WO2020087287A1 - 数据传输方法、装置及可读存储介质 - Google Patents

数据传输方法、装置及可读存储介质 Download PDF

Info

Publication number
WO2020087287A1
WO2020087287A1 PCT/CN2018/112754 CN2018112754W WO2020087287A1 WO 2020087287 A1 WO2020087287 A1 WO 2020087287A1 CN 2018112754 W CN2018112754 W CN 2018112754W WO 2020087287 A1 WO2020087287 A1 WO 2020087287A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
data blocks
transmission unit
narrowband
frequency hopping
Prior art date
Application number
PCT/CN2018/112754
Other languages
English (en)
French (fr)
Inventor
牟勤
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to PCT/CN2018/112754 priority Critical patent/WO2020087287A1/zh
Priority to SG11202104176XA priority patent/SG11202104176XA/en
Priority to CN202111538938.5A priority patent/CN114158130A/zh
Priority to CN201880001839.3A priority patent/CN109565661B/zh
Priority to RU2021113864A priority patent/RU2764072C1/ru
Priority to EP18938794.7A priority patent/EP3876565A4/en
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to KR1020217015997A priority patent/KR20210082503A/ko
Priority to BR112021007903-3A priority patent/BR112021007903A2/pt
Priority to JP2021523449A priority patent/JP7234357B2/ja
Priority to US17/287,222 priority patent/US20210392672A1/en
Publication of WO2020087287A1 publication Critical patent/WO2020087287A1/zh
Priority to JP2023026436A priority patent/JP7390507B2/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/713Spread spectrum techniques using frequency hopping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/0012Hopping in multicarrier systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/04Arrangements for detecting or preventing errors in the information received by diversity reception using frequency diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to the field of wireless communication technology, and in particular, to a data transmission method, device, and readable storage medium.
  • MTC Machine Type Communication
  • the base station in the MTC scenario can schedule the transmission of multiple data blocks in one scheduling; in order to increase the time diversity effect and improve the transmission efficiency, in multi-data block scheduling There is also a need to use an alternate transmission mechanism.
  • a data block in order to ensure cross-subframe channel estimation and symbol combining gain, a data block also needs to be repeatedly transmitted multiple times.
  • the present disclosure provides a data transmission method, device, and readable storage medium.
  • the technical solution is as follows:
  • a data transmission method is provided, the method is executed by a terminal, and the method includes:
  • the alternate transmission unit is a data unit composed of multiple repeated transmissions of any one of the at least two data blocks, and the size parameter of the alternate transmission unit indicates the alternate transmission Number of repeated transmissions of data blocks in the unit;
  • the transmission narrowband set of the at least two data blocks and the size parameter of the alternate transmission unit alternately frequency hopping the base station to transmit the at least two data blocks.
  • the at least two data blocks correspond to respective transmission narrowband sets, and each of the transmission narrowband sets includes at least two narrowbands; the transmission narrowband set according to the at least two data blocks and The size parameter of the alternate transmission unit and the frequency hopping transmission of the at least two data blocks with the base station include:
  • Step a On a narrow band of the transmission narrow band set corresponding to the first target data block, an alternating transmission unit that transmits the first target data block with the base station, the first target data block is the at least two Any data block in the data block;
  • Step b After completing the transmission of an alternate transmission unit of the first target data block, transmit the second target data block with the base station on a narrow band of the transmission narrow band set corresponding to the second target data block
  • An alternate transmission unit, the second target data block is any one of the remaining data blocks in the at least two data blocks;
  • Step c After completing one round of transmission of one alternate transmission unit of each of the at least two data blocks, determine whether all alternate transmission units of each of the at least two data blocks have been transmitted If yes, stop transmission, otherwise, perform steps a-b.
  • the at least two data blocks correspond to a common transmission narrowband set, and according to the transmission narrowband set of the at least two data blocks and the size parameter of the alternate transmission unit, frequency hopping is alternately performed with the base station Transmitting the at least two data blocks includes:
  • Step a On a first narrowband in the set of transmission narrowbands, an alternating transmission unit that transmits a first data block with the base station, the first data block is any one of the at least two data blocks A data block, the first narrowband is any narrowband in the set of transmission narrowbands;
  • Step b After completing the transmission of an alternate transmission unit of the first data block, transmit second data with the base station on a second narrowband different from the first narrowband in the set of narrow transmission bands
  • An alternate transmission unit of a block, the second data block is any one of the remaining data blocks in the at least two data blocks;
  • Step c After completing one round of transmission of one alternate transmission unit of each of the at least two data blocks, determine whether all alternate transmission units of each of the at least two data blocks have been transmitted If yes, stop transmission, otherwise, perform steps a-b.
  • the acquiring the transmission narrowband set of the at least two data blocks includes:
  • a frequency hopping step configured in advance by the base station for the terminal, the frequency hopping step used to indicate a narrowband interval between two adjacent narrowbands in frequency hopping transmission;
  • the acquiring the transmission narrowband set of the at least two data blocks includes:
  • the acquiring the size parameter of the alternate transmission unit includes:
  • the parameter value of the frequency hopping interval pre-configured by the base station is used to indicate the number of repeated transmissions of one data block in each frequency hopping transmission;
  • the acquiring the size parameter of the alternate transmission unit includes:
  • the acquiring the size parameter of the alternate transmission unit includes:
  • the base station configures the terminal with the frequency hopping interval parameter value in advance, and the terminal does not activate frequency hopping transmission, performing the acquisition of the alternate transmission previously configured by the base station through broadcast signaling or user-specific signaling
  • the acquiring the size parameter of the alternate transmission unit further includes:
  • the base station configures the terminal with a frequency hopping interval parameter value in advance and the terminal has activated frequency hopping transmission
  • the frequency hopping interval parameter value is acquired as the size parameter value of the alternate transmission unit .
  • the value range of the size parameter of the alternating transmission unit is ⁇ 1, 2, 4, 8 ⁇ ;
  • the value range of the size parameter of the alternating transmission unit is ⁇ 2, 4, 8, 16 ⁇ ;
  • the value range of the size parameter of the alternating transmission unit is ⁇ 1, 5, 10, 20 ⁇ ;
  • the value range of the size parameter of the alternating transmission unit is ⁇ 5, 10, 20, 40 ⁇ .
  • a data transmission method is executed by a base station, and the method includes:
  • the alternate transmission unit is a data unit composed of multiple repeated transmissions of any one of the at least two data blocks, and the size parameter of the alternate transmission unit indicates the alternate transmission Number of repeated transmissions of data blocks in the unit;
  • the at least two data blocks are alternately frequency-hopped with the terminal and transmitted.
  • the at least two data blocks correspond to respective transmission narrowband sets, and each of the transmission narrowband sets includes at least two narrowbands; the transmission narrowband set according to the at least two data blocks and The size parameter of the alternating transmission unit and the frequency hopping transmission of the at least two data blocks with the terminal alternately include:
  • Step a On a narrow band of the transmission narrow band set corresponding to the first target data block, an alternating transmission unit that transmits the first target data block with the terminal, the first target data block is the at least two Any data block in the data block;
  • Step b After completing the transmission of an alternate transmission unit of the first target data block, transmit the second target data block with the terminal on a narrow band of the transmission narrow band set corresponding to the second target data block
  • An alternate transmission unit, the second target data block is any one of the remaining data blocks in the at least two data blocks;
  • Step c After completing one round of transmission of one alternate transmission unit of each of the at least two data blocks, determine whether all alternate transmission units of each of the at least two data blocks have been transmitted If yes, stop transmission, otherwise, perform steps a-b.
  • the at least two data blocks correspond to a common transmission narrowband set, and according to the transmission narrowband set of the at least two data blocks and the size parameter of the alternate transmission unit, frequency hopping is alternately performed with the terminal Transmitting the at least two data blocks includes:
  • Step a On a first narrowband in the set of transmission narrowbands, an alternating transmission unit that transmits a first data block with the terminal, the first data block is any one of the at least two data blocks A data block, the first narrowband is any narrowband in the set of transmission narrowbands;
  • Step b After completing the transmission of an alternate transmission unit of the first data block, transmit second data with the terminal on a second narrowband different from the first narrowband in the set of narrow transmission bands
  • An alternate transmission unit of a block, the second data block is any one of the remaining data blocks in the at least two data blocks;
  • Step c After completing one round of transmission of one alternate transmission unit of each of the at least two data blocks, determine whether all alternate transmission units of each of the at least two data blocks have been transmitted If yes, stop transmission, otherwise, perform steps a-b.
  • the acquiring the transmission narrowband set of the at least two data blocks includes:
  • the method before sending scheduling information to the terminal in a physical downlink control channel PDCCH, the method further includes:
  • the acquiring the size parameter of the alternate transmission unit includes:
  • the parameter value of the frequency hopping interval configured for the terminal is obtained, and the parameter value of the frequency hopping interval is used to indicate the repeated transmission of one data block in each frequency hopping transmission frequency;
  • the acquiring the size parameter of the alternate transmission unit includes:
  • the first value is selected as the value of the size parameter of the alternating transmission unit from the preset value set of the size parameter of the alternating transmission unit
  • the first value is the same as the parameter value of the frequency hopping interval configured for the terminal;
  • the terminal When the terminal is not configured with a frequency hopping interval, or when the terminal is configured with a frequency hopping interval and the terminal does not activate frequency hopping transmission, select the second from the numerical set of the size parameter of the preset alternating transmission unit
  • the numerical value serves as the numerical value of the size parameter of the alternating transmission unit; the second numerical value is any numerical value in the numerical value set.
  • the method further includes:
  • the value range of the size parameter of the alternating transmission unit is ⁇ 1, 2, 4, 8 ⁇ ;
  • the value range of the size parameter of the alternating transmission unit is ⁇ 2, 4, 8, 16 ⁇ ;
  • the value range of the size parameter of the alternating transmission unit is ⁇ 1, 5, 10, 20 ⁇ ;
  • the value range of the size parameter of the alternating transmission unit is ⁇ 5, 10, 20, 40 ⁇ .
  • a data transmission apparatus is used in a terminal, and the apparatus includes:
  • a scheduling information receiving module configured to receive scheduling information sent by a base station in a physical downlink control channel PDCCH, where the scheduling information is used to schedule transmission of at least two data blocks;
  • a narrowband set acquisition module configured to acquire a transmission narrowband set of the at least two data blocks, and the narrowband set includes at least two narrowbands;
  • a size parameter acquisition module for acquiring a size parameter of an alternate transmission unit the alternate transmission unit is a data unit composed of multiple repeated transmissions of any one of the at least two data blocks.
  • the size parameter indicates the number of repeated transmissions of the data block in the alternate transmission unit;
  • the transmission module is configured to transmit the at least two data blocks alternately by frequency hopping with the base station according to the transmission narrowband set of the at least two data blocks and the size parameter of the alternate transmission unit.
  • a data transmission device is used in a base station.
  • the device includes:
  • a scheduling information sending module configured to send scheduling information to a terminal in a physical downlink control channel PDCCH, where the scheduling information is used to schedule transmission of at least two data blocks;
  • a narrowband set acquisition module configured to acquire a transmission narrowband set of the at least two data blocks, and the narrowband set includes at least two narrowbands;
  • a size parameter acquisition module for acquiring a size parameter of an alternate transmission unit the alternate transmission unit is a data unit composed of multiple repeated transmissions of any one of the at least two data blocks.
  • the size parameter indicates the number of repeated transmissions of the data block in the alternate transmission unit;
  • the transmission module is configured to alternately frequency-hop transmit the at least two data blocks with the terminal according to the transmission narrowband set of the at least two data blocks and the size parameter of the alternate transmission unit.
  • a data transmission system includes: a terminal and a base station;
  • the terminal includes the data transmission device according to the third aspect
  • the base station includes the data transmission device according to the fourth aspect.
  • a data transmission apparatus is used in a terminal, and the apparatus includes:
  • a memory for storing executable instructions of the processor
  • the processor is configured to:
  • the alternate transmission unit is a data unit composed of multiple repeated transmissions of any one of the at least two data blocks, and the size parameter of the alternate transmission unit indicates the alternate transmission Number of repeated transmissions of data blocks in the unit;
  • the at least two data blocks are alternately frequency-hopped with the base station to transmit.
  • a data transmission device based on unlicensed uplink scheduling is used in a base station.
  • the device includes:
  • a memory for storing executable instructions of the processor
  • the processor is configured to:
  • the alternate transmission unit is a data unit composed of multiple repeated transmissions of any one of the at least two data blocks, and the size parameter of the alternate transmission unit indicates the alternate transmission Number of repeated transmissions of data blocks in the unit;
  • the at least two data blocks are alternately frequency-hopped with the terminal and transmitted.
  • a computer-readable storage medium contains executable instructions, and a processor in a terminal calls the executable instructions to implement the first aspect described above Or the data transmission method described in any optional implementation manner of the first aspect.
  • a computer-readable storage medium contains executable instructions, and a processor in a base station calls the executable instructions to implement the second aspect described above Or the data transmission method described in any optional implementation manner of the second aspect.
  • the terminal After receiving the scheduling information corresponding to at least two data blocks sent by the base station in a PDCCH of the physical downlink control channel, the terminal can obtain the transmission narrowband set of the at least two data blocks, and obtain the size parameter of the alternate transmission unit, and then The transmission narrowband set of the at least two data blocks and the size parameter of the alternate transmission unit alternately frequency-hop with the base station to transmit the at least two data blocks, so as to realize multiple communication between the terminal and the base station simultaneously through the scheduling information in one PDCCH Scheduling of repeated transmission and frequency hopping transmission of data blocks.
  • Fig. 1 is a schematic structural diagram of a wireless communication system according to some exemplary embodiments
  • Fig. 2 is a schematic flowchart of a data transmission according to an exemplary embodiment
  • Fig. 3 is a flowchart of a data transmission method according to an exemplary embodiment
  • Fig. 4 is a flowchart of a data transmission method according to an exemplary embodiment
  • FIG. 5 is a schematic diagram of an alternative frequency hopping transmission involved in the embodiment shown in FIG. 4;
  • FIG. 6 is a schematic diagram of another alternative frequency hopping transmission involved in the embodiment shown in FIG. 4;
  • Fig. 7 is a block diagram of a data transmission device according to an exemplary embodiment
  • Fig. 8 is a block diagram of a data transmission device according to an exemplary embodiment
  • Fig. 9 is a schematic structural diagram of a terminal according to an exemplary embodiment.
  • Fig. 10 is a schematic structural diagram of a base station according to an exemplary embodiment.
  • MTC machine-type communicaion
  • repeated transmission is usually used to accumulate power, thereby achieving the effect of coverage enhancement, that is, the same content is repeatedly transmitted in the time dimension to achieve the effect of power accumulation.
  • repeated transmission means that the same transmission content is transmitted in multiple time units. This time unit can be one subframe or multiple subframes.
  • a data block in order to enhance coverage, a data block will be repeatedly transmitted multiple times.
  • multiple repeatedly transmitted data blocks will be frequency-hopped transmission.
  • the base station in order to ensure the gain of the cross-subframe channel estimation and the symbol combining gain, the base station will configure a certain frequency position to continuously perform multiple transmissions (such as Ych times) for repeated transmission.
  • Ych parameter is defined as the frequency hopping interval.
  • FDD Frequency Division Duplexing
  • Ych the value range of Ych is ⁇ 1, 2, 4, 8 ⁇
  • FDD coverage enhancement mode B the value range of Ych is ⁇ 2, 4, 8, 16 ⁇ .
  • TDD coverage enhancement mode A the value range of Ych is ⁇ 1, 5, 10, 20 ⁇
  • TDD coverage enhancement mode B the value of Ych The range is ⁇ 5, 10, 20, 40 ⁇ .
  • an MTC physical downlink control channel (MTC physical downlink control channel, MPDCCH) in MTC schedules an MTC physical downlink shared channel (MTC physical downlink shared channel, MPDSCH) or MTC physical uplink shared channel (MTC physical uplink shared channel) shared channels, MPUSCH).
  • MTC physical downlink control channel MTC physical downlink control channel
  • MPDCCH MTC physical downlink control channel
  • MTC physical uplink shared channel MTC physical uplink shared channel
  • MPUSCH MTC physical uplink shared channel
  • the present disclosure also proposes a scheme for continuously scheduling multiple uplink or downlink data blocks (TBs) through one MPDCCH.
  • an alternating transmission unit may include multiple repeated transmissions.
  • the number of repeated transmissions included in the alternate transmission unit is defined as the size of the alternate transmission unit.
  • the terminal may configure frequency hopping transmission and TB alternate transmission at the same time. How to configure and set the number of repeated transmission TBs included in an alternating transmission unit makes frequency hopping transmission and TB alternating transmission more coordinated, and how to perform frequency hopping in the case of multiple TB alternating transmission, there is no corresponding s solution.
  • the present disclosure provides a design scheme for the configuration mode and configuration range of an alternate transmission unit in TB alternate transmission, so that it can better match frequency hopping transmission, and also provides frequency hopping transmission under multi-TB alternate transmission Design scheme.
  • Embodiments of the present disclosure provide a data transmission solution, which can be applied to a wireless communication system to implement repeated transmission and frequency hopping transmission of multiple data blocks between a terminal and a base station.
  • Fig. 1 is a schematic structural diagram of a wireless communication system according to some exemplary embodiments.
  • the mobile communication system may include: several terminals 110 and several base stations 120.
  • the terminal 110 may be a device that provides voice and / or data connectivity to the user.
  • the terminal 110 may communicate with one or more core networks via a radio access network (Radio Access Network, RAN).
  • the terminal 110 may be an Internet of Things terminal, such as a sensor device, a mobile phone (or called a “cellular” phone), and
  • the computer of the Internet of Things terminal may be, for example, a fixed, portable, pocket-sized, handheld, built-in computer, or vehicle-mounted device.
  • Station For example, Station (STA), subscriber unit (subscriber unit), subscriber station (subscriber station), mobile station (mobile station), mobile station (mobile), remote station (remote station), access point, remote terminal ( remote), access terminal (access terminal), user device (user terminal), user agent (user agent), user equipment (user device), or user terminal (user equipment, UE).
  • the terminal 110 may also be a device of an unmanned aerial vehicle.
  • the base station 120 may be a network-side device in a wireless communication system.
  • the wireless communication system may be the 4th generation mobile communication (4G) system, also known as Long Term Evolution (LTE) system; or, the wireless communication system may also be a 5G system, Also known as the new radio (NR) system.
  • the wireless communication system may be the next generation system of the 5G system.
  • the base station 120 may be an evolved base station (eNB) used in a 4G system.
  • the base station 120 may also be a base station (gNB) using a centralized distributed architecture in a 5G system.
  • eNB evolved base station
  • gNB base station
  • the centralized unit is equipped with a protocol stack of Packet Data Convergence Protocol (PDCP) layer, Radio Link Control Protocol (Radio Link Control, RLC) layer, and Media Access Control (MAC) layer; distribution A physical (PHY) layer protocol stack is provided in the unit.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control Protocol
  • MAC Media Access Control
  • PHY physical
  • a wireless connection can be established between the base station 120 and the terminal 110 through a wireless air interface.
  • the wireless air interface is based on the fourth generation mobile communication network technology (4G) standard; or, the wireless air interface is based on the fifth generation mobile communication network technology (5G) standard, such as
  • the wireless air interface is a new air interface; alternatively, the wireless air interface may also be a wireless air interface based on the next-generation mobile communication network technology standard of 5G.
  • the above wireless communication system may further include a network management device 130.
  • the network management device 130 may be a core network device in a wireless communication system.
  • the network management device 130 may be a mobility management entity (Mobility Management Entity, Evolved Packet Core (EPC)). MME).
  • EPC Evolved Packet Core
  • MME Mobility Management Entity
  • the network management device may also be other core network devices, such as a serving gateway (Serving GateWay, SGW), a public data network gateway (Public Data, Network GatewayWay, PGW), a policy and charging rule function unit (Policy and Charging Rules) Function, PCRF) or Home Subscriber Server (HSS), etc.
  • the implementation form of the network management device 130 is not limited by the embodiments of the present disclosure.
  • the base station when performing data transmission between the above terminal and the base station, can simultaneously schedule the repeated transmission and frequency hopping transmission of multiple data blocks through one PDCCH.
  • Fig. 2 is a flowchart of a data transmission method according to an exemplary embodiment. As shown in Fig. 2, the data transmission method is applied to the wireless communication system shown in Fig. 1 and is executed by the terminal 110 in Fig. 1, The method may include the following steps.
  • step 201 receiving scheduling information sent by a base station in a physical downlink control channel PDCCH, the scheduling information is used to schedule transmission of at least two data blocks.
  • step 202 a transmission narrowband set of the at least two data blocks is obtained, and the narrowband set includes at least two narrowbands.
  • a size parameter of an alternate transmission unit is obtained.
  • the alternate transmission unit is a data unit composed of multiple repeated transmissions of any one of at least two data blocks.
  • the size parameter of the alternate transmission unit indicates the alternate transmission The number of repeated transmissions of data blocks in a unit.
  • step 204 according to the transmission narrowband set of the at least two data blocks and the size parameter of the alternate transmission unit, the at least two data blocks are alternately frequency-hopped with the base station.
  • the at least two data blocks correspond to respective transmission narrowband sets, and each transmission narrowband set includes at least two narrowbands; according to the transmission narrowband set of the at least two data blocks and the size parameter of the alternate transmission unit, Alternate frequency hopping transmission of the at least two data blocks with the base station includes:
  • Step a On a narrow band of the transmission narrow band set corresponding to the first target data block, an alternating transmission unit that transmits the first target data block with the base station, the first target data block is among the at least two data blocks Any data block;
  • Step b After completing the transmission of an alternate transmission unit of the first target data block, an alternate transmission of the second target data block with the base station on a narrow band of the transmission narrow band set corresponding to the second target data block A transmission unit, the second target data block is any one of the remaining data blocks in the at least two data blocks;
  • Step c After completing one round of transmission of an alternate transmission unit of each of the at least two data blocks, determine whether all the alternate transmission units of each of the at least two data blocks have been transmitted, if If yes, stop transmission, otherwise, perform steps a-b.
  • the at least two data blocks correspond to a common transmission narrowband set, and according to the transmission narrowband set of the at least two data blocks and the size parameter of the alternate transmission unit, the at least two data are alternately frequency-hopped with the base station to transmit the at least two data Blocks, including:
  • Step a On a first narrowband in the set of transmission narrowbands, an alternating transmission unit that transmits a first data block with the base station, the first data block is any one of the at least two data blocks, the The first narrowband is any narrowband in the set of transmission narrowbands;
  • Step b After completing the transmission of an alternate transmission unit of the first data block, an alternate transmission of the second data block with the base station on the second narrowband different from the first narrowband in the transmission narrowband set A transmission unit, the second data block is any one of the remaining data blocks in the at least two data blocks;
  • Step c After completing one round of transmission of an alternate transmission unit of each of the at least two data blocks, determine whether all the alternate transmission units of each of the at least two data blocks have been transmitted, if If yes, stop transmission, otherwise, perform steps a-b.
  • acquiring the transmission narrowband set of the at least two data blocks includes:
  • the frequency hopping step configured by the base station for the terminal in advance, and the frequency hopping step is used to indicate a narrowband interval between two adjacent narrowbands in frequency hopping transmission;
  • the transmission narrowband set is acquired according to the at least two narrowbands transmitted by frequency hopping of the at least two data blocks.
  • acquiring the transmission narrowband set of the at least two data blocks according to the scheduling information includes:
  • the acquiring the size parameter of the alternating transmission unit includes:
  • the parameter value of the frequency hopping interval pre-configured by the base station is used to indicate the number of repeated transmissions of one data block in each frequency hopping transmission;
  • the parameter value of the frequency hopping interval is acquired as the value of the size parameter of the alternating transmission unit.
  • the acquiring the size parameter of the alternating transmission unit includes:
  • the acquiring the size parameter of the alternating transmission unit includes:
  • the base station When the base station pre-configures the terminal with the frequency hopping interval parameter value, and the terminal does not activate frequency hopping transmission, performing the acquisition of the size parameter of the alternate transmission unit configured by the base station in advance through broadcast signaling or user-specific signaling Step, or, perform the step of acquiring the size parameter of the alternate transmission unit sent by the base station through the physical downlink control channel.
  • the acquiring the size parameter of the alternating transmission unit further includes:
  • the base station configures the terminal with a frequency hopping interval parameter value in advance, and the terminal has activated frequency hopping transmission, the frequency hopping interval parameter value is acquired as the size parameter value of the alternating transmission unit.
  • the value range of the size parameter of the alternating transmission unit is ⁇ 1, 2, 4, 8 ⁇ ;
  • the value range of the size parameter of the alternating transmission unit is ⁇ 2, 4, 8, 16 ⁇ ;
  • the value range of the size parameter of the alternating transmission unit is ⁇ 1, 5, 10, 20 ⁇ ;
  • the value range of the size parameter of the alternating transmission unit is ⁇ 5, 10, 20, 40 ⁇ .
  • the terminal may obtain the transmission of the at least two data blocks Narrowband set, and obtain the size parameter of the alternating transmission unit, and then according to the transmission narrowband set of the at least two data blocks and the size parameter of the alternate transmission unit, alternately frequency hopping the base station and transmitting the at least two data blocks, thereby
  • the scheduling information in the PDCCH simultaneously realizes the scheduling of repeated transmission and frequency hopping transmission of multiple data blocks between the terminal and the base station.
  • Fig. 3 is a flowchart of a data transmission method according to an exemplary embodiment. As shown in Fig. 3, the data transmission method is applied to the wireless communication system shown in Fig. 1 and is executed by the base station 120 in Fig. 1, The method may include the following steps.
  • step 301 scheduling information is sent to a terminal in a physical downlink control channel PDCCH, and the scheduling information is used to adjust transmission of at least two data blocks.
  • step 302 a transmission narrowband set of the at least two data blocks is obtained, and the narrowband set includes at least two narrowbands.
  • a size parameter of an alternate transmission unit is obtained.
  • the alternate transmission unit is a data unit composed of multiple repeated transmissions of any one of at least two data blocks.
  • the size parameter of the alternate transmission unit indicates the alternate transmission The number of repeated transmissions of data blocks in a unit.
  • step 304 according to the transmission narrowband set of the at least two data blocks and the size parameter of the alternate transmission unit, the at least two data blocks are alternately frequency hopped with the terminal to transmit.
  • the at least two data blocks correspond to respective transmission narrowband sets.
  • Each transmission narrowband set includes at least two narrowbands.
  • Alternate frequency hopping transmission of the at least two data blocks with the terminal including:
  • Step a On a narrow band of the transmission narrow band set corresponding to the first target data block, an alternating transmission unit that transmits the first target data block with the terminal, the first target data block is among the at least two data blocks Any data block;
  • Step b After completing the transmission of an alternate transmission unit of the first target data block, on an narrow band of the transmission narrow band set corresponding to the second target data block, an alternate transmission of the second target data block with the terminal A transmission unit, the second target data block is any one of the remaining data blocks in the at least two data blocks;
  • Step c After completing one round of transmission of an alternate transmission unit of each of the at least two data blocks, determine whether all the alternate transmission units of each of the at least two data blocks have been transmitted, if If yes, stop transmission, otherwise, perform steps a-b.
  • the at least two data blocks correspond to a common transmission narrowband set.
  • the at least two data are alternately frequency-hopped with the terminal to transmit the at least two data Blocks, including:
  • Step a On a first narrowband in the set of transmission narrowbands, an alternating transmission unit that transmits a first data block with the terminal, the first data block is any one of the at least two data blocks, the The first narrowband is any narrowband in the set of transmission narrowbands;
  • Step b After completing the transmission of an alternate transmission unit of the first data block, an alternate transmission of the second data block with the terminal on the second narrow band different from the first narrow band in the set of transmission narrow bands A transmission unit, the second data block is any one of the remaining data blocks in the at least two data blocks;
  • Step c After completing one round of transmission of an alternate transmission unit of each of the at least two data blocks, determine whether all the alternate transmission units of each of the at least two data blocks have been transmitted, if If yes, stop transmission, otherwise, perform steps a-b.
  • acquiring the transmission narrowband set of the at least two data blocks includes:
  • the frequency hopping step configured for the terminal, and the frequency hopping step is used to indicate the narrowband interval between two adjacent narrowbands in frequency hopping transmission;
  • the transmission narrowband set is acquired according to the at least two narrowbands transmitted by frequency hopping of the at least two data blocks.
  • the method before sending scheduling information to the terminal in a physical downlink control channel PDCCH, the method further includes:
  • the transmission narrowband set is added to the scheduling information.
  • the acquiring the size parameter of the alternating transmission unit includes:
  • the parameter value of the frequency hopping interval configured for the terminal is obtained, and the parameter value of the frequency hopping interval is used to indicate the number of repeated transmissions of one data block in each frequency hopping transmission;
  • the parameter value of the frequency hopping interval is acquired as the value of the size parameter of the alternating transmission unit.
  • the acquiring the size parameter of the alternating transmission unit includes:
  • the first value is selected as the value of the size parameter of the alternate transmission unit from the preset value set of the size parameter of the alternate transmission unit; the first A value is the same as the parameter value of the frequency hopping interval configured for the terminal;
  • the second value is selected as the value from the preset value set of the size parameter of the alternating transmission unit
  • the value of the size parameter of the alternating transmission unit; the second value is any value in the value set.
  • the method further includes:
  • the size parameter of the alternate transmission unit is sent to the terminal through the physical downlink control channel.
  • the value range of the size parameter of the alternating transmission unit is ⁇ 1, 2, 4, 8 ⁇ ;
  • the value range of the size parameter of the alternating transmission unit is ⁇ 2, 4, 8, 16 ⁇ ;
  • the value range of the size parameter of the alternating transmission unit is ⁇ 1, 5, 10, 20 ⁇ ;
  • the value range of the size parameter of the alternating transmission unit is ⁇ 5, 10, 20, 40 ⁇ .
  • the base station when scheduling data transmission, the base station sends scheduling information for scheduling at least two data blocks to the terminal in a physical downlink control channel PDCCH.
  • the base station may acquire the transmission narrowband set of the at least two data blocks and obtain the size parameter of the alternate transmission unit, and then alternate with the terminal according to the transmission narrowband set of the at least two data blocks and the size parameter of the alternate transmission unit
  • the at least two data blocks are transmitted by frequency hopping, so that the scheduling of repeated transmission and frequency hopping transmission of multiple data blocks between the terminal and the base station is simultaneously achieved through the scheduling information in one PDCCH.
  • Fig. 4 is a flowchart of a data transmission method according to an exemplary embodiment. As shown in Fig. 4, the data transmission method is applied to the wireless communication system shown in Fig. 1, and the method may include the following steps.
  • step 401 the base station sends scheduling information to the terminal in one PDCCH, and the terminal receives the scheduling information, and the scheduling information is used to schedule transmission of at least two data blocks.
  • the PDCCH may be an MPDCCH.
  • the base station may schedule the transmission of multiple data blocks within one PDCCH.
  • the scheduling information sent by the base station to the terminal in one PDCCH may indicate the frequency resource used when multiple data blocks are transmitted, for example, may indicate the narrowband where multiple data blocks are transmitted.
  • the above scheduling information may include a narrowband starting transmission of at least two data blocks, or the above scheduling information may also include at least two data blocks during frequency hopping transmission.
  • Various narrow bands may be included in order to support subsequent frequency hopping transmission of data blocks.
  • the at least two data blocks may have the same initial transmission narrowband, or may be different.
  • the narrowbands of at least two data blocks during frequency hopping transmission may be the same or different.
  • the scheduling information may not directly indicate the time domain position of at least two data blocks, and the time domain position of the at least two data blocks may be indirectly indicated by the time domain position of the PDCCH, for example, at least two data blocks There is a fixed time-domain offset between the time-domain position of and the PDCCH.
  • the scheduling information may also directly indicate the time domain positions of at least two data blocks.
  • the scheduling information may include the time domain starting positions of at least two data blocks.
  • step 402 the terminal acquires the transmission narrowband set of the at least two data blocks according to the scheduling information, and the narrowband set includes at least two narrowbands.
  • the terminal when acquiring the transmission narrowband set of the at least two data blocks according to the scheduling information, the terminal may acquire the starting transmission narrowband of the at least two data blocks included in the scheduling information, and Obtain a frequency hopping step configured by the base station for the terminal in advance, and the frequency hopping step is used to indicate a narrowband interval between two adjacent narrowbands in frequency hopping transmission; and then transmit the narrowband according to the start of the at least two data blocks And the frequency hopping step size obtains at least two narrowbands of the at least two data block frequency hopping transmissions; and obtains the transmission narrowband set according to the at least two narrowbands of the at least two data block frequency hopping transmissions.
  • the starting frequency position f1 of the frequency hopping transmission (that is, the starting narrowband of the frequency hopping transmission of the data block) may be indicated by the PDCCH, where f1 of different TBs may be the same or different.
  • Other narrowbands of frequency hopping transmission of data blocks can be obtained by the following formula:
  • f (N + 1) represents the narrowband of the N + 1th frequency hopping transmission
  • offset is the frequency hopping step size
  • M represents the total number of resource blocks (Resource Blocks, RBs) contained in the system bandwidth.
  • the above frequency hopping step size can be configured by the base station in advance through broadcast signaling or user-specific signaling.
  • the above frequency hopping step size may also be sent by the base station to the terminal through the PDCCH, for example, the base station sends to the terminal through the above scheduling information (that is, the scheduling information includes the frequency hopping step size).
  • the terminal After calculating the narrowbands of the frequency hopping transmission of the data block, the terminal arranges the narrowbands into a set according to the calculation order to obtain the narrowband set of the data block.
  • the foregoing transmission narrowband set may also be directly indicated by the base station to the terminal through scheduling information, that is, the terminal obtains the scheduling information when acquiring the transmission narrowband set of the at least two data blocks according to the scheduling information The included transmission narrowband set of the at least two data blocks.
  • step 403 the terminal acquires the size parameter of the alternate transmission unit, which is a data unit composed of multiple repeated transmissions of any one of at least two data blocks, and the size parameter of the alternate transmission unit indicates the alternation The number of repeated transmissions of data blocks in the transmission unit.
  • the data corresponding to one data block when transmitting data between the terminal and the base station, may be transmitted in units of alternate transmission units, that is, the number of consecutive retransmissions of one data block n is set, and one data block is repeated n This constitutes an alternate transmission unit.
  • the size of the alternate transmission unit is the number of repeated transmissions of the data block in the alternate transmission unit.
  • the terminal when acquiring the size parameter of the alternate transmission unit, may acquire the parameter value of the frequency hopping interval pre-configured by the base station, and the parameter value of the frequency hopping interval is used to indicate the repetition of one data block in each frequency hopping transmission Number of transmissions; the parameter value of the frequency hopping interval is obtained as the value of the size parameter of the alternating transmission unit.
  • the terminal when the terminal is set with a corresponding frequency hopping interval, the terminal may directly multiplex the parameter value corresponding to the frequency hopping interval into the parameter value of the size parameter of the alternating transmission unit. For example, if the frequency hopping interval of the terminal is 2, the size parameter of the alternating transmission unit acquired by the terminal is also 2.
  • the above frequency hopping interval may be configured by the base station in advance through broadcast signaling or user-specific signaling.
  • the size parameter of the alternate transmission unit may also be configured by the base station.
  • the size parameter of the alternate transmission unit configured by the base station in advance through broadcast signaling or user-specific signaling, or the base station notifies the terminal of the size parameter through the PDCCH
  • the terminal obtains the size parameter of the alternate transmission unit configured by the base station in advance through broadcast signaling or user-specific signaling; or, obtains the alternate transmission sent by the base station through the physical downlink control channel Unit size parameter.
  • the terminal acquires the size parameter of the alternate transmission unit configured by the base station through broadcast signaling or user-specific signaling in advance, or
  • the terminal acquires the size parameter of the alternate transmission unit sent by the base station through the physical downlink control channel.
  • the terminal acquires the frequency hopping interval parameter value as the value of the size parameter of the alternating transmission unit.
  • step 404 the base station acquires the transmission narrowband set of the at least two data blocks.
  • the base station when it acquires the transmission narrowband set of the at least two data blocks, it may acquire the initial transmission narrowband of the at least two data blocks; the frequency hopping step configured for the terminal is obtained according to the at least two Starting transmission narrowbands of the data blocks and the frequency hopping step to obtain at least two narrowbands of the frequency hopping transmission of the at least two data blocks; and acquiring the transmission narrowbands according to the at least two narrowbands of the frequency hopping transmission of the at least two data blocks set.
  • the base station may combine the starting transmission narrowbands of at least two data blocks included in the scheduling information to calculate and obtain at least two narrowband acquisition transmission narrowband sets.
  • the base station may add the transmission narrowband set to the scheduling information, so that the terminal directly acquires the at least two narrowband acquisition transmission narrowband sets.
  • the base station may not directly instruct the at least two narrowbands to acquire the transmission narrowband set, and the terminal itself calculates the transmission narrowband set according to the starting transmission narrowband of the at least two data blocks in the scheduling information.
  • step 405 the base station acquires the size parameter of the alternate transmission unit.
  • the base station when acquiring the size parameter of the alternate transmission unit, when the terminal is configured with a frequency hopping interval in advance, the base station acquires the parameter value of the frequency hopping interval configured for the terminal, and the parameter value of the frequency hopping interval is used to indicate The number of repeated transmissions of a data block in each frequency hopping transmission; the parameter value of the frequency hopping interval is obtained as the value of the size parameter of the alternating transmission unit.
  • the base station may directly multiplex the parameter value corresponding to the frequency hopping interval into the parameter value of the size parameter of the alternating transmission unit.
  • the base station selects the first value as the value of the size parameter of the alternating transmission unit from a preset set of value parameters of the size parameter of the alternating transmission unit;
  • the first value is the same as the parameter value of the frequency hopping interval configured for the terminal.
  • the base station selects the second value as the value set of the size parameter of the preset alternate transmission unit
  • the value of the size parameter of the alternating transmission unit; the second value is any value in the set of values.
  • the base station may also set the size parameter of the alternating transmission unit according to whether the terminal is configured with a frequency hopping interval and whether the terminal activates frequency hopping transmission.
  • the base station may select a value different from the frequency hopping interval for configuration within a predetermined value range. For example, when the terminal is configured with a frequency hopping interval and the terminal activates frequency hopping transmission, the base station sets the size parameter of the alternating transmission unit to be consistent with the frequency hopping interval. When the frequency hopping transmission is not activated, the base station selects a value from the predetermined value range as the value of the size parameter of the alternating transmission unit.
  • the base station when the terminal is configured with a frequency hopping interval of 2, and the preset value range is ⁇ 1, 2, 4, 8 ⁇ , when the terminal activates frequency hopping transmission, the base station specifies the value 2 as the alternate transmission unit The value of the size parameter. When the terminal does not activate frequency hopping transmission, the base station may specify any value in ⁇ 1, 2, 4, 8 ⁇ as the value of the size parameter of the alternate transmission unit.
  • the base station may also select a value from the above range of values to specify the value of the size parameter of the alternating transmission unit.
  • the base station when the value of the size parameter of the alternate transmission unit is specified by the base station, the base station needs to configure the value of the size parameter of the alternate transmission unit to the terminal.
  • the configuration method may be uniform configuration in the entire cell through broadcast signaling ,
  • the terminal can also be configured exclusively through user-specific signaling.
  • the predetermined value range may be the same as the frequency hopping interval configured by the system for the terminal.
  • the value range is ⁇ 1, 2, 4, 8 ⁇ .
  • FDD coverage enhanced mode B the above value range is ⁇ 2, 4, 8, 16 ⁇ .
  • TDD coverage enhancement mode A the value range of the above value range is ⁇ 1, 5, 10, 20 ⁇
  • TDD coverage enhancement mode B the above value range is ⁇ 5, 10, 20, 40 ⁇ .
  • the base station may also send the size parameter of the alternate transmission unit to the terminal through the PDCCH.
  • the size parameter of the alternate transmission unit may be carried by the base station in scheduling information and sent to the terminal.
  • step 406 the terminal and the base station transmit the at least two data blocks alternately by frequency hopping according to the transmission narrowband set of the at least two data blocks and the size parameter of the alternate transmission unit.
  • At least two data blocks correspond to respective transmission narrowband sets, and each transmission narrowband set contains at least two narrowbands; when the at least two data blocks are transmitted by alternating frequency hopping, the terminal and the base station may perform the following steps transmission:
  • Step a The terminal and the base station transmit an alternate transmission unit of the first target data block on a narrowband of the transmission narrowband set corresponding to the first target data block.
  • the first target data block is any of the at least two data blocks.
  • Step b After completing the transmission of an alternate transmission unit of the first target data block, the terminal and the base station transmit an alternate of the second target data block on a narrow band of the transmission narrow band set corresponding to the second target data block A transmission unit, the second target data block is any one of the remaining data blocks in the at least two data blocks;
  • Step c After completing one round of transmission of one alternate transmission unit of each data block in the at least two data blocks, the terminal and the base station respectively determine whether all alternate transmission units of each data block in the at least two data blocks After the transmission is completed, if it is, the transmission is stopped, otherwise, the above steps a-b are continued.
  • the transmission narrowband sets of the at least two data blocks include transmission narrowband sets corresponding to the at least two data blocks, and each of the transmission narrowband sets includes at least two narrowbands.
  • a single TB can be used for frequency hopping transmission at the configured frequency position.
  • FIG. 5 shows a schematic diagram of an alternative frequency hopping transmission according to an embodiment of the present disclosure.
  • the base station configures two narrowbands ⁇ f1, f2 ⁇ for frequency hopping transmission for four data blocks (TB1, TB2, TB3, and TB4, respectively) through scheduling information, and the value of the size Z of the alternate transmission unit is 2.
  • the terminal and the base station first perform two consecutive transmissions on TB1 on f1, and then perform two consecutive transmissions on TB2 on f1, and two consecutive times on f1 for each data block After transmission, the terminal and the base station frequency hop to f2, and perform two consecutive transmissions for TB1 to TB4, respectively.
  • FIG. 5 takes the same narrowband for frequency hopping transmission of each TB as an example. In practical applications, the narrowband for frequency hopping transmission of each TB in FIG. 5 may also be different.
  • At least two data blocks correspond to a common transmission narrowband set.
  • the terminal and the base station may perform data transmission according to the following steps:
  • Step a On a first narrowband in the set of transmission narrowbands, an alternating transmission unit that transmits a first data block with the terminal, the first data block is any one of the at least two data blocks, the first A narrowband is any narrowband in the transmission narrowband set;
  • Step b After completing the transmission of an alternate transmission unit of the first data block, an alternate transmission of the second data block with the terminal on the second narrow band different from the first narrow band in the set of transmission narrow bands A transmission unit, the second data block is any one of the remaining data blocks in the at least two data blocks;
  • Step c After completing one round of transmission of an alternate transmission unit of each of the at least two data blocks, determine whether all the alternate transmission units of each of the at least two data blocks have been transmitted, if If yes, stop transmission, otherwise, perform steps a-b.
  • the transmission narrowband set of the at least two data blocks may be a single set.
  • frequency hopping transmission can be performed at the configured frequency position with multiple TBs alternately transmitted as an object.
  • FIG. 6 illustrates another schematic diagram of alternate frequency hopping transmission according to an embodiment of the present disclosure.
  • the base station configures two narrowbands ⁇ f1, f2 ⁇ for frequency hopping transmission with four data blocks (TB1, TB2, TB3, and TB4, respectively) through scheduling information, and the value of the size of the alternate transmission unit is 2 At this time, for the alternate transmission of multiple TBs, frequency hopping is performed every 2 transmissions.
  • the terminal and the base station first perform two consecutive transmissions on TB1 on f1, and then perform two consecutive transmissions on TB2 on f2 , Then two consecutive transmissions of TB3 on f1, and two consecutive transmissions of TB4 on f2, and so on.
  • the base station when scheduling data transmission, sends scheduling information for scheduling the transmission of at least two data blocks to the terminal in a physical downlink control channel PDCCH.
  • the base station and the terminal may separately obtain the transmission narrowband sets of the at least two data blocks and obtain the size parameter of the alternate transmission unit, and then according to the transmission narrowband set of the at least two data blocks and the size parameter of the alternate transmission unit , Alternately frequency-hopping the at least two data blocks, so that the scheduling of repeated transmission and frequency-hopping transmission of multiple data blocks between the terminal and the base station is simultaneously achieved through the scheduling information in one PDCCH.
  • the solution shown in the embodiments of the present disclosure provides a specific size configuration method of the alternating transmission unit, and provides two specific frequency hopping transmission methods.
  • Fig. 7 is a block diagram of a data transmission device according to an exemplary embodiment.
  • the data transmission device may be implemented as a terminal in the implementation environment shown in Fig. 1 through hardware or a combination of hardware and software All or part of the steps performed by the terminal in any of the embodiments shown in FIG. 2 or FIG. 4.
  • the data transmission device may include:
  • the scheduling information receiving module 701 is configured to receive scheduling information sent by a base station in a physical downlink control channel PDCCH, where the scheduling information is used to schedule transmission of at least two data blocks;
  • a narrowband set acquisition module 702 configured to acquire a transmission narrowband set of the at least two data blocks, where the narrowband set includes at least two narrowbands;
  • a size parameter obtaining module 703 is used to obtain a size parameter of an alternate transmission unit, the alternate transmission unit is a data unit composed of multiple repeated transmissions of any one of the at least two data blocks, the alternate transmission unit
  • the size parameter indicates the number of repeated transmissions of data blocks in the alternate transmission unit
  • the transmission module 704 is configured to alternately frequency-hop transmit the at least two data blocks with the base station according to the transmission narrowband set of the at least two data blocks and the size parameter of the alternate transmission unit.
  • the at least two data blocks correspond to respective transmission narrowband sets, and each of the transmission narrowband sets includes at least two narrowbands;
  • the transmission module 704 is specifically configured to perform the following steps:
  • Step a On a narrow band of the transmission narrow band set corresponding to the first target data block, an alternating transmission unit that transmits the first target data block with the base station, the first target data block is the at least two Any data block in the data block;
  • Step b After completing the transmission of an alternate transmission unit of the first target data block, transmit the second target data block with the base station on a narrow band of the transmission narrow band set corresponding to the second target data block
  • An alternate transmission unit, the second target data block is any one of the remaining data blocks in the at least two data blocks;
  • Step c After completing one round of transmission of one alternate transmission unit of each of the at least two data blocks, determine whether all alternate transmission units of each of the at least two data blocks have been transmitted If yes, stop transmission, otherwise, perform steps a-b.
  • the at least two data blocks correspond to a common transmission narrowband set; the transmission module 704 is specifically configured to perform the following steps:
  • Step a On a first narrowband in the set of transmission narrowbands, an alternating transmission unit that transmits a first data block with the base station, the first data block is any one of the at least two data blocks A data block, the first narrowband is any narrowband in the set of transmission narrowbands;
  • Step b After completing the transmission of an alternate transmission unit of the first data block, transmit second data with the base station on a second narrowband different from the first narrowband in the set of narrow transmission bands
  • An alternate transmission unit of a block, the second data block is any one of the remaining data blocks in the at least two data blocks;
  • Step c After completing one round of transmission of one alternate transmission unit of each of the at least two data blocks, determine whether all alternate transmission units of each of the at least two data blocks have been transmitted If yes, stop transmission, otherwise, perform steps a-b.
  • the narrowband set acquisition module 702 is specifically used to:
  • a frequency hopping step configured in advance by the base station for the terminal, the frequency hopping step used to indicate a narrowband interval between two adjacent narrowbands in frequency hopping transmission;
  • the narrowband set acquisition module 702 is specifically configured to acquire the transmission narrowband set of the at least two data blocks included in the scheduling information.
  • the size parameter acquisition module 703 is specifically used to:
  • the parameter value of the frequency hopping interval pre-configured by the base station is used to indicate the number of repeated transmissions of one data block in each frequency hopping transmission;
  • the size parameter acquisition module 703 is specifically used to:
  • the size parameter acquisition module 703 is specifically used to:
  • the base station configures the terminal with the frequency hopping interval parameter value in advance, and the terminal does not activate frequency hopping transmission, performing the acquisition of the alternate transmission previously configured by the base station through broadcast signaling or user-specific signaling
  • the size parameter acquisition module 703 is specifically used for,
  • the base station configures the terminal with a frequency hopping interval parameter value in advance and the terminal has activated frequency hopping transmission
  • the frequency hopping interval parameter value is acquired as the size parameter value of the alternate transmission unit .
  • the value range of the size parameter of the alternating transmission unit is ⁇ 1, 2, 4, 8 ⁇ ;
  • the value range of the size parameter of the alternating transmission unit is ⁇ 2, 4, 8, 16 ⁇ ;
  • the value range of the size parameter of the alternating transmission unit is ⁇ 1, 5, 10, 20 ⁇ ;
  • the value range of the size parameter of the alternating transmission unit is ⁇ 5, 10, 20, 40 ⁇ .
  • Fig. 8 is a block diagram of a data transmission device according to an exemplary embodiment.
  • the data transmission device may be implemented as a base station in the implementation environment shown in Fig. 1 through hardware or a combination of hardware and software All or part of the steps performed by the base station in any of the embodiments shown in FIG. 3 or FIG. 4.
  • the data transmission device may include:
  • the scheduling information sending module 801 is configured to send scheduling information to a terminal in a physical downlink control channel PDCCH, where the scheduling information is used to schedule transmission of at least two data blocks;
  • the narrowband set acquisition module 802 is configured to acquire a transmission narrowband set of the at least two data blocks, and the narrowband set includes at least two narrowbands;
  • a size parameter obtaining module 803 is used to obtain a size parameter of an alternate transmission unit, the alternate transmission unit is a data unit composed of multiple repeated transmissions of any one of the at least two data blocks, the alternate transmission unit
  • the size parameter indicates the number of repeated transmissions of data blocks in the alternate transmission unit
  • the transmission module 804 is configured to transmit the at least two data blocks alternately by frequency hopping with the terminal according to the transmission narrowband set of the at least two data blocks and the size parameter of the alternate transmission unit.
  • At least two data blocks correspond to respective transmission narrowband sets, and each of the transmission narrowband sets includes at least two narrowbands; the transmission module 804 is specifically configured to perform the following steps:
  • Step a On a narrow band of the transmission narrow band set corresponding to the first target data block, an alternating transmission unit that transmits the first target data block with the terminal, the first target data block is the at least two Any data block in the data block;
  • Step b After completing the transmission of an alternate transmission unit of the first target data block, transmit the second target data block with the terminal on a narrow band of the transmission narrow band set corresponding to the second target data block
  • An alternate transmission unit, the second target data block is any one of the remaining data blocks in the at least two data blocks;
  • Step c After completing one round of transmission of one alternate transmission unit of each of the at least two data blocks, determine whether all alternate transmission units of each of the at least two data blocks have been transmitted If yes, stop transmission, otherwise, perform steps a-b.
  • the at least two data blocks correspond to a common transmission narrowband set;
  • the narrowband set acquisition module 804 is specifically configured to perform the following steps:
  • Step a On a first narrowband in the set of transmission narrowbands, an alternating transmission unit that transmits a first data block with the terminal, the first data block is any one of the at least two data blocks A data block, the first narrowband is any narrowband in the set of transmission narrowbands;
  • Step b After completing the transmission of an alternate transmission unit of the first data block, transmit second data with the terminal on a second narrowband different from the first narrowband in the set of narrow transmission bands
  • An alternate transmission unit of a block, the second data block is any one of the remaining data blocks in the at least two data blocks;
  • Step c After completing one round of transmission of one alternate transmission unit of each of the at least two data blocks, determine whether all alternate transmission units of each of the at least two data blocks have been transmitted If yes, stop transmission, otherwise, perform steps a-b.
  • the narrowband set acquisition module 802 is specifically used to:
  • the device further includes:
  • the adding module is used to add the transmission narrowband set to the scheduling information before the scheduling information sending module sends the scheduling information to the terminal in a physical downlink control channel PDCCH.
  • the size parameter acquisition module 803 is specifically used for,
  • the parameter value of the frequency hopping interval configured for the terminal is obtained, and the parameter value of the frequency hopping interval is used to indicate the repeated transmission of one data block in each frequency hopping transmission frequency;
  • the size parameter acquisition module 803 is specifically used for,
  • the first value is selected as the value of the size parameter of the alternating transmission unit from the preset value set of the size parameter of the alternating transmission unit
  • the first value is the same as the parameter value of the frequency hopping interval configured for the terminal;
  • the terminal When the terminal is not configured with a frequency hopping interval, or when the terminal is configured with a frequency hopping interval and the terminal does not activate frequency hopping transmission, select the second from the numerical set of the size parameter of the preset alternating transmission unit
  • the numerical value serves as the numerical value of the size parameter of the alternating transmission unit; the second numerical value is any numerical value in the numerical value set.
  • the device further includes: a configuration module or a sending module;
  • the configuration module is configured to configure the size parameter of the alternate transmission unit to the terminal through broadcast signaling or user-specific signaling;
  • the sending module is configured to send the size parameter of the alternate transmission unit to the terminal through the physical downlink control channel.
  • the value range of the size parameter of the alternating transmission unit is ⁇ 1, 2, 4, 8 ⁇ ;
  • the value range of the size parameter of the alternating transmission unit is ⁇ 2, 4, 8, 16 ⁇ ;
  • the value range of the size parameter of the alternating transmission unit is ⁇ 1, 5, 10, 20 ⁇ ;
  • the value range of the size parameter of the alternating transmission unit is ⁇ 5, 10, 20, 40 ⁇ .
  • An exemplary embodiment of the present disclosure also provides a data transmission system, including: a terminal and a base station.
  • the terminal includes the data transmission device provided in the embodiment shown in FIG. 7 above; the base station includes the data transmission device provided in the embodiment shown in FIG. 8 above.
  • the device provided by the above embodiment realizes its function, it is only exemplified by the division of the above functional modules.
  • the above functions can be allocated to different functional modules according to actual needs. That is, the content structure of the device is divided into different functional modules to complete all or part of the functions described above.
  • An exemplary embodiment of the present disclosure provides a data transmission apparatus capable of implementing all or part of the steps performed by the terminal in the embodiment shown in FIG. 2 or FIG. 4 of the present disclosure.
  • the data transmission apparatus includes: a processor, Memory for storing processor executable instructions;
  • the processor is configured as:
  • the alternate transmission unit is a data unit composed of multiple repeated transmissions of any one of the at least two data blocks, and the size parameter of the alternate transmission unit indicates the alternate transmission Number of repeated transmissions of data blocks in the unit;
  • the transmission narrowband set of the at least two data blocks and the size parameter of the alternate transmission unit alternately frequency hopping the base station to transmit the at least two data blocks.
  • An exemplary embodiment of the present disclosure provides a data transmission apparatus capable of implementing all or part of the steps performed by the base station in the embodiment shown in FIG. 3 or FIG. 4 of the present disclosure.
  • the data transmission apparatus includes: a processor, Memory for storing processor executable instructions;
  • the processor is configured as:
  • the alternate transmission unit is a data unit composed of multiple repeated transmissions of any one of the at least two data blocks, and the size parameter of the alternate transmission unit indicates the alternate transmission Number of repeated transmissions of data blocks in the unit;
  • the at least two data blocks are alternately frequency-hopped with the terminal and transmitted.
  • the terminal and the base station include hardware structures and / or software modules corresponding to performing each function.
  • the embodiments of the present disclosure can be implemented in the form of hardware or a combination of hardware and computer software. Whether a function is executed by hardware or computer software driven hardware depends on the specific application and design constraints of the technical solution. A person skilled in the art may use different methods to implement the described functions for each specific application, but such implementation should not be considered to exceed the scope of the technical solutions of the embodiments of the present disclosure.
  • Fig. 9 is a schematic structural diagram of a terminal according to an exemplary embodiment.
  • the terminal 900 includes a communication unit 904 and a processor 902.
  • the processor 902 may also be a controller, which is represented as "controller / processor 902" in FIG.
  • the communication unit 904 is used to support the terminal to communicate with other network devices (such as base stations, etc.).
  • the terminal 900 may further include a memory 903, and the memory 903 is used to store program codes and data of the terminal 900.
  • FIG. 9 only shows a simplified design of the terminal 900.
  • the terminal 900 may include any number of processors, controllers, memories, communication units, etc., and all terminals that can implement the embodiments of the present disclosure are within the protection scope of the embodiments of the present disclosure.
  • Fig. 10 is a schematic structural diagram of a base station according to an exemplary embodiment.
  • the base station 1000 includes a communication unit 1004 and a processor 1002.
  • the processor 1002 may also be a controller, which is represented as "controller / processor 1002" in FIG.
  • the communication unit 1004 is used to support the base station to communicate with other network devices (such as terminals, other base stations, gateways, etc.).
  • the base station 1000 may further include a memory 1003, which is used to store the program code and data of the base station 1000.
  • FIG. 10 only shows a simplified design of the base station 1000.
  • the base station 1000 may include any number of processors, controllers, memories, communication units, etc., and all base stations that can implement the embodiments of the present disclosure are within the protection scope of the embodiments of the present disclosure.
  • Computer-readable media includes computer storage media and communication media, where communication media includes any medium that facilitates transfer of a computer program from one place to another.
  • the storage medium may be any available medium that can be accessed by a general-purpose or special-purpose computer.
  • An embodiment of the present disclosure also provides a computer storage medium for storing computer software instructions used by the above terminal or base station, which includes a program designed to execute the above data transmission method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开揭示了一种数据传输方法,属于无线通信技术领域。所述方法包括:接收基站在一个PDCCH内发送的调度信息,调度信息用于对至少两个数据块的传输进行调度;获取传输窄带集合;获取交替传输单元的大小参数;根据传输窄带集合以及交替传输单元的大小参数,与基站交替跳频传输至少两个数据块。本公开通过一个PDCCH内的调度信息同时实现终端和基站之间的多个数据块的重复传输和跳频传输的调度。

Description

数据传输方法、装置及可读存储介质 技术领域
本公开涉及无线通信技术领域,特别涉及一种数据传输方法、装置及可读存储介质。
背景技术
随着物联网的不断发展,机器类通信(Machine Type Communication,MTC)技术的应用也越来越广泛。
在相关技术中,为了节约调度资源和终端功耗,MTC场景中基站可以在一次调度中,对多个数据块的传输进行调度;为了增加时间分集效果,提高传输效率,在多数据块调度中还有使用交替传输机制的需求,同时为了保证跨子帧信道估计和符号合并增益,一个数据块也有多次重复传输的需求。
然而,相关技术中还没有同时实现对多个数据块的重复传输和跳频传输进行调度的解决方案。
发明内容
本公开提供一种数据传输方法、装置及可读存储介质。所述技术方案如下:
根据本公开实施例的第一方面,提供了一种数据传输方法,所述方法由终端执行,所述方法包括:
接收基站在一个物理下行控制信道PDCCH内发送的调度信息,所述调度信息用于对至少两个数据块的传输进行调度;
获取所述至少两个数据块的传输窄带集合,所述传输窄带集合中包含至少两个窄带;
获取交替传输单元的大小参数,所述交替传输单元是由所述至少两个数据块中任一数据块多次重复传输所构成的数据单元,所述交替传输单元的大小参数指示所述交替传输单元中的数据块的重复传输次数;
根据所述至少两个数据块的传输窄带集合以及所述交替传输单元的大小参数,与所述基站交替跳频传输所述至少两个数据块。
可选的,所述至少两个数据块对应有各自的所述传输窄带集合,每个所述 传输窄带集合中包含至少两个窄带;所述根据所述至少两个数据块的传输窄带集合以及所述交替传输单元的大小参数,与所述基站交替跳频传输所述至少两个数据块,包括:
步骤a:在第一目标数据块对应的传输窄带集合的一个窄带上,与所述基站传输所述第一目标数据块的一个交替传输单元,所述第一目标数据块是所述至少两个数据块中的任一数据块;
步骤b:在完成对所述第一目标数据块的一个交替传输单元的传输后,在第二目标数据块对应的传输窄带集合的一个窄带上,与所述基站传输所述第二目标数据块的一个交替传输单元,所述第二目标数据块是所述至少两个数据块中剩余数据块中的任一数据块;
步骤c:在完成对所述至少两个数据块中每个数据块的一个交替传输单元的一轮传输后,判断所述至少两个数据块中每个数据块的所有交替传输单元是否传输完毕,如果是,则停止传输,否则,执行步骤a-步骤b。
可选的,所述至少两个数据块对应有共同的传输窄带集合,所述根据所述至少两个数据块的传输窄带集合以及所述交替传输单元的大小参数,与所述基站交替跳频传输所述至少两个数据块,包括:
步骤a:在所述传输窄带集合中的一个第一窄带上,与所述基站传输第一数据块的一个交替传输单元,所述第一数据块是所述至少两个数据块中的任一数据块,所述第一窄带是所述传输窄带集合中的任一窄带;
步骤b:在完成对所述第一数据块的一个交替传输单元的传输后,在所述传输窄带集合中的不同于所述第一窄带的第二窄带上,与所述基站传输第二数据块的一个交替传输单元,所述第二数据块是所述至少两个数据块中剩余数据块中的任一数据块;
步骤c:在完成对所述至少两个数据块中每个数据块的一个交替传输单元的一轮传输后,判断所述至少两个数据块中每个数据块的所有交替传输单元是否传输完毕,如果是,则停止传输,否则,执行步骤a-步骤b。
可选的,所述获取所述至少两个数据块的传输窄带集合,包括:
获取所述调度信息中包含的所述至少两个数据块的起始传输窄带;
获取所述基站预先为所述终端配置的跳频步长,所述跳频步长用于指示跳频传输中相邻两个窄带之间的窄带间隔;
根据所述至少两个数据块的起始传输窄带以及所述跳频步长获得所述至 少两个数据块跳频传输的至少两个窄带;
根据所述至少两个数据块跳频传输的至少两个窄带获取所述传输窄带集合。
可选的,所述获取所述至少两个数据块的传输窄带集合,包括:
获取所述调度信息中包含的所述至少两个数据块的传输窄带集合。
可选的,所述获取交替传输单元的大小参数,包括:
获取所述基站预先配置的跳频间隔的参数数值,所述跳频间隔的参数数值用于指示每一次跳频传输中一个数据块的重复传输次数;
将所述跳频间隔的参数数值获取为所述交替传输单元的大小参数的数值。
可选的,所述获取交替传输单元的大小参数,包括:
获取所述基站预先通过广播信令或者用户专属信令配置的所述交替传输单元的大小参数;
或者,
获取所述基站通过所述物理下行控制信道发送的所述交替传输单元的大小参数。
可选的,所述获取交替传输单元的大小参数,包括:
当所述基站预先为所述终端配置有跳频间隔的参数数值,且所述终端未激活跳频传输时,执行获取所述基站预先通过广播信令或者用户专属信令配置的所述交替传输单元的大小参数的步骤,或者,执行获取所述基站通过所述物理下行控制信道发送的所述交替传输单元的大小参数的步骤。
可选的,所述获取交替传输单元的大小参数,还包括:
当所述基站预先为所述终端配置有跳频间隔的参数数值,且所述终端已激活跳频传输时,将所述跳频间隔的参数数值获取为所述交替传输单元的大小参数的数值。
可选的,在频分双工FDD覆盖增强模式A下,所述交替传输单元的大小参数的取值范围为{1,2,4,8};
在频分双工FDD覆盖增强模式B下,所述交替传输单元的大小参数的取值范围为{2,4,8,16};
在时分双工TDD覆盖增强模式A下,所述交替传输单元的大小参数的取值范围为{1,5,10,20};
在时分双工TDD覆盖增强模式B下,所述交替传输单元的大小参数的取 值范围为{5,10,20,40}。
根据本公开实施例的第二方面,提供了一种数据传输方法,所述方法由基站执行,所述方法包括:
在一个物理下行控制信道PDCCH内向终端发送调度信息,所述调度信息用于对至少两个数据块的传输进行调度;
获取所述至少两个数据块的传输窄带集合,所述窄带集合中包含至少两个窄带;
获取交替传输单元的大小参数,所述交替传输单元是由所述至少两个数据块中任一数据块多次重复传输所构成的数据单元,所述交替传输单元的大小参数指示所述交替传输单元中的数据块的重复传输次数;
根据所述至少两个数据块的传输窄带集合以及所述交替传输单元的大小参数,与所述终端交替跳频传输所述至少两个数据块。
可选的,所述至少两个数据块对应有各自的所述传输窄带集合,每个所述传输窄带集合中包含至少两个窄带;所述根据所述至少两个数据块的传输窄带集合以及所述交替传输单元的大小参数,与所述终端交替跳频传输所述至少两个数据块,包括:
步骤a:在第一目标数据块对应的传输窄带集合的一个窄带上,与所述终端传输所述第一目标数据块的一个交替传输单元,所述第一目标数据块是所述至少两个数据块中的任一数据块;
步骤b:在完成对所述第一目标数据块的一个交替传输单元的传输后,在第二目标数据块对应的传输窄带集合的一个窄带上,与所述终端传输所述第二目标数据块的一个交替传输单元,所述第二目标数据块是所述至少两个数据块中剩余数据块中的任一数据块;
步骤c:在完成对所述至少两个数据块中每个数据块的一个交替传输单元的一轮传输后,判断所述至少两个数据块中每个数据块的所有交替传输单元是否传输完毕,如果是,则停止传输,否则,执行步骤a-步骤b。
可选的,所述至少两个数据块对应有共同的传输窄带集合,所述根据所述至少两个数据块的传输窄带集合以及所述交替传输单元的大小参数,与所述终端交替跳频传输所述至少两个数据块,包括:
步骤a:在所述传输窄带集合中的一个第一窄带上,与所述终端传输第一 数据块的一个交替传输单元,所述第一数据块是所述至少两个数据块中的任一数据块,所述第一窄带是所述传输窄带集合中的任一窄带;
步骤b:在完成对所述第一数据块的一个交替传输单元的传输后,在所述传输窄带集合中的不同于所述第一窄带的第二窄带上,与所述终端传输第二数据块的一个交替传输单元,所述第二数据块是所述至少两个数据块中剩余数据块中的任一数据块;
步骤c:在完成对所述至少两个数据块中每个数据块的一个交替传输单元的一轮传输后,判断所述至少两个数据块中每个数据块的所有交替传输单元是否传输完毕,如果是,则停止传输,否则,执行步骤a-步骤b。
可选的,所述获取所述至少两个数据块的传输窄带集合,包括:
获取所述至少两个数据块的起始传输窄带;
获取为所述终端配置的跳频步长,所述跳频步长用于指示跳频传输中相邻两个窄带之间的窄带间隔;
根据所述至少两个数据块的起始传输窄带以及所述跳频步长获得所述至少两个数据块跳频传输的至少两个窄带;
根据所述至少两个数据块跳频传输的至少两个窄带获取所述传输窄带集合。
可选的,在一个物理下行控制信道PDCCH内向终端发送调度信息之前,所述方法还包括:
将所述传输窄带集合添加在所述调度信息中。
可选的,所述获取交替传输单元的大小参数,包括:
当预先为所述终端配置有跳频间隔时,获取为所述终端配置的跳频间隔的参数数值,所述跳频间隔的参数数值用于指示每一次跳频传输中一个数据块的重复传输次数;
将所述跳频间隔的参数数值获取为所述交替传输单元的大小参数的数值。
可选的,所述获取交替传输单元的大小参数,包括:
当所述终端配置有跳频间隔,且所述终端已激活跳频传输时,从预先设置的交替传输单元的大小参数的数值集合中选择第一数值作为所述交替传输单元的大小参数的数值;所述第一数值与为所述终端配置的跳频间隔的参数数值相同;
当所述终端未配置有跳频间隔,或者,当所述终端配置有跳频间隔且所述 终端未激活跳频传输时,从预先设置的交替传输单元的大小参数的数值集合中选择第二数值作为所述交替传输单元的大小参数的数值;所述第二数值是所述数值集合中的任一数值。
可选的,所述方法还包括:
通过广播信令或者用户专属信令将所述交替传输单元的大小参数配置给所述终端;
或者,
通过所述物理下行控制信道向所述终端发送所述交替传输单元的大小参数。
可选的,在频分双工FDD覆盖增强模式A下,所述交替传输单元的大小参数的取值范围为{1,2,4,8};
在频分双工FDD覆盖增强模式B下,所述交替传输单元的大小参数的取值范围为{2,4,8,16};
在时分双工TDD覆盖增强模式A下,所述交替传输单元的大小参数的取值范围为{1,5,10,20};
在时分双工TDD覆盖增强模式B下,所述交替传输单元的大小参数的取值范围为{5,10,20,40}。
根据本公开实施例的第三方面,提供了一种数据传输装置,所述装置用于终端中,所述装置包括:
调度信息接收模块,用于接收基站在一个物理下行控制信道PDCCH内发送的调度信息,所述调度信息用于对至少两个数据块的传输进行调度;
窄带集合获取模块,用于获取所述至少两个数据块的传输窄带集合,所述窄带集合中包含至少两个窄带;
大小参数获取模块,用于获取交替传输单元的大小参数,所述交替传输单元是由所述至少两个数据块中任一数据块多次重复传输所构成的数据单元,所述交替传输单元的大小参数指示所述交替传输单元中的数据块的重复传输次数;
传输模块,用于根据所述至少两个数据块的传输窄带集合以及所述交替传输单元的大小参数,与所述基站交替跳频传输所述至少两个数据块。
根据本公开实施例的第四方面,提供了一种数据传输装置,所述装置用于基站中,所述装置包括:
调度信息发送模块,用于在一个物理下行控制信道PDCCH内向终端发送调度信息,所述调度信息用于对至少两个数据块的传输进行调度;
窄带集合获取模块,用于获取所述至少两个数据块的传输窄带集合,所述窄带集合中包含至少两个窄带;
大小参数获取模块,用于获取交替传输单元的大小参数,所述交替传输单元是由所述至少两个数据块中任一数据块多次重复传输所构成的数据单元,所述交替传输单元的大小参数指示所述交替传输单元中的数据块的重复传输次数;
传输模块,用于根据所述至少两个数据块的传输窄带集合以及所述交替传输单元的大小参数,与所述终端交替跳频传输所述至少两个数据块。
根据本公开实施例的第五方面,提供了一种数据传输系统,所述系统包括:终端和基站;
所述终端包含如第三方面所述的数据传输装置;
所述基站包含如第四方面所述的数据传输装置。
根据本公开实施例的第六方面,提供了一种数据传输装置,所述装置用于终端中,所述装置包括:
处理器;
用于存储所述处理器的可执行指令的存储器;
其中,所述处理器被配置为:
接收基站在一个物理下行控制信道PDCCH内发送的调度信息,所述调度信息用于对至少两个数据块的传输进行调度;
获取所述至少两个数据块的传输窄带集合,所述窄带集合中包含至少两个窄带;
获取交替传输单元的大小参数,所述交替传输单元是由所述至少两个数据块中任一数据块多次重复传输所构成的数据单元,所述交替传输单元的大小参数指示所述交替传输单元中的数据块的重复传输次数;
根据所述至少两个数据块的传输窄带集合以及所述交替传输单元的大小 参数,与所述基站交替跳频传输所述至少两个数据块。
根据本公开实施例的第七方面,提供了一种基于免授权上行调度的数据传输装置,所述装置用于基站中,所述装置包括:
处理器;
用于存储所述处理器的可执行指令的存储器;
其中,所述处理器被配置为:
在一个物理下行控制信道PDCCH内向终端发送调度信息,所述调度信息用于对至少两个数据块的传输进行调度;
获取所述至少两个数据块的传输窄带集合,所述窄带集合中包含至少两个窄带;
获取交替传输单元的大小参数,所述交替传输单元是由所述至少两个数据块中任一数据块多次重复传输所构成的数据单元,所述交替传输单元的大小参数指示所述交替传输单元中的数据块的重复传输次数;
根据所述至少两个数据块的传输窄带集合以及所述交替传输单元的大小参数,与所述终端交替跳频传输所述至少两个数据块。
根据本公开实施例的第八方面,提供了一种计算机可读存储介质,所述计算机可读存储介质中包含可执行指令,终端中的处理器调用所述可执行指令以实现上述第一方面或者第一方面的任一可选实现方式所述的数据传输方法。
根据本公开实施例的第九方面,提供了一种计算机可读存储介质,所述计算机可读存储介质中包含可执行指令,基站中的处理器调用所述可执行指令以实现上述第二方面或者第二方面的任一可选实现方式所述的数据传输方法。
本公开的实施例提供的技术方案可以包括以下有益效果:
终端接收基站在一个物理下行控制信道PDCCH内发送的,指示至少两个数据块对应的调度信息后,可以获取该至少两个数据块的传输窄带集合,并获取交替传输单元的大小参数,然后根据该至少两个数据块的传输窄带集合以及该交替传输单元的大小参数,与该基站交替跳频传输该至少两个数据块,从而通过一个PDCCH内的调度信息同时实现终端和基站之间的多个数据块的重复 传输和跳频传输的调度。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并于说明书一起用于解释本公开的原理。
图1是根据部分示例性实施例示出的一种无线通信系统的结构示意图;
图2是根据一示例性实施例示出的一种数据传输的流程示意图;
图3是根据一示例性实施例示出的数据传输方法的流程图;
图4是根据一示例性实施例示出的数据传输方法的流程图;
图5是图4所示实施例涉及的一种交替跳频传输的示意图;
图6是图4所示实施例涉及的另一种交替跳频传输的示意图;
图7是根据一示例性实施例示出的一种数据传输装置的框图;
图8是根据一示例性实施例示出的一种数据传输装置的框图;
图9是根据一示例性实施例示出的一种终端的结构示意图;
图10是根据一示例性实施例示出的一种基站的结构示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
应当理解的是,在本文中提及的“若干个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
近年来,随着物联网技术的蓬勃发展,物联网设备为人们的生活和工作带 来了很多便利。其中,机器类通信技术(machine-type communicaion,MTC)是蜂窝物联网技术的典型代表。目前此类技术已经广泛用于智慧城市(例如抄表)、智慧农业,(例如温度湿度等信息的采集)以及智慧交通(例如共享单车)等诸多领域。考虑到MTC的广泛应用,且应用场景都是数据采集等对通信能力要求不高的场景。因此,MTC终端的一大特性就是低造价,相应的,为了降低造价,控制成本,相比于普通的手机等用户终端来说,MTC终端的处理能力也相应的大幅度降低。
由于MTC中的终端大多数部署在地下室等无线信号传播受限的区域,并且由于终端设备的硬件能力限制,导致其覆盖能力不如传统的长期演进(Long Term Evolution,LTE)网络。因此,在MTC网络中通常采用重复传输以累积功率,进而达到覆盖增强的效果,即在时间维度上重复传输相同的内容以达到功率累积的效果。简单来说,重复传输即在多个时间单位内传输相同的传输内容。这个时间单位可以是一个子帧,也可以是多个子帧。
另外,由于MTC中的终端大多部署在不容易充电或者更换电池的场景,比如野外或者地下室中,因此对MTC终端的功率节省是MTC的一大特性。
如前所述,MTC网络中为了覆盖增强,一个数据块会多次重复传输。同时为了获得更好的频率分集增益,多个重复传输的数据块会进行跳频传输。另外在跳频传输中为了保证跨子帧信道估计的增益和符号合并增益,基站会配置在某个频率位置连续进行多次(比如Ych次)重复传输。
例如,终端会在某个频率位置对一个数据块重复传输Ych次后,再跳到其他频率位置继续对该数据块传输Ych次。其中,上述Ych参数被定义为跳频间隔。具体比如,在频分双工(Frequency Division Duplexing,FDD)覆盖增强模式A下,Ych的取值范围为{1,2,4,8},FDD覆盖增强模式B下,Ych的取值范围是{2,4,8,16}。在时分双工(Time Division Duplexing,TDD)的覆盖增强模式A下,Ych的取值范围的取值范围是{1,5,10,20},在TDD覆盖增强模式B下,Ych的取值范围为{5,10,20,40}。
与传统LTE的调度类似,MTC中一个MTC物理下行控制信道(MTC physical downlink control channel,MPDCCH)调度一个MTC物理下行共享信道(MTC physical downlink shared channel,MPDSCH)或者MTC物理上行共享信道(MTC physical uplink shared channel,MPUSCH)。MTC终端在接收或者发送数据前都需去接收和盲检MPDCCH。当MTC终端发送或者接收一个 大数据包时,可能需要经过几轮调度才能完成。而在大多数情况下,由于信道状况相似,多次MPDCCH的调度内容可能类似,在一种可能的方案中,即使在这种情况下,终端仍然需要解调每次调度的MPDCCH,导致功耗较高。
为了避免上述情况下的功率消耗,本公开还提出通过一个MPDCCH连续调度多个上行或下行数据块(Transmission block,TB)的方案。
考虑到在MTC中的可能存在重复传输的情况,因此需要通过一个MPDCCH调度多个数据块中的每个数据块进行多次传输。
此外,为了增加时间分集效果,提高传输效率,在多TB调度中还有使用交替传输的机制的需求,即交替重复传输不同TB。同时为了保证跨子帧信道估计和符号合并增益,一个交替传输单元中可以包含多次重复传输。在本公开中,将交替传输单元包含的重复传输次数定义为交替传输单元的大小。
目前TB的交替传输还没有统一的标准,一个交替传输单元中可以包含多少个重复传输次数并不明确。也就是说,终端可能同时配置跳频传输和TB的交替传输。而如何配置和设置一个交替传输单元中包含的重复传输TB的次数,使得跳频传输和TB的交替传输更加协调,以及如何在多个TB交替传输的情况下如果进行跳频,目前还没有相应的解决方案。
而本公开提供一种对TB交替传输中一个交替传输单元的配置方式和配置范围的设计方案,使其能和跳频传输更好的匹配,同时还提供对多TB交替传输下的跳频传输的设计方案。
本公开实施例提供一种数据传输方案,可以应用于无线通信系统中,实现终端与基站之间的多个数据块的重复传输和跳频传输。
图1是根据部分示例性实施例示出的一种无线通信系统的结构示意图,如图1所示,该移动通信系统可以包括:若干个终端110以及若干个基站120。
其中,终端110可以是指向用户提供语音和/或数据连通性的设备。终端110可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,终端110可以是物联网终端,如传感器设备、移动电话(或称为“蜂窝”电话)和具有物联网终端的计算机,例如,可以是固定式、便携式、袖珍式、手持式、计算机内置的或者车载的装置。例如,站(Station,STA)、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点、远程终端(remote terminal)、 接入终端(access terminal)、用户装置(user terminal)、用户代理(user agent)、用户设备(user device)、或用户终端(user equipment,UE)。或者,终端110也可以是无人飞行器的设备。
基站120可以是无线通信系统中的网络侧设备。其中,该无线通信系统可以是第四代移动通信技术(the 4th generation mobile communication,4G)系统,又称长期演进(Long Term Evolution,LTE)系统;或者,该无线通信系统也可以是5G系统,又称新空口(new radio,NR)系统。或者,该无线通信系统也可以是5G系统的再下一代系统。
其中,基站120可以是4G系统中采用的演进型基站(eNB)。或者,基站120也可以是5G系统中采用集中分布式架构的基站(gNB)。当基站120采用集中分布式架构时,通常包括集中单元(central unit,CU)和至少两个分布单元(distributed unit,DU)。集中单元中设置有分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)层、无线链路层控制协议(Radio Link Control,RLC)层、媒体访问控制(Media Access Control,MAC)层的协议栈;分布单元中设置有物理(Physical,PHY)层协议栈,本公开实施例对基站120的具体实现方式不加以限定。
基站120和终端110之间可以通过无线空口建立无线连接。在不同的实施方式中,该无线空口是基于第四代移动通信网络技术(4G)标准的无线空口;或者,该无线空口是基于第五代移动通信网络技术(5G)标准的无线空口,比如该无线空口是新空口;或者,该无线空口也可以是基于5G的更下一代移动通信网络技术标准的无线空口。
可选的,上述无线通信系统还可以包含网络管理设备130。
若干个基站120分别与网络管理设备130相连。其中,网络管理设备130可以是无线通信系统中的核心网设备,比如,该网络管理设备130可以是演进的数据分组核心网(Evolved Packet Core,EPC)中的移动性管理实体(Mobility Management Entity,MME)。或者,该网络管理设备也可以是其它的核心网设备,比如服务网关(Serving GateWay,SGW)、公用数据网网关(Public Data Network GateWay,PGW)、策略与计费规则功能单元(Policy and Charging Rules Function,PCRF)或者归属签约用户服务器(Home Subscriber Server,HSS)等。对于网络管理设备130的实现形态,本公开实施例不做限定。
其中,上述终端与基站之间进行数据传输时,基站可以通过一个PDCCH 同时调度多个数据块的重复传输和跳频传输。
图2是根据一示例性实施例示出的数据传输方法的流程图,如图2所示,该数据传输方法应用于图1所示的无线通信系统中,且由图1中的终端110执行,该方法可以包括以下步骤。
在步骤201中,接收基站在一个物理下行控制信道PDCCH内发送的调度信息,该调度信息用于对至少两个数据块的传输进行调度。
在步骤202中,获取该至少两个数据块的传输窄带集合,该窄带集合中包含至少两个窄带。
在步骤203中,获取交替传输单元的大小参数,该交替传输单元是由至少两个数据块中任一数据块多次重复传输所构成的数据单元,该交替传输单元的大小参数指示该交替传输单元中的数据块的重复传输次数。
在步骤204中,根据该至少两个数据块的传输窄带集合以及该交替传输单元的大小参数,与该基站交替跳频传输该至少两个数据块。
可选的,该至少两个数据块对应有各自的传输窄带集合,每个传输窄带集合中包含至少两个窄带;根据该至少两个数据块的传输窄带集合以及该交替传输单元的大小参数,与该基站交替跳频传输该至少两个数据块,包括:
步骤a:在第一目标数据块对应的传输窄带集合的一个窄带上,与该基站传输该第一目标数据块的一个交替传输单元,该第一目标数据块是该至少两个数据块中的任一数据块;
步骤b:在完成对该第一目标数据块的一个交替传输单元的传输后,在第二目标数据块对应的传输窄带集合的一个窄带上,与该基站传输该第二目标数据块的一个交替传输单元,该第二目标数据块是该至少两个数据块中剩余数据块中的任一数据块;
步骤c:在完成对该至少两个数据块中每个数据块的一个交替传输单元的一轮传输后,判断该至少两个数据块中每个数据块的所有交替传输单元是否传输完毕,如果是,则停止传输,否则,执行步骤a-步骤b。
可选的,该至少两个数据块对应有共同的传输窄带集合,根据该至少两个数据块的传输窄带集合以及该交替传输单元的大小参数,与该基站交替跳频传输该至少两个数据块,包括:
步骤a:在该传输窄带集合中的一个第一窄带上,与该基站传输第一数据 块的一个交替传输单元,该第一数据块是该至少两个数据块中的任一数据块,该第一窄带是该传输窄带集合中的任一窄带;
步骤b:在完成对该第一数据块的一个交替传输单元的传输后,在该传输窄带集合中的不同于该第一窄带的第二窄带上,与该基站传输第二数据块的一个交替传输单元,该第二数据块是该至少两个数据块中剩余数据块中的任一数据块;
步骤c:在完成对该至少两个数据块中每个数据块的一个交替传输单元的一轮传输后,判断该至少两个数据块中每个数据块的所有交替传输单元是否传输完毕,如果是,则停止传输,否则,执行步骤a-步骤b。
可选的,该获取该至少两个数据块的传输窄带集合,包括:
获取该调度信息中包含的该至少两个数据块的起始传输窄带;
获取该基站预先为该终端配置的跳频步长,该跳频步长用于指示跳频传输中相邻两个窄带之间的窄带间隔;
根据该至少两个数据块的起始传输窄带以及该跳频步长获得该至少两个数据块跳频传输的至少两个窄带;
根据该至少两个数据块跳频传输的至少两个窄带获取该传输窄带集合。
可选的,该根据该调度信息获取该至少两个数据块的传输窄带集合,包括:
获取该调度信息中包含的该至少两个数据块的传输窄带集合。
可选的,该获取交替传输单元的大小参数,包括:
获取该基站预先配置的跳频间隔的参数数值,该跳频间隔的参数数值用于指示每一次跳频传输中一个数据块的重复传输次数;
将该跳频间隔的参数数值获取为该交替传输单元的大小参数的数值。
可选的,该获取交替传输单元的大小参数,包括:
获取该基站预先通过广播信令或者用户专属信令配置的该交替传输单元的大小参数;
或者,
获取该基站通过该物理下行控制信道发送的该交替传输单元的大小参数。
可选的,该获取交替传输单元的大小参数,包括:
当该基站预先为该终端配置有跳频间隔的参数数值,且该终端未激活跳频传输时,执行获取该基站预先通过广播信令或者用户专属信令配置的该交替传输单元的大小参数的步骤,或者,执行获取该基站通过该物理下行控制信道发 送的该交替传输单元的大小参数的步骤。
可选的,该获取交替传输单元的大小参数,还包括:
当该基站预先为该终端配置有跳频间隔的参数数值,且该终端已激活跳频传输时,将该跳频间隔的参数数值获取为该交替传输单元的大小参数的数值。
可选的,在频分双工FDD覆盖增强模式A下,该交替传输单元的大小参数的取值范围为{1,2,4,8};
在频分双工FDD覆盖增强模式B下,该交替传输单元的大小参数的取值范围为{2,4,8,16};
在时分双工TDD覆盖增强模式A下,该交替传输单元的大小参数的取值范围为{1,5,10,20};
在时分双工TDD覆盖增强模式B下,该交替传输单元的大小参数的取值范围为{5,10,20,40}。
综上所述,本公开实施例所示的方案,终端接收基站在一个物理下行控制信道PDCCH内发送的,指示至少两个数据块对应的调度信息后,可以获取该至少两个数据块的传输窄带集合,并获取交替传输单元的大小参数,然后根据该至少两个数据块的传输窄带集合以及该交替传输单元的大小参数,与该基站交替跳频传输该至少两个数据块,从而通过一个PDCCH内的调度信息同时实现终端和基站之间的多个数据块的重复传输和跳频传输的调度。
图3是根据一示例性实施例示出的数据传输方法的流程图,如图3所示,该数据传输方法应用于图1所示的无线通信系统中,且由图1中的基站120执行,该方法可以包括以下步骤。
在步骤301中,在一个物理下行控制信道PDCCH内向终端发送调度信息,该调度信息用于对至少两个数据块的传输进行调。
在步骤302中,获取该至少两个数据块的传输窄带集合,该窄带集合中包含至少两个窄带。
在步骤303中,获取交替传输单元的大小参数,该交替传输单元是由至少两个数据块中任一数据块多次重复传输所构成的数据单元,该交替传输单元的大小参数指示该交替传输单元中的数据块的重复传输次数。
在步骤304中,根据该至少两个数据块的传输窄带集合以及该交替传输单元的大小参数,与该终端交替跳频传输该至少两个数据块。
可选的,该至少两个数据块对应有各自的传输窄带集合,每个传输窄带集合中包含至少两个窄带,根据该至少两个数据块的传输窄带集合以及该交替传输单元的大小参数,与该终端交替跳频传输该至少两个数据块,包括:
步骤a:在第一目标数据块对应的传输窄带集合的一个窄带上,与该终端传输该第一目标数据块的一个交替传输单元,该第一目标数据块是该至少两个数据块中的任一数据块;
步骤b:在完成对该第一目标数据块的一个交替传输单元的传输后,在第二目标数据块对应的传输窄带集合的一个窄带上,与该终端传输该第二目标数据块的一个交替传输单元,该第二目标数据块是该至少两个数据块中剩余数据块中的任一数据块;
步骤c:在完成对该至少两个数据块中每个数据块的一个交替传输单元的一轮传输后,判断该至少两个数据块中每个数据块的所有交替传输单元是否传输完毕,如果是,则停止传输,否则,执行步骤a-步骤b。
可选的,该至少两个数据块对应有共同的传输窄带集合,根据该至少两个数据块的传输窄带集合以及该交替传输单元的大小参数,与该终端交替跳频传输该至少两个数据块,包括:
步骤a:在该传输窄带集合中的一个第一窄带上,与该终端传输第一数据块的一个交替传输单元,该第一数据块是该至少两个数据块中的任一数据块,该第一窄带是该传输窄带集合中的任一窄带;
步骤b:在完成对该第一数据块的一个交替传输单元的传输后,在该传输窄带集合中的不同于该第一窄带的第二窄带上,与该终端传输第二数据块的一个交替传输单元,该第二数据块是该至少两个数据块中剩余数据块中的任一数据块;
步骤c:在完成对该至少两个数据块中每个数据块的一个交替传输单元的一轮传输后,判断该至少两个数据块中每个数据块的所有交替传输单元是否传输完毕,如果是,则停止传输,否则,执行步骤a-步骤b。
可选的,该获取该至少两个数据块的传输窄带集合,包括:
获取该至少两个数据块的起始传输窄带;
获取为该终端配置的跳频步长,该跳频步长用于指示跳频传输中相邻两个窄带之间的窄带间隔;
根据该至少两个数据块的起始传输窄带以及该跳频步长获得该至少两个 数据块跳频传输的至少两个窄带;
根据该至少两个数据块跳频传输的至少两个窄带获取该传输窄带集合。
可选的,在一个物理下行控制信道PDCCH内向终端发送调度信息之前,该方法还包括:
将该传输窄带集合添加在该调度信息中。
可选的,该获取交替传输单元的大小参数,包括:
当预先为该终端配置有跳频间隔时,获取为该终端配置的跳频间隔的参数数值,该跳频间隔的参数数值用于指示每一次跳频传输中一个数据块的重复传输次数;
将该跳频间隔的参数数值获取为该交替传输单元的大小参数的数值。
可选的,该获取交替传输单元的大小参数,包括:
当该终端配置有跳频间隔,且该终端已激活跳频传输时,从预先设置的交替传输单元的大小参数的数值集合中选择第一数值作为该交替传输单元的大小参数的数值;该第一数值与为该终端配置的跳频间隔的参数数值相同;
当该终端未配置有跳频间隔,或者,当该终端配置有跳频间隔且该终端未激活跳频传输时,从预先设置的交替传输单元的大小参数的数值集合中选择第二数值作为该交替传输单元的大小参数的数值;该第二数值是该数值集合中的任一数值。
可选的,该方法还包括:
通过广播信令或者用户专属信令将该交替传输单元的大小参数配置给该终端;
或者,
通过该物理下行控制信道向该终端发送该交替传输单元的大小参数。
可选的,在频分双工FDD覆盖增强模式A下,该交替传输单元的大小参数的取值范围为{1,2,4,8};
在频分双工FDD覆盖增强模式B下,该交替传输单元的大小参数的取值范围为{2,4,8,16};
在时分双工TDD覆盖增强模式A下,该交替传输单元的大小参数的取值范围为{1,5,10,20};
在时分双工TDD覆盖增强模式B下,该交替传输单元的大小参数的取值范围为{5,10,20,40}。
综上所述,本公开实施例所示的方案,在进行数据传输的调度时,基站在一个物理下行控制信道PDCCH内向终端发送用于对至少两个数据块进行调度的调度信息,在数据传输时,基站可以获取该至少两个数据块的传输窄带集合,并获取交替传输单元的大小参数,然后根据该至少两个数据块的传输窄带集合以及该交替传输单元的大小参数,与该终端交替跳频传输该至少两个数据块,从而通过一个PDCCH内的调度信息同时实现终端和基站之间的多个数据块的重复传输和跳频传输的调度。
图4是根据一示例性实施例示出的数据传输方法的流程图,如图4所示,该数据传输方法应用于图1所示的无线通信系统中,该方法可以包括以下步骤。
在步骤401中,基站在一个PDCCH内向终端发送调度信息,终端接收该调度信息,该调度信息用于对至少两个数据块的传输进行调度。
其中,以终端是MTC网络中的终端为例,上述PDCCH可以是MPDCCH。
在本公开实施例中,基站可以在一个PDCCH内,对多个数据块的传输进行调度。具体的,基站在一个PDCCH内向终端发送的调度信息可以指示多个数据块传输时使用的频率资源,比如,可以指示多个数据块传输时所在的窄带。
可选的,为了支持后续的数据块的跳频传输,上述调度信息可以包含至少两个数据块的起始传输窄带,或者,上述调度信息也可以包含至少两个数据块在跳频传输时的各个窄带。
其中,上述至少两个数据块的起始传输窄带可以相同,也可以不同。相应的,至少两个数据块在跳频传输时的各个窄带可以相同,也可以不同。
可选的,上述调度信息可以不直接指示至少两个数据块的时域位置,该至少两个数据块的时域位置可以通过上述PDCCH的时域位置来间接指示,比如,至少两个数据块的时域位置与上述PDCCH之间的存在固定的时域偏移量。
或者,上述调度信息也可以直接指示至少两个数据块的时域位置,比如,上述调度信息中可以包含至少两个数据块的时域起始位置。
步骤402中,终端根据该调度信息获取该至少两个数据块的传输窄带集合,该窄带集合中包含至少两个窄带。
在一种可能的实现方式中,在根据该调度信息获取该至少两个数据块的传输窄带集合时,终端可以获取该调度信息中包含的,该至少两个数据块的起始传输窄带,并获取该基站预先为该终端配置的跳频步长,该跳频步长用于指示 跳频传输中相邻两个窄带之间的窄带间隔;然后根据该至少两个数据块的起始传输窄带以及该跳频步长获得该至少两个数据块跳频传输的至少两个窄带;并根据该至少两个数据块跳频传输的至少两个窄带获取该传输窄带集合。
在本公开实施例中,跳频传输的起始频率位置f1(也即数据块的跳频传输的起始窄带)可以由PDCCH进行指示,其中,不同的TB的f1可以相同,也可以不同。数据块的跳频传输的其他窄带可以由以下公式得到:
f(N+1)=(f1+N*offset)mod M;
其中,f(N+1)表示第N+1次跳频传输的窄带,offset是跳频步长,M表示系统带宽内包含的资源块(Resource Block,RB)的总数。
其中,上述跳频步长可以由基站预先通过广播信令或者用户专属信令进行配置。或者,上述跳频步长也可以由基站通过PDCCH发送给终端,比如,由基站通过上述调度信息发送给终端(即调度信息中包含跳频步长)。
终端计算得到数据块的跳频传输的各个窄带后,将各个窄带按照计算顺序排列组成集合,获得数据块的传输窄带集合。
在另一种可能的实现方式中,上述传输窄带集合也可以由基站直接通过调度信息指示给终端,即终端根据该调度信息获取该至少两个数据块的传输窄带集合时,获取该调度信息中包含的该至少两个数据块的传输窄带集合。
在步骤403中,终端获取交替传输单元的大小参数,该交替传输单元是由至少两个数据块中任一数据块多次重复传输所构成的数据单元,该交替传输单元的大小参数指示该交替传输单元中的数据块的重复传输次数。
在本公开实施例中,终端和基站之间传输数据时,可以将一个数据块对应的数据以交替传输单元为单位进行传输,即设置一个数据块连续重复传输的次数n,一个数据块重复n次即构成一个交替传输单元。交替传输单元的大小即为交替传输单元中的数据块的重复传输次数。
可选的,在获取交替传输单元的大小参数时,终端可以获取该基站预先配置的跳频间隔的参数数值,该跳频间隔的参数数值用于指示每一次跳频传输中一个数据块的重复传输次数;将该跳频间隔的参数数值获取为该交替传输单元的大小参数的数值。
在本公开实施例中,当终端被设置了对应的跳频间隔时,终端可以将跳频间隔对应的参数数值直接复用为交替传输单元的大小参数的参数数值。比如,终端的跳频间隔为2,则终端获取交替传输单元的大小参数也为2。
其中,上述跳频间隔可以由基站预先通过广播信令或者用户专属信令配置。
可选的,上述交替传输单元的大小参数也可以由基站进行配置,比如,基站预先通过广播信令或者用户专属信令配置的该交替传输单元的大小参数,或者,基站通过PDCCH向终端通知该交替传输单元的大小参数,相应的,终端获取该基站预先通过广播信令或者用户专属信令配置的该交替传输单元的大小参数;或者,获取该基站通过该物理下行控制信道发送的该交替传输单元的大小参数。
可选的,当基站预先为终端配置有跳频间隔的参数数值,且终端未激活跳频传输时,终端获取基站预先通过广播信令或者用户专属信令配置的交替传输单元的大小参数,或者,当基站预先为终端配置有跳频间隔的参数数值,且终端未激活跳频传输时,终端获取基站通过物理下行控制信道发送的交替传输单元的大小参数。
可选的,当基站预先为终端配置有跳频间隔的参数数值,且终端已激活跳频传输时,终端将跳频间隔的参数数值获取为交替传输单元的大小参数的数值。
在步骤404中,基站获取该至少两个数据块的传输窄带集合。
在本公开实施例中,基站获取该至少两个数据块的传输窄带集合时,可以获取该至少两个数据块的起始传输窄带;获取为该终端配置的跳频步长,根据该至少两个数据块的起始传输窄带以及该跳频步长获得该至少两个数据块跳频传输的至少两个窄带;并根据该至少两个数据块跳频传输的至少两个窄带获取该传输窄带集合。
其中,基站在生成终端的调度信息之后,即可以结合调度信息中包含的至少两个数据块的起始传输窄带,计算获得至少两个窄带获取传输窄带集合。
可选的,在一个物理下行控制信道PDCCH内向终端发送调度信息之前,基站可以将该传输窄带集合添加在该调度信息中,以便终端直接获取该至少两个窄带获取传输窄带集合。
或者,基站也可以不直接指示该至少两个窄带获取传输窄带集合,由终端自行根据调度信息中的至少两个数据块的起始传输窄带计算该传输窄带集合。
在步骤405中,基站获取交替传输单元的大小参数。
可选的,在获取交替传输单元的大小参数时,当预先为该终端配置有跳频 间隔时,基站获取为该终端配置的跳频间隔的参数数值,该跳频间隔的参数数值用于指示每一次跳频传输中一个数据块的重复传输次数;将该跳频间隔的参数数值获取为该交替传输单元的大小参数的数值。
即在一种可能的实现方式中,当终端被设置了对应的跳频间隔时,基站可以将跳频间隔对应的参数数值直接复用为交替传输单元的大小参数的参数数值。
可选的,在获取交替传输单元的大小参数时,
当该终端配置有跳频间隔,且该终端已激活跳频传输时,基站从预先设置的交替传输单元的大小参数的数值集合中选择第一数值作为该交替传输单元的大小参数的数值;该第一数值与为该终端配置的跳频间隔的参数数值相同。
当该终端未配置有跳频间隔,或者,当该终端配置有跳频间隔且该终端未激活跳频传输时,基站从预先设置的交替传输单元的大小参数的数值集合中选择第二数值作为该交替传输单元的大小参数的数值;该第二数值是该数值集合中的任一数值。
在另一种可能的实现方式中,基站还可以根据终端是否被配置了跳频间隔,以及,终端是否激活了跳频传输这两方面的情况来设置交替传输单元的大小参数。
比如,基站可以从预定的取值范围内选择一个与跳频间隔不同的值进行配置。具体例如,当终端配置有跳频间隔,且终端激活了跳频传输时,基站设置交替传输单元的大小参数与跳频间隔一致。而当跳频传输没有被激活时,基站从预定的取值范围内选择一个值作为交替传输单元的大小参数的数值。
比如,当终端被配置的跳频间隔为2,而预设的取值范围为{1,2,4,8},则当终端激活了跳频传输时,基站指定数值2为交替传输单元的大小参数的数值。而当终端未激活跳频传输时,基站可以指定{1,2,4,8}中的任一数值为交替传输单元的大小参数的数值。
此外,当终端没有被配置跳频间隔时,基站也可以从上述取值范围中选择一个数值指定为交替传输单元的大小参数的数值。
其中,当上述交替传输单元的大小参数的数值是由基站进行指定时,基站需要向终端配置该交替传输单元的大小参数的数值,该配置方式可以是通过广播信令在全小区内进行统一配置,也可以通过用户专属信令对终端进行专有配置。
其中,上述预定的取值范围可以与系统为终端配置的跳频间隔的取值范围相同,比如,在FDD覆盖增强模式A下,上述取值范围为{1,2,4,8},在FDD覆盖增强模式B下,上述取值范围是{2,4,8,16}。在TDD的覆盖增强模式A下,上述取值范围的取值范围是{1,5,10,20},在TDD覆盖增强模式B下,上述取值范围为{5,10,20,40}。
可选的,除了通过广播信令或者用户专属信令将该交替传输单元的大小参数配置给该终端之外,基站也可以通过上述PDCCH向该终端发送该交替传输单元的大小参数。比如,上述交替传输单元的大小参数可以由基站携带在调度信息发送给终端。
在步骤406中,终端和基站根据该至少两个数据块的传输窄带集合以及该交替传输单元的大小参数,交替跳频传输该至少两个数据块。
可选的,至少两个数据块对应有各自的传输窄带集合,每个传输窄带集合中包含至少两个窄带;在交替跳频传输该至少两个数据块时,终端和基站可以按照以下步骤进行传输:
步骤a:终端与基站在第一目标数据块对应的传输窄带集合的一个窄带上传输该第一目标数据块的一个交替传输单元,该第一目标数据块是该至少两个数据块中的任一数据块;
步骤b:在完成对该第一目标数据块的一个交替传输单元的传输后,终端与基站在第二目标数据块对应的传输窄带集合的一个窄带上,传输该第二目标数据块的一个交替传输单元,该第二目标数据块是该至少两个数据块中剩余数据块中的任一数据块;
步骤c:在完成对该至少两个数据块中每个数据块的一个交替传输单元的一轮传输后,终端与基站分别判断该至少两个数据块中每个数据块的所有交替传输单元是否传输完毕,如果是,则停止传输,否则,继续执行上述步骤a-步骤b。
在一种可能的实现方式中,上述至少两个数据块的传输窄带集合包含该至少两个数据块各自对应的传输窄带集合,每个该传输窄带集合中包含至少两个窄带。终端和基站之间进行数据传输时,可以以单个TB为对象在所配置的频率位置上进行跳频传输。比如,请参考图5,其示出了本公开实施例涉及的一种交替跳频传输的示意图。如图5所示,基站通过调度信息为4个数据块(分别为TB1、TB2、TB3和TB4)配置跳频传输的两个窄带{f1,f2},并且交替 传输单元的大小Z的数值为2,此时对于每个TB来说,都需要先在f1的位置重复传输2次。对于在f1上连续传输的多个TB,多个TB间进行交替传输,交替传输单元的大小为2。以目标数据块是TB1为例,终端和基站之间首先在f1上对TB1进行连续两次传输,然后在f1上对TB2进行连续两次传输,在每个数据块都在f1上连续两次传输后,终端和基站跳频到f2上,分别对TB1至TB4进行连续两次传输。
需要说明的是,上述图5以各个TB的跳频传输的窄带相同为例进行介绍,在实际应用中,上述图5中的各个TB的跳频传输的窄带也可以不同。
可选的,至少两个数据块对应有共同的传输窄带集合,在交替跳频传输该至少两个数据块时,终端和基站可以按照以下步骤进行数据传输:
步骤a:在该传输窄带集合中的一个第一窄带上,与该终端传输第一数据块的一个交替传输单元,该第一数据块是该至少两个数据块中的任一数据块,第一窄带是传输窄带集合中的任一窄带;
步骤b:在完成对该第一数据块的一个交替传输单元的传输后,在该传输窄带集合中的不同于该第一窄带的第二窄带上,与该终端传输第二数据块的一个交替传输单元,该第二数据块是该至少两个数据块中剩余数据块中的任一数据块;
步骤c:在完成对该至少两个数据块中每个数据块的一个交替传输单元的一轮传输后,判断该至少两个数据块中每个数据块的所有交替传输单元是否传输完毕,如果是,则停止传输,否则,执行步骤a-步骤b。
在另一种可能的实现方式中,上述至少两个数据块的传输窄带集合可以为单个集合。终端和基站之间进行数据传输时,可以以交替传输的多个TB为对象在所配置的频率位置上进行跳频传输。比如,请参考图6,其示出了本公开实施例涉及的另一种交替跳频传输的示意图。如图6所示,基站通过调度信息为4个数据块(分别为TB1、TB2、TB3和TB4)配置跳频传输的两个窄带{f1,f2},并且交替传输单元的大小的数值为2,此时对于多个TB的交替传输为对象,每隔2次传输进行一次跳频。以第一数据块是TB1,第二数据块是TB2为例,在图6中,终端和基站之间首先在f1上对TB1进行连续两次传输,然后在f2上对TB2进行连续两次传输,然后在f1上对TB3进行连续两次传输,并在在f2上对TB4进行连续两次传输,以此类推。
综上所述,本公开实施例所示的方案,在进行数据传输的调度时,基站在 一个物理下行控制信道PDCCH内向终端发送用于对至少两个数据块的传输进行调度的调度信息,在数据传输时,基站和终端可以分别获取该至少两个数据块的传输窄带集合,并获取交替传输单元的大小参数,然后根据该至少两个数据块的传输窄带集合以及该交替传输单元的大小参数,交替跳频传输该至少两个数据块,从而通过一个PDCCH内的调度信息同时实现终端和基站之间的多个数据块的重复传输和跳频传输的调度。
此外,本公开实施例所示的方案提供了具体的交替传输单元的大小配置方式,以及,提供了两种具体的跳频传输方式。
下述为本公开装置实施例,可以用于执行本公开方法实施例。对于本公开装置实施例中未披露的细节,请参照本公开方法实施例。
图7是根据一示例性实施例示出的一种数据传输装置的框图,如图7所示,该数据传输装置可以通过硬件或者软硬结合的方式实现为图1所示实施环境中的终端的全部或者部分,以执行图2或图4任一所示实施例中由终端执行的步骤。该数据传输装置可以包括:
调度信息接收模块701,用于接收基站在一个物理下行控制信道PDCCH内发送的调度信息,所述调度信息用于对至少两个数据块的传输进行调度;
窄带集合获取模块702,用于获取所述至少两个数据块的传输窄带集合,所述窄带集合中包含至少两个窄带;
大小参数获取模块703,用于获取交替传输单元的大小参数,所述交替传输单元是由所述至少两个数据块中任一数据块多次重复传输所构成的数据单元,所述交替传输单元的大小参数指示所述交替传输单元中的数据块的重复传输次数;
传输模块704,用于根据所述至少两个数据块的传输窄带集合以及所述交替传输单元的大小参数,与所述基站交替跳频传输所述至少两个数据块。
可选的,所述至少两个数据块对应有各自的所述传输窄带集合,每个所述传输窄带集合中包含至少两个窄带;所述传输模块704,具体用于执行以下步骤:
步骤a:在第一目标数据块对应的传输窄带集合的一个窄带上,与所述基站传输所述第一目标数据块的一个交替传输单元,所述第一目标数据块是所述至少两个数据块中的任一数据块;
步骤b:在完成对所述第一目标数据块的一个交替传输单元的传输后,在第二目标数据块对应的传输窄带集合的一个窄带上,与所述基站传输所述第二目标数据块的一个交替传输单元,所述第二目标数据块是所述至少两个数据块中剩余数据块中的任一数据块;
步骤c:在完成对所述至少两个数据块中每个数据块的一个交替传输单元的一轮传输后,判断所述至少两个数据块中每个数据块的所有交替传输单元是否传输完毕,如果是,则停止传输,否则,执行步骤a-步骤b。
可选的,所述至少两个数据块对应有共同的传输窄带集合;所述传输模块704,具体用于执行以下步骤:
步骤a:在所述传输窄带集合中的一个第一窄带上,与所述基站传输第一数据块的一个交替传输单元,所述第一数据块是所述至少两个数据块中的任一数据块,所述第一窄带是所述传输窄带集合中的任一窄带;
步骤b:在完成对所述第一数据块的一个交替传输单元的传输后,在所述传输窄带集合中的不同于所述第一窄带的第二窄带上,与所述基站传输第二数据块的一个交替传输单元,所述第二数据块是所述至少两个数据块中剩余数据块中的任一数据块;
步骤c:在完成对所述至少两个数据块中每个数据块的一个交替传输单元的一轮传输后,判断所述至少两个数据块中每个数据块的所有交替传输单元是否传输完毕,如果是,则停止传输,否则,执行步骤a-步骤b。
可选的,所述窄带集合获取模块702,具体用于,
获取所述调度信息中包含的所述至少两个数据块的起始传输窄带;
获取所述基站预先为所述终端配置的跳频步长,所述跳频步长用于指示跳频传输中相邻两个窄带之间的窄带间隔;
根据所述至少两个数据块的起始传输窄带以及所述跳频步长获得所述至少两个数据块跳频传输的至少两个窄带;
根据所述至少两个数据块跳频传输的至少两个窄带获取所述传输窄带集合。
可选的,所述窄带集合获取模块702,具体用于,获取所述调度信息中包含的所述至少两个数据块的传输窄带集合。
可选的,所述大小参数获取模块703,具体用于,
获取所述基站预先配置的跳频间隔的参数数值,所述跳频间隔的参数数值 用于指示每一次跳频传输中一个数据块的重复传输次数;
将所述跳频间隔的参数数值获取为所述交替传输单元的大小参数的数值。
可选的,所述大小参数获取模块703,具体用于,
获取所述基站预先通过广播信令或者用户专属信令配置的所述交替传输单元的大小参数;
或者,
获取所述基站通过所述物理下行控制信道发送的所述交替传输单元的大小参数。
可选的,所述大小参数获取模块703,具体用于,
当所述基站预先为所述终端配置有跳频间隔的参数数值,且所述终端未激活跳频传输时,执行获取所述基站预先通过广播信令或者用户专属信令配置的所述交替传输单元的大小参数的步骤,或者,执行获取所述基站通过所述物理下行控制信道发送的所述交替传输单元的大小参数的步骤。
可选的,所述大小参数获取模块703,具体还用于,
当所述基站预先为所述终端配置有跳频间隔的参数数值,且所述终端已激活跳频传输时,将所述跳频间隔的参数数值获取为所述交替传输单元的大小参数的数值。
可选的,在频分双工FDD覆盖增强模式A下,所述交替传输单元的大小参数的取值范围为{1,2,4,8};
在频分双工FDD覆盖增强模式B下,所述交替传输单元的大小参数的取值范围为{2,4,8,16};
在时分双工TDD覆盖增强模式A下,所述交替传输单元的大小参数的取值范围为{1,5,10,20};
在时分双工TDD覆盖增强模式B下,所述交替传输单元的大小参数的取值范围为{5,10,20,40}。
图8是根据一示例性实施例示出的一种数据传输装置的框图,如图8所示,该数据传输装置可以通过硬件或者软硬结合的方式实现为图1所示实施环境中的基站的全部或者部分,以执行图3或图4任一所示实施例中由基站执行的步骤。该数据传输装置可以包括:
调度信息发送模块801,用于在一个物理下行控制信道PDCCH内向终端 发送调度信息,所述调度信息用于对至少两个数据块的传输进行调度;
窄带集合获取模块802,用于获取所述至少两个数据块的传输窄带集合,所述窄带集合中包含至少两个窄带;
大小参数获取模块803,用于获取交替传输单元的大小参数,所述交替传输单元是由所述至少两个数据块中任一数据块多次重复传输所构成的数据单元,所述交替传输单元的大小参数指示所述交替传输单元中的数据块的重复传输次数;
传输模块804,用于根据所述至少两个数据块的传输窄带集合以及所述交替传输单元的大小参数,与所述终端交替跳频传输所述至少两个数据块。
可选的,至少两个数据块对应有各自的所述传输窄带集合,每个所述传输窄带集合中包含至少两个窄带;所述传输模块804,具体用于执行以下步骤:
步骤a:在第一目标数据块对应的传输窄带集合的一个窄带上,与所述终端传输所述第一目标数据块的一个交替传输单元,所述第一目标数据块是所述至少两个数据块中的任一数据块;
步骤b:在完成对所述第一目标数据块的一个交替传输单元的传输后,在第二目标数据块对应的传输窄带集合的一个窄带上,与所述终端传输所述第二目标数据块的一个交替传输单元,所述第二目标数据块是所述至少两个数据块中剩余数据块中的任一数据块;
步骤c:在完成对所述至少两个数据块中每个数据块的一个交替传输单元的一轮传输后,判断所述至少两个数据块中每个数据块的所有交替传输单元是否传输完毕,如果是,则停止传输,否则,执行步骤a-步骤b。
可选的,所述至少两个数据块对应有共同的传输窄带集合;所述窄带集合获取模块804,具体用于执行以下步骤:
步骤a:在所述传输窄带集合中的一个第一窄带上,与所述终端传输第一数据块的一个交替传输单元,所述第一数据块是所述至少两个数据块中的任一数据块,所述第一窄带是所述传输窄带集合中的任一窄带;
步骤b:在完成对所述第一数据块的一个交替传输单元的传输后,在所述传输窄带集合中的不同于所述第一窄带的第二窄带上,与所述终端传输第二数据块的一个交替传输单元,所述第二数据块是所述至少两个数据块中剩余数据块中的任一数据块;
步骤c:在完成对所述至少两个数据块中每个数据块的一个交替传输单元 的一轮传输后,判断所述至少两个数据块中每个数据块的所有交替传输单元是否传输完毕,如果是,则停止传输,否则,执行步骤a-步骤b。
可选的,所述窄带集合获取模块802,具体用于,
获取所述至少两个数据块的起始传输窄带;
获取为所述终端配置的跳频步长,所述跳频步长用于指示跳频传输中相邻两个窄带之间的窄带间隔;
根据所述至少两个数据块的起始传输窄带以及所述跳频步长获得所述至少两个数据块跳频传输的至少两个窄带;
根据所述至少两个数据块跳频传输的至少两个窄带获取所述传输窄带集合。
可选的,所述装置还包括:
添加模块,用于在调度信息发送模块在一个物理下行控制信道PDCCH内向终端发送调度信息之前,将所述传输窄带集合添加在所述调度信息中。
可选的,所述大小参数获取模块803,具体用于,
当预先为所述终端配置有跳频间隔时,获取为所述终端配置的跳频间隔的参数数值,所述跳频间隔的参数数值用于指示每一次跳频传输中一个数据块的重复传输次数;
将所述跳频间隔的参数数值获取为所述交替传输单元的大小参数的数值。
可选的,所述大小参数获取模块803,具体用于,
当所述终端配置有跳频间隔,且所述终端已激活跳频传输时,从预先设置的交替传输单元的大小参数的数值集合中选择第一数值作为所述交替传输单元的大小参数的数值;所述第一数值与为所述终端配置的跳频间隔的参数数值相同;
当所述终端未配置有跳频间隔,或者,当所述终端配置有跳频间隔且所述终端未激活跳频传输时,从预先设置的交替传输单元的大小参数的数值集合中选择第二数值作为所述交替传输单元的大小参数的数值;所述第二数值是所述数值集合中的任一数值。
可选的,所述装置还包括:配置模块或者发送模块;
所述配置模块,用于通过广播信令或者用户专属信令将所述交替传输单元的大小参数配置给所述终端;
所述发送模块,用于通过所述物理下行控制信道向所述终端发送所述交替 传输单元的大小参数。
可选的,在频分双工FDD覆盖增强模式A下,所述交替传输单元的大小参数的取值范围为{1,2,4,8};
在频分双工FDD覆盖增强模式B下,所述交替传输单元的大小参数的取值范围为{2,4,8,16};
在时分双工TDD覆盖增强模式A下,所述交替传输单元的大小参数的取值范围为{1,5,10,20};
在时分双工TDD覆盖增强模式B下,所述交替传输单元的大小参数的取值范围为{5,10,20,40}。
本公开一示例性实施例还提供了一种数据传输系统,所述系统包括:终端和基站。
所述终端包含如上述图7所示实施例提供的数据传输装置;所述基站包含如上述图8所示实施例提供的数据传输装置。
需要说明的一点是,上述实施例提供的装置在实现其功能时,仅以上述各个功能模块的划分进行举例说明,实际应用中,可以根据实际需要而将上述功能分配由不同的功能模块完成,即将设备的内容结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
本公开一示例性实施例提供了一种数据传输装置,能够实现本公开上述图2或图4所示实施例中由终端执行的全部或者部分步骤,该数据传输装置包括:处理器、用于存储处理器可执行指令的存储器;
其中,处理器被配置为:
接收基站在一个物理下行控制信道PDCCH内发送的调度信息,所述调度信息用于对至少两个数据块的传输进行调度;
获取所述至少两个数据块的传输窄带集合,所述窄带集合中包含至少两个窄带;
获取交替传输单元的大小参数,所述交替传输单元是由所述至少两个数据 块中任一数据块多次重复传输所构成的数据单元,所述交替传输单元的大小参数指示所述交替传输单元中的数据块的重复传输次数;
根据所述至少两个数据块的传输窄带集合以及所述交替传输单元的大小参数,与所述基站交替跳频传输所述至少两个数据块。
本公开一示例性实施例提供了一种数据传输装置,能够实现本公开上述图3或图4所示实施例中由基站执行的全部或者部分步骤,该数据传输装置包括:处理器、用于存储处理器可执行指令的存储器;
其中,处理器被配置为:
在一个物理下行控制信道PDCCH内向终端发送调度信息,所述调度信息用于对至少两个数据块的传输进行调度;
获取所述至少两个数据块的传输窄带集合,所述窄带集合中包含至少两个窄带;
获取交替传输单元的大小参数,所述交替传输单元是由所述至少两个数据块中任一数据块多次重复传输所构成的数据单元,所述交替传输单元的大小参数指示所述交替传输单元中的数据块的重复传输次数;
根据所述至少两个数据块的传输窄带集合以及所述交替传输单元的大小参数,与所述终端交替跳频传输所述至少两个数据块。
上述主要以终端和基站为例,对本公开实施例提供的方案进行了介绍。可以理解的是,终端和基站为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。结合本公开中所公开的实施例描述的各示例的模块及算法步骤,本公开实施例能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。本领域技术人员可以对每个特定的应用来使用不同的方法来实现所描述的功能,但是这种实现不应认为超出本公开实施例的技术方案的范围。
图9是根据一示例性实施例示出的一种终端的结构示意图。
终端900包括通信单元904和处理器902。其中,处理器902也可以为控制器,图9中表示为“控制器/处理器902”。通信单元904用于支持终端与其它网络设备(例如基站等)进行通信。
进一步的,终端900还可以包括存储器903,存储器903用于存储终端900的程序代码和数据。
可以理解的是,图9仅仅示出了终端900的简化设计。在实际应用中,终端900可以包含任一数量的处理器,控制器,存储器,通信单元等,而所有可以实现本公开实施例的终端都在本公开实施例的保护范围之内。
图10是根据一示例性实施例示出的一种基站的结构示意图。
基站1000包括通信单元1004和处理器1002。其中,处理器1002也可以为控制器,图10中表示为“控制器/处理器1002”。通信单元1004用于支持基站与其它网络设备(例如终端、其它基站、网关等)进行通信。
进一步的,基站1000还可以包括存储器1003,存储器1003用于存储基站1000的程序代码和数据。
可以理解的是,图10仅仅示出了基站1000的简化设计。在实际应用中,基站1000可以包含任一数量的处理器,控制器,存储器,通信单元等,而所有可以实现本公开实施例的基站都在本公开实施例的保护范围之内。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本公开实施例所描述的功能可以用硬件、软件、固件或它们的任一组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
本公开实施例还提供了一种计算机存储介质,用于储存为上述终端或基站所用的计算机软件指令,其包含用于执行上述数据传输方法所设计的程序。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本公开旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结 构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (43)

  1. 一种数据传输方法,其特征在于,所述方法由终端执行,所述方法包括:
    接收基站在一个物理下行控制信道PDCCH内发送的调度信息,所述调度信息用于对至少两个数据块的传输进行调度;
    获取所述至少两个数据块的传输窄带集合,所述传输窄带集合中包含至少两个窄带;
    获取交替传输单元的大小参数,所述交替传输单元是由所述至少两个数据块中任一数据块多次重复传输所构成的数据单元,所述交替传输单元的大小参数指示所述交替传输单元中的数据块的重复传输次数;
    根据所述至少两个数据块的传输窄带集合以及所述交替传输单元的大小参数,与所述基站交替跳频传输所述至少两个数据块。
  2. 根据权利要求1所述的方法,其特征在于,所述至少两个数据块对应有各自的所述传输窄带集合,每个所述传输窄带集合中包含至少两个窄带;所述根据所述至少两个数据块的传输窄带集合以及所述交替传输单元的大小参数,与所述基站交替跳频传输所述至少两个数据块,包括:
    步骤a:在第一目标数据块对应的传输窄带集合的一个窄带上,与所述基站传输所述第一目标数据块的一个交替传输单元,所述第一目标数据块是所述至少两个数据块中的任一数据块;
    步骤b:在完成对所述第一目标数据块的一个交替传输单元的传输后,在第二目标数据块对应的传输窄带集合的一个窄带上,与所述基站传输所述第二目标数据块的一个交替传输单元,所述第二目标数据块是所述至少两个数据块中剩余数据块中的任一数据块;
    步骤c:在完成对所述至少两个数据块中每个数据块的一个交替传输单元的一轮传输后,判断所述至少两个数据块中每个数据块的所有交替传输单元是否传输完毕,如果是,则停止传输,否则,执行步骤a-步骤b。
  3. 根据权利要求1所述的方法,其特征在于,所述至少两个数据块对应有共同的传输窄带集合,所述根据所述至少两个数据块的传输窄带集合以及所述交替传输单元的大小参数,与所述基站交替跳频传输所述至少两个数据块,包 括:
    步骤a:在所述传输窄带集合中的一个第一窄带上,与所述基站传输第一数据块的一个交替传输单元,所述第一数据块是所述至少两个数据块中的任一数据块,所述第一窄带是所述传输窄带集合中的任一窄带;
    步骤b:在完成对所述第一数据块的一个交替传输单元的传输后,在所述传输窄带集合中的不同于所述第一窄带的第二窄带上,与所述基站传输第二数据块的一个交替传输单元,所述第二数据块是所述至少两个数据块中剩余数据块中的任一数据块;
    步骤c:在完成对所述至少两个数据块中每个数据块的一个交替传输单元的一轮传输后,判断所述至少两个数据块中每个数据块的所有交替传输单元是否传输完毕,如果是,则停止传输,否则,执行步骤a-步骤b。
  4. 根据权利要求1至3任一所述的方法,其特征在于,所述获取所述至少两个数据块的传输窄带集合,包括:
    获取所述调度信息中包含的所述至少两个数据块的起始传输窄带;
    获取所述基站预先为所述终端配置的跳频步长,所述跳频步长用于指示跳频传输中相邻两个窄带之间的窄带间隔;
    根据所述至少两个数据块的起始传输窄带以及所述跳频步长获得所述至少两个数据块跳频传输的至少两个窄带;
    根据所述至少两个数据块跳频传输的至少两个窄带获取所述传输窄带集合。
  5. 根据权利要求1至3任一所述的方法,其特征在于,所述获取所述至少两个数据块的传输窄带集合,包括:
    获取所述调度信息中包含的所述至少两个数据块的传输窄带集合。
  6. 根据权利要求1至3任一所述的方法,其特征在于,所述获取交替传输单元的大小参数,包括:
    获取所述基站预先配置的跳频间隔的参数数值,所述跳频间隔的参数数值用于指示每一次跳频传输中一个数据块的重复传输次数;
    将所述跳频间隔的参数数值获取为所述交替传输单元的大小参数的数值。
  7. 根据权利要求1至3任一所述的方法,其特征在于,所述获取交替传输单元的大小参数,包括:
    获取所述基站预先通过广播信令或者用户专属信令配置的所述交替传输单元的大小参数;
    或者,
    获取所述基站通过所述物理下行控制信道发送的所述交替传输单元的大小参数。
  8. 根据权利要求7所述的方法,其特征在于,所述获取交替传输单元的大小参数,包括:
    当所述基站预先为所述终端配置有跳频间隔的参数数值,且所述终端未激活跳频传输时,执行获取所述基站预先通过广播信令或者用户专属信令配置的所述交替传输单元的大小参数的步骤,或者,执行获取所述基站通过所述物理下行控制信道发送的所述交替传输单元的大小参数的步骤。
  9. 根据权利要求8所述的方法,其特征在于,所述获取交替传输单元的大小参数,还包括:
    当所述基站预先为所述终端配置有跳频间隔的参数数值,且所述终端已激活跳频传输时,将所述跳频间隔的参数数值获取为所述交替传输单元的大小参数的数值。
  10. 根据权利要求1至3任一所述的方法,其特征在于,
    在频分双工FDD覆盖增强模式A下,所述交替传输单元的大小参数的取值范围为{1,2,4,8};
    在频分双工FDD覆盖增强模式B下,所述交替传输单元的大小参数的取值范围为{2,4,8,16};
    在时分双工TDD覆盖增强模式A下,所述交替传输单元的大小参数的取值范围为{1,5,10,20};
    在时分双工TDD覆盖增强模式B下,所述交替传输单元的大小参数的取值范围为{5,10,20,40}。
  11. 一种数据传输方法,其特征在于,所述方法由基站执行,所述方法包括:
    在一个物理下行控制信道PDCCH内向终端发送调度信息,所述调度信息用于对至少两个数据块的传输进行调度;
    获取所述至少两个数据块的传输窄带集合,所述传输窄带集合中包含至少两个窄带;
    获取交替传输单元的大小参数,所述交替传输单元是由所述至少两个数据块中任一数据块多次重复传输所构成的数据单元,所述交替传输单元的大小参数指示所述交替传输单元中的数据块的重复传输次数;
    根据所述至少两个数据块的传输窄带集合以及所述交替传输单元的大小参数,与所述终端交替跳频传输所述至少两个数据块。
  12. 根据权利要求11所述的方法,其特征在于,所述至少两个数据块对应有各自的所述传输窄带集合,每个所述传输窄带集合中包含至少两个窄带;所述根据所述至少两个数据块的传输窄带集合以及所述交替传输单元的大小参数,与所述终端交替跳频传输所述至少两个数据块,包括:
    步骤a:在第一目标数据块对应的传输窄带集合的一个窄带上,与所述终端传输所述第一目标数据块的一个交替传输单元,所述第一目标数据块是所述至少两个数据块中的任一数据块;
    步骤b:在完成对所述第一目标数据块的一个交替传输单元的传输后,在第二目标数据块对应的传输窄带集合的一个窄带上,与所述终端传输所述第二目标数据块的一个交替传输单元,所述第二目标数据块是所述至少两个数据块中剩余数据块中的任一数据块;
    步骤c:在完成对所述至少两个数据块中每个数据块的一个交替传输单元的一轮传输后,判断所述至少两个数据块中每个数据块的所有交替传输单元是否传输完毕,如果是,则停止传输,否则,执行步骤a-步骤b。
  13. 根据权利要求11所述的方法,其特征在于,所述至少两个数据块对应有共同的传输窄带集合,所述根据所述至少两个数据块的传输窄带集合以及所述交替传输单元的大小参数,与所述终端交替跳频传输所述至少两个数据块, 包括:
    步骤a:在所述传输窄带集合中的一个第一窄带上,与所述终端传输第一数据块的一个交替传输单元,所述第一数据块是所述至少两个数据块中的任一数据块,所述第一窄带是所述传输窄带集合中的任一窄带;
    步骤b:在完成对所述第一数据块的一个交替传输单元的传输后,在所述传输窄带集合中的不同于所述第一窄带的第二窄带上,与所述终端传输第二数据块的一个交替传输单元,所述第二数据块是所述至少两个数据块中剩余数据块中的任一数据块;
    步骤c:在完成对所述至少两个数据块中每个数据块的一个交替传输单元的一轮传输后,判断所述至少两个数据块中每个数据块的所有交替传输单元是否传输完毕,如果是,则停止传输,否则,执行步骤a-步骤b。
  14. 根据权利要求11至13任一所述的方法,其特征在于,所述获取所述至少两个数据块的传输窄带集合,包括:
    获取所述至少两个数据块的起始传输窄带;
    获取为所述终端配置的跳频步长,所述跳频步长用于指示跳频传输中相邻两个窄带之间的窄带间隔;
    根据所述至少两个数据块的起始传输窄带以及所述跳频步长获得所述至少两个数据块跳频传输的至少两个窄带;
    根据所述至少两个数据块跳频传输的至少两个窄带获取所述传输窄带集合。
  15. 根据权利要求14所述的方法,其特征在于,在一个物理下行控制信道PDCCH内向终端发送调度信息之前,所述方法还包括:
    将所述传输窄带集合添加在所述调度信息中。
  16. 根据权利要求11至13任一所述的方法,其特征在于,所述获取交替传输单元的大小参数,包括:
    当预先为所述终端配置有跳频间隔时,获取为所述终端配置的跳频间隔的参数数值,所述跳频间隔的参数数值用于指示每一次跳频传输中一个数据块的重复传输次数;
    将所述跳频间隔的参数数值获取为所述交替传输单元的大小参数的数值。
  17. 根据权利要求11至13所述的方法,其特征在于,所述获取交替传输单元的大小参数,包括:
    当所述终端配置有跳频间隔,且所述终端已激活跳频传输时,从预先设置的交替传输单元的大小参数的数值集合中选择第一数值作为所述交替传输单元的大小参数的数值;所述第一数值与为所述终端配置的跳频间隔的参数数值相同;
    当所述终端未配置有跳频间隔,或者,当所述终端配置有跳频间隔且所述终端未激活跳频传输时,从预先设置的交替传输单元的大小参数的数值集合中选择第二数值作为所述交替传输单元的大小参数的数值;所述第二数值是所述数值集合中的任一数值。
  18. 根据权利要求17所述的方法,其特征在于,所述方法还包括:
    通过广播信令或者用户专属信令将所述交替传输单元的大小参数配置给所述终端;
    或者,
    通过所述物理下行控制信道向所述终端发送所述交替传输单元的大小参数。
  19. 根据权利要求11至13任一所述的方法,其特征在于,
    在频分双工FDD覆盖增强模式A下,所述交替传输单元的大小参数的取值范围为{1,2,4,8};
    在频分双工FDD覆盖增强模式B下,所述交替传输单元的大小参数的取值范围为{2,4,8,16};
    在时分双工TDD覆盖增强模式A下,所述交替传输单元的大小参数的取值范围为{1,5,10,20};
    在时分双工TDD覆盖增强模式B下,所述交替传输单元的大小参数的取值范围为{5,10,20,40}。
  20. 一种数据传输装置,其特征在于,所述装置用于终端中,所述装置包 括:
    调度信息接收模块,用于接收基站在一个物理下行控制信道PDCCH内发送的调度信息,所述调度信息用于对至少两个数据块的传输进行调度;
    窄带集合获取模块,用于获取所述至少两个数据块的传输窄带集合,所述窄带集合中包含至少两个窄带;
    大小参数获取模块,用于获取交替传输单元的大小参数,所述交替传输单元是由所述至少两个数据块中任一数据块多次重复传输所构成的数据单元,所述交替传输单元的大小参数指示所述交替传输单元中的数据块的重复传输次数;
    传输模块,用于根据所述至少两个数据块的传输窄带集合以及所述交替传输单元的大小参数,与所述基站交替跳频传输所述至少两个数据块。
  21. 根据权利要求20所述的装置,其特征在于,所述至少两个数据块对应有各自的所述传输窄带集合,每个所述传输窄带集合中包含至少两个窄带;所述传输模块,具体用于执行以下步骤:
    步骤a:在第一目标数据块对应的传输窄带集合的一个窄带上,与所述基站传输所述第一目标数据块的一个交替传输单元,所述第一目标数据块是所述至少两个数据块中的任一数据块;
    步骤b:在完成对所述第一目标数据块的一个交替传输单元的传输后,在第二目标数据块对应的传输窄带集合的一个窄带上,与所述基站传输所述第二目标数据块的一个交替传输单元,所述第二目标数据块是所述至少两个数据块中剩余数据块中的任一数据块;
    步骤c:在完成对所述至少两个数据块中每个数据块的一个交替传输单元的一轮传输后,判断所述至少两个数据块中每个数据块的所有交替传输单元是否传输完毕,如果是,则停止传输,否则,执行步骤a-步骤b。
  22. 根据权利要求20所述的装置,其特征在于,所述至少两个数据块对应有共同的传输窄带集合;所述传输模块,具体用于执行以下步骤:
    步骤a:在所述传输窄带集合中的一个第一窄带上,与所述基站传输第一数据块的一个交替传输单元,所述第一数据块是所述至少两个数据块中的任一数据块,所述第一窄带是所述传输窄带集合中的任一窄带;
    步骤b:在完成对所述第一数据块的一个交替传输单元的传输后,在所述传输窄带集合中的不同于所述第一窄带的第二窄带上,与所述基站传输第二数据块的一个交替传输单元,所述第二数据块是所述至少两个数据块中剩余数据块中的任一数据块;
    步骤c:在完成对所述至少两个数据块中每个数据块的一个交替传输单元的一轮传输后,判断所述至少两个数据块中每个数据块的所有交替传输单元是否传输完毕,如果是,则停止传输,否则,执行步骤a-步骤b。
  23. 根据权利要求20至22任一所述的装置,其特征在于,所述窄带集合获取模块,具体用于,
    获取所述调度信息中包含的所述至少两个数据块的起始传输窄带;
    获取所述基站预先为所述终端配置的跳频步长,所述跳频步长用于指示跳频传输中相邻两个窄带之间的窄带间隔;
    根据所述至少两个数据块的起始传输窄带以及所述跳频步长获得所述至少两个数据块跳频传输的至少两个窄带;
    根据所述至少两个数据块跳频传输的至少两个窄带获取所述传输窄带集合。
  24. 根据权利要求20至22任一所述的装置,其特征在于,所述窄带集合获取模块,具体用于,
    获取所述调度信息中包含的所述至少两个数据块的传输窄带集合。
  25. 根据权利要求20至22任一所述的装置,其特征在于,所述大小参数获取模块,具体用于,
    获取所述基站预先配置的跳频间隔的参数数值,所述跳频间隔的参数数值用于指示每一次跳频传输中一个数据块的重复传输次数;
    将所述跳频间隔的参数数值获取为所述交替传输单元的大小参数的数值。
  26. 根据权利要求20至22任一所述的装置,其特征在于,所述大小参数获取模块,具体用于,
    获取所述基站预先通过广播信令或者用户专属信令配置的所述交替传输单 元的大小参数;
    或者,
    获取所述基站通过所述物理下行控制信道发送的所述交替传输单元的大小参数。
  27. 根据权利要求26所述的装置,其特征在于,所述大小参数获取模块,具体用于,
    当所述基站预先为所述终端配置有跳频间隔的参数数值,且所述终端未激活跳频传输时,执行获取所述基站预先通过广播信令或者用户专属信令配置的所述交替传输单元的大小参数的步骤,或者,执行获取所述基站通过所述物理下行控制信道发送的所述交替传输单元的大小参数的步骤。
  28. 根据权利要求27所述的装置,其特征在于,所述大小参数获取模块,具体还用于,
    当所述基站预先为所述终端配置有跳频间隔的参数数值,且所述终端已激活跳频传输时,将所述跳频间隔的参数数值获取为所述交替传输单元的大小参数的数值。
  29. 根据权利要求20至22任一所述的装置,其特征在于,
    在频分双工FDD覆盖增强模式A下,所述交替传输单元的大小参数的取值范围为{1,2,4,8};
    在频分双工FDD覆盖增强模式B下,所述交替传输单元的大小参数的取值范围为{2,4,8,16};
    在时分双工TDD覆盖增强模式A下,所述交替传输单元的大小参数的取值范围为{1,5,10,20};
    在时分双工TDD覆盖增强模式B下,所述交替传输单元的大小参数的取值范围为{5,10,20,40}。
  30. 一种数据传输装置,其特征在于,所述装置用于基站中,所述装置包括:
    调度信息发送模块,用于在一个物理下行控制信道PDCCH内向终端发送调 度信息,所述调度信息用于对至少两个数据块的传输进行调度;
    窄带集合获取模块,用于获取所述至少两个数据块的传输窄带集合,所述窄带集合中包含至少两个窄带;
    大小参数获取模块,用于获取交替传输单元的大小参数,所述交替传输单元是由所述至少两个数据块中任一数据块多次重复传输所构成的数据单元,所述交替传输单元的大小参数指示所述交替传输单元中的数据块的重复传输次数;
    传输模块,用于根据所述至少两个数据块的传输窄带集合以及所述交替传输单元的大小参数,与所述终端交替跳频传输所述至少两个数据块。
  31. 根据权利要求30所述的装置,其特征在于,所述至少两个数据块对应有各自的所述传输窄带集合,每个所述传输窄带集合中包含至少两个窄带;所述窄带集合获取模块,具体用于执行以下步骤:
    步骤a:在第一目标数据块对应的传输窄带集合的一个窄带上,与所述终端传输所述第一目标数据块的一个交替传输单元,所述第一目标数据块是所述至少两个数据块中的任一数据块;
    步骤b:在完成对所述第一目标数据块的一个交替传输单元的传输后,在第二目标数据块对应的传输窄带集合的一个窄带上,与所述终端传输所述第二目标数据块的一个交替传输单元,所述第二目标数据块是所述至少两个数据块中剩余数据块中的任一数据块;
    步骤c:在完成对所述至少两个数据块中每个数据块的一个交替传输单元的一轮传输后,判断所述至少两个数据块中每个数据块的所有交替传输单元是否传输完毕,如果是,则停止传输,否则,执行步骤a-步骤b。
  32. 根据权利要求30所述的装置,其特征在于,所述至少两个数据块对应有共同的传输窄带集合;所述窄带集合获取模块,具体用于执行以下步骤:
    步骤a:在所述传输窄带集合中的一个第一窄带上,与所述终端传输第一数据块的一个交替传输单元,所述第一数据块是所述至少两个数据块中的任一数据块,所述第一窄带是所述传输窄带集合中的任一窄带;
    步骤b:在完成对所述第一数据块的一个交替传输单元的传输后,在所述传输窄带集合中的不同于所述第一窄带的第二窄带上,与所述终端传输第二数据 块的一个交替传输单元,所述第二数据块是所述至少两个数据块中剩余数据块中的任一数据块;
    步骤c:在完成对所述至少两个数据块中每个数据块的一个交替传输单元的一轮传输后,判断所述至少两个数据块中每个数据块的所有交替传输单元是否传输完毕,如果是,则停止传输,否则,执行步骤a-步骤b。
  33. 根据权利要求30至32任一所述的装置,其特征在于,所述窄带集合获取模块,具体用于,
    获取所述至少两个数据块的起始传输窄带;
    获取为所述终端配置的跳频步长,所述跳频步长用于指示跳频传输中相邻两个窄带之间的窄带间隔;
    根据所述至少两个数据块的起始传输窄带以及所述跳频步长获得所述至少两个数据块跳频传输的至少两个窄带;
    根据所述至少两个数据块跳频传输的至少两个窄带获取所述传输窄带集合。
  34. 根据权利要求33所述的装置,其特征在于,所述装置还包括:
    添加模块,用于在所述调度信息发送模块在一个物理下行控制信道PDCCH内向终端发送调度信息之前,将所述传输窄带集合添加在所述调度信息中。
  35. 根据权利要求30至32任一所述的装置,其特征在于,所述大小参数获取模块,具体用于,
    当预先为所述终端配置有跳频间隔时,获取为所述终端配置的跳频间隔的参数数值,所述跳频间隔的参数数值用于指示每一次跳频传输中一个数据块的重复传输次数;
    将所述跳频间隔的参数数值获取为所述交替传输单元的大小参数的数值。
  36. 根据权利要求30至32任一所述的装置,其特征在于,所述大小参数获取模块,具体用于,
    当所述终端配置有跳频间隔,且所述终端已激活跳频传输时,从预先设置的交替传输单元的大小参数的数值集合中选择第一数值作为所述交替传输单元 的大小参数的数值;所述第一数值与为所述终端配置的跳频间隔的参数数值相同;
    当所述终端未配置有跳频间隔,或者,当所述终端配置有跳频间隔且所述终端未激活跳频传输时,从预先设置的交替传输单元的大小参数的数值集合中选择第二数值作为所述交替传输单元的大小参数的数值;所述第二数值是所述数值集合中的任一数值。
  37. 根据权利要求36所述的装置,其特征在于,所述装置还包括:配置模块或者发送模块;
    所述配置模块,用于通过广播信令或者用户专属信令将所述交替传输单元的大小参数配置给所述终端;
    所述发送模块,用于通过所述物理下行控制信道向所述终端发送所述交替传输单元的大小参数。
  38. 根据权利要求30至32任一所述的装置,其特征在于,
    在频分双工FDD覆盖增强模式A下,所述交替传输单元的大小参数的取值范围为{1,2,4,8};
    在频分双工FDD覆盖增强模式B下,所述交替传输单元的大小参数的取值范围为{2,4,8,16};
    在时分双工TDD覆盖增强模式A下,所述交替传输单元的大小参数的取值范围为{1,5,10,20};
    在时分双工TDD覆盖增强模式B下,所述交替传输单元的大小参数的取值范围为{5,10,20,40}。
  39. 一种数据传输系统,其特征在于,所述系统包括:终端和基站;
    所述终端包含如权利要求20至29任一所述的数据传输装置;
    所述基站包含如权利要求30至38任一所述的数据传输装置。
  40. 一种数据传输装置,其特征在于,所述装置用于终端中,所述装置包括:
    处理器;
    用于存储所述处理器的可执行指令的存储器;
    其中,所述处理器被配置为:
    接收基站在一个物理下行控制信道PDCCH内发送的调度信息,所述调度信息用于对至少两个数据块的传输进行调度;
    获取所述至少两个数据块的传输窄带集合,所述传输窄带集合中包含至少两个窄带;
    获取交替传输单元的大小参数,所述交替传输单元是由所述至少两个数据块中任一数据块多次重复传输所构成的数据单元,所述交替传输单元的大小参数指示所述交替传输单元中的数据块的重复传输次数;
    根据所述至少两个数据块的传输窄带集合以及所述交替传输单元的大小参数,与所述基站交替跳频传输所述至少两个数据块。
  41. 一种数据传输装置,其特征在于,所述装置用于基站中,所述装置包括:
    处理器;
    用于存储所述处理器的可执行指令的存储器;
    其中,所述处理器被配置为:
    在一个物理下行控制信道PDCCH内向终端发送调度信息,所述调度信息用于对至少两个数据块的传输进行调度;
    获取所述至少两个数据块的传输窄带集合,所述传输窄带集合中包含至少两个窄带;
    获取交替传输单元的大小参数,所述交替传输单元是由所述至少两个数据块中任一数据块多次重复传输所构成的数据单元,所述交替传输单元的大小参数指示所述交替传输单元中的数据块的重复传输次数;
    根据所述至少两个数据块的传输窄带集合以及所述交替传输单元的大小参数,与所述终端交替跳频传输所述至少两个数据块。
  42. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中包含可执行指令,终端中的处理器调用所述可执行指令以实现上述权利要求1至10任一所述的数据传输方法。
  43. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中包含可执行指令,基站中的处理器调用所述可执行指令以实现上述权利要求11至19任一所述的数据传输方法。
PCT/CN2018/112754 2018-10-30 2018-10-30 数据传输方法、装置及可读存储介质 WO2020087287A1 (zh)

Priority Applications (11)

Application Number Priority Date Filing Date Title
SG11202104176XA SG11202104176XA (en) 2018-10-30 2018-10-30 Data transmission method and device, and readable storage medium
CN202111538938.5A CN114158130A (zh) 2018-10-30 2018-10-30 数据传输方法、装置及可读存储介质
CN201880001839.3A CN109565661B (zh) 2018-10-30 2018-10-30 数据传输方法、装置及可读存储介质
RU2021113864A RU2764072C1 (ru) 2018-10-30 2018-10-30 Способ, устройство и система для передачи данных, а также машиночитаемый носитель информации
EP18938794.7A EP3876565A4 (en) 2018-10-30 2018-10-30 METHOD AND DEVICE FOR TRANSMITTING DATA, AND READABLE INFORMATION MEDIA
PCT/CN2018/112754 WO2020087287A1 (zh) 2018-10-30 2018-10-30 数据传输方法、装置及可读存储介质
KR1020217015997A KR20210082503A (ko) 2018-10-30 2018-10-30 데이터 전송 방법, 장치 및 판독 가능 저장 매체
BR112021007903-3A BR112021007903A2 (pt) 2018-10-30 2018-10-30 método, aparelho e dispositivo para transmitir dados, sistema de transmissão de dados, e, mídia de armazenamento legível por computador
JP2021523449A JP7234357B2 (ja) 2018-10-30 2018-10-30 データ伝送方法、装置及び読み取り可能な記憶媒体
US17/287,222 US20210392672A1 (en) 2018-10-30 2018-10-30 Data transmission method and device, and readable storage medium
JP2023026436A JP7390507B2 (ja) 2018-10-30 2023-02-22 データ伝送方法、装置及び読み取り可能な記憶媒体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/112754 WO2020087287A1 (zh) 2018-10-30 2018-10-30 数据传输方法、装置及可读存储介质

Publications (1)

Publication Number Publication Date
WO2020087287A1 true WO2020087287A1 (zh) 2020-05-07

Family

ID=65872593

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/112754 WO2020087287A1 (zh) 2018-10-30 2018-10-30 数据传输方法、装置及可读存储介质

Country Status (9)

Country Link
US (1) US20210392672A1 (zh)
EP (1) EP3876565A4 (zh)
JP (2) JP7234357B2 (zh)
KR (1) KR20210082503A (zh)
CN (2) CN109565661B (zh)
BR (1) BR112021007903A2 (zh)
RU (1) RU2764072C1 (zh)
SG (1) SG11202104176XA (zh)
WO (1) WO2020087287A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020215288A1 (zh) * 2019-04-25 2020-10-29 北京小米移动软件有限公司 传输块的调度方法、装置、基站、终端及存储介质
CN110603767B (zh) * 2019-06-03 2022-09-13 北京小米移动软件有限公司 混合自动重传请求反馈的传输方法、装置及存储介质
CN110312318B (zh) * 2019-06-28 2023-04-18 展讯通信(上海)有限公司 Pucch频域跳频方法、网元设备、终端及存储介质
WO2021087911A1 (zh) * 2019-11-07 2021-05-14 北京小米移动软件有限公司 多tb交替传输处理方法及装置、通信设备及存储介质
CN111092634B (zh) * 2019-12-31 2024-04-19 中兴通讯股份有限公司 一种调度方法、装置、设备和存储介质
US20230112099A1 (en) * 2020-03-27 2023-04-13 Qualcomm Incorporated Multi-mode configuration for coverage enhancements
CN112867036A (zh) * 2021-02-07 2021-05-28 吉林省科学技术信息研究所 Ad-HOC自组网系统及方法
CN115133954B (zh) * 2021-03-18 2023-06-20 维沃移动通信有限公司 跳频处理方法、装置及终端

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107113137A (zh) * 2014-10-30 2017-08-29 Lg 电子株式会社 通过mtc设备的pucch发送方法
CN108476116A (zh) * 2016-01-11 2018-08-31 高通股份有限公司 窄带物理控制信道设计

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2434818B1 (en) * 2009-05-22 2019-05-01 Huawei Technologies Co., Ltd. Method for dispatching multi sub-frames and the system, the terminal, the base station and the computer program product thereof
US9351293B2 (en) * 2009-09-11 2016-05-24 Qualcomm Incorporated Multiple carrier indication and downlink control information interaction
KR20130041821A (ko) * 2010-06-21 2013-04-25 후지쯔 가부시끼가이샤 무선 통신 방법 및 무선 통신 장치
CN110149724B (zh) * 2013-05-10 2023-04-07 北京三星通信技术研究有限公司 物理下行共享信道的多子帧调度的实现方法及装置
US20160088594A1 (en) * 2014-09-18 2016-03-24 Gang Xiong Device and method of supporting reduced data transmission bandwidth
US9887801B2 (en) * 2015-03-11 2018-02-06 Samsung Electronics Co., Ltd. Resource allocation for repetitions of transmissions in a communication system
WO2016159680A1 (ko) * 2015-04-02 2016-10-06 오혁준 커버리지 확장을 위한 사물 통신 방법, 이를 수행하는 장치 및 시스템
EP3280087B1 (en) * 2015-04-03 2020-01-29 LG Electronics Inc. Method for transmitting and receiving signal in wireless communication system and device therefor
US10966162B2 (en) * 2015-05-10 2021-03-30 Lg Electronics Inc. Method and apparatus for adapting repetition level for uplink transmission in wireless communication system
JP6093827B1 (ja) * 2015-09-24 2017-03-08 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法
EP3226456B1 (en) * 2016-04-01 2020-06-03 Panasonic Intellectual Property Corporation of America Asynchronous retransmission protocol
US11039460B2 (en) * 2016-08-09 2021-06-15 Lg Electronics Inc. Method for transmitting/receiving data in wireless communication system supporting Narrow Band Internet-of-Things and device therefor
CN109644480B (zh) * 2016-08-09 2022-04-26 Lg 电子株式会社 在支持窄带物联网的无线通信系统中发送/接收数据的方法及其设备
WO2018062371A1 (ja) 2016-09-30 2018-04-05 京セラ株式会社 移動通信方法
CN110140382B (zh) * 2016-11-04 2021-12-14 瑞典爱立信有限公司 窄带的系统信息
CN108024215A (zh) * 2016-11-04 2018-05-11 中兴通讯股份有限公司 一种多播业务的传输方法及装置
US10869333B2 (en) 2016-12-16 2020-12-15 Huawei Technologies Co., Ltd. Systems and methods for mixed grant-free and grant-based uplink transmissions
JP6813598B2 (ja) * 2017-02-03 2021-01-13 京セラ株式会社 基地局及び無線端末
US20200146039A1 (en) 2017-03-23 2020-05-07 Ntt Docomo, Inc. User terminal and radio communication method
CN108650066B (zh) * 2017-03-23 2021-04-13 财团法人资讯工业策进会 用户装置及基站
WO2019027262A1 (en) * 2017-08-02 2019-02-07 Samsung Electronics Co., Ltd. METHOD, PLANNING INFORMATION RECEIVING EQUIPMENT, TERMINAL, BASE STATION, AND INFORMATION TRANSMITTING METHOD
US11245497B2 (en) * 2018-03-16 2022-02-08 Qualcomm Incorporated Repetition-based transmissions
EP3857756A1 (en) * 2018-09-28 2021-08-04 Telefonaktiebolaget LM Ericsson (publ) Signalling for repetition
WO2020070722A1 (en) * 2018-10-05 2020-04-09 Telefonaktiebolaget Lm Ericsson (Publ) Transport block size determination for repetition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107113137A (zh) * 2014-10-30 2017-08-29 Lg 电子株式会社 通过mtc设备的pucch发送方法
CN108476116A (zh) * 2016-01-11 2018-08-31 高通股份有限公司 窄带物理控制信道设计

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Frequency hopping for MTC", 3GPP DRAFT; R1-155026 , 9 October 2015 (2015-10-09), Malmö, Sweden, pages 1 - 4, XP051002027 *
NEC: "Frequency hopping pattern for LTE Rel-13 MTC", 3GPP DRAFT; R1-156682 , 22 November 2015 (2015-11-22), Anaheim, USA, pages 1 - 7, XP051039913 *

Also Published As

Publication number Publication date
CN114158130A (zh) 2022-03-08
JP2023065507A (ja) 2023-05-12
RU2764072C1 (ru) 2022-01-13
CN109565661A (zh) 2019-04-02
EP3876565A4 (en) 2022-07-13
BR112021007903A2 (pt) 2021-08-03
US20210392672A1 (en) 2021-12-16
EP3876565A1 (en) 2021-09-08
SG11202104176XA (en) 2021-05-28
JP7390507B2 (ja) 2023-12-01
CN109565661B (zh) 2022-01-11
KR20210082503A (ko) 2021-07-05
JP2022506236A (ja) 2022-01-17
JP7234357B2 (ja) 2023-03-07

Similar Documents

Publication Publication Date Title
WO2020087287A1 (zh) 数据传输方法、装置及可读存储介质
WO2020147131A1 (zh) 无线通信方法、终端设备和网络设备
CN109041039A (zh) 用于设备对设备通信的用户设备及其方法
CN109644454B (zh) 终端唤醒控制方法、装置及存储介质
CN110537390B (zh) 基于免授权上行调度的数据传输方法、装置及存储介质
CN112534882A (zh) 非连续传输的方法和设备
CN106793090A (zh) D2d直接通信资源的选择方法及系统
CN110521271B (zh) 物理下行控制信道的传输参数更新方法、装置及存储介质
US11924839B2 (en) Data transmission method and apparatus
CN114364040B (zh) 无线通信方法和终端设备
WO2021056564A1 (zh) 直连通信操作处理方法、装置及存储介质
US11963162B2 (en) Data transmission method and device based on uplink grant-free scheduling, and storage medium
WO2020056774A1 (zh) 信号传输的方法、终端设备和网络设备
CN115189851B (zh) 频域资源位置确定方法与装置、终端和网络设备
WO2024067656A1 (zh) 上行传输的方法和通信装置
WO2019037137A1 (zh) 一种数据传输方法及装置
WO2022061790A1 (zh) 资源集合的传输方法和终端
WO2023134678A1 (zh) 通信方法和通信装置
WO2022141105A1 (zh) 无线通信方法、终端设备和网络设备
WO2022027679A1 (zh) 无线通信方法、终端设备和网络设备
CN118175612A (zh) 一种通信方法、装置及系统
TW202402005A (zh) 行動通訊的方法以及能夠在應用程式伺服器端網路中實現的裝置
CN117751532A (zh) 无线通信的方法、终端设备和网络设备
CN116830714A (zh) 无线通信的方法、终端设备和网络设备
CN116803182A (zh) 无线通信方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18938794

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021523449

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021007903

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20217015997

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018938794

Country of ref document: EP

Effective date: 20210531

ENP Entry into the national phase

Ref document number: 112021007903

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20210426