WO2020087422A1 - 一种保偏全互易双向光载微波谐振系统及其检测角速度的方法 - Google Patents

一种保偏全互易双向光载微波谐振系统及其检测角速度的方法 Download PDF

Info

Publication number
WO2020087422A1
WO2020087422A1 PCT/CN2018/113212 CN2018113212W WO2020087422A1 WO 2020087422 A1 WO2020087422 A1 WO 2020087422A1 CN 2018113212 W CN2018113212 W CN 2018113212W WO 2020087422 A1 WO2020087422 A1 WO 2020087422A1
Authority
WO
WIPO (PCT)
Prior art keywords
cavity length
microwave
clockwise
optical
polarization
Prior art date
Application number
PCT/CN2018/113212
Other languages
English (en)
French (fr)
Inventor
宋开臣
于晋龙
叶凌云
王菊
Original Assignee
浙江大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江大学 filed Critical 浙江大学
Priority to EP18938842.4A priority Critical patent/EP3875904B1/en
Priority to PCT/CN2018/113212 priority patent/WO2020087422A1/zh
Publication of WO2020087422A1 publication Critical patent/WO2020087422A1/zh
Priority to US17/244,962 priority patent/US11378401B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/58Turn-sensitive devices without moving masses
    • G01C19/64Gyrometers using the Sagnac effect, i.e. rotation-induced shifts between counter-rotating electromagnetic beams
    • G01C19/72Gyrometers using the Sagnac effect, i.e. rotation-induced shifts between counter-rotating electromagnetic beams with counter-rotating light beams in a passive ring, e.g. fibre laser gyrometers
    • G01C19/727Gyrometers using the Sagnac effect, i.e. rotation-induced shifts between counter-rotating electromagnetic beams with counter-rotating light beams in a passive ring, e.g. fibre laser gyrometers using a passive ring resonator
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/58Turn-sensitive devices without moving masses
    • G01C19/64Gyrometers using the Sagnac effect, i.e. rotation-induced shifts between counter-rotating electromagnetic beams
    • G01C19/72Gyrometers using the Sagnac effect, i.e. rotation-induced shifts between counter-rotating electromagnetic beams with counter-rotating light beams in a passive ring, e.g. fibre laser gyrometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J4/00Measuring polarisation of light
    • G01J4/04Polarimeters using electric detection means

Definitions

  • the invention belongs to the technical field of high-precision optical gyros, and in particular relates to a polarization maintaining full reciprocal two-way light-carrying microwave resonance system and a method for detecting angular velocity.
  • High-precision inertial devices are the basis for carriers to carry out high-precision positioning and navigation.
  • high-precision gyroscopes are mainly divided into mechanical gyroscopes and optical gyroscopes. Because they can detect the carrier's running attitude, they are widely used in military, industrial, and scientific fields. Compared with mechanical gyros, optical gyros have a shorter research time. Although they have the characteristics of compact structure and high sensitivity, the disadvantages are also obvious.
  • the laser gyro has high precision, but there are serious blocking effects and high cost during operation.
  • Fiber optic gyroscopes are mainly divided into two types: interferometric fiber optic gyroscopes and resonant fiber optic gyroscopes.
  • the former has low accuracy due to factors such as temperature and vibration errors; the latter reduces the interference noise, but the requirements for the device are high, and the current practical To be improved.
  • the basic principle of the laser gyro and the fiber optic gyro to detect the rotation angular velocity of the carrier is the Sagnac effect. Because the phase difference or frequency difference generated by the Sagnac effect is only related to the rotational angular velocity of the carrier and has nothing to do with the system structure, the two light beams transmitted in the clockwise (CW) and counterclockwise (CCW) directions from the same light source are detected. When the phase difference or frequency difference is generated, the rotation angular velocity can be measured indirectly. In order to ensure the detection accuracy, the two beams of light transmitted in the clockwise (CW) and counterclockwise (CCW) directions have strict reciprocity, that is, the two beams of light transmitted in the clockwise (CW) and counterclockwise (CCW) directions are required. The clockwise and counterclockwise resonant cavity transmission have the same structure and performance. Therefore, high-precision, fully reciprocal optical gyros are still the research focus of optical gyros.
  • the purpose of the present invention is to overcome the shortcomings of the existing optical gyro angular velocity measurement scheme, and to provide a polarization maintaining full reciprocal bidirectional light-borne microwave resonance system and a method for detecting angular velocity.
  • a polarization maintaining full reciprocal bidirectional optical carrier microwave resonance system which includes a bidirectional optical amplifier, a narrowband bidirectional optical filter, a first photoelectric intensity modulator, an optical coupler, Working structure of optical fiber sensitive ring, second photoelectric intensity modulator, first regeneration cavity delay adjustment unit, first high-speed photodetector, first microwave filter amplification unit, first microwave power divider, second regeneration cavity delay adjustment Unit, second high-speed photodetector, second microwave filter amplification unit, third microwave power splitter and microwave frequency difference detection unit;
  • the bidirectional optical amplifier, the narrow-band bidirectional optical filter, the first photoelectric intensity modulator, the optical coupler, the working structure of the optical fiber sensitive ring, and the second photoelectric intensity modulator are connected in sequence to form a clockwise ring resonator; clockwise resonant light Pass through the optical coupler, the first regeneration cavity delay adjustment unit, the first high-speed photodetector, the first microwave filter amplifying unit, and the first microwave power divider, and then input to the first photoelectric intensity modulator to form a clockwise regeneration Mode-locking structure; the electrical signal generated by regenerating the mode-locking structure in the clockwise direction is input to the microwave frequency difference detection unit through the first microwave power splitter;
  • the bidirectional optical amplifier, the second photoelectric intensity modulator, the working structure of the optical fiber sensitive ring, the optical coupler, the first photoelectric intensity modulator, and the narrowband bidirectional optical filter are connected in sequence to form a counterclockwise ring resonator; counterclockwise resonance light It passes through the optical coupler, the second regeneration cavity delay adjustment unit, the second high-speed photodetector, the second microwave filter amplifying unit, and the third microwave power divider in turn, and is input to the second photoelectric intensity modulator to form a counterclockwise regeneration Mode-locking structure; the electric signal generated by regenerating the mode-locking structure in the counterclockwise direction is input to the microwave frequency difference detection unit through the third microwave power splitter.
  • the working structure of the optical fiber sensitive ring includes a polarization beam splitter, an optical fiber sensitive ring, a first orthogonal polarization state adjustment unit and a second orthogonal polarization state adjustment unit;
  • the resonant light in the clockwise direction passes through the second orthogonal polarization state adjustment unit to adjust the double-peak spectral signal of the narrow-band bidirectional optical filter into two signals with vertical polarization states, enters the fiber sensitive ring through the polarization beam splitter, and then passes through the polarization beam splitting And the first orthogonal polarization state adjustment unit adjusts the polarization state back to the initial state;
  • the counter-clockwise resonant light passes through the first orthogonal polarization state adjustment unit to adjust the dual-peak spectral signal of the narrow-band bidirectional optical filter to two signals with vertical polarization state, enters the fiber sensitive ring through the polarization beam splitter, and then passes through the polarization separation
  • the beamer and the second orthogonal polarization state adjustment unit adjust the polarization state back to the initial state.
  • the microwave signals generated by the clockwise regenerative mode-locking structure and the counterclockwise regenerative mode-locking structure are input into a microwave frequency difference detection unit for angular velocity detection.
  • the narrow-band bidirectional optical filter converts the resonant light-carrying microwave signal during system operation into a double-peak spectral signal, and the wavelengths corresponding to the spectral peaks are ⁇ 1 and ⁇ 2 respectively , and the frequency difference between ⁇ 1 and ⁇ 2 is the modulation signal f m , to achieve two-way dual-frequency resonance.
  • both the first orthogonal polarization state adjustment unit and the second orthogonal polarization state adjustment unit are implemented by several polarization beam splitters and polarization state controllers.
  • the optical path adjustment unit, the first regeneration chamber delay adjustment unit and the second regeneration chamber delay adjustment unit adopt an optical fiber stretcher, an adjustable optical delay line or a spatial light displacement stage.
  • the system further includes a cavity length control system
  • the cavity length control system includes a cavity length regulator, a second microwave power splitter, a cavity length control unit and an external clock reference source
  • the cavity length regulator is set in a bidirectional In the ring resonator
  • the first microwave power splitter is respectively input into the microwave frequency difference detection unit and the cavity length control unit through the second microwave power splitter
  • the external clock reference source is input into the cavity length control unit, which controls the cavity length
  • the unit is connected to the cavity length regulator to realize the stability of the cavity length of the resonant cavity.
  • the cavity length regulator includes a first stage cavity length regulator and a second stage cavity length regulator.
  • the adjustment range of the first stage cavity length regulator is greater than that of the second stage cavity length regulator.
  • the first stage cavity length regulator is used to slowly adjust the cavity length
  • the second stage cavity length regulator is used to quickly adjust the cavity length
  • the first stage cavity length regulator and the second stage cavity length regulator serve as optical path adjustment units , Using fiber stretcher, adjustable light delay line or space light stage.
  • a method for performing angular velocity detection using a polarization maintaining full reciprocal two-way optical carrier microwave resonance system includes the following steps:
  • Step 1 The output optical signal of the bidirectional optical amplifier is divided into clockwise and counterclockwise directions;
  • the clockwise working light passes through the clockwise ring resonator and the clockwise regenerative mode-locking structure, and a stable f1 frequency output is achieved through the first microwave power splitter;
  • the counter-clockwise working light passes through the counter-clockwise ring resonator and the counter-clockwise regenerative mode-locking structure, and realizes a stable f2 frequency output through the third microwave power divider;
  • Step 2 The working light in the clockwise direction and the working light in the counterclockwise direction produce opposite sagnac effects in the working structure of the optical fiber sensitive ring.
  • the microwave frequency difference detection unit detects the frequency difference between the frequency f1 and the frequency f2 obtained in step 1 that is the beat frequency , Recorded as ⁇ f;
  • Step 3 The rotation angular velocity ⁇ r can be obtained by the following formula
  • S is the area surrounded by the fiber sensitive ring in the working structure of the fiber sensitive ring
  • is the wavelength corresponding to the frequency f1 or frequency f2
  • L is the total fiber length of the fiber sensitive ring
  • G 1 is the clockwise working light entering the fiber sensitive ring
  • G 2 is the counterclockwise working light entering the optical fiber sensitive ring, and the gain due to the two-way sensitive sagnac effect in the polarization state.
  • the clockwise microwave frequency f1 distributed by the second microwave power divider performs frequency and phase discrimination with an external clock reference source, and outputs a signal
  • the cavity length control unit is used to control the cavity length regulator to achieve the resonant cavity length lock in the clockwise direction; at this time, the reversal of the resonant cavity length in the counterclockwise direction is the variation of the resonant cavity length and the cavity length in the clockwise direction before the cavity length is locked The sum of the changes in the length of the resonant cavity in the counterclockwise direction before locking.
  • the present invention combines a two-way resonance technology and a traditional resonant optical gyro technology to construct a polarization-maintaining fully reciprocal two-way light-carrying microwave resonance system based on the Sagnac effect principle.
  • the full reciprocal two-way light-borne microwave resonance system obtains highly stable microwave oscillation through polarization-maintaining two-way photoelectric oscillation instead of the traditional light-wave oscillation, and is used for the measurement of rotational angular velocity.
  • the advantage of the invention is that the microwave signal can be subjected to difference frequency detection by means of amplification and frequency multiplication. Compared with optical difference frequency detection, the signal to noise ratio of the difference frequency detection signal is higher.
  • the fully reciprocal structure of the optical resonant cavity makes the detection of the resonance frequency difference in clockwise and counterclockwise directions with higher accuracy.
  • the system locks the photoelectric oscillation frequency in one direction, that is, the resonant cavity length to a stable standard clock, which can stabilize the relative cavity length of the photoelectric resonant cavity, eliminating the temperature drift and optical parasitic noise of the fiber ring cavity, and further improving the output Frequency stability.
  • the system and method provided by the invention have the characteristics of strong practicability and high measurement accuracy, and can meet the requirements of high-precision optical gyro applications.
  • FIG. 1 is a block diagram of a polarization-maintaining, full-reciprocal, bidirectional, light-borne microwave resonance system according to an embodiment of the present invention
  • FIG. 2 is a composition block diagram of a polarization-maintaining, full-reciprocal, bidirectional, light-borne microwave resonance system according to another embodiment of the present invention
  • a polarization maintaining full reciprocal bidirectional optical carrier microwave resonance system includes a bidirectional optical amplifier 1, a narrowband bidirectional optical filter 2, a first photoelectric intensity modulator 5, and optical coupling 6, optical fiber sensitive ring working structure 9, second photoelectric intensity modulator 11, first regeneration cavity delay adjustment unit 12, first high-speed photodetector 13, first microwave filter amplification unit 14, first microwave power splitter 15.
  • the bidirectional optical amplifier 1, the narrowband bidirectional optical filter 2, the first photoelectric intensity modulator 5, the optical coupler 6, the optical fiber sensitive ring working structure 9, and the second photoelectric intensity modulator 11 are connected in sequence to form a clockwise ring resonator ;
  • the clockwise resonant light passes through the optical coupler 6, the first regeneration cavity delay adjustment unit 12, the first high-speed photodetector 13, the first microwave filter amplifying unit 14, the first microwave power divider 15 and input to the first A photoelectric intensity modulator 5, forming a clockwise regenerative mode-locking structure;
  • the electrical signal generated by the clockwise regenerative mode-locking structure is input to the microwave frequency difference detection unit 23 through the first microwave power divider 15;
  • the bidirectional optical amplifier 1, the second photoelectric intensity modulator 11, the optical fiber sensitive ring working structure 9, the optical coupler 6, the first photoelectric intensity modulator 5, and the narrowband bidirectional optical filter 2 are connected in sequence to form a counterclockwise ring resonator ;
  • the counter-clockwise resonant light passes through the optical coupler 6, the second regeneration cavity delay adjustment unit 19, the second high-speed photodetector 20, the second microwave filter amplifying unit 21, the third microwave power divider 22, and input to the first
  • Two photoelectric intensity modulators 11 constitute a counterclockwise regenerative mode-locking structure; the electrical signal generated by the counterclockwise regenerative mode-locking structure is input to the microwave frequency difference detection unit 23 through the third microwave power divider 22;
  • the bidirectional output light of the bidirectional optical amplifier 1 passes through the ring resonator in the clockwise and counterclockwise directions, and finally returns to the bidirectional optical amplifier 1 to complete the resonance amplification, so the system has a fully reciprocal structure;
  • the working structure 9 of the optical fiber sensitive ring includes a polarization beam splitter 24, an optical fiber sensitive ring 25, a first orthogonal polarization state adjustment unit 27 and a second orthogonal polarization state adjustment unit 29;
  • the clockwise resonant light passes through the second orthogonal polarization state adjustment unit 29 to separate the double-peak spectral signal of the narrow-band bidirectional optical filter 2 into two optical signals with central wavelengths of ⁇ 1 and ⁇ 2 respectively , and the polarization state is vertical, after polarization
  • the beam splitter 24 is divided into ⁇ 1 and ⁇ 2 into the optical fiber sensitive ring 25 at the sensitive angular velocity, and then is combined by the polarization beam splitter 24, and passes through the first orthogonal polarization state adjustment unit 27 to realize the working structure of the optical fiber sensitive ring 9.
  • the output signal is in the same polarization state as the input signal;
  • the counter-clockwise resonant light passes through the first orthogonal polarization state adjusting unit 27 to separate the double-peak spectral signal of the narrow-band bidirectional optical filter 2 into two optical signals with center wavelengths of ⁇ 1 and ⁇ 2 respectively , and the polarization state is vertical, after polarization
  • the beam splitter 24 is divided into ⁇ 1 and ⁇ 2 into the sensitive angular velocity of the optical fiber sensitive ring 25, and then combined by the polarization beam splitter 24, and passed through the second orthogonal polarization state adjustment unit 29 to realize the working structure 9 of the optical fiber sensitive ring
  • the output signal is in the same polarization state as the input signal;
  • the microwave signals generated by the clockwise regenerative mode-locking structure and the counterclockwise regenerative mode-locking structure are input to the microwave frequency difference detection unit 23 for angular velocity detection, and the microwave detection frequency measurement is used to improve the angular velocity detection accuracy of the system.
  • the first regeneration chamber delay adjustment unit 12 and the second regeneration chamber delay adjustment unit 19 may use an optical fiber stretcher, an adjustable optical delay line, or a spatial light displacement stage.
  • the narrow-band bidirectional optical filter 2 converts the resonant light-carrying microwave signal during system operation into a double-peak spectral signal, and the wavelengths corresponding to the spectral peaks are ⁇ 1 and ⁇ 2 respectively , and the frequency difference between ⁇ 1 and ⁇ 2 is the modulation signal f m , To achieve two-way dual-frequency resonance.
  • both the first orthogonal polarization state adjustment unit 27 and the second orthogonal polarization state adjustment unit 29 may be implemented by several polarization beam splitters and polarization state controllers.
  • the two optical signals ⁇ 1 and ⁇ 2 transmitted clockwise into the sensitive ring have different speeds of light when transmitted in the sensitive ring, and increase the detection of SAGNAC effect of the sensitive ring Gain; in the same way, the two optical signals ⁇ 1 and ⁇ 2 transmitted in the counterclockwise direction into the sensitive ring will increase the SAGNAC effect detection gain of the sensitive ring when they are transmitted in the opposite direction in the sensitive ring.
  • the clock path and counterclockwise directions of the cavity have opposite signs of optical path difference (phase difference) due to the sagnac effect, resulting in a clockwise and counterclockwise optical path difference twice that of the unidirectional sagnac effect.
  • the method of using the polarization maintaining full reciprocal bidirectional optical carrier microwave resonance system for angular velocity detection includes the following steps:
  • Step 1 The output optical signal of the bidirectional optical amplifier 1 is divided into clockwise and counterclockwise directions;
  • the working light in the clockwise direction is first narrow-band filtered by the narrow-band bidirectional optical filter 2, and then sequentially passes through the first photoelectric intensity modulator 5 and the optical coupler 6 and then is divided into two paths, where the first path continues to pass through the working structure of the optical fiber sensitive ring 9 is transmitted, and then the optical signal passes through the second photoelectric intensity modulator 11 and is amplified by the bidirectional optical amplifier 1 again to form a clockwise optical resonance loop; the second path passes through the first regeneration cavity delay adjustment unit 12, and then passes through A high-speed photodetector 13 performs photoelectric conversion, and the generated microwave signal undergoes filter frequency selection and amplification through the first microwave filter amplifying unit 14 and undergoes power distribution through the first microwave power divider 15, all the way into the first photoelectric intensity modulation
  • the device 5 forms a clockwise regenerative mode-locking structure; wherein the adjustment of the first regeneration cavity delay adjustment unit 12 in front of the first high-speed photodetector 13 can change the microwave phase injected into the first photoelectric
  • the working light in the counterclockwise direction first passes through the second photoelectric intensity modulator 11, and then passes through the optical fiber sensitive ring working structure 9 and the optical coupler 6 to divide it into two paths, and the first path continues through the first photoelectric intensity modulator 5
  • the second path passes through the second regeneration cavity delay adjustment unit 19, and then passes through the second high-speed
  • the photodetector 20 performs photoelectric conversion, the converted microwave signal undergoes microwave frequency selection and amplification through the second microwave filtering and amplifying unit 21, and performs power distribution through the third microwave power divider 22, and then enters the second photoelectric intensity modulator 11 all the way.
  • Forming a regenerative mode-locking structure in which the second regenerative cavity delay adjustment unit 19 in front of the second high-speed photodetector 20 can change the microwave phase injected into the second photoelectric intensity modulator 11 by the regenerative mode-locking loop to achieve a stable f2 frequency output ;
  • Step 2 Working light in the clockwise direction and working light in the counterclockwise direction produce opposite sagnac effects in the working structure 9 of the optical fiber sensitive ring.
  • the microwave frequency difference detection unit 23 detects the frequency difference between the frequency f1 and the frequency f2 obtained in step 1 Beat frequency, recorded as ⁇ f;
  • Step 3 The rotation angular velocity ⁇ r can be obtained by the following formula
  • S is the area surrounded by the fiber sensitive ring in the working structure of the fiber sensitive ring
  • is the wavelength corresponding to the frequency f1 or frequency f2
  • L is the total fiber length of the fiber sensitive ring
  • G 1 is the clockwise working light entering the fiber sensitive ring
  • G 2 is the counterclockwise working light entering the optical fiber sensitive ring, and the gain due to the two-way sensitive sagnac effect in the polarization state.
  • the polarization maintaining full reciprocal bidirectional optical carrier microwave resonance system provided in this embodiment further includes a cavity length control system based on the embodiment 1, the cavity length control system includes cavity length adjustment Transmitter, second microwave power divider 16, cavity length control unit 17, and external clock reference source 18.
  • the cavity length regulator is set in a bidirectional ring resonator, the first microwave power divider 15 is input to the microwave frequency difference detection unit 23, the cavity length control unit 17 through the second microwave power divider 16, and the external clock
  • the source 18 is input to the cavity length control unit 17, and the cavity length control unit 17 is connected to the cavity length regulator to realize the stability of the cavity length of the resonant cavity.
  • the cavity length regulator includes a first stage cavity length regulator 7 and a second stage cavity length regulator 8, the adjustment range of the first stage cavity length regulator 7 is greater than that of the second stage cavity length regulator 8 ,
  • the first stage cavity length regulator 7 is used to slowly adjust the cavity length
  • the second stage cavity length regulator 8 is used to quickly adjust the cavity length
  • the cavity length adjuster 8 may use an optical fiber stretcher, an adjustable optical delay line, or a spatial light stage.
  • the clockwise microwave frequency f1 distributed by the second microwave power divider 16 performs frequency discrimination and phase discrimination with the external clock reference source 18, and the output signal passes through the cavity length control unit 17 to control the cavity length regulator to realize the clockwise resonance cavity Long lock; at this time, the change of the resonant cavity length in the counterclockwise direction is the sum of the change in the resonant cavity length in the clockwise direction before the cavity length is locked and the change in the counterclockwise resonant cavity length before the cavity length is locked.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Gyroscopes (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

一种保偏全互易双向光载微波谐振系统及其检测角速度的方法,该系统在同一个谐振腔结构中产生顺逆双向的高稳定度光载微波,用于测量载体旋转角速度。采用全互易的环形腔谐振结构,实现全互易的双向光谐振系统;采用偏振态分离技术实现光信号的双波长分离,并采用垂直的偏振态在敏感环内相向传输,提高敏感环检测能力;采用相位跟踪结构,通过再生锁模技术实现双向光载微波谐振;采用腔长控制技术将一个方向的微波振荡频率锁定到高稳定度标准时间参考源上,稳定了光谐振腔的相对腔长稳定。以上关键技术极大地提高了由萨格纳克效应引起的双向振荡差频信号的信噪比,该系统及方法具有实用性强、测量精度高等特点。

Description

一种保偏全互易双向光载微波谐振系统及其检测角速度的方法 技术领域
本发明属于高精度光学陀螺技术领域,尤其涉及一种保偏全互易双向光载微波谐振系统及其检测角速度的方法。
背景技术
高精度的惯性器件是载体进行高精度定位和导航的基础。其中高精度陀螺仪主要分为机械陀螺和光学陀螺两类,因其可检测载体运行姿态,广泛应用于军事、工业、科学等领域。其中光学陀螺相比于机械陀螺,研究时间短,虽然具有结构紧凑、灵敏度高等特点,缺点也很明显。激光陀螺精度高,但工作时存在严重的闭锁效应且成本较高。光纤陀螺主要分为干涉式光纤陀螺和谐振式光纤陀螺两类,前者因温度、振动误差等因素,陀螺精度低;后者降低了干涉式的噪声,但对器件要求较高,目前实用性还待提高。
激光陀螺和光纤陀螺检测载体旋转角速度的基本原理都是萨格纳克效应(Sagnac effect)。由于萨格纳克效应产生的相位差或频率差只与载体旋转角速度相关,而与系统结构无关,因此检测同一光源发出的沿顺时针(CW)和逆时针方向(CCW)传输的两束光产生相位差或频率差,即可间接测得旋转角速度。为了保证检测精度需要沿顺时针(CW)和逆时针方向(CCW)传输的两束光具有严格的互易性,即需要沿顺时针(CW)和逆时针方向(CCW)传输的两束光在顺时针和逆时针的谐振腔传输时具有结构和性能上的等同。因此,高精度全互易的光学陀螺仍是光学陀螺的研究重点。
发明内容
本发明的目的在于克服现有光学陀螺角速度测量方案的不足,提供一种保偏全互易双向光载微波谐振系统及其检测角速度的方法。
为实现上述目的,本发明采用以下技术方案:一种保偏全互易双向光载微波谐振系统,该系统包括双向光放大器、窄带双向光滤波器、第一光电强度调制器、光耦合器、光纤敏感环工作结构、第二光电强度调制器、第一再生腔延时调节单元、第一高速光电探测器、第一微波滤波放大单元、第一微波功分器、第二再生腔延时调节单元、第二高速光电探测器、第二微波滤波放大单元、第三微波功分器和微波频率差检测单元;
所述双向光放大器、窄带双向光滤波器、第一光电强度调制器、光耦合器、光纤敏感环工作结构、第二光电强度调制器依次连接构成顺时针方向环形谐振腔;顺时针方向谐振光依 次经过光耦合器、第一再生腔延时调节单元、第一高速光电探测器、第一微波滤波放大单元、第一微波功分器,输入到第一光电强度调制器,构成顺时针方向再生锁模结构;顺时针方向再生锁模结构产生的电信号通过第一微波功分器输入微波频率差检测单元;
所述双向光放大器、第二光电强度调制器、光纤敏感环工作结构、光耦合器、第一光电强度调制器、窄带双向光滤波器依次连接构成逆时针方向环形谐振腔;逆时针方向谐振光依次经过光耦合器、第二再生腔延时调节单元、第二高速光电探测器、第二微波滤波放大单元、第三微波功分器,输入到第二光电强度调制器,构成逆时针方向再生锁模结构;逆时针方向再生锁模结构产生的电信号通过第三微波功分器输入微波频率差检测单元。
所述光纤敏感环工作结构包括偏振分束器、光纤敏感环、第一正交偏振态调节单元和第二正交偏振态调节单元;
顺时针方向谐振光经过第二正交偏振态调节单元将窄带双向光滤波器的双峰值光谱信号调节为偏振态垂直的两路信号,经过偏振分束器进入光纤敏感环,依次经过偏振分束器、第一正交偏振态调节单元将偏振态调回初始状态;
逆时针方向谐振光依次经过第一正交偏振态调节单元将窄带双向光滤波器的双峰值光谱信号调节为偏振态垂直的两路信号,经过偏振分束器进入光纤敏感环,依次经过偏振分束器、第二正交偏振态调节单元将偏振态调回初始状态。
进一步地,所述保偏全互易双向光载微波谐振系统,采用顺时针方向再生锁模结构和逆时针方向再生锁模结构产生的微波信号输入微波频率差检测单元进行角速度检测。
进一步地,所述窄带双向光滤波器将系统工作时的谐振光载微波信号变为双峰值光谱信号,谱峰对应波长分别为λ 1和λ 2,λ 1和λ 2的频率差为调制信号f m,实现双向双频谐振。
进一步地,所述光纤敏感环工作结构中,所述第一正交偏振态调节单元和第二正交偏振态调节单元均由若干偏振分束器和偏振态控制器实现。
进一步地,所述光纤敏感环工作结构中,偏振态垂直的两路信号在敏感环内相向传输时的光速不同,增加敏感环SAGNAC效应检测增益。
进一步地,所述第一再生腔延时调节单元和第二再生腔延时调节单元作为光程调节单元,采用光纤拉伸器、可调光延时线或空间光位移台。
进一步地,该系统还包括腔长控制系统,所述腔长控制系统包括腔长调节器、第二微波功分器、腔长控制单元和外部时钟参考源,所述腔长调节器设置在双向环形谐振腔内,所述第一微波功分器通过第二微波功分器分别输入微波频率差检测单元、腔长控制单元,所述外部时钟参考源输入腔长控制单元,所述腔长控制单元连接腔长调节器,实现谐振腔腔长稳定。
进一步地,所述腔长调节器包括第一级腔长调节器和第二级腔长调节器,所述第一级腔 长调节器的调节范围大于第二级腔长调节器,所述第一级腔长调节器用于慢速调节腔长,所述第二级腔长调节器用于快速调节腔长,所述第一级腔长调节器和第二级腔长调节器作为光程调节单元,采用光纤拉伸器、可调光延时线或空间光位移台。
一种利用保偏全互易双向光载微波谐振系统进行角速度检测的方法,包括以下步骤:
步骤1:双向光放大器的输出光信号分为顺时针和逆时针方向两路;
顺时针方向的工作光经过顺时针方向环形谐振腔和顺时针方向再生锁模结构,通过第一微波功分器实现稳定的f1频率输出;
逆时针方向的工作光经过逆时针方向环形谐振腔和逆时针方向再生锁模结构,通过第三微波功分器实现稳定的f2频率输出;
步骤2:顺时针方向的工作光和逆时针方向的工作光在光纤敏感环工作结构中产生相反的sagnac效应,微波频率差检测单元检测步骤1获得的频率f1和频率f2的频率差即拍频,记为Δf;
步骤3:通过以下公式,即可获得旋转角速度Ω r
Figure PCTCN2018113212-appb-000001
其中,S为光纤敏感环工作结构中光纤敏感环包围的面积,λ为频率f1或频率f2对应的波长,L为光纤敏感环的总光纤长度;G 1为顺时针方向工作光进入光纤敏感环中,因分为偏振态垂直的两路敏感sagnac效应产生的增益;G 2为逆时针方向工作光进入光纤敏感环中,因分为偏振态垂直的两路敏感sagnac效应产生的增益。
进一步地,当保偏全互易双向光载微波谐振系统具有腔长控制系统时,经过第二微波功分器分配的顺时针方向微波频率f1与外部时钟参考源进行鉴频鉴相,输出信号经过腔长控制单元用于控制腔长调节器,实现顺时针方向谐振腔长锁定;此时,逆时针方向谐振腔长变化量是腔长锁定前的顺时针方向谐振腔长变化量和腔长锁定前的逆时针方向谐振腔长变化量的总和。
本发明的有益效果为:本发明结合双向谐振技术和传统的谐振光学陀螺技术,构建了基于萨格纳克效应(Sagnac effect)原理的保偏全互易双向光载微波谐振系统,该保偏全互易双向光载微波谐振系统通过保偏双向光电振荡获得高度稳定的微波振荡代替传统的光波振荡,并用于旋转角速度的测量。本发明的优势是微波信号可通过放大倍频等方式进行差频检测,与光学差频检测相比,差频检测信号的信噪比更高。尤其全互易的光谐振腔结构使得顺时针和逆时针方向的谐振频率差检测具有更高的精度。同时,系统将其中一个方向的光电振荡频率,即谐振腔长锁定到稳定的标准时钟上,可稳定光电谐振腔的相对腔长,消除了光纤环形 腔的温度漂移和光学寄生噪声,进一步提高输出频率稳定性。本发明提供的系统及方法具有实用性强、测量精度高等特点,可以满足高精度光学陀螺应用的要求。
附图说明
图1是本发明一个实施例的保偏全互易双向光载微波谐振系统的组成框图;
图2是本发明另一个实施例的保偏全互易双向光载微波谐振系统的组成框图;
图中:双向光放大器1、窄带双向光滤波器2、第一光电强度调制器5、光耦合器6、第一级腔长调节器7、第二级腔长调节器8、光纤敏感环工作结构9、第二光电强度调制器11、第一再生腔延时调节单元12、第一高速光电探测器13、第一微波滤波放大单元14、第一微波功分器15、第二微波功分器16、腔长控制单元17、外部时钟参考源18、第二再生腔延时调节单元19、第二高速光电探测器20、第二微波滤波放大单元21、第三微波功分器22、微波频率差检测单元23、偏振分束器24、光纤敏感环25、第一正交偏振态调节单元27、第二正交偏振态调节单元29;图中实线部分表示光路连接,是光通路;虚线表示电路连接,是电通路。
具体实施方式
下面结合附图和具体实施例对本发明作进一步详细说明。
实施例1
如图1所示,本实施例提供的一种保偏全互易双向光载微波谐振系统,该系统包括双向光放大器1、窄带双向光滤波器2、第一光电强度调制器5、光耦合器6、光纤敏感环工作结构9、第二光电强度调制器11、第一再生腔延时调节单元12、第一高速光电探测器13、第一微波滤波放大单元14、第一微波功分器15、第二再生腔延时调节单元19、第二高速光电探测器20、第二微波滤波放大单元21、第三微波功分器22和微波频率差检测单元23;
所述双向光放大器1、窄带双向光滤波器2、第一光电强度调制器5、光耦合器6、光纤敏感环工作结构9、第二光电强度调制器11依次连接构成顺时针方向环形谐振腔;顺时针方向谐振光依次经过光耦合器6、第一再生腔延时调节单元12、第一高速光电探测器13、第一微波滤波放大单元14、第一微波功分器15,输入到第一光电强度调制器5,构成顺时针方向再生锁模结构;顺时针方向再生锁模结构产生的电信号通过第一微波功分器15输入微波频率差检测单元23;
所述双向光放大器1、第二光电强度调制器11、光纤敏感环工作结构9、光耦合器6、第一光电强度调制器5、窄带双向光滤波器2依次连接构成逆时针方向环形谐振腔;逆时针方向谐振光依次经过光耦合器6、第二再生腔延时调节单元19、第二高速光电探测器20、第二微波滤波放大单元21、第三微波功分器22,输入到第二光电强度调制器11,构成逆时针方 向再生锁模结构;逆时针方向再生锁模结构产生的电信号通过第三微波功分器22输入微波频率差检测单元23;
所述双向光放大器1的双向输出光分别沿顺时针和逆时针方向经过环形谐振腔,最终回到双向光放大器1完成谐振放大,因此系统具有全互易的结构;
所述光纤敏感环工作结构9包括偏振分束器24、光纤敏感环25、第一正交偏振态调节单元27和第二正交偏振态调节单元29;
顺时针方向谐振光经过第二正交偏振态调节单元29将窄带双向光滤波器2的双峰值光谱信号分离为中心波长分别为λ 1和λ 2,偏振态垂直的两路光信号,经过偏振分束器24分为λ 1和λ 2两路进入光纤敏感环25敏感角速度,而后经过偏振分束器24合束,经过第一正交偏振态调节单元27后实现光纤敏感环工作结构9的输出信号与输入信号偏振态一致;
逆时针方向谐振光经过第一正交偏振态调节单元27将窄带双向光滤波器2的双峰值光谱信号分离为中心波长分别为λ 1和λ 2,偏振态垂直的两路光信号,经过偏振分束器24分为λ 1和λ 2两路进入光纤敏感环25敏感角速度,而后经过偏振分束器24合束,经过第二正交偏振态调节单元29后实现光纤敏感环工作结构9的输出信号与输入信号偏振态一致;
所述顺时针方向再生锁模结构和逆时针方向再生锁模结构产生的微波信号输入微波频率差检测单元23进行角速度检测,采用微波检频率测提高系统的角速度检测精度。
所述第一再生腔延时调节单元12和第二再生腔延时调节单元19作为光程调节单元,可以采用光纤拉伸器、可调光延时线或空间光位移台。
所述窄带双向光滤波器2将系统工作时的谐振光载微波信号变为双峰值光谱信号,谱峰对应波长分别为λ 1和λ 2,λ 1和λ 2的频率差为调制信号f m,实现双向双频谐振。
所述光纤敏感环工作结构9中,所述第一正交偏振态调节单元27和第二正交偏振态调节单元29均可以由若干偏振分束器和偏振态控制器实现。
在光纤敏感环工作结构9内,顺时针方向进入敏感环内传输的两路光信号λ 1和λ 2,经偏振态分离后在敏感环内相向传输时的光速不同,增加敏感环SAGNAC效应检测增益;同样逆时针方向进入敏感环内传输的两路光信号λ 1和λ 2,在敏感环内相向传输时也会增加敏感环SAGNAC效应检测增益。
顺时针和逆时针方向谐振腔因sagnac效应产生的光程差(相位差)符号相反,导致顺时针和逆时针方向的光程差为两倍的单方向sagnac效应产生的光程差。
利用保偏全互易双向光载微波谐振系统进行角速度检测的方法,包括以下步骤:
步骤1:双向光放大器1的输出光信号分为顺时针和逆时针方向两路;
顺时针方向的工作光先通过窄带双向光滤波器2进行窄带滤波,然后依次通过第一光电 强度调制器5、光耦合器6后分为两路,其中第一路继续经过光纤敏感环工作结构9传输,而后光信号经过第二光电强度调制器11后,重新经过双向光放大器1放大,形成顺时针方向光谐振环路;第二路经过第一再生腔延时调节单元12,而后经第一高速光电探测器13进行光电转换,转换生成的微波信号经过第一微波滤波放大单元14进行滤波选频和放大,经过第一微波功分器15进行功率分配后,一路进入第一光电强度调制器5形成顺时针方向再生锁模结构;其中调节第一高速光电探测器13前的第一再生腔延时调节单元12可改变再生锁模回路注入第一光电强度调制器5的微波相位,实现稳定的f1频率输出;
逆顺时针方向的工作光先经过第二光电强度调制器11,而后依次经过光纤敏感环工作结构9、光耦合器6将其分为两路,第一路继续经第一光电强度调制器5回到偏窄带双向光滤波器2进行窄带滤波,然后重新经过双向光放大器1放大,形成逆时针方向光谐振环路;第二路经过第二再生腔延时调节单元19后,经第二高速光电探测器20进行光电转换,转换生成的微波信号经过第二微波滤波放大单元21进行微波选频和放大,经过第三微波功分器22进行功率分配后,一路进入第二光电强度调制器11形成再生锁模结构;其中调节第二高速光电探测器20前的第二再生腔延时调节单元19可改变再生锁模回路注入第二光电强度调制器11的微波相位,实现稳定的f2频率输出;
步骤2:顺时针方向的工作光和逆时针方向的工作光在光纤敏感环工作结构9中产生相反的sagnac效应,微波频率差检测单元23检测步骤1获得的频率f1和频率f2的频率差即拍频,记为Δf;
步骤3:通过以下公式,即可获得旋转角速度Ω r
Figure PCTCN2018113212-appb-000002
其中,S为光纤敏感环工作结构中光纤敏感环包围的面积,λ为频率f1或频率f2对应的波长,L为光纤敏感环的总光纤长度;G 1为顺时针方向工作光进入光纤敏感环中,因分为偏振态垂直的两路敏感sagnac效应产生的增益;G 2为逆时针方向工作光进入光纤敏感环中,因分为偏振态垂直的两路敏感sagnac效应产生的增益。
实施例2
如图2所示,本实施例提供的一种保偏全互易双向光载微波谐振系统,在实施例1的基础上,还包括腔长控制系统,所述腔长控制系统包括腔长调节器、第二微波功分器16、腔长控制单元17和外部时钟参考源18。
所述腔长调节器设置在双向环形谐振腔内,所述第一微波功分器15通过第二微波功分器16分别输入微波频率差检测单元23、腔长控制单元17,所述外部时钟参考源18输入腔长控 制单元17,所述腔长控制单元17连接腔长调节器,实现谐振腔腔长稳定。
进一步地,所述腔长调节器包括第一级腔长调节器7和第二级腔长调节器8,所述第一级腔长调节器7的调节范围大于第二级腔长调节器8,所述第一级腔长调节器7用于慢速调节腔长,所述第二级腔长调节器8用于快速调节腔长,所述第一级腔长调节器7和第二级腔长调节器8作为光程调节单元,可以采用光纤拉伸器、可调光延时线或空间光位移台等。
经过第二微波功分器16分配的顺时针方向微波频率f1与外部时钟参考源18进行鉴频鉴相,输出信号经过腔长控制单元17用于控制腔长调节器,实现顺时针方向谐振腔长锁定;此时,逆时针方向谐振腔长变化量是腔长锁定前的顺时针方向谐振腔长变化量和腔长锁定前的逆时针方向谐振腔长变化量的总和。
本技术领域的人员根据本发明所提供的文字描述、附图以及权利要求书能够很容易在不脱离权力要求书所限定的本发明的思想和范围条件下,可以做出多种变化和改动。凡是依据本发明的技术思想和实质对上述实施例进行的任何修改、等同变化,均属于本发明的权利要求所限定的保护范围之内。

Claims (10)

  1. 一种保偏全互易双向光载微波谐振系统,其特征在于,该系统包括双向光放大器(1)、窄带双向光滤波器(2)、第一光电强度调制器(5)、光耦合器(6)、光纤敏感环工作结构(9)、第二光电强度调制器(11)、第一再生腔延时调节单元(12)、第一高速光电探测器(13)、第一微波滤波放大单元(14)、第一微波功分器(15)、第二再生腔延时调节单元(19)、第二高速光电探测器(20)、第二微波滤波放大单元(21)、第三微波功分器(22)和微波频率差检测单元(23);
    所述双向光放大器(1)、窄带双向光滤波器(2)、第一光电强度调制器(5)、光耦合器(6)、光纤敏感环工作结构(9)、第二光电强度调制器(11)依次连接构成顺时针方向环形谐振腔;顺时针方向谐振光依次经过光耦合器(6)、第一再生腔延时调节单元(12)、第一高速光电探测器(13)、第一微波滤波放大单元(14)、第一微波功分器(15),输入到第一光电强度调制器(5),构成顺时针方向再生锁模结构;顺时针方向再生锁模结构产生的电信号通过第一微波功分器(15)输入微波频率差检测单元(23);
    所述双向光放大器(1)、第二光电强度调制器(11)、光纤敏感环工作结构(9)、光耦合器(6)、第一光电强度调制器(5)、窄带双向光滤波器(2)依次连接构成逆时针方向环形谐振腔;逆时针方向谐振光依次经过光耦合器(6)、第二再生腔延时调节单元(19)、第二高速光电探测器(20)、第二微波滤波放大单元(21)、第三微波功分器(22),输入到第二光电强度调制器(11),构成逆时针方向再生锁模结构;逆时针方向再生锁模结构产生的电信号通过第三微波功分器(22)输入微波频率差检测单元(23);
    所述光纤敏感环工作结构(9)包括偏振分束器(24)、光纤敏感环(25)、第一正交偏振态调节单元(27)和第二正交偏振态调节单元(29);
    顺时针方向谐振光经过第二正交偏振态调节单元(29)将窄带双向光滤波器(2)的双峰值光谱信号调节为偏振态垂直的两路信号,经过偏振分束器(24)进入光纤敏感环(25),依次经过偏振分束器(24)、第一正交偏振态调节单元(27)将偏振态调回初始状态;
    逆时针方向谐振光依次经过第一正交偏振态调节单元(27)将窄带双向光滤波器(2)的双峰值光谱信号调节为偏振态垂直的两路信号,经过偏振分束器(24)进入光纤敏感环(25),依次经过偏振分束器(24)、第二正交偏振态调节单元(29)将偏振态调回初始状态。
  2. 根据权利要求1所述的一种保偏全互易双向光载微波谐振系统,其特征在于,采用顺时针方向再生锁模结构和逆时针方向再生锁模结构产生的微波信号输入微波频率差检测单元(23)进行角速度检测。
  3. 根据权利要求1所述的一种保偏全互易双向光载微波谐振系统,其特征在于,所述窄带双向光滤波器(2)将系统工作时的谐振光载微波信号变为双峰值光谱信号,谱峰对应波长分别为λ 1和λ 2,λ 1和λ 2的频率差为调制信号f m,实现双向双频谐振。
  4. 根据权利要求1所述的一种保偏全互易双向光载微波谐振系统,其特征在于,所述光纤敏感环工作结构(9)中,所述第一正交偏振态调节单元(27)和第二正交偏振态调节单元(29)均由若干偏振分束器和偏振态控制器实现。
  5. 根据权利要求1所述的一种保偏全互易双向光载微波谐振系统,其特征在于,所述光纤敏感环工作结构(9)中,偏振态垂直的两路信号在敏感环内相向传输时的光速不同,增加敏感环SAGNAC效应检测增益。
  6. 根据权利要求1所述的一种保偏全互易双向光载微波谐振系统,其特征在于,所述第一再生腔延时调节单元(12)和第二再生腔延时调节单元(19)作为光程调节单元,采用光纤拉伸器、可调光延时线或空间光位移台。
  7. 根据权利要求1所述的一种保偏全互易双向光载微波谐振系统,其特征在于,该系统还包括腔长控制系统,所述腔长控制系统包括腔长调节器、第二微波功分器(16)、腔长控制单元(17)和外部时钟参考源(18),所述腔长调节器设置在双向环形谐振腔内,所述第一微波功分器(15)通过第二微波功分器(16)分别输入微波频率差检测单元(23)、腔长控制单元(17),所述外部时钟参考源(18)输入腔长控制单元(17),所述腔长控制单元(17)连接控制腔长调节器,实现谐振腔腔长稳定。
  8. 根据权利要求7所述的一种保偏全互易双向光载微波谐振系统,其特征在于,所述腔长调节器包括第一级腔长调节器(7)和第二级腔长调节器(8),所述第一级腔长调节器(7)的调节范围大于第二级腔长调节器(8),所述第一级腔长调节器(7)用于慢速调节腔长,所述第二级腔长调节器(8)用于快速调节腔长,所述第一级腔长调节器(7)和第二级腔长调节器(8)作为光程调节单元,采用光纤拉伸器、可调光延时线或空间光位移台。
  9. 一种利用权利要求1所述的保偏全互易双向光载微波谐振系统进行角速度检测的方法,其特征在于,该方法包括以下步骤:
    步骤1:双向光放大器(1)的输出光信号分为顺时针和逆时针方向两路;
    顺时针方向的工作光经过顺时针方向环形谐振腔和顺时针方向再生锁模结构,通过第一微波功分器(15)实现稳定的f1频率输出;
    逆时针方向的工作光经过逆时针方向环形谐振腔和逆时针方向再生锁模结构,通过第三微波功分器(22)实现稳定的f2频率输出;
    步骤2:顺时针方向的工作光和逆时针方向的工作光在光纤敏感环工作结构(9)中产生 相反的sagnac效应,微波频率差检测单元(23)检测步骤1获得的频率f1和频率f2的频率差即拍频,记为Δf;
    步骤3:通过以下公式,即可获得旋转角速度Ω r
    Figure PCTCN2018113212-appb-100001
    其中,S为光纤敏感环工作结构中光纤敏感环包围的面积,λ为频率f1或频率f2对应的波长,L为光纤敏感环的总光纤长度;G 1为顺时针方向工作光进入光纤敏感环中,因分为偏振态垂直的两路敏感sagnac效应产生的增益;G 2为逆时针方向工作光进入光纤敏感环中,因分为偏振态垂直的两路敏感sagnac效应产生的增益。
  10. 根据权利要求9所述的方法,其特征在于,当保偏全互易双向光载微波谐振系统具有腔长控制系统时,经过第二微波功分器(16)分配的顺时针方向微波频率f1与外部时钟参考源(18)进行鉴频鉴相,输出信号经过腔长控制单元(17)用于控制腔长调节器,实现顺时针方向谐振腔长锁定;此时,逆时针方向谐振腔长变化量是腔长锁定前的顺时针方向谐振腔长变化量和腔长锁定前的逆时针方向谐振腔长变化量的总和。
PCT/CN2018/113212 2018-10-31 2018-10-31 一种保偏全互易双向光载微波谐振系统及其检测角速度的方法 WO2020087422A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP18938842.4A EP3875904B1 (en) 2018-10-31 2018-10-31 Polarization-maintaining fully-reciprocal bi-directional optical carrier microwave resonance system and angular velocity measurement method thereof
PCT/CN2018/113212 WO2020087422A1 (zh) 2018-10-31 2018-10-31 一种保偏全互易双向光载微波谐振系统及其检测角速度的方法
US17/244,962 US11378401B2 (en) 2018-10-31 2021-04-30 Polarization-maintaining fully-reciprocal bi-directional optical carrier microwave resonance system and angular velocity measurement method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/113212 WO2020087422A1 (zh) 2018-10-31 2018-10-31 一种保偏全互易双向光载微波谐振系统及其检测角速度的方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/244,962 Continuation US11378401B2 (en) 2018-10-31 2021-04-30 Polarization-maintaining fully-reciprocal bi-directional optical carrier microwave resonance system and angular velocity measurement method thereof

Publications (1)

Publication Number Publication Date
WO2020087422A1 true WO2020087422A1 (zh) 2020-05-07

Family

ID=70461998

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/113212 WO2020087422A1 (zh) 2018-10-31 2018-10-31 一种保偏全互易双向光载微波谐振系统及其检测角速度的方法

Country Status (3)

Country Link
US (1) US11378401B2 (zh)
EP (1) EP3875904B1 (zh)
WO (1) WO2020087422A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114966084B (zh) * 2022-05-27 2023-06-09 东南大学 一种环形谐振腔的谐振频率锁定方法
CN114674302B (zh) * 2022-05-30 2022-08-23 深圳奥斯诺导航科技有限公司 死端光功率回收再利用的双偏振光纤陀螺

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070086015A1 (en) * 2005-10-18 2007-04-19 Honeywell International, Inc. Polarizing cavity for RFOG and method for sensing rotation rate of resonator
CN103267522A (zh) * 2013-05-10 2013-08-28 浙江大学 用于消除光载微波陀螺非互易性误差的双向锁频交换方法
CN103267521A (zh) * 2013-05-10 2013-08-28 浙江大学 采用单环两路双向谐振光载微波检测角速度的方法
CN103278150A (zh) * 2013-05-10 2013-09-04 浙江大学 一种检测角速度的光载微波陀螺方法
CN103471579A (zh) * 2013-09-29 2013-12-25 浙江大学 一种采用双向全互易耦合光电振荡器的角速度检测方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020087423A1 (zh) * 2018-10-31 2020-05-07 浙江大学 一种基于环形器结构的双向光载微波谐振系统及其检测角速度的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070086015A1 (en) * 2005-10-18 2007-04-19 Honeywell International, Inc. Polarizing cavity for RFOG and method for sensing rotation rate of resonator
CN103267522A (zh) * 2013-05-10 2013-08-28 浙江大学 用于消除光载微波陀螺非互易性误差的双向锁频交换方法
CN103267521A (zh) * 2013-05-10 2013-08-28 浙江大学 采用单环两路双向谐振光载微波检测角速度的方法
CN103278150A (zh) * 2013-05-10 2013-09-04 浙江大学 一种检测角速度的光载微波陀螺方法
CN103471579A (zh) * 2013-09-29 2013-12-25 浙江大学 一种采用双向全互易耦合光电振荡器的角速度检测方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3875904A4 *
WU, QIONG ET AL.: "A New Scheme of Measuring Sagnac Effect Based on Microwave Resonant", ACTA PHYSICA SINICA, vol. 64, no. 4, 28 February 2015 (2015-02-28), pages 044205 - 1 - 044205-6, XP055698835, ISSN: 1000-3290, DOI: 10.7498/aps.64.044205 *

Also Published As

Publication number Publication date
EP3875904A1 (en) 2021-09-08
US20220082385A1 (en) 2022-03-17
US11378401B2 (en) 2022-07-05
EP3875904A4 (en) 2022-07-13
EP3875904B1 (en) 2023-05-24

Similar Documents

Publication Publication Date Title
US9568319B2 (en) Angular velocity detection method adopting bi-directional full reciprocal coupling optoelectronic oscillator
CN109357672B (zh) 一种基于环形器结构的双向光载微波谐振系统及其检测角速度的方法
EP2650644B1 (en) Resonator fiber optic gyroscope utilizing laser frequency combs
CN108534798B (zh) 一种双偏振光纤陀螺中的偏振非互易误差消除方法及双偏振光纤陀螺
US11874113B2 (en) Bidirectional optical-carrying microwave resonance system based on circulator structure and method for detecting angular velocity by said system
CN103278150B (zh) 一种检测角速度的光载微波陀螺方法
JP2002508061A (ja) 光ファイバ・ジャイロスコープ振動誤差補償器
WO2011119232A2 (en) Optical gyroscope sensors based on optical whispering gallery mode resonators
CN108332735B (zh) 基于外加光束干涉的谐振式光纤陀螺相干解调系统和方法
JPH0680405B2 (ja) 光フアイバジヤイロ
CN110470292B (zh) 一种自注入锁频谐振式光学陀螺及其工作方法
EP3514491B1 (en) Apparatus and method for diminished bias error due to polarization mismatch
JP2015075485A (ja) 共振器の自由スペクトルレンジのトラッキング/ロッキングの方法及び装置並びに共振器光ファイバジャイロスコープへの応用
CN115112111A (zh) 单光束宽谱光源二次滤波谐振式光纤陀螺及闭环控制方法
US11378401B2 (en) Polarization-maintaining fully-reciprocal bi-directional optical carrier microwave resonance system and angular velocity measurement method thereof
JP2017037060A (ja) 基準リング共振器を利用した光ファイバ・ジャイロスコープのためのシステムおよび方法
JP2002504234A (ja) 光ファイバ・ジャイロスコープ振動誤差補償器
CN110530497A (zh) 基于光电振荡器的干涉型光纤振动传感解调系统和方法
CN114899702A (zh) 一种基于光纤环形谐振腔的激光器偏频稳频装置及方法
CN112066969B (zh) 基于光学锁相环的双光源自注入锁定谐振式微光机电陀螺
EP3598069B1 (en) Apparatus and method for enhanced beat note detection
CN109323690B (zh) 一种保偏全互易双向光载微波谐振系统及其检测角速度的方法
Ye et al. High-sensitivity angular velocity measurement based on bidirectional coupled optoelectronic oscillator
JP6744942B2 (ja) 光ファイバジャイロ光源のための対称波長マルチプレクサ
JPS63138208A (ja) 位相変調方式光フアイバジヤイロ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18938842

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018938842

Country of ref document: EP

Effective date: 20210531