WO2020085820A1 - 비알코올 지방간 질환의 조직학적 중증도 진단 또는 예후 측정에 관한 정보 제공 방법 - Google Patents

비알코올 지방간 질환의 조직학적 중증도 진단 또는 예후 측정에 관한 정보 제공 방법 Download PDF

Info

Publication number
WO2020085820A1
WO2020085820A1 PCT/KR2019/014084 KR2019014084W WO2020085820A1 WO 2020085820 A1 WO2020085820 A1 WO 2020085820A1 KR 2019014084 W KR2019014084 W KR 2019014084W WO 2020085820 A1 WO2020085820 A1 WO 2020085820A1
Authority
WO
WIPO (PCT)
Prior art keywords
obesity
nafld
fatty liver
severity
content
Prior art date
Application number
PCT/KR2019/014084
Other languages
English (en)
French (fr)
Inventor
김원
Original Assignee
서울대학교병원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울대학교병원 filed Critical 서울대학교병원
Priority to CN201980066303.4A priority Critical patent/CN113711047A/zh
Priority to JP2021543108A priority patent/JP7111906B2/ja
Priority to EP19875663.7A priority patent/EP3872495A4/en
Priority to US17/283,058 priority patent/US20210349110A1/en
Publication of WO2020085820A1 publication Critical patent/WO2020085820A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/92Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving lipids, e.g. cholesterol, lipoproteins, or their receptors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2405/00Assays, e.g. immunoassays or enzyme assays, involving lipids
    • G01N2405/08Sphingolipids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/08Hepato-biliairy disorders other than hepatitis
    • G01N2800/085Liver diseases, e.g. portal hypertension, fibrosis, cirrhosis, bilirubin
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/52Predicting or monitoring the response to treatment, e.g. for selection of therapy based on assay results in personalised medicine; Prognosis

Definitions

  • the present invention was made by task number 1465025699 under the support of the Ministry of Health and Welfare, and the research and management institute of the above project is the Health Industry Development Institute, the research project name is “Disease Overcome Technology Development”, and the research project title is "Large scale Korean non-alcoholic fatty liver conversion cohort Analysis of microbiome and serum metabolism in feces according to the organizational findings of liver pathology ", Organizing organization is Seoul Boramae Hospital, Research period is 2018.01.01 ⁇ 2018.12.31.
  • the present invention relates to a method for providing information on the diagnosis or prognosis of histological severity of non-alcoholic fatty liver disease, and more particularly, by measuring the content of saturated sphingomyelin to increase the risk associated with the severity of non-alcoholic fatty liver disease. It's about how to check.
  • Nonalcoholic fatty liver disease is caused by abnormal accumulation of hepatic triglycerides (TG), called hepatolipidosis, and can sometimes progress to fibrosis associated with nonalcoholic steatohepatitis (NASH). have.
  • TG hepatic triglycerides
  • NASH nonalcoholic steatohepatitis
  • Obesity and insulin resistance are major risk factors for metabolic syndrome, such as metabolic syndrome (NAFLD) and type 2 diabetes.
  • NAFLD metabolic syndrome
  • a significant number of NAFLD patients have a relatively low body mass index of BMI ⁇ 25 kg / m 2 and insulin resistance is maintained less. Since NAFLD is closely related to obesity, previous metabolomics studies focused on obese white adult males with a BMI ⁇ 30 kg / m 2 or higher.
  • SM sphingomyelin
  • NAFLD non-obesity nonalcoholic fatty liver disease
  • an object of the present invention is to provide a method for providing information on the diagnosis or prognosis of histological severity of non-alcoholic fatty liver disease, comprising a measuring step of measuring the content of sphingomyelin in a biological sample isolated from a sample.
  • Another object of the present invention relates to the use of information on the diagnosis or prognosis of histological severity of non-alcoholic fatty liver disease of sphingomyelin measurements.
  • the present invention relates to a method for providing information on the diagnosis or prognosis of histological severity of non-alcoholic fatty liver disease, and the method according to the present invention measures non-alcoholic fatty liver by measuring the content of the patient's serum sphingomyelin (SM) It indicates that the risk associated with the severity of the disease (Nonalcoholic fatty liver disease; NAFLD) can be confirmed.
  • SM serum sphingomyelin
  • the inventors have found that when the amount of saturated sphingomyelin is more than 1.3 times that of normal serum, the risk associated with the severity of nonalcoholic fatty liver disease is increased.
  • One aspect of the present invention is a method for providing information on the diagnosis or prognosis of histological severity of non-alcoholic fatty liver disease, comprising a measuring step of measuring the content of sphingomyelin in a biological sample isolated from a sample.
  • the sphingomyelin may be saturated sphingomyelin.
  • the method may further include a risk determination step of determining that the risk associated with the severity of nonalcoholic fatty liver disease in the sample is increased. .
  • the body mass index of the sample when the body mass index of the sample is less than 25, it is classified as non-obesity, and when the body mass index of the sample is 25 or more, it is classified as obese.
  • the sample may have a body mass index (BMI) of less than 25.
  • BMI body mass index
  • a specific saturated SM plays a large role in the development of non-alcoholic fatty liver as well as the progression to NASH, but the obesity group with a body mass index of 25 or more can confirm this phenomenon. Because there was not.
  • the sample may be Asian. This is because studies have been published suggesting blood metabolite profiles in Western non-obesity NAFLD patients, but WHO recommended that the WHO BMI standard for the Asian population should be adopted differently from the international classification.
  • Asian means a person originating in mainland people from China, Mongolia, Taiwan, Singapore, Korea, Japan, Vietnam, Cambodia, Laos, Burma, Thailand, Malaysia, Indonesia, and the Philippines.
  • the biological sample may be serum or plasma.
  • non-alcoholic fatty liver disease in serum isolated from non-obese Asian patients having a body mass index of less than 25, when the content of saturated sphingomyelin is increased by 1.3 times or more compared to a normal control sample, non-alcoholic fatty liver disease It can be judged that the risk associated with severity increased.
  • the present invention relates to a method for providing information on the diagnosis or prognosis of histological severity of non-alcoholic fatty liver disease, and the risk associated with the severity of non-alcoholic fatty liver disease is increased when the content of sphingomyelin is 1.3 times or more compared to the normal control group. Therefore, it can be effectively used for severity diagnosis or prognosis measurement.
  • Figure 1a is a graph showing the fold change of lipid species according to non-alcoholic fatty liver disease (NAFL) / non-alcoholic fatty liver disease (no-NAFLD) for non-obesity patients.
  • NAFL non-alcoholic fatty liver disease
  • no-NAFLD non-alcoholic fatty liver disease
  • 1B is a graph showing the fold change of lipid species according to nonalcoholic steatohepatitis (NASH) / NAFL for non-obesity patients.
  • NASH nonalcoholic steatohepatitis
  • 1C is a graph showing fold change of lipid species according to NAFL / no-NAFLD for obese patients.
  • 1D is a graph showing fold change of lipid species according to NASH / NAFL for obese patients.
  • Figure 2a is a graph showing the change in the content of diacylglycerol (diacylglycerol; DAG) according to the length and degree of unsaturation of the acyl chain (acyl chain).
  • DAG diacylglycerol
  • FIG. 2b is a graph showing the change in the content of triacylglycerol (triacylglycerol; TAG) according to the length and degree of unsaturation of the acyl chain (acyl chain).
  • TAG triacylglycerol
  • FIG. 3 is a graph showing changes in sphingomyelin (SM) content between NAFL / no-NAFLD and NASH / NAFL for the non-obesity group and the obese group.
  • SM sphingomyelin
  • Figure 5a is a graph showing the content of saturated sphingomyelin by grade of fatosis in the non-obesity group.
  • 5B is a graph showing the content of saturated sphingomyelin according to the grade of lobular inflammation in the non-obesity group.
  • Figure 5c is a graph showing the content of saturated sphingomyelin according to the grade of balloon deformation in the non-obesity group.
  • Figure 5d is a graph showing the content of saturated sphingomyelin by grade of fibrosis in the non-obesity group.
  • Figure 6a is a graph showing the possibility of liver histological prediction of lipolysis using the composition of saturated sphingomyelin.
  • 6B is a graph showing the possibility of liver histological prediction of lobular inflammation using the composition of saturated sphingomyelin.
  • Figure 6c is a graph showing the possibility of liver histological prediction of balloon deformation using the composition of saturated sphingomyelin.
  • FIG. 7 shows SM d36: 0, SM d38: 0 and SM d40: 0 and aspartate transaminase (AST), alanine transaminase in the non-obesity (blue curve) and obesity (red curve) groups. It is a graph showing the diagnostic ability of histological severity of NAFLD by a combination of alanine transaminase (ALT) and gamma-glutamyl transferase (GGT).
  • AST aspartate transaminase
  • ALT alanine transaminase
  • GTT gamma-glutamyl transferase
  • the present invention is for the diagnosis or prognosis of histological severity or prognosis of nonalcoholic fatty liver disease (NAFLD) in a biological sample isolated from a sample, comprising a measuring step of measuring the content of sphingomyelin (SM). It is about how to provide information.
  • NAFLD nonalcoholic fatty liver disease
  • BMI diabetes mellitus
  • MS metabolic syndrome
  • hsCRP high sensitivity C-reactive protein
  • FPG fasting plasma glucose
  • TC fasting plasma glucose
  • HDL-C high density lipoprotein cholesterol
  • AST serum aspartate aminotransferase
  • ALT alanine aminotransferase
  • GTT gamma-glutamyl transferase
  • No-NAFLD group Of the total 361 (average 53 ⁇ 14 years old, 48.5% of males), 295 of them were NAFLD, and 66 were metabolically healthy controls (No-NAFLD group). The No-NAFLD group had no clinical, biochemical, radiologic or histological evidence of fatty liver. Of the non-obesity patients, 82 were NAFLD and 48 were controls. In the obese group, 213 were NAFLD and 18 were controls.
  • non-NAFLD non-NAFLD
  • NAFL non-obesity / NAFL
  • Obesity / non-NAFLD Obesity / NAFL
  • six groups of obesity / NASH were non-obesity / non-NAFLD; Non-obesity / NAFL; Non-obesity / NASH; Obesity / NAFL; And six groups of obesity / NASH.
  • Example 2 Serum lipid profile based on UPLC / Q TOF-MS
  • Subjects with biopsy-proven NAFLD and BMI less than 25 kg / m 2 were defined as non-obesity NAFLD subjects.
  • the control group confirmed the absence of NAFLD through characterization of a solid liver mass suspected of liver adenoma or local nodular hyperplasia based on abdominal imaging, determined by liver biopsy during evaluation of a donor liver transplant.
  • NAFLD was defined as the presence of more than 5% of acrophobic steatosis confirmed by histological examination. NASH was diagnosed based on the histological criteria of the NASH-CRN (clinical research network): The overall pattern of histological liver damage consisting of steatosis, lobular inflammation, balloon deformity or fibrosis was rated according to the NAFLD activity scoring system.
  • Visceral adipose tissue area was measured to quantify visceral fat mass.
  • Systemic insulin resistance (HOMA-IR) and beta-cell function (HOMA- ⁇ ) were evaluated using HOMA-B, and adipose tissue insulin resistance (adipo-IR) was also calculated.
  • Metabolic syndrome was defined according to the International Cholesterol Education Program Adult Treatment Panel III (NCEP-ATP III) criteria.
  • Serum from 361 subjects was analyzed by global lipid profiling with UPLC / Q TOF-MS, and 224 lipid metabolites were analyzed with multiple standards and HMDB (Human Metabolome Database, www.hmdb.ca), METLIN (metlin.scripps. edu) and LIPID MAPS (www.lipidmaps.org).
  • HMDB Human Metabolome Database, www.hmdb.ca
  • METLIN metallin.scripps. edu
  • LIPID MAPS www.lipidmaps.org
  • HPLC High-performance liquid chromatography
  • UPLC-MS ultra-performance liquid chromatography / quadrupole time-of-flight mass spectrometry
  • Ammonium acetate and lipid standards were purchased from Sigma-Aldrich (St. Louis, MO).
  • Geological profiles of all lipid grades include free fatty acids (FFA); Glycerol lipids (diacylglycerol (DAG) and triacylglycerol (TAG)); Glycerol phospholipids (lysophosphatidic acid (LPA), lysophosphatidylcholine (LPC), lysophosphatidylethanolamine (lysophosphatidylethanolamine; LPE), phosphatidylcholine (phosphatidylcholine; PC), phosphatidylethanol) Phosphatidylinositol (PI); and sphingolipids (ceramide (Cer) and SM). Drainage changes in lipid species of NAFL vs. non-NAFLD and NASH vs. NAFL for non-obesity and obese patients ( fold changes) are shown in FIG. 1.
  • lipid species such as DAG, TAG, SM showed a characteristic change pattern according to the histological severity of NAFLD in non-obesity and obese adult NAFLD patients.
  • the ratio of NAFL content (concentration) to the normal liver (non-NAFLD) of blood glycerol lipid was significantly higher, but the NASH content ratio to NAFL was not significantly different.
  • the ratio of NAFL content to normal liver (non-NAFLD) ratio of blood SM and NASH to NAFL were significantly higher only in the non-obesity group, and there was no statistical difference in the obesity group.
  • glycerol lipid in the blood is important in the development of non-alcoholic fatty liver in the obese group, but it can be confirmed that it does not have a large role in the progression to NASH or rather, it has a preventive protective role in the case of triacylglycerol.
  • Example 3 DAG and TAG changes according to NAFLD severity
  • each serum sample was mixed with 500 uL of chloroform / methanol (2: 1, v / v). After centrifugation at 13,000 rpm at 4 ° C. for 20 minutes, 300 uL of the lower lipid phase was collected and the solvent was removed at room temperature under a gentle nitrogen flow.
  • the dry extract was reconstituted with 250 uL of an isopropanol / acetonitrile / water mixture (2: 1: 1, v / v / v). The supernatant was then centrifuged at 13,000 rpm at 4 ° C.
  • composition was maintained at 99% B for 2 minutes. After 17 minutes it was returned to the initial state and held for 3 minutes until equilibrium was reached.
  • the flow rate was set at 350 uL / min. 5 microliters of lipid extract was injected into the UPLC / QTOF-MS system.
  • ion spray voltage 5500 V source temperature 500 ° C.
  • atomizer pressure 50 psi dry gas pressure 60 psi
  • curtain gas 30 psi declustering potential 90 V
  • MS / MS spectrum for ions.
  • Information-dependent acquisition (IDA) was used to obtain.
  • the collision energy and the collision energy spread were adjusted to 40 V and 15 V, respectively.
  • Mass accuracy was maintained with an automatic calibration delivery system (AB Sciex) interfaced with the DuoSpray ion source.
  • Lipid metabolites were identified according to the online database (DB, HMDB, METLIN, LIPID MAPS) and available information (exact mass, fragment ion and / or retention time) consistent with data from standard compounds.
  • the bubble plot showed the relationship between chain length, degree of unsaturation, fold change and p-values of DAG and TAG by comparing histological subgroups.
  • the y-axis represents the degree of unsaturation, and the position of the bubble relative to the x-axis corresponds to the length of the chain.
  • the color of the bubble represents the fold change and the size of the bubble represents the p-value obtained from the Mann-Whitney U-test using Bonferroni correction.
  • the change in DAG content showed a unique pattern between various histological subpopulations.
  • the content of DAG with relatively short chain and low unsaturation was statistically increased in NAFL versus NAFLD regardless of obesity.
  • the content of DAGs with long chains and a high degree of unsaturation was significantly reduced in the obese group's NASH versus NAFL.
  • Glycerol lipids including DAG and TAG species, exhibited a unique altered pattern affected by the length and degree of unsaturation of the acyl chain.
  • the change pattern of glycerol lipid based on histological severity was different between the non-obesity group and the obesity group.
  • the change in magnification of circulating DAG and TAG classified according to histological severity was greater in obese NAFLD than in non-obesity NAFLD patients.
  • the ratio of NAFL content (concentration) to the normal liver (non-NAFLD) of blood glycerol lipid was significantly higher, but the NASH content ratio to NAFL was not significantly different.
  • glycerol lipid in the blood is important for the development of non-alcoholic fatty liver in the obese group, but it has no significant role in the progression to NASH or, rather, the triactylglycerol, a biologically inactive substance, is a harmless lipid that has a preventive protective role.
  • Example 4 Change of metabolic syndrome according to the severity of NAFLD and the relationship between liver tissue and liver histology
  • the content of the saturated SM including SM d36: 0, SM d38: 0 and SM d40: 0 is more than 1.3 times higher in the NAFL / no-NAFLD group of the non-obesity group Increased.
  • the content of SM containing a long chain length of 42 carbons or more was decreased in the NAFL / no-NAFLD group.
  • SM d34 0, SM d36: 0, SM d38: 0 and SM d40: 0 in the obese group was significantly increased in NASH / NAFL, but not in NAFL / no-NAFLD.
  • VAT visceral adipose tissue, visceral adipose tissue
  • HbA1c glycated hemoglobin
  • adipose tissue-infrared adipose tissue
  • LI lobular inflammation
  • the contents of SM d36: 0, SM d38: 0 and SM d40: 0 showed a significant positive correlation with the VAT region, adipo-IR and HOMA-IR in the non-obesity group
  • the obesity group showed a positive correlation with adipo-IR and HOMA-IR.
  • the saturated SM content showed a strong correlation with the severity of fatosis, balloon deformity and lobular inflammation in the non-obesity group.
  • the obese group only fatosis showed a positive correlation with saturated fat concentration.
  • SM d36: 0, SM d38: 0, and SM d40: 0 were changed to the presence and severity of steatosis, lobular inflammation, and balloon deformity.
  • the intensity of SM d36: 0, SM d38: 0, and SM d40: 0 were fatosis (A; 0-3), lobular inflammation (B; 0-3) and balloon deformity (C; 0-2), non-obesity subjects There was no fibrosis (D; 0-4).
  • Data are expressed as mean ⁇ standard deviation. Significant differences are indicated by asterisks (Jonckheere-Terpstra test, * p ⁇ 0.05, ** p ⁇ 0.01 and *** p ⁇ 0.001).
  • the saturated SM content increased markedly with severity of fatosis, lobular inflammation, balloon deformity, and fibrosis according to grade, especially in non-obesity patients.
  • the saturation SM content of obese patients did not increase stepwise with respect to the measurement of histological severity of NAFLD, except for the case of fatosis grade measurement.
  • the fibrosis stage was also not stepwise correlated with saturated SM content regardless of obesity.
  • Saturated SM content is more useful to improve the diagnostic performance of NAFL and NASH in non-obesity patients than obese NAFL and NASH, thereby preventing liver biopsy, which is particularly unnecessary for obese adult NAFLD patients.
  • Example 5 Non-obesity NAFLD prediction using circulating saturated SM content
  • AUROC with 95% CI was a non-obesity group It was divided into the overweight group and shown in Table 3 and FIG. 6.
  • the AUROC for liposis 1, 2 and 3 (S1-3) in the non-obesity groups was 0.720, 0.768 and 0.804.
  • the AUROC of S1, S2 and S3 in the obese group was 0.722, 0.656 and 0.733.
  • the AUROC for lobular inflammation in the non-obesity group was 0.613 (score 1) and 0.821 (score 2) and AUROC was 0.541 and 0.614 in the obese group.
  • AUROC for balloon deformation in the non-obesity group was 0.709 (score 1) and 0.784 (score 2).
  • the AUROC of scores 1 and 2 in the obese group was 0.567 and 0.551, respectively.
  • AUROC is either AST, ALT and GGT content (model 1) or saturated SM (SM d36: 0, SM d38: 0 and SM d40: 0) was adjusted with a combination of AST, ALT and GGT content (Model 2).
  • the P-value for pairwise comparison of AUROC was provided using the DeLong test.
  • the diagnostic performance of distinguishing NAFL and NASH in the non-obesity group was significantly improved when serum saturated SM was added to the combination of serum AST, ALT and GGT.
  • the present invention relates to a method for providing information on the diagnosis or prognosis of histological severity of non-alcoholic fatty liver disease, and more particularly, by measuring the content of saturated sphingomyelin to increase the risk associated with the severity of non-alcoholic fatty liver disease. It's about how to check.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Urology & Nephrology (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Immunology (AREA)
  • Hematology (AREA)
  • Medicinal Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Endocrinology (AREA)
  • Food Science & Technology (AREA)
  • Biotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

본 발명은 비알코올 지방간 질환의 조직학적 중증도 진단 또는 예후 측정에 관한 정보 제공 방법에 관한 것으로서, 스핑고미엘린의 함량이 정상 대조군 대비 1.3배 이상인 경우 비알코올 지방간 질환의 중증도와 연관된 위험도가 증가했다고 볼 수 있으므로, 이를 중증도 진단 또는 예후 측정에 효과적으로 이용할 수 있다.

Description

비알코올 지방간 질환의 조직학적 중증도 진단 또는 예후 측정에 관한 정보 제공 방법
본 발명은 보건복지부의 지원 하에서 과제번호 1465025699에 의해 이루어진 것으로서, 상기 과제의 연구관리전문기관은 보건산업진흥원, 연구사업명은 "질환극복기술개발", 연구과제명은 "대규모 한국인 비알코올 지방간 전향 코호트에서 간병리 조직소견에 따른 분변 내 마이크로비옴과 혈청대사체 분석", 주관기관은 서울특별시 보라매병원, 연구기간은 2018.01.01 ~ 2018.12.31이다.
본 특허출원은 2018년 10월 26일에 대한민국 특허청에 제출된 대한민국 특허출원 제10-2018-0129190호에 대하여 우선권을 주장하며, 상기 특허출원의 개시 사항은 본 명세서에 참조로서 삽입된다.
본 발명은 비알코올 지방간 질환의 조직학적 중증도 진단 또는 예후 측정에 관한 정보 제공 방법에 관한 것으로서, 더욱 상세하게는, 포화 스핑고미엘린의 함량을 측정하여 비알코올 지방간 질환의 중증도와 연관된 위험도 증가 여부를 확인하는 방법에 관한 것이다.
비알코올 지방간 질환(nonalcoholic fatty liver disease, NAFLD)은 간 지방증이라고 불리는 간장 중성 지방(hepatic triglycerides; TG)의 비정상적인 축적에 기인하며, 때로는 비알코올 지방간염(nonalcoholic steatohepatitis; NASH)과 관련 섬유화로 진행될 수 있다. 간장 TG의 과도한 축적이 NAFLD를 개시하는 것으로 알려져 있지만, 지방성 간에서 축적되는 지질 클래스의 특정 유형, 양 및 NAFLD의 진행에 대한 지질 변화의 영향은 완전히 특성화되지 않았다. 대부분의 지질에는 중요한 생물학적 활성이 있기 때문에, 지질학적 프로파일링 접근법은 NAFLD의 병인에 대한 이해를 돕는 유용한 정보를 제공한다.
비만과 인슐린 저항성은 대사 증후군(NAFLD) 및 제2형 당뇨병과 같은 대사 증후군의 주요 위험 인자이다. 그러나, NAFLD 환자의 상당 수는 BMI<25 kg/m2의 비교적 낮은 체질량 지수를 보이며 인슐린 저항성이 덜 유지된다. NAFLD는 비만과 밀접한 관련이 있기 때문에, 이전의 대사체학 연구는 BMI≥30 kg/m2 이상인 비만 백인 성인 남성에 초점이 맞추어져 있었다.
그러나, 보다 건강한 신진 대사 프로파일을 가진 마른 NAFLD 환자의 경우, 과체중 또는 비만 그룹의 NAFLD 환자와 비교하여 여전히 전체 사망률이 증가하였다. 따라서, NAFLD를 가진 비-비만 및 비만 환자의 대사적 차이에 대한 더 나은 인식은 다양한 표현형과 NAFLD의 진행 함량에 기초한 정밀 의학 및 맞춤 치료법 개발에 결정적으로 중요하다.
BMI<30 kg/m2 미만인 서구의 비-비만성 NAFLD 환자의 혈중 대사체 프로파일을 제시한 연구가 있으나, 세계 전문가 회의(WHO Expert Consultation; WHO)는 아시아 인구에 대한 WHO BMI 기준치를 국제 분류와는 다르게 채택해야 한다고 권고하였다.
비-비만(BMI≤25 kg/m2)과 비만(BMI≥30 kg/m2) 사이의 혈청 대사 산물의 뚜렷한 차이가 발견되었지만, 비만 및 비-비만 NAFLD 피험자에서 조직학적으로 확인된 비알코올 지방간(nonalcoholic fatty liver; NAFL)과 NASH 사이의 차이는 추가로 확인이 필요한 상황이다.
따라서, 생체 검사 결과가 입증된 비-비만 및 비만 성인 아시아계 환자에서 얻은 혈청을 이용하여 NAFLD의 조직학적 중증도에 따른 혈중 지질 분포의 변화를 종합적으로 조사할 필요가 있다.
이에 본 발명자들은 비-비만성 비알코올 지방간 질환(nonalcoholic fatty liver disease, NAFLD) 환자의 혈청에서 스핑고미엘린(sphingomyelin; SM)의 함량을 측정함으로써, 조직학적 중증도를 진단할 수 있다는 점을 확인하였다.
이에, 본 발명의 목적은 검체로부터 분리된 생물학적 시료의 스핑고미엘린의 함량을 측정하는 측정 단계를 포함하는 비알코올 지방간 질환의 조직학적 중증도 진단 또는 예후 측정에 관한 정보 제공 방법을 제공하는 것이다.
본 발명의 다른 목적은 스핑고미엘린 측정값의 비알코올 지방간 질환의 조직학적 중증도 진단 또는 예후 측정에 관한 정보 제공 용도에 관한 것이다.
본 발명은 비알코올 지방간 질환의 조직학적 중증도 진단 또는 예후 측정에 관한 정보 제공 방법에 관한 것으로, 본 발명에 따른 방법은 환자의 혈청의 스핑고미엘린(sphingomyelin; SM)의 함량을 측정하여 비알코올 지방간 질환(Nonalcoholic fatty liver disease; NAFLD)의 중증도와 연관된 위험도 증가 여부를 확인할 수 있음을 나타낸다.
본 발명자들은 포화 스핑고미엘린의 양이 정상 혈청에 비해 1.3배 이상이면 비알코올 지방간 질환의 중증도와 연관된 위험도가 증가한 것임을 도출하였다.
이하 본 발명을 더욱 자세히 설명하고자 한다.
본 발명의 일 양태는 검체로부터 분리된 생물학적 시료의 스핑고미엘린의 함량을 측정하는 측정 단계를 포함하는 비알코올 지방간 질환의 조직학적 중증도 진단 또는 예후 측정에 관한 정보 제공 방법이다.
본 발명에 있어서 상기 스핑고미엘린은 포화 스핑고미엘린인 것일 수 있다.
본 발명에 있어서 상기 방법은 측정된 스핑고미엘린의 함량이 정상 대조군 시료 대비 1.3배 이상이면, 검체의 비알코올 지방간 질환의 중증도와 연관된 위험도가 증가한 것으로 판단하는 위험도 판단 단계를 추가적으로 포함하는 것일 수 있다.
본 명세서 상에서, 검체의 체질량지수가 25 미만인 경우 비-비만인 것으로, 검체의 체질량지수가 25 이상인 경우 비만인 것으로 구분하였다.
본 발명에 있어서 상기 검체는 체질량지수(body mass index; BMI)가 25 미만인 것일 수 있다. 본 발명의 일 구현예에서, 체질량지수가 25 미만인 비-비만군의 경우 특정 포화 SM이 비알코올 지방간의 발생뿐만 아니라 NASH로의 진행에 큰 역할을 담당하지만 체질량지수가 25 이상인 비만군에서는 이러한 현상을 확인할 수 없었기 때문이다.
본 발명에 있어서 상기 검체는 아시아인인 것일 수 있다. 서구의 비-비만성 NAFLD 환자의 혈중 대사체 프로파일을 제시한 연구가 공지된 바 있으나, WHO에서는 아시아 인구에 대한 WHO BMI 기준치를 국제 분류와는 다르게 채택해야 한다고 권고하였기 때문이다.
본 발명에 있어서 "아시아인"은 중국, 몽골, 대만, 싱가포르, 한국, 일본, 베트남, 캄보디아, 라오스, 버마, 태국, 말레이시아, 인도네시아, 및 필리핀의 본토 사람들에 기원을 두고 있는 사람을 의미한다.
본 발명에 있어서 상기 생물학적 시료는 혈청 또는 혈장인 것일 수 있다.
본 발명의 일 구현예에서, 체질량지수가 25 미만인 비-비만 아시아인 환자로부터 분리된 혈청에서, 포화 스핑고미엘린의 함량을 측정하여 정상 대조군 시료 대비 1.3배 이상 증가하였을 경우, 비알코올 지방간 질환의 중증도와 연관된 위험도가 증가한 것으로 판단할 수 있다.
본 발명은 비알코올 지방간 질환의 조직학적 중증도 진단 또는 예후 측정에 관한 정보 제공 방법에 관한 것으로서, 스핑고미엘린의 함량이 정상 대조군 대비 1.3배 이상인 경우 비알코올 지방간 질환의 중증도와 연관된 위험도가 증가했다고 볼 수 있으므로, 이를 중증도 진단 또는 예후 측정에 효과적으로 이용할 수 있다.
도 1a는 비-비만 환자에 대한 비알코올 지방간(nonalcoholic fatty liver; NAFL)/비-비알코올 지방간 질환(no-nonalcoholic fatty liver disease, no-NAFLD)에 따른 지질 종의 배수 변화를 나타낸 그래프이다.
도 1b는 비-비만 환자에 대한 비알코올 지방간염(nonalcoholic steatohepatitis; NASH)/NAFL에 따른 지질 종의 배수 변화를 나타낸 그래프이다.
도 1c는 비만 환자에 대한 NAFL/no-NAFLD에 따른 지질 종의 배수 변화를 나타낸 그래프이다.
도 1d는 비만 환자에 대한 NASH/NAFL에 따른 지질 종의 배수 변화를 나타낸 그래프이다.
도 2a는 아실 사슬(acyl chain)의 길이 및 불포화 정도에 따른 디아실글리세롤(diacylglycerol; DAG) 함량의 변화를 나타낸 그래프이다.
도 2b는 아실 사슬(acyl chain)의 길이 및 불포화 정도에 따른 트리아실글리세롤(triacylglycerol; TAG) 함량의 변화를 나타낸 그래프이다.
도 3은 비-비만 그룹과 비만 그룹에 대하여 NAFL/no-NAFLD 및 NASH/NAFL 간의 스핑고미엘린(sphingomyelin; SM) 함량의 변화를 나타낸 그래프이다.
도 4는 SM 함량과 대사 위험인자 및 간 조직학적 중증도와의 상관 관계를 나타낸 Spearman의 상관관계 히트 맵이다.
도 5a는 비-비만 그룹에서 지방증의 등급별 포화 스핑고미엘린의 함량을 나타낸 그래프이다.
도 5b는 비-비만 그룹에서 소엽 염증의 등급별 포화 스핑고미엘린의 함량을 나타낸 그래프이다.
도 5c는 비-비만 그룹에서 풍선변형의 등급별 포화 스핑고미엘린의 함량을 나타낸 그래프이다.
도 5d는 비-비만 그룹에서 섬유화의 등급별 포화 스핑고미엘린의 함량을 나타낸 그래프이다.
도 6a는 포화 스핑고미엘린의 조성을 이용한 지방증의 간 조직학적 예측 가능성을 나타낸 그래프이다.
도 6b는 포화 스핑고미엘린의 조성을 이용한 소엽 염증의 간 조직학적 예측 가능성을 나타낸 그래프이다.
도 6c는 포화 스핑고미엘린의 조성을 이용한 풍선변형의 간 조직학적 예측 가능성을 나타낸 그래프이다.
도 7은 비-비만(파란색 곡선) 및 비만(빨간색 곡선) 군에서 SM d36:0, SM d38:0 및 SM d40:0와 아스파테이트 트랜스아미네이즈(aspartate transaminase; AST), 알라닌 트랜스아미네이즈(alanine transaminase; ALT) 및 감마-글루타밀 트랜스퍼레이즈(gamma-glutamyl transferase; GGT)의 조합에 의한 NAFLD의 조직학적 중증도 진단능을 나타낸 그래프이다.
본 발명은 검체로부터 분리된 생물학적 시료에서, 스핑고미엘린 (sphingomyelin; SM)의 함량을 측정하는 측정 단계를 포함하는 비알코올 지방간 질환(Nonalcoholic fatty liver disease; NAFLD)의 조직학적 중증도 진단 또는 예후 측정에 관한 정보 제공 방법에 관한 것이다.
이하, 본 발명을 하기의 실시예에 의하여 더욱 상세히 설명한다. 그러나 이들 실시예는 본 발명을 예시하기 위한 것일 뿐이며, 본 발명의 범위가 이들 실시예에 의하여 한정되는 것은 아니다.
실시예 1: 연구 참여자의 기본 특성
표 1 및 표 2와 같이, 피험자는 BMI에 따라 비-비만(<25)과 비만(≥25)으로 분류되었다(DM(diabetes mellitus, 당뇨), MS(metabolic syndrome, 대사증후군), hsCRP(high sensitivity C-reactive protein), FPG(fasting plasma glucose, 공복혈장포도당농도), TC(total cholesterol, 총콜레스테롤), HDL-C(high density lipoprotein cholesterol, 고밀도지질단백 콜레스테롤)).
비-비만 (BMI<25)
항목 No-NAFLD(n = 48) NAFL(n = 51) NASH(n= 31) P-값
나이(세) 53.3±11.9 58.6±12.2 61.0±9.8 0.011
남성, 인원수(%) 18 (37.5) 27 (52.9) 10 (32.3) 0.853
비만도(BMI, kg/m2) 22.6±1.6 23.2±1.3 23.6±0.9 0.034
허리둘레, cm 81.2±5.5 83.1±4.6 84.6±3.3 0.04
VAT (cm2) 83.8±35.2 110.4±34.2 120.5±36.7 <0.001***
DM, N (%) 9 (18.8) 25 (49.0) 16 (51.6) <0.001***
MS, N (%) 16 (33.3) 29 (56.9) 25 (80.6) 0.004
Adipo-IR 5.1±4.3 6.4±4.1 9.3±6.4 <0.001*
HOMA-IR 2.4±1.1 3.2±2.1 4.1±2.2 <0.001*
HOMA-β 96.2±52.3 83.1±42.4 119.8±88.0 0.169
HbA1c 5.7±0.6 6.6±1.4 6.6±1.0 <0.001***
hsCRP (mg/dL) 0.18±0.36 0.18±0.35 0.30±0.45 <0.001*†
FPG (mg/dL) 103.2±20.3 119.3±35.9 117.3±33.9 0.009*
FFA (mg/dL) 552.7±279.8 608.7±228.6 674.7±301 0.074
TC (mg/dL) 184.4±37.3 182.9±43.4 175.7±40.3 0.793
TG (mg/dL) 117±64.6 153.1±64.4 167.3±74.9 <0.001**
HDL-C (mg/dL) 52.3±12.8 46.1±14.9 42.4±10.4 0.002*
AST (U/L) 27.5±19.8 30.8±17.6 55.7±39.4 <0.001*†††
ALT (U/L) 24.3±15.3 37.6±26.6 62.2±49.7 <0.001**
GGT (U/L) 38.9±40.1 44.2±58.8 102.8±222.4 0.002††
비만 (BMI≥25)
항목 No-NAFLD(n = 18) NAFL(n = 106) NASH(n= 107) P-value
나이(세) 55.8±9.1 49.5±14.5 51.2±16.1 0.26
남성, 인원수 (%) 7 (38.9) 65 (61.3) 48 (44.9) 0.272
비만도(BMI, kg/m2) 27.8±2.1 28.1±2.2 29.6±3.2 0.002††
허리둘레, cm 95.5±5.1 94.7±6.1 98.8±9.5 0.014
VAT (cm2) 129.9±44.5 137.4±42.2 154.4±57.2 0.015
DM, N (%) 4 (22.2) 35 (33.0) 53 (49.5) 0.004
MS, N (%) 8 (44.4) 78 (73.6) 89 (83.2) 0.06
Adipo-IR 6.0±3.3 8.2±4.9 14.1±11.1 <0.001†††
HOMA-IR 2.2±0.7 3.8±2.3 6.4±5.6 <0.001***†††
HOMA-β 83.4±48.8 133.6±88.6 161.9±176.1 0.003**
HbA1c 5.7±0.4 6.0±0.8 6.6±1.3 <0.001†††
hsCRP (mg/dL) 0.25±0.44 0.27±1.21 0.33±0.42 <0.001†††
FPG (mg/dL) 107.3±23.3 107.5±20.5 122.8±44.1 0.030
FFA (mg/dL) 685.6±269.8 608±250.9 762±694.5 0.036
TC (mg/dL) 189.3±42.9 184.6±42.3 185.4±40.2 0.956
TG (mg/dL) 100.2±39.4 168.4±102.1 169.6±178.7 0.006**
HDL-C (mg/dL) 58.1±15.0 45.2±10.9 45.4±11.6 0.002**
AST (U/L) 26.9±8.3 32.1±14.5 59.9±31.8 <0.001†††
ALT (U/L) 25.2±14.3 41.3±27.6 80.8±55.2 <0.001*†††
GGT (U/L) 52.2±53.2 46.3±43.6 76.6±105.3 <0.001†††
표 1 및 2에서 확인할 수 있듯이, 비-비만 그룹과 비만 그룹 모두에서 NAFLD의 조직학적 중증도에 따라 혈청 아스파르테이트 아미노트랜스퍼레이즈(aspartate aminotransferase; AST), 알라닌 아미노트랜스퍼레이즈(alanine aminotransferase; ALT) 및 감마-글루타밀 트랜스퍼레이즈(gamma-glutamyl transferase; GGT) 함량을 단계적으로 상승시켰다.
총 361명(평균 53 ± 14 세, 남성 48.5 %) 중 295 명은 생체 검사 결과 NAFLD, 66명은 대사적으로 건강한 대조군(No-NAFLD 그룹)이었다. No-NAFLD 군은 지방간의 임상적, 생화학적, 방사선학적 또는 조직학적 증거가 없었다. 비-비만 환자 중 82명은 NAFLD였고 48명은 대조군이었다. 비만 그룹에서는 213명이 NAFLD, 18명은 대조군이었다.
BMI와 간 조직학 소견(비-NAFLD, NAFL 및 NASH)에 근거하여 연구 대상자는 비-비만/비-NAFLD; 비-비만/NAFL; 비-비만/NASH; 비만/비-NAFLD; 비만/NAFL; 및 비만/NASH의 여섯 그룹으로 구분하였다. NAFLD의 조직학적 중증도가 증가할수록 비-비만 및 비만 그룹에서 BMI, 허리 둘레, VAT 면적(내장지방량), adipo-IR(지방조직 인슐린 저항성), HOMA-IR(인슐린 저항성), HbA1c(당화혈색소), 공복 혈당, TG (중성지방), HDL- 콜레스테롤, 당뇨병 유병률 및 대사 증후군의 빈도가 증가하였다(표 1).
실시예 2: UPLC / Q TOF-MS에 근거한 혈청 지질 프로필
생검으로 입증된 NAFLD와 BMI가 25 kg/m2 미만인 피험자('보라매 NAFLD 코호트'(NCT 02206841))를 비-비만 NAFLD 피험자로 정의하였다. 대조군은 생체 공여자 간 이식에 대한 평가 중 간 생검을 통해 결정된, 복부 영상 검사에 근거한 간 선종 또는 국소 결절 증식증으로 의심되는 고형 간 종괴의 특성 분석을 통해 NAFLD가 없음이 확인되었다.
NAFLD는 조직학적 검사를 통해 확인된 5% 이상의 대수포성 지방증의 존재로 정의되었다. NASH는 NASH-CRN(clinical research network)의 조직학적 기준을 토대로 진단되었다: 지방증, 소엽 염증, 풍선변형 또는 섬유화로 이루어진 조직학적 간 손상의 전반적인 패턴을 NAFLD 활동 점수 체계에 따라 등급을 지정하였다.
내장 지방량의 정량을 위해 내장 지방 조직 면적(visceral adipose tissue area; VAT)을 측정하였다. HOMA-B를 이용하여 전신 인슐린 저항성(HOMA-IR)과 베타-세포 기능(HOMA-β)을 평가하였고, 지방 조직 인슐린 저항성(adipo-IR) 또한 계산하였다. 대사 증후군은 국제 콜레스테롤 교육 프로그램 성인 치료 패널 III(NCEP-ATP III) 기준에 따라 정의되었다.
361 명의 연구 대상의 혈청을 UPLC/Q TOF-MS로 글로벌 지질 프로파일링으로 분석하고 224개의 지질 대사 산물을 여러 표준물질과 HMDB (Human Metabolome Database, www.hmdb.ca), METLIN (metlin.scripps.edu) 및 LIPID MAPS (www.lipidmaps.org)와 같은 온라인 데이터베이스를 사용하여 확인하였다,
UPLC-MS(ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry) 분석을 위한 HPLC(High-performance liquid chromatography)-MS-등급 용매는 Thermo Fisher Scientific(Waltham, MA)에서 구입하였다. 암모늄 아세테이트 및 지질 표준물질은 Sigma-Aldrich(St. Louis, MO)에서 구입하였다.
모든 지질 등급의 지질학적 프로파일에는 유리 지방산 (free fatty acids; FFA); 글리세롤지질 (디아실글리세롤(diacylglycerol; DAG) 및 트리아실글리세롤 (triacylglycerol; TAG)); 글리세롤포스포지질 (리소포스파티드산(lysophosphatidic acid; LPA), 리소포스파티딜콜린 (lysophosphatidylcholine; LPC), 리소포스파티딜에탄올아민 (lysophosphatidylethanolamine; LPE), 포스파티딜콜린 (phosphatidylcholine; PC), 포스파티딜에탄올아민 (phosphatidylethanolamine; PE), 포스파티딜이노시톨 (phosphatidylinositol; PI); 및 스핑고지질 (세라마이드(ceramide; Cer) 및 SM)을 포함한다. 비-비만 및 비만 환자에 대한 NAFL 대 비-NAFLD 및 NASH 대 NAFL의 지질 종의 배수 변화(fold changes)를 도 1에 나타내었다.
도 1에서 확인할 수 있듯이, DAG, TAG, SM과 같은 몇몇 지질 종은 비-비만 및 비만 성인 NAFLD 환자에서 NAFLD의 조직학적 중증도에 따라 특징적인 변화 패턴을 보였다.
특히, 비-비만군에 비해 비만군에서 혈중 글리세롤지질의 정상 간(비-NAFLD) 대비 NAFL의 함량(농도) 비가 유의하게 높았지만, NAFL 대비 NASH의 함량 비는 큰 차이가 없었다. 반면 일부 특정 포화 SM의 경우에는 비-비만군에서만 혈중 SM의 정상 간 (비-NAFLD) 대비 NAFL의 함량 비와 NAFL 대비 NASH의 함량 비가 유의미하게 높았고 비만군에서는 통계적인 차이를 보이지 않았다.
이를 통해 비만군에서 비알코올 지방간의 발생에 혈중 글리세롤지질의 역할이 중요하지만 NASH로의 진행에는 큰 역할이 없거나 오히려 트리아실글리세롤의 경우 예방적 보호 역할을 하는 것을 확인할 수 있다.
반면, 비-비만군의 경우 특정 포화 SM이 비알코올 지방간의 발생뿐만 아니라 NASH로의 진행에 큰 역할을 담당하지만 비만군에서는 이러한 현상을 확인할 수 없었다.
실시예 3: NAFLD 중증도에 따른 DAG 및 TAG 변화
50 uL의 각 혈청 샘플을 500 uL의 클로로포름/메탄올 (2:1, v/v)과 혼합하였다. 4℃에서 13,000 rpm, 20분 동안 원심분리한 후, 더 낮은 지질상 300 uL를 수집하고, 용매를 실온에서 부드러운 질소 흐름 하에서 제거하였다. 건조 추출물을 이소프로판올/아세토니트릴/물 혼합물 (2:1:1, v/v/v) 250 uL로 재구성하였다. 그 다음 4℃에서 13,000 rpm으로 10분 동안 원심분리한 후 상층액을 QTOF-MS(quadrupole time-of-flight mass spectrometry)와 결합된 UPLC(ACQUITY™ UPLC 시스템, Waters, Manchester, UK)를 사용하여 지질 분석을 위해 바이알에 옮겨 QTOF-MS를 이용하여 측정할 수 있었다.
컬럼 오븐과 자동 샘플러 온도는 각각 40℃와 4℃로 유지되었다. 샘플을 Acquity UPLC BEH C18 칼럼(2.1 um x 1.7 mm 입자, Waters)을 사용하여 용리 및 분리하였다. LC 이동상은 아세토니트릴/물 혼합물(4:6, v/v) 중 10 mM 암모늄 아세테이트(용매 A) 및 아세토니트릴/이소프로판올 혼합물(1:9, v/v) 중 10 mM 암모늄 아세테이트(용매 B)로 구성되었다. 구배 용출은 40% B에서 시작하여 5분 후 65% B로 증가한 다음 B 성분이 99% 10분까지 계속 증가하였다.
조성물을 99% B에서 2분 동안 유지하였다. 17분 후에 초기 상태로 되돌리고 평형 상태가 될 때까지 3분 동안 유지하였다. 유속은 350 uL/min으로 설정하였다. 5 마이크로 리터의 지질 추출물을 UPLC/QTOF-MS 시스템에 주입하였다.
모든 샘플을 동일한 양으로 모아 품질 관리(QC) 샘플을 생성하였다. 솔벤트 블랭크 및 QC 샘플 주입은 분석 재현성을 평가하기 위해 12개 샘플 사이에서 수행되었다. 하이브리드 QTOF 장비와 DuoSpray 이온 소스가 장착된 Triple TOF 5600(AB Sciex, Concord, Canada)을 사용하여 양이온 및 음이온 모드를 각 샘플에 적용하였다. 질량 범위는 m/z 50-1500으로 설정되었다.
작동을 위해 다음의 파라미터들이 사용되었다: 이온 스프레이 전압 5500 V, 소스 온도 500℃ 분무기 압력 50 psi, 건조 가스 압력 60 psi, 커튼 가스 30 psi, 디 클러스터링 전위 90 V, 그리고 이온에 대한 MS/MS 스펙트럼을 얻기 위해 정보 의존적 획득(Information-dependent acquisition; IDA)이 사용되었다.
MS/MS 스펙트럼을 얻기 위해, 충돌 에너지 및 충돌 에너지 스프레드는 각각 40 V 및 15 V로 조정되었다. 질량 정확도는 DuoSpray 이온 소스와 인터페이스 된 자동 캘리브레이션 전달 시스템(AB Sciex)으로 유지되었다. 지질 대사 산물은 온라인 데이터베이스(DB, HMDB, METLIN, LIPID MAPS) 및 표준 화합물의 데이터와 일치하는 사용 가능한 정보(정확한 질량, 조각 이온 및/또는 머무름 시간)에 따라 확인되었다.
DAG 및 TAG 종을 포함한 글리세롤 지질의 뚜렷한 증가가 비-비만 및 비만 그룹 모두에서 관찰되었으며 NAFL로부터 NASH로 단계적으로 증가하였다. 아실 사슬 길이, 불포화 정도, 배 변화 및 p-값을 갖는 DAG 및 TAG 함량의 차이를 버블 플롯을 사용하여 시각화하였다.
버블 플롯은 조직학적 하위 그룹을 비교하여 체인 길이, 불포화 정도, 배 변화 및 DAG 및 TAG의 p-값 간의 관계를 나타내었다. y축은 불포화 정도를 나타내고 x축과 관련된 버블의 위치는 사슬의 길이에 해당된다. 버블의 색은 배수 변화를 나타내며 버블의 크기는 본페르니(Bonferroni) 보정을 사용하여 맨-위트니(Mann-Whitney) U-test에서 얻은 p-값을 나타내었다.
도 2a에서 확인할 수 있듯이, DAG 함량의 변화는 다양한 조직학적 하위 집단간의 특이한 패턴을 나타냈다. 상대적으로 짧은 사슬 및 낮은 불포화도를 갖는 DAG의 함량은 비만과 상관없이 NAFL 대 NAFLD에서 통계적으로 증가하였다. 대조적으로, 긴 사슬 및 고도의 불포화 정도를 갖는 DAG의 함량은 비만 그룹의 NASH 대 NAFL에서 유의하게 감소하였다.
도 2b에서 확인할 수 있듯이, TAG 함량의 변화는 DAG 함량의 변화와 비슷한 경향을 보였다. 통계적 유의성 및 배수 변화는 약화되었으나, 사슬 길이와 불포화 정도가 약간 변화하였다.
DAG 및 TAG 종을 포함한 글리세롤 지질은 아실 사슬의 길이 및 불포화도에 의해 영향을 받는 특유의 변화된 패턴을 나타냈다. 또한, 조직학적 중증도에 기초한 글리세롤 지질의 변화 패턴은 비-비만 그룹과 비만 그룹에서 차이가 있었다. 결과적으로 비-비만 NAFLD 환자보다 조직학적 중증도에 따라 분류된 순환 DAG 및 TAG의 배율 변화가 비만 NAFLD에서 더 컸다.
특히, 비-비만군에 비해 비만군에서 혈중 글리세롤지질의 정상 간(비-NAFLD) 대비 NAFL의 함량(농도) 비가 유의하게 높았지만, NAFL 대비 NASH의 함량 비는 큰 차이가 없었다.
이를 통해 비만군에서 비알코올 지방간의 발생에 혈중 글리세롤지질의 역할이 중요하지만 NASH로의 진행에는 큰 역할이 없거나 오히려 생물학적 불활성화 물질인 트리아실글리세롤의 경우 예방적 보호 역할을 하는 무해한 지질임을 확인할 수 있었다.
실시예 4: NAFLD의 중증도에 따른 대사 증후군의 변화와 간 조직과 간 조직학과의 연관성
NAFLD의 조직학적 중증도에 따른 대사 증후군의 강도의 차이는 비-비만 그룹과과 비만 그룹 모두에서 나타났다. 막대 그래프에서 유의한 차이점은 별표 (* Bonproni 보정을 적용한 Mann-Whitney U-test, * p <0.05, ** p <0.01 및 *** p <0.001)로 표시하였다.
도 3에서 확인할 수 있듯이, 흥미롭게도, SM d36:0, SM d38:0 및 SM d40:0을 포함한 포화 상태인 SM의 함량은 비-비만 그룹의 NAFL/no-NAFLD 그룹에서 1.3 배 이상으로 현저하게 증가했다. 대조적으로, 비만과 관계없이, 42탄소 이상의 긴 사슬 길이를 함유하는 SM의 함량은 NAFL/no-NAFLD 그룹에서 감소하였다.
비만 그룹에서 SM d34:0, SM d36:0, SM d38:0 및 SM d40:0과 같은 포화 SM의 함량은 NASH/NAFL에서 유의하게 증가하였지만 NAFL/no-NAFLD에서는 유의하지 않았다.
NAFLD의 중증도 및 비만과 관련한 포화 상태의 SM 함량의 차이는 대사 위험 인자 및 간 조직학과의 상관 관계에서도 확인되었다. Spearman의 상관관계 히트 맵은 비-비만 및 비만 그룹의 대사 증후군 위험 인자 또는 간 조직학과 SM의 상관 관계를 나타냈다. 통계적 유의성은 별표(* p <0.05, ** p <0.01 및 *** p <0.001)로 표시된다(VAT, visceral adipose tissue, 내장 지방 조직; HbA1c, 당화 헤모글로빈; 지방 조직 - 적외선, 지방 조직의 인슐린 내성; HOMA-IR, 인슐린 저항성의 항상성 모델 평가; HOMA-β, 베타 세포 기능의 항상성 모델 평가; LI, 소엽 염증).
도 4에서 확인할 수 있듯이, SM d36:0, SM d38:0 및 SM d40:0의 함량은 비-비만 그룹에서 VAT 영역, adipo-IR 및 HOMA-IR과 유의한 양의 상관 관계를 보였으며, 비만 그룹에서 adipo-IR 및 HOMA-IR과 양의 상관 관계를 보였다. 더욱이, 포화 상태의 SM 함량은 비-비만 그룹에서 지방증, 풍선변형 및 소엽 염증의 중증도와 강한 상관 관계를 보였다. 그러나 비만 그룹에서는 지방증만이 포화 지방 농도와 양의 상관 관계를 보였다.
다음으로 SM d36:0, SM d38:0 및 SM d40:0을 포함한 포화 SM 종의 함량이 지방증, 소엽 염증 및 풍선변형의 존재 및 중증도로 변경되었는지의 여부를 확인하였다. SM d36:0, SM d38:0 및 SM d40:0의 강도는 지방증(A; 0-3), 소엽 염증(B; 0-3) 및 풍선변형(C; 0-2), 비-비만 피험자에서는 섬유화(D; 0-4)가 없었다. 데이터는 평균 ± 표준 편차로 표현하였다. 유의한 차이는 별표(Jonckheere-Terpstra test, * p <0.05, ** p <0.01 및 *** p <0.001)로 표시하였다.
도 5에서 확인할 수 있듯이, 히트 맵에서 본 것과 마찬가지로 포화 상태의 SM 함량은 등급에 따른 지방증, 소엽 염증, 풍선변형 및 섬유화의 중증도에 따라, 특히 비-비만 환자에서 현저하게 증가했다. 반면에, 비만 환자의 포화 상태의 SM 함량은 지방증 등급 측정의 경우를 제외하고는 NAFLD의 조직학적 중증도의 측정과 관련하여 단계적으로 증가하지 않았다. 섬유증 단계는 또한 비만에 관계없이 포화된 SM 함량과 단계적으로 연관성이 없었다.
포화된 SM 함량은 비만 한 NAFL 및 NASH보다는 비-비만 환자에서의 NAFL 및 NASH의 진단 성능을 향상시키는 데 더 유용하여, 비 비만 성인 NAFLD 환자에게 특히 불필요한 간 생검을 예방할 수 있게 되었다.
실시예 5: 순환 포화 SM 함량을 이용한 비-비만 NAFLD 예측
상기 포화된 SM 함량(SM d36:0, SM d38:0 및 SM d40:0)의 조합의 진단 성능을 평가하여 NAFLD의 조직학적 중증도를 예측하기 위해, 95% CI를 갖는 AUROC는 비-비만 그룹과 비만 그룹으로 나누어 표 3 및 도 6으로 나타내었다.
Area Error p-value 95% CI Sensitivity Specificity
ROC for 비-비만
S1 0.644 0.062 0.025 0.522-0.766 56% 56%
S2 0.789 0.057 <0.001 0.677-0.900 74% 73%
S3 0.868 0.046 <0.001 0.778-0.959 84% 81%
LI 1 0.613 0.052 0.038 0.511-0.715 55% 55%
LI 2 0.812 0.082 0.001 0.651-0.973 75% 75%
B1 0.726 0.045 <0.001 0.637-0.815 69% 68%
B2 0.793 0.148 0.088 0.503-1.000 67% 67%
ROC for 비만
S1 0.679 0.072 0.022 0.538-0.820 57% 56%
S2 0.67 0.067 0.026 0.538-0.803 56% 56%
S3 0.809 0.057 <0.001 0.697-0.920 72% 72%
LI 1 0.561 0.051 0.245 0.461-0.662 57% 57%
LI 2 0.666 0.067 0.023 0.534-0.798 64% 65%
B1 0.613 0.043 0.007 0.528-0.698 59% 57%
B2 0.643 0.066 0.117 0.513-0.772 58% 57%
도 6a에서 확인할 수 있듯이, 비-비만 그룹에서 지방증 1, 2 및 3(S1-3)에 대한 AUROC는 0.720, 0.768 및 0.804였다. 비만 그룹에서 S1, S2 및 S3의 AUROC는 0.722, 0.656 및 0.733이었다.
도 6b에서 확인할 수 있듯이, 소엽 염증의 경우 비-비만 그룹에서 소엽 염증에 대한 AUROC는 0.613(점수 1) 및 0.821(점수 2)이었고 AUROC는 비만 그룹에서 0.541 및 0.614였다.
도 6c에서 확인할 수 있듯이, 풍선변형의 경우, 비-비만 그룹에서 풍선변형에 대한 AUROC는 0.709(점수 1) 및 0.784(점수 2)였다. 비만 그룹에서 점수 1과 2의 AUROC는 각각 0.567 및 0.551이었다.
전반적으로 비-비만 그룹의 조직학적 중증도에 근거한 ROC 곡선은 비만 그룹보다 유의하게 높은 AUROC를 보였다.
도 7에서 확인할 수 있듯이, NAFLD가 없는 환자에서 NASH 또는 NAFL을 가진 대상을 효과적으로 구별하기 위해 AUROC는 AST, ALT 및 GGT 함량(모델 1) 또는 포화 SM (SM d36:0, SM d38:0 및 SM d40:0)을 AST, ALT 및 GGT 함량(모델 2)의 조합으로 조정하였다. AUROC의 페어와이즈(pairwise) 비교를 위한 P-값은 DeLong 테스트를 사용하여 제공되었다.
Area Error p-value 95% CI Sensitivity Specificity
AST, ALT 및 GGT의 조합
ROC for 비-비만
0 vs.1 0.720 0.051 <0.001 0.619-0.821 65% 67%
0 vs.2 0.823 0.049 <0.001 0.726-0.919 77% 77%
1 vs.2 0.796 0.053 <0.001 0.693-0.899 77% 75%
ROC for 비만
0 vs.1 0.785 0.061 <0.001 0.665-0.906 73% 72%
0 vs.2 0.928 0.029 <0.001 0.871-0.986 84% 83%
1 vs.2 0.836 0.027 <0.001 0.783-0.890 78% 76%
포화 SMs (SM d36:0, SM d38:0, and SM d40:0), AST, ALT 및 GGT의 조합
ROC for 비-비만
0 vs.1 0.833 0.04 <0.001 0.753-0.914 73% 73%
0 vs.2 0.914 0.031 <0.001 0.852-0.976 84% 83%
1 vs.2 0.808 0.051 <0.001 0.709-0.907 68% 69%
ROC for 비만
0 vs.1 0.781 0.06 <0.001 0.663-0.899 76% 78%
0 vs.2 0.96 0.022 <0.001 0.916-1.000 90% 89%
1 vs.2 0.837 0.027 <0.001 0.784-0.889 77% 75%
표 4에서 확인할 수 있듯이, 비 비만 그룹에서 NAFLD와 NAFL을 비교한 모델 1 및 모델 2의 AUROC는 0.720 및 0.833(AUROCs 비교 시 p= 0.011)이었다. 혈청 포화 SM이 혈청 AST, ALT 및 GGT의 조합에 추가될 때 비-비만 그룹에서 NAFL 및 NASH를 구별하는 진단 성능은 유의하게 향상되었다.
NAFLD와 NASH를 비교한 모델 1과 모델 2의 AUROC에서 0.823 및 0.914(AUROCs 비교 시 p= 0.033)였다. 비만 그룹에서 NAFLD 및 NAFL을 비교한 모델 1 및 모델 2의 AUROC는 0.785 및 0.781이었다(AUROCs 비교 시 p= 0.866). NAFLD와 NASH를 비교한 모델 1 및 모델 2의 AUROC는 0.928 및 0.960(AUROCs 비교를 위한 p = 0.059)이었다.
본 발명은 비알코올 지방간 질환의 조직학적 중증도 진단 또는 예후 측정에 관한 정보 제공 방법에 관한 것으로서, 더욱 상세하게는, 포화 스핑고미엘린의 함량을 측정하여 비알코올 지방간 질환의 중증도와 연관된 위험도 증가 여부를 확인하는 방법에 관한 것이다.

Claims (6)

  1. 검체로부터 분리된 생물학적 시료의 스핑고미엘린(sphingomyelin; SM)의 함량을 측정하는 측정 단계를 포함하는 비알코올 지방간 질환(Nonalcoholic fatty liver disease; NAFLD)의 조직학적 중증도 진단 또는 예후 측정에 관한 정보 제공 방법.
  2. 제1항에 있어서, 상기 스핑고미엘린은 포화 스핑고미엘린인 것인, 비알코올 지방간 질환의 조직학적 중증도 진단 또는 예후 측정에 관한 정보 제공 방법.
  3. 제2항에 있어서, 상기 측정 단계에서 포화 스핑고미엘린의 함량이 정상 대조군 시료 대비 1.3배 이상이면, 검체의 비알코올 지방간 질환의 중증도와 연관된 위험도가 증가한 것으로 판단하는 위험도 판단 단계를 추가적으로 포함하는 것인, 비알코올 지방간 질환의 조직학적 중증도 진단 또는 예후 측정에 관한 정보 제공 방법.
  4. 제1항에 있어서, 상기 검체는 체질량지수(body mass index; BMI)가 25 미만인 것인, 비알코올 지방간 질환의 조직학적 중증도 진단 또는 예후 측정에 관한 정보 제공 방법.
  5. 제1항에 있어서, 상기 검체는 아시아인인 것인, 비알코올 지방간 질환의 조직학적 중증도 진단 또는 예후 측정에 관한 정보 제공 방법.
  6. 제1항에 있어서, 상기 생물학적 시료는 혈청 또는 혈장인 것인, 비알코올 지방간 질환의 조직학적 중증도 진단 또는 예후 측정에 관한 정보 제공 방법.
PCT/KR2019/014084 2018-10-26 2019-10-24 비알코올 지방간 질환의 조직학적 중증도 진단 또는 예후 측정에 관한 정보 제공 방법 WO2020085820A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980066303.4A CN113711047A (zh) 2018-10-26 2019-10-24 有关非酒精性脂肪性肝病的组织学严重程度诊断或预后测量的信息提供方法
JP2021543108A JP7111906B2 (ja) 2018-10-26 2019-10-24 非アルコール脂肪肝疾患の組織学的重症度診断又は予後測定に関する情報提供方法
EP19875663.7A EP3872495A4 (en) 2018-10-26 2019-10-24 METHOD OF PROVIDING INFORMATION FOR THE DIAGNOSIS OR PROGNOSTIC MEASUREMENT OF THE HISTOLOGICAL SEVERITY OF NON-ALCOHOLIC FETISH DISEASE
US17/283,058 US20210349110A1 (en) 2018-10-26 2019-10-24 Method for providing information on diagnosis or prognostic measurement of histological severity of nonalcoholic fatty liver disease

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0129190 2018-10-26
KR1020180129190A KR102105880B1 (ko) 2018-10-26 2018-10-26 비알코올 지방간 질환의 조직학적 중증도 진단 또는 예후 측정에 관한 정보 제공 방법

Publications (1)

Publication Number Publication Date
WO2020085820A1 true WO2020085820A1 (ko) 2020-04-30

Family

ID=70332115

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/014084 WO2020085820A1 (ko) 2018-10-26 2019-10-24 비알코올 지방간 질환의 조직학적 중증도 진단 또는 예후 측정에 관한 정보 제공 방법

Country Status (6)

Country Link
US (1) US20210349110A1 (ko)
EP (1) EP3872495A4 (ko)
JP (1) JP7111906B2 (ko)
KR (1) KR102105880B1 (ko)
CN (1) CN113711047A (ko)
WO (1) WO2020085820A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150011424A1 (en) * 2012-01-31 2015-01-08 Teknologian Tutkimuskeskus Vtt Method for determining liver fat amount and method for diagnosing nafld
US20150355197A1 (en) * 2010-06-10 2015-12-10 Universitätsklinikum Schleswig-Holstein Biomarkers for diagnosing liver disease
EP3151007A1 (en) * 2015-09-30 2017-04-05 One Way Liver S.L. Metabolomic signature of diagnosis and disease progression in non-alcoholic fatty liver disease (nafld)
KR20170049125A (ko) * 2015-10-28 2017-05-10 한국화학연구원 비알콜성 지방간암(nafld) 치료 및 진단용 암줄기세포 바이오마커
KR20180110499A (ko) * 2017-03-29 2018-10-10 재단법인 아산사회복지재단 S1pr4를 타겟으로 하는 비알코올성 지방간염 예방 또는 치료용 조성물
KR20180129190A (ko) 2017-05-25 2018-12-05 김명희 접이식 방수 포장 박스

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2527438T3 (es) * 2006-08-08 2015-01-26 Metabolon, Inc. Marcadores de la hepatopatía grasa no alcohólica (NAFLD) y de la esteatohepatitis no alcohólica (NASH) y métodos de uso de los mismos
US20170370954A1 (en) * 2014-11-19 2017-12-28 Metabolon, Inc. Biomarkers for Fatty Liver Disease and Methods Using the Same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150355197A1 (en) * 2010-06-10 2015-12-10 Universitätsklinikum Schleswig-Holstein Biomarkers for diagnosing liver disease
US20150011424A1 (en) * 2012-01-31 2015-01-08 Teknologian Tutkimuskeskus Vtt Method for determining liver fat amount and method for diagnosing nafld
EP3151007A1 (en) * 2015-09-30 2017-04-05 One Way Liver S.L. Metabolomic signature of diagnosis and disease progression in non-alcoholic fatty liver disease (nafld)
KR20170049125A (ko) * 2015-10-28 2017-05-10 한국화학연구원 비알콜성 지방간암(nafld) 치료 및 진단용 암줄기세포 바이오마커
KR20180110499A (ko) * 2017-03-29 2018-10-10 재단법인 아산사회복지재단 S1pr4를 타겟으로 하는 비알코올성 지방간염 예방 또는 치료용 조성물
KR20180129190A (ko) 2017-05-25 2018-12-05 김명희 접이식 방수 포장 박스

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3872495A4

Also Published As

Publication number Publication date
CN113711047A (zh) 2021-11-26
JP7111906B2 (ja) 2022-08-02
EP3872495A4 (en) 2021-12-22
KR102105880B1 (ko) 2020-04-29
JP2022502685A (ja) 2022-01-11
US20210349110A1 (en) 2021-11-11
EP3872495A1 (en) 2021-09-01

Similar Documents

Publication Publication Date Title
US10001468B2 (en) Biomarkers for differentiating between non-alcoholic steatohepatitis (NASH) and non-alcoholic fatty liver disease (NAFLD)
Boroumand et al. Saliva, a bodily fluid with recognized and potential diagnostic applications
Domínguez et al. Lipidomic profiling of endometrial fluid in women with ovarian endometriosis
Baima et al. Metabolomics of gingival crevicular fluid to identify biomarkers for periodontitis: a systematic review with meta‐analysis
WO2022213746A1 (zh) 用于诊断和治疗脑白质病变的方法及其应用
WO2017003166A1 (ko) 대사체 분석을 이용한 당뇨병 조기 진단용 조성물
KR101462206B1 (ko) 트립토판 대사 변화를 이용한 위암 진단용 기초 정보 제공 방법
WO2018062704A1 (ko) 대장암 진단 장치와 대장암 진단 정보 제공 방법
Smith et al. A reliable biomarker derived from plasmalogens to evaluate malignancy and metastatic capacity of human cancers
US20080020472A1 (en) Method for detecting an inflammatory disease or cancer
Jiang et al. Hormone replacement therapy reverses gut microbiome and serum metabolome alterations in premature ovarian insufficiency
KR20180119717A (ko) 대사체 분석을 이용한 베체트병의 진단방법
Hautajärvi et al. Quantitative analysis of 4β-and 4α‑hydroxycholesterol in human plasma and serum by UHPLC/ESI-HR-MS
Montgomery et al. Deep proteomic profiling unveils arylsulfatase A as a non-alcoholic steatohepatitis inducible hepatokine and regulator of glycemic control
Zeng et al. Targeted metabolomics for the quantitative measurement of 9 gut microbiota–host co-metabolites in rat serum, urine and feces by liquid chromatography–tandem mass spectrometry
Yazd et al. LC-MS lipidomics of renal biopsies for the diagnosis of Fabry disease
Moreno‐Navarrete et al. Adipocyte lipopolysaccharide binding protein (LBP) is linked to a specific lipidomic signature
Bjerrum et al. Lipidomic trajectories characterize delayed mucosal wound healing in quiescent ulcerative colitis and identify potential novel therapeutic targets
Wang et al. Serum lipid profiling analysis and potential marker discovery for ovarian cancer based on liquid chromatography–Mass spectrometry
WO2016199998A1 (ko) N-당쇄 질량분석을 이용한 대장암 진단방법
WO2020085820A1 (ko) 비알코올 지방간 질환의 조직학적 중증도 진단 또는 예후 측정에 관한 정보 제공 방법
WO2022255774A1 (ko) 아실카르니틴 대사체를 포함하는 구강암 진단용 바이오마커 조성물
Liu et al. Investigation of plasma metabolic and lipidomic characteristics of a Chinese cohort and a pilot study of renal cell carcinoma biomarker
Yu et al. Metabolomic analysis of the sera of patients with the long‐term inhalation of caffeine‐sodium benzoate using LC–MS
Hou et al. Comprehensive physiopathology and serum metabolomics for the evaluation of the influence mechanism of qi deficiency on xenograft mouse models of liver cancer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19875663

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021543108

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019875663

Country of ref document: EP

Effective date: 20210526