WO2020085137A1 - Layered body, and layered body manufacturing method - Google Patents

Layered body, and layered body manufacturing method Download PDF

Info

Publication number
WO2020085137A1
WO2020085137A1 PCT/JP2019/040405 JP2019040405W WO2020085137A1 WO 2020085137 A1 WO2020085137 A1 WO 2020085137A1 JP 2019040405 W JP2019040405 W JP 2019040405W WO 2020085137 A1 WO2020085137 A1 WO 2020085137A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
metal
trench
plating layer
metal plating
Prior art date
Application number
PCT/JP2019/040405
Other languages
French (fr)
Japanese (ja)
Inventor
聡健 古谷
白髪 潤
深澤 憲正
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to JP2020552922A priority Critical patent/JP6892021B2/en
Publication of WO2020085137A1 publication Critical patent/WO2020085137A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/30Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer formed with recesses or projections, e.g. hollows, grooves, protuberances, ribs
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/02Electroplating of selected surface areas
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/54Electroplating of non-metallic surfaces
    • C25D5/56Electroplating of non-metallic surfaces of plastics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body

Definitions

  • the present invention relates to a laminate and a method for manufacturing the laminate.
  • Non-Patent Document 1 a trench pattern is formed on a high-resolution photosensitive material, a seed layer is formed on the obtained pattern by sputtering, and then electrolytic plating is performed to form a wiring layer. It is disclosed.
  • the present invention has been made in view of the above-described problems, and an object thereof is to provide a laminated body in which a metal layer is formed in a trench, which can be manufactured by a simple method without using large-scale vacuum equipment. . Moreover, this invention is providing the manufacturing method of the said laminated body.
  • the laminate according to the present invention An insulating layer (A) having a surface in which a trench is formed, A metal particle layer (B) laminated in the trench, It has a metal plating layer (C) laminated in the trench and on the metal particle layer (B).
  • a trench formed in an insulating layer (A) is coated with a dispersion liquid (b) containing metal particles to form a metal particle layer (B), and then a plating treatment is performed. And forming a metal plating layer (C) on the metal particle layer (B).
  • the laminated body according to the present invention can be manufactured by a simple method without using a large vacuum facility for forming the metal layer (metal plating layer) in the trench.
  • the method for manufacturing a laminate A step (1) of preparing an insulating layer (A) having a surface in which a trench is formed, A step (2) of applying a dispersion liquid (b) containing metal particles to the trench to form a metal particle layer (B), and The method is characterized by including a step (3) of performing a plating treatment to form a metal plating layer (C) in the trench and on the metal particle layer (B).
  • the dispersion liquid (b) containing metal particles is applied to the trench to form the metal particle layer (B), and then the metal that is the metal layer is plated. Since the plating layer (C) is formed, it can be manufactured by a simple method without using a large-scale vacuum facility for forming the metal layer (metal plating layer) in the trench. Further, since the metal particle layer (B) is formed by applying the dispersion liquid (b) containing metal particles to the trench, the metal particle layer (having a relatively uniform thickness) is formed on both the bottom surface and the side wall of the trench. B) can be formed. As a result, a uniform metal plating layer (C) can be formed in the trench.
  • the present invention it is possible to provide a laminate in which a metal layer is formed in a trench, which can be manufactured by a simple method without using a large-scale vacuum facility or the like. Moreover, the manufacturing method of the said laminated body can be provided.
  • the laminated body according to the present invention includes an insulating layer (A) having a surface in which a trench is formed, a metal particle layer (B) laminated in the trench, and in the trench and on the metal particle layer (B). It has a metal plating layer (C) laminated.
  • a trench means a line-shaped groove formed on one surface side and not penetrating to the other surface.
  • a through hole for example, a via hole penetrating from one surface side to the other surface does not correspond to a trench. That is, the laminated body having the through hole but not the trench does not correspond to the laminated body according to the present invention.
  • the laminated body according to the present invention may include the through holes and the like in addition to the trench.
  • the metal plating layer (C) may be formed in at least some of the trenches, and the metal plating layer (C) may not be formed in all the trenches. Further, in the laminated body according to the present invention, the metal plating layer (C) may be formed in all the trenches.
  • the upper surface of the metal plating layer (C) may be flush with the upper surface of the insulating layer (A), or may be higher than the upper surface of the insulating layer (A). It may be below the upper surface of (A). That is, the metal plating layer (C) may be formed in the entire trench, or may be formed only in a part of the trench. However, from the viewpoint of use as wiring, the upper surface of the metal plating layer (C) is preferably flush with the surface of the insulating layer (A) (see, for example, FIG. 1).
  • the laminated body according to the present invention may have a plurality of trenches, and may have a location where the plurality of trenches are arranged in parallel (see, for example, FIG. 1).
  • FIG. 1 a specific example will be described.
  • the laminate has a base material, an insulating layer (A), a primer layer (D), a metal particle layer (B), a barrier metal plating layer (E), and a metal.
  • the case of including the plating layer (C) will be described. If the laminate according to the present invention has at least the insulating layer (A), the metal particle layer (B), and the metal plating layer (C). Good.
  • FIG. 1 is a schematic sectional view of a laminate according to an embodiment of the present invention.
  • the laminated body 10 includes a base material 12, an insulating layer 14, a primer layer 16, a metal particle layer 18, a barrier metal plating layer 20, and a metal plating layer 22.
  • the substrate 12 is not particularly limited, but is preferably a substrate that serves as a support when forming the insulating layer 14, and examples thereof include a silicon wafer and a chip.
  • the base material 12 may have flexibility.
  • a trench 15 is formed on the upper surface 14a of the insulating layer 14.
  • a primer layer 16 is formed on the bottom surface 15 a of the trench 15 and the sidewall 15 b of the trench 15. The thickness of the primer layer 16 on the bottom surface 15a and the thickness of the primer layer 16 on the side wall 15b are substantially the same.
  • a metal particle layer 18 is formed on the primer layer 16 along the primer layer 16.
  • the thickness of the metal particle layer 18 on the bottom surface 15a and the thickness of the metal particle layer 18 on the side wall 15b are substantially the same.
  • a barrier metal plating layer 20 is formed on the metal particle layer 18 along the metal particle layer 18.
  • the thickness of the barrier metal plating layer 20 on the bottom surface 15a and the thickness of the barrier metal plating layer 20 on the side wall 15b are substantially the same.
  • a metal plating layer 22 is formed on the barrier metal plating layer 20 so as to fill the inside of the trench 15.
  • the upper surface of the metal plating layer 22 is flush with the upper surface 14 a of the insulating layer 14.
  • the insulating layer 14 corresponds to the insulating layer (A) of the present invention.
  • the primer layer 16 corresponds to the primer layer (D) of the present invention.
  • the metal particle layer 18 corresponds to the metal particle layer (B) of the present invention.
  • the barrier metal plating layer 20 corresponds to the barrier metal plating layer (E) of the present invention.
  • the metal plating layer 22 corresponds to the metal plating layer (C) of the present invention.
  • the size of the trench 15 can be appropriately set according to the application of the laminated body. For example, from the viewpoint of highly integrating the plurality of trenches 15 (metal plating layer 22), it is preferable that the trenches 15 are small within a range that can be used as wiring. On the other hand, when it is required to withstand high voltage and high current, a certain size is required. From the above viewpoint, the depth d of the trench 15 is preferably 0.5 ⁇ m or more and 1000 ⁇ m or less, more preferably 0.5 ⁇ m or more and 500 ⁇ m or less, and further preferably 0.5 ⁇ m or more and 100 ⁇ m or less. The width w of the trench 15 is preferably 0.5 ⁇ m or more and 1000 ⁇ m or less, more preferably 0.5 ⁇ m or more and 500 ⁇ m or less, and further preferably 0.5 ⁇ m or more and 100 ⁇ m or less.
  • the distance a between the plurality of trenches 15 is not particularly limited, but is preferably 0.5 ⁇ m or more and 1000 ⁇ m or less, more preferably 0.5 ⁇ m or more and 500 ⁇ m or less, and 0 It is more preferably 0.5 ⁇ m or more and 100 ⁇ m or less.
  • the barrier metal plating layer 20 can prevent the metal of the metal plating layer 22 from diffusing into the insulating layer 14. This is also clear from the examples.
  • the distance a between the plurality of trenches 15 is preferably 0.5 ⁇ m or more and 1000 ⁇ m or less, more preferably 0.5 ⁇ m or more and 500 ⁇ m or less, and further preferably 0.5 ⁇ m or more and 100 ⁇ m or less.
  • the width w of the trench 15 is preferably 0.5 ⁇ m or more and 1000 ⁇ m or less, more preferably 0.5 ⁇ m or more and 500 ⁇ m or less, and further preferably 0.5 ⁇ m or more and 100 ⁇ m or less.
  • the distance a between the trenches 15 refers to the distance from the side wall 15a of one trench 15 to the side wall 15a of the other trench 15 that is the closest.
  • the use of the laminated body 10 is not particularly limited, but for example, it can be used as a wiring layer having the metal plating layer 22 as a wiring.
  • the dispersion liquid (b) containing the metal particles is applied to the trench formed in the insulating layer (A) to form the metal particle layer (B), and then the plating treatment is performed. And forming a metal plating layer (C) on the metal particle layer (B). That is, the stacked body 10 does not require large-scale vacuum equipment for forming the metal layer (metal plating layer (C)) in the trench. Further, it is not necessary to perform the reverse sputtering process before forming the metal layer. Further, since the barrier metal plating layer 20 is provided, it is possible to prevent metal diffusion between the trenches 15 and to prevent a short circuit between the trenches 15 even if the distance a is narrowed. This is also clear from the examples.
  • the insulating layer (A) is made of insulating resin and has a surface in which a trench is formed.
  • the insulating resin is not particularly limited as long as it has electric insulation, and examples thereof include polyimide, polyamide imide, polyamide, polyethylene terephthalate, polyethylene naphthalate, polycarbonate, acrylonitrile-butadiene-styrene (ABS) resin, ABS.
  • Alloys of styrene and polycarbonate, acrylic resins such as poly (meth) acrylate, polytetrafluoroethylene, polyvinylidene fluoride, polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, polyethylene, polypropylene, polyurethane, liquid crystal polymer (LCP) , Polyetheretherketone (PEEK), polyphenylene sulfide (PPS), polyphenylene sulfone (PPSU), epoxy resin, cellulose nanofiber, etc. That.
  • PEEK Polyetheretherketone
  • PPS polyphenylene sulfide
  • PPSU polyphenylene sulfone
  • the insulating resin may be a photosensitive resin, for example, polybenzoxazole precursor resin, polybenzoxazole resin, polyamide resin, polyimide precursor resin, polyimide resin, novolac resin, resole resin, hydroxystyrene resin. Etc. These photosensitive resins may be positive type or negative type.
  • the patterned insulating layer (A) can be formed by irradiating the photosensitive resin with pattern light. Furthermore, since the insulating layer (A) can be made tougher, it is preferable to heat cure after patterning.
  • the insulating layer (A) it is preferable to use a layer having a thickness of about 1 ⁇ m or more and 200 ⁇ m or less from the viewpoint of realizing weight reduction and thinning of the final product obtained by using the laminate.
  • Primer layer (D) A primer layer (D) may be provided on the bottom surface of the trench and the sidewall of the trench.
  • the primer layer (D) is a layer provided for the purpose of enhancing the adhesiveness between the insulating layer (A) and the metal particle layer (B).
  • Examples of the material forming the primer layer (D) include urethane resin, acrylic resin, core-shell type composite resin having urethane resin as a shell and acrylic resin as a core, epoxy resin, imide resin, amide resin, melamine resin. , A phenol resin, a urea formaldehyde resin, a blocked isocyanate obtained by reacting a polyisocyanate with a blocking agent such as phenol, polyvinyl alcohol, polyvinyl pyrrolidone, and the like.
  • the core-shell type composite resin having a urethane resin as a shell and an acrylic resin as a core is obtained, for example, by polymerizing an acrylic monomer in the presence of the urethane resin. These resins may be used alone or in combination of two or more.
  • the primer layer (D) can be formed by applying and drying the primer composition (d) for forming the primer layer (D).
  • primer composition (d) a composition containing the material and a solvent can be used.
  • solvent various organic solvents and aqueous media can be used.
  • the primer layer (D) varies depending on the use of the laminate, etc., it preferably has a thickness of 0.01 ⁇ m or more and 300 ⁇ m or less, and a thickness of 0.01 ⁇ m or more and 20 ⁇ m or less. More preferable.
  • Metal particle layer (B) The metal particle layer (B) is laminated directly on the insulating layer (A) or on the insulating layer (A) via the primer layer (D).
  • the metal forming the metal particle layer (B) include copper, silver, gold, nickel, palladium, platinum, cobalt and the like.
  • silver is preferable because it is difficult to oxidize the particle surface, has a high activity as an electroless plating catalyst, is a metal having high conductivity, and easily forms the metal plating layer (C).
  • a barrier metal plating layer (E) may be provided on the metal particle layer (B).
  • the barrier metal plating layer (E) is a layer provided for the purpose of preventing the metal of the metal plating layer (C) from diffusing.
  • Examples of the metal forming the barrier metal plating layer (E) include nickel, nickel-molybdenum, nickel-molybdenum-boron, nickel-molybdenum-phosphorus, chromium, cobalt, cobalt-phosphorus, molybdenum, cobalt-tungsten-phosphorus, cobalt. -Tungsten-boron and the like.
  • Metal plating layer (C) The metal plating layer (C) is laminated directly on the metal particle layer (B) or on the metal particle layer (B) via the barrier metal plating layer (E).
  • the metal forming the metal plating layer (C) include copper, gold, silver, nickel, chromium, cobalt and tin. Among these, when the metal plating layer (C) is used for wiring, copper is preferable because it is relatively inexpensive and has high conductivity.
  • the combination of the metal particle layer (B) and the primer layer (D) includes a compound (b1) having a basic nitrogen atom-containing group as the metal particle layer (B). And a layer containing the metal particles (b2) and a layer containing the compound (d1) having a functional group [X] as the primer layer (D).
  • the group [X] reacts with each other to form a bond, and the adhesiveness between the insulating layer (A) and the metal plating layer (C) can be further enhanced.
  • Examples of the basic nitrogen atom-containing group contained in the compound (b1) include imino group, primary amino group, secondary amino group and the like.
  • one of the basic nitrogen atom-containing groups is a primer when the metal particle layer (B) is formed. Participating in binding to the functional group [X] of the compound (d1) contained in the layer (D), and the other contributing to interaction with the metal particles (b2) such as silver in the metal particle layer (B). It is preferable to improve the adhesion between the metal particle layer (B) and the primer layer (D).
  • Examples of the metal particles (b2) include copper, silver, gold, nickel, palladium, platinum, cobalt and the like. Further, among these, copper, silver and gold are preferable because they have high conductivity, and further, silver is relatively inexpensive, the particle surface is not easily oxidized, and the activity as an electroless plating catalyst is high. To more preferred.
  • Examples of the functional group [X] include keto group, epoxy group, carboxylic acid group, carboxylic acid anhydride group, alkylolamide group, isocyanate group, vinyl group, alkyl halide group, acryloyl group, cyanamide group, urea bond, acyl halide. Groups and the like.
  • the keto group refers to a carbonyl group derived from a ketone.
  • the isocyanate group may be blocked with a blocking agent from the viewpoint of preventing the reaction at room temperature.
  • the functional group [X] a keto group, from the viewpoint of preventing the formation of by-products such as halogen, acid and amine when reacted with the basic nitrogen atom-containing group of the compound (b1), It is preferable to use one or more selected from the group consisting of an epoxy group, an acid group, an alkylolamide group and an isocyanate group.
  • a resin having the functional group [X] can be used as the compound (d1) having the functional group [X] as the compound (d1) having the functional group [X].
  • the resin having the functional group [X] include a urethane resin having the functional group [X], a vinyl resin having the functional group [X], and a urethane-vinyl having the functional group [X].
  • Composite resin, epoxy resin having the functional group [X], imide resin having the functional group [X], amide resin having the functional group [X], melamine resin having the functional group [X], the functional group A phenol resin having [X], polyvinyl alcohol having the functional group [X], polyvinylpyrrolidone having the functional group [X], and the like can be used.
  • the primer layer (D) is present in a coating film formed by applying the primer composition (d) containing the compound (d1) having the functional group [X] to the surface of the support, and drying the composition.
  • the functional group [X] of the compound (d1) reacts with the basic nitrogen atom-containing group of the compound (b1) contained in the metal particle layer (B) to form a bond.
  • the primer layer (D) When the primer layer (D) is in contact with the surface of the dispersion (b) containing the compound (b1) having the basic nitrogen atom-containing group and the metal particles (b2), the primer layer (D) may be dried, heated, or the like. By passing through the steps, a basic nitrogen atom-containing group contained in the compound (b1) is reacted with a functional group [X] contained in the compound (d1) contained in the coating film to form a bond. A laminated structure composed of the metal particle layer (B) and the primer layer (D) is formed.
  • the primer layer (D) is formed by applying the primer composition (d) containing the compound (d1) having the functional group [X] and drying it.
  • the compound (d1) contained in the coating film has a functional group [X] that reacts with the basic nitrogen atom-containing group of the compound (b1) contained in the metal particle layer (B).
  • the combination of the metal particle layer (B) and the primer layer (D) is disclosed in more detail, for example, in International Publication No. 2013/146195.
  • FIG. 1 a method for manufacturing the laminated body 10 (see FIG. 1) according to the present embodiment will be described.
  • 2 to 5 are schematic cross-sectional views for explaining the method for manufacturing the laminate according to the present embodiment.
  • the insulating layer 14 having the surface 14a in which the trench 15 is formed is prepared (step (1)).
  • the insulating layer 14 to be prepared may have a through hole or the like formed in addition to the trench 15.
  • the insulating layer 14 may be formed on the base material 12 shown in FIG. 2 or may be the insulating layer 14 alone.
  • the insulating layer 14 in which the trench 15 is formed can be obtained by preparing an insulating layer in which no trench is formed and forming a trench in this insulating layer.
  • a method of forming the trench in the insulating layer in which the trench is not formed for example, a nanoimprint method (also referred to as “embossing method”) or a screen printing method can be adopted.
  • a photosensitive resin is used as the material of the insulating layer (A)
  • the trench is formed by exposing and developing the uncured layer before curing the photosensitive resin through a desired pattern mask, for example. It can be obtained by forming an uncured layer in which a trench is formed and further thermally curing the uncured layer.
  • the photosensitive resin may be positive-type photosensitive or negative-type photosensitive.
  • the primer composition (d) is applied to the insulating layer 14, and the solvent contained in the primer composition (d) is removed by drying or the like, whereby the primer layer 16 (see FIG. 3). Are formed (step (1-1)).
  • the insulating layer 14 is formed along the bottom surface 15a and the side wall 15b of the trench 15.
  • the primer layer 16 applies the primer composition (d) to the insulating layer 14 and, if necessary, drying or the like.
  • the primer layer 16 is provided, and the dispersion liquid (b) containing the compound (b1) having the basic nitrogen atom-containing group and the metal particles (b2) is applied to the surface of the coating film, followed by baking. It can be manufactured by going through a heating step such as.
  • Examples of the method of applying the primer composition (d) to the surface of the insulating layer 14 include a gravure method, an offset method, a flexographic method, a pad printing method, a gravure offset method, a letterpress method, a reverse printing method, a screen method, and a micro method.
  • the dispersion liquid (b) containing metal particles is applied to the trench 15 to form the metal particle layer 18 (see FIG. 4) (step (2)).
  • the metal particle layer 18 is formed along the primer layer 16.
  • the metal particle layer 18 is formed along the insulating layer 14 (the bottom surface 15a and the side wall 15b of the trench 15).
  • the shape of the metal particles used for forming the metal particle layer 18 is preferably particulate or fibrous.
  • the size of the metal particles is preferably nano size. Specifically, when the metal particles are in the form of particles, a fine pattern can be formed and the resistance value can be further reduced. Therefore, the average particle diameter is preferably 1 nm or more and 100 nm or less, and more preferably 1 nm or more and 50 nm or less. preferable.
  • the "average particle diameter” is a volume average value measured by a dynamic light scattering method after diluting the metal particles with a good dispersion solvent. "Nanotrack UPA-150" manufactured by Microtrac can be used for this measurement.
  • the fiber diameter is preferably 5 nm or more and 100 nm or less, more preferably 5 nm or more and 50 nm or less.
  • the fiber length is preferably 0.1 ⁇ m or more and 100 ⁇ m or less, more preferably 0.1 ⁇ m or more and 30 ⁇ m or less.
  • the content of the metal particles in the dispersion liquid (b) is preferably 1% by mass or more and 90% by mass or less, more preferably 1% by mass or more and 60% by mass or less, and further preferably 1% by mass or more and 10% by mass or less. preferable.
  • the components to be added to the dispersion liquid (b) include a dispersant and a solvent for dispersing the metal particles in a solvent, and, if necessary, a surfactant, a leveling agent, a viscosity modifier, and Membrane aids, defoamers, preservatives and the like can be mentioned.
  • a low molecular weight or high molecular weight dispersant is preferably used to disperse the metal particles in the solvent.
  • the dispersant include dodecanethiol, 1-octanethiol, triphenylphosphine, dodecylamine, polyethylene glycol, polyvinylpyrrolidone, polyethyleneimine, polyvinylpyrrolidone; fatty acids such as myristic acid, octanoic acid, stearic acid; cholic acid, Examples thereof include polycyclic hydrocarbon compounds having a carboxyl group such as glycyrudic acid and abintic acid.
  • a polymer dispersant is preferable because it can improve the adhesion between the metal particle layer (B) and the metal plating layer (C).
  • the polymer dispersant include polyethyleneimine and polypropyleneimine.
  • examples thereof include polyalkyleneimine, a compound obtained by adding polyoxyalkylene to the above polyalkyleneimine, a urethane resin, an acrylic resin, a compound containing a phosphoric acid group in the urethane resin or the acrylic resin, and the like.
  • the amount of the dispersant used to disperse the metal particles is preferably 0.01 parts by mass or more and 50 parts by mass or less, and 0.01 parts by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the metal particles. Is more preferable.
  • an aqueous medium or an organic solvent can be used as the solvent used in the dispersion liquid (b).
  • the aqueous medium include distilled water, ion-exchanged water, pure water, and ultrapure water.
  • the organic solvent include alcohol compounds, ether compounds, ester compounds and ketone compounds.
  • Examples of the alcohol compound include methanol, ethanol, n-propanol, isopropyl alcohol, n-butanol, isobutyl alcohol, sec-butanol, tert-butanol, heptanol, hexanol, octanol, nonanol, decanol, undecanol, dodecanol, tridecanol, Tetradecanol, pentadecanol, stearyl alcohol, allyl alcohol, cyclohexanol, terpineol, terpineol, dihydroterpineol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monoethyl ether, diethylene glycol monomethyl ether, diethylene glycol Mo Butyl ether, tetraethylene glycol monobutyl ether, propylene glycol monomethyl ether, di
  • ethylene glycol, diethylene glycol, 1,3-butanediol, isoprene glycol and the like can be used, if necessary, in addition to the metal particles and the solvent.
  • a general surfactant can be used, and examples thereof include di-2-ethylhexylsulfosuccinate, dodecylbenzenesulfonate, alkyldiphenyletherdisulfonate, alkylnaphthalenesulfonate, and hexametaphosphoric acid. Salt etc. are mentioned.
  • leveling agent a general leveling agent can be used, and examples thereof include silicone compounds, acetylene diol compounds, and fluorine compounds.
  • a general thickener can be used as the viscosity modifier.
  • an acrylic polymer or synthetic rubber latex that can be thickened by adjusting the alkalinity, or a urethane that can be thickened by association of molecules.
  • examples thereof include resins, hydroxyethyl cellulose, carboxymethyl cellulose, methyl cellulose, polyvinyl alcohol, water-added castor oil, amide wax, polyethylene oxide, metal soap, dibenzylidene sorbitol and the like.
  • a general film forming aid can be used, and examples thereof include an anionic surfactant (such as dioctyl sulfosuccinic acid ester soda salt) and a hydrophobic nonionic surfactant (sorbitan monooleate). Etc.), polyether modified siloxane, silicone oil and the like.
  • anionic surfactant such as dioctyl sulfosuccinic acid ester soda salt
  • sorbitan monooleate sorbitan monooleate
  • Etc. polyether modified siloxane
  • silicone oil and the like.
  • a general antifoaming agent can be used, and examples thereof include a silicone type antifoaming agent, a nonionic surfactant, a polyether, a higher alcohol, and a polymer type surfactant.
  • preservative it is possible to use a general preservative, for example, isothiazoline preservatives, triazine preservatives, imidazole preservatives, pyridine preservatives, azole preservatives, pyrithione preservatives and the like. Can be mentioned.
  • the viscosity of the dispersion liquid (b) is preferably 0.1 mPa ⁇ s or more and 500,000 mPa ⁇ s or less, and 0.2 mPa ⁇ s or more and 10,000 mPa ⁇ s or more. s or less is more preferable.
  • its viscosity is preferably 5 mPa ⁇ s or more and 20 mPa ⁇ s or less.
  • Examples of the method of applying the dispersion liquid (b) on the primer layer 16 include a gravure method, an offset method, a flexographic method, a pad printing method, a gravure offset method, a letterpress method, a reverse printing method, a screen method, and a microcontact.
  • an inkjet printer As the inkjet printing method, what is generally called an inkjet printer can be used. Specific examples thereof include Konica Minolta EB100, XY100 (manufactured by Konica Minolta IJ Co., Ltd.), Dymatics Material Printer DMP-3000, Dymatics Material Printer DMP-2831 (Fuji Film Co., Ltd.) and the like.
  • a reverse printing method a letterpress reverse printing method and an intaglio reverse printing method are known, and for example, the dispersion liquid (b) is applied to the surface of various blankets to form a plate in which a non-image area is projected.
  • the pattern is formed on the surface of the blanket or the like, and then the pattern is supported by the support. Examples thereof include a method of transferring onto the body (A) (surface).
  • Mass per unit area of the metal particle layer 18 is preferably from 1 mg / m 2 or more 30,000 / m 2 or less, 1 mg / m 2 or more 5,000 mg / m 2 or less.
  • the thickness of the metal particle layer 18 can be adjusted by controlling the treatment time, the current density, the usage amount of the plating additive, and the like in the plating treatment step when forming the metal plating layer 22.
  • the metal particle layer 18 is subjected to a barrier metal plating treatment, if necessary, to form a barrier metal plating layer 20 (see FIG. 5) (step (2-1)). Specifically, the barrier metal plating layer 20 is formed along the bottom surface and the side wall 1 of the metal particle layer 18.
  • the barrier metal plating layer 20 can be formed by electroless plating or electrolytic plating.
  • a metal contained in the electroless plating solution is deposited by bringing the metal particle layer 18 into contact with an electroless plating solution such as nickel, chromium, or cobalt, and is formed of a barrier metal metal film. This is a method of forming an electroless plating layer (coating).
  • hypophosphorous acid sodium hypophosphite, or amine borane as a reducing agent for the barrier metal plating treatment
  • an alloy film containing phosphorus and boron in the metal such as nickel, chromium and cobalt can be obtained.
  • an electroless plating solution in which a salt such as tungsten, molybdenum, rhenium, or ruthenium is further added to the electroless plating solution of the metal, the barrier metal plating layer 20 in which these metals are co-deposited is formed. be able to.
  • the barrier metal plating treatment may be electrolytic plating treatment as described above.
  • electrolytic plating treatment electrolytic plating of nickel, chromium, cobalt or the like can be used.
  • a plating process is performed to form a metal plating layer 22 (see FIG. 1) in the trench 15 and on the metal particle layer 18 so as to fill the trench 15 (step (3)).
  • the barrier metal plating layer 20 is formed, the barrier metal plating layer 20 is plated to form the metal plating layer 22.
  • the metal particle layer 18 is plated to form the metal plating layer 22.
  • a method of forming the metal plating layer 22 a method of forming by a plating process is preferable.
  • the plating treatment include wet plating methods such as an electrolytic plating method and an electroless plating method that can easily form the metal plating layer 22. Also, these plating methods may be combined.
  • the metal plating layer 22 may be formed by performing electroless plating after performing electroless plating.
  • a metal such as copper contained in the electroless plating solution is deposited by bringing the electroless plating solution into contact with the metal particle layer 18 or the barrier metal plating layer 20.
  • This is a method of forming an electroless plating layer (coating) made of a coating.
  • Examples of the electroless plating solution include those containing a metal such as copper, silver, gold, nickel, chromium, cobalt and tin, a reducing agent, and a solvent such as an aqueous medium and an organic solvent.
  • a metal such as copper, silver, gold, nickel, chromium, cobalt and tin
  • a reducing agent such as an aqueous medium and an organic solvent.
  • a solvent such as an aqueous medium and an organic solvent.
  • reducing agent examples include dimethylaminoborane, hypophosphorous acid, sodium hypophosphite, hydrazine, formaldehyde, sodium borohydride, phenol and the like.
  • a monocarboxylic acid such as acetic acid and formic acid
  • a dicarboxylic acid compound such as malonic acid, succinic acid, adipic acid, maleic acid and fumaric acid
  • malic acid lactic acid, glycol Hydroxycarboxylic acid compounds such as acids, gluconic acid and citric acid
  • amino acid compounds such as glycine, alanine, iminodiacetic acid, arginine, aspartic acid and glutamic acid
  • iminodiacetic acid nitrilotriacetic acid, ethylenediaminediacetic acid, ethylenediaminetetraacetic acid, diethylenetriaminepentaacetic acid, etc.
  • an organic acid such as aminopolycarboxylic acid compound, or a soluble salt of these organic acids (sodium salt, potassium salt, ammonium salt, etc.), and a complexing agent such as amine compound such as ethylenediamine, diethylenetriamine, triethylenetetramine, etc. It can be used for.
  • the electroless plating solution is preferably used at 20 ° C or higher and 98 ° C or lower.
  • the surface of the metal particle layer 18, the electroless plating layer (coating) formed by the electroless treatment, or the barrier metal plating layer 20 is energized in a state of being in contact with an electroplating solution.
  • a layer in which a metal such as copper contained in the electrolytic plating solution is installed on the cathode (metal particle layer 18, electroless plating layer (coating) formed by the electroless treatment, or barrier metal plating layer) 20) is deposited on the surface to form an electrolytic plating layer (metal coating).
  • the electrolytic plating solution examples include electrolytic plating solutions of copper, silver, gold, nickel, chromium, cobalt, tin and the like.
  • the metal plating layer 22 is used as a conductive layer, silver, copper, and gold, which are highly conductive metals, are preferable as the metal species of the electrolytic plating solution, and relatively inexpensive copper is more preferable.
  • the metal plating layer 22 is used as the conductive layer, it is preferable that the plating metal has a high purity and is free of eutectoid substances.
  • the electrolytic plating solution is preferably used at 20 ° C or higher and 98 ° C or lower.
  • an electroless plating method and an electrolytic plating method can be appropriately selected or combined in order to preferably form the metal plating layer 22 in the trench 15.
  • the metal plating layer 22 is formed, the metal plating layer is formed on the entire surface of the insulating layer (A). In this case, if necessary, the metal plating layer formed on the surface other than the portion where the trench is formed may be removed to expose the insulating layer (A).
  • a conventionally known method can be adopted, and examples thereof include chemical mechanical polishing (CMP).
  • Metal particles are obtained by dispersing silver particles having an average particle diameter of 30 nm using a compound obtained by adding polyoxyethylene to polyethyleneimine as a dispersant in a mixed solvent of 30 parts by mass of ethylene glycol and 70 parts by mass of ion-exchanged water. And a polymer dispersant having a basic nitrogen atom-containing group as a reactive functional group were prepared. Next, a dispersion liquid (b) of metal particles was prepared by adding ion-exchanged water, ethanol and a surfactant to the obtained metal particle dispersion liquid and adjusting the viscosity thereof to 10 mPa ⁇ s.
  • primer composition (d) containing resin for primer layer (D) 90 parts by mass of ethanol was stirred and mixed with 10 parts by mass of the resin for primer layer (D) obtained in the production of the resin for primer layer (D), and a fluid containing the resin for primer layer (D) (primer composition The product (d)) was obtained.
  • Example 1 A non-photosensitive polyimide precursor resin (“Semicofine SP-341” manufactured by Toray Industries, Inc.) was applied on a silicon wafer using a spin coater (“MS-A150” manufactured by Mikasa Co., Ltd.), and then applied on a hot plate. At 95 ° C. for 1 minute 30 seconds and at 125 ° C. for 1 minute 30 seconds to obtain an insulating layer having a thickness of 5 ⁇ m.
  • a positive photosensitive polyimide precursor resin (“Photo Nice LT6300” manufactured by Toray Industries, Inc.) was applied on the insulating layer using a spin coater (“MS-A150” manufactured by Mikasa Corporation), and then a hot plate was applied.
  • a coating film having a film thickness of 7 ⁇ m was obtained by heating and curing in the order of 30 ° C. for 30 minutes and 200 ° C. for 60 minutes.
  • the metal particle dispersion liquid (b) prepared above was dried as a metal particle layer by a spin coater (“MS-A150” manufactured by Mikasa Co., Ltd.). It was applied so that the average film thickness afterwards would be 30 nm. That is, the dispersion liquid (b) of metal particles was applied to the bottom surface and the side wall of the insulating layer (A) so that the average film thickness of the metal particle layer after drying was 30 nm. By heating at 80 ° C. for 30 minutes, a metal particle layer (B) was formed on the entire surface of the insulating layer (A).
  • MS-A150 manufactured by Mikasa Co., Ltd.
  • the metal particle layer (B) formed above is immersed in an electroless copper plating solution ("OIC Copper” manufactured by Okuno Chemical Industries Co., Ltd., pH 12.5) at 45 ° C for 12 minutes to perform electroless copper plating, A copper plating layer (film thickness 0.2 ⁇ m) was formed by electroless plating on the entire surface of the insulating layer (A). The copper plating layer formed by this electroless plating corresponds to the metal plating layer (C).
  • an electroless copper plating solution "OIC Copper” manufactured by Okuno Chemical Industries Co., Ltd., pH 12.5
  • a copper plating layer (film thickness 0.2 ⁇ m) was formed by electroless plating on the entire surface of the insulating layer (A).
  • the copper plating layer formed by this electroless plating corresponds to the metal plating layer (C).
  • a copper plating film was formed on the entire surface of the insulating layer (A) to fill the trenches with copper.
  • the electrolytic plating solution 70 g / L of copper sulfate, 200 g / L of sulfuric acid, 50 mg / L of chloride ion, and 5 ml / L of additive (“Top Lucina SF-M” manufactured by Okuno Chemical Industries Co., Ltd.) were used.
  • This copper plating layer (electrolytic plating layer) also corresponds to the metal plating layer (C).
  • the copper layer other than that filled in the trench was removed by subjecting the surface layer of the metal plating layer (C) to chemical mechanical polishing (CMP; Chemical Mechanical Polishing).
  • CMP chemical mechanical polishing
  • the CMP was performed using a polishing machine (“18GPAW” manufactured by Speed Fam Co., Ltd.) with a polyurethane independent foaming type polishing pad, a polishing pressure of 30 kPa, a platen rotation speed of 50 rpm, and a polishing agent of a colloidal silica solution.
  • Example 2 In the same manner as in Example 1, an insulating layer (A) having a surface in which a trench was formed was obtained.
  • the primer composition (d) containing the resin for the primer layer (D) was applied onto the insulating layer (A) by a spin coater (“MS-A150” manufactured by Mikasa Co., Ltd.), the primer composition was dried. It was applied so that the film thickness would be 100 nm. Then, it heated at 80 degreeC for 30 minute (s), and formed the primer layer (D) on the whole surface of the said insulating layer (A).
  • the inside of the trench is subjected to CMP in the same manner as in Example 1.
  • the copper layers other than the copper filled in were removed.
  • Example 3 Lamination by the same method as in Example 1 except that an electroless nickel-boron plating solution was used instead of the electroless copper plating solution used in Example 1 to form an electroless nickel-boron plating layer.
  • This electroless nickel-boron plating layer corresponds to the barrier metal plating layer (E). That is, in Example 3, the metal particle layer (B), the barrier metal plating layer (E), and the metal plating layer (C) were sequentially stacked on the insulating layer (A) having the surface where the trench was formed.
  • the electroless nickel-boron plating solution "Top Chemialoy 66-LF" manufactured by Okuno Chemical Industries Co., Ltd. is used and immersed at 65 ° C. for 2 minutes to form a nickel-boron plating layer having a thickness of 0.2 ⁇ m. did.
  • Example 4 Laminated body was manufactured in the same manner as in Example 2 except that the electroless nickel-boron plating solution was used in place of the electroless copper plating solution used in Example 2 to form the nickel-boron plating layer.
  • Got This nickel-boron plating layer corresponds to the barrier metal plating layer (E). That is, in Example 4, the primer layer (D), the metal particle layer (B), the barrier metal plating layer (E) and the metal plating layer (C) were formed on the insulating layer (A) having the surface where the trench was formed. A laminated body was obtained by sequentially laminating.
  • Example 5 Instead of the electroless nickel-boron plating solution used in Example 4, a part of silver in the metal particle layer (B) was replaced with palladium, and then the electroless nickel-phosphorus plating solution was used to form a nickel-phosphorus plating layer.
  • a laminate was obtained by the same method as in Example 4 except that the laminate was formed.
  • This nickel-phosphorus plating layer corresponds to the barrier metal plating layer (E). That is, in Example 5, the primer layer (D), the metal particle layer (B), the barrier metal plating layer (E), and the metal plating layer (C) were formed on the insulating layer (A) having the surface where the trench was formed.
  • a laminated body was obtained by sequentially laminating.
  • the method for the palladium substitution 3 parts by mass of palladium chloride and 17 parts by mass of 36 mass% hydrochloric acid are dissolved in 80 parts by mass of ion-exchanged water to prepare an aqueous solution containing palladium ions and an acid, and 45
  • the temperature is set to 0 ° C.
  • the laminate of the insulating layer (A), the primer layer (D), and the metal particle layer (B) is immersed in this palladium ion aqueous solution, and a part of silver of the metal particle layer (B) Substituted for palladium.
  • the electroless nickel-phosphorus plating solution “elf seed ES-500” manufactured by JCU Co., Ltd. was used and immersed at 40 ° C. for 10 minutes to form a nickel-phosphorus plating layer having a film thickness of 0.2 ⁇ m.
  • Example 6 A laminate was obtained in the same manner as in Example 5, except that an electroless cobalt plating solution was used instead of the electroless nickel-phosphorus plating solution used in Example 5 to form the cobalt plating layer. It was This cobalt plating layer corresponds to the barrier metal plating layer (E). That is, in Example 6, the primer layer (D), the metal particle layer (B), the barrier metal plating layer (E) and the metal plating layer (C) were formed on the insulating layer (A) having the surface where the trench was formed. A laminated body was obtained by sequentially laminating.
  • the electroless cobalt plating solution contains 2 parts by mass of cobalt sulfate, 6 parts by mass of citric acid, 5 parts by mass of tungstic acid, and 0.3 parts by mass of dimethylamine borane, and has a pH value of 9.
  • the liquid adjusted to 5 was used for immersion at 60 ° C. for 35 minutes to form a cobalt plating layer having a thickness of 0.2 ⁇ m.
  • Example 7 Instead of the polyimide precursor resin and the positive photosensitive polyimide precursor resin used in Example 2, it has a surface in which a trench having a line width of 5 ⁇ m, a line interval of 5 ⁇ m, a line length of 1,000 ⁇ m, and a depth of 5 ⁇ m is formed.
  • a laminate was obtained in the same manner as in Example 2 except that the aliphatic polycarbonate resin base material was used.
  • the aliphatic polycarbonate resin substrate a solution of polypropylene carbonate in diethylene glycol monoethyl ether acetate is applied on a silicon wafer by using a spin coater (“MS-A150” manufactured by Mikasa Co., Ltd.), and the hot plate is applied at 150 ° C.
  • MS-A150 spin coater
  • Example 7 a laminated body in which the primer layer (D), the metal particle layer (B), and the metal plating layer (C) were sequentially laminated on the insulating layer (A) having the surface where the trench was formed. Obtained.
  • Example 8 A laminate was prepared in the same manner as in Example 4 except that the aliphatic polycarbonate resin substrate was used instead of the polyimide precursor resin and the positive photosensitive polyimide precursor resin used in Example 4. Obtained. That is, in Example 8, the primer layer (D), the metal particle layer (B), the barrier metal plating layer (E) and the metal plating layer (C) were formed on the insulating layer (A) having the surface where the trench was formed. A laminated body was obtained by sequentially laminating.
  • Example 9 A laminate was prepared in the same manner as in Example 6 except that the aliphatic polycarbonate resin substrate was used instead of the polyimide precursor resin and the positive photosensitive polyimide precursor resin used in Example 6. Obtained. That is, in Example 9, the primer layer (D), the metal particle layer (B), the barrier metal plating layer (E), and the metal plating layer (C) were formed on the insulating layer (A) having the surface where the trench was formed. A laminated body was obtained by sequentially laminating.
  • Example 10 Using a spin coater (“MS-A150” manufactured by Mikasa Co., Ltd.) on a silicon wafer so that the film thickness after drying the polyimide precursor resin (“Semicofine, SP-341” manufactured by Toray Co., Ltd.) becomes 10 ⁇ m. Applied and dried.
  • the obtained coating film was set on the lower surface stage of a nanoimprint apparatus (“X300” manufactured by SCIVAX Co., Ltd.).
  • a mold made of quartz whose pattern surface was treated with fluorine was set on the upper surface stage of the above apparatus. After the inside of the apparatus was evacuated, the mold was pressure-bonded to the coating film at a pressure of 1.5 atm and heat-cured at 95 ° C.
  • an insulating layer (A) having a surface in which a trench having a line width of 5 ⁇ m, a line interval of 5 ⁇ m, a line length of 1000 ⁇ m, and a depth of 5 ⁇ m was formed.
  • a laminate was obtained by the same method as in Example 4 except that the insulating layer (A) was used instead of the polyimide precursor resin and the positive photosensitive polyimide precursor resin used in Example 4. It was That is, in Example 10, the primer layer (D), the metal particle layer (B), the barrier metal plating layer (E), and the metal plating layer (C) were formed on the insulating layer (A) having the surface where the trench was formed.
  • a laminated body was obtained by sequentially laminating.
  • Example 11 A 1 mm thick polycarbonate film (Lexan manufactured by Asahi Glass Co., Ltd.) was set on the lower surface stage of a nanoimprint apparatus (“X300” manufactured by SCIVAX Co., Ltd.). A mold made of quartz whose pattern surface was treated with fluorine was set on the upper surface stage of the above apparatus. After the inside of the apparatus was evacuated, the mold was pressed onto the polycarbonate film at 170 ° C. for 30 seconds under a pressure of 2.5 atm.
  • X300 manufactured by SCIVAX Co., Ltd.
  • an insulating layer (A) having a surface on which a trench having a line width of 5 ⁇ m, a line interval of 5 ⁇ m, a line length of 1000 ⁇ m, and a depth of 5 ⁇ m was formed.
  • a laminate was obtained by the same method as in Example 4 except that the insulating layer (A) was used instead of the polyimide precursor resin and the positive photosensitive polyimide precursor resin used in Example 4. It was That is, in Example 11, the primer layer (D), the metal particle layer (B), the barrier metal plating layer (E) and the metal plating layer (C) were formed on the insulating layer (A) having the surface where the trench was formed.
  • a laminated body was obtained by sequentially laminating.
  • Example 1 The surface of the insulating layer (A) having the surface in which the trench was formed, which was manufactured in the same manner as in Example 1, was subjected to reverse sputtering using an RF sputtering device manufactured by Tokuda Manufacturing Co., Ltd., for 5 minutes at an output of 300 W, and the sputtering pressure was The flow rate was 0.5 Pa and the argon gas flow rate was 40 sccm.
  • a 0.2 ⁇ m titanium film and a 0.2 ⁇ m titanium film were formed on the insulating layer (A) by a sputtering method under the conditions of ultimate pressure of 5 ⁇ 10 ⁇ 4 Pa, sputtering pressure of 0.2 Pa, and argon gas flow rate of 20 sccm.
  • a 6 ⁇ m copper film was formed in this order.
  • This titanium film corresponds to the barrier layer.
  • the copper film is a seed layer for electrolytic plating.
  • electrolytic plating was performed in the same manner as in Example 1 to fill the trenches with copper, and then the copper layer other than copper filled in the trenches was removed by CMP. This copper plating layer corresponds to the metal plating layer.
  • a laminated body was obtained in which the barrier metal layer and the metal plating layer were sequentially laminated on the insulating layer (A) having the surface where the trench was formed.
  • the laminates of Examples 1 to 10 had the metal plating layer formed suitably. It was also confirmed that the diffusion of the metal plating layer was suppressed.
  • the laminate of Comparative Example 1 is an example in which a metal particle layer is not formed, but instead, a barrier layer and a seed layer are formed by sputtering, and a metal plating layer is formed on this seed layer. It was confirmed that the layer had defects and the metal of the metal plating layer diffused into the insulating layer.
  • the thickness of the barrier layer and the seed layer on the bottom surface and side wall of the trench becomes uneven, so that a defect of the metal plating layer is generated especially where the film thickness of the side wall of the trench is thin. It is believed that the metal diffuses into the insulating layer.

Abstract

The present invention provides a layered body having: an insulating layer (A) that has a surface in which a trench is formed; a metal particulate layer (B) that is layered on the trench; and a metal plating layer (C) that is layered within the trench and on the metal particulate layer (B). The present invention also provides a layered body having a barrier metal plating layer (E) between the metal particulate layer (B) and the metal plating layer (C). The present invention further provides a layered body having a primer layer (D) between the insulating layer (A) and the metal particulate layer (B). These layered bodies can be manufactured according to a simple method without the use of large-scale vacuum equipment or similar, and allow a metal layer to be formed on a trench.

Description

積層体、及び、積層体の製造方法Laminated body and method for manufacturing laminated body
 本発明は、積層体、及び、積層体の製造方法に関する。 The present invention relates to a laminate and a method for manufacturing the laminate.
 近年、半導体素子の小型化、高集積化による配線の高密度化、多層配線化、ウエハレベルパッケージ(WLP)、パネルレベルパッケージ(PLP)への移行により、銅やチタン等の配線及び再配線の微細化の要求がある。 In recent years, due to miniaturization of semiconductor elements, high integration of wiring due to high integration, multi-layer wiring, shift to wafer level package (WLP), panel level package (PLP), wiring and rewiring of copper, titanium, etc. There is a demand for miniaturization.
 非特許文献1には、高解像性の感光性材料にトレンチパターンを形成し、得られたパターン上にスパッタリングによってシード層を形成し、その後、電解めっきを行うことにより、配線層を形成することが開示されている。 In Non-Patent Document 1, a trench pattern is formed on a high-resolution photosensitive material, a seed layer is formed on the obtained pattern by sputtering, and then electrolytic plating is performed to form a wiring layer. It is disclosed.
 しかしながら、スパッタ法で絶縁性樹脂層上にシード層を形成する方法では、シード層を形成するために大がかりな真空設備が必要となり、設計上、基板サイズが限定される等の問題がある。 However, in the method of forming the seed layer on the insulating resin layer by the sputtering method, a large vacuum facility is required to form the seed layer, and there is a problem that the substrate size is limited due to design.
 本発明は上述した課題に鑑みてなされたものであり、その目的は、大がかりな真空設備を用いることなく簡便な方法で製造でき、トレンチに金属層が形成された積層体を提供することにある。また、本発明は、当該積層体の製造方法を提供することにある。 The present invention has been made in view of the above-described problems, and an object thereof is to provide a laminated body in which a metal layer is formed in a trench, which can be manufactured by a simple method without using large-scale vacuum equipment. . Moreover, this invention is providing the manufacturing method of the said laminated body.
 本発明者らは、上記課題を解決するため鋭意研究を行った結果、下記構成を採用することにより、上記課題を解決できることを見出し、本発明を完成させた。 As a result of earnest research to solve the above problems, the present inventors have found that the above problems can be solved by adopting the following configuration, and have completed the present invention.
 すなわち、本発明に係る積層体は、
 トレンチが形成された面を有する絶縁層(A)と、
 前記トレンチに積層された金属粒子層(B)と、
 前記トレンチ内かつ前記金属粒子層(B)上に積層された金属めっき層(C)とを有することを特徴とする。
That is, the laminate according to the present invention,
An insulating layer (A) having a surface in which a trench is formed,
A metal particle layer (B) laminated in the trench,
It has a metal plating layer (C) laminated in the trench and on the metal particle layer (B).
 本発明に係る積層体は、例えば、絶縁層(A)に形成されたトレンチに、金属粒子を含有する分散液(b)を塗布して金属粒子層(B)を形成し、その後、めっき処理を行い、前記金属粒子層(B)上に金属めっき層(C)を形成することにより得ることができる。 In the laminated body according to the present invention, for example, a trench formed in an insulating layer (A) is coated with a dispersion liquid (b) containing metal particles to form a metal particle layer (B), and then a plating treatment is performed. And forming a metal plating layer (C) on the metal particle layer (B).
 このように、本発明に係る積層体は、トレンチに金属層(金属めっき層)を形成するために大がかりな真空設備を用いることなく簡便な方法で製造できる。 As described above, the laminated body according to the present invention can be manufactured by a simple method without using a large vacuum facility for forming the metal layer (metal plating layer) in the trench.
 また、本発明に係る積層体の製造方法は、
 トレンチが形成された面を有する絶縁層(A)を準備する工程(1)、
 前記トレンチに、金属粒子を含有する分散液(b)を塗布し、金属粒子層(B)を形成する工程(2)、及び、
 めっき処理を行い、前記トレンチ内かつ前記金属粒子層(B)上に金属めっき層(C)を形成する工程(3)を有することを特徴とする。
Further, the method for manufacturing a laminate according to the present invention,
A step (1) of preparing an insulating layer (A) having a surface in which a trench is formed,
A step (2) of applying a dispersion liquid (b) containing metal particles to the trench to form a metal particle layer (B), and
The method is characterized by including a step (3) of performing a plating treatment to form a metal plating layer (C) in the trench and on the metal particle layer (B).
 本発明に係る積層体の製造方法によれば、トレンチに、金属粒子を含有する分散液(b)を塗布して金属粒子層(B)を形成し、その後、めっき処理により金属層である金属めっき層(C)を形成しているため、トレンチに金属層(金属めっき層)を形成するために大がかりな真空設備を用いることなく簡便な方法で製造できる。また、トレンチに、金属粒子を含有する分散液(b)を塗布して金属粒子層(B)を形成するため、トレンチの底面と側壁との両方に比較的均一な厚さの金属粒子層(B)を形成することができる。その結果、トレンチ内に均質な金属めっき層(C)を形成することができる。 According to the method for manufacturing a laminated body of the present invention, the dispersion liquid (b) containing metal particles is applied to the trench to form the metal particle layer (B), and then the metal that is the metal layer is plated. Since the plating layer (C) is formed, it can be manufactured by a simple method without using a large-scale vacuum facility for forming the metal layer (metal plating layer) in the trench. Further, since the metal particle layer (B) is formed by applying the dispersion liquid (b) containing metal particles to the trench, the metal particle layer (having a relatively uniform thickness) is formed on both the bottom surface and the side wall of the trench. B) can be formed. As a result, a uniform metal plating layer (C) can be formed in the trench.
 本発明によれば、大がかりな真空設備等を用いることなく簡便な方法で製造でき、トレンチに金属層が形成された積層体を提供することができる。また、当該積層体の製造方法を提供することができる。 According to the present invention, it is possible to provide a laminate in which a metal layer is formed in a trench, which can be manufactured by a simple method without using a large-scale vacuum facility or the like. Moreover, the manufacturing method of the said laminated body can be provided.
本発明の一実施形態に係る積層体の断面模式図である。It is a cross-sectional schematic diagram of the laminated body which concerns on one Embodiment of this invention. 本実施形態に係る積層体の製造方法を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating the manufacturing method of the laminated body which concerns on this embodiment. 本実施形態に係る積層体の製造方法を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating the manufacturing method of the laminated body which concerns on this embodiment. 本実施形態に係る積層体の製造方法を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating the manufacturing method of the laminated body which concerns on this embodiment. 本実施形態に係る積層体の製造方法を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating the manufacturing method of the laminated body which concerns on this embodiment.
 以下、本発明の実施形態について、図面を参照しつつ説明する。以下では、まず、本実施形態の積層体の積層構成について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following, first, the laminated structure of the laminated body of the present embodiment will be described.
 本発明に係る積層体は、トレンチが形成された面を有する絶縁層(A)と、前記トレンチに積層された金属粒子層(B)と、前記トレンチ内かつ前記金属粒子層(B)上に積層された金属めっき層(C)とを有する。 The laminated body according to the present invention includes an insulating layer (A) having a surface in which a trench is formed, a metal particle layer (B) laminated in the trench, and in the trench and on the metal particle layer (B). It has a metal plating layer (C) laminated.
 本明細書において、トレンチとは、一方の面側に形成され、他方の面まで貫通していないライン状の溝のことをいう。本明細書において、一方の面側から他方の面まで貫通している貫通孔(例えば、ビアホール)は、トレンチに相当しない。すなわち、前記貫通孔を有していても、前記トレンチを有さない積層体は、本発明に係る積層体に相当しない。なお、本発明に係る積層体は、トレンチ以外に、前記貫通孔等を備えていてもよい。 In the present specification, a trench means a line-shaped groove formed on one surface side and not penetrating to the other surface. In the present specification, a through hole (for example, a via hole) penetrating from one surface side to the other surface does not correspond to a trench. That is, the laminated body having the through hole but not the trench does not correspond to the laminated body according to the present invention. The laminated body according to the present invention may include the through holes and the like in addition to the trench.
 本発明に係る積層体は、少なくとも、一部のトレンチに金属めっき層(C)が形成されていればよく、すべてのトレンチに金属めっき層(C)が形成されていなくてもよい。また、本発明に係る積層体は、すべてのトレンチに金属めっき層(C)が形成されていてもよい。 In the laminated body according to the present invention, the metal plating layer (C) may be formed in at least some of the trenches, and the metal plating layer (C) may not be formed in all the trenches. Further, in the laminated body according to the present invention, the metal plating layer (C) may be formed in all the trenches.
 本明細書において、金属めっき層(C)の上面は、絶縁層(A)の上面と面一となっていてもよく、絶縁層(A)の上面よりも高くなっていてもよく、絶縁層(A)の上面よりも下側であってもよい。つまり、金属めっき層(C)は、トレンチ内全体に形成されていてもよく、トレンチ内の一部にのみ形成されていてもよい。ただし、配線として利用する観点から、金属めっき層(C)の上面は、絶縁層(A)の面と面一となっていることが好ましい(例えば、図1参照)。また、本発明に係る積層体は、トレンチが複数本存在し、複数本のトレンチが平行に配置されている箇所が存在していてもよい(例えば、図1参照)。以下、具体例につき説明する。 In the present specification, the upper surface of the metal plating layer (C) may be flush with the upper surface of the insulating layer (A), or may be higher than the upper surface of the insulating layer (A). It may be below the upper surface of (A). That is, the metal plating layer (C) may be formed in the entire trench, or may be formed only in a part of the trench. However, from the viewpoint of use as wiring, the upper surface of the metal plating layer (C) is preferably flush with the surface of the insulating layer (A) (see, for example, FIG. 1). In addition, the laminated body according to the present invention may have a plurality of trenches, and may have a location where the plurality of trenches are arranged in parallel (see, for example, FIG. 1). Hereinafter, a specific example will be described.
 なお、以下に説明する実施形態では、積層体が、基材と、絶縁層(A)と、プライマー層(D)と、金属粒子層(B)と、バリアメタルめっき層(E)と、金属めっき層(C)とを備える場合について説明するが、本発明に係る積層体は、少なくとも、絶縁層(A)と、金属粒子層(B)と、金属めっき層(C)とを有すればよい。 In the embodiments described below, the laminate has a base material, an insulating layer (A), a primer layer (D), a metal particle layer (B), a barrier metal plating layer (E), and a metal. The case of including the plating layer (C) will be described. If the laminate according to the present invention has at least the insulating layer (A), the metal particle layer (B), and the metal plating layer (C). Good.
 図1は、本発明の一実施形態に係る積層体の断面模式図である。図1に示すように、積層体10は、基材12と、絶縁層14と、プライマー層16と、金属粒子層18と、バリアメタルめっき層20と、金属めっき層22とを有する。基材12としては特に限定されないが、絶縁層14を形成する際の支持体となるものが好ましく、例えば、シリコンウエハやチップ等が挙げられる。また、基材12は、可撓性を有していてもよい。 FIG. 1 is a schematic sectional view of a laminate according to an embodiment of the present invention. As shown in FIG. 1, the laminated body 10 includes a base material 12, an insulating layer 14, a primer layer 16, a metal particle layer 18, a barrier metal plating layer 20, and a metal plating layer 22. The substrate 12 is not particularly limited, but is preferably a substrate that serves as a support when forming the insulating layer 14, and examples thereof include a silicon wafer and a chip. Moreover, the base material 12 may have flexibility.
 絶縁層14の上面14aには、トレンチ15が形成されている。トレンチ15の底面15a上及びトレンチ15の側壁15b上には、プライマー層16が形成されている。底面15a上のプライマー層16の厚さと、側壁15b上のプライマー層16の厚さは、同程度となっている。 A trench 15 is formed on the upper surface 14a of the insulating layer 14. A primer layer 16 is formed on the bottom surface 15 a of the trench 15 and the sidewall 15 b of the trench 15. The thickness of the primer layer 16 on the bottom surface 15a and the thickness of the primer layer 16 on the side wall 15b are substantially the same.
 プライマー層16上には、プライマー層16に沿うように金属粒子層18が形成されている。底面15a上の金属粒子層18の厚さと、側壁15b上の金属粒子層18の厚さは、同程度となっている。 A metal particle layer 18 is formed on the primer layer 16 along the primer layer 16. The thickness of the metal particle layer 18 on the bottom surface 15a and the thickness of the metal particle layer 18 on the side wall 15b are substantially the same.
 金属粒子層18上には、金属粒子層18に沿うようにバリアメタルめっき層20が形成されている。底面15a上のバリアメタルめっき層20の厚さと、側壁15b上のバリアメタルめっき層20の厚さは、同程度となっている。 A barrier metal plating layer 20 is formed on the metal particle layer 18 along the metal particle layer 18. The thickness of the barrier metal plating layer 20 on the bottom surface 15a and the thickness of the barrier metal plating layer 20 on the side wall 15b are substantially the same.
 バリアメタルめっき層20上には、トレンチ15内を充填するように金属めっき層22が形成されている。本実施形態では、金属めっき層22の上面は、絶縁層14の上面14aと面一となっている。 A metal plating layer 22 is formed on the barrier metal plating layer 20 so as to fill the inside of the trench 15. In the present embodiment, the upper surface of the metal plating layer 22 is flush with the upper surface 14 a of the insulating layer 14.
 絶縁層14は、本発明の絶縁層(A)に相当する。プライマー層16は、本発明のプライマー層(D)に相当する。金属粒子層18は、本発明の金属粒子層(B)に相当する。バリアメタルめっき層20は、本発明のバリアメタルめっき層(E)に相当する。金属めっき層22は、本発明の金属めっき層(C)に相当する。 The insulating layer 14 corresponds to the insulating layer (A) of the present invention. The primer layer 16 corresponds to the primer layer (D) of the present invention. The metal particle layer 18 corresponds to the metal particle layer (B) of the present invention. The barrier metal plating layer 20 corresponds to the barrier metal plating layer (E) of the present invention. The metal plating layer 22 corresponds to the metal plating layer (C) of the present invention.
 トレンチ15のサイズは、積層体の用途に応じて適宜設定できる。例えば、複数のトレンチ15(金属めっき層22)を高集積化する観点からは、配線として使用できる範囲内で小さいことが好ましい。一方、高電圧、高電流に耐え得ることが要求される場合には、ある程度の大きさのサイズが必要となる。
 以上の観点から、トレンチ15の深さdは、0.5μm以上1000μm以下が好ましく、0.5μm以上500μm以下がより好ましく、0.5μm以上100μm以下がさらに好ましい。また、トレンチ15の幅wは0.5μm以上1000μm以下が好ましく、0.5μm以上500μm以下がより好ましく、0.5μm以上100μm以下がさらに好ましい。
The size of the trench 15 can be appropriately set according to the application of the laminated body. For example, from the viewpoint of highly integrating the plurality of trenches 15 (metal plating layer 22), it is preferable that the trenches 15 are small within a range that can be used as wiring. On the other hand, when it is required to withstand high voltage and high current, a certain size is required.
From the above viewpoint, the depth d of the trench 15 is preferably 0.5 μm or more and 1000 μm or less, more preferably 0.5 μm or more and 500 μm or less, and further preferably 0.5 μm or more and 100 μm or less. The width w of the trench 15 is preferably 0.5 μm or more and 1000 μm or less, more preferably 0.5 μm or more and 500 μm or less, and further preferably 0.5 μm or more and 100 μm or less.
 積層体10のように、トレンチ15が複数本存在する場合、複数のトレンチ15間の距離aは特に限定されないが、0.5μm以上1000μm以下が好ましく、0.5μm以上500μm以下がより好ましく、0.5μm以上100μm以下がさらに好ましい。特に、本実施形態のように、バリアメタルめっき層20を有する場合、バリアメタルめっき層20は、金属めっき層22の金属が絶縁層14に拡散するのを防止することができる。このことは、実施例からも明らかである。従って、トレンチ15間の距離aを狭くしても絶縁が破壊されず、トレンチ15間で短絡することを防止できる。以上の観点から、複数のトレンチ15間の距離aは、0.5μm以上1000μm以下が好ましく、0.5μm以上500μm以下がより好ましく、0.5μm以上100μm以下がさらに好ましい。また、トレンチ15の幅wは0.5μm以上1000μm以下が好ましく、0.5μm以上500μm以下がより好ましく、0.5μm以上100μm以下がさらに好ましい。
 なお、本明細書において、トレンチ15間の距離aとは、一方のトレンチ15の側壁15aから最も近い他方のトレンチ15の側壁15aまでの距離をいう。
When there are a plurality of trenches 15 as in the laminated body 10, the distance a between the plurality of trenches 15 is not particularly limited, but is preferably 0.5 μm or more and 1000 μm or less, more preferably 0.5 μm or more and 500 μm or less, and 0 It is more preferably 0.5 μm or more and 100 μm or less. In particular, when the barrier metal plating layer 20 is provided as in the present embodiment, the barrier metal plating layer 20 can prevent the metal of the metal plating layer 22 from diffusing into the insulating layer 14. This is also clear from the examples. Therefore, even if the distance a between the trenches 15 is narrowed, the insulation is not destroyed, and a short circuit between the trenches 15 can be prevented. From the above viewpoint, the distance a between the plurality of trenches 15 is preferably 0.5 μm or more and 1000 μm or less, more preferably 0.5 μm or more and 500 μm or less, and further preferably 0.5 μm or more and 100 μm or less. The width w of the trench 15 is preferably 0.5 μm or more and 1000 μm or less, more preferably 0.5 μm or more and 500 μm or less, and further preferably 0.5 μm or more and 100 μm or less.
In this specification, the distance a between the trenches 15 refers to the distance from the side wall 15a of one trench 15 to the side wall 15a of the other trench 15 that is the closest.
 積層体10の用途は、特に限定されないが、例えば、金属めっき層22を配線とする配線層として利用できる。 The use of the laminated body 10 is not particularly limited, but for example, it can be used as a wiring layer having the metal plating layer 22 as a wiring.
 積層体10は、後述するように、絶縁層(A)に形成されたトレンチに、金属粒子を含有する分散液(b)を塗布して金属粒子層(B)を形成し、その後、めっき処理を行い、前記金属粒子層(B)上に金属めっき層(C)を形成することにより得ることができる。つまり、積層体10は、トレンチに金属層(金属めっき層(C))を形成するために大がかりな真空設備を必要としない。また、金属層を形成する前に逆スパッタ処理をする必要もない。また、バリアメタルめっき層20を有するため、トレンチ15間の金属拡散を防止でき、距離aを狭くしてもトレンチ15間の短絡を防止できる。このことは、実施例からも明らかである。 As will be described later, in the laminated body 10, the dispersion liquid (b) containing the metal particles is applied to the trench formed in the insulating layer (A) to form the metal particle layer (B), and then the plating treatment is performed. And forming a metal plating layer (C) on the metal particle layer (B). That is, the stacked body 10 does not require large-scale vacuum equipment for forming the metal layer (metal plating layer (C)) in the trench. Further, it is not necessary to perform the reverse sputtering process before forming the metal layer. Further, since the barrier metal plating layer 20 is provided, it is possible to prevent metal diffusion between the trenches 15 and to prevent a short circuit between the trenches 15 even if the distance a is narrowed. This is also clear from the examples.
 以上、本実施形態の積層体の積層構成の一例について説明した。 The example of the laminated structure of the laminated body of the present embodiment has been described above.
 次に、本実施形態の積層体が備える各層について説明する。 Next, each layer included in the laminated body of the present embodiment will be described.
[絶縁層(A)]
 絶縁層(A)は、絶縁樹脂により形成されており、トレンチが形成された面を有する。前記絶縁樹脂としては、電気絶縁性を有していれば、特に限定されず、例えば、ポリイミド、ポリアミドイミド、ポリアミド、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリカーボネート、アクリロニトリル-ブタジエン-スチレン(ABS)樹脂、ABSとポリカーボネートとのポリマーアロイ、ポリ(メタ)アクリル酸メチル等のアクリル樹脂、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレン、ポリプロピレン、ポリウレタン、液晶ポリマー(LCP)、ポリエーテルエーテルケトン(PEEK)、ポリフェニレンスルフィド(PPS)、ポリフェニレンスルホン(PPSU)、エポキシ樹脂、セルロースナノファイバー等が挙げられる。
 また、前記絶縁樹脂は、感光性樹脂であってもよく、例えば、ポリベンゾオキサゾール前駆体樹脂、ポリベンゾオキサゾール樹脂、ポリアミド樹脂、ポリイミド前駆体樹脂、ポリイミド樹脂、ノボラック樹脂、レゾール樹脂、ヒドロキシスチレン樹脂等が挙げられる。これらの感光性樹脂は、ポジ型であってもネガ型であってもよい。また、感光性樹脂にパターン光を照射することにより、パターン化した前記絶縁層(A)が形成できる。さらに、前記絶縁層(A)をより強靱にできることから、パターン化後に熱硬化させることが好ましい。
[Insulating layer (A)]
The insulating layer (A) is made of insulating resin and has a surface in which a trench is formed. The insulating resin is not particularly limited as long as it has electric insulation, and examples thereof include polyimide, polyamide imide, polyamide, polyethylene terephthalate, polyethylene naphthalate, polycarbonate, acrylonitrile-butadiene-styrene (ABS) resin, ABS. Alloys of styrene and polycarbonate, acrylic resins such as poly (meth) acrylate, polytetrafluoroethylene, polyvinylidene fluoride, polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, polyethylene, polypropylene, polyurethane, liquid crystal polymer (LCP) , Polyetheretherketone (PEEK), polyphenylene sulfide (PPS), polyphenylene sulfone (PPSU), epoxy resin, cellulose nanofiber, etc. That.
Further, the insulating resin may be a photosensitive resin, for example, polybenzoxazole precursor resin, polybenzoxazole resin, polyamide resin, polyimide precursor resin, polyimide resin, novolac resin, resole resin, hydroxystyrene resin. Etc. These photosensitive resins may be positive type or negative type. Further, the patterned insulating layer (A) can be formed by irradiating the photosensitive resin with pattern light. Furthermore, since the insulating layer (A) can be made tougher, it is preferable to heat cure after patterning.
 前記絶縁層(A)としては、当該積層体を用いて得られる最終製品の軽量化及び薄型化を実現する観点から、1μm以上200μm以下程度の厚さのものを使用することが好ましい。 As the insulating layer (A), it is preferable to use a layer having a thickness of about 1 μm or more and 200 μm or less from the viewpoint of realizing weight reduction and thinning of the final product obtained by using the laminate.
[プライマー層(D)]
 前記トレンチの底面上及び前記トレンチの側壁上には、プライマー層(D)が設けられていてもよい。前記プライマー層(D)は、前記絶縁層(A)と金属粒子層(B)との密着性を高めることを目的として設けられている層である。
[Primer layer (D)]
A primer layer (D) may be provided on the bottom surface of the trench and the sidewall of the trench. The primer layer (D) is a layer provided for the purpose of enhancing the adhesiveness between the insulating layer (A) and the metal particle layer (B).
 前記プライマー層(D)を構成する材料としては、例えば、ウレタン樹脂、アクリル樹脂、ウレタン樹脂をシェルとしアクリル樹脂をコアとするコア・シェル型複合樹脂、エポキシ樹脂、イミド樹脂、アミド樹脂、メラミン樹脂、フェノール樹脂、尿素ホルムアルデヒド樹脂、ポリイソシアネートにフェノール等のブロック化剤を反応させて得られたブロックイソシアネートポリビニルアルコール、ポリビニルピロリドン等が挙げられる。なお、ウレタン樹脂をシェルとしアクリル樹脂をコアとするコア・シェル型複合樹脂は、例えば、ウレタン樹脂存在下でアクリル単量体を重合することにより得られる。また、これらの樹脂は、1種で用いることも2種以上併用することもできる。 Examples of the material forming the primer layer (D) include urethane resin, acrylic resin, core-shell type composite resin having urethane resin as a shell and acrylic resin as a core, epoxy resin, imide resin, amide resin, melamine resin. , A phenol resin, a urea formaldehyde resin, a blocked isocyanate obtained by reacting a polyisocyanate with a blocking agent such as phenol, polyvinyl alcohol, polyvinyl pyrrolidone, and the like. The core-shell type composite resin having a urethane resin as a shell and an acrylic resin as a core is obtained, for example, by polymerizing an acrylic monomer in the presence of the urethane resin. These resins may be used alone or in combination of two or more.
 前記プライマー層(D)は、前記プライマー層(D)を形成するためのプライマー組成物(d)を塗布、乾燥等することによって形成することができる。 The primer layer (D) can be formed by applying and drying the primer composition (d) for forming the primer layer (D).
 前記プライマー組成物(d)としては、前記材料と溶媒とを含有するものを使用することができる。 As the primer composition (d), a composition containing the material and a solvent can be used.
 前記溶媒としては、各種有機溶剤、水性媒体を使用することができる。 As the solvent, various organic solvents and aqueous media can be used.
 前記プライマー層(D)は、当該積層体を使用する用途等によって異なるが、例えば、0.01μm以上300μm以下の厚さであることが好ましく、0.01μm以上20μm以下の厚さであることがより好ましい。 Although the primer layer (D) varies depending on the use of the laminate, etc., it preferably has a thickness of 0.01 μm or more and 300 μm or less, and a thickness of 0.01 μm or more and 20 μm or less. More preferable.
[金属粒子層(B)]
 金属粒子層(B)は、前記絶縁層(A)上に直接に、又は、前記プライマー層(D)を介して前記絶縁層(A)上に積層されている。前記金属粒子層(B)を構成する金属としては、例えば、銅、銀、金、ニッケル、パラジウム、白金、コバルト等が挙げられる。これらの中でも、粒子表面が酸化されにくいこと、無電解めっき触媒としての活性が高いこと、導電性が高い金属であること、金属めっき層(C)を形成しやすいことから、銀が好ましい。
[Metal particle layer (B)]
The metal particle layer (B) is laminated directly on the insulating layer (A) or on the insulating layer (A) via the primer layer (D). Examples of the metal forming the metal particle layer (B) include copper, silver, gold, nickel, palladium, platinum, cobalt and the like. Among these, silver is preferable because it is difficult to oxidize the particle surface, has a high activity as an electroless plating catalyst, is a metal having high conductivity, and easily forms the metal plating layer (C).
[バリアメタルめっき層(E)]
 前記金属粒子層(B)上には、バリアメタルめっき層(E)が設けられていてもよい。前記バリアメタルめっき層(E)は、金属めっき層(C)の金属が拡散するのを防止することを目的として設けられる層である。前記バリアメタルめっき層(E)を構成する金属としては、ニッケル、ニッケル-モリブデン、ニッケル-モリブデン-ホウ素、ニッケル-モリブデン-リン、クロム、コバルト、コバルト-リン、モリブデン、コバルト-タングステン-リン、コバルト-タングステン-ホウ素等が挙げられる。
[Barrier metal plating layer (E)]
A barrier metal plating layer (E) may be provided on the metal particle layer (B). The barrier metal plating layer (E) is a layer provided for the purpose of preventing the metal of the metal plating layer (C) from diffusing. Examples of the metal forming the barrier metal plating layer (E) include nickel, nickel-molybdenum, nickel-molybdenum-boron, nickel-molybdenum-phosphorus, chromium, cobalt, cobalt-phosphorus, molybdenum, cobalt-tungsten-phosphorus, cobalt. -Tungsten-boron and the like.
[金属めっき層(C)]
 金属めっき層(C)は、前記金属粒子層(B)上に直接に、又は、前記バリアメタルめっき層(E)を介して前記金属粒子層(B)上に積層されている。前記金属めっき層(C)を構成する金属としては、銅、金、銀、ニッケル、クロム、コバルト、スズ等が挙げられる。これらの中でも、前記金属めっき層(C)を配線用途として用いる場合は、比較的低コストで、導電性が高いことから、銅が好ましい。
[Metal plating layer (C)]
The metal plating layer (C) is laminated directly on the metal particle layer (B) or on the metal particle layer (B) via the barrier metal plating layer (E). Examples of the metal forming the metal plating layer (C) include copper, gold, silver, nickel, chromium, cobalt and tin. Among these, when the metal plating layer (C) is used for wiring, copper is preferable because it is relatively inexpensive and has high conductivity.
[金属粒子層(B)とプライマー層(D)との組み合わせ]
 プライマー層(D)を有する構成とする場合、金属粒子層(B)とプライマー層(D)との組み合わせとしては、金属粒子層(B)として、塩基性窒素原子含有基を有する化合物(b1)及び金属粒子(b2)を含有する層を採用し、プライマー層(D)として、官能基[X]を有する化合物(d1)を含有する層を採用することが好ましい。このような構成とすることにより、金属粒子層(B)に含まれる前記化合物(b1)が有する塩基性窒素原子含有基と、前記プライマー層(D)に含まれる前記化合物(d1)が有する官能基[X]とが反応して結合を生成し、絶縁層(A)と金属めっき層(C)との間の密着性をより高めることができる。
[Combination of Metal Particle Layer (B) and Primer Layer (D)]
When the structure having the primer layer (D) is used, the combination of the metal particle layer (B) and the primer layer (D) includes a compound (b1) having a basic nitrogen atom-containing group as the metal particle layer (B). And a layer containing the metal particles (b2) and a layer containing the compound (d1) having a functional group [X] as the primer layer (D). With such a structure, the basic nitrogen atom-containing group contained in the compound (b1) contained in the metal particle layer (B) and the functional group contained in the compound (d1) contained in the primer layer (D). The group [X] reacts with each other to form a bond, and the adhesiveness between the insulating layer (A) and the metal plating layer (C) can be further enhanced.
 前記化合物(b1)が有する塩基性窒素原子含有基としては、例えばイミノ基、1級アミノ基、2級アミノ基等が挙げられる。 Examples of the basic nitrogen atom-containing group contained in the compound (b1) include imino group, primary amino group, secondary amino group and the like.
 前記化合物(b1)として複数の塩基性窒素原子含有基を分子中に有するものを使用する場合、前記塩基性窒素原子含有基の一方は、前記金属粒子層(B)を形成した際に、プライマー層(D)に含まれる化合物(d1)の官能基[X]との結合に関与し、他方は、金属粒子層(B)中の銀等の金属粒子(b2)との相互作用に寄与することが、前記金属粒子層(B)と前記プライマー層(D)との密着性を向上するうえで好ましい。 When a compound having a plurality of basic nitrogen atom-containing groups in the molecule is used as the compound (b1), one of the basic nitrogen atom-containing groups is a primer when the metal particle layer (B) is formed. Participating in binding to the functional group [X] of the compound (d1) contained in the layer (D), and the other contributing to interaction with the metal particles (b2) such as silver in the metal particle layer (B). It is preferable to improve the adhesion between the metal particle layer (B) and the primer layer (D).
 前記金属粒子(b2)としては、例えば、銅、銀、金、ニッケル、パラジウム、白金、コバルト等が挙げられる。また、これらの中でも、銅、銀及び金は、導電性が高いことから好ましく、さらに銀は、比較的安価であること、粒子表面が酸化されにくいこと、無電解めっき触媒としての活性が高いことからより好ましい。 Examples of the metal particles (b2) include copper, silver, gold, nickel, palladium, platinum, cobalt and the like. Further, among these, copper, silver and gold are preferable because they have high conductivity, and further, silver is relatively inexpensive, the particle surface is not easily oxidized, and the activity as an electroless plating catalyst is high. To more preferred.
 前記官能基[X]としては、ケト基、エポキシ基、カルボン酸基、無水カルボン酸基、アルキロールアミド基、イソシアネート基、ビニル基、アルキルハライド基、アクリロイル基、シアナマイド基、尿素結合、アシルハライド基等が挙げられる。前記ケト基は、ケトン由来のカルボニル基を指す。前記イソシアネート基は、常温下での反応を防止する観点から、ブロック化剤によって封止されていてもよい。 Examples of the functional group [X] include keto group, epoxy group, carboxylic acid group, carboxylic acid anhydride group, alkylolamide group, isocyanate group, vinyl group, alkyl halide group, acryloyl group, cyanamide group, urea bond, acyl halide. Groups and the like. The keto group refers to a carbonyl group derived from a ketone. The isocyanate group may be blocked with a blocking agent from the viewpoint of preventing the reaction at room temperature.
 なかでも、官能基[X]としては、前記化合物(b1)の塩基性窒素原子含有基と反応した際に、ハロゲン、酸、アミン等の副生成物の生成を防止する観点から、ケト基、エポキシ基、酸基、アルキロールアミド基及びイソシアネート基からなる群より選ばれる1種以上を使用することが好ましい。 Among them, as the functional group [X], a keto group, from the viewpoint of preventing the formation of by-products such as halogen, acid and amine when reacted with the basic nitrogen atom-containing group of the compound (b1), It is preferable to use one or more selected from the group consisting of an epoxy group, an acid group, an alkylolamide group and an isocyanate group.
 前記官能基[X]を有する化合物(d1)としては、例えば前記官能基[X]を有する樹脂を使用することができる。前記官能基[X]を有する樹脂としては、具体的には、前記官能基[X]を有するウレタン樹脂、前記官能基[X]を有するビニル樹脂、前記官能基[X]を有するウレタン-ビニル複合樹脂、前記官能基[X]を有するエポキシ樹脂、前記官能基[X]を有するイミド樹脂、前記官能基[X]を有するアミド樹脂、前記官能基[X]を有するメラミン樹脂、前記官能基[X]を有するフェノール樹脂、前記官能基[X]を有するポリビニルアルコール、前記官能基[X]を有するポリビニルピロリドン等を使用することができる。なかでも、前記官能基[X]を有するウレタン樹脂、前記官能基[X]を有するビニル樹脂、及び、前記官能基[X]を有するウレタン-ビニル複合樹脂からなる群より選ばれる1種以上を使用することが好ましい。 As the compound (d1) having the functional group [X], for example, a resin having the functional group [X] can be used. Specific examples of the resin having the functional group [X] include a urethane resin having the functional group [X], a vinyl resin having the functional group [X], and a urethane-vinyl having the functional group [X]. Composite resin, epoxy resin having the functional group [X], imide resin having the functional group [X], amide resin having the functional group [X], melamine resin having the functional group [X], the functional group A phenol resin having [X], polyvinyl alcohol having the functional group [X], polyvinylpyrrolidone having the functional group [X], and the like can be used. Among them, at least one selected from the group consisting of a urethane resin having the functional group [X], a vinyl resin having the functional group [X], and a urethane-vinyl composite resin having the functional group [X]. Preference is given to using.
 前記プライマー層(D)は、支持体の表面に、官能基[X]を有する化合物(d1)を含有するプライマー組成物(d)を塗布、乾燥等することによって形成された塗膜中に存在する前記化合物(d1)の官能基[X]が、前記金属粒子層(B)に含まれる前記化合物(b1)の塩基性窒素原子含有基と反応することによって結合を形成する。 The primer layer (D) is present in a coating film formed by applying the primer composition (d) containing the compound (d1) having the functional group [X] to the surface of the support, and drying the composition. The functional group [X] of the compound (d1) reacts with the basic nitrogen atom-containing group of the compound (b1) contained in the metal particle layer (B) to form a bond.
 前記プライマー層(D)は、その表面に、前記塩基性窒素原子含有基を有する化合物(b1)及び金属粒子(b2)等を含有する分散液(b)が接触した際、乾燥、加熱等の工程を経ることで、前記化合物(b1)が有する塩基性窒素原子含有基と、前記塗膜に含まれる前記化合物(d1)が有する官能基[X]とを反応させて結合を形成することによって、前記金属粒子層(B)とプライマー層(D)とからなる積層構造を形成する。 When the primer layer (D) is in contact with the surface of the dispersion (b) containing the compound (b1) having the basic nitrogen atom-containing group and the metal particles (b2), the primer layer (D) may be dried, heated, or the like. By passing through the steps, a basic nitrogen atom-containing group contained in the compound (b1) is reacted with a functional group [X] contained in the compound (d1) contained in the coating film to form a bond. A laminated structure composed of the metal particle layer (B) and the primer layer (D) is formed.
 これにより、前記金属粒子層(B)とプライマー層(D)との界面で優れた密着性を備えた積層体を得ることができる。 This makes it possible to obtain a laminate having excellent adhesion at the interface between the metal particle layer (B) and the primer layer (D).
 前記プライマー層(D)は、官能基[X]を有する化合物(d1)を含有するプライマー組成物(d)を塗布し、乾燥等することによって形成されたものである。前記塗膜に含まれる化合物(d1)は、前記金属粒子層(B)に含まれる前記化合物(b1)の塩基性窒素原子含有基と反応する官能基[X]を有する。 The primer layer (D) is formed by applying the primer composition (d) containing the compound (d1) having the functional group [X] and drying it. The compound (d1) contained in the coating film has a functional group [X] that reacts with the basic nitrogen atom-containing group of the compound (b1) contained in the metal particle layer (B).
 金属粒子層(B)とプライマー層(D)との組み合わせは、より詳細には、例えば、国際公開第2013/146195号等に開示されている。 The combination of the metal particle layer (B) and the primer layer (D) is disclosed in more detail, for example, in International Publication No. 2013/146195.
 次に、本実施形態に係る積層体10(図1参照)の製造方法について、説明する。図2~図5は、本実施形態に係る積層体の製造方法を説明するための断面模式図である。 Next, a method for manufacturing the laminated body 10 (see FIG. 1) according to the present embodiment will be described. 2 to 5 are schematic cross-sectional views for explaining the method for manufacturing the laminate according to the present embodiment.
[積層体の製造方法]
 本実施形態に係る積層体の製造方法においては、図2に示すように、まず、トレンチ15が形成された面14aを有する絶縁層14を準備する(工程(1))。準備する絶縁層14は、トレンチ15以外に貫通孔等が形成されていてもよい。なお、絶縁層14は、図2に示す基材12上に形成されていてもよく、絶縁層14単体であってもよい。
[Method for manufacturing laminated body]
In the method for manufacturing the laminated body according to the present embodiment, as shown in FIG. 2, first, the insulating layer 14 having the surface 14a in which the trench 15 is formed is prepared (step (1)). The insulating layer 14 to be prepared may have a through hole or the like formed in addition to the trench 15. The insulating layer 14 may be formed on the base material 12 shown in FIG. 2 or may be the insulating layer 14 alone.
 トレンチ15が形成された絶縁層14は、トレンチが形成されていない絶縁層を準備し、この絶縁層にトレンチを形成することにより得ることができる。トレンチが形成されていない絶縁層へのトレンチの形成方法としては、例えば、ナノインプリント法(「型押し加工法」ともいう。)やスクリーン印刷法を採用することができる。また、絶縁層(A)の材料として感光性樹脂を用いる場合には、前記トレンチは、例えば、感光性樹脂を硬化させる前の未硬化層に、所望のパターンマスクを通して露光、現像することにより、トレンチが形成された未硬化層とし、さらに、前記未硬化層を熱硬化させることにより得ることができる。なお、前記感光性樹脂は、ポジ型感光性であっても、ネガ型感光性であってもよい。 The insulating layer 14 in which the trench 15 is formed can be obtained by preparing an insulating layer in which no trench is formed and forming a trench in this insulating layer. As a method of forming the trench in the insulating layer in which the trench is not formed, for example, a nanoimprint method (also referred to as “embossing method”) or a screen printing method can be adopted. When a photosensitive resin is used as the material of the insulating layer (A), the trench is formed by exposing and developing the uncured layer before curing the photosensitive resin through a desired pattern mask, for example. It can be obtained by forming an uncured layer in which a trench is formed and further thermally curing the uncured layer. The photosensitive resin may be positive-type photosensitive or negative-type photosensitive.
 次に、必要に応じて、絶縁層14に、プライマー組成物(d)を塗布し、プライマー組成物(d)に含まれる溶媒を乾燥等により除去することによって、プライマー層16(図3参照)を形成する(工程(1-1))。具体的には、トレンチ15の底面15a及び側壁15bに沿うように絶縁層14を形成する。
 なお、金属粒子層18及びプライマー層16として上記で説明した特定の組み合わせを採用する場合、プライマー層16は、絶縁層14に、プライマー組成物(d)を塗布し、必要に応じて乾燥等することによって、プライマー層16を設け、前記塗膜の表面に、前記塩基性窒素原子含有基を有する化合物(b1)及び前記金属粒子(b2)を含有する分散液(b)を塗布した後、焼成等の加熱工程を経ることによって製造することができる。
Next, if necessary, the primer composition (d) is applied to the insulating layer 14, and the solvent contained in the primer composition (d) is removed by drying or the like, whereby the primer layer 16 (see FIG. 3). Are formed (step (1-1)). Specifically, the insulating layer 14 is formed along the bottom surface 15a and the side wall 15b of the trench 15.
When the specific combination described above is adopted as the metal particle layer 18 and the primer layer 16, the primer layer 16 applies the primer composition (d) to the insulating layer 14 and, if necessary, drying or the like. Thereby, the primer layer 16 is provided, and the dispersion liquid (b) containing the compound (b1) having the basic nitrogen atom-containing group and the metal particles (b2) is applied to the surface of the coating film, followed by baking. It can be manufactured by going through a heating step such as.
 前記プライマー組成物(d)を絶縁層14の表面に塗布する方法としては、例えば、グラビア法、オフセット法、フレキソ法、パッド印刷法、グラビアオフセット法、凸版法、反転印刷法、スクリーン法、マイクロコンタクト法、リバース法、エアドクターコーター法、ブレードコーター法、エアナイフコーター法、スクイズコーター法、含浸コーター法、トランスファーロールコーター法、キスコーター法、キャストコーター法、スプレーコーター法、インクジェット法、ダイコーター法、スピンコーター法、バーコーター法、ディップコーター法等の方法が挙げられる。 Examples of the method of applying the primer composition (d) to the surface of the insulating layer 14 include a gravure method, an offset method, a flexographic method, a pad printing method, a gravure offset method, a letterpress method, a reverse printing method, a screen method, and a micro method. Contact method, reverse method, air doctor coater method, blade coater method, air knife coater method, squeeze coater method, impregnation coater method, transfer roll coater method, kiss coater method, cast coater method, spray coater method, ink jet method, die coater method, Examples thereof include spin coater method, bar coater method, dip coater method and the like.
 次に、トレンチ15に、金属粒子を含有する分散液(b)を塗布し、金属粒子層18(図4参照)を形成する(工程(2))。プライマー層16を形成している場合は、プライマー層16に沿うように金属粒子層18を形成する。プライマー層16を形成していない場合は、絶縁層14(トレンチ15の底面15a及び側壁15b)に沿うように金属粒子層18を形成する。 Next, the dispersion liquid (b) containing metal particles is applied to the trench 15 to form the metal particle layer 18 (see FIG. 4) (step (2)). When the primer layer 16 is formed, the metal particle layer 18 is formed along the primer layer 16. When the primer layer 16 is not formed, the metal particle layer 18 is formed along the insulating layer 14 (the bottom surface 15a and the side wall 15b of the trench 15).
 金属粒子層18の形成に用いる前記金属粒子の形状は、粒子状又は繊維状のものが好ましい。また、前記金属粒子の大きさはナノサイズのものが好ましい。具体的には、前記金属粒子の形状は、粒子状の場合は、微細なパターンを形成でき、抵抗値をより低減できることから、平均粒子径が1nm以上100nm以下が好ましく、1nm以上50nm以下がより好ましい。なお、前記「平均粒子径」は、前記金属粒子を分散良溶媒にて希釈し、動的光散乱法により測定した体積平均値である。この測定にはマイクロトラック社製「ナノトラックUPA-150」を用いることができる。 The shape of the metal particles used for forming the metal particle layer 18 is preferably particulate or fibrous. The size of the metal particles is preferably nano size. Specifically, when the metal particles are in the form of particles, a fine pattern can be formed and the resistance value can be further reduced. Therefore, the average particle diameter is preferably 1 nm or more and 100 nm or less, and more preferably 1 nm or more and 50 nm or less. preferable. The "average particle diameter" is a volume average value measured by a dynamic light scattering method after diluting the metal particles with a good dispersion solvent. "Nanotrack UPA-150" manufactured by Microtrac can be used for this measurement.
 一方、前記金属粒子の形状が繊維状の場合も、微細なパターンを形成でき、抵抗値をより低減できることから、繊維の直径は、5nm以上100nm以下が好ましく、5nm以上50nm以下がより好ましい。また、繊維の長さは、0.1μm以上100μm以下が好ましく、0.1μm以上30μm以下がより好ましい。 On the other hand, even when the shape of the metal particles is fibrous, a fine pattern can be formed and the resistance value can be further reduced. Therefore, the fiber diameter is preferably 5 nm or more and 100 nm or less, more preferably 5 nm or more and 50 nm or less. The fiber length is preferably 0.1 μm or more and 100 μm or less, more preferably 0.1 μm or more and 30 μm or less.
 前記分散液(b)中の前記金属粒子の含有率は、1質量%以上90質量%以下が好ましく、1質量%以上60質量%以下がより好ましく、さらに1質量%以上10質量%以下がより好ましい。 The content of the metal particles in the dispersion liquid (b) is preferably 1% by mass or more and 90% by mass or less, more preferably 1% by mass or more and 60% by mass or less, and further preferably 1% by mass or more and 10% by mass or less. preferable.
 前記分散液(b)に配合される成分としては、前記金属粒子を溶媒中に分散させるための分散剤や溶媒、また必要に応じて、後述する界面活性剤、レベリング剤、粘度調整剤、成膜助剤、消泡剤、防腐剤等が挙げられる。 The components to be added to the dispersion liquid (b) include a dispersant and a solvent for dispersing the metal particles in a solvent, and, if necessary, a surfactant, a leveling agent, a viscosity modifier, and Membrane aids, defoamers, preservatives and the like can be mentioned.
 前記金属粒子を溶媒中に分散させるため、低分子量又は高分子量の分散剤を用いることが好ましい。前記分散剤としては、例えば、ドデカンチオール、1-オクタンチオール、トリフェニルホスフィン、ドデシルアミン、ポリエチレングリコール、ポリビニルピロリドン、ポリエチレンイミン、ポリビニルピロリドン;ミリスチン酸、オクタン酸、ステアリン酸等の脂肪酸;コール酸、グリシルジン酸、アビンチン酸等のカルボキシル基を有する多環式炭化水素化合物などが挙げられる。これらの中でも、前記金属粒子層(B)と前記金属めっき層(C)との密着性を向上できることから、高分子分散剤が好ましく、この高分子分散剤としては、ポリエチレンイミン、ポリプロピレンイミン等のポリアルキレンイミン、前記ポリアルキレンイミンにポリオキシアルキレンが付加した化合物、ウレタン樹脂、アクリル樹脂、前記ウレタン樹脂や前記アクリル樹脂にリン酸基を含有する化合物等が挙げられる。 A low molecular weight or high molecular weight dispersant is preferably used to disperse the metal particles in the solvent. Examples of the dispersant include dodecanethiol, 1-octanethiol, triphenylphosphine, dodecylamine, polyethylene glycol, polyvinylpyrrolidone, polyethyleneimine, polyvinylpyrrolidone; fatty acids such as myristic acid, octanoic acid, stearic acid; cholic acid, Examples thereof include polycyclic hydrocarbon compounds having a carboxyl group such as glycyrudic acid and abintic acid. Among these, a polymer dispersant is preferable because it can improve the adhesion between the metal particle layer (B) and the metal plating layer (C). Examples of the polymer dispersant include polyethyleneimine and polypropyleneimine. Examples thereof include polyalkyleneimine, a compound obtained by adding polyoxyalkylene to the above polyalkyleneimine, a urethane resin, an acrylic resin, a compound containing a phosphoric acid group in the urethane resin or the acrylic resin, and the like.
 前記金属粒子を分散させるために必要な前記分散剤の使用量は、前記金属粒子100質量部に対し、0.01質量部以上50質量部以下が好ましく、0.01質量部以上10質量部以下がより好ましい。 The amount of the dispersant used to disperse the metal particles is preferably 0.01 parts by mass or more and 50 parts by mass or less, and 0.01 parts by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the metal particles. Is more preferable.
 前記分散液(b)に用いる溶媒としては、水性媒体や有機溶剤を用いることができる。前記水性媒体としては、例えば、蒸留水、イオン交換水、純水、超純水等が挙げられる。また、前記有機溶剤としては、アルコール化合物、エーテル化合物、エステル化合物、ケトン化合物等が挙げられる。 As the solvent used in the dispersion liquid (b), an aqueous medium or an organic solvent can be used. Examples of the aqueous medium include distilled water, ion-exchanged water, pure water, and ultrapure water. Examples of the organic solvent include alcohol compounds, ether compounds, ester compounds and ketone compounds.
 前記アルコール化合物としては、例えば、メタノール、エタノール、n-プロパノール、イソプロピルアルコール、n-ブタノール、イソブチルアルコール、sec-ブタノール、tert-ブタノール、ヘプタノール、ヘキサノール、オクタノール、ノナノール、デカノール、ウンデカノール、ドデカノール、トリデカノール、テトラデカノール、ペンタデカノール、ステアリルアルコール、アリルアルコール、シクロヘキサノール、テルピネオール、ターピネオール、ジヒドロターピネオール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノブチルエーテル、テトラエチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノメチルエーテル、プロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、ジプロピレングリコールモノブチルエーテル、トリプロピレングリコールモノブチルエーテル等が挙げられる。 Examples of the alcohol compound include methanol, ethanol, n-propanol, isopropyl alcohol, n-butanol, isobutyl alcohol, sec-butanol, tert-butanol, heptanol, hexanol, octanol, nonanol, decanol, undecanol, dodecanol, tridecanol, Tetradecanol, pentadecanol, stearyl alcohol, allyl alcohol, cyclohexanol, terpineol, terpineol, dihydroterpineol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monoethyl ether, diethylene glycol monomethyl ether, diethylene glycol Mo Butyl ether, tetraethylene glycol monobutyl ether, propylene glycol monomethyl ether, dipropylene glycol monomethyl ether, tripropylene glycol monomethyl ether, propylene glycol monopropyl ether, dipropylene glycol monopropyl ether, propylene glycol monobutyl ether, dipropylene glycol monobutyl ether, tri Propylene glycol monobutyl ether and the like can be mentioned.
 また、前記分散液(b)には、前記金属粒子、溶媒の他に、必要に応じてエチレングリコール、ジエチレングリコール、1,3-ブタンジオール、イソプレングリコール等を用いることができる。 In addition, in the dispersion liquid (b), ethylene glycol, diethylene glycol, 1,3-butanediol, isoprene glycol and the like can be used, if necessary, in addition to the metal particles and the solvent.
 前記界面活性剤としては、一般的な界面活性剤を用いることができ、例えば、ジ-2-エチルヘキシルスルホコハク酸塩、ドデシルベンゼンスルホン酸塩、アルキルジフェニルエーテルジスルホン酸塩、アルキルナフタレンスルホン酸塩、ヘキサメタリン酸塩等が挙げられる。 As the surfactant, a general surfactant can be used, and examples thereof include di-2-ethylhexylsulfosuccinate, dodecylbenzenesulfonate, alkyldiphenyletherdisulfonate, alkylnaphthalenesulfonate, and hexametaphosphoric acid. Salt etc. are mentioned.
 前記レベリング剤としては、一般的なレベリング剤を用いることができ、例えば、シリコーン系化合物、アセチレンジオール系化合物、フッ素系化合物等が挙げられる。 As the leveling agent, a general leveling agent can be used, and examples thereof include silicone compounds, acetylene diol compounds, and fluorine compounds.
 前記粘度調整剤としては、一般的な増粘剤を用いることができ、例えば、アルカリ性に調整することによって増粘可能なアクリル重合体や合成ゴムラテックス、分子が会合することによって増粘可能なウレタン樹脂、ヒドロキシエチルセルロース、カルボキシメチルセルロース、メチルセルロース、ポリビニルアルコール、水添加ヒマシ油、アマイドワックス、酸化ポリエチレン、金属石鹸、ジベンジリデンソルビトールなどが挙げられる。 As the viscosity modifier, a general thickener can be used. For example, an acrylic polymer or synthetic rubber latex that can be thickened by adjusting the alkalinity, or a urethane that can be thickened by association of molecules. Examples thereof include resins, hydroxyethyl cellulose, carboxymethyl cellulose, methyl cellulose, polyvinyl alcohol, water-added castor oil, amide wax, polyethylene oxide, metal soap, dibenzylidene sorbitol and the like.
 前記成膜助剤としては、一般的な成膜助剤を用いることができ、例えば、アニオン系界面活性剤(ジオクチルスルホコハク酸エステルソーダ塩など)、疎水性ノニオン系界面活性剤(ソルビタンモノオレエートなど)、ポリエーテル変性シロキサン、シリコーンオイル等が挙げられる。 As the film forming aid, a general film forming aid can be used, and examples thereof include an anionic surfactant (such as dioctyl sulfosuccinic acid ester soda salt) and a hydrophobic nonionic surfactant (sorbitan monooleate). Etc.), polyether modified siloxane, silicone oil and the like.
 前記消泡剤としては、一般的な消泡剤を用いることができ、例えば、シリコーン系消泡剤、ノニオン系界面活性剤、ポリエーテル,高級アルコール、ポリマー系界面活性剤等が挙げられる。 As the antifoaming agent, a general antifoaming agent can be used, and examples thereof include a silicone type antifoaming agent, a nonionic surfactant, a polyether, a higher alcohol, and a polymer type surfactant.
 前記防腐剤としては、一般的な防腐剤を用いることができ、例えば、イソチアゾリン系防腐剤、トリアジン系防腐剤、イミダゾール系防腐剤、ピリジン系防腐剤、アゾール系防腐剤、ピリチオン系防腐剤等が挙げられる。 As the preservative, it is possible to use a general preservative, for example, isothiazoline preservatives, triazine preservatives, imidazole preservatives, pyridine preservatives, azole preservatives, pyrithione preservatives and the like. Can be mentioned.
 前記分散液(b)の粘度(25℃でB型粘度計を用いて測定した値)は、0.1mPa・s以上500,000mPa・s以下が好ましく、0.2mPa・s以上10,000mPa・s以下がより好ましい。また、前記分散液(b)を、後述するインクジェット印刷法、凸版反転印刷等の方法によって塗布する場合には、その粘度は5mPa・s以上20mPa・s以下が好ましい。 The viscosity of the dispersion liquid (b) (value measured at 25 ° C. using a B type viscometer) is preferably 0.1 mPa · s or more and 500,000 mPa · s or less, and 0.2 mPa · s or more and 10,000 mPa · s or more. s or less is more preferable. When the dispersion liquid (b) is applied by a method such as an inkjet printing method or a letterpress reverse printing method described later, its viscosity is preferably 5 mPa · s or more and 20 mPa · s or less.
 プライマー層16の上に前記分散液(b)を塗布する方法としては、例えば、グラビア法、オフセット法、フレキソ法、パッド印刷法、グラビアオフセット法、凸版法、反転印刷法、スクリーン法、マイクロコンタクト法、リバース法、エアドクターコーター法、ブレードコーター法、エアナイフコーター法、スクイズコーター法、含浸コーター法、トランスファーロールコーター法、キスコーター法、キャストコーター法、スプレーコーター法、インクジェット法、ダイコーター法、スピンコーター法、バーコーター法、ディップコーター法等の方法が挙げられる。 Examples of the method of applying the dispersion liquid (b) on the primer layer 16 include a gravure method, an offset method, a flexographic method, a pad printing method, a gravure offset method, a letterpress method, a reverse printing method, a screen method, and a microcontact. Method, reverse method, air doctor coater method, blade coater method, air knife coater method, squeeze coater method, impregnation coater method, transfer roll coater method, kiss coater method, cast coater method, spray coater method, inkjet method, die coater method, spin Examples thereof include a coater method, a bar coater method and a dip coater method.
 これらの塗布方法の中でも、電子回路等の高密度化を実現する際に求められる0.01以上100μm以下程度の細線状でパターン化された金属粒子層18を形成する場合には、インクジェット法、反転印刷法を用いることが好ましい。 Among these coating methods, in the case of forming the metal particle layer 18 patterned in the form of fine lines of 0.01 to 100 μm, which is required when realizing high density of electronic circuits, an inkjet method, It is preferable to use the reverse printing method.
 前記インクジェット印刷法としては、一般にインクジェットプリンターといわれるものを用いることができる。具体的には、コニカミノルタEB100、XY100(コニカミノルタIJ株式会社製)、ダイマティックス・マテリアルプリンターDMP-3000、ダイマティックス・マテリアルプリンターDMP-2831(富士フィルム株式会社製)等が挙げられる。 As the inkjet printing method, what is generally called an inkjet printer can be used. Specific examples thereof include Konica Minolta EB100, XY100 (manufactured by Konica Minolta IJ Co., Ltd.), Dymatics Material Printer DMP-3000, Dymatics Material Printer DMP-2831 (Fuji Film Co., Ltd.) and the like.
 また、反転印刷法としては、凸版反転印刷法、凹版反転印刷法が知られており、例えば、各種ブランケットの表面に前記分散液(b)を塗工し、非画線部が突出した版と接触させ、前記非画線部に対応する分散液(b)を前記版の表面に選択的に転写させることによって、前記ブランケット等の表面に前記パターンを形成し、次いで、前記パターンを、前記支持体(A)の上(表面)に転写させる方法が挙げられる。 Further, as a reverse printing method, a letterpress reverse printing method and an intaglio reverse printing method are known, and for example, the dispersion liquid (b) is applied to the surface of various blankets to form a plate in which a non-image area is projected. By contacting and selectively transferring the dispersion liquid (b) corresponding to the non-image area onto the surface of the plate, the pattern is formed on the surface of the blanket or the like, and then the pattern is supported by the support. Examples thereof include a method of transferring onto the body (A) (surface).
 金属粒子層18の単位面積当たりの質量は、1mg/m以上30,000mg/m以下が好ましく、1mg/m以上5,000mg/m以下が好ましい。金属粒子層18の厚さは、金属めっき層22の形成する際のめっき処理工程における処理時間、電流密度、めっき用添加剤の使用量等を制御することによって調整することができる。 Mass per unit area of the metal particle layer 18 is preferably from 1 mg / m 2 or more 30,000 / m 2 or less, 1 mg / m 2 or more 5,000 mg / m 2 or less. The thickness of the metal particle layer 18 can be adjusted by controlling the treatment time, the current density, the usage amount of the plating additive, and the like in the plating treatment step when forming the metal plating layer 22.
 前記工程(2)の後、必要に応じて、金属粒子層18にバリアメタルめっき処理を行い、バリアメタルめっき層20(図5参照)を形成する(工程(2-1))。具体的には、金属粒子層18の底面及び側壁1に沿うようにバリアメタルめっき層20を形成する。 After the step (2), the metal particle layer 18 is subjected to a barrier metal plating treatment, if necessary, to form a barrier metal plating layer 20 (see FIG. 5) (step (2-1)). Specifically, the barrier metal plating layer 20 is formed along the bottom surface and the side wall 1 of the metal particle layer 18.
 バリアメタルめっき層20は、無電解めっき処理、もしくは電解めっき処理により形成することができる。無電解めっき処理は、例えば、金属粒子層18に、ニッケル、クロム、コバルト等の無電解めっき液を接触させることで、無電解めっき液中に含まれる金属を析出させ、バリアメタル金属皮膜からなる無電解めっき層(皮膜)を形成する方法である
The barrier metal plating layer 20 can be formed by electroless plating or electrolytic plating. In the electroless plating process, for example, a metal contained in the electroless plating solution is deposited by bringing the metal particle layer 18 into contact with an electroless plating solution such as nickel, chromium, or cobalt, and is formed of a barrier metal metal film. This is a method of forming an electroless plating layer (coating).
 バリアメタルめっき処理の還元剤として、次亜燐酸、次亜燐酸ナトリウムやアミンボランを還元剤として用いることで、前記ニッケル、クロム、コバルト等の金属にリン、ホウ素を含む合金膜を得ることができる。また、前記金属の無電解めっき液に、さらに、タングステン、モリブデン、レニウム、ルテニウム等の塩を添加した無電解めっき液を用いることで、これらの金属が共析したバリアメタルめっき層20を形成することができる。 By using hypophosphorous acid, sodium hypophosphite, or amine borane as a reducing agent for the barrier metal plating treatment, an alloy film containing phosphorus and boron in the metal such as nickel, chromium and cobalt can be obtained. Further, by using an electroless plating solution in which a salt such as tungsten, molybdenum, rhenium, or ruthenium is further added to the electroless plating solution of the metal, the barrier metal plating layer 20 in which these metals are co-deposited is formed. be able to.
バリアメタルめっき処理は、上記の通り、電解めっき処理であっても良い。電解めっき処理には、ニッケル、クロム、コバルト等の電解めっきを用いることができる。 The barrier metal plating treatment may be electrolytic plating treatment as described above. For the electrolytic plating treatment, electrolytic plating of nickel, chromium, cobalt or the like can be used.
 次に、めっき処理を行い、トレンチ15内を充填するように、トレンチ15内かつ金属粒子層18上に金属めっき層22(図1参照)を形成する(工程(3))。バリアメタルめっき層20を形成した場合には、バリアメタルめっき層20上にめっき処理を行い、金属めっき層22を形成する。また、バリアメタルめっき層20を形成しなかった場合には、金属粒子層18上にめっき処理を行い、金属めっき層22を形成する。 Next, a plating process is performed to form a metal plating layer 22 (see FIG. 1) in the trench 15 and on the metal particle layer 18 so as to fill the trench 15 (step (3)). When the barrier metal plating layer 20 is formed, the barrier metal plating layer 20 is plated to form the metal plating layer 22. When the barrier metal plating layer 20 is not formed, the metal particle layer 18 is plated to form the metal plating layer 22.
 金属めっき層22の形成方法としては、めっき処理によって形成する方法が好ましい。このめっき処理としては、簡便に金属めっき層22を形成できる電解めっき法、無電解めっき法等の湿式めっき法が挙げられる。また、これらのめっき法を組み合わせてもよい。例えば、無電解めっきを施した後、電解めっきを施して、金属めっき層22を形成してもよい。 As a method of forming the metal plating layer 22, a method of forming by a plating process is preferable. Examples of the plating treatment include wet plating methods such as an electrolytic plating method and an electroless plating method that can easily form the metal plating layer 22. Also, these plating methods may be combined. For example, the metal plating layer 22 may be formed by performing electroless plating after performing electroless plating.
 上記の無電解めっき法は、例えば、金属粒子層18、又は、バリアメタルめっき層20に、無電解めっき液を接触させることで、無電解めっき液中に含まれる銅等の金属を析出させ金属皮膜からなる無電解めっき層(皮膜)を形成する方法である。 In the electroless plating method, for example, a metal such as copper contained in the electroless plating solution is deposited by bringing the electroless plating solution into contact with the metal particle layer 18 or the barrier metal plating layer 20. This is a method of forming an electroless plating layer (coating) made of a coating.
 前記無電解めっき液としては、例えば、銅、銀、金、ニッケル、クロム、コバルト、スズ等の金属と、還元剤と、水性媒体、有機溶剤等の溶媒とを含有するものが挙げられる。また、金属めっき層20を導電層として用いる場合には、前記無電解めっき液の金属種としては、導電性の高い金属である銀、銅、金が好ましく、比較的安価な銅がより好ましい。 Examples of the electroless plating solution include those containing a metal such as copper, silver, gold, nickel, chromium, cobalt and tin, a reducing agent, and a solvent such as an aqueous medium and an organic solvent. When the metal plating layer 20 is used as the conductive layer, silver, copper, and gold, which are highly conductive metals, are preferable as the metal species of the electroless plating solution, and relatively inexpensive copper is more preferable.
 前記還元剤としては、例えば、ジメチルアミノボラン、次亜燐酸、次亜燐酸ナトリウム、ヒドラジン、ホルムアルデヒド、水素化ホウ素ナトリウム、フェノール等が挙げられる。 Examples of the reducing agent include dimethylaminoborane, hypophosphorous acid, sodium hypophosphite, hydrazine, formaldehyde, sodium borohydride, phenol and the like.
 また、前記無電解めっき液としては、必要に応じて、酢酸、蟻酸等のモノカルボン酸;マロン酸、コハク酸、アジピン酸、マレイン酸、フマール酸等のジカルボン酸化合物;リンゴ酸、乳酸、グリコール酸、グルコン酸、クエン酸等のヒドロキシカルボン酸化合物;グリシン、アラニン、イミノジ酢酸、アルギニン、アスパラギン酸、グルタミン酸等のアミノ酸化合物;イミノジ酢酸、ニトリロトリ酢酸、エチレンジアミンジ酢酸、エチレンジアミンテトラ酢酸、ジエチレントリアミンペンタ酢酸等のアミノポリカルボン酸化合物などの有機酸、又はこれらの有機酸の可溶性塩(ナトリウム塩、カリウム塩、アンモニウム塩等)、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン等のアミン化合物等の錯化剤を含有するものを用いることができる。 As the electroless plating solution, if necessary, a monocarboxylic acid such as acetic acid and formic acid; a dicarboxylic acid compound such as malonic acid, succinic acid, adipic acid, maleic acid and fumaric acid; malic acid, lactic acid, glycol Hydroxycarboxylic acid compounds such as acids, gluconic acid and citric acid; amino acid compounds such as glycine, alanine, iminodiacetic acid, arginine, aspartic acid and glutamic acid; iminodiacetic acid, nitrilotriacetic acid, ethylenediaminediacetic acid, ethylenediaminetetraacetic acid, diethylenetriaminepentaacetic acid, etc. Containing an organic acid such as aminopolycarboxylic acid compound, or a soluble salt of these organic acids (sodium salt, potassium salt, ammonium salt, etc.), and a complexing agent such as amine compound such as ethylenediamine, diethylenetriamine, triethylenetetramine, etc. It can be used for.
 前記無電解めっき液は、20℃以上98℃以下で用いることが好ましい。 The electroless plating solution is preferably used at 20 ° C or higher and 98 ° C or lower.
 前記電解めっき法は、例えば、金属粒子層18、前記無電解処理によって形成された無電解めっき層(皮膜)、又は、バリアメタルめっき層20の表面に、電解めっき液を接触した状態で通電することにより、前記電解めっき液中に含まれる銅等の金属を、カソードに設置した層(金属粒子層18、前記無電解処理によって形成された無電解めっき層(皮膜)、又は、バリアメタルめっき層20)の表面に析出させ、電解めっき層(金属皮膜)を形成する方法である。 In the electroplating method, for example, the surface of the metal particle layer 18, the electroless plating layer (coating) formed by the electroless treatment, or the barrier metal plating layer 20 is energized in a state of being in contact with an electroplating solution. In this way, a layer in which a metal such as copper contained in the electrolytic plating solution is installed on the cathode (metal particle layer 18, electroless plating layer (coating) formed by the electroless treatment, or barrier metal plating layer) 20) is deposited on the surface to form an electrolytic plating layer (metal coating).
 前記電解めっき液としては、例えば、銅、銀、金、ニッケル、クロム、コバルト、スズ等の電解めっき液が挙げられる。また、金属めっき層22を導電層として用いる場合には、前記電解めっき液の金属種としては、導電性の高い金属である銀、銅、金が好ましく、比較的安価な銅がより好ましい。また、金属めっき層22を導電層として用いる場合には、めっき金属は、共析物の無い、純度の高いものが好ましい。 Examples of the electrolytic plating solution include electrolytic plating solutions of copper, silver, gold, nickel, chromium, cobalt, tin and the like. When the metal plating layer 22 is used as a conductive layer, silver, copper, and gold, which are highly conductive metals, are preferable as the metal species of the electrolytic plating solution, and relatively inexpensive copper is more preferable. When the metal plating layer 22 is used as the conductive layer, it is preferable that the plating metal has a high purity and is free of eutectoid substances.
 前記電解めっき液は、20℃以上98℃以下で用いることが好ましい。 The electrolytic plating solution is preferably used at 20 ° C or higher and 98 ° C or lower.
 金属めっき層22の形成方法としては、トレンチ15内に好適に金属めっき層22を形成するために、無電解めっき法及び電解めっき法を適宜選択又は組み合わせることができる。特に、前記トレンチ内全体に金属めっき層(C)を充填する場合は、無電解めっきを施した後、電解めっきを施す方法が好ましい。なお、金属めっき層22を形成すると、絶縁層(A)の表面全面に、金属めっき層が形成されることになる。この場合、必要に応じて、トレンチが形成されている部分以外の表面に形成された金属めっき層を除去して、絶縁層(A)を表出させてもよい。金属めっき層の除去方法は、従来公知の方法を採用することができ、例えば、化学的機械研磨(CMP;Chemical Mechanical Polishing)が挙げられる。 As a method of forming the metal plating layer 22, an electroless plating method and an electrolytic plating method can be appropriately selected or combined in order to preferably form the metal plating layer 22 in the trench 15. In particular, when filling the whole of the trench with the metal plating layer (C), it is preferable to perform electroless plating and then electrolytic plating. When the metal plating layer 22 is formed, the metal plating layer is formed on the entire surface of the insulating layer (A). In this case, if necessary, the metal plating layer formed on the surface other than the portion where the trench is formed may be removed to expose the insulating layer (A). As a method for removing the metal plating layer, a conventionally known method can be adopted, and examples thereof include chemical mechanical polishing (CMP).
 以下、本発明に関し実施例を用いて詳細に説明するが、本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to the following examples as long as the gist thereof is not exceeded.
[金属粒子の分散液(b)の調製]
 エチレングリコール30質量部と、イオン交換水70質量部との混合溶媒に、分散剤としてポリエチレンイミンにポリオキシエチレンが付加した化合物を用いて平均粒径30nmの銀粒子を分散させることによって、金属粒子と、反応性官能基として塩基性窒素原子含有基を有する高分子分散剤とを含有する金属粒子分散液を調製した。次いで、得られた金属粒子分散液に、イオン交換水、エタノール及び界面活性剤を添加して、その粘度を10mPa・sに調整することによって、金属粒子の分散液(b)を調製した。
[Preparation of dispersion liquid (b) of metal particles]
Metal particles are obtained by dispersing silver particles having an average particle diameter of 30 nm using a compound obtained by adding polyoxyethylene to polyethyleneimine as a dispersant in a mixed solvent of 30 parts by mass of ethylene glycol and 70 parts by mass of ion-exchanged water. And a polymer dispersant having a basic nitrogen atom-containing group as a reactive functional group were prepared. Next, a dispersion liquid (b) of metal particles was prepared by adding ion-exchanged water, ethanol and a surfactant to the obtained metal particle dispersion liquid and adjusting the viscosity thereof to 10 mPa · s.
[プライマー層(D)用樹脂の製造]
 攪拌機、還流冷却管、窒素導入管、温度計を備えた反応容器に、ポリカーボネートポリオール(1,4-シクロヘキサンジメタノールと炭酸エステルとを反応させて得られる酸基当量1,000g/当量のポリカーボネートジオール)100質量部、2,2―ジメチロールプロピオン酸9.7質量部、1,4-シクロヘキサンジメタノール5.5質量部、ジシクロヘキシルメタンジイソシアネート51.4質量部を、メチルエチルケトン111質量部の混合溶剤中で反応させることによって、分子末端にイソシアネート基を有するウレタンプレポリマーの有機溶剤溶液を得た。
[Production of Resin for Primer Layer (D)]
Polycarbonate polyol (an acid group equivalent of 1,000 g / equivalent polycarbonate diol obtained by reacting 1,4-cyclohexanedimethanol and a carbonic acid ester in a reaction vessel equipped with a stirrer, a reflux condenser, a nitrogen introduction tube, and a thermometer. ) 100 parts by mass, 2,2-dimethylolpropionic acid 9.7 parts by mass, 1,4-cyclohexanedimethanol 5.5 parts by mass, dicyclohexylmethane diisocyanate 51.4 parts by mass in a mixed solvent of methyl ethyl ketone 111 parts by mass. By carrying out the reaction in step 1, an organic solvent solution of a urethane prepolymer having an isocyanate group at the molecular end was obtained.
 次いで、前記ウレタンプレポリマーの有機溶剤溶液にトリエチルアミンを7.3質量部加えることで、前記ウレタン樹脂が有するカルボキシル基の一部また又は全部を中和し、さらに水355質量部を加え十分に攪拌することにより、ウレタンプレポリマーの水性分散液を得た。 Then, by adding 7.3 parts by mass of triethylamine to the organic solvent solution of the urethane prepolymer, a part or all of the carboxyl groups of the urethane resin are neutralized, and further 355 parts by mass of water is added and the mixture is sufficiently stirred. By doing so, an aqueous dispersion of the urethane prepolymer was obtained.
 次いで、前記水性分散液に、25質量%のエチレンジアミン水溶液を4.3質量部加え、攪拌することによって、粒子状のウレタンプレポリマーを鎖伸長させ、次いでエージング・脱溶剤することによって、固形分濃度30質量%のウレタン樹脂の水性分散液を得た。 Next, 4.3 parts by mass of a 25% by mass aqueous solution of ethylenediamine was added to the aqueous dispersion, and the mixture was stirred to extend the chain of the particulate urethane prepolymer, followed by aging and desolvation to obtain a solid content concentration. An aqueous dispersion of 30% by weight urethane resin was obtained.
 攪拌機、還流冷却管、窒素導入管、温度計、単量体混合物滴下用滴下漏斗、重合触媒滴下用滴下漏斗を備えた反応容器に脱イオン水140質量部、前記で得たウレタン樹脂の水分散液100質量部を入れ、窒素を吹き込みながら80℃まで昇温した。80℃まで昇温した反応容器内に、攪拌下、メタクリル酸メチル60質量部、アクリル酸n-ブチル10質量部、N-n-ブトキシメチルアクリルアミド30質量部を含有する単量体混合物と、過硫酸アンモニウム水溶液(濃度:0.5質量%)20質量部を別々の滴下漏斗から、反応容器内温度を80±2℃に保ちながら120分間かけて滴下し重合した。 140 parts by mass of deionized water in a reaction vessel equipped with a stirrer, a reflux condenser, a nitrogen introduction tube, a thermometer, a dropping funnel for dropping a monomer mixture, and a dropping funnel for dropping a polymerization catalyst, and an aqueous dispersion of the urethane resin obtained above. 100 parts by mass of the liquid was added, and the temperature was raised to 80 ° C. while blowing nitrogen. In a reaction vessel heated to 80 ° C., with stirring, a monomer mixture containing 60 parts by mass of methyl methacrylate, 10 parts by mass of n-butyl acrylate, and 30 parts by mass of Nn-butoxymethylacrylamide was added. 20 parts by mass of an aqueous ammonium sulfate solution (concentration: 0.5% by mass) was added dropwise from separate dropping funnels over 120 minutes while maintaining the temperature in the reaction vessel at 80 ± 2 ° C., and polymerization was carried out.
 滴下終了後、同温度にて60分間攪拌し、その後、前記反応容器内の温度を40℃に冷却し、ついで、不揮発分が20質量%になるように脱イオン水を添加した後、200メッシュ濾布で濾過することによって、反応性官能基としてカルボキシル基とN-n-ブトキシメチルアクリルアミド基を含有するプライマー層(D)用樹脂を得た。 After completion of dropping, the mixture was stirred for 60 minutes at the same temperature, then the temperature in the reaction vessel was cooled to 40 ° C., and then deionized water was added so that the nonvolatile content was 20% by mass, and then 200 mesh By filtering with a filter cloth, a resin for a primer layer (D) containing a carboxyl group and an Nn-butoxymethylacrylamide group as a reactive functional group was obtained.
[プライマー層(D)用樹脂を含有するプライマー組成物(d)の調製]
 前記プライマー層(D)用樹脂の製造で得られたプライマー層(D)用樹脂10質量部に、エタノール90質量部を攪拌混合し、プライマー層(D)用樹脂を含有する流動体(プライマー組成物(d))得た。
[Preparation of primer composition (d) containing resin for primer layer (D)]
90 parts by mass of ethanol was stirred and mixed with 10 parts by mass of the resin for primer layer (D) obtained in the production of the resin for primer layer (D), and a fluid containing the resin for primer layer (D) (primer composition The product (d)) was obtained.
[積層体の作製]
(実施例1)
 非感光性のポリイミド前駆体樹脂(東レ株式会社製「セミコファイン SP-341」)をシリコンウエハ上にスピンコート装置(ミカサ株式会社製「MS-A150」)を用いて塗布した後、ホットプレートにて95℃で1分30秒間、125℃で1分30秒間の順で加熱し、膜厚5μmの絶縁層を得た。
 ポジ型感光性のポリイミド前駆体樹脂(東レ株式会社製「フォトニース LT6300」)を、前記絶縁層上にスピンコート装置(ミカサ株式会社製「MS-A150」)を用いて塗布した後、ホットプレートにて120℃で3分間乾燥し、膜厚7μmの塗膜を得た。 次いで、線幅5μm、線間隔5μm、線長1000μmのパターンフォトマスクを通して露光した。なお、線間隔とは、トレンチ間の距離aのことをいい、一方の線と他方の線との間の絶縁層部分の長さをいう。
 次いで、2.38質量%のテトラメチルアンモニウムハイドロオキサイド水溶液の現像液を180秒間スプレーし、次いで純水で30秒間洗浄した後、クリーンオーブンを用い、窒素雰囲気下で、50℃で30分間、110℃で30分間、200℃で60分間の順で加熱、硬化させることにより、深さ5μmのトレンチが形成された面を有する絶縁層(A)を得た。
[Production of laminated body]
(Example 1)
A non-photosensitive polyimide precursor resin (“Semicofine SP-341” manufactured by Toray Industries, Inc.) was applied on a silicon wafer using a spin coater (“MS-A150” manufactured by Mikasa Co., Ltd.), and then applied on a hot plate. At 95 ° C. for 1 minute 30 seconds and at 125 ° C. for 1 minute 30 seconds to obtain an insulating layer having a thickness of 5 μm.
A positive photosensitive polyimide precursor resin (“Photo Nice LT6300” manufactured by Toray Industries, Inc.) was applied on the insulating layer using a spin coater (“MS-A150” manufactured by Mikasa Corporation), and then a hot plate was applied. At 120 ° C. for 3 minutes to obtain a coating film having a film thickness of 7 μm. Then, exposure was performed through a pattern photomask having a line width of 5 μm, a line interval of 5 μm, and a line length of 1000 μm. The line spacing means the distance a between the trenches, and the length of the insulating layer portion between one line and the other line.
Then, a developing solution of a 2.38 mass% tetramethylammonium hydroxide aqueous solution is sprayed for 180 seconds, and then washed with pure water for 30 seconds, and then, using a clean oven under a nitrogen atmosphere at 50 ° C. for 30 minutes, 110 The insulating layer (A) having a surface in which a trench having a depth of 5 μm was formed was obtained by heating and curing in the order of 30 ° C. for 30 minutes and 200 ° C. for 60 minutes.
 得られたトレンチを有する絶縁層(A)上に、上記で調整した金属粒子の分散液(b)を、スピンコート装置(ミカサ株式会社製「MS-A150」)で、金属粒子層としての乾燥後の平均膜厚が30nmになるように塗布した。すなわち、金属粒子の分散液(b)を、絶縁層(A)の底面、及び、側壁に金属粒子層としての乾燥後の平均膜厚が30nmになるように塗布した。80℃で30分間加熱し、前記絶縁層(A)表面全面に金属粒子層(B)を形成した。 On the obtained insulating layer (A) having a trench, the metal particle dispersion liquid (b) prepared above was dried as a metal particle layer by a spin coater (“MS-A150” manufactured by Mikasa Co., Ltd.). It was applied so that the average film thickness afterwards would be 30 nm. That is, the dispersion liquid (b) of metal particles was applied to the bottom surface and the side wall of the insulating layer (A) so that the average film thickness of the metal particle layer after drying was 30 nm. By heating at 80 ° C. for 30 minutes, a metal particle layer (B) was formed on the entire surface of the insulating layer (A).
 前記で形成した金属粒子層(B)を無電解銅めっき液(奥野製薬工業株式会社製「OICカッパー」、pH12.5)中に45℃で12分間浸漬し、無電解銅めっきを行い、前記絶縁層(A)表面全面に無電解めっきによる銅めっき層(膜厚0.2μm)を形成した。この無電解めっきによる銅めっき層は、金属めっき層(C)に相当する。 The metal particle layer (B) formed above is immersed in an electroless copper plating solution ("OIC Copper" manufactured by Okuno Chemical Industries Co., Ltd., pH 12.5) at 45 ° C for 12 minutes to perform electroless copper plating, A copper plating layer (film thickness 0.2 μm) was formed by electroless plating on the entire surface of the insulating layer (A). The copper plating layer formed by this electroless plating corresponds to the metal plating layer (C).
 前記銅めっき層をカソード側に設定し、含リン銅をアノード側に設定し、硫酸銅を含有する電解めっき液を用いて電流密度1.5A/dmで10分間電解めっきを行うことによって、前記絶縁層(A)表面全面に銅めっき膜を形成し、トレンチ内に銅を充填させた。前記電解めっき液としては、硫酸銅70g/L、硫酸200g/L、塩素イオン50mg/L、添加剤(奥野製薬工業株式会社製「トップルチナSF-M」)5ml/Lを用いた。この銅めっき層(電解めっき層)もまた、金属めっき層(C)に相当する。 By setting the copper plating layer on the cathode side, setting phosphorus-containing copper on the anode side, and performing electrolytic plating for 10 minutes at a current density of 1.5 A / dm 2 using an electrolytic plating solution containing copper sulfate, A copper plating film was formed on the entire surface of the insulating layer (A) to fill the trenches with copper. As the electrolytic plating solution, 70 g / L of copper sulfate, 200 g / L of sulfuric acid, 50 mg / L of chloride ion, and 5 ml / L of additive (“Top Lucina SF-M” manufactured by Okuno Chemical Industries Co., Ltd.) were used. This copper plating layer (electrolytic plating layer) also corresponds to the metal plating layer (C).
 前記金属めっき層(C)の表層を化学的機械研磨(CMP;Chemical Mechanical Polishing)することによって、トレンチ内に充填された以外の銅層を除去した。CMPは、研磨機(スピードファム株式会社製「18GPAW」)を用いて、ポリウレタン独立発泡タイプの研磨パッドで研磨圧力30kPa、定盤回転数50rpm、コロイダルシリカ溶液の研磨剤を使用して行った。 The copper layer other than that filled in the trench was removed by subjecting the surface layer of the metal plating layer (C) to chemical mechanical polishing (CMP; Chemical Mechanical Polishing). The CMP was performed using a polishing machine (“18GPAW” manufactured by Speed Fam Co., Ltd.) with a polyurethane independent foaming type polishing pad, a polishing pressure of 30 kPa, a platen rotation speed of 50 rpm, and a polishing agent of a colloidal silica solution.
 以上の方法によって、絶縁層(A)に形成されたトレンチ内に金属粒子層(B)及び金属めっき層(C)が順次積層された積層体を得た。 By the above method, a laminate was obtained in which the metal particle layer (B) and the metal plating layer (C) were sequentially laminated in the trench formed in the insulating layer (A).
(実施例2)
 実施例1と同様にして、トレンチが形成された面を有する絶縁層(A)を得た。
(Example 2)
In the same manner as in Example 1, an insulating layer (A) having a surface in which a trench was formed was obtained.
 前記絶縁層(A)上に、プライマー層(D)用樹脂を含有するプライマー組成物(d)を、スピンコート装置(ミカサ株式会社製「MS-A150」)で、プライマー層としての乾燥後の膜厚が100nmになるように塗布した。その後80℃で30分間加熱し、前記絶縁層(A)表面全面にプライマー層(D)を形成した。 After the primer composition (d) containing the resin for the primer layer (D) was applied onto the insulating layer (A) by a spin coater (“MS-A150” manufactured by Mikasa Co., Ltd.), the primer composition was dried. It was applied so that the film thickness would be 100 nm. Then, it heated at 80 degreeC for 30 minute (s), and formed the primer layer (D) on the whole surface of the said insulating layer (A).
 前記プライマー層(D)の表面に、実施例1と同様にして、金属粒子層(B)と金属めっき層(C)とを形成した後、実施例1と同様にして、CMPにてトレンチ内に充填した銅以外の銅層を除去した。 After forming the metal particle layer (B) and the metal plating layer (C) on the surface of the primer layer (D) in the same manner as in Example 1, the inside of the trench is subjected to CMP in the same manner as in Example 1. The copper layers other than the copper filled in were removed.
 以上の方法によって、絶縁層(A))に形成されたトレンチ内にプライマー層(D)、金属粒子層(B)及び金属めっき層(C)が順次積層された積層体を得た。 By the above method, a laminate was obtained in which the primer layer (D), the metal particle layer (B) and the metal plating layer (C) were sequentially laminated in the trench formed in the insulating layer (A).
(実施例3)
 実施例1で用いた無電解銅めっき液の代わりに、無電解ニッケル-ホウ素めっき液を用いて、無電解ニッケル-ホウ素めっき層を形成したこと以外は、実施例1と同様の方法によって、積層体を得た。この無電解ニッケル-ホウ素めっき層は、バリアメタルめっき層(E)に相当する。すなわち、実施例3では、トレンチが形成された面を有する絶縁層(A)上に、金属粒子層(B)、バリアメタルめっき層(E)及び金属めっき層(C)が順次積層された積層体を得た。前記無電解ニッケル-ホウ素めっき液としては、奥野製薬工業株式会社製「トップケミアロイ66-LF」を用い、65℃で2分間浸漬して、膜厚0.2μmのニッケル-ホウ素めっき層を形成した。
(Example 3)
Lamination by the same method as in Example 1 except that an electroless nickel-boron plating solution was used instead of the electroless copper plating solution used in Example 1 to form an electroless nickel-boron plating layer. Got the body This electroless nickel-boron plating layer corresponds to the barrier metal plating layer (E). That is, in Example 3, the metal particle layer (B), the barrier metal plating layer (E), and the metal plating layer (C) were sequentially stacked on the insulating layer (A) having the surface where the trench was formed. Got the body As the electroless nickel-boron plating solution, "Top Chemialoy 66-LF" manufactured by Okuno Chemical Industries Co., Ltd. is used and immersed at 65 ° C. for 2 minutes to form a nickel-boron plating layer having a thickness of 0.2 μm. did.
(実施例4)
 実施例2で用いた無電解銅めっき液の代わりに、前記無電解ニッケル-ホウ素めっき液を用いて、ニッケル-ホウ素めっき層を形成したこと以外は、実施例2と同様の方法によって、積層体を得た。このニッケルーホウ素めっき層は、バリアメタルめっき層(E)に相当する。すなわち、実施例4では、トレンチが形成された面を有する絶縁層(A)上に、プライマー層(D)、金属粒子層(B)、バリアメタルめっき層(E)及び金属めっき層(C)が順次積層された積層体を得た。
(Example 4)
Laminated body was manufactured in the same manner as in Example 2 except that the electroless nickel-boron plating solution was used in place of the electroless copper plating solution used in Example 2 to form the nickel-boron plating layer. Got This nickel-boron plating layer corresponds to the barrier metal plating layer (E). That is, in Example 4, the primer layer (D), the metal particle layer (B), the barrier metal plating layer (E) and the metal plating layer (C) were formed on the insulating layer (A) having the surface where the trench was formed. A laminated body was obtained by sequentially laminating.
(実施例5)
 実施例4で用いた無電解ニッケル-ホウ素めっき液の代わりに、金属粒子層(B)の銀の一部をパラジウム置換した後に無電解ニッケル-リンめっき液を用いて、ニッケル-リンめっき層を形成したこと以外は、実施例4と同様の方法によって、積層体を得た。このニッケルーリンめっき層は、バリアメタルめっき層(E)に相当する。すなわち、実施例5では、トレンチが形成された面を有する絶縁層(A)上に、プライマー層(D)、金属粒子層(B)、バリアメタルめっき層(E)及び金属めっき層(C)が順次積層された積層体を得た。
(Example 5)
Instead of the electroless nickel-boron plating solution used in Example 4, a part of silver in the metal particle layer (B) was replaced with palladium, and then the electroless nickel-phosphorus plating solution was used to form a nickel-phosphorus plating layer. A laminate was obtained by the same method as in Example 4 except that the laminate was formed. This nickel-phosphorus plating layer corresponds to the barrier metal plating layer (E). That is, in Example 5, the primer layer (D), the metal particle layer (B), the barrier metal plating layer (E), and the metal plating layer (C) were formed on the insulating layer (A) having the surface where the trench was formed. A laminated body was obtained by sequentially laminating.
 前記パラジウム置換の方法としては、イオン交換水80質量部に、塩化パラジウム3質量部と36質量%の塩酸17質量部とを溶解して、パラジウムイオン及び酸を含有する水溶液を調製して、45℃に設定し、絶縁層(A)、プライマー層(D)、及び、金属粒子層(B)の積層物を、このパラジウムイオン水溶液に浸漬し、金属粒子層(B)の銀の一部をパラジウムに置換させた。 As the method for the palladium substitution, 3 parts by mass of palladium chloride and 17 parts by mass of 36 mass% hydrochloric acid are dissolved in 80 parts by mass of ion-exchanged water to prepare an aqueous solution containing palladium ions and an acid, and 45 The temperature is set to 0 ° C., the laminate of the insulating layer (A), the primer layer (D), and the metal particle layer (B) is immersed in this palladium ion aqueous solution, and a part of silver of the metal particle layer (B) Substituted for palladium.
 前記無電解ニッケル-リンめっき液としては、株式会社JCU製「エルフシード ES-500」を用い、40℃で10分間浸漬して、膜厚0.2μmのニッケルーリンめっき層を形成した。 As the electroless nickel-phosphorus plating solution, “elf seed ES-500” manufactured by JCU Co., Ltd. was used and immersed at 40 ° C. for 10 minutes to form a nickel-phosphorus plating layer having a film thickness of 0.2 μm.
(実施例6)
 実施例5で用いた無電解ニッケル-リン素めっき液の代わりに、無電解コバルトめっき液を用いて、コバルトめっき層を形成したこと以外は、実施例5と同様の方法によって、積層体を得た。このコバルトめっき層は、バリアメタルめっき層(E)に相当する。すなわち、実施例6では、トレンチが形成された面を有する絶縁層(A)上に、プライマー層(D)、金属粒子層(B)、バリアメタルめっき層(E)及び金属めっき層(C)が順次積層された積層体を得た。
(Example 6)
A laminate was obtained in the same manner as in Example 5, except that an electroless cobalt plating solution was used instead of the electroless nickel-phosphorus plating solution used in Example 5 to form the cobalt plating layer. It was This cobalt plating layer corresponds to the barrier metal plating layer (E). That is, in Example 6, the primer layer (D), the metal particle layer (B), the barrier metal plating layer (E) and the metal plating layer (C) were formed on the insulating layer (A) having the surface where the trench was formed. A laminated body was obtained by sequentially laminating.
 前記無電解コバルトめっき液としては、硫酸コバルト2質量部、クエン酸6質量部、タングステン酸5質量部、ジメチルアミンボラン0.3質量部を含有し、水酸化テトラメチルアンモニウムでpH値を9.5に調整した液を用い、60℃で35分間浸漬して、膜厚0.2μmのコバルトめっき層を形成した。 The electroless cobalt plating solution contains 2 parts by mass of cobalt sulfate, 6 parts by mass of citric acid, 5 parts by mass of tungstic acid, and 0.3 parts by mass of dimethylamine borane, and has a pH value of 9. The liquid adjusted to 5 was used for immersion at 60 ° C. for 35 minutes to form a cobalt plating layer having a thickness of 0.2 μm.
(実施例7)
 実施例2で用いたポリイミド前駆体樹脂及びポジ型感光性のポリイミド前駆体樹脂の代わりに、線幅5μm、線間隔5μm、線長1,000μm、深さ5μmのトレンチが形成された面を有する脂肪族ポリカーボネート樹脂基材を用いたこと以外は、実施例2と同様の方法によって、積層体を得た。脂肪族ポリカーボネート樹脂基材は、ポリプロピレンカーボネートのジエチレングリコールモノエチルエーテルアセテート溶液をシリコンウエハ上にスピンコート装置(ミカサ株式会社製「MS-A150」)を用いて塗布して、ホットプレートにて150℃で30分間乾燥して膜厚5μmの絶縁層を得た後、150℃で凹凸を備えた型を5MPaの圧力を加えて押圧することにより得たものである。すなわち、実施例7では、トレンチが形成された面を有する絶縁層(A)上に、プライマー層(D)、金属粒子層(B)及び金属めっき層(C)が順次積層された積層体を得た。
(Example 7)
Instead of the polyimide precursor resin and the positive photosensitive polyimide precursor resin used in Example 2, it has a surface in which a trench having a line width of 5 μm, a line interval of 5 μm, a line length of 1,000 μm, and a depth of 5 μm is formed. A laminate was obtained in the same manner as in Example 2 except that the aliphatic polycarbonate resin base material was used. For the aliphatic polycarbonate resin substrate, a solution of polypropylene carbonate in diethylene glycol monoethyl ether acetate is applied on a silicon wafer by using a spin coater (“MS-A150” manufactured by Mikasa Co., Ltd.), and the hot plate is applied at 150 ° C. It is obtained by drying for 30 minutes to obtain an insulating layer having a film thickness of 5 μm, and then applying a pressure of 5 MPa to press a mold having irregularities at 150 ° C. That is, in Example 7, a laminated body in which the primer layer (D), the metal particle layer (B), and the metal plating layer (C) were sequentially laminated on the insulating layer (A) having the surface where the trench was formed. Obtained.
(実施例8)
 実施例4で用いたポリイミド前駆体樹脂及びポジ型感光性のポリイミド前駆体樹脂の代わりに、前記脂肪族ポリカーボネート樹脂基材を用いたこと以外は、実施例4と同様の方法によって、積層体を得た。すなわち、実施例8では、トレンチが形成された面を有する絶縁層(A)上に、プライマー層(D)、金属粒子層(B)、バリアメタルめっき層(E)及び金属めっき層(C)が順次積層された積層体を得た。
(Example 8)
A laminate was prepared in the same manner as in Example 4 except that the aliphatic polycarbonate resin substrate was used instead of the polyimide precursor resin and the positive photosensitive polyimide precursor resin used in Example 4. Obtained. That is, in Example 8, the primer layer (D), the metal particle layer (B), the barrier metal plating layer (E) and the metal plating layer (C) were formed on the insulating layer (A) having the surface where the trench was formed. A laminated body was obtained by sequentially laminating.
(実施例9)
 実施例6で用いたポリイミド前駆体樹脂及びポジ型感光性のポリイミド前駆体樹脂の代わりに、前記脂肪族ポリカーボネート樹脂基材を用いたこと以外は、実施例6と同様の方法によって、積層体を得た。すなわち、実施例9では、トレンチが形成された面を有する絶縁層(A)上に、プライマー層(D)、金属粒子層(B)、バリアメタルめっき層(E)及び金属めっき層(C)が順次積層された積層体を得た。
(Example 9)
A laminate was prepared in the same manner as in Example 6 except that the aliphatic polycarbonate resin substrate was used instead of the polyimide precursor resin and the positive photosensitive polyimide precursor resin used in Example 6. Obtained. That is, in Example 9, the primer layer (D), the metal particle layer (B), the barrier metal plating layer (E), and the metal plating layer (C) were formed on the insulating layer (A) having the surface where the trench was formed. A laminated body was obtained by sequentially laminating.
(実施例10)
 ポリイミド前駆体樹脂(東レ株式会社製「セミコファイン、SP-341」)を乾燥後の膜厚が10μmとなるようにシリコンウエハ上にスピンコート装置(ミカサ株式会社製「MS-A150」)を用いて塗布、乾燥した。得られた塗膜を、ナノインプリント装置(SCIVAX株式会社製「X300」)の下面ステージにセットした。パターン表面がフッ素系処理された、石英を材質とするモールドを、上記装置の上面ステージにセットした。装置内を真空とした後、1.5気圧の圧力でモールドを前記塗膜に圧着させ、95℃ で1分30秒間、125℃で1分30秒間の順で加熱硬化した。次いで、モールドを剥離して、線幅5μm、線間隔5μm、線長1000μm、深さ5μmのトレンチが形成された面を有する絶縁層(A)を得た。
(Example 10)
Using a spin coater (“MS-A150” manufactured by Mikasa Co., Ltd.) on a silicon wafer so that the film thickness after drying the polyimide precursor resin (“Semicofine, SP-341” manufactured by Toray Co., Ltd.) becomes 10 μm. Applied and dried. The obtained coating film was set on the lower surface stage of a nanoimprint apparatus (“X300” manufactured by SCIVAX Co., Ltd.). A mold made of quartz whose pattern surface was treated with fluorine was set on the upper surface stage of the above apparatus. After the inside of the apparatus was evacuated, the mold was pressure-bonded to the coating film at a pressure of 1.5 atm and heat-cured at 95 ° C. for 1 minute 30 seconds and at 125 ° C. for 1 minute 30 seconds. Then, the mold was peeled off to obtain an insulating layer (A) having a surface in which a trench having a line width of 5 μm, a line interval of 5 μm, a line length of 1000 μm, and a depth of 5 μm was formed.
 実施例4で用いたポリイミド前駆体樹脂及びポジ型感光性のポリイミド前駆体樹脂の代わりに、前記絶縁層(A)を用いたこと以外は、実施例4と同様の方法によって、積層体を得た。すなわち、実施例10では、トレンチが形成された面を有する絶縁層(A)上に、プライマー層(D)、金属粒子層(B)、バリアメタルめっき層(E)及び金属めっき層(C)が順次積層された積層体を得た。 A laminate was obtained by the same method as in Example 4 except that the insulating layer (A) was used instead of the polyimide precursor resin and the positive photosensitive polyimide precursor resin used in Example 4. It was That is, in Example 10, the primer layer (D), the metal particle layer (B), the barrier metal plating layer (E), and the metal plating layer (C) were formed on the insulating layer (A) having the surface where the trench was formed. A laminated body was obtained by sequentially laminating.
(実施例11)
 厚さ1mmのポリカーボネートフィルム(旭硝子社製レキサン)を、ナノインプリント装置(SCIVAX株式会社製「X300」)の下面ステージにセットした。パターン表面がフッ素系処理された、石英を材質とするモールドを、上記装置の上面ステージにセットした。装置内を真空とした後、170℃で30秒間、2.5気圧の圧力でモールドを前記ポリカーボネートフィルムに圧着させた。次いで、モールドを剥離して、線幅5μm、線間隔5μm、線長1000μm、深さ5μmのトレンチが形成された面を有する絶縁層(A)を得た。
(Example 11)
A 1 mm thick polycarbonate film (Lexan manufactured by Asahi Glass Co., Ltd.) was set on the lower surface stage of a nanoimprint apparatus (“X300” manufactured by SCIVAX Co., Ltd.). A mold made of quartz whose pattern surface was treated with fluorine was set on the upper surface stage of the above apparatus. After the inside of the apparatus was evacuated, the mold was pressed onto the polycarbonate film at 170 ° C. for 30 seconds under a pressure of 2.5 atm. Then, the mold was peeled off to obtain an insulating layer (A) having a surface on which a trench having a line width of 5 μm, a line interval of 5 μm, a line length of 1000 μm, and a depth of 5 μm was formed.
 実施例4で用いたポリイミド前駆体樹脂及びポジ型感光性のポリイミド前駆体樹脂の代わりに、前記絶縁層(A)を用いたこと以外は、実施例4と同様の方法によって、積層体を得た。すなわち、実施例11では、トレンチが形成された面を有する絶縁層(A)上に、プライマー層(D)、金属粒子層(B)、バリアメタルめっき層(E)及び金属めっき層(C)が順次積層された積層体を得た。 A laminate was obtained by the same method as in Example 4 except that the insulating layer (A) was used instead of the polyimide precursor resin and the positive photosensitive polyimide precursor resin used in Example 4. It was That is, in Example 11, the primer layer (D), the metal particle layer (B), the barrier metal plating layer (E) and the metal plating layer (C) were formed on the insulating layer (A) having the surface where the trench was formed. A laminated body was obtained by sequentially laminating.
(比較例1)
 実施例1と同様に作製したトレンチが形成された面を有する絶縁層(A)の表面に、徳田製作所製、RFスパッタリング装置を用いて逆スパッタの処理を、出力300Wで5分、スパッタ圧力は0.5Pa、アルゴンガス流量は40sccmで行った。次に同装置を用いて、到達圧力5×10-4Pa、スパッタ圧力0.2Pa、アルゴンガス流量20sccmの条件によるスパッタ法で、絶縁層(A)上に0.2μmのチタン膜と0.6μmの銅膜をこの順で形成した。このチタン膜はバリア層に相当する。銅膜は、電解めっきのためのシード層である。次いで、実施例1と同様の方法で電解めっきを行ってトレンチ内に銅を充填した後、CMPにてトレンチ内に充填した銅以外の銅層を除去した。この銅めっき層は金属めっき層に相当する。
 以上の方法によって、トレンチが形成された面を有する絶縁層(A)上に、バリアメタル層及び金属めっき層が順次積層された積層体を得た。
(Comparative Example 1)
The surface of the insulating layer (A) having the surface in which the trench was formed, which was manufactured in the same manner as in Example 1, was subjected to reverse sputtering using an RF sputtering device manufactured by Tokuda Manufacturing Co., Ltd., for 5 minutes at an output of 300 W, and the sputtering pressure was The flow rate was 0.5 Pa and the argon gas flow rate was 40 sccm. Next, using the same apparatus, a 0.2 μm titanium film and a 0.2 μm titanium film were formed on the insulating layer (A) by a sputtering method under the conditions of ultimate pressure of 5 × 10 −4 Pa, sputtering pressure of 0.2 Pa, and argon gas flow rate of 20 sccm. A 6 μm copper film was formed in this order. This titanium film corresponds to the barrier layer. The copper film is a seed layer for electrolytic plating. Next, electrolytic plating was performed in the same manner as in Example 1 to fill the trenches with copper, and then the copper layer other than copper filled in the trenches was removed by CMP. This copper plating layer corresponds to the metal plating layer.
By the above method, a laminated body was obtained in which the barrier metal layer and the metal plating layer were sequentially laminated on the insulating layer (A) having the surface where the trench was formed.
<金属めっき層の欠陥評価>
 実施例1~11及び比較例1で得られた積層体について、走査型電子顕微鏡(SEM)
(日本電子株式会社製「JSM-7800F」)を用いて、断面観察を行い、金属めっき層の欠陥の有無を確認した。断面観察は、倍率50000倍にて行い、ランダムに10箇所を観測した。下記の基準に従って金属めっき層の欠陥を評価した。
 〇:10箇所を観測して、欠陥が1箇所もない。
 ×:10箇所を観測して、欠陥が1箇所以上ある。
<Defect evaluation of metal plating layer>
Scanning electron microscope (SEM) was performed on the laminates obtained in Examples 1 to 11 and Comparative Example 1.
(JSM-7800F manufactured by JEOL Ltd.) was used to observe the cross section to confirm the presence or absence of defects in the metal plating layer. The cross section was observed at a magnification of 50,000 times, and 10 points were randomly observed. The defects of the metal plating layer were evaluated according to the following criteria.
◯: Observed at 10 points, no defect was found.
X: There are one or more defects by observing 10 places.
<金属めっき層の拡散評価>
 実施例1~11及び比較例1で得られた積層体について、150℃に設定した恒温槽内に168時間保管した後、走査型電子顕微鏡(SEM)(日本電子株式会社製「JSM-7800F」)を用いて、断面観察を行い、エネルギー分散型X線(EDS)分析によって、トレンチ内に積層した金属めっき層の金属が絶縁層に拡散した距離を観測した。下記の基準に従って金属めっき層の拡散を評価した。
 〇:銅の拡散距離が0.05μm未満
 △:銅の拡散距離が0.05μm以上0.10μm未満
 ×:銅の拡散距離が0.1μm以上
<Diffusion evaluation of metal plating layer>
The laminated bodies obtained in Examples 1 to 11 and Comparative Example 1 were stored in a thermostatic chamber set at 150 ° C. for 168 hours, and then scanned with a scanning electron microscope (SEM) (“JSM-7800F” manufactured by JEOL Ltd.). ) Was used to observe the cross section, and the distance at which the metal of the metal plating layer stacked in the trench diffused into the insulating layer was observed by energy dispersive X-ray (EDS) analysis. The diffusion of the metal plating layer was evaluated according to the following criteria.
◯: Copper diffusion distance is less than 0.05 μm Δ: Copper diffusion distance is 0.05 μm or more and less than 0.10 μm ×: Copper diffusion distance is 0.1 μm or more
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示した結果から、実施例1~10の積層体は、金属めっき層が好適に形成されていることが確認できた。また、金属めっき層の拡散が抑えられていることを確認した。
 一方、比較例1の積層体は、金属粒子層を形成せず、代わりに、スパッタリングによってバリア層およびシード層を形成し、このシード層上に金属めっき層を形成した例であるが、金属めっき層に欠陥があり、金属めっき層の金属が絶縁層に拡散することを確認した。スパッタリングの場合、トレンチの底面と側壁のバリア層およびシード層の厚さが不均一となるため、特にトレンチ側壁の膜厚が薄いところで、金属めっき層の欠陥ができ、その欠陥から金属めっき層の金属が絶縁層に拡散すると考えられる。
From the results shown in Table 1, it was confirmed that the laminates of Examples 1 to 10 had the metal plating layer formed suitably. It was also confirmed that the diffusion of the metal plating layer was suppressed.
On the other hand, the laminate of Comparative Example 1 is an example in which a metal particle layer is not formed, but instead, a barrier layer and a seed layer are formed by sputtering, and a metal plating layer is formed on this seed layer. It was confirmed that the layer had defects and the metal of the metal plating layer diffused into the insulating layer. In the case of sputtering, the thickness of the barrier layer and the seed layer on the bottom surface and side wall of the trench becomes uneven, so that a defect of the metal plating layer is generated especially where the film thickness of the side wall of the trench is thin. It is believed that the metal diffuses into the insulating layer.
 10 積層体
 12 基材
 14 絶縁層
 16 プライマー層
 18 金属粒子層
 20 バリアメタルめっき層
 22 金属めっき層
10 Laminated body 12 Base material 14 Insulating layer 16 Primer layer 18 Metal particle layer 20 Barrier metal plating layer 22 Metal plating layer

Claims (6)

  1.  トレンチが形成された面を有する絶縁層(A)と、
     前記トレンチに積層された金属粒子層(B)と、
     前記トレンチ内かつ前記金属粒子層(B)上に積層された金属めっき層(C)とを有することを特徴とする積層体。
    An insulating layer (A) having a surface in which a trench is formed,
    A metal particle layer (B) laminated in the trench,
    A laminate having a metal plating layer (C) laminated in the trench and on the metal particle layer (B).
  2.  前記金属粒子層(B)と前記金属めっき層(C)との間に、バリアメタルめっき層(E)を有することを特徴とする請求項1に記載の積層体。 The laminate according to claim 1, further comprising a barrier metal plating layer (E) between the metal particle layer (B) and the metal plating layer (C).
  3.  前記絶縁層(A)と前記金属粒子層(B)との間に、プライマー層(D)を有することを特徴とする請求項1又は2記載の積層体。 The laminate according to claim 1 or 2, which has a primer layer (D) between the insulating layer (A) and the metal particle layer (B).
  4.  トレンチが形成された面を有する絶縁層(A)を準備する工程(1)、
     前記トレンチに、金属粒子を含有する分散液(b)を塗布し、金属粒子層(B)を形成する工程(2)、及び、
     めっき処理を行い、前記トレンチ内かつ前記金属粒子層(B)上に金属めっき層(C)を形成する工程(3)を有することを特徴とする積層体の製造方法。
    A step (1) of preparing an insulating layer (A) having a surface in which a trench is formed,
    A step (2) of applying a dispersion liquid (b) containing metal particles to the trench to form a metal particle layer (B), and
    A method for manufacturing a laminate, comprising a step (3) of performing a plating treatment to form a metal plating layer (C) in the trench and on the metal particle layer (B).
  5.  前記工程(2)の後に、前記金属粒子層(B)にバリアメタルめっき処理を行い、バリアメタルめっき層(E)を形成する工程(2-1)を有し、
     前記工程(2-1)の後に、前記工程(3)を行うことを特徴とする請求項4に記載の積層体の製造方法。
    After the step (2), there is a step (2-1) of performing a barrier metal plating treatment on the metal particle layer (B) to form a barrier metal plating layer (E),
    The method for producing a laminate according to claim 4, wherein the step (3) is performed after the step (2-1).
  6.  前記工程(1)の後に、前記絶縁層(A)に、プライマー組成物(d)を塗布し、プライマー層(D)を形成する工程(1-1)を有し、
     前記工程(1-1)の後に、前記工程(2)を行うことを特徴とする請求項に4又は5記載の積層体の製造方法。
    After the step (1), there is a step (1-1) of applying a primer composition (d) to the insulating layer (A) to form a primer layer (D),
    The method for producing a laminate according to claim 4 or 5, wherein the step (2) is performed after the step (1-1).
PCT/JP2019/040405 2018-10-22 2019-10-15 Layered body, and layered body manufacturing method WO2020085137A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020552922A JP6892021B2 (en) 2018-10-22 2019-10-15 Laminated body and method for manufacturing the laminated body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-198226 2018-10-22
JP2018198226 2018-10-22

Publications (1)

Publication Number Publication Date
WO2020085137A1 true WO2020085137A1 (en) 2020-04-30

Family

ID=70331185

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/040405 WO2020085137A1 (en) 2018-10-22 2019-10-15 Layered body, and layered body manufacturing method

Country Status (3)

Country Link
JP (1) JP6892021B2 (en)
TW (1) TW202031935A (en)
WO (1) WO2020085137A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001323381A (en) * 2000-05-16 2001-11-22 Sony Corp Plating method and plated structure
US20060254504A1 (en) * 2005-05-13 2006-11-16 Cambrios Technologies Corporation Plating bath and surface treatment compositions for thin film deposition
US20110057316A1 (en) * 2009-09-08 2011-03-10 Hynix Semiconductor Inc. Copper wiring line of semiconductor device and method for forming the same
JP2013067856A (en) * 2011-09-09 2013-04-18 Kansai Univ Catalyst adsorption method and adsorption device
JP2015220315A (en) * 2014-05-16 2015-12-07 東京エレクトロン株式会社 METHOD FOR MANUFACTURING Cu WIRING

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001323381A (en) * 2000-05-16 2001-11-22 Sony Corp Plating method and plated structure
US20060254504A1 (en) * 2005-05-13 2006-11-16 Cambrios Technologies Corporation Plating bath and surface treatment compositions for thin film deposition
US20110057316A1 (en) * 2009-09-08 2011-03-10 Hynix Semiconductor Inc. Copper wiring line of semiconductor device and method for forming the same
JP2013067856A (en) * 2011-09-09 2013-04-18 Kansai Univ Catalyst adsorption method and adsorption device
JP2015220315A (en) * 2014-05-16 2015-12-07 東京エレクトロン株式会社 METHOD FOR MANUFACTURING Cu WIRING

Also Published As

Publication number Publication date
TW202031935A (en) 2020-09-01
JP6892021B2 (en) 2021-06-18
JPWO2020085137A1 (en) 2021-02-15

Similar Documents

Publication Publication Date Title
TWI820151B (en) Manufacturing method of printed wiring board
TWI808198B (en) Manufacturing method of printed wiring board
JP6579295B2 (en) Laminated body, printed wiring board, flexible printed wiring board and molded product using the same
CN111492722A (en) Laminate for printed wiring board and printed wiring board using same
WO2020085137A1 (en) Layered body, and layered body manufacturing method
WO2020085136A1 (en) Layered body, and layered body manufacturing method
JP7371778B2 (en) Laminated body for semi-additive construction method and printed wiring board using the same
JP7288230B2 (en) Laminate for semi-additive construction method and printed wiring board using the same
JP7332049B2 (en) Laminate for semi-additive construction method and printed wiring board using the same
JP7201130B2 (en) Laminate for semi-additive construction method and printed wiring board using the same
WO2022097483A1 (en) Multilayer body for semi-additive process and printed wiring board using same
WO2022097484A1 (en) Laminate for semi-additive manufacturing and printed wiring board using same
TW202035793A (en) Method for manufacturing printed wiring board
WO2022097488A1 (en) Laminate for semi-additive construction method and printed wiring board
WO2022097481A1 (en) Laminate for semi-additive manufacturing and printed wiring board using same
WO2019013039A1 (en) Laminate, printed wiring board in which same is used, flexible printed wiring board, and molded article
WO2022097486A1 (en) Metal film formation method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19875734

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020552922

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19875734

Country of ref document: EP

Kind code of ref document: A1