WO2020087712A1 - 飞行时间测距相机的标定方法、装置及可读存储介质 - Google Patents

飞行时间测距相机的标定方法、装置及可读存储介质 Download PDF

Info

Publication number
WO2020087712A1
WO2020087712A1 PCT/CN2018/122937 CN2018122937W WO2020087712A1 WO 2020087712 A1 WO2020087712 A1 WO 2020087712A1 CN 2018122937 W CN2018122937 W CN 2018122937W WO 2020087712 A1 WO2020087712 A1 WO 2020087712A1
Authority
WO
WIPO (PCT)
Prior art keywords
camera
temperature
time
flight
area
Prior art date
Application number
PCT/CN2018/122937
Other languages
English (en)
French (fr)
Inventor
徐振宾
张帅帅
王倩
Original Assignee
歌尔股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 歌尔股份有限公司 filed Critical 歌尔股份有限公司
Publication of WO2020087712A1 publication Critical patent/WO2020087712A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C25/00Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass

Definitions

  • the invention relates to the technical field of optical distance measurement, in particular to a calibration method, device and readable storage medium of a time-of-flight distance measurement camera.
  • Time-of-flight ranging method Time of flight ranging method, referred to as TOF ranging
  • TOF ranging Time of flight ranging method
  • the time-of-flight ranging camera uses the time-of-flight ranging method to obtain the distance through the laser. Due to the different pulse width of the laser generated at different temperatures, the flight time of the laser pulse is different, which ultimately results in different measured distances. In order to improve the stability of the measurement distance of the time-of-flight distance measuring camera, the temperature-distance curve is drawn, and the temperature with a small distance difference is taken as the working temperature of the time-of-flight distance measuring camera. The operating temperature is measured.
  • time-of-flight ranging cameras there are differences between the mass-produced time-of-flight ranging cameras, and there is a certain difference between the measured distance and the actual distance. Therefore, before the time-of-flight ranging camera products are shipped from the factory, the products are calibrated and tested to make the time-of-flight measurement Distance measurement from the camera is more accurate.
  • the time-of-flight rangefinder camera cannot reach the operating temperature in a short time, which results in the temperature of the time-of-flight rangefinder camera being low during the calibration test of the time-of-flight rangefinder camera in the production line of the product.
  • the accuracy of the distance measured by the time ranging camera is not limited to the ranges of the time ranging camera.
  • the main purpose of the present invention is to provide a calibration method, device and readable storage medium for a time-of-flight distance measuring camera, aiming to solve the problem that the time-of-flight distance measuring camera cannot reach the operating temperature in a short period of time, resulting in the product production line.
  • the temperature of the time-of-flight distance measuring camera is low, and there are errors in the calibration of the product, which are technical problems that affect the accuracy of the distance measured by the time-of-flight distance measuring camera.
  • the present invention provides a calibration method of a time-of-flight ranging camera, characterized in that the calibration device involved in the calibration method of the time-of-flight ranging camera has a temperature sensor and a temperature control module.
  • the calibration method from the camera includes the following steps:
  • the distance calibration of the time-of-flight ranging camera is performed.
  • the step of controlling the temperature control module to adjust the camera temperature to a preset temperature interval includes:
  • the time-of-flight ranging camera is cooled, and the second preset temperature is greater than or equal to the first preset temperature.
  • the temperature control module has a heating element and a cooling element, the heating element heats the time-of-flight ranging camera, and the cooling element cools the time-of-flight ranging camera, the The step of controlling the temperature control module to adjust the camera temperature to a preset temperature interval includes:
  • the cooling element When the camera temperature is greater than the second preset temperature, the cooling element is turned on, and when the camera temperature is within the preset temperature interval, the cooling element is turned off.
  • the step of controlling the temperature control module to adjust the camera temperature to a preset temperature interval includes:
  • the temperature control area includes a heating area, a constant temperature area, and a cooling area.
  • the heating element is located in the heating area
  • the cooling element is located in the cooling area
  • the calibration device further has a mobile device
  • the mobile device controls the time-of-flight rangefinder camera at the temperature control Moving within the area
  • the step of moving the time-of-flight ranging camera to the corresponding temperature-controlled area includes:
  • determine the temperature control area where the time-of-flight ranging camera is currently located determine the temperature control area where the time-of-flight ranging camera is currently located, turn on the heating element or the cooling element in the temperature-control area, and when the time-of-flight ranging camera leaves the temperature control area, Turn off the heating element or cooling element in the temperature control area.
  • the power of the heating element or the cooling element is determined according to the temperature difference between the camera temperature and the preset temperature, and the heating element is controlled Or the cooling element operates at said power.
  • the present invention also provides a calibration device for a time-of-flight ranging camera, characterized in that the calibration device for the time-of-flight ranging camera has a temperature sensor and a temperature control module, and the temperature control module has A heating element and a cooling element, the heating element is used to heat the time-of-flight ranging camera, and the cooling element is used to cool the time-of-flight ranging camera.
  • the temperature control area of the temperature control module includes a heating area, a constant temperature area, and a cooling area, the heating element is located in the heating area, the cooling element is located in the cooling area, and the time-of-flight ranging camera
  • the calibration device also has a mobile device that controls the time-of-flight ranging camera to move within the temperature control area.
  • the present invention also provides a readable storage medium, characterized in that a calibration program is stored on the readable storage medium, and the calibration program is executed by the processor to achieve the flight time as described above Steps for the calibration method of the rangefinder camera.
  • a calibration method, device and readable storage medium for a time-of-flight ranging camera adopt a calibration device to calibrate the camera.
  • the calibration device includes a temperature sensor and a temperature control module.
  • the camera temperature of the time-of-flight ranging camera is detected by the temperature sensor, and the camera temperature is adjusted according to the temperature difference between the detected camera temperature and the preset temperature interval so that the camera temperature is within the preset temperature interval.
  • the distance calibration of the time-of-flight distance measuring camera is performed.
  • the temperature control module adjusts the camera temperature of the time-of-flight ranging camera, shortens the time for the camera temperature to reach a stable preset temperature interval, and improves the efficiency and accuracy of the time-of-flight ranging camera calibration.
  • FIG. 1 is a schematic diagram of a terminal structure of a hardware operating environment according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a temperature control module in a calibration device of a time-of-flight ranging camera according to an embodiment of the present invention
  • FIG. 3 is a schematic flowchart of a first embodiment of a calibration method for a time-of-flight ranging camera of the present invention
  • FIG. 4 is a detailed flow diagram of the steps of controlling the temperature control module to adjust the temperature of the camera to the temperature interval in the second embodiment of the calibration method of the time-of-flight ranging camera of the present invention
  • FIG. 5 is another detailed flowchart of the step of controlling the temperature control module to adjust the temperature of the camera to the temperature interval in the second embodiment of the calibration method of the time-of-flight ranging camera of the present invention.
  • the distance calibration of the time-of-flight ranging camera is performed.
  • the time-of-flight ranging camera cannot reach the operating temperature in a short time, which results in the temperature of the time-of-flight ranging camera being low when the time-of-flight ranging camera is calibrated in the product production line There are errors in the calibration, which affect the accuracy of the distance measured by the time-of-flight distance measuring camera.
  • the invention provides a solution for calibrating a camera using a calibration device, which includes a temperature sensor and a temperature control module.
  • the camera temperature of the time-of-flight ranging camera is detected by the temperature sensor, and the camera temperature is adjusted according to the temperature difference between the detected camera temperature and the preset temperature interval so that the camera temperature is within the preset temperature interval.
  • the distance calibration of the time-of-flight distance measuring camera is performed.
  • the temperature control module adjusts the camera temperature of the time-of-flight ranging camera, shortens the time for the camera temperature to reach a stable preset temperature interval, and improves the efficiency and accuracy of the time-of-flight ranging camera calibration.
  • FIG. 1 is a schematic diagram of a terminal structure of a hardware operating environment involved in an embodiment of the present invention.
  • the terminal in the embodiment of the present invention may be a PC, or may be a terminal device with a program control function, such as a smart phone, a tablet computer, a portable computer, or the like.
  • the terminal may include: a processor 1001, such as a CPU, a temperature control control module 1003, a temperature sensor 1004, a memory 1005, and a communication bus 1002.
  • the communication bus 1002 is used to implement connection communication between these components.
  • the temperature control module 1003 includes a heating element and a cooling element.
  • the temperature sensor 1004 may include a contact temperature sensor and a non-contact temperature sensor. Common contact temperature sensors include a bimetal thermometer, a glass liquid thermometer, a pressure thermometer, a resistance thermometer, and a heat sensor. Thermistors and thermocouples, etc. Non-contact temperature sensors include infrared sensors and microwave sensors.
  • the memory 1005 may be a high-speed RAM memory or a non-volatile memory (non-volatile memory), such as a disk memory.
  • the memory 1005 may optionally be a storage device independent of the foregoing processor 1001.
  • the terminal may further include a mobile device for moving the time-of-flight ranging camera within the temperature control area of the temperature control module.
  • terminal structure shown in FIG. 1 does not constitute a limitation on the terminal, and may include more or fewer components than those illustrated, or combine certain components, or arrange different components.
  • the memory 1005 as a computer storage medium may include an operating system, a temperature detection module, a temperature control module, and a calibration program.
  • the temperature sensor 1004 is mainly used to detect the camera temperature of the time-of-flight ranging camera, and transmits the camera temperature to the background processor;
  • the temperature control module 1003 is mainly used to adjust the camera of the time-of-flight ranging camera Temperature; and the processor 1001 can be used to call the calibration program stored in the memory 1005 and perform the following operations:
  • the distance calibration of the time-of-flight ranging camera is performed.
  • processor 1001 can call the calibration program stored in the memory 1005, and also perform the following operations:
  • the time-of-flight ranging camera is cooled, and the second preset temperature is greater than or equal to the first preset temperature.
  • the temperature control module has a heating element and a cooling element, the heating element heats the time-of-flight ranging camera, and the cooling element cools the time-of-flight ranging camera, and the processor 1001
  • the calibration program stored in the memory 1005 can be called, and the following operations are also performed: when the camera temperature is less than the first preset temperature, the heating element is turned on, and when the camera temperature is within the preset temperature interval, Turn off the heating element;
  • the cooling element When the camera temperature is greater than the second preset temperature, the cooling element is turned on, and when the camera temperature is within the preset temperature interval, the cooling element is turned off.
  • processor 1001 can call the calibration program stored in the memory 1005, and also perform the following operations:
  • the temperature control area includes a heating area, a constant temperature area, and a cooling area.
  • the heating element is located in the heating area
  • the cooling element is located in the cooling area
  • the calibration device further has a mobile device
  • the mobile device controls the time-of-flight ranging camera in the temperature control area
  • the processor 1001 can call the calibration program stored in the memory 1005, and also perform the following operations:
  • processor 1001 can call the calibration program stored in the memory 1005, and also perform the following operations:
  • processor 1001 can call the calibration program stored in the memory 1005, and also perform the following operations:
  • the power of the heating element or the cooling element is determined according to the temperature difference between the camera temperature and the preset temperature, and the heating element or the cooling element is controlled to The power is running.
  • FIG. 2 it is a schematic structural diagram of a temperature control module in a calibration device of a time-of-flight ranging camera.
  • the calibration device of the time-of-flight distance measurement camera has a temperature sensor and a temperature control module, wherein the temperature sensor is used to detect the camera temperature of the time-of-flight distance measurement camera, so as to measure the time-of-flight distance when the camera temperature reaches a preset temperature interval
  • the camera performs distance calibration;
  • the temperature control module 100 has a heating element 10, such as a heating plate, a heating tube, a resistance wire, etc., and a cooling element 20, such as a fan, a cooling tube equipped with a refrigerant, and so on.
  • the heating element 10 When the camera temperature of the time-of-flight ranging camera is less than the lower limit of the preset temperature interval, the heating element 10 is used to heat the time-of-flight ranging camera; The cooling element 10 cools the time-of-flight ranging camera, so that the camera temperature of the time-of-flight ranging camera quickly reaches a preset temperature interval.
  • the preset temperature range is the most stable working temperature range of the time-of-flight distance measuring camera. In this temperature range, the measured distance is more accurate. Therefore, when the camera temperature is within the preset temperature range, the camera is calibrated. The calibration error is minimized, and the accuracy of the time-of-flight ranging camera after calibration in this temperature range is improved.
  • the temperature control area of the temperature control module 100 is divided into a heating area (AB section), a constant temperature area (BC section), and a cooling area (CD section), the heating element 10 is located in the heating area, and the cooling element 20 is located in the cooling area.
  • the temperature control module 100 further includes a moving device.
  • the moving device includes a motor 30, a guide rail 40 across the temperature control area, and a slider 50 mounted on the guide rail 40.
  • the time-of-flight ranging camera is placed on the slider 50, and the control motor 30 drives the slider 50 to move on the guide rail 40, so that the time-of-flight ranging camera can move in the temperature control area.
  • the heating element 10 heats the camera; when the time-of-flight ranging camera is moved to the cooling area, the cooling element 20 cools the camera; the time-of-flight ranging camera is moved to the constant temperature area Insulate the camera to increase the time for the time-of-flight ranging camera to reach a stable preset temperature interval, and improve the efficiency and accuracy of the time-of-flight ranging camera calibration. Further, a groove is provided on the slider 50, which is convenient for stably placing the time-of-flight ranging camera on the slider 50.
  • the power of the heating element 10 and the cooling element 20 of the temperature control module 100 can be adjusted, and an appropriate power is selected to heat or cool the time-of-flight ranging camera according to the gap between the current temperature of the time-of-flight ranging camera and a preset temperature interval.
  • a first embodiment of the calibration method of the time-of-flight ranging camera of the present invention the calibration method of the time-of-flight ranging camera includes:
  • Step S10 Obtain the camera temperature of the time-of-flight ranging camera.
  • Step S20 controlling the temperature control module to adjust the camera temperature to a preset temperature interval.
  • Step S30 when the temperature of the camera is within the temperature range, the distance calibration of the time-of-flight ranging camera is performed.
  • the distance calibration of the time-of-flight distance measuring camera refers to the calibration of the product performance before the time-of-flight distance measuring camera product leaves the factory.
  • the difference in the actual distance parameter of the object corrects the measurement result of the time-of-flight distance measurement product, so that the measurement result of the corrected camera is more accurate in the subsequent use process.
  • the time-of-flight ranging camera Since the temperature affects the pulse width of the laser, which in turn affects the ranging results of the time-of-flight ranging camera, when the camera temperature of the time-of-flight ranging camera reaches a stable preset temperature range, the time-of-flight ranging camera is calibrated again. It can reduce the calibration error and increase the measurement accuracy of the time-of-flight ranging camera.
  • the calibration method of the time-of-flight distance measuring camera uses a calibration device to calibrate the camera.
  • the calibration device includes a temperature sensor and a temperature control module.
  • the camera temperature of the time-of-flight ranging camera is detected by the temperature sensor, and the camera temperature is adjusted according to the temperature difference between the detected camera temperature and the preset temperature interval so that the camera temperature is within the preset temperature interval.
  • the distance calibration of the time-of-flight distance measuring camera is performed.
  • the temperature control module adjusts the camera temperature of the time-of-flight ranging camera, shortens the time for the camera temperature to reach a stable preset temperature interval, and improves the efficiency and accuracy of the time-of-flight ranging camera calibration. At the same time, the temperature control module is used to adjust the temperature of the time-of-flight distance measuring camera in a targeted manner, without the need for constant temperature control of the ambient temperature of the entire flow workshop, saving energy consumption.
  • a calibration device is used to calibrate the camera.
  • the calibration device includes a temperature sensor and a temperature control module.
  • the camera temperature of the time-of-flight ranging camera is detected by the temperature sensor, and the camera temperature is adjusted according to the temperature difference between the detected camera temperature and the preset temperature interval so that the camera temperature is within the preset temperature interval.
  • the distance calibration of the time-of-flight distance measuring camera is performed.
  • the temperature control module adjusts the camera temperature of the time-of-flight ranging camera, shortens the time for the camera temperature to reach a stable preset temperature interval, and improves the efficiency and accuracy of the time-of-flight ranging camera calibration.
  • a second embodiment of the calibration method of the time-of-flight ranging camera of the present invention is based on the first embodiment described above, and the step S20 includes:
  • Step S21 Determine whether the camera temperature is less than the first preset temperature.
  • Step S22 when the temperature of the camera is less than the first preset temperature, heating the time-of-flight ranging camera.
  • Step S23 when the camera temperature is greater than or equal to the first preset temperature, it is determined that the camera temperatures are all greater than the second preset temperature, and the second preset temperature is greater than or equal to the first preset temperature.
  • Step S24 When the camera temperature is greater than the second preset temperature, cool the time-of-flight ranging camera.
  • the temperature control module is used to increase or decrease the camera temperature of the time-of-flight rangefinder camera; when the camera temperature of the time-of-flight rangefinder camera is within the preset temperature range, the temperature is used
  • the control module insulates the time-of-flight ranging camera and performs step S30 to calibrate the distance of the time-of-flight ranging camera.
  • the temperature control module heats the time-of-flight ranging camera to increase the camera temperature; when the camera temperature is greater than or equal to the first preset temperature, it is further determined whether the camera temperature is also greater than the second preset temperature, and when the camera temperature is greater than the second When the preset temperature indicates that the current camera temperature is too high, the temperature control module cools the time-of-flight ranging camera to reduce the camera temperature.
  • the first preset temperature and the second preset temperature respectively take values around the minimum value and the maximum value of the preset temperature interval, and the second preset temperature is greater than or equal to the first preset temperature.
  • the preset temperature range is [45, 50] and the unit is ° C
  • the first preset temperature may be 43-47 ° C
  • the second preset temperature may be 48-52 ° C.
  • the temperature control module has a heating element and a cooling element.
  • the heating element When the camera temperature is lower than the first preset temperature, the heating element is turned on to heat the time-of-flight ranging camera. When the camera temperature rises to the preset temperature interval, The heating element saves energy; similarly, when the camera temperature is greater than the second preset temperature, the cooling element is turned on to cool the time-of-flight distance measuring camera, and when the camera temperature is reduced to the preset temperature range, the cooling element is turned off.
  • the power of the heating element and the cooling element of the temperature control module can be adjusted, according to the temperature difference between the current camera temperature of the time-of-flight ranging camera and the first preset temperature or the second preset temperature, an appropriate power is adjusted for the time-of-flight measurement Heat or cool from the camera.
  • the temperature control module heats the time-of-flight ranging camera to increase the camera temperature; when the camera temperature is greater than or equal to the first preset temperature, it is further determined whether the camera temperature is also greater than the second preset temperature when the camera temperature When the temperature is greater than the second preset temperature, it indicates that the current camera temperature is too high, and the temperature control module cools the time-of-flight ranging camera to reduce the camera temperature.
  • the first preset temperature and the second preset temperature respectively take values around the minimum value and the maximum value of the preset temperature interval, and the second preset temperature is greater than or equal to the first preset temperature.
  • the temperature control module adjusts the temperature of the time-of-flight ranging camera, shortens the time when the camera temperature reaches the preset temperature interval, and improves the calibration efficiency.
  • a third embodiment of the calibration method of the time-of-flight ranging camera of the present invention based on the first or second embodiment described above, the step S20 further includes:
  • Step S25 Obtain a temperature control area corresponding to the camera temperature.
  • the temperature control area of the temperature control module is divided into a heating area, a constant temperature area and a cooling area.
  • the temperature control area corresponding to the camera temperature is the heating area.
  • the temperature control area corresponding to the camera temperature is a constant temperature area; when the camera temperature is greater than the second preset temperature, the temperature control area corresponding to the camera temperature is a cooling area.
  • the temperature control area corresponding to the camera temperature is the heating area; when the camera temperature is 48 ° C, this The temperature control area corresponding to the camera temperature is a constant temperature area; when the camera temperature is 55 ° C, the temperature control area corresponding to the camera temperature is a cooling area.
  • Step S26 Move the time-of-flight ranging camera to a corresponding temperature control area, where the temperature control area includes a heating area, a constant temperature area, and a cooling area.
  • the camera temperature of the rangefinder camera is within a stable operating temperature.
  • the temperature control module shown in FIG. 2 is equipped with a heating element in the heating area and a cooling element in the cooling area.
  • the time-of-flight distance-measuring camera is moved to heating Area, increase the camera temperature;
  • the camera temperature is greater than the second preset temperature, move the time-of-flight ranging camera to the cooling area to reduce the camera temperature;
  • the camera will fly The time ranging camera moves to the cooling area to maintain the current camera temperature, improve the calibration efficiency, and reduce the calibration error.
  • the heating element and the cooling element in each temperature control area of the temperature control module are normally open, and the distance measuring camera can be immediately heated or cooled to the corresponding area during the flight time, and the temperature adjustment rate is increased. Due to the opening of the heating element and the cooling element, the constant temperature area between the heating area and the cooling area can insulate the time-of-flight distance measuring camera.
  • the heating element or cooling element in the temperature control area can only be turned on when it is detected that the time-of-flight ranging camera moves to the temperature area, and When it is detected that the time-of-flight distance measuring camera leaves the temperature-controlled area, the heating element or cooling element is turned off to avoid unnecessary heating or cooling and save energy.
  • the preset temperature interval corresponding to different models of cameras and the first preset temperature and the second preset temperature are entered in the calibration procedure of the time-of-flight ranging camera.
  • the system recognizes the time of flight
  • the above temperature parameters corresponding to the model are correspondingly adjusted to adjust the camera temperature, so that the adjusted camera temperature is at a stable working temperature, and the accuracy of calibration is improved.
  • the temperature control area of the temperature control module is divided into a heating area, a constant temperature area, and a cooling area. Obtain the temperature control area corresponding to the camera temperature according to the detected camera temperature, move the time-of-flight ranging camera to the temperature control area, and correspondingly heat, keep warm or cool the time-of-flight ranging camera to ensure the adjusted flight time
  • the camera temperature of the rangefinder camera is within a stable operating temperature.
  • the time-of-flight rangefinder camera quickly reaches a stable operating temperature, saving calibration time and improving calibration efficiency; on the other hand, the time-of-flight rangefinder camera is at a stable operating temperature during calibration, reducing calibration errors and improving flight time measurement The accuracy of the camera product.
  • the adjustment of the camera temperature in the calibration method of the time-of-flight ranging camera described in the above embodiments can also be used for other products that need to maintain the product temperature to a preset temperature range quickly, not limited to Temperature adjustment from the camera.
  • an embodiment of the present invention also proposes a computer-readable storage medium having a calibration program stored on the computer-readable storage medium.
  • the calibration program is executed by a processor to implement time-of-flight ranging as described in the above embodiments Steps of camera calibration method.
  • the methods in the above embodiments can be implemented by means of software plus a necessary general hardware platform, and of course, can also be implemented by hardware, but in many cases the former is better Implementation.
  • the technical solution of the present invention can be embodied in the form of a software product in essence or part that contributes to the existing technology, and the computer software product is stored in a storage medium (such as ROM / RAM) as described above , Disk, CD-ROM), including several instructions to enable a terminal device (which can be a mobile phone, computer, server, air conditioner, or network equipment, etc.) to perform the methods described in various embodiments of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Studio Devices (AREA)

Abstract

一种飞行时间测距相机的标定方法,该标定方法涉及的标定装置具有温度传感器(1004)以及温度控制模块(1003,100),该标定方法包括以下步骤:获取飞行时间测距相机的相机温度(S10);控制温度控制模块(1003,100)将相机温度调节至预设温度区间(S20);当相机温度在预设温度区间内时,对飞行时间测距相机进行距离的标定(S30)。通过温度控制模块(1003,100)对飞行时间测距相机的相机温度进行调节,缩短相机温度达到稳定的预设温度区间的时间,提高了飞行时间测距相机标定的效率以及准确性。

Description

飞行时间测距相机的标定方法、装置及可读存储介质 技术领域
本发明涉及光学测距技术领域,尤其涉及飞行时间测距相机的标定方法、装置及可读存储介质。
背景技术
飞行时间测距方法(Time of flight测距法,简称TOF测距)通过给目标连续发送激光脉冲,然后用传感器接收从物体返回的激光,通过探测激光脉冲的飞行(往返)时间结合激光传播速度来得到目标物距离。
飞行时间测距相机(TOF模组)采用飞行时间测距方法通过激光获取距离,由于不同的温度下产生的激光的脉冲宽度不同,使得激光脉冲的飞行时间不同,最终导致测量出的距离不同。为提高飞行时间测距相机的测量距离的稳定性,绘制温度与距离关系曲线,取距离差较小的一段温度作为飞行时间测距相机的工作温度,在飞行时间测距相机工作时,采用该工作温度进行测距。
通常批量生产出的飞行时间测距相机产品间存在差异,测定出的距离与实际距离间存在一定的差异,故,在飞行时间测距相机产品出厂之前,对产品进行标定测试,使得飞行时间测距相机测距更加精准。
飞行时间测距相机在短时间内无法达到工作温度,从而导致在产品生产流水线中进行飞行时间测距相机的标定测试时,飞行时间测距相机的温度较低,产品的标定存在误差,影响飞行时间测距相机测量距离的准确性。
发明内容
本发明的主要目的在于提供一种飞行时间测距相机的标定方法、装置及可读存储介质,旨在解决飞行时间测距相机在短时间内无法达到工作温度,从而导致在产品生产流水线中进行飞行时间测距相机的标定测试时,飞行时间测距相机的温度较低,产品的标定存在误差,影响飞行时间测距相机测量距离的准确性的技术问题。
为实现上述目的,本发明提供一种飞行时间测距相机的标定方法,其特 征在于,所述飞行时间测距相机的标定方法涉及的标定装置具有温度传感器以及温度控制模块,所述飞行时间测距相机的标定方法包括以下步骤:
获取所述飞行时间测距相机的相机温度;
控制所述温度控制模块将所述相机温度调节至预设温度区间;
当所述相机温度在所述预设温度区间内时,对所述飞行时间测距相机进行距离的标定。
可选的,所述控制所述温度控制模块将所述相机温度调节至预设温度区间的步骤包括:
当所述相机温度小于第一预设温度时,对所述飞行时间测距相机进行加热;
当所述相机温度大于第二预设温度时,对所述飞行时间测距相机进行冷却,所述第二预设温度大于或等于所述第一预设温度。
可选的,所述温度控制模块具有加热件和冷却件,通过所述加热件对所述飞行时间测距相机进行加热,通过所述冷却件对所述飞行时间测距相机进行冷却,所述控制所述温度控制模块将所述相机温度调节至预设温度区间的步骤包括:
当所述相机温度小于第一预设温度时,打开所述加热件,并在所述相机温度在所述预设温度区间内时,关闭所述加热件;
当所述相机温度大于第二预设温度时,打开所述冷却件,并在所述相机温度在所述预设温度区间内时,关闭所述冷却件。
可选的,所述控制所述温度控制模块将所述相机温度调节至预设温度区间的步骤包括:
获取所述相机温度对应的温控区域;
将所述飞行时间测距相机移动至对应的温控区域,所述温控区域包括加热区域、恒温区域以及冷却区域。
可选的,所述加热件位于所述加热区域,所述冷却件位于所述冷却区域,所述标定装置还具有移动装置,所述移动装置控制所述飞行时间测距相机在所述控温区域内移动,所述将所述飞行时间测距相机移动至对应的温控区域的步骤包括:
当所述相机温度小于所述第一预设温度时,将所述飞行时间测距相机移 动至所述加热区域;
当所述相机温度大于所述第二预设温度时,将所述飞行时间测距相机移动至所述冷却区域;
在所述相机温度在所述预设温度区间内时,将所述飞行时间测距相机移动至所述恒温区域。
可选的,确定所述飞行时间测距相机当前所在的温控区域,开启所述温控区域内的加热件或冷却件,并当所述飞行时间测距相机离开所述温控区域时,关闭所述温控区域内的加热件或冷却件。
可选的,在打开所述加热件或所述冷却件时,根据所述相机温度与所述预设温度的温度差确定所述加热件或所述冷却件的功率,并控制所述加热件或冷却件以所述功率运行。
此外,为实现上述目的,本发明还提供一种飞行时间测距相机的标定装置,其特征在于,所述飞行时间测距相机的标定装置具有温度传感器以及温度控制模块,所述温度控制模块具有加热件和冷却件,所述加热件用于对所述飞行时间测距相机进行加热,通过所述冷却件用于对所述飞行时间测距相机进行冷却。
可选的,所述温度控制模块的温控区域包括加热区域、恒温区域以及冷却区域,所述加热件位于所述加热区域,所述冷却件位于所述冷却区域,所述飞行时间测距相机的标定装置还具有移动装置,所述移动装置控制所述飞行时间测距相机在所述控温区域内移动。
此外,为实现上述目的,本发明还提供一种可读存储介质,其特征在于,所述可读存储介质上存储有标定程序,所述标定程序被处理器执行时实现如上所述的飞行时间测距相机的标定方法的步骤。
本发明实施例提出的一种飞行时间测距相机的标定方法、装置及可读存储介质,采用标定装置对相机进行标定,标定装置包括温度传感器以及温度控制模块。通过温度传感器检测飞行时间测距相机的相机温度,根据检测到的相机温度与预设温度区间的温度差,对相机温度进行调节,使得相机温度 处于预设温度区间内。在检测到相机温度在预设温度区间内时,对飞行时间测距相机进行距离的标定。通过温度控制模块对飞行时间测距相机的相机温度进行调节,缩短相机温度达到稳定的预设温度区间的时间,提高飞行时间测距相机标定的效率以及准确性。
附图说明
图1是本发明实施例方案涉及的硬件运行环境的终端结构示意图;
图2是本发明实施例方案涉及的飞行时间测距相机的标定装置中温度控制模块的结构示意图;
图3为本发明飞行时间测距相机的标定方法第一实施例的流程示意图;
图4为本发明飞行时间测距相机的标定方法第二实施例中控制所述温度控制模块将所述相机温度调节至所述温度区间的步骤的一细化流程示意图;
图5为本发明飞行时间测距相机的标定方法第二实施例中控制所述温度控制模块将所述相机温度调节至所述温度区间的步骤的另一细化流程示意图。
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明实施例的主要解决方案是:
获取所述飞行时间测距相机的相机温度;
控制所述温度控制模块将所述相机温度调节至预设温度区间;
当所述相机温度在所述预设温度区间内时,对所述飞行时间测距相机进行距离的标定。
由于现有技术中,飞行时间测距相机在短时间内无法达到工作温度,从而导致在产品生产流水线中进行飞行时间测距相机的标定测试时,飞行时间测距相机的温度较低,产品的标定存在误差,影响飞行时间测距相机测量距离的准确性。
本发明提供一种解决方案,采用标定装置对相机进行标定,标定装置包括温度传感器以及温度控制模块。通过温度传感器检测飞行时间测距相机的相机温度,根据检测到的相机温度与预设温度区间的温度差,对相机温度进行调节,使得相机温度处于预设温度区间内。在检测到相机温度在预设温度区间内时,对飞行时间测距相机进行距离的标定。通过温度控制模块对飞行时间测距相机的相机温度进行调节,缩短相机温度达到稳定的预设温度区间的时间,提高飞行时间测距相机标定的效率以及准确性。
图1是本发明实施例方案涉及的硬件运行环境的终端结构示意图。
本发明实施例终端可以是PC,也可以是智能手机、平板电脑、便携计算机等具有程序控制功能的终端设备。
如图1所示,该终端可以包括:处理器1001,例如CPU,温控控制模块1003,温度传感器1004,存储器1005,通信总线1002。其中,通信总线1002用于实现这些组件之间的连接通信。温度控制模块1003包括加热件和冷却件,温度传感器1004可以包括接触式温度传感器和非接触式温度传感器,常见的接触式温度传感器有双金属温度计、玻璃液体温度计、压力式温度计、电阻温度计、热敏电阻和温差电偶等,非接触式温度传感器有红外传感器和微波传感器等。存储器1005可以是高速RAM存储器,也可以是稳定的存储器(non-volatile memory),例如磁盘存储器。存储器1005可选的还可以是独立于前述处理器1001的存储装置。
可选地,终端还可以包括移动装置,用于将飞行时间测距相机在温度控制模块的温控区域内移动。
本领域技术人员可以理解,图1中示出的终端结构并不构成对终端的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
如图1所示,作为一种计算机存储介质的存储器1005中可以包括操作系统、温度检测模块、温度控制模块以及标定程序。
在图1所示的终端中,温度传感器1004主要用于检测飞行时间测距相机的相机温度,并将相机温度传输至后台处理器;温度控制模块1003主要用于调节飞行时间测距相机的相机温度;而处理器1001可以用于调用存储器1005 中存储的标定程序,并执行以下操作:
获取所述飞行时间测距相机的相机温度;
控制所述温度控制模块将所述相机温度调节至预设温度区间;
当所述相机温度在所述预设温度区间内时,对所述飞行时间测距相机进行距离的标定。
进一步地,处理器1001可以调用存储器1005中存储的标定程序,还执行以下操作:
当所述相机温度小于第一预设温度时,对所述飞行时间测距相机进行加热;
当所述相机温度大于第二预设温度时,对所述飞行时间测距相机进行冷却,所述第二预设温度大于或等于所述第一预设温度。
进一步地,所述温度控制模块具有加热件和冷却件,通过所述加热件对所述飞行时间测距相机进行加热,通过所述冷却件对所述飞行时间测距相机进行冷却,处理器1001可以调用存储器1005中存储的标定程序,还执行以下操作:当所述相机温度小于第一预设温度时,打开所述加热件,并在所述相机温度在所述预设温度区间内时,关闭所述加热件;
当所述相机温度大于第二预设温度时,打开所述冷却件,并在所述相机温度在所述预设温度区间内时,关闭所述冷却件。
进一步地,处理器1001可以调用存储器1005中存储的标定程序,还执行以下操作:
获取所述相机温度对应的温控区域;
将所述飞行时间测距相机移动至对应的温控区域,所述温控区域包括加热区域、恒温区域以及冷却区域。
进一步地,所述加热件位于所述加热区域,所述冷却件位于所述冷却区域,所述标定装置还具有移动装置,所述移动装置控制所述飞行时间测距相机在所述控温区域内移动,处理器1001可以调用存储器1005中存储的标定 程序,还执行以下操作:
当所述相机温度小于所述第一预设温度时,将所述飞行时间测距相机移动至所述加热区域;
当所述相机温度大于所述第二预设温度时,将所述飞行时间测距相机移动至所述冷却区域;
在所述相机温度在所述预设温度区间内时,将所述飞行时间测距相机移动至所述恒温区域。
进一步地,处理器1001可以调用存储器1005中存储的标定程序,还执行以下操作:
确定所述飞行时间测距相机当前所在的温控区域,开启所述温控区域内的加热件或冷却件,并当所述飞行时间测距相机离开所述温控区域时,关闭所述温控区域内的加热件或冷却件。
进一步地,处理器1001可以调用存储器1005中存储的标定程序,还执行以下操作:
在打开所述加热件或所述冷却件时,根据所述相机温度与所述预设温度的温度差确定所述加热件或所述冷却件的功率,并控制所述加热件或冷却件以所述功率运行。
如图2所示,涉及的飞行时间测距相机的标定装置中温度控制模块结构示意图。
飞行时间测距相机的标定装置中具有温度感应器以及温度控制模块,其中,温度感应器用于检测飞行时间测距相机的相机温度,以便在相机温度达到预设温度区间时,对飞行时间测距相机进行距离的标定;温度控制模块100中具有加热件10,如加热片、加热管、电阻丝等等,以及冷却件20,如风扇、装有冷媒的冷却管等等。在飞行时间测距相机的相机温度小于预设温度区间的下限时,采用加热件10对飞行时间测距相机进行加热;在飞行时间测距相机的相机温度大于预设温度区间的上限时,采用冷却件10对飞行时间测距相机进行冷却,从而使得飞行时间测距相机的相机温度快速达到预设温度区间。 在预设温度区间为飞行时间测距相机测距结果最为稳定的工作温度区间,在此温度区间内,测定的距离较为准确,因此,当相机温度处于预设温度区间时,对相机进行标定,标定误差降到最低,在此温度区间内标定后飞行时间测距相机的准确性得到提高。
进一步地,所述温度控制模块100的温控区域分为加热区域(AB段)、恒温区域(BC段)以及冷却区域(CD段),加热件10位于加热区域,冷却件20位于冷却区域。所述温度控制模块100还包括移动装置,所述移动装置包括电机30、横穿温控区域的导轨40以及安装在导轨40上的滑块50。将飞行时间测距相机放置在滑块50上,控制电机30带动滑块50在导轨40上移动,可使得飞行时间测距相机在温控区域内移动。控制飞行时间测距相机移动至加热区域时,加热件10对相机进行加热;控制飞行时间测距相机移动至冷却区域时,冷却件20对相机进行冷却;控制飞行时间测距相机移动至恒温区域时,对相机进行保温,提高飞行时间测距相机达到稳定的预设温度区间的时间,提高飞行时间测距相机标定的效率以及准确性。进一步的,在滑块50上设有凹槽,便于将飞行时间测距相机稳定地放置于滑块50上。
此外,温度控制模块100的加热件10和冷却件20的功率可调节,根据飞行时间测距相机当前温度距预设温度区间的差距选择合适的功率对飞行时间测距相机加热或冷却。
参照图3,本发明飞行时间测距相机的标定方法第一实施例,所述飞行时间测距相机的标定方法包括:
步骤S10,获取所述飞行时间测距相机的相机温度。
步骤S20,控制所述温度控制模块将所述相机温度调节至预设温度区间。
步骤S30,当所述相机温度在所述温度区间内时,对所述飞行时间测距相机进行距离的标定。
飞行时间测距相机的距离标定是指,在飞行时间测距相机产品出厂前对产品性能的校准,常用方法是采用飞行时间测距相机对已知距离的标准物进行测量,根据测量结果与标准物的实际距离参数的差距,对飞行时间测距产品的测量结果进行修正,使得修正后的相机在接下来的使用过程中测量结果更加准确。
由于温度影响激光的脉冲宽度,进而影响飞行时间测距相机的测距结果,因此,在飞行时间测距相机的相机温度达到稳定的预设温度区间时,再对飞行时间测距相机进行标定,能够减小标定误差,增加飞行时间测距相机的测量准确度。
本发明提供的飞行时间测距相机的标定方法,采用标定装置对相机进行标定,标定装置包括温度传感器以及温度控制模块。通过温度传感器检测飞行时间测距相机的相机温度,根据检测到的相机温度与预设温度区间的温度差,对相机温度进行调节,使得相机温度处于预设温度区间内。在检测到相机温度在预设温度区间内时,对飞行时间测距相机进行距离的标定。
通过温度控制模块对飞行时间测距相机的相机温度进行调节,缩短相机温度达到稳定的预设温度区间的时间,提高飞行时间测距相机标定的效率以及准确性。同时,采用温度控制模块有针对性地对飞行时间测距相机进行温度调节,无需对整个流水车间的环境温度进行恒温控制,节约能耗。
在本实施例中,采用标定装置对相机进行标定,标定装置包括温度传感器以及温度控制模块。通过温度传感器检测飞行时间测距相机的相机温度,根据检测到的相机温度与预设温度区间的温度差,对相机温度进行调节,使得相机温度处于预设温度区间内。在检测到相机温度在预设温度区间内时,对飞行时间测距相机进行距离的标定。通过温度控制模块对飞行时间测距相机的相机温度进行调节,缩短相机温度达到稳定的预设温度区间的时间,提高飞行时间测距相机标定的效率以及准确性。
进一步的,参照图4,本发明飞行时间测距相机的标定方法第二实施例,基于上述第一实施例,所述步骤S20包括:
步骤S21,判断所述相机温度是否小于第一预设温度。
步骤S22,当所述相机温度小于第一预设温度时,对所述飞行时间测距相机进行加热。
步骤S23,当所述相机温度大于或等于第一预设温度时,判断所述相机温度是都大于第二预设温度,所述第二预设温度大于或等于第一预设温度。
步骤S24,当所述相机温度大于第二预设温度时,对所述飞行时间测距相机进行冷却。
在飞行时间测距相机的相机温度不在预设温度区间时,采用温度控制模块提高或降低飞行时间测距相机的相机温度;在飞行时间测距相机的相机温度在预设温度区间时,采用温度控制模块对飞行时间测距相机进行保温,并执行步骤S30,对飞行时间测距相机进行距离的标定。
具体地,在飞行时间测距相机的相机温度不在预设温度区间内时,判断相机温度是否小于第一预设温度,当相机温度小于第一预设温度时,表明当前相机温度较低,则温度控制模块对飞行时间测距相机进行加热,以提高相机温度;当相机温度大于或等于第一预设温度时,进一步判断相机温度是否同时也大于第二预设温度,当相机温度大于第二预设温度时,表明当前相机温度过高,则温度控制模块对飞行时间测距相机进行冷却,以降低相机温度。其中,第一预设温度和第二预设温度分别在预设温度区间的最小值和最大值附近取值,第二预设温度大于或等于第一预设温度。例如,预设温度区间为[45,50],单位℃,则第一预设温度取值可为43-47℃,第二预设温度可取48-52℃。
进一步的,温度控制模块具有加热件和冷却件,在相机温度小于第一预设温度时,打开加热件对飞行时间测距相机进行加热,当相机温度升温至预设温度区间内时,干逼加热件节约能源;同理,在相机温度大于第二预设温度时,打开冷却件对飞行时间测距相机进行冷却,在相机温度减低至预设温度区间内时,关闭冷却件。
此外,温度控制模块的加热件和冷却件的功率可调节,根据飞行时间测距相机当前相机温度与第一预设温或第二预设温度间的温度差,调整合适的功率对飞行时间测距相机加热或冷却。
在本实施例中,在飞行时间测距相机的相机温度不在预设温度区间内时,判断相机温度是否小于第一预设温度,当相机温度小于第一预设温度时,表明当前相机温度较低,则温度控制模块对飞行时间测距相机进行加热,以提高相机温度;当相机温度大于或等于第一预设温度时,进一步判断相机温度是否同时也大于第二预设温度,当相机温度大于第二预设温度时,表明当前相机温度过高,则温度控制模块对飞行时间测距相机进行冷却,以降低相机温度。其中,第一预设温度和第二预设温度分别在预设温度区间的最小值和最大值附近取值,第二预设温度大于或等于第一预设温度。通过温度控制模块对飞行时间测距相机进行温度调节,缩短相机温度达到预设温度区间的时 间,提高标定效率。
进一步的,参照图5,本发明飞行时间测距相机的标定方法第三实施例,基于上述第一或第二实施例,所述步骤S20还包括:
步骤S25,获取所述相机温度对应的控温区域。
将温度控制模块的温控区域分为加热区域、恒温区域以及冷却区域,当相机温度低于第一预设温度时,该相机温度对应的温控区域为加热区域,当相机温度大于或等于第一预设温度前小于或等于第二预设温度时,该相机温度对应的温控区域为恒温区域;当相机温度大于第二预设温度时,该相机温度对应的温控区域为冷却区域。例如第一预设温度取45℃,第二预设温度取50℃时,当相机温度为40℃时,此时相机温度对应的温控区域为加热区域;当相机温度为48℃时,此时相机温度对应的温控区域为恒温区域;当相机温度为55℃时,此时相机温度对应的温控区域为冷却区域。
步骤S26,将所述飞行时间测距相机移动至对应的温控区域,所述温控区域包括加热区域、恒温区域以及冷却区域。
根据检测出的相机温度获取相机温度对应的温控区域,将飞行时间测距相机移动到该温控区域内,相应的对飞行时间测距相机进行加热、保温或冷却,保证调节后的飞行时间测距相机的相机温度在稳定的工作温度内。
具体地,如图2所示的温度控制模块,在加热区域内安装有加热件,冷却区域内安装有冷却件,当相机温度小于第一预设温度时,将飞行时间测距相机移动至加热区域,升高相机温度;当相机温度大于第二预设温度时,将飞行时间测距相机移动至冷却区域,降低相机温度;在所述相机温度在所述预设温度区间内时,将飞行时间测距相机移动至冷却区域,维持当前的相机温度,提高标定效率,减少标定误差。
此外,对于温度控制模块各温控区域内的加热件和冷却件为常开状态,在飞行时间测距相机移动到对应的区域即可立即进行加热或冷却,提高温度调节速率。由于加热件和冷却件的开启,位于加热区域和冷却区域之间的恒温区域能够对飞行时间测距相机进行保温。
对于温度控制模块各温控区域内的加热件和冷却件还可在检测到飞行时间测距相机移动到该温度区域内时,才将该温控区域内的加热件或冷却件开 启,并在检测到飞行时间测距相机离开该温控区域时,关闭加热件或冷却件,避免无必要的加热或冷却,节约能源。
进一步地,在飞行时间测距相机的标定程序中录入不同型号的相机对应的预设温度区间以及第一预设温度和第二预设温度,在对飞行时间相机进行标定之前,系统识别飞行时间相机的型号,对应调取该型号对应的上述温度参数对相机温度进行调节,使得调节后的相机温度在稳定的工作温度,提高标定的准确性。
在本实施例中,将温度控制模块的温控区域分为加热区域、恒温区域以及冷却区域。根据检测出的相机温度获取相机温度对应的温控区域,将飞行时间测距相机移动到该温控区域内,相应的对飞行时间测距相机进行加热、保温或冷却,保证调节后的飞行时间测距相机的相机温度在稳定的工作温度内。一方面,使得飞行时间测距相机快速达到稳定的工作温度,节约标定时间,提高标定效率;另一方面,在标定时飞行时间测距相机处于稳定的工作温度,减少标定误差,提高飞行时间测距相机产品的准确度。
需要指出的是,上述实施例中所述的飞行时间测距相机的标定方法中对相机温度的调节,还可用于其他需要快速将产品温度维持至预设温度区间内,不仅限于对飞行时间测距相机的温度调节。
此外,本发明实施例还提出一种计算机可读存储介质,所述计算机可读存储介质上存储有标定程序,所述标定程序被处理器执行时实现如上各个实施例所述的飞行时间测距相机的标定方法的步骤。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者系统不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者系统所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者系统中还存在另外的相同要素。
上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述 实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在如上所述的一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本发明各个实施例所述的方法。
以上仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (10)

  1. 一种飞行时间测距相机的标定方法,其特征在于,所述飞行时间测距相机的标定方法涉及的标定装置具有温度传感器以及温度控制模块,所述飞行时间测距相机的标定方法包括以下步骤:
    获取所述飞行时间测距相机的相机温度;
    控制所述温度控制模块将所述相机温度调节至预设温度区间;
    当所述相机温度在所述预设温度区间内时,对所述飞行时间测距相机进行距离的标定。
  2. 如权利要求1所述的飞行时间测距相机的标定方法,其特征在于,所述控制所述温度控制模块将所述相机温度调节至预设温度区间的步骤包括:
    当所述相机温度小于第一预设温度时,对所述飞行时间测距相机进行加热;
    当所述相机温度大于第二预设温度时,对所述飞行时间测距相机进行冷却,所述第二预设温度大于或等于所述第一预设温度。
  3. 如权利要求2所述的飞行时间测距相机的标定方法,其特征在于,所述温度控制模块具有加热件和冷却件,通过所述加热件对所述飞行时间测距相机进行加热,通过所述冷却件对所述飞行时间测距相机进行冷却,所述控制所述温度控制模块将所述相机温度调节至预设温度区间的步骤包括:
    当所述相机温度小于第一预设温度时,打开所述加热件,并在所述相机温度在所述预设温度区间内时,关闭所述加热件;
    当所述相机温度大于第二预设温度时,打开所述冷却件,并在所述相机温度在所述预设温度区间内时,关闭所述冷却件。
  4. 如权利要求1所述的飞行时间测距相机的标定方法,其特征在于,所述控制所述温度控制模块将所述相机温度调节至预设温度区间的步骤包括:
    获取所述相机温度对应的温控区域;
    将所述飞行时间测距相机移动至对应的温控区域,所述温控区域包括加 热区域、恒温区域以及冷却区域。
  5. 如权利要求4所述的飞行时间测距相机的标定方法,其特征在于,所述加热件位于所述加热区域,所述冷却件位于所述冷却区域,所述标定装置还具有移动装置,所述移动装置控制所述飞行时间测距相机在所述控温区域内移动,所述将所述飞行时间测距相机移动至对应的温控区域的步骤包括:
    当所述相机温度小于所述第一预设温度时,将所述飞行时间测距相机移动至所述加热区域;
    当所述相机温度大于所述第二预设温度时,将所述飞行时间测距相机移动至所述冷却区域;
    在所述相机温度在所述预设温度区间内时,将所述飞行时间测距相机移动至所述恒温区域。
  6. 如权利要求4所述的飞行时间测距相机的标定方法,其特征在于,确定所述飞行时间测距相机当前所在的温控区域,开启所述温控区域内的加热件或冷却件,并当所述飞行时间测距相机离开所述温控区域时,关闭所述温控区域内的加热件或冷却件。
  7. 如权利要求3-6任一所述的飞行时间测距相机的标定方法,其特征在于,在打开所述加热件或所述冷却件时,根据所述相机温度与所述预设温度的温度差确定所述加热件或所述冷却件的功率,并控制所述加热件或冷却件以所述功率运行。
  8. 一种飞行时间测距相机的标定装置,其特征在于,所述飞行时间测距相机的标定装置具有温度传感器以及温度控制模块,所述温度控制模块具有加热件和冷却件,所述加热件用于对所述飞行时间测距相机进行加热,通过所述冷却件用于对所述飞行时间测距相机进行冷却。
  9. 如权利要求8所述的飞行时间测距相机的标定装置,其特征在于,所述温度控制模块的温控区域包括加热区域、恒温区域以及冷却区域,所述加 热件位于所述加热区域,所述冷却件位于所述冷却区域,所述飞行时间测距相机的标定装置还具有移动装置,所述移动装置控制所述飞行时间测距相机在所述控温区域内移动。
  10. 一种可读存储介质,其特征在于,所述可读存储介质上存储有标定程序,所述标定程序被处理器执行时实现如权利要求1至7中任一项所述的飞行时间测距相机的标定方法的步骤。
PCT/CN2018/122937 2018-10-31 2018-12-22 飞行时间测距相机的标定方法、装置及可读存储介质 WO2020087712A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811292506.9A CN109443383A (zh) 2018-10-31 2018-10-31 飞行时间测距相机的标定方法、装置及可读存储介质
CN201811292506.9 2018-10-31

Publications (1)

Publication Number Publication Date
WO2020087712A1 true WO2020087712A1 (zh) 2020-05-07

Family

ID=65549639

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/122937 WO2020087712A1 (zh) 2018-10-31 2018-12-22 飞行时间测距相机的标定方法、装置及可读存储介质

Country Status (2)

Country Link
CN (1) CN109443383A (zh)
WO (1) WO2020087712A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110231611A (zh) * 2019-06-14 2019-09-13 炬佑智能科技(苏州)有限公司 Tof传感器及其距离检测方法
CN110896474B (zh) * 2019-11-27 2021-07-27 歌尔光学科技有限公司 Tof模组的距离补偿方法、装置及设备
CN113552557B (zh) * 2020-04-15 2024-03-29 杭州萤石软件有限公司 飞行时间相机的测距校准方法、装置及设备
CN115097427B (zh) * 2022-08-24 2023-02-10 北原科技(深圳)有限公司 基于飞行时间法的自动标定方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1514297A (zh) * 2002-11-08 2004-07-21 奥林巴斯株式会社 照相机及其测距方法
CN106767933A (zh) * 2017-02-10 2017-05-31 深圳奥比中光科技有限公司 深度相机误差的测量系统、测量方法、评价方法及补偿方法
US20180114327A1 (en) * 2016-10-24 2018-04-26 Canon Kabushiki Kaisha Depth detection apparatus and depth detection method
CN108475000A (zh) * 2015-12-23 2018-08-31 伊森株式会社 摄像机冷却装置及其方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3985960B1 (en) * 2017-03-06 2022-11-23 SMR Patents S.à.r.l. Heating device for a camera lens
CN107990986A (zh) * 2017-12-14 2018-05-04 合肥金星机电科技发展有限公司 乙烯裂解炉温度场在线检测系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1514297A (zh) * 2002-11-08 2004-07-21 奥林巴斯株式会社 照相机及其测距方法
CN108475000A (zh) * 2015-12-23 2018-08-31 伊森株式会社 摄像机冷却装置及其方法
US20180114327A1 (en) * 2016-10-24 2018-04-26 Canon Kabushiki Kaisha Depth detection apparatus and depth detection method
CN106767933A (zh) * 2017-02-10 2017-05-31 深圳奥比中光科技有限公司 深度相机误差的测量系统、测量方法、评价方法及补偿方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DAI, SHUANG: "Space Camera Electronic Monitor Integrated System Based on General Purpose Serial Bus", CHINA MASTER’S THESES FULL-TEXT DATABASE, 1 January 2006 (2006-01-01), pages 1 - 70, XP055699993, ISSN: 1671-6779 *

Also Published As

Publication number Publication date
CN109443383A (zh) 2019-03-08

Similar Documents

Publication Publication Date Title
WO2020087712A1 (zh) 飞行时间测距相机的标定方法、装置及可读存储介质
US20210123822A1 (en) Detecting and indicating stability in an industrial temperature dry block calibrator
US20130345871A1 (en) Robot controlling device, robot device, robot controlling method, program for carrying out the robot controlling method and recording medium in which the program has been recorded
US20190086144A1 (en) Refrigeration device and cold water temperature control method for same
CN104964504B (zh) 冷藏冷冻设备及其防凝露方法和防凝露系统
CN113138025A (zh) 一种红外测温设备的自动校准方法及装置
CN109633405A (zh) 一种基于偏流预补偿的结温标定及散热组件性能评估装置
CN109085201B (zh) 一种超低湿露点仪及其温度控制方法
CN113359907B (zh) 一种快速响应的主动控温方法
CN111879417A (zh) 一种热红外成像模组温度控制装置及控制方法
CN109974976B (zh) 多温度标定系统以及多温度标定方法
CN102096426B (zh) 一种寻找恒温晶振快速启动加热控制曲线的方法
CN103411914B (zh) 一种可控温的掠角反射红外光谱装置
CN102455720A (zh) 真空低温黑体的控温系统
US9909935B1 (en) Calibration and control system for a climate system utilizing closed loop feedback and a phase change cell
EP4328504A1 (en) Air conditioner refrigeration control method, air conditioner and computer-readable storage medium
US20230085210A1 (en) Temperature estimation apparatus, temperature estimation method and storage medium
JP2015519542A5 (zh)
CN114878634A (zh) 一种导热材料的热阻检测系统及方法
CN113985337A (zh) 电阻式电流传感器的标定方法、装置、系统及校准方法
CN215523911U (zh) 测温设备
CN217467541U (zh) 一种用于表面等离子体共振反应仓内的高精度温度控制系统
KR101856009B1 (ko) 온도 제어 방법 및 시스템
CN113739393A (zh) 送风设备、送风方法及空气调节系统
CN214375243U (zh) 用于激光雷达窗片的温度调节装置及激光雷达

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18938865

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18938865

Country of ref document: EP

Kind code of ref document: A1