WO2020087235A1 - 一种磁性纳米材料及其制备方法与在放射性元素处理中的应用 - Google Patents

一种磁性纳米材料及其制备方法与在放射性元素处理中的应用 Download PDF

Info

Publication number
WO2020087235A1
WO2020087235A1 PCT/CN2018/112512 CN2018112512W WO2020087235A1 WO 2020087235 A1 WO2020087235 A1 WO 2020087235A1 CN 2018112512 W CN2018112512 W CN 2018112512W WO 2020087235 A1 WO2020087235 A1 WO 2020087235A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
water
preparing
particles
magnetic particles
Prior art date
Application number
PCT/CN2018/112512
Other languages
English (en)
French (fr)
Inventor
潘越
毕翔宇
Original Assignee
南通纺织丝绸产业技术研究院
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南通纺织丝绸产业技术研究院, 苏州大学 filed Critical 南通纺织丝绸产业技术研究院
Priority to PCT/CN2018/112512 priority Critical patent/WO2020087235A1/zh
Publication of WO2020087235A1 publication Critical patent/WO2020087235A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/48Treatment of water, waste water, or sewage with magnetic or electric fields

Definitions

  • the invention relates to the technical field of magnetic separation, in particular to a method for preparing and using magnetic nanomaterials for targeted and efficient separation of radioactive elements.
  • the magnetic separation technology uses nano-scale magnetic particles as a carrier and specifically binds the target substance by modifying specific ligands on the surface of the magnetic particles.
  • the advantages of magnetic separation include: high processing efficiency, small magnetic separation equipment, simple structure, easy maintenance, and relatively low cost.
  • the current research on magnetic separation involves multiple aspects in the biological and catalytic fields, such as the removal of metal ions in the blood, the enrichment of proteins, nucleic acids, etc., the recovery and reuse of immobilized enzymes, pathogens, bacteria , Detection and separation of apoptotic cells and cancer cells, etc .; loading the nanocatalyst with magnetic iron oxide nanoparticles to form a heterogeneous catalyst, the magnetic properties of the magnetic iron oxide nanoparticles can be used to achieve the catalyst under the action of an external magnetic field
  • the limitation of the prior art for separation and recycling is that the targeted adsorption and the separation effect are poor.
  • the present invention discloses a magnetic nanomaterial, its preparation method and its application in the treatment of radioactive elements; the present invention overcomes the defects and limitations of existing methods for processing radioactive elements in water.
  • the two characteristics of the nanometer scale are magnetic, which facilitates separation.
  • the nanometer-scale particles have a large specific surface area and therefore help adsorption; the nanomaterial has a series of special physical and chemical properties.
  • the nano-materials have a network of microporous channels, which can achieve adsorption equilibrium in a shorter time compared to ordinary adsorption materials, and It has good performance in terms of adsorption capacity, impregnation and solidification, and can also be functionalized, so that its adsorption performance may exceed other adsorption materials. It is a solid-phase extraction adsorption material with ideal performance.
  • a method for preparing magnetic nanomaterials includes the following steps:
  • the invention discloses a method for separating radioactive elements in a liquid.
  • the method includes the steps of adding magnetic nanomaterials to a liquid containing radioactive elements, and removing the magnetic nanomaterials after ultrasonic vibration to complete the separation of the radioactive elements in the liquid;
  • the preparation method of nanomaterials is as follows:
  • the concentration of the radioactive element in the liquid containing the radioactive element is 100ppm / mL; the ultrasonic vibration time is 30min, and the method for removing the magnetic nanomaterial is the magnet adsorption removal method
  • the water-soluble iron salt is FeCl 3 • 6H 2 O; the molar ratio of the water-soluble iron salt, sodium citrate and urea is 1: 2: 3.
  • water-soluble iron salt, sodium citrate and urea are added to water, and then polyacrylamide is added; in the present invention, FeCl 3 • 6H 2 O and sodium citrate (C 6 H 5 O 7 Na 3 • 2H 2 O) are added And urea slowly dissolved in distilled water, and then added polyacrylamide, vigorously stirred with a magnetic stirrer for 1h, and then the resulting mixed solution was transferred to a stainless steel autoclave, and kept at 200 °C for 12h; finally with ethanol and go The product was washed several times with ionized water and then captured with a magnetic field to obtain magnetic particles.
  • the magnetic particles obtained by the present invention have the following properties: the particles are all porous spherical structures with a rough surface, the particle size is uniform, the diameter is about 240nm, the distribution is uniform in the solution, the surface has not Modified ligands, followed by sulfur encapsulation or modified ligands, ligands include complex molecules of dopamine and bisphosphate; used to separate heavy metal ions and heavy metal oxide ions, such as uranyl ions.
  • the iron oxide nanoparticles of the present invention have excellent characteristics such as large specific surface area, superparamagnetism, and the surface can also be surface functionalized or compounded with other metal catalysts, which can further expand its application range.
  • the surface modification of the magnetic iron oxide nanoparticles of the present invention can be better applied to various fields.
  • the advantage of the small size of the nanoparticles and the high specific surface energy can effectively improve the adsorption effect, while avoiding the magnetic dipole between the particles
  • the problem of interaction and agglomeration is easy to occur.
  • the surface modification enhances the specific interaction between the nanoparticles and the substance to be adsorbed; while the surface modification molecule maintains the magnetic and stability of the particle, it also uses the functional group of the molecule to achieve Effectively combine the purpose of the substances to be separated.
  • magnetic composite nano-particles with a core-shell structure of nano-sulfur-wrapped iron oxide are formed, which can produce stable covalent bonding with various metal elements; Effective broad-spectrum chemisorption of radionuclides in samples.
  • the mass ratio of magnetic particles to sulfur element is 1: 8; the mass ratio of magnetic particles to dopamine-bisphosphate is 2: 1.
  • the invention also discloses magnetic nanomaterials prepared according to the above preparation method, including magnetic composite nanoparticles with a core-shell structure of nano-sulfur wrapped iron oxide, and magnetic composite nanoparticles modified with ligand molecules.
  • Surface modification molecules maintain the magnetic and stability of the particles, and also use the functional groups of the molecules to effectively bind the substances to be separated. Therefore, the present invention also discloses the application of the above-mentioned magnetic nanomaterials in the treatment of radioactive elements.
  • the environment for radioactive element processing is the liquid environment.
  • the present invention first prepares magnetic particles with a porous spherical structure with a rough surface, and then, through surface modification, obtains magnetic composite nanoparticles with specific binding to the target radionuclide.
  • the prepared magnetic composite nanoparticles are used to contain radioactive nuclei Separation and qualitative and quantitative analysis of element samples; magnetic composite nanoparticles are used in the treatment of radioactive wastewater, and through a series of treatment processes such as adsorption, separation, and elution, magnetic composite nanoparticles can be recycled.
  • Figure 1 is the magnetic particle characterization of Example 1, (A) TEM image, (B) SEM image, (C) XRD spectrum;
  • Figure 2 is the characterization of Fe 3 O 4 @S nanoparticles, (A) TEM photograph, (B) SEM image, (C) iron sulfide element analysis test chart;
  • Figure 3 is the characterization of Fe 3 O 4 -BiP, (A) SEM image, (B) fluorescence before and after adsorption, (C) comparison of the removal rate of repeated use;
  • Fig. 4 is a comparison graph of the removal rate of Fe 3 O 4 @S nanoparticles reused.
  • FeCl 3 • 6H 2 O (2.16 g, 8 mmol), sodium citrate (C 6 H 5 O 7 Na 3 • 2H 2 O) (4.70 g, 16 mmol) and urea (1.44 g, 24 mmol) were added to 120 mL of distilled water; After stirring, polyacrylamide (1.2g) was added and stirred vigorously with a magnetic stirrer for 1h. The resulting mixed solution was transferred to a 200 mL Teflon-lined stainless steel autoclave, and kept at 200 ° C for 12 hours. Then the product was washed several times with ethanol and deionized water, and then captured with a magnetic field to obtain magnetic particles, referred to as Fe 3 O 4 for short.
  • FIG. 1A is a low-resolution TEM image of magnetic iron oxide nanoparticles. It can be found that the nanoparticles are transparent in the middle and opaque at the edges, indicating that the material is hollow.
  • the SEM of FIG. 1B shows that the synthesized product has a very rough surface, and it can be seen that there are surface cracks, proving that the material has a porous structure.
  • Figure 1C is an XRD spectrum, which is compared with the standard Fe 3 O 4 spectrum, and has a good match. It further shows that the synthesized material is iron oxide magnetic nanoparticles.
  • Embodiment 2 Magnetic composite nanoparticles with a core-shell structure of nano-sulfur coated iron oxide
  • the resulting nanoparticles are core-shell structured ferroferric oxide @ sulfur nanoparticles, that is, magnetic nanomaterials, referred to as Fe 3 O 4 @S for short.
  • the synthesized nano-sulfur-coated magnetic iron oxide particles were characterized: As shown in FIGS. 2A and 2B, Fe 3 O 4 @S nanoparticles exhibited a core-shell structure with an average particle size of approximately 200 nm. Energy scattering X-ray energy spectroscopy (EDS) analysis ( Figure 2C) confirmed the presence of Fe and S elements.
  • EDS Energy scattering X-ray energy spectroscopy
  • Iron oxide magnetic nanoparticles Fe 3 O 4 -BiP whose ligand is dopamine-bisphosphate are obtained, that is, magnetic nanomaterials.
  • TEM ( Figure 3A) characterization confirmed that the reaction product was indeed iron oxide magnetic nanoparticles with ligands of dopamine-bisphosphate.
  • Nano-iron oxide surface-modified bisphosphate in which the conjugated system of dopamine and bisphosphate can be very tightly linked with nano-iron oxide and can form a chelate with uranyl ions (Fe 3 O 4 -BiP-UO 2 2+ ).
  • Fe 3 O 4 -BiP-UO 2 2+ uranyl ions
  • FIG. 3B shows that the magnetic nanomaterial and uranyl ions of the present invention can form a stable chelate, which ensures the effect of separating uranyl ions.
  • Figure 3C shows that after multiple (five) consecutive uses, the removal efficiency of the magnetic nanomaterials does not decrease much, proving that the magnetic nanomaterials can be recycled.
  • the uranium ion removal rate of Fe 3 O 4 -BiP aqueous solution of 500 ppm uranium ion is 97.8%; but the uranium ion removal rate of Fe 3 O 4 is 12.8%; the method disclosed by “2011102266063” is adopted
  • the uranium ion removal rate of the prepared Fe 3 O 4 surface-modified bisphosphate was 78.8%, and the removal rate after three cycles was 58.6%; the mass ratio of magnetic particles to dopamine-bisphosphate was 1: 1.
  • the ion removal rate was 85.8%; the molar ratio of water-soluble iron salt, sodium citrate and urea was 1: 2: 1.
  • the uranium ion removal rate of the prepared product was 90.8%.
  • Example 4 Referring to the experimental method of Example 4, the removal rate of Fe 3 O 4 @S magnetic nanomaterial to 100 ppm uranyl ion aqueous solution is shown in FIG. 4, and it can also be seen that the material has good cycle performance; magnetic particles and sulfur elemental The uranium ion removal rate of the prepared product with the mass ratio of 1: 5 was 50.8%.
  • the present invention constructs a series of magnetic composite nanoparticles based on magnetic iron oxide nanoparticles, while selectively adjusting the size and morphology of the material, and through surface modification to obtain specific binding targets Magnetic composite nanoparticles with radionuclide function.
  • the prepared magnetic composite nanoparticles are used for separation and qualitative and quantitative analysis of samples containing radionuclides.
  • the magnetic composite nanoparticles are used in the treatment of radioactive wastewater, and through a series of treatment processes such as adsorption, separation, and elution, the magnetic composite nanoparticles can be recycled.
  • the present invention carries out discussion and in-depth research on the current development status of the technology and existing problems, and compares with the existing nuclide separation technology to evaluate the reliability and effectiveness of the method.

Abstract

一种磁性纳米材料及其制备方法与在放射性元素处理中的应用。基于磁性纳米颗粒构建一系列以磁性氧化铁纳米颗粒为基础的磁性复合纳米颗粒,在选择性调控材料的尺寸、形貌等的同时,通过表面修饰得到具有特异性结合目标放射性核素功能的磁性复合纳米颗粒;所制备的磁性复合纳米颗粒将用于含有放射性核素样品的分离和定性定量分析。最后将磁性复合纳米颗粒用于放射性废水的处理,并通过吸附、分离、洗脱等一系列处理过程,实现磁性复合纳米颗粒的可循环利用。

Description

一种磁性纳米材料及其制备方法与在放射性元素处理中的应用 技术领域
本发明涉及磁性分离技术领域,具体地说,是一种用于靶向性高效分离放射性元素的磁性纳米材料的制备及使用方法。
背景技术
磁性分离技术以纳米级的磁性颗粒为载体,通过在磁性颗粒表面修饰特定的配体对目标物质进行特异性结合。此外,在外加磁场的控制下经过吸附、富集、洗脱等一系列操作可以得到高纯度的目标物质并实现离性纳米颗粒的可循环利用。磁性分离的优点包括:处理效率高、磁分离设备体积小、结构简单、维护容易、成本相对较低。除了处理水污染以外,当前磁分离的研究涉及生物领域和催化领域的多个方面,如血液中金属离子的去除、蛋白质、核酸等的富集,固定化酶的回收与重复利用,病原体、细菌、凋亡细胞及癌细胞的检测与分离等;将纳米催化剂与磁性氧化铁纳米颗粒进行负载,形成异相催化剂,则可利用磁性氧化铁纳米颗粒的磁性,在外加磁场的作用下实现催化剂的分离与回收再利用,现有技术的局限性在于靶向吸附以及分离效果差。
目前,放射性核污染的清除相当困难,特别是针对半衰期长、活度低、面积大的放射性核素的处理,尚缺乏成熟的方法与技术。传统的处理方法和技术,包括过滤、离心等,在实际应用中存在一定的局限性。例如沉淀法属间歇式操作,步骤复杂,劳动强度大,目前已很少应用;溶剂萃取法易实现连续自动化操作,适于在强放射性条件下使用,但目前尚未找到合适的萃取剂等。相比传统的分离方法,磁性纳米吸附材料具有合成便利、分离效率高、对放射性核素选择性好、操作简单、可回收利用等优点,是一种值得尝试的方法。目前国内外对于锕系元素的研究,相对过渡金属和镧系元素缺乏,特别是关于超铀元素配位化学的前期研究非常有限,需要研发新的方法以有效处理锕系放射元素。磁性纳米颗粒在放射性核污染的清除上具有较大的发展前景,但是想要实现其应用必须解决一些困难:一是对于不同的放射性元素需要寻找不同的特异性结合配体;磁性纳米颗粒与特异性配体是否能良好结合也是一个重要因素。因此,以四氧化三铁为核心的核壳结构需要从理论到实践上的不断探索以扩大其应用场景。
技术问题
本发明公开了一种磁性纳米材料及其制备方法与在放射性元素处理中的应用;本发明克服了现存处理水中放射性元素方法的缺陷及局限性,所用的材料,即磁性纳米材料本身兼具磁性和纳米尺度两大特点,磁性有助于分离,纳米尺度的颗粒比表面积大因而有助于吸附;该纳米材料具有一系列特殊的物理、化学性质,随着粒径减小,其表面原子数迅速增大,表面积、表面能和表面结合能也迅速增大;而且纳米材料内部具有网络结构的微孔通道,与一般的吸附材料相比,在较短的时间内即可达到吸附平衡,且在吸附容量、浸渍和固化方面的性能好,还能被功能化,使其吸附性能有可能超过其他吸附材料,是一种性能理想的固相萃取吸附材料。
技术解决方案
本发明采用如下技术方案:
一种磁性纳米材料的制备方法,包括以下步骤:
(1)将聚丙烯酰胺加入水溶性铁盐、柠檬酸钠、尿素、水的混合物中得到混合液;然后将混合液于200℃下保温反应12h,得到磁性粒子;
(2)将磁性粒子与硫单质的甲苯溶液在80℃下反应30 min;然后经过沉淀、离心、超声清洗后,得到核壳结构的四氧化三铁@硫纳米颗粒,即磁性纳米材料;
(3)将多巴胺-双磷酸盐的水溶液与磁性粒子的己烷溶液混合后超声处理;然后分离水相并用己烷清洗剩余物,得到磁性纳米材料;为可以与放射性核素特异性结合的配体材料。
本发明公开了一种分离液体中放射性元素的方法,包括以下步骤,将磁性纳米材料加入含有放射性元素的液体中,超声震荡后,去除磁性纳米材料,完成液体中放射性元素的分离;所述磁性纳米材料的制备方法如下:
(1)将聚丙烯酰胺加入水溶性铁盐、柠檬酸钠、尿素、水的混合物中得到混合液;然后将混合液于200℃下保温12h,得到磁性粒子;
(2)将磁性粒子与硫单质的甲苯溶液在80℃下反应30 min;然后经过沉淀、离心、超声清洗后,得到核壳结构的四氧化三铁@硫纳米颗粒,即磁性纳米材料;
(3)将多巴胺-双磷酸盐的水溶液与磁性粒子的己烷溶液混合后超声处理;然后分离水相并用己烷清洗剩余物,得到磁性纳米材料。
上述技术方案中,含有放射性元素的液体中,放射性元素的浓度为100ppm/mL;超声震荡的时间为30min,去除磁性纳米材料的方法为磁铁吸附去除法
上述技术方案中,水溶性铁盐为FeCl 3•6H 2O;水溶性铁盐、柠檬酸钠、尿素的摩尔比为1∶2∶3。
优选的,将水溶性铁盐、柠檬酸钠、尿素加入水中,再加入聚丙烯酰胺;本发明将FeCl 3•6H 2O、柠檬酸钠(C 6H 5O 7Na 3•2H 2O)和尿素缓慢地溶解到蒸馏水中,然后再加入聚丙烯酰胺,用磁力搅拌器剧烈搅拌1h,然后将得到的混合溶液转移到不锈钢高压釜中,并在200℃下保温12h;最后用乙醇和去离子水将产物洗涤数次,然后用磁场捕获,得到磁性粒子。从SEM和TEM的表征可以看出,本发明得到的磁性粒子的有如下性质:颗粒均为具有粗糙表面的多孔球型结构,颗粒大小均匀,直径约为240nm,在溶液中分布均匀,表面尚未修饰配体,后续进行包硫或修饰配体,配体包括多巴胺和双磷酸盐的复合分子;用于分离重金属离子以及重金属氧化物离子,例如铀酰离子。
本发明公开的表面修饰方法有两种,分别对应制备方法的第(2)步、第(3)步。现有技术早期在环境方面的研究主要是修复和尾端处理技术,在修复土壤、沉积物和地下水中主要关注的是重金属和有机化合物(苯、含氯溶剂和甲苯等)的吸附,在放射性核素分离与富集方面的研究较少。本发明的氧化铁纳米颗粒具有较大的比表面积、超顺磁性等优良特性,其表面还可进行表面功能化或与其他金属催化剂复合等,则可进一步拓展其应用范畴。本发明的磁性氧化铁纳米颗粒进行表面修饰后能更好地应用于各个领域,一方面利用纳米颗粒尺寸较小、比表面能高能够有效提高吸附效果的优势,同时避免颗粒间的磁偶极相互作用、容易发生团聚的问题,另一方面通过表面修饰增强纳米颗粒与待吸附物质的特异性相互作用;表面修饰分子在保持颗粒磁性和稳定性的同时,还利用该分子的功能基团达到有效结合待分离物质的目的。制得所需的氧化铁纳米颗粒后,本发明开展以下两种修饰:
通过在磁性粒子表面包裹一层纳米硫,形成具有纳米硫包裹氧化铁的核壳结构的磁性复合纳米颗粒,从而能与多种金属元素产生稳定的共价键结合等;所得的磁性纳米颗粒可以对样品中的放射性核素进行有效地广谱化学吸附。
合成配体分子,对油相氧化铁纳米颗粒进行水溶性配体置换,得到可以特异性结合样品中放射性核素的磁性复合纳米颗粒;尤其以多巴胺与双磷酸盐的复合分子为配体的氧化铁@二磷酸根纳米颗粒,可特异性螯合水溶液中的铀酰离子。
上述技术方案中,磁性粒子与硫单质的质量比1:8;磁性粒子与多巴胺-双磷酸盐的质量比2:1。
本发明还公开了根据上述制备方法制备的磁性纳米材料,包括纳米硫包裹氧化铁的核壳结构的磁性复合纳米颗粒、配体分子修饰的磁性复合纳米颗粒。表面修饰分子在保持颗粒磁性和稳定性的同时,还利用该分子的功能基团达到有效结合待分离物质的目的,因此本发明还公开了上述磁性纳米材料在放射性元素处理中的应用,所述放射性元素处理的环境为液体环境。
有益效果
本发明首先制备具有粗糙表面的多孔球型结构的磁性粒子,再通过表面修饰,得到具有特异性结合目标放射性核素功能的磁性复合纳米颗粒,所制备的磁性复合纳米颗粒被用于含有放射性核素样品的分离和定性定量分析;将磁性复合纳米颗粒用于放射性废水的处理,并通过吸附、分离、洗脱等一系列处理过程,实现磁性复合纳米颗粒的可循环利用。
附图说明
图1为实施例一磁性粒子表征,(A)TEM图、(B)SEM图、(C)XRD谱图;
图2为Fe 3O 4@S纳米粒子的表征,(A) TEM照片、(B)SEM图、(C)硫化铁元素分析测试图;
图3为Fe 3O 4-BiP 的表征,(A)SEM图、(B)吸附前后的荧光图、(C)重复使用的去除率对比图;
图4为Fe 3O 4@S纳米粒子重复使用的去除率对比图。
本发明的实施方式
实施例一 合成磁性氧化铁纳米颗粒(磁性粒子)
FeCl 3•6H 2O(2.16g,8mmol)、柠檬酸钠(C 6H 5O 7Na 3•2H 2O)(4.70g,16mmol)和尿素(1.44g,24mmol)加入120mL的蒸馏水中;搅拌后再加入聚丙烯酰胺(1.2g),用磁力搅拌器剧烈的搅拌1h。再将得到的混合溶液转移到200mL的Teflon-lined不锈钢高压釜中,并在200℃保温12小时。然后用乙醇和去离子水将产物洗涤数次,然后用磁场捕获,得到磁性粒子,简称Fe 3O 4
对合成的氧化铁磁性粒子进行表征:从图1A和图1B可以看出磁性纳米颗粒的直径在200nm左右。图1A是磁性氧化铁纳米颗粒的低分辨率TEM图,可以发现纳米粒子的中间是透明的而边缘却是不透明的,说明材料是中空的。图1B的SEM显示合成的产物具有非常粗糙的表面,而且可以看出存在着表面缝隙,证明了材料具有多孔结构。图1C是XRD图谱,与标准的Fe 3O 4谱图进行比对,具有良好的匹配,进一步说明合成的材料是氧化铁磁性纳米颗粒。
实施例二 纳米硫包裹氧化铁的核壳结构的磁性复合纳米颗粒
在磁性氧化铁颗粒表面包裹一层纳米硫:将26.5 mg硫单质溶解于5 mL甲苯,并将溶解后的单质硫全部加入0.1 M的四氧化三铁纳米颗粒(实施例一制备)甲苯溶液(磁性粒子与硫单质的质量比1:8)。将所得混合溶液加热至80℃并在该温度下保持30 min。随后,将混合溶液冷却至室温并加入无水乙醇使纳米颗粒沉淀。将沉淀后的溶液加入离心管离心(离心条件为7000 r/min,10 min)。离心后,倒出上层清液,加入正己烷和无水乙醇超声清洗。重复以上步骤三次后,加入过量甲苯溶解所得纳米颗粒。所得纳米颗粒为核壳结构的四氧化三铁@硫纳米颗粒,即磁性纳米材料,简称Fe 3O 4@S。
对合成的纳米硫包裹的磁性氧化铁颗粒进行表征:如图2A与2B所示,Fe 3O 4@S纳米颗粒表现为核壳结构,平均粒径约为200 nm。能量散射X射线能谱(EDS)分析(图2C)证明了Fe、S元素的存在。
实施例三 配体分子修饰的磁性复合纳米颗粒
合成可以与放射性核素特异性结合的配体分子,对油相氧化铁纳米颗粒进行水溶性配体置换:10 mg 多巴胺-双磷酸盐溶于10ml H 2O,并且pH值调为5;然后与10mL的纳米氧化铁(2mg/mL)的己烷溶液混合(磁性粒子与多巴胺-双磷酸盐的质量比2:1),然后用超声波处理反应30分钟。然后分离水相,产物用10mL己烷润洗三次。得到配体为多巴胺-双磷酸盐的氧化铁磁性纳米颗粒(Fe 3O 4-BiP) ,即磁性纳米材料。通过TEM(图3A)的表征确定反应产物确为配体为多巴胺-双磷酸盐的氧化铁磁性纳米颗粒。
实施例四 Fe 3O 4-BiP磁性纳米材料分离核素实验
首先,将硝酸铀酰加入到1.0 mL的水溶液中(100ppm),然后用5分钟的超声波进行均匀,得到溶液,然后在溶液中加入15mg的表面修饰双磷酸盐的纳米氧化铁(Fe 3O 4-BiP),然后进行30分钟的超声波振荡。之后,用一个小磁铁从水溶液中吸附并去除磁性纳米颗粒,完成铀酰离子的分离,然后冲洗三次。在ICP分析之前,先在每个样品中加入5.0 mL浓硝酸。然后用瓦斯炉将每个样品烧干,然后在900℃的高温下将样品在烤箱中继续燃烧5小时,以去除残留的有机化合物。
纳米氧化铁表面修饰双磷酸盐,其中多巴胺和双磷酸盐的共轭体系能够和纳米氧化铁十分紧密的连结在一起并且能和铀酰离子形成螯合物(Fe 3O 4-BiP-UO 2 2+)。用15mg的Fe 3O 4-BiP加入1mL含有100ppm铀酰离子的水溶液中,可以从图3B中看出,最后可以把99%的铀酰离子去除掉。说明本发明的磁性纳米材料和铀酰离子能形成稳定的螯合物,保证了分离铀酰离子的效果。而图3C表明了在连续多次(五次)使用后,磁性纳米材料去除效率没有太大的下降,证明了磁性纳米材料的可循环利用。
参考上述 实验方法,对于500ppm铀酰离子的水溶液Fe 3O 4-BiP的铀酰离子去除率为97.8%;但是Fe 3O 4的铀酰离子去除率为12.8%;采用“2011102266063”公开的方法制备的Fe 3O 4表面修饰双磷酸盐后的铀酰离子去除率为78.8%,循环三次后去除率为58.6%;磁性粒子与多巴胺-双磷酸盐的质量比1:1制备产物的铀酰离子去除率为85.8%;水溶性铁盐、柠檬酸钠、尿素的摩尔比为1∶2∶1制备产物的铀酰离子去除率为90.8%。
实施例五 Fe 3O 4@S磁性纳米材料分离核素实验
参考实施例四的实验方法,Fe 3O 4@S磁性纳米材料对100ppm铀酰离子水溶液的去除率见附图4,同时还可以看出,该材料具有良好的循环性能;磁性粒子与硫单质的质量比1:5制备产物的铀酰离子去除率为50.8%。
高效安全的核能产业发展是我国经济建设和国家安全的重大需求,创新分离方法的研究有助于放射性核废料的处理,有利于核能产业周边环境的保护以及周边居民生命安全的保障。本发明基于磁性纳米颗粒的工作,构建一系列以磁性氧化铁纳米颗粒为基础的磁性复合纳米颗粒,在选择性调控材料的尺寸、形貌等的同时,通过表面修饰,得到具有特异性结合目标放射性核素功能的磁性复合纳米颗粒。所制备的磁性复合纳米颗粒被用于含有放射性核素样品的分离和定性定量分析。通过设计实验组,深入研究组成、直径、形貌、配体等因素对吸附过程的影响。最后,将磁性复合纳米颗粒用于放射性废水的处理,并通过吸附、分离、洗脱等一系列处理过程,实现磁性复合纳米颗粒的可循环利用。本发明对该技术目前的发展现状与现存的问题开展讨论及深入研究,并与现存的核素分离技术进行比较,评价该方法的可靠性与有效性。

Claims (10)

  1. 一种磁性纳米材料的制备方法,包括以下步骤:
    (1)将聚丙烯酰胺加入水溶性铁盐、柠檬酸钠、尿素、水的混合物中得到混合液;然后将混合液保温反应,得到磁性粒子;
    (2)将磁性粒子与硫单质的甲苯溶液反应;然后经过沉淀、离心、超声清洗后,得到磁性纳米材料;
    (3)将多巴胺-双磷酸盐的水溶液与磁性粒子的己烷溶液混合后超声处理;然后分离水相并用己烷清洗剩余物,得到磁性纳米材料。
  2. 根据权利要求1所述磁性纳米材料的制备方法,其特征在于,将混合液于200℃下保温反应12h,得到磁性粒子。
  3. 根据权利要求1所述磁性纳米材料的制备方法,其特征在于,水溶性铁盐为FeCl 3•6H 2O;水溶性铁盐、柠檬酸钠、尿素的摩尔比为1∶2∶3。
  4. 根据权利要求1所述磁性纳米材料的制备方法,其特征在于,将水溶性铁盐、柠檬酸钠、尿素加入水中,再加入聚丙烯酰胺。
  5. 根据权利要求1所述磁性纳米材料的制备方法,其特征在于,磁性粒子与硫单质的质量比1:8。
  6. 根据权利要求1所述磁性纳米材料的制备方法,其特征在于,磁性粒子与多巴胺-双磷酸盐的质量比2:1。
  7. 根据权利要求1所述磁性纳米材料的制备方法,其特征在于,将磁性粒子与硫单质的甲苯溶液在80℃下反应30 min。
  8. 根据权利要求1所述的制备方法制备的磁性纳米材料。
  9. 权利要求9所述磁性纳米材料在放射性元素处理中的应用。
  10. 根据权利要求9所述的应用,其特征在于,放射性元素的处理在液体环境中进行。
PCT/CN2018/112512 2018-10-29 2018-10-29 一种磁性纳米材料及其制备方法与在放射性元素处理中的应用 WO2020087235A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/112512 WO2020087235A1 (zh) 2018-10-29 2018-10-29 一种磁性纳米材料及其制备方法与在放射性元素处理中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/112512 WO2020087235A1 (zh) 2018-10-29 2018-10-29 一种磁性纳米材料及其制备方法与在放射性元素处理中的应用

Publications (1)

Publication Number Publication Date
WO2020087235A1 true WO2020087235A1 (zh) 2020-05-07

Family

ID=70464288

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/112512 WO2020087235A1 (zh) 2018-10-29 2018-10-29 一种磁性纳米材料及其制备方法与在放射性元素处理中的应用

Country Status (1)

Country Link
WO (1) WO2020087235A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103894141A (zh) * 2014-04-11 2014-07-02 上海交通大学 硫化剂改性磁性纳米Fe3O4吸附剂及其制备方法和应用
CN105218741A (zh) * 2015-11-06 2016-01-06 武汉理工大学 一种温敏性磁性复合微球的制备方法
US20170225967A1 (en) * 2016-02-08 2017-08-10 Savannah River Nuclear Solutions, Llc Use of Magnetic Mesoporous Silica Nanoparticles For Removing Uranium From Media
CN109319891A (zh) * 2018-10-22 2019-02-12 苏州大学 一种磁性纳米材料及其制备方法与在放射性元素处理中的应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103894141A (zh) * 2014-04-11 2014-07-02 上海交通大学 硫化剂改性磁性纳米Fe3O4吸附剂及其制备方法和应用
CN105218741A (zh) * 2015-11-06 2016-01-06 武汉理工大学 一种温敏性磁性复合微球的制备方法
US20170225967A1 (en) * 2016-02-08 2017-08-10 Savannah River Nuclear Solutions, Llc Use of Magnetic Mesoporous Silica Nanoparticles For Removing Uranium From Media
CN109319891A (zh) * 2018-10-22 2019-02-12 苏州大学 一种磁性纳米材料及其制备方法与在放射性元素处理中的应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
WANG, LING ET AL.: "A Biocompatible Method of Decorporation: Bisphosphonate-Modified Magnetite Nanoparticles to Remove Uranyl Ions from Blood", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 128, no. 41, 1 January 2006 (2006-01-01), pages 13358 - 13359, XP002475442, ISSN: 0002-7863, DOI: 10.1021/ja0651355 *
YANG, SHANYE ET AL.: "Synthesis of Fe3O4-Based Nanomaterials and Their Application in the Removal of Radionuclides and Heavy MetalIons", PROGRESS IN CHEMISTRY, vol. 30, no. 2/3 S1, 12 February 2018 (2018-02-12), pages 225 - 242, XP009520627, ISSN: 1005-281X, DOI: 10.7536/PC170829 *

Similar Documents

Publication Publication Date Title
Zhang et al. Enhanced removal of As (Ⅲ) and As (Ⅴ) from aqueous solution using ionic liquid-modified magnetic graphene oxide
Cheng et al. UV-assisted ultrafast construction of robust Fe3O4/polydopamine/Ag Fenton-like catalysts for highly efficient micropollutant decomposition
Liu et al. Recycling Mg (OH) 2 nanoadsorbent during treating the low concentration of CrVI
Zhang et al. Sonochemical synthesis and characterization of magnetic separable Fe3O4/Ag composites and its catalytic properties
Yang et al. Efficient and rapid removal of Pb2+ from water by magnetic Fe3O4@ MnO2 core-shell nanoflower attached to carbon microtube: adsorption behavior and process study
Hussain Magnetic nanomaterials for environmental analysis
Li et al. Arsenazo-functionalized magnetic carbon composite for uranium (VI) removal from aqueous solution
CN109319891B (zh) 一种磁性纳米材料及其制备方法与在放射性元素处理中的应用
Zhao et al. Facile synthesis of low-cost MnPO4 with hollow grape-like clusters for rapid removal uranium from wastewater
Park et al. Highly efficient and magnetically recyclable Pd catalyst supported by iron-rich fly ash@ fly ash-derived SiO2 for reduction of p-nitrophenol
Chen et al. Adsorption-induced crystallization of U-rich nanocrystals on nano-Mg (OH) 2 and the aqueous uranyl enrichment
Li et al. Adsorption-reduction strategy of U (VI) on NZVI-supported zeolite composites via batch, visual and XPS techniques
Su et al. The influence of particle size and natural organic matter on U (VI) retention by natural sand: parameterization and mechanism study
CN112007644B (zh) 基于盐模板法回收芬顿污泥制备二维Fe/Fe3O4光催化剂的方法
CN113477220A (zh) 基于磁性金属有机骨架的贵金属离子吸附材料及制备方法
CN104826600A (zh) 一种磁性高岭土的制备方法
CN106636646A (zh) 一种高效提取废scr脱硝催化剂中钒钨的方法
Zhang et al. Uranium uptake from wastewater by the novel MnxTi1-xOy composite materials: performance and mechanism
Zhang et al. Super-efficient extraction of U (VI) by the dual-functional sodium vanadate (Na2V6O16· 2H2O) nanobelts
Wang et al. Investigation on the room-temperature preparation and application of chain-like iron flower and its ramifications in wastewater purification
Huang et al. Multivalent iron-based magnetic porous biochar from peach gum polysaccharide as a heterogeneous Fenton catalyst for degradation of dye pollutants
Zhang et al. Immobilization of uranium by S-NZVI and UiO-66-NO2 composite through combined adsorption and reduction
Li et al. Hydrothermal synthesis of Zr-doped chitosan carbon-shell protected magnetic composites (Zr–Fe3O4@ C) for stable removal of Cr (VI) from water: Enhanced adsorption and pH adaptability
Irawan et al. Synthesis of magnetic nanoparticles coated zirconia using one-pot solvothermal processes as adsorbent for Pb (II) and Cd (II) removal
Hu et al. Effective adsorption of thorium ion by novel self-crosslinking polyamide acid-grafted magnetic nanocomposites

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18938823

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18938823

Country of ref document: EP

Kind code of ref document: A1