WO2020085322A1 - Electric working machine - Google Patents

Electric working machine Download PDF

Info

Publication number
WO2020085322A1
WO2020085322A1 PCT/JP2019/041363 JP2019041363W WO2020085322A1 WO 2020085322 A1 WO2020085322 A1 WO 2020085322A1 JP 2019041363 W JP2019041363 W JP 2019041363W WO 2020085322 A1 WO2020085322 A1 WO 2020085322A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
coils
drive circuit
rotational position
position signal
Prior art date
Application number
PCT/JP2019/041363
Other languages
French (fr)
Japanese (ja)
Inventor
淳哉 犬塚
Original Assignee
株式会社マキタ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社マキタ filed Critical 株式会社マキタ
Publication of WO2020085322A1 publication Critical patent/WO2020085322A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25FCOMBINATION OR MULTI-PURPOSE TOOLS NOT OTHERWISE PROVIDED FOR; DETAILS OR COMPONENTS OF PORTABLE POWER-DRIVEN TOOLS NOT PARTICULARLY RELATED TO THE OPERATIONS PERFORMED AND NOT OTHERWISE PROVIDED FOR
    • B25F5/00Details or components of portable power-driven tools not particularly related to the operations performed and not otherwise provided for
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/16Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring
    • H02P25/22Multiple windings; Windings for more than three phases
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position

Definitions

  • the present disclosure relates to an electric working machine such as a hammer drill that uses a brushless motor as a drive source.
  • Patent Document 1 describes an electric device that uses a three-phase brushless motor as a drive source.
  • cogging torque is generated due to the magnetic attraction force.
  • the generated cogging torque acts as a disturbance on the drive control of the electric device. Therefore, it is desirable to use a brushless motor with reduced cogging torque as a drive source for electric equipment.
  • an electric working machine including a brushless motor that is excellent in productivity and efficient.
  • the brushless motor includes a stator, a first drive circuit, and a second drive circuit.
  • the stator includes a first tooth, a second tooth arranged next to the first tooth, a first coil wound on the first tooth, and a second coil wound on the second tooth. And a coil.
  • the rotor has a permanent magnet.
  • the first drive circuit is configured to supply the power of the power source applied to the brushless motor to the first coil.
  • the second drive circuit is configured to supply the power of the power supply to the second coil.
  • the voltage phase difference between the phase of the voltage applied to the first coil by the first drive circuit and the phase of the voltage applied to the second coil by the second drive circuit is equal to that of the first coil and the second coil.
  • the phase difference of the induced voltage generated in the coil is substantially the same.
  • the first coil and the second coil are wound around each of the first tooth and the second tooth which are adjacent to each other, and are supplied with electric power from each of the first drive circuit and the second drive circuit. It Induced voltages having different phases are generated in the first coil and the second coil wound around the adjacent teeth.
  • the reflux current does not flow between the first coil and the second coil even if they are not connected in series. Therefore, since it is not necessary to connect the first coil and the second coil in series, the wire diameters of the first coil and the second coil can be made smaller than in the case where they are connected in series.
  • the voltage phase difference between the voltage applied to the first coil and the voltage applied to the second coil is controlled so as to be substantially equal to the phase difference between the induced voltages generated in the first coil and the second coil. To be done. Therefore, power can be supplied to the first coil and the second coil at appropriate timings. Furthermore, since the switching timing of the first drive circuit and the switching timing of the second drive circuit deviate from each other, the switching cycle that occurs in the entire first drive circuit and the second drive circuit is the first drive circuit. And twice the cycle of switching that occurs in each of the second drive circuits. As a result, current ripple and torque ripple flowing through the motor can be reduced. Therefore, it is possible to realize an electric work machine having excellent manufacturability and high efficiency.
  • first drive circuit and the second drive circuit may be connected in parallel to the power supply.
  • the path of the current flowing through the first coil and the path of the current flowing through the second coil are parallel to the power supply, and the first drive circuit and the second drive circuit are connected in series.
  • the wire diameters of the first coil and the second coil can be reduced.
  • the electric working machine may include a position sensor and a control circuit.
  • the position sensor may be positioned with respect to the first coil and output a first rotational position signal based on the relative position of the rotor with respect to the first coil.
  • the control circuit may generate a first control command for the first drive circuit based on the first rotational position signal output by the position sensor.
  • the control circuit may generate the second control command for the second drive circuit based on the second rotational position signal obtained by shifting the first rotational position signal by the voltage phase difference.
  • the position sensor outputs a first rotational position signal based on the relative position of the rotor with respect to the first coil. Then, the control circuit generates a first control command for the first drive circuit based on the first rotational position signal. Further, the control circuit generates the second control command for the second drive circuit based on the second rotational position signal obtained by shifting the first rotational position signal by the voltage phase difference.
  • the second rotational position signal corresponds to the rotational position signal based on the relative position of the rotor with respect to the second coil. Therefore, it is possible to supply power to the first coil and the second coil at appropriate timing while suppressing the number of position sensors.
  • the electric working machine may include a first position sensor, a second position sensor, and a control circuit.
  • the first position sensor may be positioned with respect to the first coil and output a first rotational position signal based on the relative position of the rotor with respect to the first coil.
  • the second position sensor may be positioned with respect to the second coil and may output a second rotational position signal based on the relative position of the rotor with respect to the second coil.
  • the control circuit may generate a first control command for the first drive circuit based on the first rotational position signal output by the first position sensor. Further, the control circuit may generate a second control command for the second drive circuit based on the second rotational position signal output by the second position sensor.
  • Each of the first position sensor and the second position sensor outputs a first rotational position signal and a second rotational position signal based on the relative position of the rotor with respect to each of the first coil and the second coil. Is output. Then, the control circuit generates a first control command for the first drive circuit based on the first rotational position signal, and a second control command for the second drive circuit based on the second rotational position signal. A control command is generated. Therefore, by using the first position sensor and the second position sensor, it is possible to supply power to the first coil and the second coil at appropriate timings.
  • control circuit uses the first rotational position signal to supply power to the first coil during the first period based on the time point at which the induced voltage generated in the first coil is at the center of the zero crossing.
  • first control command may be generated.
  • control circuit uses the second rotational position signal to supply power to the second coil during the second period based on the time point at which the induced voltage generated in the second coil is at the center of the zero crossing.
  • the second control command may be generated.
  • Power can be supplied to each of the first coil and the second coil during the most efficient period. Therefore, the efficiency of the motor can be increased.
  • the electric work machine may also include a final output unit configured to be driven by the power generated by the brushless motor.
  • the electric working machine is provided between the rotary shaft of the brushless motor and the final output unit, and includes an decelerator configured to reduce the rotation of the rotary shaft and transmit the decelerated rotation to the final output unit. Good.
  • the reducer When transmitting the power of the motor to the final output section via the reducer, if the torque ripple is large, the reducer may sway and generate noise. According to the above-described electric working machine, torque ripple is suppressed, so that noise can be suitably suppressed when the power of the motor is transmitted to the final output unit via the reduction gear.
  • the brushless motor includes a stator, a rotor, and two drive circuits.
  • the stator has 12 slots and 12 coils.
  • the rotor has 10 permanent magnets.
  • the two drive circuits supply the power of the power source applied to the brushless motor to the 12 coils.
  • FIG. 1 is a vertical cross-sectional view of a hammer drill that is an example of an electric power tool according to the present disclosure.
  • the hammer drill 1 includes an output housing 4 that houses an output portion 5 and extends forward, above a motor housing 2 in the vertical direction that houses a brushless motor 3 (hereinafter referred to as a motor 3).
  • a motor housing 2 houses a brushless motor 3 (hereinafter referred to as a motor 3).
  • a battery mounting portion 6 which accommodates the controller 7 and below which the two battery packs 8, 8 can be mounted.
  • a handle 9 is provided in the up-down direction across the battery mounting portion 6 from the rear of the output housing 4.
  • the motor 3 is an inner rotor type having a stator 10 and a rotor 11 inside the stator 10, and is housed in the motor housing 2 with the rotation shaft 12 of the rotor 11 facing upward.
  • the stator 10 includes a stator core 13, an upper insulator 14 and a lower insulator 15 provided above and below the stator core 13, and a plurality of coils 16U1 to 16U4, 16V1 to be wound inside the stator core 13 via the upper and lower insulators 14 and 15. 16V4, 16W1 to 16W4 (FIG. 2 etc.).
  • the coils 16U1 to 16U4, 16V1 to 16V4, 16W1 to 16W4 are collectively referred to as the coil 16.
  • the rotor 11 has a rotating shaft 12 located at the axial center, a cylindrical rotor core 17 arranged around the rotating shaft 12, and a plurality of permanent magnets 18, 18, ... Arranged inside the rotor core 17. is doing.
  • a sensor circuit board 19 equipped with a Hall IC 90 (FIG. 4) that detects the position of the permanent magnet 18 of the rotor core 17 and outputs a rotational position signal and a terminal of the coil 16 are connected.
  • the terminal unit 20 is fixed.
  • the lower end of the rotating shaft 12 is supported by a bearing 21 provided at the bottom of the motor housing 2, and the upper end thereof is supported by a bearing 22 provided at the output housing 4 so as to project into the output housing 4.
  • the pinion 23 formed on the upper end of the rotary shaft 12 meshes with gears 26 and 27 provided on the front and rear intermediate shafts 24 and the crankshaft 25, respectively.
  • a centrifugal fan 28 is provided on the rotary shaft 12 below the bearing 22, and a baffle plate 29 is provided inside the motor housing 2 below the centrifugal fan 28.
  • the output unit 5 has a cylindrical tool holder 30 extending in the front-rear direction and rotatable, and a bevel gear 31 mounted on the rear end of the tool holder 30 meshes with a bevel gear 32 provided on the upper end of the intermediate shaft 24.
  • a cylinder 33 is inserted and mounted in the tool holder 30, and a piston 34 provided in the cylinder 33 is connected to a crank pin 36 provided at an eccentric position at an upper end of the crank shaft 25 via a connecting rod 35. There is.
  • a striker 38 is housed in the cylinder 33 in front of the piston 34 via an air chamber 37 so as to be movable back and forth, and an impact bolt 39 is movable in the tool holder 30 in front of the striker 38 back and forth. It is housed.
  • the rear end of the tip tool retracts the impact bolt 39 to a position where it abuts the receiving ring 40 in front of the cylinder 33, and the rear end is moved. It projects into the cylinder 33.
  • an operation sleeve 41 for attaching and detaching the tip tool is installed at the front end of the tool holder 30.
  • the controller 7 is arranged above the terminal blocks 42, 42. It is housed.
  • the controller 7 includes a substrate for a first drive circuit 80A and a second drive circuit 80B on which a microcomputer 100, which will be described later, and a switching element are mounted, and U-shaped ribs 43, 43 provided upright on the inner surface of the battery mounting portion 6. It is supported by the front-back direction.
  • a light 44 that illuminates the front of the tool holder 30 using an LED is provided in front of the controller 7, and a guard plate 45 that covers the front and rear of the mounted battery packs 8 and 8 is provided in front of and behind the battery mounting portion 6. 45 is formed so as to project downward.
  • a switch 46 and a capacitor 47 that are electrically connected to the controller 7 are provided in the handle 9, and a switch lever 48 is provided on the plunger protruding forward from the switch 46.
  • the microcomputer 100 of the controller 7 obtains the rotation position signal of the rotor 11 which is output from the Hall IC 90 of the sensor circuit board 19 and indicates the position of the permanent magnet 18 of the rotor 11, and obtains the rotation state of the rotor 11 to obtain the obtained rotation state. Accordingly, ON / OFF of each switching element of the first drive circuit 80A and the second drive circuit 80B is controlled, and a current is sequentially applied to each coil 16 of the stator 10 to rotate the rotor 11.
  • intake ports are formed on the left and right side surfaces of the battery mounting portion 6 on both the left and right sides of the controller 7.
  • Exhaust ports are formed on the left and right side surfaces of the motor housing 2 on both the left and right sides of the centrifugal fan 28, and the controller 7 is arranged between the intake port and the motor 3. Therefore, by the rotation of the centrifugal fan 28 accompanying the rotation of the rotary shaft 12, the air sucked from the intake port first contacts the controller 7 to cool the controller 7, and then passes through the inside of the motor housing 2 to cool the motor 3. To do. Then, it is discharged from the exhaust port through the baffle plate 29.
  • the hammer drill 1 is an example of the electric working machine according to the present disclosure.
  • the gears 26 and 27 are examples of the speed reducer in the present disclosure
  • the tool holder 30 and the striker 38 are examples of the final output unit in the present disclosure.
  • FIG. 2 is a horizontal sectional view of the motor 3 taken along a plane perpendicular to the vertical direction.
  • the stator core 13 includes 6 teeth 91A, 6 teeth 91B, and 12 slots.
  • the rotor core 17 includes ten permanent magnets 18. That is, the motor 3 is a three-phase motor having 10 poles and 12 slots.
  • the ten permanent magnets 18 include six N-pole permanent magnets 18 and six S-pole permanent magnets 18.
  • the N-pole permanent magnets 18 and the S-pole permanent magnets 18 are alternately arranged.
  • teeth 91A and six teeth 91B are arranged alternately. That is, the teeth 91A and the teeth 91B are arranged at positions adjacent to each other.
  • the coil 16 includes U-phase coils 16U1, 16U2, 16U3, 16U4, V-phase coils 16V1, 16V2, 16V3, 16V4, and W-phase coils 16W1, 16W2, 16W3, 16W4.
  • the coils 16U1, 16U3, 16V1, 16V3, 16W1, 16W3 are wound around the tooth 91A.
  • the coils 16U2, 16U4, 16V2, 16V4, 16W2, 16W4 are wound around the tooth 91B.
  • the coils 16U1, 16V1, and 16W1 are collectively referred to as the coil 161, and the coils 16U2, 16V2, and 16W2 are collectively referred to as the coil 162.
  • the coils 16U3, 16V3, 16W3 are collectively referred to as the coil 163, and the coils 16U4, 16V4, 16W4 are collectively referred to as the coil 164.
  • the coils 16U1 and 16U2 are wound around a first pair of adjacent teeth 91A and 91B.
  • the coil 16U1 is wound right-handed and the coil 16U2 is wound left-handed.
  • the coils 16U3 and 16U4 are wound around a second pair of adjacent teeth 91A and 91B, which are arranged at positions mechanically 180 ° apart from the first pair of teeth 91A and 91B.
  • the coil 16U3 is wound on the left and the coil 16U4 is wound on the right. That is, the coil 16U3 arranged at a position facing the coil 16U1 is wound in the opposite direction to the coil 16U1, and the coil 16U4 arranged at a position facing the coil 16U2 is wound in the opposite direction to the coil 16U2.
  • the N pole permanent magnet 18 is located on the opposing coil 16U3 side. To do. Therefore, by making the winding directions of the coils 16U1 and 16U3 opposite to each other, the phase of the induced voltage generated in the coil 16U1 and the phase of the induced voltage generated in the coil 16U3 become equal. Further, by making the winding directions of the coil 16U2 and the coil 16U4 opposite to each other, the phase of the induced voltage generated in the coil 16U2 and the phase of the induced voltage generated in the coil 16U4 become equal.
  • the coils 16V1 and 16V2 and the coils 16W1 and 16W2 are wound around a first pair of adjacent teeth 91A and 91B, respectively.
  • the coils 16V3, 16V4 and the coils 16W3, 16W4 are arranged at the positions separated from each other by a mechanical angle of 180 ° with respect to the first pair of teeth 91A, 91B, respectively. It is wound in a pair.
  • the coils 16V1, 16V2, 16V3, 16V4 are wound in left-hand winding, right-hand winding, right-hand winding, and left-hand winding, respectively.
  • the coils 16W1, 16W2, 16W3, 16W4 are wound in a right-handed winding, a left-handed winding, a left-handed winding, and a right-handed winding, respectively.
  • the coils 16U1, 16U2, 16V1, 16V2, 16W1, 16W2, 16U3, 16U4, 16V3, 16V4, 16W3, 16W4 are arranged in this order. That is, the twelve coils 16 have two right windings and two left windings, such as right winding, right winding, left winding, left winding, right winding, right winding, left winding, and left winding. They are arranged alternately.
  • a coil for one phase is formed from two sets of coils 161 and 162 having a two-slot distribution and sets of coils 163 and 164.
  • the coils 161 (163) and 162 (164) wound around the adjacent teeth 91A and 91B form a coil of the same phase.
  • FIG. 3 shows an enlarged view of the installation portion of the adjacent coils 16U1 and 16U2.
  • the phase difference ⁇ 1 between the adjacent coils 161 and 162 will be described with reference to FIG.
  • the phase difference ⁇ 1 between the coils 161 and 162 is the phase difference between the induced voltages generated in the coils 161 and 162. Since the phases of the induced voltages generated in the coils 161 and 163 are the same and the phases of the induced voltages generated in the coils 162 and 164 are the same, the phase difference between adjacent coils 163 and 164 is also ⁇ 1.
  • the electrical angle is 180 °.
  • the phase difference ⁇ 2 is the phase difference between the teeth 91A and the teeth 91B adjacent to each other, the phase difference ⁇ 2 is calculated by an electrical angle of 360 ° / the number of slots ⁇ the number of poles, and is an electrical angle of 150 °.
  • the phase difference ⁇ 1 between the coils 161 and 162 is an electrical angle of 150 °.
  • the deviation from the relative position of is the phase difference ⁇ 1 between the coils 161 and 162.
  • the positional deviation between the coils 161 and 162 with respect to the same permanent magnet 18 is the phase difference ⁇ 1 between the coils 161 and 162.
  • the motor 3 is an inner rotor type motor, but it may be an outer rotor type motor in which the rotor 11 is arranged outside the stator 10.
  • FIG. 4 is a diagram showing a control system of the motor 3.
  • the control system includes a battery pack 8, a microcomputer 100, a first drive circuit 80A, a second drive circuit 80B, a Hall IC 90, and a motor 3.
  • the first drive circuit 80A and the second drive circuit 80B are each a three-phase bridge circuit including six switching elements.
  • the first drive circuit 80A is configured to supply the power of the battery pack 8 to the coils 161, 163, and the second drive circuit 80B is configured to supply the power of the battery pack 8 to the coils 162, 164. Has been done.
  • the first drive circuit 80A and the second drive circuit 80B are connected in parallel to the battery pack 8.
  • the microcomputer 100 is an example of the control circuit according to the present disclosure
  • the battery pack 8 is an example of a power source applied to the brushless motor according to the present disclosure.
  • the microcomputer 100 includes a CPU, a ROM, a RAM, an I / O, etc., and various functions are realized by the CPU reading and executing various programs stored in the ROM.
  • the microcomputer 100 is connected to the first drive circuit 80A, the second drive circuit 80B, and the Hall IC 90.
  • the Hall IC 90 is an example of the position sensor according to the present disclosure.
  • FIG. 5 shows a connection state between the first drive circuit 80A and the second drive circuit 80B and each coil 16.
  • the coils 161 and 163 wound around the tooth 91A are connected to the first drive circuit 80A, and the coils 162 and 164 wound around the tooth 91B are connected to the second drive circuit 80B.
  • a parallel body of the coils 161 and 163 connected in parallel for each phase is ⁇ -connected to the first drive circuit 80A. Since the phases of the induced voltages generated in the coil 161 and the coil 163 are the same in each phase, the return current does not flow between the coil 161 and the coil 163.
  • the parallel connection of the coils 162 and 164 of each phase connected in parallel is ⁇ -connected to the second drive circuit 80B.
  • the return current does not flow between the coil 162 and the coil 164.
  • the Hall IC 90 includes three Hall elements 90A.
  • the three Hall elements 90A are positioned and arranged with respect to the coils 16U1 and 16U3, the coils 16V1 and 16V3, and the coils 16W1 and 16W3 in the first motor circuit 150A. Therefore, the three Hall elements 90A output the first rotational position signals based on the relative positions of the coils 16U1 and 16U3, the coils 16V1 and 16V3, and the coils 16W1 and 16W3, respectively.
  • FIG. 12 shows a connection state of a conventional three-phase brushless motor 300 with 10 poles and 12 slots (hereinafter, motor 300).
  • the twelve coils 16 are connected to one drive circuit 800.
  • the drive circuit 800 is connected to the coils 16 of each phase that are ⁇ -connected.
  • the series connection body of the coil 16U1 and the coil 16U2 and the series connection body of the coil 16U3 and the coil 16U4 are connected in parallel.
  • a series connection body of the coil 16V1 and the coil 16V2 and a series connection body of the coil 16V3 and the coil 16V4 are connected in parallel.
  • a series connection body of the coils 16W1 and 16W2 and a series connection body of the coils 16W3 and 16W4 are connected in parallel. That is, in the motor 300, the coil 161, the coil 162, and the coil 163, which have the phase difference ⁇ 1, are connected in series.
  • the microcomputer 100 generates a first control command for controlling ON / OFF of each switching element included in the first drive circuit 80A based on the first rotational position signal detected by the Hall IC 90, and the generated first control The command is transmitted to the first drive circuit 80A.
  • FIG. 7 shows switching patterns of the first drive circuit 80A and the second drive circuit 80B.
  • a hatched portion indicates an energization period in which a voltage is applied.
  • the microcomputer 100 generates the first control command so that the coils 161 and 163 of the respective phases receive a square wave having an electrical angle of 120 °. That is, the energization period TA of the coils 161 and 163 of each phase is 120 electrical degrees.
  • the microcomputer 100 switches the switching elements phase by phase so that a rectangular wave having an electrical angle of 120 ° is input phase by phase. Therefore, the switching by the first drive circuit 80A occurs at every 60 electrical angle.
  • the microcomputer 100 causes the energization period TA to be a period of a front-rear electrical angle of 60 ° around a time point at which the zero cross of the induced voltage generated in the coils 161 and 163 of each phase is centered. Then, the first control command is generated.
  • the center of the zero cross is the average value of the electrical angle at two points where the induced voltage crosses 0V.
  • the time point at the center of the zero cross is determined by the positional relationship between the coils 161, 163 of each phase and the rotor 11. Therefore, the microcomputer 100 can obtain the time point at the center of the zero cross of the induced voltage generated in the coils 161 and 163 of each phase, based on the first rotational position signals detected by the three Hall elements 90A.
  • the microcomputer 100 may advance the phase of the applied voltage to execute the advance angle control that compensates for the phase delay of the current flowing through the coil.
  • the microcomputer 100 sets the energization period TA for applying the voltage to a period in which the phase is advanced from the period of the electrical angle of 120 ° around the time point at the center of the zero cross. That is, the microcomputer 100 sets the energization period TA to a period having an electrical angle of 120 ° centered around the time when the phase is advanced from the time when the phase becomes the center of the zero cross.
  • the microcomputer 100 shifts the first rotational position signals detected by the three Hall elements 90A by the phase difference ⁇ 1 to calculate the second rotational position signal. Then, the microcomputer 100 generates a second control command for controlling ON / OFF of each switching element included in the second drive circuit 80B based on the calculated second rotational position signal, and generates the generated second control command. It transmits to the 2nd drive circuit 80B.
  • the microcomputer 100 issues a second control command such that a square wave with an electrical angle of 120 ° is input to the coils 162 and 164 of each phase, similarly to the first control command. To generate. Therefore, the energization period TB of the coils 162 and 164 of each phase is 120 ° in electrical angle. Like the first drive circuit 80A, the microcomputer 100 switches the switching element for each phase, so that the switching by the first drive circuit 80A occurs at every electrical angle of 60 °.
  • the microcomputer 100 sets the energization period TB to be a period of a front-rear electrical angle of 60 ° around the time point at which the zero cross of the induced voltage generated in the coils 162 and 164 of each phase is at the center. Then, the second control command is generated.
  • the microcomputer 100 can determine the time point at which the zero cross of the induced voltage generated in the coils 162 and 164 of each phase is at the center, based on the second rotational position signal.
  • the microcomputer 100 may execute the advance angle control similarly to the first drive circuit 80A. That is, the microcomputer 100 may set the energization period TB for applying a voltage to a period having an electrical angle of 120 ° centered around the time point when the phase is advanced from the time point when the center of the zero cross is reached.
  • phase difference ⁇ 1 exists between the coils 161, 163 and the coils 162, 164, the timing at which switching occurs in the first drive circuit 80A and the timing at which switching occurs in the second drive circuit 80B. And a difference in potential angle ⁇ 1 occurs.
  • the phase difference ⁇ 1 is an electrical angle of 30 °
  • switching occurs at an electrical angle of 30 ° in the entire motor control system. That is, the switching cycle that occurs in the entire motor control system is twice the switching cycle that occurs in each of the first drive circuit 80A and the second drive circuit 80B.
  • the energization period TA is an example of the first period in the present disclosure
  • the energization period TB is an example of the second period in the present disclosure.
  • a microcomputer for controlling the conventional motor 300 issues a control command for controlling on / off switching of the drive circuit 800 so that the energization period T0 of each phase coil is 120 ° in electrical angle. Is generated. Therefore, switching occurs at intervals of 60 electrical degrees in the entire motor control system.
  • the coils of each phase are configured by connecting the coils 161 and 162, and the coils 163 and 164 having the phase difference ⁇ 1 in series. Therefore, as shown in FIG. 6, the microcomputer for controlling the conventional motor 300 controls the energization period T0 at the center of the zero crossing of the induced voltage generated in the coils 161 and 163 and the average voltage of the induced voltages generated in the coils 162 and 164.
  • the electrical angle is 120 ° based on the time point.
  • the coils 161, 163 and the coils 162, 164 are not energized during their respective optimum periods. As shown in FIG. 6, the coils 161 and 163 are energized even while the induced voltage in the coils 161 and 163 is relatively low. Similarly, the coils 162 and 164 are energized even when the induced voltage in the coils 162 and 164 is relatively low. Therefore, in the conventional motor 300, the torque is smaller and the motor efficiency is lower than in the present embodiment in which the coils 161 and 163 and the coils 162 and 164 are energized during the optimum periods.
  • the switching cycle that occurs in the entire motor control system according to the present embodiment is twice the switching cycle that occurs in the conventional motor control system.
  • the cycle of the torque ripple of No. 3 is twice the cycle of the torque ripple of the conventional motor 300.
  • the torque depends on the current flowing through the coil 16.
  • the current flowing through the coil 16 cannot change sharply due to the inductance component of the coil 16. Therefore, immediately after the switching, the current is likely to fluctuate greatly and the torque ripple is likely to increase.
  • the motor 3 of the present embodiment is In comparison with the motor 300 of FIG. As a result, in the motor 3 of the present embodiment, the change in current due to the switch becomes steeper than that in the conventional motor 300.
  • the size of the torque ripple of this embodiment is sufficiently smaller than the size of the conventional torque ripple. That is, in this embodiment, torque ripple is reduced as compared with the conventional case.
  • the coils 161, 163 and the coils 162, 164 are wound around adjacent teeth 91A and teeth 91B, respectively, and are connected to the first drive circuit 80A and the second drive circuit 80B, respectively.
  • the first drive circuit 80A and the second drive circuit 80B are connected to the battery pack 8 in parallel. Therefore, no return current flows between the coils 161 and 163 and the coils 162 and 164.
  • the wire diameters of the coils 161, 163 and the coils 162, 164 can be made smaller than in the case of connecting in series.
  • the microcomputer 100 controls the voltage phase difference between the voltage applied to the coils 161 and 163 and the voltage applied to the coils 162 and 164 to be substantially equal to the phase difference ⁇ 1.
  • the three Hall elements 90A output the first rotational position signal based on the relative position of the rotor 11 with respect to the coils 161 and 163 of each phase. Then, the microcomputer 100 generates a first control command for the first drive circuit 80A based on the first rotational position signal. Further, the microcomputer 100 calculates a second rotational position signal obtained by shifting the first rotational position signal by the phase difference ⁇ 1, and generates a second control command for the second drive circuit 80B based on the second rotational position signal. It Therefore, it is possible to supply electric power to the coils 161 and 163 and the coils 162 and 164 of each phase at appropriate timings while suppressing the number of Hall elements.
  • the energization period TA is set to a period based on the time when the induction voltage generated in the coils 161 and 163 is at the center of the zero cross, and the conduction period TB is the center of the zero cross of the induction voltage generated in the coils 162 and 164. Set to a time-based period. This makes it possible to supply electric power to the coils 161, 163 and the coils 162, 164 at the optimum timings, thereby improving the efficiency of the motor 3.
  • the Hall IC 90 includes three Hall elements 90A, but it may include three Hall elements 90B in addition to the three Hall elements 90A. As shown by the broken lines in FIG. 5, the three Hall elements 90B are positioned and arranged with respect to the coils 16U2 and 16U4, the coils 16V2 and 16V4, and the coils 16W2 and 16W4 in the second motor circuit 150B. It The three Hall elements 90B output the second rotational position signals based on the relative positions of the rotor 16 and the coils 16U2 and 16U4, the coils 16V2 and 16V4, and the coils 16W2 and 16W4, respectively.
  • the microcomputer 100 generates the second control command using the second rotational position signal output from the hall element 90B, instead of using the second rotational position signal calculated from the first rotational position signal.
  • the hall element 90A is an example of the first position sensor in the present disclosure
  • the hall element 90B is an example of the second position sensor in the present disclosure.
  • the hall element is used as the position sensor, but a resolver or encoder may be used as the position sensor.
  • connection of the coils 16 of each phase is not limited to the ⁇ connection, and may be the Y connection.
  • the two coils 16U1 and 16U3 connected in parallel, the two coils 16V1 and 16V3 connected in parallel, and the two coils 16W1 and 16W3 connected in parallel are Y-connected to form a first drive circuit. It may be connected to 80A.
  • the two coils 16U2 and 16U4 connected in parallel, the two coils 16V2 and 16V4 connected in parallel, and the two coils 16W2 and 16W4 connected in parallel are Y-connected and connected to the second drive circuit 80B. May be done.
  • FIG. 14 shows a state where the coils 16 of each phase are Y-connected in the conventional motor 300.
  • the motor 3 is not limited to a motor having 10 poles and 12 slots, as long as a coil having the same phase is formed from coils wound on adjacent teeth.
  • the motor 3 may be a motor having a multiple of 14 poles and 12 slots.
  • two adjacent coils form an in-phase coil.
  • the motor 3 may be a motor having a multiple of 8 poles and 9 slots.
  • an in-phase coil is formed by a set of three adjacent coils. The three adjacent coils are connected to different drive circuits.
  • the control system of the motor 3 includes the third drive circuit in addition to the first drive circuit 80A and the second drive circuit 80B. That is, when the motor 3 forms the same-phase coil with N (N is a natural number) adjacent coils, the control system of the motor 3 includes N drive circuits, and the adjacent N coils drive differently. Connected to the circuit.
  • the motor 3 of the present disclosure is applied to a hammer drill, but the electric working machine to which the motor 3 of the present disclosure is applied is not limited to the hammer drill.
  • the motor 3 of the present disclosure is equipped with a relatively large motor and is suitable for an electric working machine that requires high torque. By applying the motor 3 of the present disclosure to such an electric working machine, it is possible to reduce the size and weight of the electric working machine and achieve higher torque.
  • the motor 3 of the present disclosure may be applied to a mower. When the mowing machine cuts an object, if the torque ripple is large, the torque fluctuation is transmitted to the user and gives a feeling of strangeness.
  • the motor 3 of the present disclosure is particularly suitable for a working machine that transmits the power of the motor via a speed reducer.
  • a torque ripple is large in a work machine that transmits power of a motor via a speed reducer, the speed reducer sways and noise occurs.
  • the motor 3 of the present disclosure it is possible to suppress the shaking motion and suppress the generation of noise.
  • a plurality of functions of one constituent element in the above embodiment may be realized by a plurality of constituent elements, or one function of one constituent element may be realized by a plurality of constituent elements. . Further, a plurality of functions of a plurality of constituent elements may be realized by one constituent element, or one function realized by a plurality of constituent elements may be realized by one constituent element. Moreover, you may omit a part of structure of the said embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Portable Power Tools In General (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

A brushless motor of an electric working machine according to one aspect of the present disclosure is provided with a stator, a rotor, a first drive circuit, and a second drive circuit. The stator has first teeth, second teeth disposed next to the first teeth, first coils wound on the first teeth, and second coils wound on the second teeth. The voltage phase difference between the phase of a voltage applied to the first coils by the first drive circuit and the phase of a voltage applied to the second coils by the second drive circuit substantially coincides with the phase difference between induced voltages generated in the first teeth and the second teeth.

Description

電動作業機Electric work machine 関連出願の相互参照Cross-reference of related applications
 本国際出願は、2018年10月23日に日本国特許庁に出願された日本国特許出願第2018-199246号に基づく優先権を主張するものであり、日本国特許出願第2018-199246号の全内容を本国際出願に参照により援用する。 This international application claims priority based on Japanese Patent Application No. 2018-199246 filed with the Japan Patent Office on October 23, 2018, and the Japanese Patent Application No. 2018-199246 is claimed. The entire contents of this International Application are incorporated by reference.
 本開示は、ブラシレスモータを駆動源とするハンマドリル等の電動作業機に関する。 The present disclosure relates to an electric working machine such as a hammer drill that uses a brushless motor as a drive source.
 下記特許文献1には、3相ブラシレスモータを駆動源とする電気機器が記載されている。ブラシレスモータでは、磁気吸引力に起因するコギングトルクが生じる。発生したコギングトルクは、電気機器の駆動制御に外乱として作用する。そのため、電気機器の駆動源として、コギングトルクを低減したブラシレスモータを用いることが望ましい。 The following Patent Document 1 describes an electric device that uses a three-phase brushless motor as a drive source. In the brushless motor, cogging torque is generated due to the magnetic attraction force. The generated cogging torque acts as a disturbance on the drive control of the electric device. Therefore, it is desirable to use a brushless motor with reduced cogging torque as a drive source for electric equipment.
 コギングトルクを低減したブラシレスモータとして、2極3スロットや4極3スロットの倍数以外のブラシレスモータであって、隣り合うティースに巻いたコイルによって同相のコイルを形成するブラシレスモータが提案されている。 As a brushless motor with reduced cogging torque, brushless motors other than multiples of 2 poles 3 slots and 4 poles 3 slots, in which coils of the same phase are formed by coils wound on adjacent teeth, have been proposed.
特許第5981219号公報Japanese Patent No. 5981219
 隣り合うティースに巻いたコイルのそれぞれで生じる誘起電圧は位相が異なる。そのため、隣り合うコイルを並列に接続すると還流電流が流れ、ブラシレスモータの効率が低下する。一方、隣り合うコイルを直列に接続する場合、並列に接続する場合よりも、大きな電流がコイルに流れる。したがって、隣り合うコイルを直列に接続する場合、並列に接続する場合よりもコイルの線径を太くする必要がある。コイルの線径を太くすると、コイルを巻きにくくなり、ブラシレスモータの製造難易度が高くなる。 The phases of the induced voltages generated by the coils wound around the adjacent teeth are different. Therefore, when adjacent coils are connected in parallel, a return current flows, and the efficiency of the brushless motor decreases. On the other hand, when the adjacent coils are connected in series, a larger current flows through the coils than when they are connected in parallel. Therefore, when the adjacent coils are connected in series, it is necessary to make the wire diameter of the coils larger than when they are connected in parallel. If the wire diameter of the coil is increased, it becomes difficult to wind the coil, which increases the difficulty of manufacturing the brushless motor.
 さらに、隣り合うコイルを直列に接続する場合、隣り合うコイルが同時に通電される。よって、隣り合うコイルのそれぞれに、適したタイミングで通電することができないため、ブラシレスモータの効率が低下する。 Furthermore, when adjacent coils are connected in series, the adjacent coils are energized at the same time. Therefore, since it is not possible to energize each of the adjacent coils at an appropriate timing, the efficiency of the brushless motor is reduced.
 本開示の1つの局面は、製造性に優れ且つ効率のよいブラシレスモータを備えた電動作業機を提供することが望ましい。 According to one aspect of the present disclosure, it is desirable to provide an electric working machine including a brushless motor that is excellent in productivity and efficient.
 本開示の1つの局面は、電動作業機であって、駆動源としてブラシレスモータを備える。ブラシレスモータは、ステータと、第1の駆動回路と、第2の駆動回路と、を備える。ステータは、第1のティースと、第1のティースの隣に配置された第2のティースと、第1のティースに巻かれた第1のコイルと、第2のティースに巻かれた第2のコイルと、を有する。ロータは、永久磁石を有する。第1の駆動回路は、ブラシレスモータに適用される電源の電力を第1のコイルに供給するように構成されている。第2の駆動回路は、電源の電力を第2のコイルに供給するように構成されている。第1の駆動回路により第1のコイルに印加される電圧の位相と、第2の駆動回路により第2のコイルに印加される電圧の位相との電圧位相差が、第1のコイルと第2のコイルに生じる誘起電圧の位相差と略一致する。 One aspect of the present disclosure is an electric working machine, which includes a brushless motor as a drive source. The brushless motor includes a stator, a first drive circuit, and a second drive circuit. The stator includes a first tooth, a second tooth arranged next to the first tooth, a first coil wound on the first tooth, and a second coil wound on the second tooth. And a coil. The rotor has a permanent magnet. The first drive circuit is configured to supply the power of the power source applied to the brushless motor to the first coil. The second drive circuit is configured to supply the power of the power supply to the second coil. The voltage phase difference between the phase of the voltage applied to the first coil by the first drive circuit and the phase of the voltage applied to the second coil by the second drive circuit is equal to that of the first coil and the second coil. The phase difference of the induced voltage generated in the coil is substantially the same.
 この電動作業機では、第1のコイルと第2のコイルは、隣り合う第1のティースと第2のティースのそれぞれに巻かれ、第1の駆動回路と第2の駆動回路のそれぞれから給電される。隣り合うティースに巻かれた第1のコイルと第2のコイルには、位相の異なる誘起電圧が生じる。しかしながら、第1のコイルと第2のコイルは、互いに異なる駆動回路から給電されるため、直列に接続しなくても、第1のコイルと第2のコイルとの間で還流電流が流れない。よって、第1のコイルと第2のコイルとを直列に接続する必要がないため、第1のコイルと第2のコイルの線径を、直列に接続する場合と比べて細くすることができる。また、第1のコイルに印加される電圧と第2のコイルに印加される電圧の電圧位相差が、第1のコイルと第2のコイルに生じる誘起電圧の位相差と略一致するように制御される。そのため、第1のコイルと第2のコイルに、それぞれの適切なタイミングで電力を供給することができる。さらに、第1の駆動回路のスイッチングタイミングと、第2の駆動回路のスイッチングタイミングとがずれるため、第1の駆動回路と第2の駆動回路の全体で生じるスイッチングの周期は、第1の駆動回路及び第2の駆動回路のそれぞれで生じるスイッチングの周期の2倍になる。その結果、モータを流れる電流リプル及びトルクリプルを低減することができる。したがって、製造性に優れ且つ効率のよい電動作業機を実現することができる。 In this electric working machine, the first coil and the second coil are wound around each of the first tooth and the second tooth which are adjacent to each other, and are supplied with electric power from each of the first drive circuit and the second drive circuit. It Induced voltages having different phases are generated in the first coil and the second coil wound around the adjacent teeth. However, since the first coil and the second coil are fed from different drive circuits from each other, the reflux current does not flow between the first coil and the second coil even if they are not connected in series. Therefore, since it is not necessary to connect the first coil and the second coil in series, the wire diameters of the first coil and the second coil can be made smaller than in the case where they are connected in series. In addition, the voltage phase difference between the voltage applied to the first coil and the voltage applied to the second coil is controlled so as to be substantially equal to the phase difference between the induced voltages generated in the first coil and the second coil. To be done. Therefore, power can be supplied to the first coil and the second coil at appropriate timings. Furthermore, since the switching timing of the first drive circuit and the switching timing of the second drive circuit deviate from each other, the switching cycle that occurs in the entire first drive circuit and the second drive circuit is the first drive circuit. And twice the cycle of switching that occurs in each of the second drive circuits. As a result, current ripple and torque ripple flowing through the motor can be reduced. Therefore, it is possible to realize an electric work machine having excellent manufacturability and high efficiency.
 また、第1の駆動回路及び第2の駆動回路は、電源に対して並列に接続されていてもよい。 Also, the first drive circuit and the second drive circuit may be connected in parallel to the power supply.
 第1のコイルに流れる電流の経路と第2のコイルに流れる電流の経路とが電源に対して並列になり、第1の駆動回路と第2の駆動回路とを直列に接続する場合と比べて、第1のコイル及び第2のコイルの線径を細くすることができる。 Compared with the case where the path of the current flowing through the first coil and the path of the current flowing through the second coil are parallel to the power supply, and the first drive circuit and the second drive circuit are connected in series. The wire diameters of the first coil and the second coil can be reduced.
 また、電動作業機は、位置センサと、制御回路と、を備えてもよい。位置センサは、第1のコイルに対して位置決めされ、第1のコイルに対するロータの相対的な位置に基づいた第1の回転位置信号を出力してもよい。制御回路は、位置センサにより出力された第1の回転位置信号に基づいて、第1の駆動回路に対する第1の制御指令を生成してもよい。また、制御回路は、第1の回転位置信号を電圧位相差の分ずらした第2の回転位置信号に基づいて、第2の駆動回路に対する第2の制御指令を生成してもよい。 Also, the electric working machine may include a position sensor and a control circuit. The position sensor may be positioned with respect to the first coil and output a first rotational position signal based on the relative position of the rotor with respect to the first coil. The control circuit may generate a first control command for the first drive circuit based on the first rotational position signal output by the position sensor. The control circuit may generate the second control command for the second drive circuit based on the second rotational position signal obtained by shifting the first rotational position signal by the voltage phase difference.
 位置センサによって、第1のコイルに対するロータの相対的な位置に基づいた第1の回転位置信号が出力される。そして、制御回路により、第1の回転位置信号に基づいて、第1の駆動回路に対する第1の制御指令が生成される。さらに、制御回路により、第1の回転位置信号を電圧位相差の分ずらした第2の回転位置信号に基づいて、第2の駆動回路に対する第2の制御指令が生成される。第2の回転位置信号は、第2のコイルに対するロータの相対的な位置に基づいた回転位置信号に相当する。したがって、位置センサの数を抑制しつつ、第1のコイル及び第2のコイルに適切なタイミングで電力を供給することができる。 The position sensor outputs a first rotational position signal based on the relative position of the rotor with respect to the first coil. Then, the control circuit generates a first control command for the first drive circuit based on the first rotational position signal. Further, the control circuit generates the second control command for the second drive circuit based on the second rotational position signal obtained by shifting the first rotational position signal by the voltage phase difference. The second rotational position signal corresponds to the rotational position signal based on the relative position of the rotor with respect to the second coil. Therefore, it is possible to supply power to the first coil and the second coil at appropriate timing while suppressing the number of position sensors.
 また、電動作業機は、第1の位置センサと、第2の位置センサと、制御回路と、を備えてもよい。第1の位置センサは、第1のコイルに対して位置決めされ、第1のコイルに対するロータの相対的な位置に基づいた第1の回転位置信号を出力してもよい。第2の位置センサは、第2のコイルに対して位置決めされ、第2のコイルに対するロータの相対的な位置に基づいた第2の回転位置信号を出力してもよい。制御回路は、第1の位置センサにより出力された第1の回転位置信号に基づいて、第1の駆動回路に対する第1の制御指令を生成してもよい。また、制御回路は、第2の位置センサにより出力された第2の回転位置信号に基づいて、第2の駆動回路に対する第2の制御指令を生成してもよい。 Further, the electric working machine may include a first position sensor, a second position sensor, and a control circuit. The first position sensor may be positioned with respect to the first coil and output a first rotational position signal based on the relative position of the rotor with respect to the first coil. The second position sensor may be positioned with respect to the second coil and may output a second rotational position signal based on the relative position of the rotor with respect to the second coil. The control circuit may generate a first control command for the first drive circuit based on the first rotational position signal output by the first position sensor. Further, the control circuit may generate a second control command for the second drive circuit based on the second rotational position signal output by the second position sensor.
 第1の位置センサ及び第2の位置センサのそれぞれによって、第1のコイル及び第2のコイルのそれぞれに対するロータの相対的な位置に基づいた第1の回転位置信号及び第2の回転位置信号が出力される。そして、制御回路により、第1の回転位置信号に基づいて第1の駆動回路に対する第1の制御指令が生成されるとともに、第2の回転位置信号に基づいて第2の駆動回路に対する第2の制御指令が生成される。よって、第1の位置センサ及び第2の位置センサを用いることにより、第1のコイル及び第2のコイルに適切なタイミングで電力を供給することができる。 Each of the first position sensor and the second position sensor outputs a first rotational position signal and a second rotational position signal based on the relative position of the rotor with respect to each of the first coil and the second coil. Is output. Then, the control circuit generates a first control command for the first drive circuit based on the first rotational position signal, and a second control command for the second drive circuit based on the second rotational position signal. A control command is generated. Therefore, by using the first position sensor and the second position sensor, it is possible to supply power to the first coil and the second coil at appropriate timings.
 また、制御回路は、第1の回転位置信号を用いて、第1のコイルに発生する誘起電圧のゼロクロスの中央となる時点に基づいた第1の期間において第1のコイルに電力を供給するように、第1の制御指令を生成してもよい。また、制御回路は、第2の回転位置信号を用いて、第2のコイルに発生する誘起電圧のゼロクロスの中央となる時点に基づいた第2の期間において第2のコイルに電力を供給するように、第2の制御指令を生成してもよい。 Further, the control circuit uses the first rotational position signal to supply power to the first coil during the first period based on the time point at which the induced voltage generated in the first coil is at the center of the zero crossing. Alternatively, the first control command may be generated. Further, the control circuit uses the second rotational position signal to supply power to the second coil during the second period based on the time point at which the induced voltage generated in the second coil is at the center of the zero crossing. Alternatively, the second control command may be generated.
 第1のコイルと第2のコイルのそれぞれに、最も効率がよい期間において電力を供給することができる。したがって、モータの効率をより高くすることができる。 Power can be supplied to each of the first coil and the second coil during the most efficient period. Therefore, the efficiency of the motor can be increased.
 また、電動作業機は、ブラシレスモータによって発生した動力によって駆動されるように構成された最終出力部を備えてもよい。 The electric work machine may also include a final output unit configured to be driven by the power generated by the brushless motor.
 また、電動作業機は、ブラシレスモータの回転軸と最終出力部との間に設けられており、回転軸の回転を減速して最終出力部に伝達するように構成された減速機を備えてもよい。 Further, the electric working machine is provided between the rotary shaft of the brushless motor and the final output unit, and includes an decelerator configured to reduce the rotation of the rotary shaft and transmit the decelerated rotation to the final output unit. Good.
 モータの動力を減速機を介して最終出力部に伝達する場合、トルクリプルが大きいと、減速機が揺れ動いてノイズが生じることがある。上述の電動作業機によれば、トルクリプルが抑制されるため、モータの動力を減速機を介して最終出力部に伝達する場合に、好適にノイズを抑制することができる。 When transmitting the power of the motor to the final output section via the reducer, if the torque ripple is large, the reducer may sway and generate noise. According to the above-described electric working machine, torque ripple is suppressed, so that noise can be suitably suppressed when the power of the motor is transmitted to the final output unit via the reduction gear.
 本開示の別の1つの局面は、電動作業機であって、駆動源としてブラシレスモータを備える。ブラシレスモータは、ステータと、ロータと、2個の駆動回路と、を備える。ステータは、12個のスロットと、12個のコイルと、を有する。ロータは、10個の永久磁石を有する。2個の駆動回路は、ブラシレスモータに適用される電源の電力を12個のコイルに供給する。 Another aspect of the present disclosure is an electric working machine, which includes a brushless motor as a drive source. The brushless motor includes a stator, a rotor, and two drive circuits. The stator has 12 slots and 12 coils. The rotor has 10 permanent magnets. The two drive circuits supply the power of the power source applied to the brushless motor to the 12 coils.
 この電動作業機では、12個のコイルは2個の駆動回路によって電力が供給される。よって、隣り合うコイルを互いに異なる駆動回路に接続することにより、隣り合うコイルを直列に接続しなくても、隣り合うコイルの間で還流電流が流れることがない。よって、隣り合うコイルを直列に接続する必要がないため、隣り合うコイルを直列に接続する場合と比べて、12個のコイルの線径を細くすることができる。したがって、製造性に優れ且つ効率のよい電動作業機を実現することができる。 In this electric working machine, 12 coils are supplied with electric power by 2 driving circuits. Therefore, by connecting the adjacent coils to drive circuits different from each other, the reflux current does not flow between the adjacent coils even if the adjacent coils are not connected in series. Therefore, since it is not necessary to connect the adjacent coils in series, the wire diameter of the 12 coils can be made smaller than in the case where the adjacent coils are connected in series. Therefore, it is possible to realize an electric work machine having excellent manufacturability and high efficiency.
ハンマドリルの構成を示す縦断面図である。It is a longitudinal section showing the composition of a hammer drill. モータの構成を示す水平断面図である。It is a horizontal sectional view showing composition of a motor. 隣り合うコイルの位相差を示す図である。It is a figure which shows the phase difference of an adjacent coil. モータの制御システムの構成を示す図である。It is a figure which shows the structure of the control system of a motor. コイルの結線状態を示す図である。It is a figure which shows the connection state of a coil. 電気角に対するコイルの誘起電圧とコイルの通電期間とを示す図である。It is a figure which shows the induced voltage of the coil with respect to an electrical angle, and the electricity supply period of a coil. 第1駆動回路及び第2駆動回路のスイッチングパターンを示す図である。It is a figure which shows the switching pattern of a 1st drive circuit and a 2nd drive circuit. 本実施形態のモータのトルクリプルと従来のモータのトルクリプルとを示す図である。It is a figure which shows the torque ripple of the motor of this embodiment, and the torque ripple of the conventional motor. コイルの結線状態の別例を示す図である。It is a figure which shows another example of the wire connection state of a coil. スロットコンビネーションが14極12スロットの倍数の場合における、同相のコイルを形成するコイルを示す図である。It is a figure which shows the coil which forms an in-phase coil in case the slot combination is a multiple of 14 poles and 12 slots. スロットコンビネーションが8極9スロットの倍数の場合における、同相のコイルを形成するコイルを示す図である。It is a figure which shows the coil which forms an in-phase coil in case the slot combination is a multiple of 8 poles and 9 slots. 従来のモータの結線状態を示す図である。It is a figure which shows the connection state of the conventional motor. 従来のモータの駆動回路のスイッチングパターンを示す図である。It is a figure which shows the switching pattern of the drive circuit of the conventional motor. 従来のモータの別の結線状態を示す図である。It is a figure which shows another wiring state of the conventional motor.
 1…ハンマドリル、2…モータハウジング、3…ブラシレスモータ、4…出力ハウジング、5…出力部、6…バッテリー装着部、7…コントローラ、8…バッテリーパック、9…ハンドル、10…ステータ、11…ロータ、12…回転軸、13…ステータコア、14…上インシュレータ、15…下インシュレータ、16U1,16U2,16U3,16U4,16V1,16V2,16V3,16V4,16W1,16W2,16W3,16W4…コイル、17…ロータコア、18…永久磁石、19…センサ回路基板、20…端子ユニット、21,22…軸受、23…ピニオン、24…中間軸、25…クランク軸、26,27…ギヤ、28…遠心ファン、29…バッフルプレート、30…ツールホルダ、31,32…ベベルギヤ、33…シリンダ、34…ピストン、35…コネクティングロッド、36…クランクピン、37…空気室、38…ストライカ、39…インパクトボルト、40…受けリング、42…端子台、43…リブ、44…ライト、45…ガード板、46…スイッチ、47…コンデンサ、48…スイッチレバー、80A…第1駆動回路、80B…第2駆動回路、90…ホールIC、91A,91B…ティース、100…マイコン。 1 ... Hammer drill, 2 ... Motor housing, 3 ... Brushless motor, 4 ... Output housing, 5 ... Output part, 6 ... Battery mounting part, 7 ... Controller, 8 ... Battery pack, 9 ... Handle, 10 ... Stator, 11 ... Rotor , 12 ... rotary shaft, 13 ... stator core, 14 ... upper insulator, 15 ... lower insulator, 16U1, 16U2, 16U3, 16U4, 16V1, 16V2, 16V3, 16V4, 16W1, 16W2, 16W3, 16W4 ... coil, 17 ... rotor core, 18 ... Permanent magnet, 19 ... Sensor circuit board, 20 ... Terminal unit, 21, 22 ... Bearing, 23 ... Pinion, 24 ... Intermediate shaft, 25 ... Crankshaft, 26, 27 ... Gear, 28 ... Centrifugal fan, 29 ... Baffle Plate, 30 ... Tool holder, 31, 32 ... Bevel gear, 33 ... 34, piston, 35, connecting rod, 36, crank pin, 37, air chamber, 38, striker, 39, impact bolt, 40, receiving ring, 42, terminal block, 43, rib, 44, light, 45. Guard plate, 46 ... Switch, 47 ... Capacitor, 48 ... Switch lever, 80A ... First drive circuit, 80B ... Second drive circuit, 90 ... Hall IC, 91A, 91B ... Teeth, 100 ... Microcomputer.
 以下、図面を参照しながら、発明を実施するための形態を説明する。 Hereinafter, modes for carrying out the invention will be described with reference to the drawings.
 (第1実施形態)
 <1.ハンマドリルの構成>
 図1は、本開示における電動工具の一例であるハンマドリルの縦断面図である。このハンマドリル1は、ブラシレスモータ3(以下、モータ3)を収容する上下方向のモータハウジング2の上方に、出力部5を収容して前方へ延びる出力ハウジング4を備えている。モータハウジング2の下方には、コントローラ7を収容してその下方に2つのバッテリーパック8,8を装着可能なバッテリー装着部6が設けられている。出力ハウジング4の後方からバッテリー装着部6に跨がって上下方向に、ハンドル9が設けられている。
(First embodiment)
<1. Structure of hammer drill>
FIG. 1 is a vertical cross-sectional view of a hammer drill that is an example of an electric power tool according to the present disclosure. The hammer drill 1 includes an output housing 4 that houses an output portion 5 and extends forward, above a motor housing 2 in the vertical direction that houses a brushless motor 3 (hereinafter referred to as a motor 3). Below the motor housing 2, there is provided a battery mounting portion 6 which accommodates the controller 7 and below which the two battery packs 8, 8 can be mounted. A handle 9 is provided in the up-down direction across the battery mounting portion 6 from the rear of the output housing 4.
 モータ3は、ステータ10と、ステータ10の内側にロータ11を備えたインナロータ型で、ロータ11の回転軸12を上向きにした姿勢でモータハウジング2内に収容されている。ステータ10は、ステータコア13と、ステータコア13の上下に設けられる上インシュレータ14及び下インシュレータ15と、上下インシュレータ14,15を介してステータコア13の内側に巻回される複数のコイル16U1~16U4,16V1~16V4,16W1~16W4(図2等)とを有している。以下では、コイル16U1~16U4,16V1~16V4,16W1~16W4をまとめてコイル16と称する。 The motor 3 is an inner rotor type having a stator 10 and a rotor 11 inside the stator 10, and is housed in the motor housing 2 with the rotation shaft 12 of the rotor 11 facing upward. The stator 10 includes a stator core 13, an upper insulator 14 and a lower insulator 15 provided above and below the stator core 13, and a plurality of coils 16U1 to 16U4, 16V1 to be wound inside the stator core 13 via the upper and lower insulators 14 and 15. 16V4, 16W1 to 16W4 (FIG. 2 etc.). Hereinafter, the coils 16U1 to 16U4, 16V1 to 16V4, 16W1 to 16W4 are collectively referred to as the coil 16.
 ロータ11は、軸心に位置する回転軸12と、回転軸12の周囲に配置される筒状のロータコア17と、ロータコア17の内部に配置される複数の永久磁石18,18・・とを有している。下インシュレータ15の下端には、ロータコア17の永久磁石18の位置を検出して回転位置信号を出力するホールIC90(図4)を搭載したセンサ回路基板19と、コイル16の端末を結線するための端子ユニット20とが固定されている。回転軸12は、下端がモータハウジング2の底部に設けた軸受21に支持され、上端が出力ハウジング4に設けた軸受22に支持されて出力ハウジング4内に突出している。回転軸12の上端に形成したピニオン23は、前後の中間軸24及びクランク軸25に設けたギヤ26,27とそれぞれ噛合している。また、軸受22の下側で回転軸12には、遠心ファン28が設けられており、遠心ファン28の下方でモータハウジング2内にはバッフルプレート29が設けられている。 The rotor 11 has a rotating shaft 12 located at the axial center, a cylindrical rotor core 17 arranged around the rotating shaft 12, and a plurality of permanent magnets 18, 18, ... Arranged inside the rotor core 17. is doing. At the lower end of the lower insulator 15, a sensor circuit board 19 equipped with a Hall IC 90 (FIG. 4) that detects the position of the permanent magnet 18 of the rotor core 17 and outputs a rotational position signal and a terminal of the coil 16 are connected. The terminal unit 20 is fixed. The lower end of the rotating shaft 12 is supported by a bearing 21 provided at the bottom of the motor housing 2, and the upper end thereof is supported by a bearing 22 provided at the output housing 4 so as to project into the output housing 4. The pinion 23 formed on the upper end of the rotary shaft 12 meshes with gears 26 and 27 provided on the front and rear intermediate shafts 24 and the crankshaft 25, respectively. A centrifugal fan 28 is provided on the rotary shaft 12 below the bearing 22, and a baffle plate 29 is provided inside the motor housing 2 below the centrifugal fan 28.
 出力部5は、前後方向に延びて回転可能な筒状のツールホルダ30を有し、ツールホルダ30の後端に外装したベベルギヤ31が、中間軸24の上端に設けたベベルギヤ32と噛合している。ツールホルダ30内には、シリンダ33が差し込み装着されて、シリンダ33内に設けたピストン34が、コネクティングロッド35を介して、クランク軸25の上端で偏心位置に設けたクランクピン36と連結されている。 The output unit 5 has a cylindrical tool holder 30 extending in the front-rear direction and rotatable, and a bevel gear 31 mounted on the rear end of the tool holder 30 meshes with a bevel gear 32 provided on the upper end of the intermediate shaft 24. There is. A cylinder 33 is inserted and mounted in the tool holder 30, and a piston 34 provided in the cylinder 33 is connected to a crank pin 36 provided at an eccentric position at an upper end of the crank shaft 25 via a connecting rod 35. There is.
 また、シリンダ33内でピストン34の前方には、空気室37を介してストライカ38が前後移動可能に収容されて、ストライカ38の前方でツールホルダ30内には、インパクトボルト39が前後移動可能に収容されている。ここではツールホルダ30の先端からドリルビット等の先端工具を差し込んだ際には、先端工具の後端がインパクトボルト39を、シリンダ33前方の受けリング40に当接する位置まで後退させて後端をシリンダ33内に突出させる。ツールホルダ30の前端には、先端工具の着脱操作を行う操作スリーブ41が外装される。 A striker 38 is housed in the cylinder 33 in front of the piston 34 via an air chamber 37 so as to be movable back and forth, and an impact bolt 39 is movable in the tool holder 30 in front of the striker 38 back and forth. It is housed. Here, when a tip tool such as a drill bit is inserted from the tip of the tool holder 30, the rear end of the tip tool retracts the impact bolt 39 to a position where it abuts the receiving ring 40 in front of the cylinder 33, and the rear end is moved. It projects into the cylinder 33. At the front end of the tool holder 30, an operation sleeve 41 for attaching and detaching the tip tool is installed.
 一方、バッテリー装着部6内には、バッテリーパック8,8を左右方向からスライド装着可能な2つの端子台42,42が、前後に配置されており、端子台42,42の上方にコントローラ7が収容されている。コントローラ7は、後述するマイコン100やスイッチング素子を搭載した第1駆動回路80A及び第2駆動回路80Bの基板を備えて、バッテリー装着部6の内面に立設されたU字状のリブ43,43によって前後方向に支持されている。コントローラ7の前方には、LEDを用いてツールホルダ30の前方を照射するライト44が設けられ、バッテリー装着部6の前後には、装着されたバッテリーパック8,8の前後を覆うガード板45,45が下向きに突出形成されている。 On the other hand, in the battery mounting portion 6, two terminal blocks 42, 42 on which the battery packs 8, 8 can be slidably mounted from the left and right are arranged in the front and rear, and the controller 7 is arranged above the terminal blocks 42, 42. It is housed. The controller 7 includes a substrate for a first drive circuit 80A and a second drive circuit 80B on which a microcomputer 100, which will be described later, and a switching element are mounted, and U-shaped ribs 43, 43 provided upright on the inner surface of the battery mounting portion 6. It is supported by the front-back direction. A light 44 that illuminates the front of the tool holder 30 using an LED is provided in front of the controller 7, and a guard plate 45 that covers the front and rear of the mounted battery packs 8 and 8 is provided in front of and behind the battery mounting portion 6. 45 is formed so as to project downward.
 ハンドル9内には、コントローラ7と電気的に接続されるスイッチ46とコンデンサ47とが設けられて、スイッチ46から前方へ突出するプランジャには、スイッチレバー48が設けられている。 A switch 46 and a capacitor 47 that are electrically connected to the controller 7 are provided in the handle 9, and a switch lever 48 is provided on the plunger protruding forward from the switch 46.
 よって、このハンマドリル1においては、ハンドル9を把持した手でスイッチレバー48を押し込んでスイッチ46をON動作させると、バッテリーパック8からモータ3への給電がなされて回転軸12が回転する。すなわち、コントローラ7のマイコン100が、センサ回路基板19のホールIC90から出力されるロータ11の永久磁石18の位置を示す回転位置信号を得てロータ11の回転状態を取得し、取得した回転状態に応じて第1駆動回路80A及び第2駆動回路80Bの各スイッチング素子のON/OFFを制御し、ステータ10の各コイル16に対し順番に電流を流すことでロータ11を回転させる。 Therefore, in the hammer drill 1, when the switch lever 48 is pushed in with the hand holding the handle 9 to turn on the switch 46, power is supplied from the battery pack 8 to the motor 3 and the rotary shaft 12 rotates. That is, the microcomputer 100 of the controller 7 obtains the rotation position signal of the rotor 11 which is output from the Hall IC 90 of the sensor circuit board 19 and indicates the position of the permanent magnet 18 of the rotor 11, and obtains the rotation state of the rotor 11 to obtain the obtained rotation state. Accordingly, ON / OFF of each switching element of the first drive circuit 80A and the second drive circuit 80B is controlled, and a current is sequentially applied to each coil 16 of the stator 10 to rotate the rotor 11.
 こうして回転軸12が回転すると、ギヤ26を介して中間軸24が減速して回転し、ベベルギヤ32,31を介してツールホルダ30を先端工具と共に回転させる。同時に、ギヤ27を介してクランク軸25が減速して回転し、コネクティングロッド35を介してピストン34がシリンダ33内で往復動し、空気室37を介してストライカ38を前後動させる。よって、ストライカ38がインパクトボルト39を介して先端工具を打撃する。 When the rotary shaft 12 rotates in this way, the intermediate shaft 24 decelerates and rotates via the gear 26, and the tool holder 30 rotates together with the tip tool via the bevel gears 32 and 31. At the same time, the crankshaft 25 is decelerated and rotated via the gear 27, the piston 34 reciprocates in the cylinder 33 via the connecting rod 35, and the striker 38 is moved back and forth via the air chamber 37. Therefore, the striker 38 strikes the tip tool via the impact bolt 39.
 また、コントローラ7の左右両側となるバッテリー装着部6の左右の側面には、図示しない吸気口が形成されている。遠心ファン28の左右両側となるモータハウジング2の左右の側面には、図示しない排気口が形成されて、吸気口とモータ3との間にコントローラ7が配置されている。よって、回転軸12の回転に伴う遠心ファン28の回転により、吸気口から吸い込まれた空気が、まずコントローラ7に接触してコントローラ7を冷却した後、モータハウジング2内を通ってモータ3を冷却する。そして、バッフルプレート29を介して排気口から排出される。 In addition, intake ports (not shown) are formed on the left and right side surfaces of the battery mounting portion 6 on both the left and right sides of the controller 7. Exhaust ports (not shown) are formed on the left and right side surfaces of the motor housing 2 on both the left and right sides of the centrifugal fan 28, and the controller 7 is arranged between the intake port and the motor 3. Therefore, by the rotation of the centrifugal fan 28 accompanying the rotation of the rotary shaft 12, the air sucked from the intake port first contacts the controller 7 to cool the controller 7, and then passes through the inside of the motor housing 2 to cool the motor 3. To do. Then, it is discharged from the exhaust port through the baffle plate 29.
 なお、本実施形態では、ハンマドリル1は、本開示における電動作業機の一例である。また、本実施形態では、ギヤ26,27は、本開示における減速機の一例であり、ツールホルダ30及びストライカ38は、本開示における最終出力部の一例である。 Note that in the present embodiment, the hammer drill 1 is an example of the electric working machine according to the present disclosure. Further, in the present embodiment, the gears 26 and 27 are examples of the speed reducer in the present disclosure, and the tool holder 30 and the striker 38 are examples of the final output unit in the present disclosure.
 <2.モータの構成>
 図2は、モータ3を上下方向に垂直な面で切断した水平断面図である。ステータコア13は、6個のティース91Aと、6個のティース91Bと、12個のスロット、を備える。ロータコア17は、10個の永久磁石18を備える。すなわち、モータ3は、10極12スロットの3相モータである。
<2. Motor configuration>
FIG. 2 is a horizontal sectional view of the motor 3 taken along a plane perpendicular to the vertical direction. The stator core 13 includes 6 teeth 91A, 6 teeth 91B, and 12 slots. The rotor core 17 includes ten permanent magnets 18. That is, the motor 3 is a three-phase motor having 10 poles and 12 slots.
 10個の永久磁石18は、6個のN極の永久磁石18と6個のS極の永久磁石18とを含む。N極の永久磁石18とS極の永久磁石18は、交互に配置されている。 The ten permanent magnets 18 include six N-pole permanent magnets 18 and six S-pole permanent magnets 18. The N-pole permanent magnets 18 and the S-pole permanent magnets 18 are alternately arranged.
 また、6個のティース91Aと6個のティース91Bは交互に配置されている。すなわち、ティース91Aとティース91Bは、互いに隣り合う位置に配置されている。 Also, six teeth 91A and six teeth 91B are arranged alternately. That is, the teeth 91A and the teeth 91B are arranged at positions adjacent to each other.
 コイル16は、U相のコイル16U1,16U2,16U3,16U4と、V相のコイル16V1,16V2,16V3,16V4と、W相のコイル16W1,16W2,16W3,16W4と、を含む。コイル16U1,16U3,16V1,16V3,16W1,16W3は、ティース91Aに巻かれている。コイル16U2,16U4,16V2,16V4,16W2,16W4は、ティース91Bに巻かれている。以下では、コイル16U1,16V1,16W1をまとめてコイル161と称し、コイル16U2,16V2,16W2,をまとめてコイル162と称する。また、コイル16U3,16V3,16W3をまとめてコイル163と称し、コイル16U4,16V4,16W4をまとめてコイル164と称する。 The coil 16 includes U-phase coils 16U1, 16U2, 16U3, 16U4, V-phase coils 16V1, 16V2, 16V3, 16V4, and W-phase coils 16W1, 16W2, 16W3, 16W4. The coils 16U1, 16U3, 16V1, 16V3, 16W1, 16W3 are wound around the tooth 91A. The coils 16U2, 16U4, 16V2, 16V4, 16W2, 16W4 are wound around the tooth 91B. Below, the coils 16U1, 16V1, and 16W1 are collectively referred to as the coil 161, and the coils 16U2, 16V2, and 16W2 are collectively referred to as the coil 162. The coils 16U3, 16V3, 16W3 are collectively referred to as the coil 163, and the coils 16U4, 16V4, 16W4 are collectively referred to as the coil 164.
 コイル16U1,16U2は、隣り合うティース91A,91Bの第1の一対に巻かれている。コイル16U1は右巻に巻かれており、コイル16U2は左巻に巻かれている。また、コイル16U3,16U4は、第1の一対のティース91A,91Bに対して機械角180°離れた位置に配置された、隣り合うティース91A,91Bの第2の一対に巻かれている。コイル16U3は左巻に巻かれており、コイル16U4は右巻に巻かれている。すなわち、コイル16U1と対向する位置に配置されたコイル16U3は、コイル16U1と反対向きに巻かれており、コイル16U2と対向する位置に配置されたコイル16U4は、コイル16U2と反対向きに巻かれている。 The coils 16U1 and 16U2 are wound around a first pair of adjacent teeth 91A and 91B. The coil 16U1 is wound right-handed and the coil 16U2 is wound left-handed. The coils 16U3 and 16U4 are wound around a second pair of adjacent teeth 91A and 91B, which are arranged at positions mechanically 180 ° apart from the first pair of teeth 91A and 91B. The coil 16U3 is wound on the left and the coil 16U4 is wound on the right. That is, the coil 16U3 arranged at a position facing the coil 16U1 is wound in the opposite direction to the coil 16U1, and the coil 16U4 arranged at a position facing the coil 16U2 is wound in the opposite direction to the coil 16U2. There is.
 図2に示すように、モータ3の極数は10極であるため、コイル16U1側にS極の永久磁石18が位置している場合、対向するコイル16U3側にN極の永久磁石18が位置する。そのため、コイル16U1とコイル16U3の巻き方を反対向きにすることで、コイル16U1に生じる誘起電圧の位相と、コイル16U3に生じる誘起電圧の位相とが等しくなる。また、コイル16U2とコイル16U4の巻き方を反対向きにすることで、コイル16U2に生じる誘起電圧の位相と、コイル16U4に生じる誘起電圧の位相とが等しくなる。 As shown in FIG. 2, since the number of poles of the motor 3 is 10, when the S pole permanent magnet 18 is located on the coil 16U1 side, the N pole permanent magnet 18 is located on the opposing coil 16U3 side. To do. Therefore, by making the winding directions of the coils 16U1 and 16U3 opposite to each other, the phase of the induced voltage generated in the coil 16U1 and the phase of the induced voltage generated in the coil 16U3 become equal. Further, by making the winding directions of the coil 16U2 and the coil 16U4 opposite to each other, the phase of the induced voltage generated in the coil 16U2 and the phase of the induced voltage generated in the coil 16U4 become equal.
 同様に、コイル16V1,16V2、及びコイル16W1,16W2は、それぞれ、隣り合うティース91A,91Bの第1の一対に巻かれている。また、コイル16V3,16V4、及びコイル16W3,16W4は、それぞれ、第1の一対のティース91A,91Bに対して機械角180°離れた位置に配置された、隣り合うティース91A,91Bの第2の一対に巻かれている。コイル16V1,16V2,16V3,16V4は、それぞれ、左巻、右巻、右巻、左巻に巻かれている。コイル16W1,16W2,16W3,16W4は、それぞれ、右巻、左巻、左巻、右巻に巻かれている。そして、コイル16U1,16U2,16V1,16V2,16W1,16W2,16U3,16U4,16V3,16V4,16W3,16W4の順に配置されている。すなわち、12個のコイル16は、右巻、右巻、左巻、左巻、右巻、右巻、左巻、左巻…のように、2個の右巻と2個の左巻とが交互に配置されている。 Similarly, the coils 16V1 and 16V2 and the coils 16W1 and 16W2 are wound around a first pair of adjacent teeth 91A and 91B, respectively. In addition, the coils 16V3, 16V4 and the coils 16W3, 16W4 are arranged at the positions separated from each other by a mechanical angle of 180 ° with respect to the first pair of teeth 91A, 91B, respectively. It is wound in a pair. The coils 16V1, 16V2, 16V3, 16V4 are wound in left-hand winding, right-hand winding, right-hand winding, and left-hand winding, respectively. The coils 16W1, 16W2, 16W3, 16W4 are wound in a right-handed winding, a left-handed winding, a left-handed winding, and a right-handed winding, respectively. The coils 16U1, 16U2, 16V1, 16V2, 16W1, 16W2, 16U3, 16U4, 16V3, 16V4, 16W3, 16W4 are arranged in this order. That is, the twelve coils 16 have two right windings and two left windings, such as right winding, right winding, left winding, left winding, right winding, right winding, left winding, and left winding. They are arranged alternately.
 そして、2スロット分布のコイル161,162の組と、コイル163,164の組の2組から、1相分のコイルが形成されている。言い換えると、隣り合うティース91A,91Bに巻かれたコイル161(163),162(164)から同相のコイルが形成されている。 A coil for one phase is formed from two sets of coils 161 and 162 having a two-slot distribution and sets of coils 163 and 164. In other words, the coils 161 (163) and 162 (164) wound around the adjacent teeth 91A and 91B form a coil of the same phase.
 図3に、隣り合うコイル16U1,16U2の設置部分を拡大した図を示す。図3を参照して、隣り合うコイル161とコイル162との位相差θ1について説明する。コイル161とコイル162との位相差θ1は、コイル161とコイル162に生じる誘起電圧の位相差とする。コイル161とコイル163に生じる誘起電圧の位相は等しく、コイル162とコイル164に生じる誘起電圧の位相は等しいので、隣り合うコイル163とコイル164との位相差もθ1になる。 FIG. 3 shows an enlarged view of the installation portion of the adjacent coils 16U1 and 16U2. The phase difference θ1 between the adjacent coils 161 and 162 will be described with reference to FIG. The phase difference θ1 between the coils 161 and 162 is the phase difference between the induced voltages generated in the coils 161 and 162. Since the phases of the induced voltages generated in the coils 161 and 163 are the same and the phases of the induced voltages generated in the coils 162 and 164 are the same, the phase difference between adjacent coils 163 and 164 is also θ1.
 図3において、位相差θ3は、隣り合う永久磁石18の位相差であるので、電気角180°である。位相差θ2は、隣り合うティース91Aとティース91Bとの位相差であるので、電気角360°/スロット数×対極数によって算出され、電気角150°である。ここで、コイル161とコイル162の巻き方が同じ方向であれば、コイル161とコイル162の位相差θ1は、電気角150°になる。しかしながら、本実施形態では、コイル161とコイル162の巻き方が逆方向になっている。よって、コイル161とコイル162の位相差θ1は、電気角180°-電気角150°=電気角30°になる。 In FIG. 3, since the phase difference θ3 is the phase difference between the adjacent permanent magnets 18, the electrical angle is 180 °. Since the phase difference θ2 is the phase difference between the teeth 91A and the teeth 91B adjacent to each other, the phase difference θ2 is calculated by an electrical angle of 360 ° / the number of slots × the number of poles, and is an electrical angle of 150 °. Here, if the winding directions of the coils 161 and 162 are the same, the phase difference θ1 between the coils 161 and 162 is an electrical angle of 150 °. However, in this embodiment, the coils 161 and 162 are wound in opposite directions. Therefore, the phase difference θ1 between the coils 161 and 162 is 180 ° electrical angle−150 ° electrical angle = 30 ° electrical angle.
 詳しくは、本実施形態では、コイル161とコイル162の巻き方が逆方向になっているので、S極の永久磁石18に対するコイル161の相対的な位置と、N極の永久磁石18に対するコイル162の相対的な位置とのずれが、コイル161とコイル162との位相差θ1になる。一方、コイル161とコイル162の巻き方が同方向の場合は、同じ永久磁石18に対するコイル161とコイル162の位置のずれが、コイル161とコイル162との位相差θ1になる。 Specifically, in the present embodiment, since the coils 161 and 162 are wound in opposite directions, the relative position of the coil 161 with respect to the S-pole permanent magnet 18 and the coil 162 with respect to the N-pole permanent magnet 18. The deviation from the relative position of is the phase difference θ1 between the coils 161 and 162. On the other hand, when the coils 161 and 162 are wound in the same direction, the positional deviation between the coils 161 and 162 with respect to the same permanent magnet 18 is the phase difference θ1 between the coils 161 and 162.
 なお、本実施形態では、モータ3は、インナロータ型のモータであるが、ステータ10の外側にロータ11が配置されたアウタロータ型のモータであってもよい。 In the present embodiment, the motor 3 is an inner rotor type motor, but it may be an outer rotor type motor in which the rotor 11 is arranged outside the stator 10.
 <3.モータの制御システム>
 図4は、モータ3の制御システムを示す図である。制御システムは、バッテリーパック8と、マイコン100と、第1駆動回路80Aと、第2駆動回路80Bと、ホールIC90と、モータ3と、を備える。
<3. Motor control system>
FIG. 4 is a diagram showing a control system of the motor 3. The control system includes a battery pack 8, a microcomputer 100, a first drive circuit 80A, a second drive circuit 80B, a Hall IC 90, and a motor 3.
 第1駆動回路80A及び第2駆動回路80Bは、それぞれ、6個のスイッチング素子を備えた3相のブリッジ回路である。第1駆動回路80Aは、バッテリーパック8の電力をコイル161,163に供給するように構成されており、第2駆動回路80Bは、バッテリーパック8の電力をコイル162,164に供給するように構成されている。第1駆動回路80A及び第2駆動回路80Bは、バッテリーパック8に対して並列に接続されている。本実施形態では、マイコン100は、本開示における制御回路の一例であり、バッテリーパック8が、本開示におけるブラシレスモータに適用される電源の一例である。 The first drive circuit 80A and the second drive circuit 80B are each a three-phase bridge circuit including six switching elements. The first drive circuit 80A is configured to supply the power of the battery pack 8 to the coils 161, 163, and the second drive circuit 80B is configured to supply the power of the battery pack 8 to the coils 162, 164. Has been done. The first drive circuit 80A and the second drive circuit 80B are connected in parallel to the battery pack 8. In the present embodiment, the microcomputer 100 is an example of the control circuit according to the present disclosure, and the battery pack 8 is an example of a power source applied to the brushless motor according to the present disclosure.
 マイコン100は、CPU、ROM、RAM及びI/O等を備えており、CPUがROMに記憶されている各種プログラムを読出し実行することにより、各種機能を実現する。マイコン100は、第1駆動回路80Aと、第2駆動回路80Bと、ホールIC90に接続されている。本実施形態では、ホールIC90が本開示における位置センサの一例である。 The microcomputer 100 includes a CPU, a ROM, a RAM, an I / O, etc., and various functions are realized by the CPU reading and executing various programs stored in the ROM. The microcomputer 100 is connected to the first drive circuit 80A, the second drive circuit 80B, and the Hall IC 90. In the present embodiment, the Hall IC 90 is an example of the position sensor according to the present disclosure.
 図5は、第1駆動回路80A及び第2駆動回路80Bと各コイル16との結線状態を示す。第1駆動回路80Aには、ティース91Aに巻かれたコイル161,163が接続されており、第2駆動回路80Bには、ティース91Bに巻かれたコイル162,164が接続されている。 FIG. 5 shows a connection state between the first drive circuit 80A and the second drive circuit 80B and each coil 16. The coils 161 and 163 wound around the tooth 91A are connected to the first drive circuit 80A, and the coils 162 and 164 wound around the tooth 91B are connected to the second drive circuit 80B.
 詳しくは、第1モータ回路150Aにおいて、第1駆動回路80Aには、各相の並列接続されたコイル161,163の並列体がΔ結線されている。各相において、コイル161とコイル163に生じる誘起電圧の位相が等しいため、コイル161とコイル163との間で還流電流は流れない。 Specifically, in the first motor circuit 150A, a parallel body of the coils 161 and 163 connected in parallel for each phase is Δ-connected to the first drive circuit 80A. Since the phases of the induced voltages generated in the coil 161 and the coil 163 are the same in each phase, the return current does not flow between the coil 161 and the coil 163.
 一方、第2モータ回路150Bにおいて、第2駆動回路80Bには、各相の並列接続されたコイル162,164の並列体がΔ結線されている。各相において、コイル162とコイル164に生じる誘起電圧の位相が等しいため、コイル162とコイル164との間で還流電流は流れない。 On the other hand, in the second motor circuit 150B, the parallel connection of the coils 162 and 164 of each phase connected in parallel is Δ-connected to the second drive circuit 80B. In each phase, since the phases of the induced voltages generated in the coil 162 and the coil 164 are the same, the return current does not flow between the coil 162 and the coil 164.
 このような構成により、各相において、第1モータ回路150Aに接続されているコイル161,163と、第2モータ回路150Bに接続されているコイル162,164との間には、位相差θ1が存在する。 With such a configuration, in each phase, a phase difference θ1 exists between the coils 161 and 163 connected to the first motor circuit 150A and the coils 162 and 164 connected to the second motor circuit 150B. Exists.
 また、ホールIC90は、3個のホール素子90Aを含む。3個のホール素子90Aは、第1モータ回路150Aにおいて、コイル16U1,16U3と、コイル16V1,16V3と、コイル16W1,16W3のそれぞれに対して位置決めされて配置されている。そのため、3個のホール素子90Aは、コイル16U1,16U3、コイル16V1,16V3、及びコイル16W1,16W3のそれぞれと、ロータ11との相対的な位置に基づいた第1回転位置信号を出力する。 Also, the Hall IC 90 includes three Hall elements 90A. The three Hall elements 90A are positioned and arranged with respect to the coils 16U1 and 16U3, the coils 16V1 and 16V3, and the coils 16W1 and 16W3 in the first motor circuit 150A. Therefore, the three Hall elements 90A output the first rotational position signals based on the relative positions of the coils 16U1 and 16U3, the coils 16V1 and 16V3, and the coils 16W1 and 16W3, respectively.
 一方、図12に、従来の10極12スロットの3相のブラシレスモータ300(以下、モータ300)の結線状態を示す。12個のコイル16は、1つの駆動回路800に接続されている。具体的には、駆動回路800には、Δ結線された各相のコイル16が接続されている。U相では、コイル16U1とコイル16U2との直列接続体と、コイル16U3とコイル16U4との直列接続体とが並列に接続されている。V相では、コイル16V1とコイル16V2との直列接続体と、コイル16V3とコイル16V4との直列接続体とが並列に接続されている。W相では、コイル16W1とコイル16W2との直列接続体と、コイル16W3とコイル16W4との直列接続体とが並列に接続されている。すなわち、モータ300は、位相差θ1が存在するコイル161とコイル162、コイル163とコイル164とが直列に接続されている。 On the other hand, FIG. 12 shows a connection state of a conventional three-phase brushless motor 300 with 10 poles and 12 slots (hereinafter, motor 300). The twelve coils 16 are connected to one drive circuit 800. Specifically, the drive circuit 800 is connected to the coils 16 of each phase that are Δ-connected. In the U phase, the series connection body of the coil 16U1 and the coil 16U2 and the series connection body of the coil 16U3 and the coil 16U4 are connected in parallel. In the V phase, a series connection body of the coil 16V1 and the coil 16V2 and a series connection body of the coil 16V3 and the coil 16V4 are connected in parallel. In the W phase, a series connection body of the coils 16W1 and 16W2 and a series connection body of the coils 16W3 and 16W4 are connected in parallel. That is, in the motor 300, the coil 161, the coil 162, and the coil 163, which have the phase difference θ1, are connected in series.
 <4.モータの動作>
 マイコン100は、ホールIC90により検出された第1回転位置信号に基づいて、第1駆動回路80Aに含まれる各スイッチング素子のオンオフを制御するための第1制御指令を生成し、生成した第1制御指令を第1駆動回路80Aに送信する。
<4. Motor operation>
The microcomputer 100 generates a first control command for controlling ON / OFF of each switching element included in the first drive circuit 80A based on the first rotational position signal detected by the Hall IC 90, and the generated first control The command is transmitted to the first drive circuit 80A.
 図7は、第1駆動回路80A及び第2駆動回路80Bのスイッチングパターンを示す。図7においてハッチング部分が電圧を印加する通電期間を示す。マイコン100は、各相のコイル161,163に電気角120°の方形波が入力されるように、第1制御指令を生成する。すなわち、各相のコイル161,163の通電期間TAは、電気角120°になる。マイコン100は、1相ずつ電気角120°の矩形波を入力するように、1相ずつスイッチング素子を切り替える。そのため、第1駆動回路80Aによるスイッチングは、電気角60°ごとに発生する。 FIG. 7 shows switching patterns of the first drive circuit 80A and the second drive circuit 80B. In FIG. 7, a hatched portion indicates an energization period in which a voltage is applied. The microcomputer 100 generates the first control command so that the coils 161 and 163 of the respective phases receive a square wave having an electrical angle of 120 °. That is, the energization period TA of the coils 161 and 163 of each phase is 120 electrical degrees. The microcomputer 100 switches the switching elements phase by phase so that a rectangular wave having an electrical angle of 120 ° is input phase by phase. Therefore, the switching by the first drive circuit 80A occurs at every 60 electrical angle.
 また、図6に示すように、マイコン100は、各相のコイル161,163に発生する誘起電圧のゼロクロスの中央となる時点を中心とした前後電気角60°の期間が通電期間TAとなるように、第1制御指令を生成する。ゼロクロスの中央は、誘起電圧が0Vとクロスする2点における電気角の平均値である。ゼロクロスの中央となる時点は、各相のコイル161,163とロータ11との位置関係により決まる。よって、マイコン100は、3個のホール素子90Aにより検出された第1回転位置信号に基づいて、各相のコイル161,163において発生する誘起電圧のゼロクロスの中央となる時点を求めることができる。 Further, as shown in FIG. 6, the microcomputer 100 causes the energization period TA to be a period of a front-rear electrical angle of 60 ° around a time point at which the zero cross of the induced voltage generated in the coils 161 and 163 of each phase is centered. Then, the first control command is generated. The center of the zero cross is the average value of the electrical angle at two points where the induced voltage crosses 0V. The time point at the center of the zero cross is determined by the positional relationship between the coils 161, 163 of each phase and the rotor 11. Therefore, the microcomputer 100 can obtain the time point at the center of the zero cross of the induced voltage generated in the coils 161 and 163 of each phase, based on the first rotational position signals detected by the three Hall elements 90A.
 ここで、コイル16に電圧を印加してもコイル16のインダクタンス成分によって電流は直ぐには流れず、電流に位相遅れが生じる。そこで、マイコン100は、電流の位相と誘起電圧の位相を一致させるため、印加電圧の位相を進めてコイルに流れる電流の位相遅れを補う進角制御を実行してもよい。この場合、マイコン100は、電圧を印加する通電期間TAを、ゼロクロスの中央となる時点を中心とした電気角120°の期間よりも位相を進めた期間に設定する。すなわち、マイコン100は、通電期間TAを、ゼロクロスの中央となる時点よりも位相を進めた時点を中心とした電気角120°の期間に設定する。 Here, even if a voltage is applied to the coil 16, the current does not flow immediately due to the inductance component of the coil 16, and a phase delay occurs in the current. Therefore, in order to match the phase of the current with the phase of the induced voltage, the microcomputer 100 may advance the phase of the applied voltage to execute the advance angle control that compensates for the phase delay of the current flowing through the coil. In this case, the microcomputer 100 sets the energization period TA for applying the voltage to a period in which the phase is advanced from the period of the electrical angle of 120 ° around the time point at the center of the zero cross. That is, the microcomputer 100 sets the energization period TA to a period having an electrical angle of 120 ° centered around the time when the phase is advanced from the time when the phase becomes the center of the zero cross.
 さらに、マイコン100は、3個のホール素子90Aにより検出された第1回転位置信号をそれぞれ位相差θ1の分ずらして、第2回転位置信号を算出する。そして、マイコン100は、算出した第2回転位置信号に基づいて、第2駆動回路80Bに含まれる各スイッチング素子のオンオフを制御するための第2制御指令を生成し、生成した第2制御指令を第2駆動回路80Bに送信する。 Further, the microcomputer 100 shifts the first rotational position signals detected by the three Hall elements 90A by the phase difference θ1 to calculate the second rotational position signal. Then, the microcomputer 100 generates a second control command for controlling ON / OFF of each switching element included in the second drive circuit 80B based on the calculated second rotational position signal, and generates the generated second control command. It transmits to the 2nd drive circuit 80B.
 具体的には、図7に示すように、マイコン100は、第1制御指令と同様に、各相のコイル162,164に電気角120°の方形波が入力されるように、第2制御指令を生成する。よって、各相のコイル162,164の通電期間TBは、電気角120°になる。マイコン100は、第1駆動回路80Aと同様に、1相ずつスイッチング素子を切り替えるため、第1駆動回路80Aによるスイッチングは、電気角60°ごとに発生する。 Specifically, as shown in FIG. 7, the microcomputer 100 issues a second control command such that a square wave with an electrical angle of 120 ° is input to the coils 162 and 164 of each phase, similarly to the first control command. To generate. Therefore, the energization period TB of the coils 162 and 164 of each phase is 120 ° in electrical angle. Like the first drive circuit 80A, the microcomputer 100 switches the switching element for each phase, so that the switching by the first drive circuit 80A occurs at every electrical angle of 60 °.
 また、図6に示すように、マイコン100は、各相のコイル162,164に発生する誘起電圧のゼロクロスの中央となる時点を中心とした前後電気角60°の期間が通電期間TBとなるように、第2制御指令を生成する。マイコン100は、第2回転位置信号に基づいて、各相のコイル162,164において発生する誘起電圧のゼロクロスの中央となる時点を求めることができる。ここで、マイコン100は、第1駆動回路80Aと同様に、進角制御を実行してもよい。すなわち、マイコン100は、電圧を印加する通電期間TBを、ゼロクロスの中央となる時点よりも位相を進めた時点を中心とした電気角120°の期間に設定してもよい。 Further, as shown in FIG. 6, the microcomputer 100 sets the energization period TB to be a period of a front-rear electrical angle of 60 ° around the time point at which the zero cross of the induced voltage generated in the coils 162 and 164 of each phase is at the center. Then, the second control command is generated. The microcomputer 100 can determine the time point at which the zero cross of the induced voltage generated in the coils 162 and 164 of each phase is at the center, based on the second rotational position signal. Here, the microcomputer 100 may execute the advance angle control similarly to the first drive circuit 80A. That is, the microcomputer 100 may set the energization period TB for applying a voltage to a period having an electrical angle of 120 ° centered around the time point when the phase is advanced from the time point when the center of the zero cross is reached.
 図7に示すように、コイル161,163とコイル162,164とでは位相差θ1が存在するため、第1駆動回路80Aにおいてスイッチングが発生するタイミングと、第2駆動回路80Bにおいてスイッチングが発生するタイミングとには、電位角θ1の差が生じる。本実施形態では、位相差θ1は電気角30°であるため、モータの制御システム全体においてスイッチングは電気角30°間隔で発生する。すなわち、モータの制御システム全体において発生するスイッチングの周期は、第1駆動回路80A及び第2駆動回路80Bのそれぞれにおいて発生するスイッチングの周期の2倍になる。なお、本実施形態では、通電期間TAは本開示における第1の期間の一例であり、通電期間TBは本開示における第2の期間の一例である。 As shown in FIG. 7, since the phase difference θ1 exists between the coils 161, 163 and the coils 162, 164, the timing at which switching occurs in the first drive circuit 80A and the timing at which switching occurs in the second drive circuit 80B. And a difference in potential angle θ1 occurs. In the present embodiment, since the phase difference θ1 is an electrical angle of 30 °, switching occurs at an electrical angle of 30 ° in the entire motor control system. That is, the switching cycle that occurs in the entire motor control system is twice the switching cycle that occurs in each of the first drive circuit 80A and the second drive circuit 80B. In the present embodiment, the energization period TA is an example of the first period in the present disclosure, and the energization period TB is an example of the second period in the present disclosure.
 一方、図13に示すように、従来のモータ300を制御するマイコンにより、各相のコイルの通電期間T0が電気角120°になるように、駆動回路800のスイッチングのオンオフを制御する制御指令が生成される。よって、モータの制御システム全体においてスイッチングは電気角60°間隔で発生する。 On the other hand, as shown in FIG. 13, a microcomputer for controlling the conventional motor 300 issues a control command for controlling on / off switching of the drive circuit 800 so that the energization period T0 of each phase coil is 120 ° in electrical angle. Is generated. Therefore, switching occurs at intervals of 60 electrical degrees in the entire motor control system.
 また、従来のモータ300では、各相のコイルは、位相差θ1が存在するコイル161とコイル162、コイル163とコイル164とが直列に接続されて構成されている。そのため、図6に示すように、従来のモータ300を制御するマイコンは、通電期間T0を、コイル161,163に発生する誘起電圧とコイル162,164に発生する誘起電圧の平均電圧のゼロクロスの中央となる時点に基づいた電気角120°の期間とする。 Further, in the conventional motor 300, the coils of each phase are configured by connecting the coils 161 and 162, and the coils 163 and 164 having the phase difference θ1 in series. Therefore, as shown in FIG. 6, the microcomputer for controlling the conventional motor 300 controls the energization period T0 at the center of the zero crossing of the induced voltage generated in the coils 161 and 163 and the average voltage of the induced voltages generated in the coils 162 and 164. The electrical angle is 120 ° based on the time point.
 そのため、従来のモータ300では、コイル161,163と、コイル162,164は、それぞれの最適な期間に通電されない。図6に示すように、コイル161,163には、コイル161,163の誘起電圧が比較的低い期間にも通電される。同様に、コイル162,164には、コイル162,164の誘起電圧が比較的低い期間にも通電される。そのため、従来のモータ300は、コイル161,163とコイル162,164のそれぞれの最適な期間に通電する本実施形態と比べて、トルクが小さくなり、モータの効率が低下する。 Therefore, in the conventional motor 300, the coils 161, 163 and the coils 162, 164 are not energized during their respective optimum periods. As shown in FIG. 6, the coils 161 and 163 are energized even while the induced voltage in the coils 161 and 163 is relatively low. Similarly, the coils 162 and 164 are energized even when the induced voltage in the coils 162 and 164 is relatively low. Therefore, in the conventional motor 300, the torque is smaller and the motor efficiency is lower than in the present embodiment in which the coils 161 and 163 and the coils 162 and 164 are energized during the optimum periods.
 また、図8に示すように、本実施形態に係るモータの制御システム全体で発生するスイッチング周期は、従来のモータの制御システム全体で発生するスイッチング周期の2倍になるため、本実施形態のモータ3のトルクリプルの周期は、従来のモータ300のトルクリプルの周期の2倍になる。 Further, as shown in FIG. 8, the switching cycle that occurs in the entire motor control system according to the present embodiment is twice the switching cycle that occurs in the conventional motor control system. The cycle of the torque ripple of No. 3 is twice the cycle of the torque ripple of the conventional motor 300.
 ここで、トルクは、コイル16に流れる電流に依存する。コイル16に流れる電流は、コイル16のインダクタンス成分によって急峻に変化できない。そのため、スイッチングの直後は、電流が大きく変動しやすく、トルクリプルが大きくなりやすい。 Here, the torque depends on the current flowing through the coil 16. The current flowing through the coil 16 cannot change sharply due to the inductance component of the coil 16. Therefore, immediately after the switching, the current is likely to fluctuate greatly and the torque ripple is likely to increase.
 本実施形態のモータ3では、1回のスイッチングで通電するコイルがコイル161,163及びコイル162,164の一方だけであるのに対して、従来のモータ300では、1回のスイッチングで通電するコイルがコイル161,163及びコイル162,164の両方である。そのため、本実施形態のモータ3は、従来のモータ300に比べて、1回のスイッチングが全体のトルクに与える影響が小さい。 In the motor 3 of the present embodiment, only one of the coils 161 and 163 and the coils 162 and 164 is energized in one switching, whereas in the conventional motor 300, the coil is energized in one switching. Are both the coils 161, 163 and the coils 162, 164. Therefore, in the motor 3 of this embodiment, one switching has less influence on the overall torque than the conventional motor 300.
 また、本実施形態のモータ3において1回のスイッチングで通電するコイルの数が、従来のモータ300において1回のスイッチングで通電するコイルの数よりも少ないため、本実施形態のモータ3は、従来のモータ300に比べて、通電するコイルのインダクタが小さい。その結果、本実施形態のモータ3は、従来のモータ300に比べて、スイッチンに伴う電流の変化が急峻になる。 Further, since the number of coils energized by one switching in the motor 3 of the present embodiment is smaller than the number of coils energized by one switching in the conventional motor 300, the motor 3 of the present embodiment is In comparison with the motor 300 of FIG. As a result, in the motor 3 of the present embodiment, the change in current due to the switch becomes steeper than that in the conventional motor 300.
 これらの理由により、図8に示すように、本実施形態のトルクリプルの大きさは、従来のトルクリプルの大きさに比べて十分に小さくなっている。すなわち、本実施形態では、従来に比べてトルクリプルが低減されている。 For these reasons, as shown in FIG. 8, the size of the torque ripple of this embodiment is sufficiently smaller than the size of the conventional torque ripple. That is, in this embodiment, torque ripple is reduced as compared with the conventional case.
 <5.効果>
 以上説明した第1実施形態によれば、以下の効果が得られる。
<5. Effect>
According to the first embodiment described above, the following effects can be obtained.
 (1)コイル161,163とコイル162,164は、隣り合うティース91Aとティース91Bのそれぞれに巻かれ、第1駆動回路80Aと第2駆動回路80Bのそれぞれに接続されている。そして、第1駆動回路80Aと第2駆動回路80Bは、バッテリーパック8に並列に接続されている。したがって、コイル161,163とコイル162,164との間で還流電流が流れない。また、コイル161,163とコイル162,164の線径を、直列に接続する場合と比べて細くすることができる。さらに、マイコン100により、コイル161,163に印加される電圧とコイル162,164に印加される電圧の電圧位相差が、位相差θ1と略一致するように制御される。したがって、コイル161,163とコイル162,164に、それぞれの適切なタイミングで電力を供給することができる。また、第1駆動回路80Aのスイッチングタイミングと、第2駆動回路80Bのスイッチングタイミングとがずれるため、モータ3の制御系全体で生じるスイッチング周期は、第1駆動回路80A及び第2駆動回路80Bのそれぞれ生じるスイッチング周期の2倍になる。その結果、モータ3を流れる電流リプル及びトルクリプルを低減することができる。 (1) The coils 161, 163 and the coils 162, 164 are wound around adjacent teeth 91A and teeth 91B, respectively, and are connected to the first drive circuit 80A and the second drive circuit 80B, respectively. The first drive circuit 80A and the second drive circuit 80B are connected to the battery pack 8 in parallel. Therefore, no return current flows between the coils 161 and 163 and the coils 162 and 164. Further, the wire diameters of the coils 161, 163 and the coils 162, 164 can be made smaller than in the case of connecting in series. Further, the microcomputer 100 controls the voltage phase difference between the voltage applied to the coils 161 and 163 and the voltage applied to the coils 162 and 164 to be substantially equal to the phase difference θ1. Therefore, power can be supplied to the coils 161, 163 and the coils 162, 164 at appropriate timings. Further, since the switching timing of the first drive circuit 80A and the switching timing of the second drive circuit 80B deviate from each other, the switching cycle that occurs in the entire control system of the motor 3 is different between the first drive circuit 80A and the second drive circuit 80B. Twice the resulting switching period. As a result, current ripple and torque ripple flowing through the motor 3 can be reduced.
 (2)3個のホール素子90Aによって、各相のコイル161,163に対するロータ11の相対的な位置に基づいた第1回転位置信号が出力される。そして、マイコン100により、第1回転位置信号に基づいて、第1駆動回路80Aに対する第1制御指令が生成される。さらに、マイコン100により、第1回転位置信号を位相差θ1の分ずらした第2回転位置信号が算出され、第2回転位置信号に基づいて、第2駆動回路80Bに対する第2制御指令が生成される。したがって、ホール素子の数を抑制しつつ、各相のコイル161,163及びコイル162,164に適切なタイミングで電力を供給することができる。 (2) The three Hall elements 90A output the first rotational position signal based on the relative position of the rotor 11 with respect to the coils 161 and 163 of each phase. Then, the microcomputer 100 generates a first control command for the first drive circuit 80A based on the first rotational position signal. Further, the microcomputer 100 calculates a second rotational position signal obtained by shifting the first rotational position signal by the phase difference θ1, and generates a second control command for the second drive circuit 80B based on the second rotational position signal. It Therefore, it is possible to supply electric power to the coils 161 and 163 and the coils 162 and 164 of each phase at appropriate timings while suppressing the number of Hall elements.
 (3)通電期間TAがコイル161,163に発生する誘起電圧のゼロクロスの中央となる時点に基づいた期間に設定され、通電期間TBがコイル162,164に発生する誘起電圧のゼロクロスの中央となる時点に基づいた期間に設定される。これにより、コイル161,163とコイル162,164に、それぞれの最適なタイミングで電力を供給し、モータ3の効率を向上させることができる。 (3) The energization period TA is set to a period based on the time when the induction voltage generated in the coils 161 and 163 is at the center of the zero cross, and the conduction period TB is the center of the zero cross of the induction voltage generated in the coils 162 and 164. Set to a time-based period. This makes it possible to supply electric power to the coils 161, 163 and the coils 162, 164 at the optimum timings, thereby improving the efficiency of the motor 3.
 (4)モータ3のトルクリプルが比較的大きい場合、ギヤ26,27が揺れ動いてノイズが生じることがある。本実施形態では、モータ3のトルクリプルが比較的小さく抑制されるため、ギヤ26,27の揺れを抑制し、ノイズの発生を抑制することができる。 (4) When the torque ripple of the motor 3 is relatively large, the gears 26 and 27 may sway and generate noise. In the present embodiment, since the torque ripple of the motor 3 is suppressed to be relatively small, it is possible to suppress the shaking of the gears 26 and 27 and suppress the generation of noise.
 (他の実施形態)
 以上、本開示を実施するための形態について説明したが、本開示は上述の実施形態に限定されることなく、種々変形して実施することができる。
(Other embodiments)
Although the embodiments for implementing the present disclosure have been described above, the present disclosure is not limited to the above-described embodiments, and various modifications can be implemented.
 (a)上記実施形態では、ホールIC90は、3個のホール素子90Aを含んでいたが、3個のホール素子90Aに加えて、3個のホール素子90Bを含んでいてもよい。図5に破線で示すように、3個のホール素子90Bは、第2モータ回路150Bにおいて、コイル16U2,16U4と、コイル16V2,16V4と、コイル16W2,16W4のそれぞれに対して位置決めされて配置される。そして、3個のホール素子90Bは、それぞれ、コイル16U2,16U4、コイル16V2,16V4、コイル16W2,16W4のそれぞれとロータ11との相対的な位置に基づいた第2回転位置信号を出力する。この場合、マイコン100は、第1回転位置信号から算出した第2回転位置信号を用いる代わりに、ホール素子90Bから出力された第2回転位置信号を用いて第2制御指令を生成する。ホール素子90Aは本開示における第1の位置センサの一例であり、ホール素子90Bは本開示における第2の位置センサの一例である。 (A) In the above embodiment, the Hall IC 90 includes three Hall elements 90A, but it may include three Hall elements 90B in addition to the three Hall elements 90A. As shown by the broken lines in FIG. 5, the three Hall elements 90B are positioned and arranged with respect to the coils 16U2 and 16U4, the coils 16V2 and 16V4, and the coils 16W2 and 16W4 in the second motor circuit 150B. It The three Hall elements 90B output the second rotational position signals based on the relative positions of the rotor 16 and the coils 16U2 and 16U4, the coils 16V2 and 16V4, and the coils 16W2 and 16W4, respectively. In this case, the microcomputer 100 generates the second control command using the second rotational position signal output from the hall element 90B, instead of using the second rotational position signal calculated from the first rotational position signal. The hall element 90A is an example of the first position sensor in the present disclosure, and the hall element 90B is an example of the second position sensor in the present disclosure.
 (b)上記実施形態では、位置センサとしてホール素子を用いているが、位置センサとして、レゾルバやエンコーダを用いてもよい。 (B) In the above embodiment, the hall element is used as the position sensor, but a resolver or encoder may be used as the position sensor.
 (c)図9に示すように、各相のコイル16の結線は、Δ結線に限らずY結線でもよい。具体的には、並列接続された2つのコイル16U1,16U3と、並列接続された2つのコイル16V1,16V3と、並列接続された2つのコイル16W1,16W3とがY結線されて、第1駆動回路80Aに接続されてもよい。また、並列接続された2つのコイル16U2,16U4と、並列接続された2つのコイル16V2,16V4と、並列接続された2つのコイル16W2,16W4とがY結線されて、第2駆動回路80Bに接続されてもよい。図14は、従来のモータ300において、各相のコイル16をY結線した状態を示す。 (C) As shown in FIG. 9, the connection of the coils 16 of each phase is not limited to the Δ connection, and may be the Y connection. Specifically, the two coils 16U1 and 16U3 connected in parallel, the two coils 16V1 and 16V3 connected in parallel, and the two coils 16W1 and 16W3 connected in parallel are Y-connected to form a first drive circuit. It may be connected to 80A. Further, the two coils 16U2 and 16U4 connected in parallel, the two coils 16V2 and 16V4 connected in parallel, and the two coils 16W2 and 16W4 connected in parallel are Y-connected and connected to the second drive circuit 80B. May be done. FIG. 14 shows a state where the coils 16 of each phase are Y-connected in the conventional motor 300.
 (d)モータ3は、隣り合うティースに巻かれたコイルから、同相のコイルが形成されるモータであれば、10極12スロットのモータに限らない。例えば、モータ3は、14極12スロットの倍数のモータでもよい。この場合、図10に示すように、本実施形態と同様に、隣り合う2つのコイルで同相のコイルが形成される。また、モータ3は、8極9スロットの倍数のモータでもよい。この場合、図11に示すように、隣り合う3つのコイルの組で同相のコイルが形成される。この隣り合う3つのコイルは互いに異なる駆動回路に接続される。よって、モータ3が8極9スロットの倍数のモータの場合、モータ3の制御システムは、第1駆動回路80A及び第2駆動回路80Bに加えて第3駆動回路を備える。すなわち、モータ3がN(Nは自然数)個の隣り合うコイルで同相のコイルを形成する場合、モータ3の制御システムは、N個の駆動回路を備え、隣り合うN個のコイルは互いに異なる駆動回路に接続される。 (D) The motor 3 is not limited to a motor having 10 poles and 12 slots, as long as a coil having the same phase is formed from coils wound on adjacent teeth. For example, the motor 3 may be a motor having a multiple of 14 poles and 12 slots. In this case, as shown in FIG. 10, as in this embodiment, two adjacent coils form an in-phase coil. Further, the motor 3 may be a motor having a multiple of 8 poles and 9 slots. In this case, as shown in FIG. 11, an in-phase coil is formed by a set of three adjacent coils. The three adjacent coils are connected to different drive circuits. Therefore, when the motor 3 is a motor having a multiple of 8 poles and 9 slots, the control system of the motor 3 includes the third drive circuit in addition to the first drive circuit 80A and the second drive circuit 80B. That is, when the motor 3 forms the same-phase coil with N (N is a natural number) adjacent coils, the control system of the motor 3 includes N drive circuits, and the adjacent N coils drive differently. Connected to the circuit.
 (e)上記実施形態では、本開示のモータ3をハンマドリルに適用しているが、本開示のモータ3を適用する電動作業機はハンマドリルに限定されるものではない。本開示のモータ3は、比較的大きなモータを搭載し、高トルクを必要とする電動作業機に適している。本開示のモータ3をこのような電動作業機に適用することで、電動作業機の小型軽量化及びより高トルクを実現ことができる。例えば、本開示のモータ3は、草刈機に適用してもよい。草刈機は対象物を刈り取るときに、トルクリプルが大きいと使用者にトルク変動が伝わり違和感を与えるが、本開示のモータ3を草刈機に適用することで、使用者に伝わるトルク変動を抑制することができる。また、本開示のモータ3は、特に、減速機を介してモータの動力を伝達する作業機に適している。減速機を介してモータの動力を伝達する作業機は、トルクリプルが大きいと、減速機が揺れ動いてノイズが生じるが、本開示のモータ3をこのような作業機に適用することで、減速機の揺れ動きを抑制し、ノイズの発生を抑制することができる。 (E) In the above embodiment, the motor 3 of the present disclosure is applied to a hammer drill, but the electric working machine to which the motor 3 of the present disclosure is applied is not limited to the hammer drill. The motor 3 of the present disclosure is equipped with a relatively large motor and is suitable for an electric working machine that requires high torque. By applying the motor 3 of the present disclosure to such an electric working machine, it is possible to reduce the size and weight of the electric working machine and achieve higher torque. For example, the motor 3 of the present disclosure may be applied to a mower. When the mowing machine cuts an object, if the torque ripple is large, the torque fluctuation is transmitted to the user and gives a feeling of strangeness. However, by applying the motor 3 of the present disclosure to the mowing machine, the torque fluctuation transmitted to the user is suppressed. You can Further, the motor 3 of the present disclosure is particularly suitable for a working machine that transmits the power of the motor via a speed reducer. When a torque ripple is large in a work machine that transmits power of a motor via a speed reducer, the speed reducer sways and noise occurs. However, by applying the motor 3 of the present disclosure to such a work machine, It is possible to suppress the shaking motion and suppress the generation of noise.
 (f)上記実施形態における1つの構成要素が有する複数の機能を、複数の構成要素によって実現したり、1つの構成要素が有する1つの機能を、複数の構成要素によって実現したりしてもよい。また、複数の構成要素が有する複数の機能を、1つの構成要素によって実現したり、複数の構成要素によって実現される1つの機能を、1つの構成要素によって実現したりしてもよい。また、上記実施形態の構成の一部を省略してもよい。 (F) A plurality of functions of one constituent element in the above embodiment may be realized by a plurality of constituent elements, or one function of one constituent element may be realized by a plurality of constituent elements. . Further, a plurality of functions of a plurality of constituent elements may be realized by one constituent element, or one function realized by a plurality of constituent elements may be realized by one constituent element. Moreover, you may omit a part of structure of the said embodiment.

Claims (8)

  1.  電動作業機であって、
     駆動源としてブラシレスモータを備え、
     前記ブラシレスモータは、
     第1のティースと、前記第1のティースの隣に配置された第2のティースと、前記第1のティースに巻かれた第1のコイルと、前記第2のティースに巻かれた第2のコイルと、を有するステータと、
     永久磁石を有するロータと、
     前記ブラシレスモータに適用される電源の電力を前記第1のコイルに供給するように構成された第1の駆動回路と、
     前記電源の電力を前記第2のコイルに供給するように構成された第2の駆動回路と、を備え、
     前記第1の駆動回路により前記第1のコイルに印加される電圧の位相と、前記第2の駆動回路により前記第2のコイルに印加される電圧の位相との電圧位相差が、前記第1のコイルと前記第2のコイルに生じる誘起電圧の位相差と略一致する、
     電動作業機。
    An electric work machine,
    Equipped with a brushless motor as a drive source,
    The brushless motor is
    A first tooth, a second tooth arranged next to the first tooth, a first coil wound around the first tooth, and a second coil wound around the second tooth. A stator having a coil,
    A rotor having a permanent magnet,
    A first drive circuit configured to supply electric power of a power source applied to the brushless motor to the first coil;
    A second drive circuit configured to supply the power of the power source to the second coil,
    The voltage phase difference between the phase of the voltage applied to the first coil by the first drive circuit and the phase of the voltage applied to the second coil by the second drive circuit is the first phase difference. Substantially coincides with the phase difference of the induced voltage generated in the coil and the second coil,
    Electric work machine.
  2.  前記第1の駆動回路及び前記第2の駆動回路は、前記電源に対して並列に接続されている、
     請求項1に記載の電動作業機。
    The first drive circuit and the second drive circuit are connected in parallel to the power supply,
    The electric working machine according to claim 1.
  3.  前記第1のコイルに対して位置決めされ、前記第1のコイルに対する前記ロータの相対的な位置に基づいた第1の回転位置信号を出力するように構成された位置センサと、
     前記位置センサにより出力された前記第1の回転位置信号に基づいて、前記第1の駆動回路に対する第1の制御指令を生成するように構成され、且つ、前記第1の回転位置信号を前記電圧位相差の分ずらした第2の回転位置信号に基づいて、前記第2の駆動回路に対する第2の制御指令を生成するように構成された制御回路と、を備える、
     請求項1又は2に記載の電動作業機。
    A position sensor positioned with respect to the first coil and configured to output a first rotational position signal based on a relative position of the rotor with respect to the first coil;
    The first rotational position signal is configured to generate a first control command for the first drive circuit based on the first rotational position signal output by the position sensor, and the first rotational position signal is the voltage. A control circuit configured to generate a second control command for the second drive circuit based on a second rotational position signal that is shifted by the phase difference.
    The electric working machine according to claim 1.
  4.  前記第1のコイルに対して位置決めされ、前記第1のコイルに対する前記ロータの相対的な位置に基づいた第1の回転位置信号を出力するように構成された第1の位置センサと、
     前記第2のコイルに対して位置決めされ、前記第2のコイルに対する前記ロータの相対的な位置に基づいた第2の回転位置信号を出力するように構成された第2の位置センサと、
     前記第1の位置センサにより出力された前記第1の回転位置信号に基づいて、前記第1の駆動回路に対する第1の制御指令を生成するように構成され、且つ、前記第2の位置センサにより出力された前記第2の回転位置信号に基づいて、前記第2の駆動回路に対する第2の制御指令を生成するように構成された制御回路と、を備える、
     請求項1又は2に記載の電動作業機。
    A first position sensor positioned with respect to the first coil and configured to output a first rotational position signal based on the relative position of the rotor with respect to the first coil;
    A second position sensor positioned with respect to the second coil and configured to output a second rotational position signal based on the relative position of the rotor with respect to the second coil;
    The second position sensor is configured to generate a first control command for the first drive circuit based on the first rotational position signal output by the first position sensor. A control circuit configured to generate a second control command for the second drive circuit based on the output second rotational position signal.
    The electric working machine according to claim 1.
  5.  前記制御回路は、
     前記第1の回転位置信号を用いて、前記第1のコイルに発生する誘起電圧のゼロクロスの中央となる時点に基づいた第1の期間において前記第1のコイルに前記電力を供給するように、前記第1の制御指令を生成するように構成され、
     前記第2の回転位置信号を用いて、前記第2のコイルに発生する誘起電圧のゼロクロスの中央となる時点に基づいた第2の期間において前記第2のコイルに前記電力を供給するように、前記第2の制御指令を生成するように構成されている、
     請求項3又は4に記載の電動作業機。
    The control circuit is
    The first rotational position signal is used to supply the electric power to the first coil in a first period based on a time point at which the induced voltage generated in the first coil is at the center of the zero crossing, Configured to generate the first control command,
    The second rotational position signal is used to supply the electric power to the second coil during a second period based on a time point at which the induced voltage generated in the second coil is at the center of the zero crossing, Is configured to generate the second control command,
    The electric working machine according to claim 3.
  6.  前記ブラシレスモータによって発生した動力によって駆動されるように構成された最終出力部を備える、
     請求項1~5のいずれか1項に記載の電動作業機。
    A final output configured to be driven by the power generated by the brushless motor,
    The electric working machine according to any one of claims 1 to 5.
  7.  前記ブラシレスモータの回転軸と前記最終出力部との間に設けられており、前記回転軸の回転を減速して前記最終出力部に伝達するように構成された減速機を備える、
     請求項6に記載の電動作業機。
    A brushless motor is provided between the rotary shaft and the final output unit, and includes a speed reducer configured to reduce the rotation of the rotary shaft and transmit the rotation to the final output unit.
    The electric working machine according to claim 6.
  8.  電動作業機であって、
     駆動源としてブラシレスモータを備え、
     前記ブラシレスモータは、
     12個のスロットと、12個のコイルと、を有するステータと、
     10個の永久磁石を有するロータと、
     前記ブラシレスモータに適用される電源の電力を前記12個のコイルに供給するための2個の駆動回路と、を備える、
     電動作業機。
    An electric work machine,
    Equipped with a brushless motor as a drive source,
    The brushless motor is
    A stator having 12 slots and 12 coils;
    A rotor having 10 permanent magnets,
    Two driving circuits for supplying electric power of a power source applied to the brushless motor to the twelve coils.
    Electric work machine.
PCT/JP2019/041363 2018-10-23 2019-10-21 Electric working machine WO2020085322A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-199246 2018-10-23
JP2018199246A JP2020068570A (en) 2018-10-23 2018-10-23 Electric working machine

Publications (1)

Publication Number Publication Date
WO2020085322A1 true WO2020085322A1 (en) 2020-04-30

Family

ID=70330423

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/041363 WO2020085322A1 (en) 2018-10-23 2019-10-21 Electric working machine

Country Status (2)

Country Link
JP (1) JP2020068570A (en)
WO (1) WO2020085322A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230006516A1 (en) * 2021-06-30 2023-01-05 Makita Corporation Electric work machine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7400648B2 (en) * 2020-07-14 2023-12-19 株式会社デンソー rotating electric machine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008271643A (en) * 2007-04-17 2008-11-06 Honda Motor Co Ltd Motor controller
JP2015076999A (en) * 2013-10-09 2015-04-20 株式会社デンソー Multi-phase rotary machine
JP2016220516A (en) * 2015-05-20 2016-12-22 株式会社デンソー Controller of rotary electric machine
WO2017090514A1 (en) * 2015-11-27 2017-06-01 日立オートモティブシステムズエンジニアリング株式会社 Dynamo-electric machine and dynamo-electric machine system
JP2018062053A (en) * 2016-10-07 2018-04-19 株式会社マキタ Power tool

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008271643A (en) * 2007-04-17 2008-11-06 Honda Motor Co Ltd Motor controller
JP2015076999A (en) * 2013-10-09 2015-04-20 株式会社デンソー Multi-phase rotary machine
JP2016220516A (en) * 2015-05-20 2016-12-22 株式会社デンソー Controller of rotary electric machine
WO2017090514A1 (en) * 2015-11-27 2017-06-01 日立オートモティブシステムズエンジニアリング株式会社 Dynamo-electric machine and dynamo-electric machine system
JP2018062053A (en) * 2016-10-07 2018-04-19 株式会社マキタ Power tool

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230006516A1 (en) * 2021-06-30 2023-01-05 Makita Corporation Electric work machine
US12095312B2 (en) * 2021-06-30 2024-09-17 Makita Corporation Electric work machine

Also Published As

Publication number Publication date
JP2020068570A (en) 2020-04-30

Similar Documents

Publication Publication Date Title
US11374462B2 (en) Brushless motor for a power tool
US20220048176A1 (en) Electric working machine
US20130264987A1 (en) Electric power tool
JP5743085B2 (en) Electric tool
US11418094B2 (en) Electric tool
US20100026104A1 (en) Short stroke linear motor
US11052530B2 (en) Electric work machine
CN113785478A (en) System and method for controlling a multi-channel motor
WO2009145205A1 (en) Electric power tool
JP6315250B2 (en) Electric tool
WO2020085322A1 (en) Electric working machine
JP6439382B2 (en) Power working machine
JP2019047605A (en) Electrical device
CN109075633A (en) motor and electric power steering apparatus
CN110022100A (en) Single-phase DC brushless motor and its control equipment and control method
JP2016087703A (en) Power work machine
JP2012228136A (en) Brushless motor, air compressor with brushless motor, and electric power tool with brushless motor
EP2675057A2 (en) Cross-interlocked switch type DC electric machine having auxiliary excitation winding and conduction ring and brush
TWI556569B (en) Brushless DC Motor Speed ​​Control System
JP6088299B2 (en) Work machines and generators
JP7210619B2 (en) Brushless DC electric motor and related control method
WO2021015183A1 (en) Power generator motor for internal combustion engine
TWM501045U (en) Speed control device of brushless direct current motor
US9419547B2 (en) Switch type DC electric machine having auxiliary excitation winding and conduction ring and brush
JP2021044940A (en) Electric work machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19875337

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19875337

Country of ref document: EP

Kind code of ref document: A1