WO2020087423A1 - 一种基于环形器结构的双向光载微波谐振系统及其检测角速度的方法 - Google Patents

一种基于环形器结构的双向光载微波谐振系统及其检测角速度的方法 Download PDF

Info

Publication number
WO2020087423A1
WO2020087423A1 PCT/CN2018/113213 CN2018113213W WO2020087423A1 WO 2020087423 A1 WO2020087423 A1 WO 2020087423A1 CN 2018113213 W CN2018113213 W CN 2018113213W WO 2020087423 A1 WO2020087423 A1 WO 2020087423A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
cavity length
light
microwave
clockwise
Prior art date
Application number
PCT/CN2018/113213
Other languages
English (en)
French (fr)
Inventor
宋开臣
于晋龙
叶凌云
王菊
Original Assignee
浙江大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江大学 filed Critical 浙江大学
Priority to EP18938457.1A priority Critical patent/EP3875903B1/en
Priority to PCT/CN2018/113213 priority patent/WO2020087423A1/zh
Publication of WO2020087423A1 publication Critical patent/WO2020087423A1/zh
Priority to US17/244,965 priority patent/US11874113B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/58Turn-sensitive devices without moving masses
    • G01C19/64Gyrometers using the Sagnac effect, i.e. rotation-induced shifts between counter-rotating electromagnetic beams
    • G01C19/72Gyrometers using the Sagnac effect, i.e. rotation-induced shifts between counter-rotating electromagnetic beams with counter-rotating light beams in a passive ring, e.g. fibre laser gyrometers
    • G01C19/721Details
    • G01C19/722Details of the mechanical construction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/58Turn-sensitive devices without moving masses
    • G01C19/64Gyrometers using the Sagnac effect, i.e. rotation-induced shifts between counter-rotating electromagnetic beams
    • G01C19/72Gyrometers using the Sagnac effect, i.e. rotation-induced shifts between counter-rotating electromagnetic beams with counter-rotating light beams in a passive ring, e.g. fibre laser gyrometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/58Turn-sensitive devices without moving masses
    • G01C19/64Gyrometers using the Sagnac effect, i.e. rotation-induced shifts between counter-rotating electromagnetic beams
    • G01C19/72Gyrometers using the Sagnac effect, i.e. rotation-induced shifts between counter-rotating electromagnetic beams with counter-rotating light beams in a passive ring, e.g. fibre laser gyrometers
    • G01C19/727Gyrometers using the Sagnac effect, i.e. rotation-induced shifts between counter-rotating electromagnetic beams with counter-rotating light beams in a passive ring, e.g. fibre laser gyrometers using a passive ring resonator
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/283Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining

Definitions

  • the invention belongs to the technical field of high-precision optical gyro, and particularly relates to a bidirectional light-carrying microwave resonance system based on a circulator structure and a method for detecting angular velocity.
  • an accelerometer is usually used to detect the translational velocity of the carrier, and a gyroscope is used to detect the angular velocity of the carrier rotation.
  • High-precision gyroscopes mainly include mechanical gyroscopes and optical gyroscopes, which are widely used in military, industrial, scientific and other fields.
  • optical gyros mainly include laser gyros and fiber optic gyros.
  • the laser gyro has high accuracy, it has a blocking effect and a high maintenance cost;
  • the interferometric fiber optic gyro has defects such as low optical power utilization, temperature error, and parasitic noise, and low detection accuracy;
  • the resonant fiber gyro is easy to miniaturize, but The light source is very demanding, and the practicality needs to be improved at present.
  • the overall stability of optical gyros is still insufficient, but its compact structure and high sensitivity make optical gyros still occupy an important share in the market of high-precision gyros.
  • the basic principle of the optical gyro to detect the rotational angular velocity of the carrier is the Sagnac effect.
  • the basic principle of the Sagnac effect is that in the closed optical path, the two beams of light transmitted by the same light source in the clockwise (CW) and counterclockwise (CCW) directions produce different optical path differences due to the rotation of the carrier, resulting in phase Poor or frequency difference. Since the generated phase difference or frequency difference is only related to the rotational angular velocity of the carrier, the measurement of the rotational angular velocity of the carrier can be achieved by detecting the phase difference or the frequency difference produced by the optical gyro. To achieve the Sagnac effect detection, we first need to realize the clockwise (CW) and counterclockwise (CCW) transmission of the same light source.
  • the purpose of the present invention is to overcome the shortcomings of the existing optical gyro angular velocity measurement scheme, and to provide a bidirectional light-borne microwave resonance system based on a circulator structure and a method for detecting angular velocity.
  • a bidirectional light-carrying microwave resonance system based on a circulator structure, which includes a wide-spectrum light source, a 50:50 coupler, a first wavelength division multiplexer, and a second wave Multiplexer, low-speed photoelectric converter, interferometer controller, cavity length compensation regulator, first optical amplifier, first photoelectric intensity modulator, first optical circulator, first optical coupler, narrow-band bidirectional optical filter , Second optical coupler, second optical amplifier, second photoelectric intensity modulator, second optical circulator, first regeneration cavity length regulator, first high-speed photodetector, first microwave filter amplification unit, first Microwave power splitter, second regeneration cavity length regulator, second high-speed photodetector, second microwave filter amplification unit, sensitive loop interferometer structure, second microwave power splitter, third microwave power splitter and difference frequency Detection unit
  • the first optical amplifier, the first photoelectric intensity modulator, the cavity length compensation regulator, the first optical circulator, the second wavelength division multiplexer, the first optical coupler, the narrow-band bidirectional optical filter, and the sensitive ring interferometer The structure, the second optical coupler, the first wavelength division multiplexer and the second optical circulator are connected in sequence to form a clockwise ring resonator; the clockwise resonance light sequentially passes through the first optical coupler and the second regeneration cavity length
  • the electrical signal is input to the difference frequency detection unit through the third microwave power splitter;
  • the second wavelength division multiplexer and the first optical circulator are connected in sequence to form a counterclockwise ring resonator; the counterclockwise resonance light passes through the second optical coupler, the first regeneration cavity length regulator, and the first high-speed photoelectric
  • the detector, the first microwave filter amplifying unit, the first microwave power divider and the second microwave power divider feedback modulate the second photoelectric intensity modulator to form a counterclockwise regenerative mode-locking structure;
  • the electrical signal is input to the difference frequency detection unit through the second microwave power splitter;
  • the wide-spectrum light source, 50:50 coupler, first wavelength division multiplexer, second wavelength division multiplexer, low-speed photoelectric converter, interferometer controller and cavity length compensation regulator form a clockwise and counterclockwise double loop Reciprocity error compensation wide-spectrum light interferometer; the light emitted by the wide-spectrum light source is divided into two arms by a 50:50 coupler, and the first arm passes through the second wavelength division multiplexer, the first optical circulator, and the first The two-optical amplifier, the second photoelectric intensity modulator, the second optical circulator, the first wavelength division multiplexer, and the 50:50 coupler enter the low-speed photoelectric converter; the second arm passes through the first wavelength division multiplexer, the first Two-optical circulator, first optical amplifier, first photoelectric intensity modulator, cavity length compensation regulator, first optical circulator, second wavelength division multiplexer, 50:50 coupler enter the low-speed photoelectric converter; The detection signal of the low-speed photoelectric converter passes through the interferometer controller and outputs the control cavity length
  • the structure of the sensitive ring interferometer includes a first orthogonal polarization state adjustment unit, a polarization beam splitter, an optical fiber sensitive ring, and a second orthogonal polarization state adjustment unit;
  • the resonant light in the clockwise direction passes through the first orthogonal polarization state adjustment unit to adjust the double-peak spectral signal of the narrow-band bidirectional optical filter to two signals of vertical polarization state, enters the fiber sensitive ring through the polarization beam splitter, and then passes through the polarization beam splitting And the second orthogonal polarization state adjustment unit adjusts the polarization state back to the initial state;
  • the counter-clockwise resonant light passes through the second orthogonal polarization state adjustment unit to adjust the double-peak spectral signal of the narrow-band bidirectional optical filter to two signals with vertical polarization state, enters the fiber sensitive ring through the polarization beam splitter, and then passes through the polarization beam splitting
  • the first orthogonal polarization state adjustment unit adjusts the polarization state back to the initial state.
  • the microwave signal generated by the clockwise regenerative mode-locking structure and the counterclockwise regenerative mode-locking structure is input to a difference frequency detection unit for angular velocity detection.
  • the narrow-band bidirectional optical filter converts the resonant light-carrying microwave signal during system operation into a double-peak spectral signal, and the wavelengths corresponding to the spectral peaks are ⁇ 1 and ⁇ 2 respectively , and the frequency difference between ⁇ 1 and ⁇ 2 is the modulation signal f m , to achieve two-way dual-frequency resonance.
  • the first orthogonal polarization state adjustment unit and the second orthogonal polarization state adjustment unit are implemented by several polarization beam splitters and polarization state controllers.
  • the first regenerative cavity length regulator and the second regenerative cavity length regulator are used as optical path adjustment units, which use an optical fiber stretcher, an adjustable optical delay line, or a spatial light stage; the cavity length
  • the compensation adjuster uses an optical fiber stretcher, an adjustable optical delay line or a spatial light stage.
  • the system further includes a cavity length control system.
  • the cavity length control system includes a cavity length regulator, a cavity length control unit, and an external clock reference source.
  • the cavity length regulator is disposed in a bidirectional ring resonator.
  • the first microwave power splitter is input to the cavity length control unit, and the external clock reference source is input to the cavity length control unit, and the cavity length control unit is connected to the cavity length regulator to achieve stability of the cavity length of the resonant cavity.
  • the cavity length regulator includes a first stage cavity length regulator and a second stage cavity length regulator.
  • the adjustment range of the first stage cavity length regulator is greater than that of the second stage cavity length regulator.
  • the first stage cavity length regulator is used to slowly adjust the cavity length
  • the second stage cavity length regulator is used to quickly adjust the cavity length
  • the first stage cavity length regulator and the second stage cavity length regulator serve as optical path adjustment units , Using fiber stretcher, adjustable light delay line or space light stage.
  • a method for angular velocity detection using a bidirectional light-borne microwave resonance system based on a circulator structure includes the following steps:
  • Step 1 The clockwise working light passes through the clockwise ring resonator and the clockwise regenerative mode-locking structure, and the third microwave power divider is used to achieve a stable f1 frequency output;
  • the counter-clockwise working light passes through the counter-clockwise ring resonator and the counter-clockwise regenerative mode-locking structure, and a stable f2 frequency output is achieved through the second microwave power splitter;
  • Step 2 The working light in the clockwise direction and the working light in the counterclockwise direction produce opposite sagnac effects in the structure of the sensitive ring interferometer.
  • the difference frequency detection unit detects the frequency difference between the frequency f1 and the frequency f2 obtained in step 1, namely the beat frequency. Record as ⁇ f;
  • Step 3 The rotation angular velocity ⁇ r can be obtained by the following formula
  • S is the area surrounded by the fiber sensitive ring in the sensitive ring interferometer structure
  • is the wavelength corresponding to frequency f1 or frequency f2
  • L is the total fiber length of the fiber sensitive ring
  • G 1 is the clockwise working light entering the fiber sensitive ring
  • G 2 is the counterclockwise working light entering the optical fiber sensitive ring, and the gain due to the two-way sensitive sagnac effect in the polarization state.
  • the counterclockwise microwave frequency f1 distributed by the first microwave power divider performs frequency and phase discrimination with an external clock reference source, and outputs a signal
  • the cavity length control unit is used to control the cavity length regulator to achieve counterclockwise resonant cavity length lock; at this time, the clockwise resonant cavity length change is the clockwise resonant cavity length change and cavity length before the cavity length is locked The sum of the changes in the length of the resonant cavity in the counterclockwise direction before locking.
  • the present invention combines a two-way regenerative mode-locking technology and a traditional resonant optical gyro technology to construct a two-way light-carrying microwave resonance system based on the principle of Sagnac effect.
  • the system obtains highly stable microwave oscillation by bidirectional photoelectric oscillation instead of the traditional light wave oscillation, and is used for the measurement of rotational angular velocity; the system uses a wide-spectrum optical interferometer to compensate the non-reciprocal error in both clockwise and counterclockwise directions to achieve light-borne microwave resonance
  • the reciprocity of the two-way structure of the system; the structure of the sensitive ring interferometer is used to adjust the polarization state of the signal light transmitted bidirectionally in the sensitive ring;
  • the advantage of the present invention is that the accuracy of the difference frequency detection of microwave signals can be much higher than that of optical difference frequency detection
  • the former can detect the frequency difference through various methods such as amplification and frequency multiplication to improve the signal-to-noise ratio, so that the frequency stability of the microwave oscillation signal can reach 10 -13 ; lock the oscillation frequency in one direction to a standard time reference with higher stability
  • the source such as an atomic clock, can stabilize the relative cavity length of the photoelectric oscillator, eliminating the temperature drift and
  • the invention greatly improves the signal-to-noise ratio of the bidirectional oscillating difference frequency signal caused by the Sagnac effect.
  • the system and method provided by the invention have the characteristics of strong practicability and high measurement accuracy, and can meet the requirements of high-precision optical gyro applications.
  • FIG. 1 is a block diagram of a bidirectional light-borne microwave resonance system based on a circulator structure according to an embodiment of the present invention
  • FIG. 2 is a block diagram of a bidirectional optical carrier microwave resonance system based on a circulator structure according to another embodiment of the present invention
  • Figure 3 is a block diagram of the structure of the sensitive ring interferometer
  • wide-spectrum light source 1 50:50 coupler 2, first wavelength division multiplexer 3, second wavelength division multiplexer 4, low-speed photoelectric converter 5, interferometer controller 6, cavity length compensation regulator 7.
  • the first optical amplifier 9 the first photoelectric intensity modulator 10, the first optical circulator 11, the first optical coupler 12, the narrow-band bidirectional optical filter 13, the first stage cavity length regulator 14, the second stage Cavity length regulator 15, second optical coupler 16, second optical amplifier 17, second photoelectric intensity modulator 18, second optical circulator 19, first regenerative cavity length regulator 20, first high-speed photodetector 21.
  • this embodiment provides a bidirectional optical carrier microwave resonance system based on a circulator structure.
  • the system includes a wide-spectrum light source, a 50:50 coupler, a first wavelength division multiplexer 3, and a second wave Multiplexer 4, low-speed photoelectric converter 5, interferometer controller 6, cavity length compensation regulator 7, first optical amplifier 9, first photoelectric intensity modulator 10, first optical circulator 11, first optical coupling 12, narrow-band bidirectional optical filter 13, second optical coupler 16, second optical amplifier 17, second photoelectric intensity modulator 18, second optical circulator 19, first regeneration cavity length regulator 20, first High-speed photodetector 21, first microwave filter amplification unit 22, first microwave power divider 24, second regeneration cavity length regulator 25, second high-speed photodetector 26, second microwave filter amplification unit 27, sensitive loop Interferometer structure 29, second microwave power divider 46, third microwave power divider 47 and difference frequency detection unit 48;
  • the first optical amplifier 9, the first photoelectric intensity modulator 10, the cavity length compensation regulator 7, the first optical circulator 11, the second wavelength division multiplexer 4, the first optical coupler 12, the narrowband bidirectional optical filter 13, the sensitive ring interferometer structure 29, the second optical coupler 16, the first wavelength division multiplexer 3 and the second optical circulator 19 are connected in sequence to form a clockwise ring resonator; the clockwise resonant light passes through the first An optical coupler 12, a second regenerative cavity length regulator 25, a second high-speed photodetector 26, a second microwave filter amplifying unit 27, and a third microwave power divider 47 feedback modulate the first photoelectric intensity modulator 10 to form Clockwise regenerative mode-locking structure; clockwise electric signal generated by regenerative mode-locking structure is input to the difference frequency detection unit 48 through the third microwave power divider 47; the second regenerative cavity length regulator 25 serves as an optical path adjustment unit , Can use optical fiber stretcher, dimmable delay line or spatial light stage and other devices.
  • the second optical amplifier 17, the second photoelectric intensity modulator 18, the second optical circulator 19, the first wavelength division multiplexer 3, the second optical coupler 16, the sensitive ring interferometer structure 29, the narrowband bidirectional optical filtering 13, the first optical coupler 12, the second wavelength division multiplexer 4 and the first optical circulator 11 are connected in sequence to form a counterclockwise ring resonator; the counterclockwise resonant light passes through the second optical coupler 16, the first The regenerative cavity length regulator 20, the first high-speed photodetector 21, the first microwave filter amplifying unit 22, the first microwave power divider 24 and the second microwave power divider 46 feedback modulate the second photoelectric intensity modulator 18 to form The anticlockwise regenerative mode-locking structure; the electric signal generated by the anticlockwise regenerative mode-locking structure is input to the difference frequency detection unit 48 through the second microwave power divider 46; the first regenerative cavity length regulator 20 serves as an optical path adjustment unit , Can use optical fiber stretcher, dimmable delay line or spatial light stage and other devices.
  • the broad-spectrum light source 1 a 50:50 coupler 2, a first wavelength division multiplexer 3, a second wavelength division multiplexer 4, a low-speed photoelectric converter 5, an interferometer controller 6, and a cavity length compensation regulator 7
  • a reciprocity error-compensating wide-spectrum light interferometer that composes a double-loop clockwise and counterclockwise; the light emitted by the wide-spectrum light source 1 is divided into two arms by a 50:50 coupler 2, and the first arm is sequentially multiplexed by the second wavelength division multiplexing 4, the first optical circulator 11, the second optical amplifier 17, the second photoelectric intensity modulator 18, the second optical circulator 19, the first wavelength division multiplexer 3, the 50:50 coupler 2 enters the low-speed photoelectric conversion 5; the second arm passes through the first wavelength division multiplexer 3, the second optical circulator 19, the first optical amplifier 9, the first photoelectric intensity modulator 10, the cavity length compensation regulator 7, the first optical circulator 11.
  • the second wavelength division multiplexer 4, 50:50 coupler 2 enters the low-speed photoelectric converter 5; the detection signal of the low-speed photoelectric converter 5 passes through the interferometer controller 6, and outputs the control cavity length compensation regulator 7, Realize the same optical path of the two arms of the broad-spectrum light interferometer, and eliminate the non-reciprocal errors caused by the non-bidirectional devices on the two arms; the light emitted by the broad-spectrum light source 1 It does not interfere with both clockwise resonant light and counterclockwise resonant light; the cavity length compensation adjuster 7 as a wide-spectrum interferometer arm length adjustment unit can use an optical fiber stretcher, an adjustable optical delay line or a spatial light displacement stage And other devices.
  • the sensitive ring interferometer structure 29 includes a first orthogonal polarization state adjustment unit 37, a polarization beam splitter 38, an optical fiber sensitive ring 39, and a second orthogonal polarization state adjustment unit 40;
  • the clockwise resonant light passes through the first orthogonal polarization state adjustment unit 37 to separate the double-peak spectral signal of the narrowband bidirectional optical filter 13 into two optical signals with central wavelengths of ⁇ 1 and ⁇ 2 respectively , and the polarization state is vertical, after polarization
  • the beam splitter 38 is divided into ⁇ 1 and ⁇ 2 into the optical fiber sensitive ring 39 and the angular velocity is sensitive, and then combined by the polarization beam splitter 38 and passed through the second orthogonal polarization state adjustment unit 40 to realize the structure of the sensitive ring interferometer 29
  • the output signal is in the same polarization state as the input signal;
  • the counter-clockwise resonant light passes through the second orthogonal polarization state adjustment unit 40 to separate the double-peak spectral signal of the narrow-band bidirectional optical filter 13 into two optical signals with central wavelengths of ⁇ 1 and ⁇ 2 respectively , and the polarization state is vertical, after polarization
  • the beam splitter 38 is divided into ⁇ 1 and ⁇ 2 into the optical fiber sensitive ring 39 and the angular velocity is sensitive, and then combined by the polarization beam splitter 38 and passed through the first orthogonal polarization state adjustment unit 37 to realize the structure of the sensitive ring interferometer 29
  • the output signal is in the same polarization state as the input signal.
  • the bidirectional light-borne microwave resonance system based on the circulator structure adopts the microwave signals generated by the clockwise regenerative mode-locking structure and the counterclockwise regenerative mode-locking structure to be input into the microwave frequency difference detection unit 48 for angular velocity detection.
  • the narrow-band bidirectional optical filter 13 changes the resonant light-carrying microwave signal during system operation into a double-peak spectral signal, and the wavelengths corresponding to the spectral peaks are ⁇ 1 and ⁇ 2 respectively , and the frequency difference between ⁇ 1 and ⁇ 2 is the modulation signal f m , To achieve two-way dual-frequency resonance.
  • both the first orthogonal polarization state adjustment unit 37 and the second orthogonal polarization state adjustment unit 40 may be implemented by several polarization beam splitters and polarization state controllers.
  • the two optical signals with vertical polarization states are transmitted at different speeds in the sensitive ring, which increases the SAGNAC effect detection gain of the sensitive ring.
  • ⁇ 1 wavelength signal transmitted into the sensitive ring in the clockwise direction has the same transmission path and the polarization state is vertical; it realizes the separation of the wavelength and polarization state of the working optical signal clockwise and counterclockwise;
  • the clock path and counterclockwise directions of the cavity have opposite signs of optical path difference (phase difference) due to the sagnac effect, resulting in a clockwise and counterclockwise optical path difference twice that of the unidirectional sagnac effect.
  • the method of angular velocity detection using a bidirectional light-borne microwave resonance system based on a circulator structure includes the following steps:
  • Step 1 The output light of the wide-spectrum light source with isolator 1 is divided into two paths after 50:50 coupler 2 for power sharing, the first path is injected into the first wavelength division multiplexer 3, and then clockwise It passes through the second optical circulator 19, the first optical amplifier 9, the first photoelectric intensity modulator 10, the cavity length compensation regulator 7 and the first optical circulator 11 in turn, and finally outputs through the second wavelength division multiplexer 4; Two channels are injected into the second wavelength division multiplexer 4, and then pass through the first optical circulator 11, the second optical amplifier 17, the second photoelectric intensity modulator 18 and the second optical circulator 19 in the counterclockwise direction, and finally through the The output of a wavelength division multiplexer 3; the two output signals passing through the first wavelength division multiplexer 3 and the second wavelength division multiplexer 4 are coupled back through the same 50:50 coupler 2, and the interference superimposed signal passes through the low-speed photoelectric
  • the converter 5 performs photoelectric conversion, and the cavity length compensation regulator 7 is fed back via the interferometer controller 6 to maintain the equal
  • Step 2 The output light of the first optical amplifier 9 enters the common cavity in the clockwise direction through the first photoelectric intensity modulator 10 and the first optical circulator 11, and first passes through the second wavelength division multiplexer 4 in the common cavity.
  • the first optical coupler 12 is divided into two paths, and one path continues through the narrow-band bidirectional optical filter 13, the sensitive ring interferometer structure 29, the second optical coupler 16, the first wavelength division multiplexer 3, and the second optical circulator 19 Then re-enter the first optical amplifier 9 to form an optical resonant cavity; the other way first passes through the second regenerative cavity length regulator 25, and then undergoes photoelectric conversion through the second high-speed photodetector 26, and then is sent to the second microwave filter amplification unit 27 Microwave filtering and amplification are performed, and the third microwave power divider 47 is divided into two channels, one channel is injected into the first photoelectric intensity modulator 10 for microwave modulation to form a regenerative mode-locked loop, and one channel is used as the clockwise resonant microwave output
  • Step 3 The principle of regenerative mode locking in the counterclockwise direction is similar to that in the clockwise direction.
  • the output light of the second optical amplifier 17 passes through the second photoelectric intensity modulator 18 and the second optical circulator 19 into the common cavity in the counterclockwise direction.
  • the cavity is divided into two channels through the second optical coupler 16, and the other continues through the sensitive ring interferometer structure 29, the narrow-band bidirectional optical filter 13, the first optical coupler 12, the second wavelength division multiplexer 4, the first optical ring
  • the shaper 11 re-enters the second optical amplifier 17 to form an optical resonant cavity; the other path first passes through the first regenerative cavity length regulator 20, then undergoes photoelectric conversion through the first high-speed photodetector 21, and then sends the first microwave
  • the filtering and amplifying unit 22 performs microwave filtering and amplification, and is divided into two channels by the first microwave power divider 24 and the second microwave power divider 46, and injected into the second photoelectric intensity modulator 18 for microwave modulation to form a regenerative mode-locked loop , All the way as a counterclockwise resonant microwave output f2; in which the first regenerative cavity length regulator 20 in front of the first high-speed photodetector 21 can change the regenerative mode-locked loop into the second photo
  • Step 4 The clockwise working light and the counterclockwise working light produce the opposite sagnac effect in the sensitive ring interferometer structure 29.
  • the difference frequency detection unit 48 detects the frequency difference between the frequency f1 and the frequency f2 obtained in step 1 Frequency, recorded as ⁇ f;
  • Step 5 The rotation angular velocity ⁇ r can be obtained by the following formula
  • S is the area surrounded by the fiber sensitive ring in the sensitive ring interferometer structure
  • is the wavelength corresponding to frequency f1 or frequency f2
  • L is the total fiber length of the fiber sensitive ring
  • G 1 is the clockwise working light entering the fiber sensitive ring
  • G 2 is the counterclockwise working light entering the optical fiber sensitive ring, and the gain due to the two-way sensitive sagnac effect in the polarization state.
  • a bidirectional light-carrying microwave resonance system based on a circulator structure provided in this embodiment, on the basis of Embodiment 1, further includes a cavity length control system, and the cavity length control system includes cavity length adjustment Controller, cavity length control unit 30 and external clock reference source 45.
  • the cavity length regulator is provided in a bidirectional ring resonator, the first microwave power divider 24 is input to the cavity length control unit 30, the external clock reference source 45 is input to the cavity length control unit 30, and the cavity length control unit 30 is connected to the cavity length regulator to realize the stability of the cavity length.
  • the cavity length regulator includes a first stage cavity length regulator 14 and a second stage cavity length regulator 15, and the adjustment range of the first stage cavity length regulator 14 is larger than that of the second stage cavity length regulator 15 ,
  • the first stage cavity length regulator 14 is used to slowly adjust the cavity length
  • the second stage cavity length regulator 15 is used to quickly adjust the cavity length
  • the cavity length adjuster 15 uses an optical fiber stretcher, an adjustable optical delay line, or a spatial light stage.
  • the counter-clockwise microwave frequency f1 distributed by the first microwave power divider 24 performs frequency discrimination and phase discrimination with the external clock reference source 45, and the output signal passes through the cavity length control unit 30 for controlling the cavity length regulator to realize the counterclockwise resonance cavity Long lock; at this time, the change in the resonant cavity length in the clockwise direction is the sum of the change in the resonant cavity length in the clockwise direction before the cavity length is locked and the change in the resonant cavity length in the counterclockwise direction before the cavity length is locked.

Abstract

一种基于环形器结构的双向光载微波谐振系统及其检测角速度的方法。利用再生锁模技术、腔长控制技术和偏振态分离技术在光纤环中产生顺逆双向偏振态垂直的高稳定度的光载微波,用于测量旋转角速度;采用环形器结构,通过双向再生锁模技术实现双向光载微波谐振;基于宽谱光干涉仪的非互易性误差消除技术,实现了互易的双向光载微波谐振系统;采用偏振态分离技术实现光信号的双波长分离,并采用垂直的偏振态在敏感环内相向传输,提高敏感环检测能力;采用腔长控制技术,将一个方向的微波振荡频率锁定到高稳定度标准时间参考源上,稳定了光谐振腔的相对腔长;具有实用性强、测量精度高等特点。

Description

一种基于环形器结构的双向光载微波谐振系统及其检测角速度的方法 技术领域
本发明属于高精度光学陀螺技术领域,尤其涉及一种基于环形器结构的双向光载微波谐振系统及其检测角速度的方法。
背景技术
在惯性导航领域,通常是采用加速度计检测载体平动速度,用陀螺仪检测载体旋转角速度。高精度陀螺仪主要有机械陀螺和光学陀螺两种类型,在军事、工业、科学等领域广泛应用。其中光学陀螺仪主要包含激光陀螺和光纤陀螺两类。激光陀螺虽然精度高,但存在闭锁效应,维护成本较高;干涉式光纤陀螺存在光功率利用率低,温度误差、寄生噪声等缺陷,检测精度偏低;谐振式光纤陀螺易于微型化,但是对光源要求很高,目前实用性还待提高。虽然相比于机械陀螺,光学陀螺整体的稳定性仍有不足,但其结构紧凑、灵敏度高等特点,使光学陀螺在高精度陀螺的市场上仍占据重要份额。
光学陀螺检测载体旋转角速度的基本原理是萨格纳克效应(Sagnac effect)。萨格纳克效应的基本原理是闭合光路中,由同一光源发出的沿顺时针(CW)和逆时针方向(CCW)传输的两束光由于载体转动而产生不同的光程差,从而产生相位差或频率差。由于产生的相位差或频率差只与载体旋转角速度相关,通过检测光学陀螺产生的相位差或频率差即可实现载体旋转角速度测量。要实现萨格纳克效应检测,首先需要实现同一光源的沿顺时针(CW)和逆时针方向(CCW)传输,由于光电器件的双向传输能力的限制,沿顺时针(CW)和逆时针方向(CCW)的光谐振腔特性无法实现完全相同,因此引入的非互易性误差会降低光载微波陀螺的精度。因此,高精度高可靠的光学陀螺仍然是陀螺研究的重点。
发明内容
本发明的目的在于克服现有光学陀螺角速度测量方案的不足,提供一种基于环形器结构的双向光载微波谐振系统及其检测角速度的方法。
为实现上述目的,本发明采用以下设计方案:一种基于环形器结构的双向光载微波谐振系统,该系统包括宽谱光源、50:50耦合器、第一波分复用器、第二波分复用器、低速光电转换器、干涉仪控制器、腔长补偿调节器、第一光放大器、第一光电强度调制器、第一光环形器、第一光耦合器、窄带双向光滤波器、第二光耦合器、第二光放大器、第二光电强度调制器、第二光环形器、第一再生腔腔长调节器、第一高速光电探测器、第一微波滤波放大单元、第一微波功分器、第二再生腔腔长调节器、第二高速光电探测器、第二微波滤波放大单元、 敏感环干涉仪结构、第二微波功分器、第三微波功分器和差频检测单元;
所述第一光放大器、第一光电强度调制器、腔长补偿调节器、第一光环形器、第二波分复用器、第一光耦合器、窄带双向光滤波器、敏感环干涉仪结构、第二光耦合器、第一波分复用器和第二光环形器依次连接构成顺时针方向环形谐振腔;顺时针方向谐振光依次经过第一光耦合器、第二再生腔腔长调节器、第二高速光电探测器、第二微波滤波放大单元和第三微波功分器反馈调制第一光电强度调制器,构成顺时针方向再生锁模结构;顺时针方向再生锁模结构产生的电信号通过第三微波功分器输入差频检测单元;
所述第二光放大器、第二光电强度调制器、第二光环形器、第一波分复用器、第二光耦合器、敏感环干涉仪结构、窄带双向光滤波器、第一光耦合器第二波分复用器和第一光环形器依次连接构成逆时针方向环形谐振腔;逆时针方向谐振光依次经过第二光耦合器、第一再生腔腔长调节器、第一高速光电探测器、第一微波滤波放大单元、第一微波功分器和第二微波功分器反馈调制第二光电强度调制器,构成逆时针方向再生锁模结构;逆时针方向再生锁模结构产生的电信号通过第二微波功分器输入差频检测单元;
所述宽谱光源、50:50耦合器、第一波分复用器、第二波分复用器、低速光电转换器、干涉仪控制器和腔长补偿调节器组成顺逆时针双环路的互易性误差补偿宽谱光干涉仪;所述宽谱光源发出的光经50:50耦合器分为两臂,第一臂依次通过第二波分复用器、第一光环形器、第二光放大器、第二光电强度调制器、第二光环形器、第一波分复用器、50:50耦合器进入低速光电转换器;第二臂依次通过第一波分复用器、第二光环形器、第一光放大器、第一光电强度调制器、腔长补偿调节器、第一光环形器、第二波分复用器、50:50耦合器进入低速光电转换器;所述低速光电转换器的检测信号经过干涉仪控制器,输出控制腔长补偿调节器,实现宽谱光干涉仪的两臂光程相同,消除两臂上非双向器件引起的非互易误差;所述宽谱光源发出的光与顺时针谐振光和逆时针谐振光均不干涉;
所述敏感环干涉仪结构包括第一正交偏振态调节单元、偏振分束器、光纤敏感环和第二正交偏振态调节单元;
顺时针方向谐振光经过第一正交偏振态调节单元将窄带双向光滤波器的双峰值光谱信号调节为偏振态垂直的两路信号,经过偏振分束器进入光纤敏感环,依次经过偏振分束器、第二正交偏振态调节单元将偏振态调回初始状态;
逆时针方向谐振光经过第二正交偏振态调节单元将窄带双向光滤波器的双峰值光谱信号调节为偏振态垂直的两路信号,经过偏振分束器进入光纤敏感环,依次经过偏振分束器、第一正交偏振态调节单元将偏振态调回初始状态。
进一步地,所述基于环形器结构的双向光载微波谐振系统,采用顺时针方向再生锁模结 构和逆时针方向再生锁模结构产生的微波信号输入差频检测单元进行角速度检测。
进一步地,所述窄带双向光滤波器将系统工作时的谐振光载微波信号变为双峰值光谱信号,谱峰对应波长分别为λ 1和λ 2,λ 1和λ 2的频率差为调制信号f m,实现双向双频谐振。
进一步地,所述敏感环干涉仪结构中,所述第一正交偏振态调节单元和第二正交偏振态调节单元均由若干偏振分束器和偏振态控制器实现。
进一步地,所述敏感环干涉仪结构中,偏振态垂直的两路信号在敏感环内相向传输时的光速不同,增加敏感环SAGNAC效应检测增益。
进一步地,所述第一再生腔腔长调节器和第二再生腔腔长调节器作为光程调节单元,采用光纤拉伸器、可调光延时线或空间光位移台;所述腔长补偿调节器作为宽谱干涉仪臂长调节单元,采用光纤拉伸器、可调光延时线或空间光位移台。
进一步地,该系统还包括腔长控制系统,所述腔长控制系统包括腔长调节器、腔长控制单元和外部时钟参考源,所述腔长调节器设置在双向环形谐振腔内,所述第一微波功分器输入腔长控制单元,所述外部时钟参考源输入腔长控制单元,所述腔长控制单元连接腔长调节器,实现谐振腔腔长稳定。
进一步地,所述腔长调节器包括第一级腔长调节器和第二级腔长调节器,所述第一级腔长调节器的调节范围大于第二级腔长调节器,所述第一级腔长调节器用于慢速调节腔长,所述第二级腔长调节器用于快速调节腔长,所述第一级腔长调节器和第二级腔长调节器作为光程调节单元,采用光纤拉伸器、可调光延时线或空间光位移台。
一种利用基于环形器结构的双向光载微波谐振系统进行角速度检测的方法,该方法包括以下步骤:
步骤1:顺时针方向的工作光经过顺时针方向环形谐振腔和顺时针方向再生锁模结构,通过第三微波功分器实现稳定的f1频率输出;
逆时针方向的工作光经过逆时针方向环形谐振腔和逆时针方向再生锁模结构,通过第二微波功分器实现稳定的f2频率输出;
步骤2:顺时针方向的工作光和逆时针方向的工作光在敏感环干涉仪结构中产生相反的sagnac效应,差频检测单元检测步骤1获得的频率f1和频率f2的频率差即拍频,记为Δf;
步骤3:通过以下公式,即可获得旋转角速度Ω r
Figure PCTCN2018113213-appb-000001
其中,S为敏感环干涉仪结构中光纤敏感环包围的面积,λ为频率f1或频率f2对应的波长,L为光纤敏感环的总光纤长度;G 1为顺时针方向工作光进入光纤敏感环中,因分为偏振 态垂直的两路敏感sagnac效应产生的增益;G 2为逆时针方向工作光进入光纤敏感环中,因分为偏振态垂直的两路敏感sagnac效应产生的增益。
进一步地,当基于环形器结构的双向光载微波谐振系统具有腔长控制系统时,经过第一微波功分器分配的逆时针方向微波频率f1与外部时钟参考源进行鉴频鉴相,输出信号经过腔长控制单元用于控制腔长调节器,实现逆时针方向谐振腔长锁定;此时,顺时针方向谐振腔长变化量是腔长锁定前的顺时针方向谐振腔长变化量和腔长锁定前的逆时针方向谐振腔长变化量的总和。
本发明的有益效果为:本发明结合双向再生锁模技术和传统谐振光学陀螺技术,构建了基于萨格纳克效应(Sagnac effect)原理的双向光载微波谐振系统。该系统通过双向光电振荡获得高度稳定的微波振荡代替传统的光波振荡,并用于旋转角速度的测量;该系统利用宽谱光干涉仪补偿顺逆时针双向的非互易性误差,实现光载微波谐振系统的双向结构互易性;利用敏感环干涉仪结构,调节敏感环内双向传输的信号光偏振态垂直;本发明的优势是微波信号的差频检测的精度可以远远高于光学差频检测,前者可以通过放大倍频等多种方法检测频率差,提高信噪比,使得微波振荡信号的频率稳定度可以达到10 -13;将其中一个方向振荡频率锁定到稳定度更高的标准时间参考源上,比如原子钟,可稳定光电振荡器的相对腔长,消除了光纤环形腔的温度漂移和光学寄生噪声,进一步提高频率稳定性。本发明极大地提高了由萨格纳克效应引起的双向振荡差频信号的信噪比。本发明提供的系统及方法具有实用性强、测量精度高等特点,可以满足高精度光学陀螺应用的要求。
附图说明
图1是本发明一个实施例的基于环形器结构的双向光载微波谐振系统的组成框图;
图2是本发明另一个实施例的基于环形器结构的双向光载微波谐振系统的组成框图;
图3是敏感环干涉仪结构的组成框图;
图中,宽谱光源1、50:50耦合器2、第一波分复用器3、第二波分复用器4、低速光电转换器5、干涉仪控制器6、腔长补偿调节器7、第一光放大器9、第一光电强度调制器10、第一光环形器11、第一光耦合器12、窄带双向光滤波器13、、第一级腔长调节器14、第二级腔长调节器15、第二光耦合器16、第二光放大器17、第二光电强度调制器18、第二光环形器19、第一再生腔腔长调节器20、第一高速光电探测器21、第一微波滤波放大单元22、第一微波功分器24、第二再生腔腔长调节器25、第二高速光电探测器26、第二微波滤波放大单元27、敏感环干涉仪结构29、腔长控制单元30、第一正交偏振态调节单元37、偏振分束器38、光纤敏感环39、第二正交偏振态调节单元40、外部时钟参考源45、第二微波功分器46、第三微波功分器47和差频检测单元48;图中实线部分表示光路连接,是光通路;点划线表 示微波电路连接,是电通路。
具体实施方式
下面结合附图和具体实施例对本发明作进一步详细说明。
实施例1
如图1所示,本实施例提供的一种基于环形器结构的双向光载微波谐振系统,该系统包括宽谱光源、50:50耦合器、第一波分复用器3、第二波分复用器4、低速光电转换器5、干涉仪控制器6、腔长补偿调节器7、第一光放大器9、第一光电强度调制器10、第一光环形器11、第一光耦合器12、窄带双向光滤波器13、第二光耦合器16、第二光放大器17、第二光电强度调制器18、第二光环形器19、第一再生腔腔长调节器20、第一高速光电探测器21、第一微波滤波放大单元22、第一微波功分器24、第二再生腔腔长调节器25、第二高速光电探测器26、第二微波滤波放大单元27、敏感环干涉仪结构29、第二微波功分器46、第三微波功分器47和差频检测单元48;
所述第一光放大器9、第一光电强度调制器10、腔长补偿调节器7、第一光环形器11、第二波分复用器4、第一光耦合器12、窄带双向光滤波器13、敏感环干涉仪结构29、第二光耦合器16、第一波分复用器3和第二光环形器19依次连接构成顺时针方向环形谐振腔;顺时针方向谐振光依次经过第一光耦合器12、第二再生腔腔长调节器25、第二高速光电探测器26、第二微波滤波放大单元27和第三微波功分器47反馈调制第一光电强度调制器10,构成顺时针方向再生锁模结构;顺时针方向再生锁模结构产生的电信号通过第三微波功分器47输入差频检测单元48;所述第二再生腔腔长调节器25作为光程调节单元,可以采用光纤拉伸器、可调光延时线或空间光位移台等器件。
所述第二光放大器17、第二光电强度调制器18、第二光环形器19、第一波分复用器3、第二光耦合器16、敏感环干涉仪结构29、窄带双向光滤波器13、第一光耦合器12第二波分复用器4和第一光环形器11依次连接构成逆时针方向环形谐振腔;逆时针方向谐振光依次经过第二光耦合器16、第一再生腔腔长调节器20、第一高速光电探测器21、第一微波滤波放大单元22、第一微波功分器24和第二微波功分器46反馈调制第二光电强度调制器18,构成逆时针方向再生锁模结构;逆时针方向再生锁模结构产生的电信号通过第二微波功分器46输入差频检测单元48;所述第一再生腔腔长调节器20作为光程调节单元,可以采用光纤拉伸器、可调光延时线或空间光位移台等器件。
所述宽谱光源1、50:50耦合器2、第一波分复用器3、第二波分复用器4、低速光电转换器5、干涉仪控制器6和腔长补偿调节器7组成顺逆时针双环路的互易性误差补偿宽谱光干涉仪;所述宽谱光源1发出的光经50:50耦合器2分为两臂,第一臂依次通过第二波分复用 器4、第一光环形器11、第二光放大器17、第二光电强度调制器18、第二光环形器19、第一波分复用器3、50:50耦合器2进入低速光电转换器5;第二臂依次通过第一波分复用器3、第二光环形器19、第一光放大器9、第一光电强度调制器10、腔长补偿调节器7、第一光环形器11、第二波分复用器4、50:50耦合器2进入低速光电转换器5;所述低速光电转换器5的检测信号经过干涉仪控制器6,输出控制腔长补偿调节器7,实现宽谱光干涉仪的两臂光程相同,消除两臂上非双向器件引起的非互易误差;所述宽谱光源1发出的光与顺时针谐振光和逆时针谐振光均不干涉;所述腔长补偿调节器7作为宽谱干涉仪臂长调节单元,可以采用光纤拉伸器、可调光延时线或空间光位移台等器件。
所述敏感环干涉仪结构29包括第一正交偏振态调节单元37、偏振分束器38、光纤敏感环39和第二正交偏振态调节单元40;
顺时针方向谐振光经过第一正交偏振态调节单元37将窄带双向光滤波器13的双峰值光谱信号分离为中心波长分别为λ 1和λ 2,偏振态垂直的两路光信号,经过偏振分束器38分为λ 1和λ 2两路进入光纤敏感环39敏感角速度,而后经过偏振分束器38合束,经过第二正交偏振态调节单元40后实现敏感环干涉仪结构29的输出信号与输入信号偏振态一致;
逆时针方向谐振光经过第二正交偏振态调节单元40将窄带双向光滤波器13的双峰值光谱信号分离为中心波长分别为λ 1和λ 2,偏振态垂直的两路光信号,经过偏振分束器38分为λ 1和λ 2两路进入光纤敏感环39敏感角速度,而后经过偏振分束器38合束,经过第一正交偏振态调节单元37后实现敏感环干涉仪结构29的输出信号与输入信号偏振态一致。
所述基于环形器结构的双向光载微波谐振系统,采用顺时针方向再生锁模结构和逆时针方向再生锁模结构产生的微波信号输入微波频率差检测单元48进行角速度检测。
所述窄带双向光滤波器13将系统工作时的谐振光载微波信号变为双峰值光谱信号,谱峰对应波长分别为λ 1和λ 2,λ 1和λ 2的频率差为调制信号f m,实现双向双频谐振。
所述敏感环干涉仪结构中,所述第一正交偏振态调节单元37和第二正交偏振态调节单元40均可以由若干偏振分束器和偏振态控制器实现。
所述敏感环干涉仪结构中,偏振态垂直的两路光信号在敏感环内相向传输时的光速不同,增加敏感环SAGNAC效应检测增益。
逆时针方向进入敏感环内传输的λ 1波长信号与顺时针方向进入敏感环内传输的λ 2波长信号传输路径相同、偏振态垂直;逆时针方向进入敏感环内传输的λ 2波长信号与顺时针方向进入敏感环内传输的λ 1波长信号传输路径相同、偏振态垂直;实现了顺、逆时针的工作光信号的波长和偏振态分离;
顺时针和逆时针方向谐振腔因sagnac效应产生的光程差(相位差)符号相反,导致顺时针和逆时针方向的光程差为两倍的单方向sagnac效应产生的光程差。
利用基于环形器结构的双向光载微波谐振系统进行角速度检测的方法,包括以下步骤:
步骤1:带隔离器的宽谱光源1的输出光经过50:50耦合器2进行功率均分后,分为两路,第一路注入第一波分复用器3,而后沿顺时针方向依次经过第二光环形器19、第一光放大器9、第一光电强度调制器10、腔长补偿调节器7和第一光环形器11,最后经由第二波分复用器4输出;第二路注入第二波分复用器4,而后沿逆时针方向依次经过第一光环形器11、第二光放大器17,第二光电强度调制器18和第二光环形器19,最后经由第一波分复用器3输出;经过第一波分复用器3和第二波分复用器4的两路输出信号经过同一个50:50耦合器2耦合返回,干涉叠加信号经过低速光电转换器5进行光电转换,经由干涉仪控制器6反馈调节腔长补偿调节器7,保持干涉仪两臂等长;
步骤2:第一光放大器9的输出光通过第一光电强度调制器10和第一光环形器11沿顺时针方向进入公共腔,在公共腔内先经过第二波分复用器4,在第一光耦合器12分为两路,一路继续经过窄带双向光滤波器13、敏感环干涉仪结构29、第二光耦合器16、第一波分复用器3和第二光环形器19后重新进入第一光放大器9形成光谐振腔;另一路先经过第二再生腔腔长调节器25,然后通过第二高速光电探测器26进行光电转换,之后送入第二微波滤波放大单元27进行微波滤波和放大,经第三微波功分器47分为两路,一路注入第一光电强度调制器10进行微波调制,形成再生锁模回路,一路作为顺时针方向的谐振微波输出f1;其中调节第二高速光电探测器26前的第二再生腔腔长调节器25可改变再生锁模回路注入第一光电强度调制器10的微波相位,实现稳定的f1频率输出;
步骤3:逆时针方向的再生锁模原理与顺时针方向相似,第二光放大器17的输出光经过第二光电强度调制器18和第二光环形器19沿逆时针方向进入公共腔,在公共腔内经过第二光耦合器16分为两路,一路继续经过敏感环干涉仪结构29、窄带双向光滤波器13、第一光耦合器12、第二波分复用器4、第一光环形器11后重新进入第二光放大器17,形成光谐振腔;另一路先经过第一再生腔腔长调节器20,然后通过第一高速光电探测器21进行光电转换,之后送入第一微波滤波放大单元22进行微波滤波和放大,经第一微波功分器24、第二微波功分器46后分为两路,一路注入第二光电强度调制器18进行微波调制,形成再生锁模回路,一路作为逆时针方向的谐振微波输出f2;其中调节第一高速光电探测器21前的第一再生腔腔长调节器20可改变再生锁模回路注入第二光电强度调制器18的微波相位,实现稳定的f2频率输出;
步骤4:顺时针方向的工作光和逆时针方向的工作光在敏感环干涉仪结构29中产生相反 的sagnac效应,差频检测单元48检测步骤1获得的频率f1和频率f2的频率差即拍频,记为Δf;
步骤5:通过以下公式,即可获得旋转角速度Ω r
Figure PCTCN2018113213-appb-000002
其中,S为敏感环干涉仪结构中光纤敏感环包围的面积,λ为频率f1或频率f2对应的波长,L为光纤敏感环的总光纤长度;G 1为顺时针方向工作光进入光纤敏感环中,因分为偏振态垂直的两路敏感sagnac效应产生的增益;G 2为逆时针方向工作光进入光纤敏感环中,因分为偏振态垂直的两路敏感sagnac效应产生的增益。
实施例2
如图2所示,本实施例提供的一种基于环形器结构的双向光载微波谐振系统,在实施例1的基础上,还包括腔长控制系统,所述腔长控制系统包括腔长调节器、腔长控制单元30和外部时钟参考源45。
所述腔长调节器设置在双向环形谐振腔内,所述第一微波功分器24输入腔长控制单元30,所述外部时钟参考源45输入腔长控制单元30,所述腔长控制单元30连接腔长调节器,实现谐振腔腔长稳定。
进一步地,所述腔长调节器包括第一级腔长调节器14和第二级腔长调节器15,所述第一级腔长调节器14的调节范围大于第二级腔长调节器15,所述第一级腔长调节器14用于慢速调节腔长,所述第二级腔长调节器15用于快速调节腔长,所述第一级腔长调节器14和第二级腔长调节器15作为光程调节单元,采用光纤拉伸器、可调光延时线或空间光位移台。
经过第一微波功分器24分配的逆时针方向微波频率f1与外部时钟参考源45进行鉴频鉴相,输出信号经过腔长控制单元30用于控制腔长调节器,实现逆时针方向谐振腔长锁定;此时,顺时针方向谐振腔长变化量是腔长锁定前的顺时针方向谐振腔长变化量和腔长锁定前的逆时针方向谐振腔长变化量的总和。
本技术领域的人员根据本发明所提供的文字描述、附图以及权利要求书能够很容易在不脱离权力要求书所限定的本发明的思想和范围条件下,可以做出多种变化和改动。凡是依据本发明的技术思想和实质对上述实施例进行的任何修改、等同变化,均属于本发明的权利要求所限定的保护范围之内。

Claims (10)

  1. 一种基于环形器结构的双向光载微波谐振系统,其特征在于,该系统包括宽谱光源(1)、50:50耦合器(2)、第一波分复用器(3)、第二波分复用器(4)、低速光电转换器(5)、干涉仪控制器(6)、腔长补偿调节器(7)、第一光放大器(9)、第一光电强度调制器(10)、第一光环形器(11)、第一光耦合器(12)、窄带双向光滤波器(13)、第二光耦合器(16)、第二光放大器(17)、第二光电强度调制器(18)、第二光环形器(19)、第一再生腔腔长调节器(20)、第一高速光电探测器(21)、第一微波滤波放大单元(22)、第一微波功分器(24)、第二再生腔腔长调节器(25)、第二高速光电探测器(26)、第二微波滤波放大单元(27)、敏感环干涉仪结构(29)、第二微波功分器(46)、第三微波功分器(47)和差频检测单元(48);
    所述第一光放大器(9)、第一光电强度调制器(10)、腔长补偿调节器(7)、第一光环形器(11)、第二波分复用器(4)、第一光耦合器(12)、窄带双向光滤波器(13)、敏感环干涉仪结构(29)、第二光耦合器(16)、第一波分复用器(3)和第二光环形器(19)依次连接构成顺时针方向环形谐振腔;顺时针方向谐振光依次经过第一光耦合器(12)、第二再生腔腔长调节器(25)、第二高速光电探测器(26)、第二微波滤波放大单元(27)和第三微波功分器(47)反馈调制第一光电强度调制器(10),构成顺时针方向再生锁模结构;顺时针方向再生锁模结构产生的电信号通过第三微波功分器(47)输入差频检测单元(48);
    所述第二光放大器(17)、第二光电强度调制器(18)、第二光环形器(19)、第一波分复用器(3)、第二光耦合器(16)、敏感环干涉仪结构(29)、窄带双向光滤波器(13)、第一光耦合器(12)第二波分复用器(4)和第一光环形器(11)依次连接构成逆时针方向环形谐振腔;逆时针方向谐振光依次经过第二光耦合器(16)、第一再生腔腔长调节器(20)、第一高速光电探测器(21)、第一微波滤波放大单元(22)、第一微波功分器(24)和第二微波功分器(46)反馈调制第二光电强度调制器(18),构成逆时针方向再生锁模结构;逆时针方向再生锁模结构产生的电信号通过第二微波功分器(46)输入差频检测单元(48);
    所述宽谱光源(1)、50:50耦合器(2)、第一波分复用器(3)、第二波分复用器(4)、低速光电转换器(5)、干涉仪控制器(6)和腔长补偿调节器(7)组成顺逆时针双环路的互易性误差补偿宽谱光干涉仪;所述宽谱光源(1)发出的光经50:50耦合器(2)分为两臂,第一臂依次通过第二波分复用器(4)、第一光环形器(11)、第二光放大器(17)、第二光电强度调制器(18)、第二光环形器(19)、第一波分复用器(3)、50:50耦合器(2)进入低速光电转换器(5);第二臂依次通过第一波分复用器(3)、第二光环形器(19)、第一光放大器(9)、第一光电强度调制器(10)、腔长补偿调节器(7)、第一光环形器(11)、第二波分复用器(4)、 50:50耦合器(2)进入低速光电转换器(5);所述低速光电转换器(5)的检测信号经过干涉仪控制器(6),输出控制腔长补偿调节器(7),实现宽谱光干涉仪的两臂光程相同,消除两臂上非双向器件引起的非互易误差;所述宽谱光源(1)发出的光与顺时针谐振光和逆时针谐振光均不干涉;
    所述敏感环干涉仪结构(29)包括第一正交偏振态调节单元(37)、偏振分束器(38)、光纤敏感环(39)和第二正交偏振态调节单元(40);
    顺时针方向谐振光经过第一正交偏振态调节单元(37)将窄带双向光滤波器(13)的双峰值光谱信号调节为偏振态垂直的两路信号,经过偏振分束器(38)进入光纤敏感环(39),依次经过偏振分束器(38)、第二正交偏振态调节单元(40)将偏振态调回初始状态;
    逆时针方向谐振光经过第二正交偏振态调节单元(40)将窄带双向光滤波器(13)的双峰值光谱信号调节为偏振态垂直的两路信号,经过偏振分束器(38)进入光纤敏感环(39),依次经过偏振分束器(38)、第一正交偏振态调节单元(37)将偏振态调回初始状态。
  2. 根据权利要求1所述的一种基于环形器结构的双向光载微波谐振系统,其特征在于,采用顺时针方向再生锁模结构和逆时针方向再生锁模结构产生的微波信号输入差频检测单元(48)进行角速度检测。
  3. 根据权利要求书1所述的一种基于环形器结构的双向光载微波谐振系统,其特征在于,所述窄带双向光滤波器(13)将系统工作时的谐振光载微波信号变为双峰值光谱信号,谱峰对应波长分别为λ 1和λ 2,λ 1和λ 2的频率差为调制信号f m,实现双向双频谐振。
  4. 根据权利要求书1所述的一种基于环形器结构的双向光载微波谐振系统,其特征在于,所述敏感环干涉仪结构(29)中,所述第一正交偏振态调节单元(37)和第二正交偏振态调节单元(40)均由若干偏振分束器和偏振态控制器实现。
  5. 根据权利要求1所述的一种基于环形器结构的双向光载微波谐振系统,其特征在于,所述敏感环干涉仪结构(29)中,偏振态垂直的两路信号在敏感环内相向传输时的光速不同,增加敏感环SAGNAC效应检测增益。
  6. 根据权利要求1所述的一种基于环形器结构的双向光载微波谐振系统,其特征在于,所述第一再生腔腔长调节器(20)和第二再生腔腔长调节器(25)作为光程调节单元,采用光纤拉伸器、可调光延时线或空间光位移台;所述腔长补偿调节器(7)作为宽谱干涉仪臂长调节单元,采用光纤拉伸器、可调光延时线或空间光位移台。
  7. 根据权利要求1所述的一种基于环形器结构的双向光载微波谐振系统,其特征在于,该系统还包括腔长控制系统,所述腔长控制系统包括腔长调节器、腔长控制单元(30)和外部时钟参考源(45),所述腔长调节器设置在双向环形谐振腔内,所述第一微波功分器(24) 输入腔长控制单元(30),所述外部时钟参考源(45)输入腔长控制单元(30),所述腔长控制单元(30)连接腔长调节器,实现谐振腔腔长稳定。
  8. 根据权利要求7所述的一种基于环形器结构的双向光载微波谐振系统,其特征在于,所述腔长调节器包括第一级腔长调节器(14)和第二级腔长调节器(15),所述第一级腔长调节器(14)的调节范围大于第二级腔长调节器(15),所述第一级腔长调节器(14)用于慢速调节腔长,所述第二级腔长调节器(15)用于快速调节腔长,所述第一级腔长调节器(14)和第二级腔长调节器(15)作为光程调节单元,采用光纤拉伸器、可调光延时线或空间光位移台。
  9. 一种利用权利要求1所述的保一种基于环形器结构的双向光载微波谐振系统进行角速度检测的方法,其特征在于,该方法包括以下步骤:
    步骤1:顺时针方向的工作光经过顺时针方向环形谐振腔和顺时针方向再生锁模结构,通过第三微波功分器(47)实现稳定的f1频率输出;
    逆时针方向的工作光经过逆时针方向环形谐振腔和逆时针方向再生锁模结构,通过第二微波功分器(46)实现稳定的f2频率输出;
    步骤2:顺时针方向的工作光和逆时针方向的工作光在敏感环干涉仪结构(29)中产生相反的sagnac效应,差频检测单元(48)检测步骤1获得的频率f1和频率f2的频率差即拍频,记为Δf;
    步骤3:通过以下公式,即可获得旋转角速度Ω r
    Figure PCTCN2018113213-appb-100001
    其中,S为敏感环干涉仪结构中光纤敏感环包围的面积,λ为频率f1或频率f2对应的波长,L为光纤敏感环的总光纤长度;G 1为顺时针方向工作光进入光纤敏感环中,因分为偏振态垂直的两路敏感sagnac效应产生的增益;G 2为逆时针方向工作光进入光纤敏感环中,因分为偏振态垂直的两路敏感sagnac效应产生的增益。
  10. 根据权利要求9所述的方法,其特征在于,当基于环形器结构的双向光载微波谐振系统具有腔长控制系统时,经过第一微波功分器(24)分配的逆时针方向微波频率f1与外部时钟参考源(45)进行鉴频鉴相,输出信号经过腔长控制单元(30)用于控制腔长调节器,实现逆时针方向谐振腔长锁定;此时,顺时针方向谐振腔长变化量是腔长锁定前的顺时针方向谐振腔长变化量和腔长锁定前的逆时针方向谐振腔长变化量的总和。
PCT/CN2018/113213 2018-10-31 2018-10-31 一种基于环形器结构的双向光载微波谐振系统及其检测角速度的方法 WO2020087423A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP18938457.1A EP3875903B1 (en) 2018-10-31 2018-10-31 Bidirectional optical-carrying microwave resonance system based on circulator structure and method for detecting angular velocity by said system
PCT/CN2018/113213 WO2020087423A1 (zh) 2018-10-31 2018-10-31 一种基于环形器结构的双向光载微波谐振系统及其检测角速度的方法
US17/244,965 US11874113B2 (en) 2018-10-31 2021-04-30 Bidirectional optical-carrying microwave resonance system based on circulator structure and method for detecting angular velocity by said system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/113213 WO2020087423A1 (zh) 2018-10-31 2018-10-31 一种基于环形器结构的双向光载微波谐振系统及其检测角速度的方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/244,965 Continuation US11874113B2 (en) 2018-10-31 2021-04-30 Bidirectional optical-carrying microwave resonance system based on circulator structure and method for detecting angular velocity by said system

Publications (1)

Publication Number Publication Date
WO2020087423A1 true WO2020087423A1 (zh) 2020-05-07

Family

ID=70462924

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/113213 WO2020087423A1 (zh) 2018-10-31 2018-10-31 一种基于环形器结构的双向光载微波谐振系统及其检测角速度的方法

Country Status (3)

Country Link
US (1) US11874113B2 (zh)
EP (1) EP3875903B1 (zh)
WO (1) WO2020087423A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3875904B1 (en) * 2018-10-31 2023-05-24 Zhejiang University Polarization-maintaining fully-reciprocal bi-directional optical carrier microwave resonance system and angular velocity measurement method thereof
CN116026306B (zh) * 2023-03-30 2023-06-06 中国船舶集团有限公司第七〇七研究所 一种基于低相干光源的陀螺及其角速度测量方法
CN117128945B (zh) * 2023-10-20 2023-12-26 中北大学 一种基于奇异面的超灵敏角速度传感器及测量方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103267522A (zh) * 2013-05-10 2013-08-28 浙江大学 用于消除光载微波陀螺非互易性误差的双向锁频交换方法
CN103278150A (zh) * 2013-05-10 2013-09-04 浙江大学 一种检测角速度的光载微波陀螺方法
CN104075705A (zh) * 2014-06-26 2014-10-01 中航捷锐(北京)光电技术有限公司 一种提高速率敏感性的光纤陀螺仪
US20160116288A1 (en) * 2013-09-29 2016-04-28 Zhejiang University Angular velocity detection method adopting bi-directional full reciprocal coupling optoelectronic oscillator
CN108344408A (zh) * 2017-12-19 2018-07-31 北京交通大学 基于可调谐光电振荡器的角速度测量装置
CN108614126A (zh) * 2018-05-30 2018-10-02 北京交通大学 基于宽带可调谐光电振荡器的角速度测量装置和方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3443534B2 (ja) * 1998-12-17 2003-09-02 日本電信電話株式会社 原子周波数標準レーザパルス発振器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103267522A (zh) * 2013-05-10 2013-08-28 浙江大学 用于消除光载微波陀螺非互易性误差的双向锁频交换方法
CN103278150A (zh) * 2013-05-10 2013-09-04 浙江大学 一种检测角速度的光载微波陀螺方法
US20160116288A1 (en) * 2013-09-29 2016-04-28 Zhejiang University Angular velocity detection method adopting bi-directional full reciprocal coupling optoelectronic oscillator
CN104075705A (zh) * 2014-06-26 2014-10-01 中航捷锐(北京)光电技术有限公司 一种提高速率敏感性的光纤陀螺仪
CN108344408A (zh) * 2017-12-19 2018-07-31 北京交通大学 基于可调谐光电振荡器的角速度测量装置
CN108614126A (zh) * 2018-05-30 2018-10-02 北京交通大学 基于宽带可调谐光电振荡器的角速度测量装置和方法

Also Published As

Publication number Publication date
US20220034660A1 (en) 2022-02-03
EP3875903A1 (en) 2021-09-08
EP3875903A4 (en) 2022-06-22
EP3875903B1 (en) 2023-09-13
US11874113B2 (en) 2024-01-16

Similar Documents

Publication Publication Date Title
CN109357672B (zh) 一种基于环形器结构的双向光载微波谐振系统及其检测角速度的方法
US9568319B2 (en) Angular velocity detection method adopting bi-directional full reciprocal coupling optoelectronic oscillator
JP6300381B2 (ja) 磁場計測装置
US11874113B2 (en) Bidirectional optical-carrying microwave resonance system based on circulator structure and method for detecting angular velocity by said system
CN108534798B (zh) 一种双偏振光纤陀螺中的偏振非互易误差消除方法及双偏振光纤陀螺
US8009296B2 (en) Light-phase-noise error reducer
CN103278150B (zh) 一种检测角速度的光载微波陀螺方法
WO2011119232A2 (en) Optical gyroscope sensors based on optical whispering gallery mode resonators
CN108332735B (zh) 基于外加光束干涉的谐振式光纤陀螺相干解调系统和方法
JPH0680405B2 (ja) 光フアイバジヤイロ
JP2017037060A (ja) 基準リング共振器を利用した光ファイバ・ジャイロスコープのためのシステムおよび方法
CN115112111A (zh) 单光束宽谱光源二次滤波谐振式光纤陀螺及闭环控制方法
US11378401B2 (en) Polarization-maintaining fully-reciprocal bi-directional optical carrier microwave resonance system and angular velocity measurement method thereof
CN103712615A (zh) 光功率反馈的单路闭环谐振式光学陀螺
CN114899702A (zh) 一种基于光纤环形谐振腔的激光器偏频稳频装置及方法
CN103267522B (zh) 用于消除光载微波陀螺非互易性误差的双向锁频交换方法
CN112066969B (zh) 基于光学锁相环的双光源自注入锁定谐振式微光机电陀螺
CN109323690B (zh) 一种保偏全互易双向光载微波谐振系统及其检测角速度的方法
Ye et al. High-sensitivity angular velocity measurement based on bidirectional coupled optoelectronic oscillator
CN103267521A (zh) 采用单环两路双向谐振光载微波检测角速度的方法
CN109270029B (zh) 一种用于探测亚多普勒光谱的通用nice-ohms系统
Tao et al. Dual closed-loop control method for resonant integrated optic gyroscopes with combination differential modulation
CN116337033B (zh) 一种基于四口环形器的双偏振光纤陀螺
CN103712614B (zh) 光功率反馈的双路闭环谐振式光学陀螺
JPS60195415A (ja) 超高感度光フアイバ・ジヤイロスコ−プ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18938457

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018938457

Country of ref document: EP

Effective date: 20210531