariance matrix
- K (p, q) k ( ⁇ v p , ⁇ v q ) measures the correlation of ⁇ v p , ⁇ v q ;
- Step 7.1.4 For the three attitude error angles, repeat the above steps to obtain the corresponding parameters;
- Step 7.2 In the current alignment process, use the improved SRCKF to obtain the measurement value ⁇ v * at the current time, and update the training data set D for the system's real-time measurement and attitude error angle output up to the previous time, according to the GPR model Obtain the attitude error angle and its error variance under the current measurement ⁇ v * , perform SINS initial alignment, and obtain the attitude error angle and corresponding error variance of the system during the current alignment process; the specific steps are as follows:
- Step 7.2.1 The output vector ⁇ e of the data training set in the Gaussian process regression model and the predicted value ⁇ e * satisfy:
- Step 7.2.2 For the other two attitude error angles ⁇ n , ⁇ u , obtain the estimated mean value in the current alignment process through the above steps And the corresponding error variance Thus completing the initial alignment process of SINS.
- the present invention has the following advantages and beneficial effects:
- the present invention incorporates the simplest radial volume rule SSR of the spherical surface into the square root volume Kalman filter algorithm, improves the robustness of SRCKF, enhances the numerical stability of the filter algorithm, and can reduce the calculation amount of high-order SRCKF.
- the present invention adopts an iterative algorithm in the measurement and update stage of SRCKF.
- the measurement equation is a nonlinear equation, it can improve the feedback efficiency of innovation and accelerate the convergence process of SRCKF.
- the present invention adopts the improved SRCKF algorithm when the alignment accuracy is an absolute consideration factor according to the different alignment environments, and focuses on reducing the error of the initial alignment result; while in the environment where the initial alignment speed needs to be increased , Adopt the fusion method of Gaussian process regression and improved SRCKF to accelerate the initial alignment speed and obtain the initial alignment result with the accuracy of improved SRCKF.
- FIG. 1 is an overall flowchart of a method for initial alignment of SINS based on GPR and improved SRCKF provided by the present invention.
- Figure 2 is a flowchart of the improved SRCKF model algorithm in Figure 1.
- Figure 3 is a flow chart of the algorithm of GPR in Figure 1 incorporating the improved SRCKF model.
- the SINS initial alignment method based on GPR and improved SRCKF provided by the present invention first acquires the data of each sensor and preprocesses the data; establishes the state equation and measurement equation of the carrier system; adopts the SSR rule to select the volume point of SRCKF to establish Improved SRCKF recursion equation; using the improved SRCKF recursion equation recursion, and finally recursion to obtain the initial alignment attitude error angle of the carrier.
- the GPR model is established; the current measurement data of the system is used to estimate the attitude error angle of the current alignment process of the system, and the attitude matrix is solved to complete the initial alignment task.
- FIG. 1 the overall process of the present invention is shown in FIG. 1 and includes the following steps:
- Step 1 Establish an initial alignment model of the navigation system.
- the alignment model includes a nonlinear error model, a filtering mode state model, and a measurement model of the strapdown inertial navigation system (SINS).
- SINS strapdown inertial navigation system
- Step 1.1 The nonlinear error model of the strapdown inertial navigation system is established through the following process:
- Step 1.2 The SINS equation of state model is as follows:
- the above-mentioned velocity-related components are Let the process noise vector Is zero-mean Gaussian white noise; the projection of the angular velocity of the earth's relative inertial system ⁇ ie in the n system L is the latitude of the carrier, the above equation of state can be written as:
- f (x, t) is a function obtained according to the previous state equation
- g (t) is a coefficient matrix determined according to the above system process noise vector.
- Step 1.3 The measurement equation is as follows:
- h (x, t) is a function obtained according to the previous measurement equation.
- Step 2 Discretize the state equation and measurement equation obtained in the step.
- the sampling period and filtering period are taken as T s
- the state equation and measurement equation in step 1 are discretized as
- x k is the state quantity of the system at time k
- z k is the measured value of the system state at the time of k
- F (x k-1 ), G k-1 , H (x k-1 ) are the functions obtained by discretizing the equation corresponding to step 1.
- Step 3 Perform the improved SRCKF time update process with state equations and measurement equations without the need for rapid alignment to obtain predicted estimates of the state The square root of the covariance with the prediction error Sk
- Step 3.1 Set the initial value of the system state Initial error covariance matrix
- ° is an angle unit
- m / s is a speed unit
- h is a time unit
- ⁇ g 10 -6 g.
- Step 3.2 Select the sampling points of the improved SRCKF according to the SSR volume rule of the spherical surface, as follows:
- Step 3.3 Calculate the square root factor of the one-step predicted value of the state and the one-step predicted error covariance matrix:
- the current state volume point and the predicted state volume point are:
- Step 4 To improve the predicted estimates of SRCKF time updates The square root of the covariance with the prediction error S k
- Step 4.1 Use the state prediction value obtained in Step 3 And the prediction error covariance S k
- Step 4.3 The termination condition of the iteration is Where ⁇ is a preset iteration threshold; or the number of iterations reaches the maximum value N max , if one of the above two conditions is not satisfied, the steps of claim 4 are repeated.
- the measurement equation may be linear when the initial alignment measurement uses rate error and position error is the observation measurement, so that the above iterative method fails because it cannot accelerate the feedback efficiency of innovation.
- N max 1 may be used. That is, no iteration is performed.
- Step 5 The state quantity obtained by the previous step 4 Estimation of Euler Angle Platform And speed estimate Modified attitude matrix of SINS solution And speed Use the corrected value as the initial value of the next SINS solution, and use the currently obtained constant error estimates of the gyroscope and accelerometer Correct the gyroscope output and accelerometer output at the next moment
- the correction formula is as follows:
- Step 6 After the improved SRCKF has been running for a certain period of time, the system measurement data, that is, the east and north speed errors, etc., and the attitude error angle calculated by SINS are saved at a fixed time interval. After construction, it needs to be quickly aligned in the environment.
- the training data set required by the GPR model algorithm stores a total of N sets of data. According to the process of step 4, if the alignment accuracy does not reach the predetermined requirement, the steps 3-6 are executed cyclically until the initial alignment of the SINS is completed.
- Step 7 In an environment that requires rapid alignment, the GPR model algorithm is used to learn according to the training data set D saved in the previous initial alignment process; at the same time, the measured data of the current SINS real-time calculation is used as the input, and the attitude error angle As an output, update the GPR training data set for learning to obtain the system state transition GPR model and measurement GPR model; then use the obtained system state transition GPR model and measurement GPR model to obtain the attitude error angle of the system's current alignment process And the error variance, complete the initial alignment of the system.
- Step 7.1 In an environment that requires rapid alignment, perform GPR model learning based on the data training set D consisting of the N sets of input and output data saved in the previous initial alignment process to obtain the state transition GPR model and measurement GPR model of the system .
- the more specific steps are:
- Step 7.1.2 Perform GPR model learning according to the data set of step 7.1.1, initialize GPR model: use Gaussian kernel function as the initialization kernel function of GPR model:
- ⁇ v p , ⁇ v q are any elements in the data training set measurement ⁇ V
- l 1 , l 2 are signal variances
- the above unknown parameter set is recorded as hyperparameters among them
- Step 7.1.3 The following is a description of establishing a GPR model of the east attitude error angle.
- p, q 1, ..., N ⁇ is N ⁇ N order symmetric positive definite covariance matrix
- K (p, q) k ( ⁇ v p , ⁇ v q ) measures the correlation of ⁇ v p , ⁇ v q .
- Step 7.1.4 For the three attitude error angles, repeat the above steps to obtain the corresponding parameters. The above steps can be completed before the current initial alignment process.
- Step 7.2 In the current alignment process, use the improved SRCKF to obtain the measurement value ⁇ v * at the current time, and update the training data set D for the system's real-time measurement and attitude error angle output up to the previous time, according to the GPR model Obtain the attitude error angle and its error variance under the current measurement ⁇ v * , perform initial SINS alignment, and obtain the attitude error angle and corresponding error variance of the system during the current alignment process.
- the specific steps are as follows:
- Step 7.2.1 The output vector ⁇ e of the data training set in the Gaussian process regression model and the predicted value ⁇ e * satisfy:
- Step 7.2.2 For the other two attitude error angles ⁇ n and ⁇ u , the estimated mean value in the current alignment process can be obtained similar to the above steps And the corresponding error variance Thus completing the initial alignment process of SINS.
- the present invention can enhance the robustness of SRCKF, and reduce the calculation amount of high-order SSRCKF, and can quickly obtain a more accurate initial alignment attitude error angle in an environment requiring rapid alignment.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Navigation (AREA)
Abstract
Description
Claims (11)
- 基于GPR与改进的SRCKF的SINS初始对准方法,其特征在于,包括如下步骤:步骤1:建立导航系统的初始对准模型,所述对准模型包括捷联惯性导航系统的非线性误差模型、滤波模状态模型以及量测模型;步骤2:将步骤所得的状态方程和量测方程离散化;步骤3:在不需要快速对准的情况下,以状态方程和量测方程执行改进的SRCKF的时间更新过程,获取状态的预测估计值和预测误差协方差的平方根;步骤4:以改进SRCKF时间更新的预测估计值和预测误差协方差的平方根为初始值进行迭代,迭代至最大次数,完成量测更新;步骤5:由步骤4获取的状态量中提取欧拉角平台估计值和速度估计值修正SINS解算的姿态矩阵和速度,将修正后的值作为下一次SINS解算的初始值,并利用当前获得的陀螺仪和加速度计常值误差估计值修正下一时刻的陀螺仪输出和加速度计输出;步骤6:当改进SRCKF运行一定时间后,每隔一个固定的时间间隔保存系统测量数据,构建以后需要快速对准环境下采用GPR模型算法需要的训练数据集,共保存N组数据;步骤7:在需要快速对准的环境下,根据上一个初始对准过程中保存的训练数据集D采用GPR模型算法进行学习;同时将当前SINS实时解算的量测数据作为输入将姿态误差角作为输出,更新GPR的训练数据集进行学习,获得系统的状态转移GPR模型和量测GPR模型;再利用获得系统的状态转移GPR模型和量测GPR模型,获取系统当前对准过程的姿态误差角以及误差方差,完成系统的初始对准。
- 根据权利要求1所述的基于GPR与改进的SRCKF的SINS初始对准方法,其特征在于,所述步骤1具体包括如下子步骤:步骤1.1:建立捷联惯性导航系统的非线性误差模型:选择东-北-天坐标系地理坐标系为理想导航坐标系,以载体右前上方向构建载体坐标系,记SINS模拟解算的数学平台坐标系为n’系;记b系与n系之间的真实姿态角为 b系为载体坐标系,n系为理想导航坐标系,载体相对于导航坐标系的真实速度为 载体所在的真实地理坐标为p=[L λ H] T,SINS实际解算出的姿态为 速度为 地理坐标为 记SINS解算的姿态角误差为 其中φ e,φ n,φ u分别为,纵摇角误差、横摇角误差和航向角误差;速度误差 其中δv e,δv n,δv u分别为东向、北向和天向速度误差,则:n系到n’系依次旋转φ u,φ e,φ n的坐标系转换矩阵为:欧拉角微分方程的系数矩阵C ω为:姿态误差微分方程为:速度误差方程为:步骤1.2:建立SINS状态方程模型如下:其中f(x,t)为根据前面状态方程所得的函数,g(t)为根据上述系统过程噪声向量确定的系数矩阵;步骤1.3:建立量测方程如下:z(t)=h(x,t)+w z(t)其中h(x,t)为根据前面量测方程所得的函数。
- 根据权利要求3所述的基于GPR与改进的SRCKF的SINS初始对准方法,其特征在于,所述步骤3中改进的SRCKF框架下时间更新的具体步骤如下:上式中°为角度单位,m/s为速度单位,h为时间单位,μg=10 -6g;对上述初始误差协方差阵P 0进行Cholesky分解得初始误差协方差矩阵的特征平方根S 0=Chol(P 0),其中Chol(·)表示矩阵的Cholesky分解;步骤3.2:按照球面最简规则径向(SSR)容积规则选取改进SRCKF的采样点,如下:取向量a j=[a j,1 a j,1 … a j,n] T,j=1,2,...,n+1,其中n=10为状态量的个数,有记ξ i为第i个容积点,则得到m=2(n+1)个容积点为:步骤3.3:计算状态的一步预测值和一步预测误差协方差矩阵的平方根因子:当前状态容积点与预测状态容积点为:k时刻状态的一步预测值和一步预测误差协方差的平方根为:及给出,其中Q k-1为系统过程噪声方差阵。
- 根据权利要求4所述的基于GPR与改进的SRCKF的SINS初始对准方法,其特征在于,所述步骤4中改进SRCKF框架下量测更新的过程采用迭代算法,具体步骤如下:步骤4.2:对于j=0,1,...,N max执行以下过程:计算新的容积点:按如下步骤计算k时刻第j次迭代的状态和误差协方差平方根:计算k时刻第j次迭代的第i个预测量测容积点:计算预测量测值:计算新息协方差矩阵的平方根:其中上式中的平方根因子由及给出;计算估计互协方差矩阵:其中加权中心矩阵:估计CKF增益:估计更新状态:估计更新后的状态误差协方差平方根因子:步骤4.4:终止迭代时假设迭代次数j=N,则设置k时刻的状态估计值和状态估计误差的协方差平方根分别为:
- 根据权利要求5所述的基于GPR与改进的SRCKF的SINS初始对准方法,其特征在于,所述步骤4.3中当迭代方法由于不能加速新息的反馈效率而失效时,取N max=1,即不进行迭代。
- 根据权利要求1所述的基于GPR与改进的SRCKF的SINS初始对准方法,其特征在于,所述步骤6中系统测量数据包括东向和北向速度误差,以及SINS解算的姿态误差角。
- 根据权利要求1所述的基于GPR与改进的SRCKF的SINS初始对准方法,其特征在于,当对准精度没有达到预定要求则循环执行执行步骤3-6直至SINS初始对准结束。
- 根据权利要求7所述的基于GPR与改进的SRCKF的SINS初始对准方法,其特征在于,所述步骤7中GPR模型算法具体步骤如下:步骤7.1:在需要快速对准的环境下,根据上一个初始对准过程中保存的N组输入输出数据构成的数据训练集D进行GPR模型学习,获取系统的状态转移GPR模型和量测GPR模型,更具体的步骤为:步骤7.1.1:其中数据训练集D={D e,D n,D u}有下述数据训练子集D e={ΔV,Φ e};D e={ΔV,Φ e}为用于估计建立东向误差角φ e的GPR模型采用的数据训练集,其中ΔV=[Δv 1 Δv 2 … Δv N] T,Δv κ=(δv eκ,δv nκ) T∈R 2(κ=1,...,N)为保存的所有N组量测(δv e,δv n)中的第κ组;Φ e=[φ e1 φ e2 … φ eN]T,φ eκ∈R(κ=1,...,N)为保存的N个东向误差角中的第κ组;针对东北天三个方向的姿态误差角φ e,φ n,φ u相应有输出向量Φ e,Φ n,Φ u共保存了3N个姿态误差角数据,共有三个数据训练子集D e,D n,D u;步骤7.1.2:根据步骤7.1.1的数据集进行GPR模型学习,初始化GPR模型:采用高斯核函数作为GPR模型的初始化核函数:步骤7.1.3:建立东向姿态误差角的GPR模型:以量测ΔV和东向姿态误差角Φ e=[φ e1 φ e2 … φ eN]构成的数据训练集D e=(ΔV,Φ e)作为GPR模型的输入输出对建立训练样本条件函数p(Θ e|ΔV κ,Θ κ)的对数似然函数:通过最大化似然函数求取超参数超参数,即对似然函数求偏导:步骤7.1.4:针对三个姿态误差角,重复以上步骤分别获得相应参数;步骤7.2:在当前对准过程中,利用改进的SRCKF获取当前时刻的量测值Δv *,对系统实时的量测与截止至前一时刻的姿态误差角输出更新训练数据集D,根据GPR模型获取当前量测Δv *下的姿态误差角及其误差方差,进行SINS初始对准,获取系统当前对准过程的姿态误差角以及相应的误差方差;具体的步骤如下:步骤7.2.1:由高斯过程回归模型中数据训练集的输出矢量Φ e和预测值φ e *之间满足:其中K(Δv *,ΔV)=K(ΔV,Δv *) T=(k(Δv *,Δv 1),...,k(Δv *,Δv N)) T,k(Δv *,Δv i)(i=1,...,N)为当前量测值Δv *与训练数据集中的量测值Δv i的协方差,k(Δv *,Δv *)为实时量测值的自协方差;由此得出在当前时刻量测值Δv *下的预测估计输出值φ e *的均值和协方差 如下:由此可以完成当前对准过程姿态误差角φ e的估计;
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811281092.XA CN109211276B (zh) | 2018-10-30 | 2018-10-30 | 基于gpr与改进的srckf的sins初始对准方法 |
CN201811281092.X | 2018-10-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020087845A1 true WO2020087845A1 (zh) | 2020-05-07 |
Family
ID=64998177
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/079137 WO2020087845A1 (zh) | 2018-10-30 | 2019-03-21 | 基于gpr与改进的srckf的sins初始对准方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN109211276B (zh) |
WO (1) | WO2020087845A1 (zh) |
Cited By (48)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111709192A (zh) * | 2020-07-07 | 2020-09-25 | 江苏科技大学 | 一种基于半监督学习的平面倒f型天线谐振频率预测方法 |
CN111767658A (zh) * | 2020-07-10 | 2020-10-13 | 南通大学 | 一种用于组合导航系统的快速故障检测方法 |
CN112199814A (zh) * | 2020-08-18 | 2021-01-08 | 同济大学 | 测量系统的系统误差自检校方法、装置、设备和介质 |
CN112346104A (zh) * | 2020-09-11 | 2021-02-09 | 中国人民解放军国防科技大学 | 一种无人机信息融合定位方法 |
CN112344964A (zh) * | 2020-11-13 | 2021-02-09 | 中国船舶重工集团公司第七0七研究所 | 一种捷联惯导系统载体航迹仿真设计方法 |
CN112462405A (zh) * | 2020-10-20 | 2021-03-09 | 和芯星通科技(北京)有限公司 | 一种导航系统初始化方法和导航系统 |
CN112611378A (zh) * | 2020-10-26 | 2021-04-06 | 西安航天精密机电研究所 | 一种基于四环惯导平台的载体姿态角速度测量方法 |
CN112729348A (zh) * | 2021-01-10 | 2021-04-30 | 河南理工大学 | 一种用于imu系统的姿态自适应校正方法 |
CN112733284A (zh) * | 2020-12-22 | 2021-04-30 | 长春工程学院 | 一种汽车线束波纹管波峰切割定位信息融合方法 |
CN112902967A (zh) * | 2021-01-31 | 2021-06-04 | 南京理工大学 | 一种基于残差卡方-改进序贯概率比的抗欺骗导航方法 |
CN113031645A (zh) * | 2021-02-09 | 2021-06-25 | 陕西中天火箭技术股份有限公司 | 一种基于ukf滤波的弹体角速率增稳捷联制导方法 |
CN113074753A (zh) * | 2021-03-19 | 2021-07-06 | 南京天巡遥感技术研究院有限公司 | 一种星敏感器陀螺联合定姿方法、联合定姿系统及应用 |
CN113252041A (zh) * | 2021-05-11 | 2021-08-13 | 大连理工大学 | 一种适用于小型水下机器人的组合导航方法 |
CN113466848A (zh) * | 2021-05-22 | 2021-10-01 | 中国人民解放军空军工程大学 | 一种面向角闪烁噪声场景的共址mimo雷达多目标跟踪资源优化分配方法 |
CN113670335A (zh) * | 2021-08-18 | 2021-11-19 | 河海大学 | 基于dvl辅助和向量截断化k矩阵的水下载体初始对准方法 |
CN113720320A (zh) * | 2021-08-03 | 2021-11-30 | 哈尔滨工程大学 | 一种基于高斯过程回归的信息更新频率提升方法 |
CN113836480A (zh) * | 2020-06-23 | 2021-12-24 | 中核武汉核电运行技术股份有限公司 | 一种基于高斯过程回归的换热器效率预测方法 |
CN113850425A (zh) * | 2021-09-18 | 2021-12-28 | 三峡大学 | 基于改进的广义极大似然估计的配电网状态估计方法 |
CN113916220A (zh) * | 2021-08-30 | 2022-01-11 | 西北工业大学 | 一种具有协方差反馈控制的动态自适应导航定位方法 |
CN114061575A (zh) * | 2021-11-26 | 2022-02-18 | 上海机电工程研究所 | 大失准角条件下的导弹姿态角精对准方法及系统 |
CN114166203A (zh) * | 2021-11-16 | 2022-03-11 | 哈尔滨工程大学 | 一种基于改进的s-h自适应联邦滤波的智能水下机器人多源组合导航方法 |
CN114200959A (zh) * | 2021-11-30 | 2022-03-18 | 西安理工大学 | 一种融合高斯过程的飞行器轨迹控制方法 |
CN114216463A (zh) * | 2021-11-04 | 2022-03-22 | 国家电网有限公司 | 一种路径优化目标定位方法及装置、存储介质、无人设备 |
CN114417575A (zh) * | 2021-12-29 | 2022-04-29 | 厦门大学深圳研究院 | 可处理非高斯噪声和不良数据的同步发电机状态估计方法 |
CN114445459A (zh) * | 2022-01-16 | 2022-05-06 | 中国人民解放军空军工程大学 | 基于变分贝叶斯理论的连续-离散最大相关熵目标跟踪方法 |
CN114462684A (zh) * | 2022-01-12 | 2022-05-10 | 东南大学 | 耦合数值天气预报与实测数据的风速多点同步预测方法 |
CN114462682A (zh) * | 2022-01-11 | 2022-05-10 | 东南大学 | 一种顾及数据时效的沉降预测模型建模方法 |
CN114492030A (zh) * | 2022-01-25 | 2022-05-13 | 哈尔滨工业大学 | 基于实测数据回放的水下无人机导航算法调试系统 |
CN114577204A (zh) * | 2022-02-09 | 2022-06-03 | 中科禾华(扬州)科技有限公司 | 基于神经网络的捷联惯导系统抗干扰自对准方法和装置 |
CN114705177A (zh) * | 2022-06-07 | 2022-07-05 | 西安晟昕科技发展有限公司 | 一种基于误差分析的光纤陀螺测姿数据处理方法 |
CN114812569A (zh) * | 2022-04-19 | 2022-07-29 | 中国人民解放军国防科技大学 | 一种追逃博弈机动航天器相对状态估计方法、装置和设备 |
CN114896801A (zh) * | 2022-05-24 | 2022-08-12 | 河南科技大学 | 一种考虑状态增量的关节轴承剩余寿命预测方法 |
CN115033844A (zh) * | 2022-05-12 | 2022-09-09 | 合肥赛为智能有限公司 | 一种无人机状态估计方法、系统、设备及可读存储介质 |
CN115077566A (zh) * | 2022-07-27 | 2022-09-20 | 中国船舶重工集团公司第七0七研究所 | 惯性导航系统解算方法 |
CN115077520A (zh) * | 2022-08-22 | 2022-09-20 | 中国船舶重工集团公司第七0七研究所 | 一种基于谐振惯导系统的姿态补偿方法 |
CN115099599A (zh) * | 2022-06-17 | 2022-09-23 | 东南大学 | 一种面向公交信号优先控制的测试评价方法 |
CN115096332A (zh) * | 2022-06-17 | 2022-09-23 | 西安微电子技术研究所 | 一种大角度范围的高精度垂直发射对准方法、设备及介质 |
CN115096321A (zh) * | 2022-06-23 | 2022-09-23 | 中国人民解放军63921部队 | 一种车载捷联惯导系统鲁棒无迹信息滤波对准方法及系统 |
CN115358319A (zh) * | 2022-08-23 | 2022-11-18 | 天津大学 | 基于双阈值检测的自适应容错滤波方法及系统 |
CN115388883A (zh) * | 2022-08-09 | 2022-11-25 | 成都国卫通信技术有限公司 | 一种基于序贯滤波的组合导航方法 |
CN115436980A (zh) * | 2022-09-01 | 2022-12-06 | 广东电网有限责任公司 | 一种基于软件定义的bd3一体化集成装置及定位方法 |
CN115574817A (zh) * | 2022-12-08 | 2023-01-06 | 中国人民解放军国防科技大学 | 一种基于三轴旋转式惯导系统的导航方法及导航系统 |
CN115727842A (zh) * | 2022-11-04 | 2023-03-03 | 中山大学 | 一种无人机快速对准方法、系统、计算机设备及存储介质 |
CN115773751A (zh) * | 2023-02-13 | 2023-03-10 | 中国航空工业集团公司西安飞行自动控制研究所 | 一种修正等效天向加计零位造成对准误差的方法 |
CN116147624A (zh) * | 2022-12-21 | 2023-05-23 | 广东智能无人系统研究院(南沙) | 一种基于低成本mems航姿参考系统的船舶运动姿态解算方法 |
CN117073719A (zh) * | 2023-08-02 | 2023-11-17 | 南京理工大学 | 一种接力式快速空中对准方法 |
CN117889868A (zh) * | 2024-03-18 | 2024-04-16 | 西安现代控制技术研究所 | 一种融合红外导引头信息的导弹位置精确估计方法 |
CN118640937A (zh) * | 2024-08-13 | 2024-09-13 | 北京航空航天大学杭州创新研究院 | 一种基于混合模型的微机电陀螺多源误差分离估计方法 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109211276B (zh) * | 2018-10-30 | 2022-06-03 | 东南大学 | 基于gpr与改进的srckf的sins初始对准方法 |
CN109974698B (zh) * | 2019-04-10 | 2020-11-17 | 清华大学深圳研究生院 | 一种室内物流小车定位方法和终端设备 |
CN110186480B (zh) * | 2019-05-30 | 2021-03-26 | 北京航天控制仪器研究所 | 一种惯性器件线性系统误差系数确定方法 |
CN114370867A (zh) * | 2022-01-11 | 2022-04-19 | 中国科学院长春光学精密机械与物理研究所 | 一种高动态星敏感器的姿态优化方法 |
CN117235540A (zh) * | 2023-08-21 | 2023-12-15 | 江西农业大学 | 基于特征匹配融合的传感器动态信息联动分析方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103217175A (zh) * | 2013-04-10 | 2013-07-24 | 哈尔滨工程大学 | 一种自适应容积卡尔曼滤波方法 |
CN105842732A (zh) * | 2016-03-16 | 2016-08-10 | 中国石油大学(北京) | 多道稀疏反射系数的反演方法及系统 |
US20180120111A1 (en) * | 2016-10-27 | 2018-05-03 | Airbus Helicopters | Estimating the speed and the heading of an aircraft, independently of a magnetic measurement |
CN109211276A (zh) * | 2018-10-30 | 2019-01-15 | 东南大学 | 基于gpr与改进的srckf的sins初始对准方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103759742B (zh) * | 2014-01-22 | 2017-04-05 | 东南大学 | 基于模糊自适应控制技术的捷联惯导非线性对准方法 |
CN104655131B (zh) * | 2015-02-06 | 2017-07-18 | 东南大学 | 基于istssrckf的惯性导航初始对准方法 |
CN105203129B (zh) * | 2015-10-13 | 2019-05-07 | 上海华测导航技术股份有限公司 | 一种惯导装置初始对准方法 |
CN105424036B (zh) * | 2015-11-09 | 2018-02-13 | 东南大学 | 一种低成本水下潜器地形辅助惯性组合导航定位方法 |
CN106840211A (zh) * | 2017-03-24 | 2017-06-13 | 东南大学 | 一种基于kf和stupf组合滤波的sins大方位失准角初始对准方法 |
-
2018
- 2018-10-30 CN CN201811281092.XA patent/CN109211276B/zh active Active
-
2019
- 2019-03-21 WO PCT/CN2019/079137 patent/WO2020087845A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103217175A (zh) * | 2013-04-10 | 2013-07-24 | 哈尔滨工程大学 | 一种自适应容积卡尔曼滤波方法 |
CN105842732A (zh) * | 2016-03-16 | 2016-08-10 | 中国石油大学(北京) | 多道稀疏反射系数的反演方法及系统 |
US20180120111A1 (en) * | 2016-10-27 | 2018-05-03 | Airbus Helicopters | Estimating the speed and the heading of an aircraft, independently of a magnetic measurement |
CN109211276A (zh) * | 2018-10-30 | 2019-01-15 | 东南大学 | 基于gpr与改进的srckf的sins初始对准方法 |
Non-Patent Citations (2)
Title |
---|
LIU YU ET AL : "Adaptive gaussian sum method based on squared-root cabuture kalman filter for state estimation ", CONTROL AND DECISION , vol. 29, no. 12, 31 December 2014 (2014-12-31), pages 2158 - 2161, XP009520947, ISSN: 1001-0920 * |
ZHAO, X. ET. AL.: "Initial alignment of large misalignment angle in strapdown inertial navigation system based on Gaussian process regression", 26TH CHINESE CONTROL AND DECISION CONFERENCE, 31 May 2014 (2014-05-31), pages 3114 - 3117, XP032619016, DOI: 10.1109/CCDC.2014.6852710 * |
Cited By (73)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113836480A (zh) * | 2020-06-23 | 2021-12-24 | 中核武汉核电运行技术股份有限公司 | 一种基于高斯过程回归的换热器效率预测方法 |
CN113836480B (zh) * | 2020-06-23 | 2024-01-12 | 中核武汉核电运行技术股份有限公司 | 一种基于高斯过程回归的换热器效率预测方法 |
CN111709192B (zh) * | 2020-07-07 | 2024-03-01 | 江苏科技大学 | 一种基于半监督学习的平面倒f型天线谐振频率预测方法 |
CN111709192A (zh) * | 2020-07-07 | 2020-09-25 | 江苏科技大学 | 一种基于半监督学习的平面倒f型天线谐振频率预测方法 |
CN111767658A (zh) * | 2020-07-10 | 2020-10-13 | 南通大学 | 一种用于组合导航系统的快速故障检测方法 |
CN112199814A (zh) * | 2020-08-18 | 2021-01-08 | 同济大学 | 测量系统的系统误差自检校方法、装置、设备和介质 |
CN112199814B (zh) * | 2020-08-18 | 2023-03-10 | 同济大学 | 测量系统的系统误差自检校方法、装置、设备和介质 |
CN112346104A (zh) * | 2020-09-11 | 2021-02-09 | 中国人民解放军国防科技大学 | 一种无人机信息融合定位方法 |
CN112346104B (zh) * | 2020-09-11 | 2023-08-08 | 中国人民解放军国防科技大学 | 一种无人机信息融合定位方法 |
CN112462405B (zh) * | 2020-10-20 | 2024-05-14 | 和芯星通科技(北京)有限公司 | 一种导航系统初始化方法和导航系统 |
CN112462405A (zh) * | 2020-10-20 | 2021-03-09 | 和芯星通科技(北京)有限公司 | 一种导航系统初始化方法和导航系统 |
CN112611378B (zh) * | 2020-10-26 | 2022-12-20 | 西安航天精密机电研究所 | 一种基于四环惯导平台的载体姿态角速度测量方法 |
CN112611378A (zh) * | 2020-10-26 | 2021-04-06 | 西安航天精密机电研究所 | 一种基于四环惯导平台的载体姿态角速度测量方法 |
CN112344964A (zh) * | 2020-11-13 | 2021-02-09 | 中国船舶重工集团公司第七0七研究所 | 一种捷联惯导系统载体航迹仿真设计方法 |
CN112733284B (zh) * | 2020-12-22 | 2022-12-27 | 长春工程学院 | 一种汽车线束波纹管波峰切割定位信息融合方法 |
CN112733284A (zh) * | 2020-12-22 | 2021-04-30 | 长春工程学院 | 一种汽车线束波纹管波峰切割定位信息融合方法 |
CN112729348A (zh) * | 2021-01-10 | 2021-04-30 | 河南理工大学 | 一种用于imu系统的姿态自适应校正方法 |
CN112729348B (zh) * | 2021-01-10 | 2023-11-28 | 河南理工大学 | 一种用于imu系统的姿态自适应校正方法 |
CN112902967A (zh) * | 2021-01-31 | 2021-06-04 | 南京理工大学 | 一种基于残差卡方-改进序贯概率比的抗欺骗导航方法 |
CN113031645A (zh) * | 2021-02-09 | 2021-06-25 | 陕西中天火箭技术股份有限公司 | 一种基于ukf滤波的弹体角速率增稳捷联制导方法 |
CN113031645B (zh) * | 2021-02-09 | 2022-12-09 | 陕西中天火箭技术股份有限公司 | 一种基于ukf滤波的弹体角速率增稳捷联制导方法 |
CN113074753A (zh) * | 2021-03-19 | 2021-07-06 | 南京天巡遥感技术研究院有限公司 | 一种星敏感器陀螺联合定姿方法、联合定姿系统及应用 |
CN113252041A (zh) * | 2021-05-11 | 2021-08-13 | 大连理工大学 | 一种适用于小型水下机器人的组合导航方法 |
CN113466848A (zh) * | 2021-05-22 | 2021-10-01 | 中国人民解放军空军工程大学 | 一种面向角闪烁噪声场景的共址mimo雷达多目标跟踪资源优化分配方法 |
CN113466848B (zh) * | 2021-05-22 | 2023-09-19 | 中国人民解放军空军工程大学 | 一种面向角闪烁噪声场景的共址mimo雷达多目标跟踪资源优化分配方法 |
CN113720320B (zh) * | 2021-08-03 | 2022-11-18 | 哈尔滨工程大学 | 一种基于高斯过程回归的信息更新频率提升方法 |
CN113720320A (zh) * | 2021-08-03 | 2021-11-30 | 哈尔滨工程大学 | 一种基于高斯过程回归的信息更新频率提升方法 |
CN113670335B (zh) * | 2021-08-18 | 2023-10-24 | 河海大学 | 基于dvl辅助和向量截断化k矩阵的水下载体初始对准方法 |
CN113670335A (zh) * | 2021-08-18 | 2021-11-19 | 河海大学 | 基于dvl辅助和向量截断化k矩阵的水下载体初始对准方法 |
CN113916220B (zh) * | 2021-08-30 | 2023-06-23 | 西北工业大学 | 一种具有协方差反馈控制的动态自适应导航定位方法 |
CN113916220A (zh) * | 2021-08-30 | 2022-01-11 | 西北工业大学 | 一种具有协方差反馈控制的动态自适应导航定位方法 |
CN113850425A (zh) * | 2021-09-18 | 2021-12-28 | 三峡大学 | 基于改进的广义极大似然估计的配电网状态估计方法 |
CN114216463B (zh) * | 2021-11-04 | 2024-05-28 | 国家电网有限公司 | 一种路径优化目标定位方法及装置、存储介质、无人设备 |
CN114216463A (zh) * | 2021-11-04 | 2022-03-22 | 国家电网有限公司 | 一种路径优化目标定位方法及装置、存储介质、无人设备 |
CN114166203A (zh) * | 2021-11-16 | 2022-03-11 | 哈尔滨工程大学 | 一种基于改进的s-h自适应联邦滤波的智能水下机器人多源组合导航方法 |
CN114166203B (zh) * | 2021-11-16 | 2024-02-09 | 哈尔滨工程大学 | 一种基于改进的s-h自适应联邦滤波的智能水下机器人多源组合导航方法 |
CN114061575A (zh) * | 2021-11-26 | 2022-02-18 | 上海机电工程研究所 | 大失准角条件下的导弹姿态角精对准方法及系统 |
CN114200959B (zh) * | 2021-11-30 | 2024-02-27 | 稞米科技(深圳)有限公司 | 一种融合高斯过程的飞行器轨迹控制方法 |
CN114200959A (zh) * | 2021-11-30 | 2022-03-18 | 西安理工大学 | 一种融合高斯过程的飞行器轨迹控制方法 |
CN114417575A (zh) * | 2021-12-29 | 2022-04-29 | 厦门大学深圳研究院 | 可处理非高斯噪声和不良数据的同步发电机状态估计方法 |
CN114462682A (zh) * | 2022-01-11 | 2022-05-10 | 东南大学 | 一种顾及数据时效的沉降预测模型建模方法 |
CN114462682B (zh) * | 2022-01-11 | 2024-04-30 | 东南大学 | 一种顾及数据时效的沉降预测模型建模方法 |
CN114462684A (zh) * | 2022-01-12 | 2022-05-10 | 东南大学 | 耦合数值天气预报与实测数据的风速多点同步预测方法 |
CN114462684B (zh) * | 2022-01-12 | 2024-06-07 | 东南大学 | 耦合数值天气预报与实测数据的风速多点同步预测方法 |
CN114445459A (zh) * | 2022-01-16 | 2022-05-06 | 中国人民解放军空军工程大学 | 基于变分贝叶斯理论的连续-离散最大相关熵目标跟踪方法 |
CN114445459B (zh) * | 2022-01-16 | 2024-04-09 | 中国人民解放军空军工程大学 | 基于变分贝叶斯理论的连续-离散最大相关熵目标跟踪方法 |
CN114492030A (zh) * | 2022-01-25 | 2022-05-13 | 哈尔滨工业大学 | 基于实测数据回放的水下无人机导航算法调试系统 |
CN114577204A (zh) * | 2022-02-09 | 2022-06-03 | 中科禾华(扬州)科技有限公司 | 基于神经网络的捷联惯导系统抗干扰自对准方法和装置 |
CN114577204B (zh) * | 2022-02-09 | 2024-01-02 | 中科禾华(扬州)光电科技有限公司 | 基于神经网络的捷联惯导系统抗干扰自对准方法和装置 |
CN114812569A (zh) * | 2022-04-19 | 2022-07-29 | 中国人民解放军国防科技大学 | 一种追逃博弈机动航天器相对状态估计方法、装置和设备 |
CN115033844A (zh) * | 2022-05-12 | 2022-09-09 | 合肥赛为智能有限公司 | 一种无人机状态估计方法、系统、设备及可读存储介质 |
CN114896801A (zh) * | 2022-05-24 | 2022-08-12 | 河南科技大学 | 一种考虑状态增量的关节轴承剩余寿命预测方法 |
CN114705177A (zh) * | 2022-06-07 | 2022-07-05 | 西安晟昕科技发展有限公司 | 一种基于误差分析的光纤陀螺测姿数据处理方法 |
CN115096332B (zh) * | 2022-06-17 | 2024-06-14 | 西安微电子技术研究所 | 一种大角度范围的高精度垂直发射对准方法、设备及介质 |
CN115099599B (zh) * | 2022-06-17 | 2024-04-30 | 东南大学 | 一种面向公交信号优先控制的测试评价方法 |
CN115096332A (zh) * | 2022-06-17 | 2022-09-23 | 西安微电子技术研究所 | 一种大角度范围的高精度垂直发射对准方法、设备及介质 |
CN115099599A (zh) * | 2022-06-17 | 2022-09-23 | 东南大学 | 一种面向公交信号优先控制的测试评价方法 |
CN115096321A (zh) * | 2022-06-23 | 2022-09-23 | 中国人民解放军63921部队 | 一种车载捷联惯导系统鲁棒无迹信息滤波对准方法及系统 |
CN115077566A (zh) * | 2022-07-27 | 2022-09-20 | 中国船舶重工集团公司第七0七研究所 | 惯性导航系统解算方法 |
CN115388883A (zh) * | 2022-08-09 | 2022-11-25 | 成都国卫通信技术有限公司 | 一种基于序贯滤波的组合导航方法 |
CN115077520B (zh) * | 2022-08-22 | 2022-11-01 | 中国船舶重工集团公司第七0七研究所 | 一种基于谐振惯导系统的姿态补偿方法 |
CN115077520A (zh) * | 2022-08-22 | 2022-09-20 | 中国船舶重工集团公司第七0七研究所 | 一种基于谐振惯导系统的姿态补偿方法 |
CN115358319A (zh) * | 2022-08-23 | 2022-11-18 | 天津大学 | 基于双阈值检测的自适应容错滤波方法及系统 |
CN115436980A (zh) * | 2022-09-01 | 2022-12-06 | 广东电网有限责任公司 | 一种基于软件定义的bd3一体化集成装置及定位方法 |
CN115727842A (zh) * | 2022-11-04 | 2023-03-03 | 中山大学 | 一种无人机快速对准方法、系统、计算机设备及存储介质 |
CN115574817A (zh) * | 2022-12-08 | 2023-01-06 | 中国人民解放军国防科技大学 | 一种基于三轴旋转式惯导系统的导航方法及导航系统 |
CN116147624B (zh) * | 2022-12-21 | 2023-08-01 | 广东智能无人系统研究院(南沙) | 一种基于低成本mems航姿参考系统的船舶运动姿态解算方法 |
CN116147624A (zh) * | 2022-12-21 | 2023-05-23 | 广东智能无人系统研究院(南沙) | 一种基于低成本mems航姿参考系统的船舶运动姿态解算方法 |
CN115773751A (zh) * | 2023-02-13 | 2023-03-10 | 中国航空工业集团公司西安飞行自动控制研究所 | 一种修正等效天向加计零位造成对准误差的方法 |
CN117073719B (zh) * | 2023-08-02 | 2024-01-30 | 南京理工大学 | 一种接力式快速空中对准方法 |
CN117073719A (zh) * | 2023-08-02 | 2023-11-17 | 南京理工大学 | 一种接力式快速空中对准方法 |
CN117889868A (zh) * | 2024-03-18 | 2024-04-16 | 西安现代控制技术研究所 | 一种融合红外导引头信息的导弹位置精确估计方法 |
CN118640937A (zh) * | 2024-08-13 | 2024-09-13 | 北京航空航天大学杭州创新研究院 | 一种基于混合模型的微机电陀螺多源误差分离估计方法 |
Also Published As
Publication number | Publication date |
---|---|
CN109211276A (zh) | 2019-01-15 |
CN109211276B (zh) | 2022-06-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020087845A1 (zh) | 基于gpr与改进的srckf的sins初始对准方法 | |
Gao et al. | Maximum likelihood principle and moving horizon estimation based adaptive unscented Kalman filter | |
CN110398257B (zh) | Gps辅助的sins系统快速动基座初始对准方法 | |
CN107525503B (zh) | 基于双天线gps和mimu组合的自适应级联卡尔曼滤波方法 | |
CN104655131B (zh) | 基于istssrckf的惯性导航初始对准方法 | |
CN104567871B (zh) | 一种基于地磁梯度张量的四元数卡尔曼滤波姿态估计方法 | |
CN106772524B (zh) | 一种基于秩滤波的农业机器人组合导航信息融合方法 | |
CN106291645A (zh) | 适于高维gnss/ins深耦合的容积卡尔曼滤波方法 | |
CN109724599A (zh) | 一种抗野值的鲁棒卡尔曼滤波sins/dvl组合导航方法 | |
CN109945895B (zh) | 基于渐消平滑变结构滤波的惯性导航初始对准方法 | |
CN105136145A (zh) | 一种基于卡尔曼滤波的四旋翼无人机姿态数据融合的方法 | |
CN105737823A (zh) | 基于五阶ckf的gps/sins/cns组合导航方法 | |
CN112562077B (zh) | 一种融合pdr和先验地图的行人室内定位方法 | |
CN108592943B (zh) | 一种基于opreq方法的惯性系粗对准计算方法 | |
CN103776449B (zh) | 一种提高鲁棒性的动基座初始对准方法 | |
CN106840211A (zh) | 一种基于kf和stupf组合滤波的sins大方位失准角初始对准方法 | |
CN111156986B (zh) | 一种基于抗差自适应ukf的光谱红移自主组合导航方法 | |
CN107830872A (zh) | 一种舰船捷联惯性导航系统自适应初始对准方法 | |
CN111190207B (zh) | 基于pstcsdref算法的无人机ins bds组合导航方法 | |
CN115878939A (zh) | 基于飞行器舵面偏转的高精度动态测量方法 | |
CN111649747A (zh) | 一种基于imu的自适应ekf姿态测量改进方法 | |
Lou et al. | Robust partially strong tracking extended consider Kalman filtering for INS/GNSS integrated navigation | |
Wang et al. | An adaptive federated filter based on variational Bayes with application to multisource navigation | |
Girrbach et al. | Towards in-field and online calibration of inertial navigation systems using moving horizon estimation | |
Zarei et al. | Performance improvement for mobile robot position determination using cubature Kalman filter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19879774 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19879774 Country of ref document: EP Kind code of ref document: A1 |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16/12/2021) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19879774 Country of ref document: EP Kind code of ref document: A1 |