WO2020087449A1 - Display panel, manufacturing method thereof, and display apparatus - Google Patents

Display panel, manufacturing method thereof, and display apparatus Download PDF

Info

Publication number
WO2020087449A1
WO2020087449A1 PCT/CN2018/113452 CN2018113452W WO2020087449A1 WO 2020087449 A1 WO2020087449 A1 WO 2020087449A1 CN 2018113452 W CN2018113452 W CN 2018113452W WO 2020087449 A1 WO2020087449 A1 WO 2020087449A1
Authority
WO
WIPO (PCT)
Prior art keywords
display panel
organic layer
panel according
light emitting
layer
Prior art date
Application number
PCT/CN2018/113452
Other languages
French (fr)
Inventor
Kai SUI
Zhongyuan SUN
Weijie Wang
Jinxiang XUE
Xiang Zhou
Wenqi LIU
Jingkai NI
Chao Dong
Xiaofen WANG
Original Assignee
Boe Technology Group Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boe Technology Group Co., Ltd. filed Critical Boe Technology Group Co., Ltd.
Priority to EP18932323.1A priority Critical patent/EP3874547A4/en
Priority to JP2019558539A priority patent/JP7503906B2/en
Priority to CN201880001897.6A priority patent/CN109791999B/en
Priority to PCT/CN2018/113452 priority patent/WO2020087449A1/en
Priority to US16/494,417 priority patent/US11678510B2/en
Publication of WO2020087449A1 publication Critical patent/WO2020087449A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations
    • H10K59/8731Encapsulations multilayered coatings having a repetitive structure, e.g. having multiple organic-inorganic bilayers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • H10K50/8445Encapsulations multilayered coatings having a repetitive structure, e.g. having multiple organic-inorganic bilayers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/311Flexible OLED
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/871Self-supporting sealing arrangements
    • H10K59/8722Peripheral sealing arrangements, e.g. adhesives, sealants

Definitions

  • This disclosure relates to display technology, in particular, to a display panel, a manufacturing method thereof, and a display apparatus.
  • a trend of flexible display and stretchable display such as OLED (Organic Light Emitting Diodes) display or quantum dot light emitting display is to minimize bezel for full screen actualization.
  • Flexible display is being considered as the most optimal display for full screen actualization. As such, many display panel manufacturers invest heavily on mass production line of flexible display, rather than rigid display.
  • the display panel may include a display substrate, a plurality of light emitting units on the display substrate, and a first organic layer covering the plurality of light emitting units.
  • a surface of the first organic layer opposite from the light emitting units may include a plurality of raised portions and a plurality of recessed portions.
  • the first organic layer may be directly in contact with the plurality of light emitting units.
  • the display apparatus may include the display panel according to one embodiment of the present disclosure.
  • the method may include providing a display substrate with a plurality of light emitting units on the display substrate and forming a first organic layer covering the plurality of light emitting units.
  • a surface of the first organic layer opposite from the light emitting units may include a plurality of raised portions and a plurality of recessed portions.
  • the first organic layer may be directly in contact with the plurality of light emitting units.
  • Fig. 1 is a schematic structural diagram of a display panel in the related art
  • Fig. 2 is a schematic structural diagram of a display panel according to some embodiments of the present disclosure.
  • Fig. 3a is a three-dimensional structural diagram of the first organic layer according to some embodiments of the present disclosure.
  • Fig. 3b is a schematic structural diagram of a display panel according to some embodiments of the present disclosure.
  • Fig. 4a is a schematic cross-sectional diagram of the display panel according to some embodiments of the present disclosure.
  • Fig. 4b is a force analysis diagram of the first inorganic layer according to some embodiments of the present disclosure.
  • Fig. 4c is a schematic diagram of the first inorganic layer before and after stretching in a direction of y axis according to some embodiments of the present disclosure
  • Figs. 5a-5g are illustration of fabrication steps for manufacturing a display panel according to some embodiments contemplated by the present disclosure.
  • references made to the term “some embodiments, ” “one embodiment, ” “exemplary embodiments, ” “example, ” “specific example, ” “some examples” and the like are intended to refer that specific features, structures, materials or characteristics described in connection with the embodiment or example are included in at least some embodiments or examples of the present disclosure.
  • the schematic expression of the terms does not necessarily refer to the same embodiment or example.
  • the specific features, structures, materials or characteristics described may be included in any suitable manner in any one or more embodiments or examples.
  • a number modified by “about” herein means that the number can vary by 10%thereof.
  • light emitting unit may be referred to organic light emitting unit, inorganic light emitting unit, or quantum dot light emitting unit.
  • distance may be referred to the shortest distance between two objects such as two surfaces or one point to one surface.
  • Fig. 1 is a schematic structural diagram of a display panel in the related art.
  • the display panel includes a display substrate 100, a plurality of display units 101 arranged on the display substrate 100, a first inorganic layer 102 covering the display units 101, an organic layer 103 covering the first inorganic layer 102, and a second inorganic layer 104 covering the organic layer 103.
  • These inorganic and organic layers are used to protect the display substrate 100 from penetration of water and oxygen.
  • the inorganic layers 102 and 104 are very thin and frequently subjected to large stresses, these inorganic layers tend to be broken under lateral stresses stretching the display panel in the direction of 106.
  • the oxygen and water outside the display panel can penetrate some of the plurality of display units 101 along the breaking line, thereby significantly shortening the lifespan of the display panel.
  • Fig. 2 is a schematic structural diagram of a display panel according to some embodiments of the present disclosure.
  • the display panel includes a display substrate 200, a pixel define layer 206 which defines a plurality of light emitting units 207, and a first organic layer 201 covering the plurality of light emitting units 207.
  • the display substrate 200 comprises driving circuit, signal lines and electrical elements etc.
  • a surface of the first organic layer 201 opposite from the light emitting units 207 includes a plurality of raised portions M and a plurality of recessed portions L.
  • the first organic layer 201 is directly in contact with the plurality of light emitting units 207 and the pixel defining layer 206.
  • the first organic layer when the display panel is laterally stretched, can effectively relieve some of the lateral stress because of the plurality of raised portions and the plurality of recessed portions on the surface of the first organic layer, .
  • the first organic layer 201 includes at least a material selected from the group consisting of polydimethylsiloxane, polyimides, silicone resins, polyurethane, acrylic resins, rubbers and their derivatives, and mixtures thereof.
  • Fig. 3a is a three-dimensional structural diagram of the first organic layer 201 according to some embodiments of the present disclosure.
  • the plurality of raised portions M and the plurality of recessed portions L are alternatively arranged in both a first direction and a second direction, and the first direction is substantially perpendicular to the second direction.
  • the plurality of the raised portions M is transitioned continuously to the plurality of the recessed portions L respectively. That is, the surface of the first organic layer has a substantially continuous, smooth transition from the curvature of the raised portion to that of the recessed portion and there is not a flat surface between the raised portion and the recessed portion.
  • the plurality of raised portions M and the plurality of recessed portions L have a substantially same amplitude relative to the plane P in a range from about 1um to about 5um.
  • Plane P is a flat surface of the first organic layer.
  • An amplitude of a raised portion is defined as a vertical distance from a crest of the raised portion to the plane P.
  • An amplitude of a recessed portion is defined as a vertical distance from the trough of the recessed portion to the plane P.
  • Fig. 3b is a schematic structural diagram of a display panel according to some embodiments of the present disclosure.
  • a first distance h1 from a crest of one of the plurality of the raised portions to a top surface of the pixel define layer 206 is in a range from about 3 ⁇ m to about 11 um, preferably from about 5 ⁇ m to about 9 ⁇ m, and more preferably from about 6 ⁇ m to about 8 ⁇ m.
  • a second distance h2 from a trough of one of the plurality of the recessed portions to the top surface of the pixel define layer 206 is in a range from about 1 ⁇ m to about 8um, preferably from about 2 ⁇ m to about 6 ⁇ m.
  • the first distance h1 is larger than the second distance h2.
  • a distance between crests of two adjacent raised portions M is substantially the same with a distance between troughs of two adjacent recessed portions L, which is in a range from a length of three adjacent light emitting units to a length of eighty adjacent light emitting units.
  • the range is from about 2um to about 1000 um, preferably from about 80 ⁇ m to about 120 ⁇ m.
  • the first distance h1 is about 6um.
  • the second distance h2 is about 2um.
  • a distance h5 from a top surface of the dam structure N to a top surface of the pixel define layer 206 is in a range from about 1.2um to about 2.8 um, for example, about 2.0 um.
  • the display panel further includes a first inorganic layer 202, a second organic layer 203, a second inorganic layer 204, and a third organic layer 205.
  • the first organic layer 201, the first inorganic layer 202, the second organic layer 203, the second inorganic layer 204 and the third organic layer 205 are sequentially arranged in a direction away from the display substrate 200.
  • An orthographic projection of the first organic layer 201 on the display substrate 200 covers an orthographic projection of the plurality of light emitting units 207 on the display substrate 200.
  • An orthographic projection of the first inorganic layer 202 on the display substrate 200 covers the orthographic projection of the first organic layer 201 on the display substrate 200.
  • the first inorganic layer 202 and the second inorganic layer 204 each include at least a material selected from the group consisting of SiNx, SiO 2 , SiC, Al 2 O 3 , ZnS, ZnO and ZSM zeolites.
  • the ZSM zeolite includes a structure of ZnO/Al 2 O 3 /MgO.
  • a Young's modulus of the first organic layer 201 is not larger than a Young’s modulus of the second organic layer 203.
  • a surface of the first organic layer opposite from the light emitting units includes a plurality of raised portions and a plurality of recessed portions
  • the first inorganic layer, the second organic layer, and the second inorganic layer are sequentially arranged on the first organic layer and conform to the surface of the first organic layer opposite from the light emitting units. That is, the first inorganic layer, the second organic layer, and the second inorganic layer conform to the shape of the plurality of raised portions and the plurality of recessed portions on the surface of the first organic layer.
  • the first organic layer can effectively relieve some of the stress of the first inorganic layer, thereby maintaining the water/oxygen blocking capacity of the first inorganic layer. As a result, the lifespan of the display substrate is extended.
  • the material of the first inorganic layer includes SiNx or SiON, and the thickness of the first inorganic layer is in a range from about 700nm to about 1400nm, for example, about 800nm.
  • the material of the first inorganic layer includes SiO 2 , and the thickness of the first inorganic layer is in a range from about 50nm to about 400nm, for example, about 200nm.
  • the material of the first inorganic layer includes Al 2 O 3 , and the thickness of the first inorganic layer is in a range from about 50nm to about 300nm, for example, about 120nm.
  • the thickness of the second organic layer is in a range from about 2um to about 4um, for example, about 2um.
  • the thickness of the second inorganic layer is in a range from about 0.05 ⁇ m to about 3um
  • the material of the second inorganic layer includes SiNx or SiON, and the thickness of the second inorganic layer is in a range from about 700nm to about 1400nm, for example, about 800nm.
  • the material of the second inorganic layer includes SiO 2 , and the thickness of the second inorganic layer is in a range from about 50nm to about 400nm, for example, about 200nm.
  • the material of the second inorganic layer includes Al 2 O 3 , and the thickness of the second inorganic layer is in a range from about 50nm to about 300nm, for example, about 120nm.
  • the third organic layer has a substantially flat top surface opposite from the display substrate.
  • the second inorganic layer also has a plurality of raised portions and a plurality of recessed portions.
  • a distance h3 from the top surface of the third organic layer opposite from the display substrate to a trough of one of the plurality of recessed portions of the second inorganic layer is in a range from about 3um to about 11 um, preferably from about 4 ⁇ m to 9 ⁇ m, , for example, about 6um.
  • a distance h4 from the top surface of the third organic layer opposite from the display substrate to a crest of one of the plurality of raised portions of the second inorganic layer is in a range from about 1 um to about 8 um, preferably from about 2 ⁇ m to about 6 ⁇ m, for example, about 2 ⁇ m.
  • Fig. 4a is a schematic cross-section of the display panel in planes perpendicular to the display substrate according to some embodiments of the present disclosure 404 is the direction of lateral stresses which stretches the display panel, and 400 is the length of the display panel, 401 is the width of the display panel and 402 is the thickness of the display panel.
  • a side of the cross-section of the first organic layer 201in a plane perpendicular to the display substrate 200 opposite from the display substrate has a shape of a sine wave, which means the first inorganic layer 202 arranged on the first organic layer 201 has a shape of a sine wave both along the direction of the length 400 of the display panel and the direction of the width 401 of the display panel, as shown in Fig. 4a-4c.
  • Fig. 4b is a force analysis diagram of the first inorganic layer according to some embodiments of the present disclosure.
  • the first inorganic layer 202 is transformed from waveform 405 to waveform 406 in the direction of axis x.
  • the display panel is laterally stretched in the direction of 404 at both ends thereof with force F and F’.
  • Two points A and B on the waveform 405 are taken for illustration purpose. The point A and point B are symmetrical with respect to a trough of a recessed portion.
  • the force F at the point A can be decomposed into force f1 and force f2 in the tangent direction and the normal direction to the waveform 405 respectively.
  • the force F’at the point B can be decomposed into force f3 and force f4 in the tangent direction and the normal direction to the waveform 405 respectively.
  • a magnitude of force F is substantially equal to that of force F’.
  • a magnitude of force f 1 is substantially equal to that of force f 3 .
  • a magnitude of force f 2 is substantially equal to that of force f 4 .
  • Force f 1 is a force that flattens the first inorganic layer
  • force f 2 is a force that keeps the arc from shifting upward.
  • the angle between the force F and force f 1 becomes smaller, but the angle between the force F and force f 2 becomes larger.
  • the waveform of the first inorganic layer 202 is transformed from waveform 405’to waveform 406’when the display panel is laterally stretched in the direction of 404, as shown in Fig. 4c.
  • the distance between two adjacent crests or troughs of the waveform 406’ is smaller than the distance between two adjacent crests or troughs of the waveform 405’respectively. That is, the first inorganic layer contracts in the direction of axis y.
  • the display panel further includes a dam structure N.
  • the dam structure N may be a circular structure surrounding the plurality of light emitting units 207.
  • the dam structure may be configured to prevent spilling of the first organic layer, the second organic layer and third organic layer.
  • the first inorganic layer 202 and/or the second inorganic layer 204 extend to the dam structure N and directly cover a top surface of the dam structure N.
  • the shortest distance 208 between an edge of the first organic layer to an edge of the display substrate is in a range from about 500um to about 2000um.
  • the shortest distance 210 between an edge of the first organic layer to a front edge of the dam structure facing the first organic layer is not larger than about 500um.
  • the bank angle b of the first inorganic layer 202 outside the display area, relative to the top surface of the pixel define layer 206 is in a range from 0 to 90 degree.
  • the bank angle a of the second inorganic layer 204 outside the display area, relative to a plane parallel to the top surface of the pixel define layer 206 is in a range from 0 to 90 degree.
  • the display substrate 200 includes a material selected from the group consisting of polyimides and derivatives thereof, rubbers, silicones, polyurethanes, and acrylic resins.
  • the maximum lateral stretching rate of the display panel is in a range from about 4%to about 8%, preferably from about 5%to about 7%, for example, about 5%.
  • the display apparatus includes the display panel according to any one of the embodiments of the present disclosure.
  • the display apparatus further includes a circular polarizer.
  • the circular polarizer may be configured to improve at least the outdoor display quality of the display panel.
  • the method may include steps of providing a display substrate with a plurality of light emitting units arranged on the display substrate and forming a first organic layer covering the plurality of light emitting units.
  • a surface of the first organic layer opposite from the light emitting units includes a plurality of raised portions and a plurality of recessed portions, and the first organic layer is directly in contact with the plurality of light emitting units.
  • forming the first organic layer covering the plurality of light emitting units includes steps of forming a film of an first organic material, forming a plurality of recessed portions on the film of the first organic material, and forming a plurality of raised portions among the plurality of recessed portions on the film of the first organic material.
  • the method prior to the step of forming the plurality of light emitting units, the method further includes a step of forming a pixel define layer.
  • the pixel defining layer defines the plurality of light emitting units.
  • the method of manufacturing a display panel further includes a step of forming a dam structure.
  • the dam structure surrounds the plurality of the light emitting units.
  • the step of forming a dam structure may be prior to forming the first organic layer.
  • a display substrate 200 with a plurality of light emitting units 207 arranged on the display substrate 200 is provided.
  • the plurality of light emitting units 207 is defined by the pixel defining layer 206.
  • a dam structure N is formed by a patterning process on the display substrate 200. The dam structure N surrounds the plurality of the light emitting units 207.
  • a film of the first organic material 209 is formed covering the plurality of the light emitting units 207.
  • forming the film of the first organic material includes forming a film of oligomers by an ink-jet printing technique, followed by curing the film of the oligomers by ultra violet light.
  • forming the film of the first organic material includes forming a film of a polymer solution by an ink-jet printing technique, followed by solidifying the film of the polymer solution through evaporation of the solvent.
  • the thickness of the film of the first organic material is in a range from about 4um to about 12um, for example, about 7 um.
  • a plurality of the recessed portions is formed on the film of the first organic material 209 by a nano-imprinting technique, a reactive ion etching technique, an inductively coupled plasma technique, a stencil printing technique, a gravure technique, or a flexographic printing technique.
  • the second distance from a trough of one of the plurality of the recessed portions to the top surface of the pixel define layer is in a range from about 1 ⁇ m to about 8um, for example, about 2um.
  • a plurality of raised portions is formed on the film of the first organic material at spaces among the plurality of recessed portions by an ink-jet printing technique.
  • the first distance from a crest of one of the plurality of raised portions to a top surface of the pixel define layer is in a range from about 3 ⁇ m to about 11um, for example, about 6um.
  • the plurality of raised portions and the plurality of the recessed portions are formed on the film of the first organic material by a laser direct-writing technique.
  • the energy of the laser can be controlled by applying a certain pulse so as to form a three-dimensional shape of the plurality of raised portions and the plurality of the recessed portions.
  • a first organic layer 201 is formed, and a surface of the first organic layer 201 opposite from the light emitting units 207 includes a plurality of raised portions M and a plurality of recessed portions L.
  • the method of manufacturing a display panel further includes a step of forming a first inorganic layer by a chemical vapor deposition technique, a magnetron sputtering technique, or an atomic layer deposition technique.
  • a first inorganic layer 202 is formed.
  • the first inorganic layer 202 conforms to the shape of the surface of the first organic layer underneath.
  • the first inorganic layer 202 also includes s a plurality of raised portions and a plurality of recessed portions.
  • the first inorganic layer 202 extends to the dam structure N and directly covers a top surface of the dam structure N. In one embodiment, he first inorganic layer 202 has a substantially uniform thickness.
  • the material of the first inorganic layer includes SiNx or SiON, and the first inorganic layer is formed by a chemical vapor deposition technique.
  • a thickness of the first inorganic layer is in a range from about 700nm to about 1400nm, for example, about 800nm.
  • the material of the first inorganic layer includes SiO 2 , and the first inorganic layer is formed by an atomic layer deposition technique.
  • a thickness of the first inorganic layer is in a range from about 50nm to about 400nm, for example, about 200nm.
  • the material of the first inorganic layer includes Al 2 O 3 , and the first inorganic layer is formed by an atomic layer deposition technique.
  • a thickness of the first inorganic layer is in a range from about 50nm to about 300nm, for example, about 120nm.
  • the method of manufacturing a display panel further includes a step of forming a second organic layer.
  • the second organic layer may be formed using the same method described in the above embodiments of forming the first organic layer.
  • a thickness of the film of the second organic material is in a range from about 2um to about 4um, for example, about 2um.
  • a second organic layer 203 is formed.
  • the second organic layer 203 conforms to the shape of the first inorganic layer 202 underneath.
  • the second organic layer also includes a plurality of raised portions and a plurality of recessed portions.
  • the method of manufacturing a display panel further includes a step of forming a second inorganic layer by a chemical vapor deposition technique, a magnetron sputtering technique, or an atomic layer deposition technique.
  • a thickness of the second inorganic layer is in a range from about 0.05 ⁇ m to about 3um, preferably from about 0.5 ⁇ m to about 2 ⁇ m
  • the material of the second inorganic layer includes SiNx or SiON, and the second inorganic layer is formed by a chemical vapor deposition technique.
  • a thickness of the second inorganic layer is in a range from about 700 nm to about 1400 nm, for example, about 800 nm.
  • the material of the second inorganic layer includes SiO 2 , and the second inorganic layer is formed by an atomic layer deposition technique.
  • a thickness of the second inorganic layer is in a range from about 50 nm to about 400 nm, for example, about 200 nm.
  • the material of the second inorganic layer includes Al 2 O 3 , and the second inorganic layer is formed by an atomic layer deposition technique.
  • a thickness of the second inorganic layer is in a range from about 50 nm to about 300 nm, for example, about 120 nm.
  • a second inorganic layer 204 is formed.
  • the second inorganic layer 204 conforms to the shape of the second organic layer 203 underneath.
  • the second inorganic layer 204 also includes a plurality of raised portions and a plurality of recessed portions.
  • the second inorganic layer 204 extends to the dam structure N and directly covers a top surface of the dam structure N.
  • the method of manufacturing a display panel further include a step of forming a third organic layer by an ink-jet printing technique followed by a solidifying process or a curing process.
  • the third organic layer has a substantially flat top surface opposite from the display substrate,
  • third organic layer 205 is formed.
  • the method of manufacturing a display panel according to some embodiments of the present disclosure is compatible to the present manufacturing process. Thus, , there’s no need to modify the existing manufacturing line , thereby reducing the production cost.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Structure Of Printed Boards (AREA)
  • Ink Jet (AREA)

Abstract

A display panel. The display panel may include a display substrate(200), a plurality of light emitting units(207) on the display substrate(200), and a first organic layer(201) covering the plurality of light emitting units(207). A surface of the first organic layer(201) opposite from the light emitting units(207) may include a plurality of raised portions(M) and a plurality of recessed portions(L). The first organic layer(201) may be directly in contact with the plurality of light emitting units(207).

Description

DISPLAY PANEL, MANUFACTURING METHOD THEREOF, AND DISPLAY APPARATUS TECHNICAL FIELD
This disclosure relates to display technology, in particular, to a display panel, a manufacturing method thereof, and a display apparatus.
BACKGROUND
A trend of flexible display and stretchable display such as OLED (Organic Light Emitting Diodes) display or quantum dot light emitting display is to minimize bezel for full screen actualization. Flexible display is being considered as the most optimal display for full screen actualization. As such, many display panel manufacturers invest heavily on mass production line of flexible display, rather than rigid display.
BRIEF SUMMARY
Accordingly, one example of the present disclosure is a display panel. The display panel may include a display substrate, a plurality of light emitting units on the display substrate, and a first organic layer covering the plurality of light emitting units. A surface of the first organic layer opposite from the light emitting units may include a plurality of raised portions and a plurality of recessed portions. The first organic layer may be directly in contact with the plurality of light emitting units.
Another example of the present disclosure is a display apparatus. The display apparatus may include the display panel according to one embodiment of the present disclosure.
Another example of the present disclosure is a method of manufacturing a display panel. The method may include providing a display substrate with a plurality of light emitting units on the display substrate and forming a first organic layer covering the plurality of light emitting units. A surface of the first organic layer opposite from the light emitting units may include a plurality of raised portions and a plurality of recessed portions. The first organic layer may be directly in contact with the plurality of light emitting units.
BRIEF DESCRIPTION OF THE DRAWINGS
The subject matter which is regarded as the invention is particularly pointed out and distinctly claimed in the claims at the conclusion of the specification. The foregoing and other objects, features, and advantages of the invention are apparent from the following detailed description taken in conjunction with the accompanying drawings in which:
Fig. 1 is a schematic structural diagram of a display panel in the related art;
Fig. 2 is a schematic structural diagram of a display panel according to some embodiments of the present disclosure;
Fig. 3a is a three-dimensional structural diagram of the first organic layer according to some embodiments of the present disclosure;
Fig. 3b is a schematic structural diagram of a display panel according to some embodiments of the present disclosure;
Fig. 4a is a schematic cross-sectional diagram of the display panel according to some embodiments of the present disclosure;
Fig. 4b is a force analysis diagram of the first inorganic layer according to some embodiments of the present disclosure;
Fig. 4c is a schematic diagram of the first inorganic layer before and after stretching in a direction of y axis according to some embodiments of the present disclosure;
Figs. 5a-5g are illustration of fabrication steps for manufacturing a display panel according to some embodiments contemplated by the present disclosure.
DETAILED DESCRIPTION
The present disclosure will be described in further detail with reference to the accompanying drawings and embodiments in order to provide a better understanding by those skilled in the art of the technical solutions of the present disclosure. Throughout the description of the disclosure, reference is made to Figs. 1-5g. When referring to the figures, like structures and elements shown throughout are indicated with like reference numerals.
In this specification, the terms “first, ” “second, ” etc. may be added as prefixes. These prefixes, however, are only added in order to distinguish the terms and do not have specific meaning such as order and relative merits. In the description of the present disclosure, the meaning of "plural" is two or more unless otherwise specifically defined.
In the description of the specification, references made to the term “some embodiments, ” “one embodiment, ” “exemplary embodiments, ” “example, ” “specific example, ” “some examples” and the like are intended to refer that specific features, structures, materials or characteristics described in connection with the embodiment or example are included in at least some embodiments or examples of the present disclosure. The schematic expression of the terms does not necessarily refer to the same embodiment or example. Moreover, the specific features, structures, materials or characteristics described may be included in any suitable manner in any one or more embodiments or examples. A number modified by “about” herein means that the number can vary by 10%thereof.
In the description of the specification, the term “light emitting unit” may be referred to organic light emitting unit, inorganic light emitting unit, or quantum dot light emitting unit.
In the description of the specification, the term “distance” may be referred to the shortest distance between two objects such as two surfaces or one point to one surface.
Fig. 1 is a schematic structural diagram of a display panel in the related art. As shown in Fig. 1, the display panel includes a display substrate 100, a plurality of display units 101 arranged on the display substrate 100, a first inorganic layer 102 covering the display units 101, an organic layer 103 covering the first inorganic layer 102, and a second inorganic layer 104 covering the organic layer 103. These inorganic and organic layers are used to protect the display substrate 100 from penetration of water and oxygen. However, since the  inorganic layers  102 and 104 are very thin and frequently subjected to large stresses, these inorganic layers tend to be broken under lateral stresses stretching the display panel in the direction of 106. As a result, the oxygen and water outside the display panel can penetrate some of the plurality of display units 101 along the breaking line, thereby significantly shortening the lifespan of the display panel.
Accordingly, Fig. 2 is a schematic structural diagram of a display panel according to some embodiments of the present disclosure. As shown in Fig. 2, the display panel includes a display substrate 200, a pixel define layer 206 which defines a plurality of light emitting units 207, and a first organic layer 201 covering the plurality of light emitting units 207. The display substrate 200 comprises driving circuit, signal lines and electrical elements etc. A surface of the first organic layer 201 opposite from the light emitting units 207 includes a plurality of raised portions M and a plurality of recessed portions L. The first organic layer 201 is directly in contact with the plurality of light emitting units 207 and the pixel defining layer 206.
According to the embodiments of the present disclosure, when the display panel is laterally stretched, the first organic layer can effectively relieve some of the lateral stress because of the plurality of raised portions and the plurality of recessed portions on the surface of the first organic layer, .
In some embodiments, the first organic layer 201 includes at least a material selected from the group consisting of polydimethylsiloxane, polyimides, silicone resins, polyurethane, acrylic resins, rubbers and their derivatives, and mixtures thereof.
Fig. 3a is a three-dimensional structural diagram of the first organic layer 201 according to some embodiments of the present disclosure. As shown in Fig. 3a, the plurality of raised portions M and the plurality of recessed portions L are alternatively arranged in both a first direction and a second direction, and the first direction is substantially perpendicular to the second direction. In some embodiments, as shown in Fig. 3a, the plurality of the raised portions M is transitioned continuously to the plurality of the recessed portions L respectively. That is, the surface of the first organic layer has a substantially continuous, smooth transition from the curvature of the raised portion to that of the recessed portion and there is not a flat surface between the raised portion and the recessed portion.
In some embodiments, as shown in Fig. 3a, the plurality of raised portions M and the plurality of recessed portions L have a substantially same amplitude relative to the plane P in a range from about 1um to about 5um. Plane P is a flat surface of the first organic layer. An amplitude of a raised portion is defined as a vertical distance from a crest of the  raised portion to the plane P. An amplitude of a recessed portion is defined as a vertical distance from the trough of the recessed portion to the plane P.
Fig. 3b is a schematic structural diagram of a display panel according to some embodiments of the present disclosure. A first distance h1 from a crest of one of the plurality of the raised portions to a top surface of the pixel define layer 206 is in a range from about 3μm to about 11 um, preferably from about 5 μm to about 9 μm, and more preferably from about 6μm to about 8 μm. A second distance h2 from a trough of one of the plurality of the recessed portions to the top surface of the pixel define layer 206 is in a range from about 1 μm to about 8um, preferably from about 2 μm to about 6 μm. Furthermore, the first distance h1 is larger than the second distance h2. In some embodiments, a distance between crests of two adjacent raised portions M is substantially the same with a distance between troughs of two adjacent recessed portions L, which is in a range from a length of three adjacent light emitting units to a length of eighty adjacent light emitting units. For example, the range is from about 2um to about 1000 um, preferably from about 80 μm to about 120 μm.
In some embodiments, the first distance h1 is about 6um.
In some embodiments, the second distance h2 is about 2um.
In some embodiments, a distance h5 from a top surface of the dam structure N to a top surface of the pixel define layer 206 is in a range from about 1.2um to about 2.8 um, for example, about 2.0 um.
In some embodiments, as shown in Fig. 2, the display panel further includes a first inorganic layer 202, a second organic layer 203, a second inorganic layer 204, and a third organic layer 205. The first organic layer 201, the first inorganic layer 202, the second organic layer 203, the second inorganic layer 204 and the third organic layer 205 are sequentially arranged in a direction away from the display substrate 200. An orthographic projection of the first organic layer 201 on the display substrate 200 covers an orthographic projection of the plurality of light emitting units 207 on the display substrate 200. An orthographic projection of the first inorganic layer 202 on the display substrate 200 covers the orthographic projection of the first organic layer 201 on the display substrate 200.
In some embodiments, the first inorganic layer 202 and the second inorganic layer 204 each include at least a material selected from the group consisting of SiNx, SiO 2,  SiC, Al 2O 3, ZnS, ZnO and ZSM zeolites. The ZSM zeolite includes a structure of ZnO/Al 2O 3/MgO.
In some embodiments, a Young's modulus of the first organic layer 201 is not larger than a Young’s modulus of the second organic layer 203.
In some embodiments, since a surface of the first organic layer opposite from the light emitting units includes a plurality of raised portions and a plurality of recessed portions, the first inorganic layer, the second organic layer, and the second inorganic layer are sequentially arranged on the first organic layer and conform to the surface of the first organic layer opposite from the light emitting units. That is, the first inorganic layer, the second organic layer, and the second inorganic layer conform to the shape of the plurality of raised portions and the plurality of recessed portions on the surface of the first organic layer.
Take the first inorganic layer for example, when the display panel is laterally stretched, the first organic layer can effectively relieve some of the stress of the first inorganic layer, thereby maintaining the water/oxygen blocking capacity of the first inorganic layer. As a result, the lifespan of the display substrate is extended.
In some embodiments, the material of the first inorganic layer includes SiNx or SiON, and the thickness of the first inorganic layer is in a range from about 700nm to about 1400nm, for example, about 800nm.
In some embodiments, the material of the first inorganic layer includes SiO 2, and the thickness of the first inorganic layer is in a range from about 50nm to about 400nm, for example, about 200nm.
In some embodiments, the material of the first inorganic layer includes Al 2O 3, and the thickness of the first inorganic layer is in a range from about 50nm to about 300nm, for example, about 120nm.
In some embodiments, the thickness of the second organic layer is in a range from about 2um to about 4um, for example, about 2um.
In some embodiments, the thickness of the second inorganic layer is in a range from about 0.05μm to about 3um
In some embodiments, the material of the second inorganic layer includes SiNx or SiON, and the thickness of the second inorganic layer is in a range from about 700nm to about 1400nm, for example, about 800nm.
In some embodiments, the material of the second inorganic layer includes SiO 2, and the thickness of the second inorganic layer is in a range from about 50nm to about 400nm, for example, about 200nm.
In some embodiments, the material of the second inorganic layer includes Al 2O 3, and the thickness of the second inorganic layer is in a range from about 50nm to about 300nm, for example, about 120nm.
In some embodiments, as shown in the Fig. 3b, the third organic layer has a substantially flat top surface opposite from the display substrate. The second inorganic layer also has a plurality of raised portions and a plurality of recessed portions. A distance h3 from the top surface of the third organic layer opposite from the display substrate to a trough of one of the plurality of recessed portions of the second inorganic layer is in a range from about 3um to about 11 um, preferably from about 4 μm to 9 μm, , for example, about 6um. A distance h4 from the top surface of the third organic layer opposite from the display substrate to a crest of one of the plurality of raised portions of the second inorganic layer is in a range from about 1 um to about 8 um, preferably from about 2 μm to about 6 μm, for example, about 2 μm.
Fig. 4a is a schematic cross-section of the display panel in planes perpendicular to the display substrate according to some embodiments of the present disclosure 404 is the direction of lateral stresses which stretches the display panel, and 400 is the length of the display panel, 401 is the width of the display panel and 402 is the thickness of the display panel. A side of the cross-section of the first organic layer 201in a plane perpendicular to the display substrate 200 opposite from the display substrate has a shape of a sine wave, which means the first inorganic layer 202 arranged on the first organic layer 201 has a shape of a sine wave both along the direction of the length 400 of the display panel and the direction of the width 401 of the display panel, as shown in Fig. 4a-4c.
As shown in Fig. 4a, when the display panel is laterally stretched in the direction of 404, which parallel to the axis x, the display panel will be stretched longer in the direction of axis x, and contract in length in the directions of both axis y and axis z.
Without being held to a particular theory, Fig. 4b is a force analysis diagram of the first inorganic layer according to some embodiments of the present disclosure. As shown in Fig. 4b, when the display panel is laterally stretched in the direction of 404, the first inorganic layer 202 is transformed from waveform 405 to waveform 406 in the direction of axis x. As shown in Figs. 4a and 4b, the display panel is laterally stretched in the direction of 404 at both ends thereof with force F and F’. Two points A and B on the waveform 405 are taken for illustration purpose. The point A and point B are symmetrical with respect to a trough of a recessed portion.
The force F at the point A can be decomposed into force f1 and force f2 in the tangent direction and the normal direction to the waveform 405 respectively. The force F’at the point B can be decomposed into force f3 and force f4 in the tangent direction and the normal direction to the waveform 405 respectively. As shown in Fig. 4b, a magnitude of force F is substantially equal to that of force F’. A magnitude of force f 1 is substantially equal to that of force f 3. A magnitude of force f 2 is substantially equal to that of force f 4. Force f 1 is a force that flattens the first inorganic layer, force f 2 is a force that keeps the arc from shifting upward. During stretching, the angle between the force F and force f 1 becomes smaller, but the angle between the force F and force f 2 becomes larger. The larger the curvature is, the stronger stretchable ability the first inorganic layer has, by choosing an appropriate curvature of the waveform, the first inorganic layer would have appropriate stretchable ability.
While in the direction of axis y, the waveform of the first inorganic layer 202 is transformed from waveform 405’to waveform 406’when the display panel is laterally stretched in the direction of 404, as shown in Fig. 4c. As shown in Fig. 4c, the distance between two adjacent crests or troughs of the waveform 406’is smaller than the distance between two adjacent crests or troughs of the waveform 405’respectively. That is, the first inorganic layer contracts in the direction of axis y.
In some embodiments, as shown in Fig. 2, the display panel further includes a dam structure N. The dam structure N may be a circular structure surrounding the plurality of  light emitting units 207. The dam structure may be configured to prevent spilling of the first organic layer, the second organic layer and third organic layer.
In some embodiments, as shown in Fig. 2, the first inorganic layer 202 and/or the second inorganic layer 204 extend to the dam structure N and directly cover a top surface of the dam structure N.
As shown in Fig. 2, the shortest distance 208 between an edge of the first organic layer to an edge of the display substrate is in a range from about 500um to about 2000um. The shortest distance 210 between an edge of the first organic layer to a front edge of the dam structure facing the first organic layer is not larger than about 500um. The bank angle b of the first inorganic layer 202 outside the display area, relative to the top surface of the pixel define layer 206 is in a range from 0 to 90 degree. The bank angle a of the second inorganic layer 204 outside the display area, relative to a plane parallel to the top surface of the pixel define layer 206 is in a range from 0 to 90 degree.
In some embodiments, the display substrate 200 includes a material selected from the group consisting of polyimides and derivatives thereof, rubbers, silicones, polyurethanes, and acrylic resins.
In some embodiments, the maximum lateral stretching rate of the display panel is in a range from about 4%to about 8%, preferably from about 5%to about 7%, for example, about 5%.
Another example of the present disclosure is a display apparatus. The display apparatus includes the display panel according to any one of the embodiments of the present disclosure.
In some embodiments, the display apparatus further includes a circular polarizer. The circular polarizer may be configured to improve at least the outdoor display quality of the display panel.
Another example of the present disclosure is a method of manufacturing a display panel. The method may include steps of providing a display substrate with a plurality of light emitting units arranged on the display substrate and forming a first organic layer covering the plurality of light emitting units. A surface of the first organic layer opposite from  the light emitting units includes a plurality of raised portions and a plurality of recessed portions, and the first organic layer is directly in contact with the plurality of light emitting units.
In some embodiments, forming the first organic layer covering the plurality of light emitting units includes steps of forming a film of an first organic material, forming a plurality of recessed portions on the film of the first organic material, and forming a plurality of raised portions among the plurality of recessed portions on the film of the first organic material.
In some embodiments, prior to the step of forming the plurality of light emitting units, the method further includes a step of forming a pixel define layer. The pixel defining layer defines the plurality of light emitting units.
In some embodiments, the method of manufacturing a display panel further includes a step of forming a dam structure. The dam structure surrounds the plurality of the light emitting units. The step of forming a dam structure may be prior to forming the first organic layer.
The method of manufacturing a display panel according to some embodiments of the present disclosure is described in detail below with reference to Figs. 5a to 5g.
In some embodiments, as shown in Fig. 5a, a display substrate 200 with a plurality of light emitting units 207 arranged on the display substrate 200 is provided. The plurality of light emitting units 207 is defined by the pixel defining layer 206. A dam structure N is formed by a patterning process on the display substrate 200. The dam structure N surrounds the plurality of the light emitting units 207.
In some embodiments, as shown in Fig. 5b, a film of the first organic material 209 is formed covering the plurality of the light emitting units 207.
In some embodiments, forming the film of the first organic material includes forming a film of oligomers by an ink-jet printing technique, followed by curing the film of the oligomers by ultra violet light.
In some embodiments, forming the film of the first organic material includes forming a film of a polymer solution by an ink-jet printing technique, followed by solidifying the film of the polymer solution through evaporation of the solvent.
In some embodiments, the thickness of the film of the first organic material is in a range from about 4um to about 12um, for example, about 7 um.
In some embodiments, as shown in Fig. 5c, a plurality of the recessed portions is formed on the film of the first organic material 209 by a nano-imprinting technique, a reactive ion etching technique, an inductively coupled plasma technique, a stencil printing technique, a gravure technique, or a flexographic printing technique. The second distance from a trough of one of the plurality of the recessed portions to the top surface of the pixel define layer is in a range from about 1μm to about 8um, for example, about 2um.
In some embodiments, as shown in Fig. 5c, a plurality of raised portions is formed on the film of the first organic material at spaces among the plurality of recessed portions by an ink-jet printing technique. The first distance from a crest of one of the plurality of raised portions to a top surface of the pixel define layer is in a range from about 3μm to about 11um, for example, about 6um.
In some embodiments, the plurality of raised portions and the plurality of the recessed portions are formed on the film of the first organic material by a laser direct-writing technique. The energy of the laser can be controlled by applying a certain pulse so as to form a three-dimensional shape of the plurality of raised portions and the plurality of the recessed portions.
In some embodiments, as shown in Fig. 5c, a first organic layer 201 is formed, and a surface of the first organic layer 201 opposite from the light emitting units 207 includes a plurality of raised portions M and a plurality of recessed portions L.
In some embodiments, the method of manufacturing a display panel further includes a step of forming a first inorganic layer by a chemical vapor deposition technique, a magnetron sputtering technique, or an atomic layer deposition technique.
In one embodiment, as shown in Fig. 5d, a first inorganic layer 202 is formed. The first inorganic layer 202 conforms to the shape of the surface of the first organic layer  underneath. As a result, the first inorganic layer 202 also includes s a plurality of raised portions and a plurality of recessed portions. Furthermore, the first inorganic layer 202 extends to the dam structure N and directly covers a top surface of the dam structure N. In one embodiment, he first inorganic layer 202 has a substantially uniform thickness.
In some embodiments, the material of the first inorganic layer includes SiNx or SiON, and the first inorganic layer is formed by a chemical vapor deposition technique. A thickness of the first inorganic layer is in a range from about 700nm to about 1400nm, for example, about 800nm.
In some embodiments, the material of the first inorganic layer includes SiO 2, and the first inorganic layer is formed by an atomic layer deposition technique. A thickness of the first inorganic layer is in a range from about 50nm to about 400nm, for example, about 200nm.
In some embodiments, the material of the first inorganic layer includes Al 2O 3, and the first inorganic layer is formed by an atomic layer deposition technique. A thickness of the first inorganic layer is in a range from about 50nm to about 300nm, for example, about 120nm.
In some embodiments, the method of manufacturing a display panel further includes a step of forming a second organic layer. The second organic layer may be formed using the same method described in the above embodiments of forming the first organic layer. A thickness of the film of the second organic material is in a range from about 2um to about 4um, for example, about 2um.
In one embodiment, as shown in Fig. 5e, a second organic layer 203 is formed. The second organic layer 203 conforms to the shape of the first inorganic layer 202 underneath. As a result, the second organic layer also includes a plurality of raised portions and a plurality of recessed portions.
In some embodiments, the method of manufacturing a display panel further includes a step of forming a second inorganic layer by a chemical vapor deposition technique, a magnetron sputtering technique, or an atomic layer deposition technique. A thickness of the  second inorganic layer is in a range from about 0.05μm to about 3um, preferably from about 0.5 μm to about 2 μm
In some embodiments, the material of the second inorganic layer includes SiNx or SiON, and the second inorganic layer is formed by a chemical vapor deposition technique. A thickness of the second inorganic layer is in a range from about 700 nm to about 1400 nm, for example, about 800 nm.
In some embodiments, the material of the second inorganic layer includes SiO 2, and the second inorganic layer is formed by an atomic layer deposition technique. A thickness of the second inorganic layer is in a range from about 50 nm to about 400 nm, for example, about 200 nm.
In some embodiments, the material of the second inorganic layer includes Al 2O 3, and the second inorganic layer is formed by an atomic layer deposition technique. A thickness of the second inorganic layer is in a range from about 50 nm to about 300 nm, for example, about 120 nm.
In one embodiment, as shown in Fig. 5f, a second inorganic layer 204 is formed. The second inorganic layer 204 conforms to the shape of the second organic layer 203 underneath. As a result, the second inorganic layer 204 also includes a plurality of raised portions and a plurality of recessed portions. Furthermore, the second inorganic layer 204 extends to the dam structure N and directly covers a top surface of the dam structure N.
In some embodiments, the method of manufacturing a display panel further include a step of forming a third organic layer by an ink-jet printing technique followed by a solidifying process or a curing process. The third organic layer has a substantially flat top surface opposite from the display substrate,
In one embodiment, as shown in Fig. 5g, third organic layer 205 is formed.
The method of manufacturing a display panel according to some embodiments of the present disclosure is compatible to the present manufacturing process. Thus, , there’s no need to modify the existing manufacturing line , thereby reducing the production cost.
The principle and the embodiment of the disclosure are set forth in the specification. The description of the embodiments of the present disclosure is only used to  help understand the method of the present disclosure and the core idea thereof. Meanwhile, for a person of ordinary skill in the art, the disclosure relates to the scope of the disclosure, and the technical embodiment is not limited to the specific combination of the technical features, and also should covered other technical embodiments which are formed by combining the technical features or the equivalent features of the technical features without departing from the inventive concept. For example, technical embodiments may be obtained by replacing the features described above as disclosed in this disclosure (but not limited to) with similar features.

Claims (22)

  1. A display panel comprising,
    a display substrate;
    a plurality of light emitting units on the display substrate; and
    a first organic layer covering the plurality of light emitting units;
    wherein a surface of the first organic layer opposite from the light emitting units comprises a plurality of raised portions and a plurality of recessed portions, and
    the first organic layer is directly in contact with the plurality of light emitting units.
  2. The display panel according to claim 1, wherein the first organic layer comprises at least a material selected from the group consisting of polydimethylsiloxane , polyimides, silicone resins, polyurethane, acrylic resins, rubber and their derivatives, and mixtures thereof.
  3. The display panel according to any one of the claims 1-2, wherein the plurality of raised portions and the plurality of recessed portions are alternatively arranged in both a first direction and a second direction, and the first direction is perpendicular to the second direction.
  4. The display panel according to any one of the claims 1-3, wherein the plurality of raised portions and the plurality of recessed portions substantially have a same amplitude.
  5. The display panel according to claim 1, wherein the plurality of the raised portions is transitioned continuously to the plurality of the recessed portions respectively.
  6. The display panel according to any one of the claims 1-5, wherein a side of a cross-section of the first organic layer in a plane perpendicular to the display substrate opposite from the display substrate has a shape of a sine wave.
  7. The display panel according to any one of claims 1-6, further comprising a first inorganic layer, a second organic layer, a second inorganic layer, and a third organic layer.
  8. The display panel according to claim 7, wherein the first organic layer, the first inorganic layer, the second organic layer, the second inorganic layer and the third organic layer are sequentially arranged in a direction away from the display substrate.
  9. The display panel according to any one of the claims 7-8, further comprising a pixel define layer, wherein the pixel defining layer defines the plurality of light emitting units, and the first organic layer is directly in contact with the pixel defining layer.
  10. The display panel according to claim any one of the claims 9, wherein a first distance from a crest of one of the plurality of raised portions to a top surface of the pixel define layer is in a range from about 3μm to about 11um; a second distance from a trough of one of the plurality of the recessed portions to the top surface of the pixel define layer is in a range from about 1μm to about 8um; and the first distance is bigger than the second distance.
  11. The display panel according to claim 10, wherein a distance between crests of two adjacent raised portions is substantially the same with a distance between troughs of two adjacent recessed portions.
  12. The display panel according to any one of the claims 9-11, wherein an orthographic projection of the first organic layer on the display substrate covers an orthographic projection of the plurality of light emitting units on the display substrate, and an orthographic projection of the first inorganic layer on the display substrate covers an orthographic projection of the first organic layer on the display substrate.
  13. The display panel according to any one of the claims 9-12, further comprising a dam structure, wherein the plurality of light emitting units is surrounded by the dam structure.
  14. The display panel according to claim 13, wherein the first inorganic layer and/or the second inorganic layer extend to the dam structure and directly covers a top surface of the dam structure.
  15. The display panel according to any one of the claims 9-14, wherein a Young's modulus of the first organic layer is not larger than a Young’s modulus of the second organic layer.
  16. The display panel according to any one of the claims 9-15, wherein the display substrate comprises a material selected from the group consisting of polyimides and derivatives thereof, rubbers, silicones, polyurethanes, and acrylic resins.
  17. A display apparatus, comprising the display panel according to any one of claims 1-16.
  18. A method of manufacturing a display panel, comprising:
    providing a display substrate with a plurality of light emitting units on the display substrate; and forming a first organic layer covering the plurality of light emitting units; wherein a surface of the first organic layer opposite from the light emitting units comprises a plurality of raised portions and a plurality of recessed portions, and
    the first organic layer is directly in contact with the plurality of light emitting units.
  19. The method of manufacturing a display panel according to claim 18, wherein forming the first organic layer covering the plurality of light emitting units comprises:
    forming a film of an organic material;
    forming the plurality of recessed portions on the film of the organic material; and
    forming the plurality of raised portions among the plurality of recessed portions.
  20. The method of manufacturing a display panel according to claim 19, wherein forming the film of the organic material comprises:
    forming a film of oligomers by an ink-jet printing technique; and
    curing the film of the oligomers by ultra violet light to form the film of the organic material.
  21. The method of manufacturing a display panel according to claim 19, wherein forming the film of the organic material comprises:
    forming a film of a polymer solution by an ink-jet printing technique;
    solidifying the film of the polymer solution to form the film of the organic material.
  22. The method of manufacturing a display panel according to claim 19, wherein the plurality of raised portions is formed on the film of the organic material among the plurality of recessed portions by an ink-jet printing technique.
PCT/CN2018/113452 2018-11-01 2018-11-01 Display panel, manufacturing method thereof, and display apparatus WO2020087449A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP18932323.1A EP3874547A4 (en) 2018-11-01 2018-11-01 Display panel, manufacturing method thereof, and display apparatus
JP2019558539A JP7503906B2 (en) 2018-11-01 2018-11-01 Display panel, its manufacturing method, and display device
CN201880001897.6A CN109791999B (en) 2018-11-01 2018-11-01 Display panel, manufacturing method thereof and display device
PCT/CN2018/113452 WO2020087449A1 (en) 2018-11-01 2018-11-01 Display panel, manufacturing method thereof, and display apparatus
US16/494,417 US11678510B2 (en) 2018-11-01 2018-11-01 Display panel, manufacturing method thereof, and display apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/113452 WO2020087449A1 (en) 2018-11-01 2018-11-01 Display panel, manufacturing method thereof, and display apparatus

Publications (1)

Publication Number Publication Date
WO2020087449A1 true WO2020087449A1 (en) 2020-05-07

Family

ID=66500757

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/113452 WO2020087449A1 (en) 2018-11-01 2018-11-01 Display panel, manufacturing method thereof, and display apparatus

Country Status (5)

Country Link
US (1) US11678510B2 (en)
EP (1) EP3874547A4 (en)
JP (1) JP7503906B2 (en)
CN (1) CN109791999B (en)
WO (1) WO2020087449A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120256202A1 (en) 2011-04-11 2012-10-11 So-Young Lee Organic light emitting diode display and manufacturing method thereof
US20130334959A1 (en) * 2012-03-02 2013-12-19 Au Optronics Corporation Organic electroluminescent apparatus
US20140183462A1 (en) * 2013-01-02 2014-07-03 Samsung Display Co., Ltd. Organic light emitting display device and manufacturing method thereof
CN105552246A (en) * 2015-12-07 2016-05-04 上海天马微电子有限公司 Flexible display device and manufacturing method thereof
US20170018737A1 (en) 2015-07-17 2017-01-19 Samsung Display Co., Ltd. Organic light-emitting display device and method of manufacturing the same
CN106450036A (en) * 2016-11-24 2017-02-22 武汉华星光电技术有限公司 OLED (organic light emitting diode) device package structure, OLED device and display screen
CN107104127A (en) * 2017-04-27 2017-08-29 上海天马有机发光显示技术有限公司 Organic electroluminescence display panel and display device
CN108666439A (en) * 2018-04-18 2018-10-16 武汉华星光电半导体显示技术有限公司 A kind of encapsulating structure and packaging method of OLED
US20200386704A1 (en) 2017-09-11 2020-12-10 Kyb Corporation Fluid-property detection device

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070196682A1 (en) * 1999-10-25 2007-08-23 Visser Robert J Three dimensional multilayer barrier and method of making
JP4950673B2 (en) * 2007-01-10 2012-06-13 キヤノン株式会社 Organic EL display device
KR101359657B1 (en) 2009-12-30 2014-02-06 엘지디스플레이 주식회사 Electronic Device and Organic Light Emitting Device, Protection Multilayer Structure
JP5290268B2 (en) * 2009-12-31 2013-09-18 三星ディスプレイ株式會社 Barrier / film composite, display device including the same, method for manufacturing barrier / film composite, and method for manufacturing display device including the same
JP5611811B2 (en) * 2009-12-31 2014-10-22 三星ディスプレイ株式會社Samsung Display Co.,Ltd. Barrier film composite and display device including the same
EP2503621A1 (en) * 2011-03-24 2012-09-26 Moser Baer India Ltd. A barrier layer and a method of manufacturing the barrier layer
TWI501441B (en) * 2012-08-24 2015-09-21 Ind Tech Res Inst Discontinuous compound barrier layer, method for forming the same and package using the same
JP6118525B2 (en) 2012-09-03 2017-04-19 出光興産株式会社 Organic electroluminescence device and electronic device
CN103022354B (en) * 2012-12-28 2016-05-11 昆山工研院新型平板显示技术中心有限公司 A kind of flexible substrate
KR20150045329A (en) * 2013-10-18 2015-04-28 삼성디스플레이 주식회사 An organic light emtting device
KR102167315B1 (en) 2014-04-30 2020-10-20 삼성디스플레이 주식회사 Organic electroluminescent display and method of manufacturing the same
EP3186319A4 (en) * 2014-07-25 2018-04-18 Kateeva, Inc. Organic thin film ink compositions and methods
KR102391361B1 (en) * 2015-01-14 2022-04-27 삼성디스플레이 주식회사 Organic light emitting diode display
WO2016140130A1 (en) 2015-03-03 2016-09-09 シャープ株式会社 Electroluminescent device and manufacturing method
KR102396296B1 (en) * 2015-03-06 2022-05-11 삼성디스플레이 주식회사 Organic light-emitting display apparatus and manufacturing the same
KR102404577B1 (en) * 2015-03-27 2022-06-03 삼성디스플레이 주식회사 Organic light emitting display device
KR102403002B1 (en) * 2015-06-03 2022-05-30 삼성디스플레이 주식회사 Organic luminescence emitting display device
CN105206763B (en) * 2015-10-21 2018-01-23 京东方科技集团股份有限公司 Flexible display and its manufacture method
KR102536869B1 (en) * 2016-02-01 2023-05-25 삼성디스플레이 주식회사 Organic light emitting diode display and method for manufacturing organic light emitting diode display
KR102407869B1 (en) * 2016-02-16 2022-06-13 삼성디스플레이 주식회사 Organic light emitting display device and the fabrication method thereof
CN105489786B (en) * 2016-02-29 2018-01-02 上海天马有机发光显示技术有限公司 Encapsulating structure and method for packing, the display panel of array base palte
KR101810050B1 (en) * 2016-08-11 2017-12-19 삼성디스플레이 주식회사 Stretchable display apparatus and method of manufacturing stretchable display apparatus
CN106784377B (en) 2016-12-28 2018-06-29 上海天马有机发光显示技术有限公司 A kind of production method of flexible display panels, display device and flexible display panels
CN107507846B (en) * 2017-07-25 2021-04-23 武汉华星光电半导体显示技术有限公司 OLED display and manufacturing process thereof
CN108054291B (en) * 2017-12-28 2019-10-01 上海天马有机发光显示技术有限公司 A kind of flexible display panels and preparation method thereof, flexible display apparatus
CN109273507B (en) * 2018-09-30 2020-06-05 霸州市云谷电子科技有限公司 Display panel

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120256202A1 (en) 2011-04-11 2012-10-11 So-Young Lee Organic light emitting diode display and manufacturing method thereof
US20130334959A1 (en) * 2012-03-02 2013-12-19 Au Optronics Corporation Organic electroluminescent apparatus
US20140183462A1 (en) * 2013-01-02 2014-07-03 Samsung Display Co., Ltd. Organic light emitting display device and manufacturing method thereof
US20170018737A1 (en) 2015-07-17 2017-01-19 Samsung Display Co., Ltd. Organic light-emitting display device and method of manufacturing the same
CN105552246A (en) * 2015-12-07 2016-05-04 上海天马微电子有限公司 Flexible display device and manufacturing method thereof
CN106450036A (en) * 2016-11-24 2017-02-22 武汉华星光电技术有限公司 OLED (organic light emitting diode) device package structure, OLED device and display screen
CN107104127A (en) * 2017-04-27 2017-08-29 上海天马有机发光显示技术有限公司 Organic electroluminescence display panel and display device
US20200386704A1 (en) 2017-09-11 2020-12-10 Kyb Corporation Fluid-property detection device
CN108666439A (en) * 2018-04-18 2018-10-16 武汉华星光电半导体显示技术有限公司 A kind of encapsulating structure and packaging method of OLED

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3874547A4

Also Published As

Publication number Publication date
US20210359267A1 (en) 2021-11-18
EP3874547A1 (en) 2021-09-08
EP3874547A4 (en) 2022-06-29
CN109791999A (en) 2019-05-21
CN109791999B (en) 2022-12-09
US11678510B2 (en) 2023-06-13
JP2022516588A (en) 2022-03-01
JP7503906B2 (en) 2024-06-21

Similar Documents

Publication Publication Date Title
CN108615821B (en) Flexible cover plate of display panel
WO2018157606A1 (en) Flexible display panel and manufacturing method therefor, and display device
US8981643B2 (en) Electroluminescent display panel
CN105977398B (en) A kind of encapsulation cover plate and preparation method thereof, display device
EP3166149B1 (en) Preparation method for an amoled display panel
KR101842586B1 (en) Organic light emitting diode display and manufacturing method thereof
EP3371839B1 (en) Patterning of oled display stacks
TWI578517B (en) Organic light emitting diode display panel
KR20140077624A (en) Flexible substrate for roll-to-roll manufacturing
US20090103010A1 (en) Liquid crystal display device and manufacturing method thereof
KR101148144B1 (en) Flexible Gas Barrier Film, Method for Preparing Thereof and Flexible Display Device Using the Same
US20180298482A1 (en) Vapor deposition mask and organic el display device
KR20160053240A (en) Mask frame assembly, manufacturing method of the same and manufacturing method of organic light emitting display device there used
EP4207293A1 (en) Flexible display panel
CN104282729A (en) Organic luminous display panel, manufacturing method thereof and display device
KR20150081563A (en) Display device and method for manufacturing the same
US20210265604A1 (en) Method for manufacturing a display panel
KR102460640B1 (en) Mask frame assembly for thin layer deposition, manufacturing method of the same and manufacturing method of display device there used
KR20160061568A (en) Mask frame assembly and the manufacturing method thereof
WO2020087449A1 (en) Display panel, manufacturing method thereof, and display apparatus
KR101524365B1 (en) Flexible oled with multi-functionla encapsulation layer
KR100637188B1 (en) Substrate, flat panel display device therewith, substrate having thin film transistor, flat panel display device therewith and method of manufacturing substrate having thin film transistor
CN103966548B (en) Mask plate, manufacturing method of mask plate and mask assembly with mask plate
JP2013205482A (en) Color filter
WO2015037082A1 (en) Light emitting device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019558539

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18932323

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018932323

Country of ref document: EP

Effective date: 20210601