WO2020083879A1 - Procédé de contrôle d'un convertisseur de tension continu-continu pour le pilotage d'un injecteur de carburant - Google Patents

Procédé de contrôle d'un convertisseur de tension continu-continu pour le pilotage d'un injecteur de carburant Download PDF

Info

Publication number
WO2020083879A1
WO2020083879A1 PCT/EP2019/078667 EP2019078667W WO2020083879A1 WO 2020083879 A1 WO2020083879 A1 WO 2020083879A1 EP 2019078667 W EP2019078667 W EP 2019078667W WO 2020083879 A1 WO2020083879 A1 WO 2020083879A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
voltage
coil
converter
value
Prior art date
Application number
PCT/EP2019/078667
Other languages
English (en)
Inventor
Cedrick BIELLMANN
Thierry BAVOIS
Original Assignee
Continental Automotive France
Continental Automotive Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Automotive France, Continental Automotive Gmbh filed Critical Continental Automotive France
Priority to US17/286,893 priority Critical patent/US11459969B2/en
Publication of WO2020083879A1 publication Critical patent/WO2020083879A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/2003Output circuits, e.g. for controlling currents in command coils using means for creating a boost voltage, i.e. generation or use of a voltage higher than the battery voltage, e.g. to speed up injector opening
    • F02D2041/201Output circuits, e.g. for controlling currents in command coils using means for creating a boost voltage, i.e. generation or use of a voltage higher than the battery voltage, e.g. to speed up injector opening by using a boost inductance
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/2017Output circuits, e.g. for controlling currents in command coils using means for creating a boost current or using reference switching
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0016Control circuits providing compensation of output voltage deviations using feedforward of disturbance parameters
    • H02M1/0022Control circuits providing compensation of output voltage deviations using feedforward of disturbance parameters the disturbance parameters being input voltage fluctuations

Definitions

  • the invention relates to the field of fuel injection control and relates more particularly to a method for controlling a DC-DC voltage converter for controlling a fuel injector, as well as a computer implementing this method and a vehicle comprising such a computer.
  • a DC-DC voltage converter also known as a DCDC
  • Such a converter makes it possible in particular to transform the voltage supplied by the vehicle battery, for example of the order of 12 V, into a higher target output voltage, for example of 60 V, which makes it possible to recharge a so-called connected intermediate capacity. at the output of the converter and which supplies current to a controller allowing, on command of a computer, to activate the fuel injectors.
  • the computer controls the controller
  • the latter uses the current supplied by the intermediate capacity to drive the fuel injectors.
  • the intermediate capacity is discharged and the converter then activates to recharge it until the output voltage rises to its target value.
  • the internal operating principle of the converter consists in charging a coil with the current supplied by the battery and in cutting the current cyclically, using a switch, in particular a transistor, for example of the MOS type.
  • a switch in particular a transistor, for example of the MOS type.
  • the switch When the switch is closed, the coil charges and when the switch is opened, the energy stored in the coil is transmitted in the form of current to the intermediate capacity in order to recharge it.
  • Bang type regulation consists in measuring the output voltage and in controlling the transistor so that the coil transmits a current of maximum intensity when it is necessary to increase the output voltage of the converter quickly to its target value and controlling the stopping of the current when the output voltage of the measured converter is equal to its target value.
  • the power P of the converter in other words its capacity to increase its output voltage, varies according to the voltage V bat supplied by the vehicle battery.
  • this voltage varies according to the level of charge of the battery in particular.
  • the power P of the converter is less than the minimum power P min ensuring optimal operation of the converter.
  • the converter cannot then charge the intermediate capacity optimally, which represents a major drawback.
  • the power P of the converter is much greater than the minimum power P min .
  • the converter is then oversized, which causes a drop in its efficiency and represents another drawback.
  • the subject of the invention is a method for controlling a DC-DC voltage converter for the current control of at least one fuel injector of a thermal engine of a motor vehicle, said converter comprising a coil. induction connected, on the one hand, to a vehicle battery configured to supply said coil with current, and, on the other hand, to a switch controlled alternately in a current flowing state in the coil or in a current blocking state in the coil, the alternation of the on and off states of the switch allowing the converter to deliver an output voltage across a so-called "intermediate" capacity whose discharge is controlled by a control module in order to control at least a fuel injector, the method being remarkable in that it comprises:
  • the power of the converter is adjusted by determining the threshold value of the current from the voltage delivered by the battery.
  • the variation of the voltage is compensated by the variation of the threshold value of the current so that the power of the converter remains stable.
  • the power of the converter being defined by the threshold value of the current passing through the coil and by the value of the voltage of the current delivered by the battery, the power is adjusted around a predetermined value, preferably of the order of 40 Watts.
  • the power of the converter remains stable and allows optimal operation of the injector control.
  • the step of measuring the value of the battery voltage is carried out before starting the DC-DC voltage converter. Thus, the number of measurements of the voltage value is limited.
  • the method comprises a preliminary step of determining the evolution curve of the threshold value of the current as a function of the value of the voltage of the current delivered by the battery.
  • the curve is determined by simulation or by measurement in the laboratory.
  • the curve is made for the converter in order to optimize the adjustment of the power of the converter.
  • said determined curve is stored in a memory area of a computer of the vehicle.
  • the invention further relates to a control computer intended to be mounted in a motor vehicle with a thermal engine, said engine comprising at least one fuel injector, said computer comprising a DC-DC voltage converter for current control of said at least a fuel injector, said converter comprising an induction coil connected, on the one hand, to a vehicle battery configured to supply said coil with current, and, on the other hand, to a switch controlled alternately in a current on state in the coil or in a blocking state of the current in the coil, the alternation of the passing and blocking states of the switch allowing the converter to deliver an output voltage across a so-called "intermediate" capacity whose discharge is controlled by a control module in order to control at least one fuel injector, the computer being remarkable in that that it is configured to measure the value of the voltage delivered by the battery, to determine a threshold value of the current passing through the coil from the measured value of the voltage and a predetermined curve of the current as a function of the voltage, and controlling the opening of the switch when the current passing through the coil reaches the
  • the computer is configured to measure the value of the voltage before starting the DC-DC voltage converter.
  • the computer comprising at least one memory area in which is stored a predetermined curve of the current passing through the coil as a function of the voltage delivered by the battery.
  • the invention further relates to a motor vehicle with an internal combustion engine, said engine comprising at least one fuel injector, the vehicle comprising at least one computer, as described above, for controlling said at least one fuel injector.
  • FIG. 1 schematically illustrates a curve showing the evolution of the power of a converter according to the prior art (presented previously).
  • FIG. 2 schematically illustrates an embodiment of a computer according to the invention of a vehicle.
  • Figure 3 schematically illustrates a curve showing the evolution of the control current of the coil of the computer of Figure 2 as a function of the voltage supplied by the vehicle battery.
  • FIG. 4 schematically illustrates one form of implementation of the method according to the invention.
  • the computer according to the invention is a control computer intended to be mounted in a motor vehicle with an internal combustion engine in order to control the injection of fuel into the cylinders of said engine.
  • the vehicle comprises a battery 2, serving to power equipment (not shown) of the vehicle, an engine (not shown but known per se) and a computer 1 for controlling said engine.
  • Battery 2 is a battery for supplying electrical energy on board the vehicle in order to supply electrical equipment to said vehicle.
  • the battery 2 delivers for example a direct voltage whose value can be between 6 and 24 V and which is preferably of the order of 12 V.
  • the engine is a heat engine comprising a plurality of cylinders on each of which is mounted at least one fuel injector.
  • An injector is configured to be controlled to inject fuel into a cylinder.
  • the computer 1 is configured to control the injection of fuel by the injectors.
  • a computer 1 is an engine control computer, commonly called Electronic Control Unit or ECU (Electronic Control Unit in English).
  • the computer 1 comprises a microcontroller 10, a DC-DC voltage converter 20 and a control module 30 for the injectors.
  • the computer 1 comprises a capacity C, also called intermediate capacity, placed between the converter 20 and the control module 30.
  • the converter 20 is configured to convert the continuous voltage V bat delivered by the battery 2 into a continuous output voltage Vs of greater value, for example of the order of 60 V, delivered to the control module 30 of the injectors.
  • the output voltage Vs makes it possible to supply the control module 30 with a current whose intensity is high enough to drive the injectors and recharge the capacitor C between two injections.
  • the converter 20 comprises a coil 21, a switch 22 for controlling the load of the coil 21 and a comparator 23.
  • the coil 21 is configured to be charged with the current supplied by the battery 2.
  • the switch 22 allows cyclically to charge or interrupt the circulation of the charging current from the coil 21 which makes it possible to deliver the output voltage Vs of the converter 20 whose value is greater than the voltage V bat supplied by the battery 2 at the input of the converter 20.
  • the switch 22 can also be in the form of a transistor, for example of the MOS type. When the switch 22 is closed, the coil 21 is charged and when the switch 22 is open, the energy stored in the coil 21 is transmitted in the form of a current to the capacitor C in order to recharge it.
  • the coil 21 is configured to charge until the value of the current passing through it reaches a threshold value, designated l peak .
  • a threshold value designated l peak .
  • the opening of the switch 22 is controlled when the value of the current passing through the coil 21 reaches the threshold value l peak .
  • the comparator 23 is configured to compare the value of the current passing through the coil 21 with the threshold value l peak .
  • the control module 30 (commonly known as a “driver") is configured to control the opening of the fuel injectors from a current called “injector control" delivered by the converter 20.
  • the control module 30 is configured to empty the capacity C in order to control the opening of an injector.
  • the operation of such a control module 30 being known, it will not be described in more detail.
  • the microcontroller 10 is configured to control the switch 22 of the converter 20.
  • the microcontroller 10 includes a memory area in which is recorded a curve for the evolution of the threshold value of the current l peak as a function of the value of the voltage V bat of the current delivered by the battery 2, illustrated in FIG. 3. This curve is determined beforehand as will be described later.
  • the microcontroller 10 is configured to measure the value of the voltage V bat of the current delivered by the battery 2. Such a measurement can in particular be carried out, for example, by means of an analog-digital converter 1 10 (FIG. 2) in a manner known per se, before starting the converter 20, but it can also be carried out periodically during the operation of the engine in order to detect a drop in the voltage V bat delivered by the battery 2.
  • the microcontroller 10 is further configured to determine a threshold value of the current l peak from the value of the voltage V bat measured and from the predetermined curve.
  • the microcontroller 10 is configured to control the opening and closing of the switch 22 according to the threshold value of the current l peak determined.
  • the microcontroller 10 receives from the comparator 23 information relating to the value of the current passing through the coil 21 when the switch 22 is closed.
  • the comparator detects that the current value reaches the threshold value of the current l peak
  • the microcontroller 10 controls the opening of the switch 21. This makes it possible to increase or decrease the power of the converter 20 so that the latter is constant , despite variations in the voltage V bat supplied by the battery 2.
  • the evolution curve of the threshold value of the current l peak as a function of the value of the voltage V bat of the current delivered by the battery 2 is determined. The curve thus determined is then recorded in the memory area of the microcontroller 10.
  • This preliminary step E0 is carried out during the design of the converter 20 or in the factory, in particular by simulation or on a test bench (laboratory measurements).
  • the evolution curve thus determined is specific to a converter 20 and thus depends on the elements of such a converter 20. More precisely, each evolution curve is different and non-linear from one converter 20 to another because each converter 20 has different operating powers depending on the function range of the battery voltage. Also, a curve can thus be determined for each converter 20.
  • the value of the voltage V beats the current delivered by the battery 2 is measured during a step E1. This measurement is then transmitted to the microcontroller 10 which then determines, by reading on the evolution curve, the threshold value of the current l peak associated with the measured value of the voltage V bat in a step E2. During the operation of the motor, the current passing through the coil 21 is then measured and compared, by the comparator 23, to the threshold value of the current l peak .
  • the microcontroller 10 controls, during a step E3, the opening of the switch 22. This makes it possible to adapt the power P of the converter 20 to the voltage V bat supplied by battery 2 by modifying the current threshold value l peak .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Dc-Dc Converters (AREA)

Abstract

La présente invention a pour objet un procédé de contrôle d'un convertisseur de tension continu-continu pour le pilotage en courant d'au moins un injecteur de carburant d'un moteur thermique de véhicule automobile, ledit véhicule comprenant une batterie d'alimentation et ledit convertisseur comprenant une bobine et un interrupteur. Le procédé comprend les étapes de mesure (E1) de la valeur de la tension délivrée par la batterie, de détermination (E2) d'une valeur seuil du courant traversant la bobine à partir de la valeur mesurée de la tension et d'une courbe prédéterminée du courant en fonction de la tension, et de commande (E3) de l'ouverture de l'interrupteur lorsque le courant traversant la bobine atteint la valeur seuil déterminée du courant afin de régler la puissance du convertisseur.

Description

Procédé de contrôle d’un convertisseur de tension continu-continu pour le pilotage d’un iniecteur de carburant
L’invention se rapporte au domaine du contrôle de l’injection de carburant et concerne plus particulièrement un procédé de contrôle d’un convertisseur de tension continu-continu pour le pilotage d’un injecteur de carburant, ainsi qu’un calculateur mettant en oeuvre ce procédé et un véhicule comprenant un tel calculateur.
Dans un véhicule automobile à moteur thermique, il est connu d’utiliser un convertisseur de tension continu-continu, également connu sous le nom de DCDC, afin de fournir l’énergie nécessaire au pilotage des injecteurs de carburant. Un tel convertisseur permet notamment de transformer la tension fournie par la batterie du véhicule, par exemple de l’ordre de 12 V, en une tension de sortie cible plus élevée, par exemple de 60 V, qui permet de recharger une capacité dite intermédiaire connectée en sortie du convertisseur et qui fournit du courant à un contrôleur permettant, sur commande d’un calculateur, d’activer les injecteurs de carburant.
Ainsi, lorsque le calculateur commande le contrôleur, ce dernier utilise le courant fourni par la capacité intermédiaire pour piloter les injecteurs de carburant. Ce faisant, la capacité intermédiaire se décharge et le convertisseur s’active alors pour la recharger jusqu’à ce que la tension de sortie remonte jusqu’à sa valeur cible.
Le principe de fonctionnement interne du convertisseur consiste à charger une bobine avec le courant fourni par la batterie et à couper le courant cycliquement, à l’aide d’un interrupteur, notamment d’un transistor, par exemple de type MOS. Lorsque l’interrupteur est fermé, la bobine se charge et lorsque l’interrupteur est ouvert, l’énergie stockée dans la bobine est transmise sous la forme d’un courant à la capacité intermédiaire afin de la recharger.
Afin de permettre la commande du convertisseur pour que la tension de sortie remonte à sa valeur cible, il est connu de monter un module de régulation entre la sortie et l’entrée du convertisseur, par exemple de type « PID » ou « Bang Bang », bien connus de l’homme du métier. La régulation de type Bang Bang consiste à mesurer la tension de sortie et à commander le transistor pour que la bobine transmette un courant d’intensité maximale lorsqu’il est nécessaire d’augmenter la tension de sortie du convertisseur rapidement jusqu’à sa valeur cible et à commander l’arrêt du courant lorsque la tension de sortie du convertisseur mesurée est égale à sa valeur cible.
Cependant, une telle régulation présente des inconvénients. En effet, comme illustré sur la figure 1 , la puissance P du convertisseur, autrement dit sa capacité à augmenter sa tension de sortie, varie selon la tension Vbat fournie par la batterie du véhicule. Or, cette tension varie selon le niveau de charge de la batterie notamment. Aussi, lorsque la tension Vbat fournie par la batterie est faible, la puissance P du convertisseur est inférieure à la puissance minimale Pmin assurant un fonctionnement optimal du convertisseur. Le convertisseur ne peut alors pas charger la capacité intermédiaire de manière optimale, ce qui représente un inconvénient majeur. De plus, lorsque la tension Vbat fournie par la batterie est suffisante, la puissance P du convertisseur est bien supérieure à la puissance minimale Pmin. Le convertisseur est alors surdimensionné, ce qui cause une baisse de son rendement et représente un autre inconvénient.
Il existe donc le besoin d’une solution permettant de remédier au moins en partie à ces inconvénients.
A cette fin, l’invention a pour objet un procédé de contrôle d’un convertisseur de tension continu-continu pour le pilotage en courant d’au moins un injecteur de carburant d’un moteur thermique de véhicule automobile, ledit convertisseur comprenant une bobine à induction reliée, d’une part, à une batterie du véhicule configurée pour alimenter ladite bobine en courant, et, d’autre part, à un interrupteur commandé alternativement dans un état passant du courant dans la bobine ou dans un état bloquant du courant dans la bobine, l’alternance des états passants et bloquants de l’interrupteur permettant au convertisseur de délivrer une tension de sortie aux bornes d’une capacité dite « intermédiaire » dont la décharge est commandée par un module de contrôle afin de commander au moins un injecteur de carburant, le procédé étant remarquable en ce qu’il comprend :
- une étape de mesure de la valeur de la tension délivrée par la batterie,
- une étape de détermination d’une valeur seuil du courant traversant la bobine à partir de la valeur mesurée de la tension et d’une courbe prédéterminée du courant en fonction de la tension, et
- une étape de commande de l’ouverture de l’interrupteur lorsque le courant traversant la bobine atteint la valeur seuil du courant déterminée afin de régler la puissance du convertisseur.
Grâce à l’invention, la puissance du convertisseur est réglée grâce à la détermination de la valeur seuil du courant à partir de la tension délivrée par la batterie. Ainsi, la variation de la tension est compensée par la variation de la valeur seuil du courant afin que la puissance du convertisseur reste stable.
De préférence, la puissance du convertisseur étant définie par la valeur seuil du courant traversant la bobine et par la valeur de la tension du courant délivré par la batterie, la puissance est réglée autour d’une valeur prédéterminée, de préférence de l’ordre de 40 Watts. Ainsi, la puissance du convertisseur reste stable et permet un fonctionnement optimal de la commande des injecteurs. Avantageusement, l’étape de mesure de la valeur de la tension de batterie est réalisée avant le démarrage du convertisseur de tension continu-continu. Ainsi, le nombre de mesure de la valeur de la tension est limité.
De préférence, le procédé comprend une étape préliminaire de détermination de la courbe d’évolution de la valeur seuil du courant en fonction de la valeur de la tension du courant délivré par la batterie.
Avantageusement, la courbe est déterminée par simulation ou par mesure en laboratoire. Ainsi, la courbe est réalisée pour le convertisseur afin d’optimiser le réglage de la puissance du convertisseur.
De préférence, ladite courbe déterminée est stockée dans une zone mémoire d’un calculateur du véhicule.
L’invention vise en outre un calculateur de contrôle destiné à être monté dans un véhicule automobile à moteur thermique, ledit moteur comprenant au moins un injecteur de carburant, ledit calculateur comprenant un convertisseur de tension continu- continu pour le pilotage en courant dudit au moins un injecteur de carburant, ledit convertisseur comprenant une bobine à induction reliée, d’une part, à une batterie du véhicule configurée pour alimenter ladite bobine en courant, et, d’autre part, à un interrupteur commandé alternativement dans un état passant du courant dans la bobine ou dans un état bloquant du courant dans la bobine, l’alternance des états passants et bloquants de l’interrupteur permettant au convertisseur de délivrer une tension de sortie aux bornes d’une capacité dite « intermédiaire » dont la décharge est commandée par un module de contrôle afin de commander au moins un injecteur de carburant, le calculateur étant remarquable en ce qu’il est configuré pour mesurer la valeur de la tension délivrée par la batterie, pour déterminer une valeur seuil du courant traversant la bobine à partir de la valeur mesurée de la tension et d’une courbe prédéterminée du courant en fonction de la tension, et commander l’ouverture de l’interrupteur lorsque le courant traversant la bobine atteint la valeur seuil du courant déterminée afin de régler la puissance du convertisseur.
De préférence, le calculateur est configuré pour mesurer la valeur de la tension avant le démarrage du convertisseur de tension continu-continu.
De préférence encore, le calculateur comprenant au moins une zone mémoire dans laquelle est stockée une courbe prédéterminée du courant traversant la bobine en fonction de la tension délivrée par la batterie.
L’invention concerne en outre un véhicule automobile à moteur thermique, ledit moteur comprenant au moins un injecteur de carburant, le véhicule comprenant au moins un calculateur, tel que décrit précédemment, de contrôle dudit au moins un injecteur de carburant. D’autres caractéristiques et avantages de l’invention apparaîtront lors de la description qui suit faite en regard des figures annexées données à titre d’exemples non limitatifs et dans lesquelles des références identiques sont données à des objets semblables.
La figure 1 illustre schématiquement une courbe montrant l’évolution de la puissance d’un convertisseur selon l’art antérieur (présenté précédemment).
La figure 2 illustre schématiquement une forme de réalisation d’un calculateur selon l’invention d’un véhicule.
La figure 3 illustre schématiquement une courbe montrant l’évolution du courant de commande de la bobine du calculateur de la figure 2 en fonction de la tension fournie par la batterie du véhicule.
La figure 4 illustre schématiquement une forme de mise en oeuvre du procédé selon l’invention.
L’invention sera présentée ci-après en vue d’une mise en oeuvre dans un véhicule automobile. Cependant, toute mise en oeuvre dans un contexte différent, en particulier pour tout véhicule est également visée par la présente invention.
Le calculateur selon l’invention est un calculateur de contrôle destiné à être monté dans un véhicule automobile à moteur thermique afin de contrôler l’injection de carburant dans les cylindres dudit moteur.
Comme illustré sur la figure 2, le véhicule comprend une batterie 2, servant à alimenter des équipements (non représentés) du véhicule, un moteur (non représenté mais connu en soi) et un calculateur 1 de contrôle dudit moteur.
La batterie 2 est une batterie d’alimentation en énergie électrique embarquée dans le véhicule afin d’alimenter des équipements électriques dudit véhicule. La batterie 2 délivre par exemple une tension continue dont la valeur peut être comprise entre 6 et 24 V et qui est de préférence de l’ordre de 12 V.
Le moteur est un moteur thermique comprenant une pluralité de cylindres sur chacun desquels est monté au moins un injecteur de carburant. Un injecteur est configuré pour être commandé afin d’injecter du carburant dans un cylindre.
Le calculateur 1 est configuré pour commander l’injection de carburant par les injecteurs. Un tel calculateur 1 est un calculateur de contrôle du moteur, communément appelé Unité de Contrôle Electronique ou ECU (Electronic Control Unit en langue anglaise).
Toujours en référence à la figure 2, le calculateur 1 comprend un microcontrôleur 10, un convertisseur 20 de tension continu-continu et un module de contrôle 30 des injecteurs. Le calculateur 1 comprend une capacité C, également désignée capacité intermédiaire, placée entre le convertisseur 20 et le module de contrôle 30.
Le convertisseur 20 est configuré pour convertir la tension Vbat continue délivrée par la batterie 2 en une tension de sortie Vs continue de valeur supérieure, par exemple de l’ordre de 60 V, délivrée au module de contrôle 30 des injecteurs. La tension de sortie Vs permet de fournir au module de contrôle 30 un courant dont l’intensité est suffisamment élevée pour piloter les injecteurs et recharger la capacité C entre deux injections.
Le convertisseur 20 comprend une bobine 21 , un interrupteur 22 de commande de la charge de la bobine 21 et un comparateur 23.
La bobine 21 est configurée pour être chargée avec le courant fourni par la batterie 2. L’interrupteur 22 permet cycliquement de charger ou d’interrompre la circulation du courant de charge de la bobine 21 qui permet de délivrer la tension de sortie Vs du convertisseur 20 dont la valeur est supérieure à la tension Vbat fournie par la batterie 2 en entrée du convertisseur 20. L’interrupteur 22 peut également se présenter sous la forme d’un transistor, par exemple de type MOS. Lorsque l’interrupteur 22 est fermé, la bobine 21 se charge et lorsque l’interrupteur 22 est ouvert, l’énergie stockée dans la bobine 21 est transmise sous la forme d’un courant à la capacité C afin de la recharger.
La bobine 21 est configurée pour se charger jusqu’à ce que la valeur du courant la traversant atteigne une valeur seuil, désigné lpeak. Autrement dit, l’ouverture de l’interrupteur 22 est commandée lorsque la valeur du courant traversant la bobine 21 atteint la valeur seuil lpeak.
Dans ce but, le comparateur 23 est configuré pour comparer la valeur du courant traversant la bobine 21 à la valeur seuil lpeak.
Le module de contrôle 30 (communément connu sous le nom de « driver ») est configuré pour piloter l’ouverture des injecteurs de carburant à partir d’un courant dit « de commande d’injecteur » délivré par le convertisseur 20.
Le module de contrôle 30 est configuré pour vider la capacité C afin de commander l’ouverture d’un injecteur. Le fonctionnement d’un tel module de contrôle 30 étant connu, il ne sera pas décrit plus en détail.
Le microcontrôleur 10 est configuré pour commander l’interrupteur 22 du convertisseur 20.
Le microcontrôleur 10 comprend une zone mémoire dans laquelle est enregistrée une courbe d’évolution de la valeur seuil du courant lpeak en fonction de la valeur de la tension Vbat du courant délivré par la batterie 2, illustrée sur la figure 3. Cette courbe est déterminée préalablement comme cela sera décrit par la suite. Le microcontrôleur 10 est configuré pour mesurer la valeur de la tension Vbat du courant délivré par la batterie 2. Une telle mesure peut notamment être réalisée, par exemple, par l’intermédiaire d’un convertisseur analogique-numérique 1 10 (figure 2) de manière connue en soi, avant le démarrage du convertisseur 20, mais elle peut également être réalisée de manière périodique durant le fonctionnement du moteur afin de détecter une baisse de la tension Vbat délivrée par la batterie 2.
Le microcontrôleur 10 est en outre configuré pour déterminer une valeur seuil du courant lpeak à partir de la valeur de la tension Vbat mesurée et de la courbe prédéterminée.
Enfin, le microcontrôleur 10 est configuré pour commander l’ouverture et la fermeture de l’interrupteur 22 en fonction de la valeur seuil du courant lpeak déterminée. Dans ce but, le microcontrôleur 10 reçoit du comparateur 23 une information relative à la valeur du courant traversant la bobine 21 lorsque l’interrupteur 22 est fermé. Lorsque le comparateur détecte que la valeur du courant atteint la valeur seuil du courant lpeak, le microcontrôleur 10 commande l’ouverture de l’interrupteur 21. Ceci permet d’augmenter ou de diminuer la puissance du convertisseur 20 afin que cette dernière soit constante, malgré les variations de la tension Vbat fournie par la batterie 2.
Il va maintenant être décrit une forme de mise en oeuvre du procédé de contrôle du convertisseur 20 selon l’invention en référence à la figure 4.
Lors d’une étape E0 préliminaire, la courbe d’évolution de la valeur seuil du courant lpeak en fonction de la valeur de la tension Vbat du courant délivré par la batterie 2 est déterminée. La courbe ainsi déterminée est alors enregistrée dans la zone mémoire du microcontrôleur 10.
Cette étape préliminaire E0 est réalisée lors de la conception du convertisseur 20 ou en usine, notamment par simulation ou sur banc d’essai (mesures en laboratoire). La courbe d’évolution ainsi déterminée est propre à un convertisseur 20 et dépend ainsi des éléments d’un tel convertisseur 20. Plus précisément, chaque courbe d’évolution est différente et non linéaire d’un convertisseur 20 à un autre car chaque convertisseur 20 a des puissances de fonctionnement différentes en fonction de la gamme de fonction de la tension de batterie. Aussi, une courbe peut ainsi être déterminée pour chaque convertisseur 20.
Lors de l’utilisation du véhicule, notamment avant le démarrage du convertisseur 20, la valeur de la tension Vbat du courant délivré par la batterie 2 est mesurée lors d’une étape E1 . Cette mesure est alors transmise au microcontrôleur 10 qui détermine alors, par lecture sur la courbe d’évolution, la valeur seuil du courant lpeak associée à la valeur mesurée de la tension Vbat dans une étape E2. Pendant le fonctionnement du moteur, le courant traversant la bobine 21 est alors mesurée et comparée, par le comparateur 23, à la valeur seuil du courant lpeak.
Lorsque le courant mesuré atteint la valeur seuil du courant lpeak, le microcontrôleur 10 commande, lors d’une étape E3, l’ouverture de l’interrupteur 22. Ceci permet d’adapter la puissance P du convertisseur 20 à la tension Vbat fournie par la batterie 2 en modifiant la valeur seuil de courant lpeak.

Claims

REVENDICATIONS
1. Procédé de contrôle d’un convertisseur (20) de tension continu-continu pour le pilotage en courant d’au moins un injecteur de carburant d’un moteur thermique de véhicule automobile, ledit convertisseur (20) comprenant une bobine (21 ) à induction reliée, d’une part, à une batterie (2) du véhicule configurée pour alimenter ladite bobine (21 ) en courant, et, d’autre part, à un interrupteur (22) commandé alternativement dans un état passant du courant dans la bobine (21 ) ou dans un état bloquant du courant dans la bobine (21 ), l’alternance des états passants et bloquants de l’interrupteur (22) permettant au convertisseur (20) de délivrer une tension de sortie (Vs) aux bornes d’une capacité dite « intermédiaire » (C) dont la décharge est commandée par un module de contrôle (30) afin de commander au moins un injecteur de carburant, le procédé étant caractérisé en ce qu’il comprend :
une étape (E1 ) de mesure de la valeur de la tension (Vbat) délivrée par la batterie
(2),
une étape (E2) de détermination d’une valeur seuil du courant (lpeak) traversant la bobine (21 ) à partir de la valeur mesurée de la tension (Vbat) et d’une courbe prédéterminée du courant en fonction de la tension, et
une étape (E3) de commande de l’ouverture de l’interrupteur (22) lorsque le courant traversant la bobine (21 ) atteint la valeur seuil du courant (lpeak) déterminée.
2. Procédé selon la revendication 1 , dans lequel la puissance (P) du convertisseur (20) étant définie par la valeur seuil du courant (lpeak) traversant la bobine (21 ) et par la valeur de la tension (Vbat) du courant délivré par la batterie (2), la puissance (P) est réglée autour d’une valeur prédéterminée, de préférence de l’ordre de 40 Watt.
3. Procédé selon l’une quelconque des revendications 1 ou 2 , dans lequel l’étape (E 1 ) de mesure de la valeur de la tension (Vbat) de batterie (2) est réalisée avant le démarrage du convertisseur (20) de tension continu-continu.
4. Procédé selon l’une quelconque des revendications 1 à 3, comprenant une étape (E0) préliminaire de détermination de la courbe d’évolution de la valeur seuil du courant (l peak) en fonction de la valeur de la tension (Vbat) du courant délivré par la batterie (2).
5. Procédé selon la revendication précédente, dans lequel la courbe est déterminée par simulation ou par mesure en laboratoire.
6. Procédé selon l’une quelconque des revendications 4 ou 5, dans lequel ladite courbe déterminée est stockée dans une zone mémoire d’un calculateur (1 ) du véhicule.
7. Calculateur (1 ) de contrôle destiné à être monté dans un véhicule automobile à moteur thermique, ledit moteur comprenant au moins un injecteur de carburant, ledit calculateur (1 ) comprenant un convertisseur (20) de tension continu-continu pour le pilotage en courant dudit au moins un injecteur de carburant, ledit convertisseur (20) comprenant une bobine (21 ) à induction reliée, d’une part, à une batterie (2) du véhicule configurée pour alimenter ladite bobine (21 ) en courant, et, d’autre part, à un interrupteur (22) commandé alternativement dans un état passant du courant dans la bobine (21 ) ou dans un état bloquant du courant dans la bobine (21 ), l’alternance des états passants et bloquants de l’interrupteur (22) permettant au convertisseur (20) de délivrer une tension de sortie (Vs) aux bornes d’une capacité (C) dite « intermédiaire » dont la décharge est commandée par un module de contrôle (30) afin de commander au moins un injecteur de carburant, le calculateur (1 ) étant caractérisé en ce qu’il est configuré pour mesurer la valeur de la tension (Vbat) délivrée par la batterie (2), pour déterminer une valeur seuil du courant (lpeak) traversant la bobine (21 ) à partir de la valeur mesurée de la tension (Vbat) et d’une courbe prédéterminée du courant en fonction de la tension, et commander l’ouverture de l’interrupteur (22) lorsque le courant traversant la bobine (21 ) atteint la valeur seuil du courant (lpeak) déterminée.
8. Calculateur (1 ) selon la revendication précédente, ledit calculateur (1 ) étant configuré pour mesurer la valeur de la tension (Vbat) avant le démarrage du convertisseur (20) de tension continu-continu.
9. Calculateur (1 ) selon l’une quelconque des revendications 7 ou 8, ledit calculateur (1 ) comprenant au moins une zone mémoire dans laquelle est stockée une courbe prédéterminée du courant (lpeak) traversant la bobine (21 ) en fonction de la tension délivrée par la batterie (2).
10. Véhicule automobile à moteur thermique, ledit moteur comprenant au moins un injecteur de carburant, le véhicule comprenant au moins un calculateur (1 ) de contrôle dudit au moins un injecteur de carburant selon l’une des revendications 7 à 9.
PCT/EP2019/078667 2018-10-22 2019-10-22 Procédé de contrôle d'un convertisseur de tension continu-continu pour le pilotage d'un injecteur de carburant WO2020083879A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/286,893 US11459969B2 (en) 2018-10-22 2019-10-22 Method for controlling a DC/DC voltage converter for controlling a fuel injector

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1859720 2018-10-22
FR1859720A FR3087493B1 (fr) 2018-10-22 2018-10-22 Procede de controle d'un convertisseur de tension continu-continu pour le pilotage d'un injecteur de carburant

Publications (1)

Publication Number Publication Date
WO2020083879A1 true WO2020083879A1 (fr) 2020-04-30

Family

ID=65685592

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2019/078667 WO2020083879A1 (fr) 2018-10-22 2019-10-22 Procédé de contrôle d'un convertisseur de tension continu-continu pour le pilotage d'un injecteur de carburant

Country Status (3)

Country Link
US (1) US11459969B2 (fr)
FR (1) FR3087493B1 (fr)
WO (1) WO2020083879A1 (fr)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2015431A2 (fr) * 2007-07-13 2009-01-14 Denso Corporation Suralimenteur de tension d'alimentation électrique
FR2992487A1 (fr) * 2012-06-26 2013-12-27 Renault Sa Procede de gestion d'un reseau electrique, agencement pour la mise en oeuvre du procede, support d'enregistrement et programme informatique associes au procede, vehicule automobile
EP3113346A1 (fr) * 2014-02-27 2017-01-04 Hitachi Automotive Systems, Ltd. Dispositif de commande de moteur à combustion interne
JP2017089437A (ja) * 2015-11-05 2017-05-25 株式会社デンソー 燃料噴射制御装置と燃料噴射システム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1649152B1 (fr) * 2003-07-21 2011-12-21 Continental Automotive Systems US, Inc. Alimentation et procede de commande pour module de pilotage d'injecteur
JP5849975B2 (ja) * 2013-02-25 2016-02-03 株式会社デンソー 燃料噴射制御装置および燃料噴射システム
JP6318575B2 (ja) * 2013-11-21 2018-05-09 株式会社デンソー 燃料噴射制御装置および燃料噴射システム
FR3083932B1 (fr) * 2018-07-10 2020-06-12 Continental Automotive France Procede de controle d'un convertisseur de tension continu-continu
FR3083883B1 (fr) * 2018-07-10 2020-06-12 Continental Automotive France Procede de controle d'un convertisseur de tension continu-continu

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2015431A2 (fr) * 2007-07-13 2009-01-14 Denso Corporation Suralimenteur de tension d'alimentation électrique
FR2992487A1 (fr) * 2012-06-26 2013-12-27 Renault Sa Procede de gestion d'un reseau electrique, agencement pour la mise en oeuvre du procede, support d'enregistrement et programme informatique associes au procede, vehicule automobile
EP3113346A1 (fr) * 2014-02-27 2017-01-04 Hitachi Automotive Systems, Ltd. Dispositif de commande de moteur à combustion interne
JP2017089437A (ja) * 2015-11-05 2017-05-25 株式会社デンソー 燃料噴射制御装置と燃料噴射システム

Also Published As

Publication number Publication date
US20210355889A1 (en) 2021-11-18
FR3087493A1 (fr) 2020-04-24
US11459969B2 (en) 2022-10-04
FR3087493B1 (fr) 2022-01-21

Similar Documents

Publication Publication Date Title
EP3075058A1 (fr) Dispositif d'equilibrage de charge des elements d'une batterie de puissance
WO2020011781A1 (fr) Procede de controle d'un module de pilotage d'un transistor
FR2796217A1 (fr) Dispositif et procede pour charger une batterie de vehicule electrique
WO2020011852A1 (fr) Procédé de contrôle d'un convertisseur de tension continu-continu
WO2020011720A1 (fr) Procede de controle d'un convertisseur de tension continu-continu
WO2020083879A1 (fr) Procédé de contrôle d'un convertisseur de tension continu-continu pour le pilotage d'un injecteur de carburant
FR3075882B1 (fr) Procede de regulation de la tension de sortie d'un convertisseur de tension continu-continu d'un calculateur de controle d'un moteur de vehicule automobile
EP3313687B1 (fr) Procédé de gestion de la température d'une batterie d'un véhicule hybride
EP1396002B1 (fr) Procédé d'alimentation d'un équipement électrique
EP3235048A1 (fr) Procede et dispositif de charge d'une batterie lithium-ion par impulsions
EP2817865B1 (fr) Procédé de gestion de l'énergie électrique d'une architecture électrique d'un véhicule automobile et véhicule automobile mettant en oeuvre un tel procédé
FR3041707B1 (fr) Procede de controle de l'alimentation electrique d'injecteurs solenoides de carburant pour vehicule automobile hybride
FR3025664A1 (fr) Procede d'aide au demarrage d'un moteur thermique d'un vehicule automobile
EP3983267B1 (fr) Procédé de régulation de réseau de bord d'un véhicule
EP2715105A1 (fr) Alimentation pour allumage radiofrequence avec amplificateur a double etage
FR2943473A1 (fr) Systeme de recharge de batteries
FR2965309A1 (fr) Procede de gestion de l'arret et du redemarrage automatique d'un moteur thermique de vehicule automobile et vehicule automobile correspondant
FR2976416A1 (fr) Systeme de regulation de la charge d'une batterie
WO2019243503A1 (fr) Procédé de régulation du rapport cyclique d'un signal permettant le contrôle en courant d'un module de conversion d'un convertisseur
WO2020193456A1 (fr) Procede de commande d'un injecteur de carburant haute pression
FR2743675A1 (fr) Procede de commande du circuit de charge de la batterie d'accumulateurs d'un vehicule automobile
FR3017830A1 (fr) Procede de recharge d'un stockeur d'energie electrique d'un vehicule automobile
FR2955989A1 (fr) Procede de commande et limiteur de chute de tension, support d'enregistrement pour ce procede et vehicule incorporant ce limiteur

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19805143

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19805143

Country of ref document: EP

Kind code of ref document: A1