WO2020083192A1 - Locking mechanism, lock, and systems and methods for lock control - Google Patents

Locking mechanism, lock, and systems and methods for lock control Download PDF

Info

Publication number
WO2020083192A1
WO2020083192A1 PCT/CN2019/112240 CN2019112240W WO2020083192A1 WO 2020083192 A1 WO2020083192 A1 WO 2020083192A1 CN 2019112240 W CN2019112240 W CN 2019112240W WO 2020083192 A1 WO2020083192 A1 WO 2020083192A1
Authority
WO
WIPO (PCT)
Prior art keywords
locking bolt
lock pin
lock
movement
locking
Prior art date
Application number
PCT/CN2019/112240
Other languages
French (fr)
Inventor
Yuanwen ZHENG
Yaqi Li
Weidong Zhang
Original Assignee
Beijing Youshan Information Technology Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201811261958.0A external-priority patent/CN111101776A/en
Priority claimed from CN201811261955.7A external-priority patent/CN110748245A/en
Priority claimed from CN201811261985.8A external-priority patent/CN111101777A/en
Application filed by Beijing Youshan Information Technology Co., Ltd. filed Critical Beijing Youshan Information Technology Co., Ltd.
Publication of WO2020083192A1 publication Critical patent/WO2020083192A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62HCYCLE STANDS; SUPPORTS OR HOLDERS FOR PARKING OR STORING CYCLES; APPLIANCES PREVENTING OR INDICATING UNAUTHORIZED USE OR THEFT OF CYCLES; LOCKS INTEGRAL WITH CYCLES; DEVICES FOR LEARNING TO RIDE CYCLES
    • B62H5/00Appliances preventing or indicating unauthorised use or theft of cycles; Locks integral with cycles
    • B62H5/14Appliances preventing or indicating unauthorised use or theft of cycles; Locks integral with cycles preventing wheel rotation
    • B62H5/147Appliances preventing or indicating unauthorised use or theft of cycles; Locks integral with cycles preventing wheel rotation by means of circular bolts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62HCYCLE STANDS; SUPPORTS OR HOLDERS FOR PARKING OR STORING CYCLES; APPLIANCES PREVENTING OR INDICATING UNAUTHORIZED USE OR THEFT OF CYCLES; LOCKS INTEGRAL WITH CYCLES; DEVICES FOR LEARNING TO RIDE CYCLES
    • B62H5/00Appliances preventing or indicating unauthorised use or theft of cycles; Locks integral with cycles
    • B62H5/14Appliances preventing or indicating unauthorised use or theft of cycles; Locks integral with cycles preventing wheel rotation
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05BLOCKS; ACCESSORIES THEREFOR; HANDCUFFS
    • E05B47/00Operating or controlling locks or other fastening devices by electric or magnetic means
    • E05B47/06Controlling mechanically-operated bolts by electro-magnetically-operated detents
    • E05B47/0603Controlling mechanically-operated bolts by electro-magnetically-operated detents the detent moving rectilinearly
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05BLOCKS; ACCESSORIES THEREFOR; HANDCUFFS
    • E05B71/00Locks specially adapted for bicycles, other than padlocks
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05BLOCKS; ACCESSORIES THEREFOR; HANDCUFFS
    • E05B47/00Operating or controlling locks or other fastening devices by electric or magnetic means
    • E05B2047/0048Circuits, feeding, monitoring
    • E05B2047/0067Monitoring
    • E05B2047/0069Monitoring bolt position

Definitions

  • the present disclosure generally relates to the field of lock, and in particular, to a locking mechanism and systems and methods for lock control.
  • Lock is a widely used tool in people’s daily life. Take a transportation vehicle as an example, in order to prevent the vehicle from being stolen or set a use permission for the vehicle, a lock is usually disposed on the vehicle. Therefore, it is desirable to provide a lock with a locking mechanism which may be relatively simplified, have a relatively long usage time, and/or have a relatively high working efficiency, and further provide systems and methods for controlling the lock through the locking mechanism.
  • a locking mechanism of a lock may include a locking bolt, a first sensor configured to detect a signal associated with a lock pin, and a locking bolt drive device configured to drive a movement of the locking bolt based at least in part on the signal associated with the lock pin.
  • the first sensor may include a pressure sensor, a touch sensor, a photoelectric sensor, a magnetic induction sensor, a current transformer, a Hall current sensor, a fluxgate current sensor, a giant magnetoresistance current sensor, and/or a fiber current sensor.
  • the signal associated with the lock pin may include at least one of a signal indicative of a position of the lock pin, a signal indicative of a movement of the lock pin, and/or a signal indicative of a driving current of a power device of the locking bolt drive device.
  • the locking mechanism may further include a second sensor configured to detect a signal indicative of a position of the locking bolt.
  • the second sensor may include a touch switch, a photoelectric sensor, and/or a magnetic induction sensor.
  • the signal associated with the lock pin may include the signal indicative of the position of the lock pin.
  • the locking bolt drive device may be configured to drive the movement of the locking bolt based on the signal indicative of the position of the lock pin and the signal indicative of the position of the locking bolt.
  • the locking bolt drive device when the signal indicative of the position of the lock pin indicates that the lock pin reaches a predetermined position of the lock pin and the signal indicative of the position of the locking bolt indicates that the locking bolt is located at a first predetermined position of the locking bolt, the locking bolt drive device is configured to drive the locking bolt to move to a second predetermined position of the locking bolt.
  • the locking bolt drive device may include a power device and a driving portion transmissibly connected to the power device and configured to move under the driving of the power device to drive the movement of the locking bolt.
  • the power device may include a motor.
  • the driving portion may include a cam including a first cylinder and a second cylinder.
  • a diameter of the first cylinder may be larger than a diameter of the second cylinder.
  • An end face of the first cylinder and an end face of the second cylinder may be fixedly connected with each other.
  • the first cylinder may be fixed on a rotation shaft of the motor.
  • a position of the second cylinder may deviate from a rotation center of the first cylinder.
  • the locking bolt may include a sliding chute disposed on a face of the locking bolt facing toward the cam and configured for accommodating the second cylinder to slide in the sliding chute.
  • the signal associated with the lock pin may include the signal indicative of the movement of the lock pin.
  • the locking bolt drive device may be configured to drive the movement of the locking bolt based on the signal indicative of the movement of the lock pin and the signal indicative of the position of the locking bolt.
  • the locking bolt drive device is configured to drive the movement of the locking bolt.
  • the locking bolt drive device may include a locking bolt reset device transmissibly connected to the locking bolt, a power device, and a driving portion transmissibly connected to the power device and configured to move under the driving of the power device to drive the movement of the locking bolt.
  • the power device may include a motor.
  • the driving portion may include a cam including a first cylinder and a second cylinder.
  • a diameter of the first cylinder may be larger than a diameter of the second cylinder.
  • An end face of the first cylinder and an end face of the second cylinder may be fixedly connected with each other.
  • the first cylinder may be fixed on a rotation shaft of the motor.
  • a position of the second cylinder may deviate from a rotation center of the first cylinder.
  • the locking bolt may include a protrusion for abutting against the second cylinder.
  • the signal associated with the lock pin may include the signal indicative of the driving current of the power device of the locking bolt drive device.
  • the locking bolt drive device may be configured to drive the movement of the locking bolt based on the signal indicative of the driving current of the power device of the locking bolt drive device.
  • the locking bolt drive device when the signal indicative of the driving current of the power device of the locking bolt drive device indicates that the driving current is less than a threshold, the locking bolt drive device is configured to stop driving the movement of the locking bolt.
  • the locking bolt drive device may include a driving portion transmissibly connected to the power device and configured to move under the driving of the power device to drive the movement of the locking bolt, and a locking bolt reset device transmissibly connected to the locking bolt.
  • the power device may include a motor.
  • the driving portion may include a cam including a first cylinder and a second cylinder.
  • a diameter of the first cylinder may be larger than a diameter of the second cylinder.
  • An end face of the first cylinder and an end face of the second cylinder may be fixedly connected with each other.
  • the first cylinder may be fixed on a rotation shaft of the motor.
  • a position of the second cylinder may deviate from a rotation center of the first cylinder.
  • the locking bolt may include a protrusion for abutting against the second cylinder.
  • the locking mechanism may further include a controller in communication with the first sensor and the locking bolt drive device and configured to control the locking bolt drive device based on the signal associated with lock pin.
  • a method may include obtaining a signal associated with a lock pin and driving a movement of the locking bolt based at least in part on the signal associated with the lock pin.
  • the signal associated with the lock pin may be detected by a first sensor.
  • the first sensor may include a pressure sensor, a touch sensor, a photoelectric sensor, a magnetic induction sensor, a resistance, a current transformer, a Hall current sensor, a fluxgate current sensor, a giant magnetoresistance current sensor, and/or a fiber current sensor.
  • the signal associated with the lock pin may include at least one of a signal indicative of a position of the lock pin, a signal indicative of a movement of the lock pin, and/or a signal indicative of a driving current of a power device of a locking bolt drive device.
  • the method may further include detecting a signal indicative of a position of the locking bolt by a second sensor.
  • the second sensor may include a touch switch, a photoelectric sensor, and/or a magnetic induction sensor.
  • the signal associated with the lock pin may include the signal indicative of the position of the lock pin.
  • the driving the movement of the locking bolt based at least in part on the signal associated with the lock pin may include driving the movement of the locking bolt based on the signal indicative of the position of the lock pin and the signal indicative of the position of the locking bolt.
  • the driving the movement of the locking bolt based on the signal indicative of the position of the lock pin and the signal indicative of the position of the locking bolt comprises may include driving the locking bolt to move to a second predetermined position of the locking bolt when the signal indicative of the position of the lock pin indicates that the lock pin reaches a predetermined position of the lock pin and the signal indicative of the position of the locking bolt indicates that the locking bolt is located at a first predetermined position of the locking bolt.
  • the signal associated with the lock pin may include the signal indicative of the movement of the lock pin.
  • the driving the movement of the locking bolt based at least in part on the signal associated with the lock pin may include driving the movement of the locking bolt based on the signal indicative of the movement of the lock pin and the signal indicative of the position of the locking bolt.
  • the driving the movement of the locking bolt based on the signal indicative of the movement of the lock pin and the signal indicative of the position of the locking bolt may include driving the movement of the locking bolt when the signal indicative of the movement of the lock pin indicates that the lock pin is moving and the signal indicative of the position of the locking bolt indicates that the locking bolt is located at a predetermined position of the locking bolt.
  • the signal associated with the lock pin may include the signal indicative of the driving current of the power device of the locking bolt drive device.
  • the driving the movement of the locking bolt based at least in part on the signal associated with the lock pin may include driving the movement of the locking bolt based on the signal indicative of the driving current of the power device of the locking bolt drive device.
  • the driving the movement of the locking bolt based on the signal indicative of the driving current of the power device of the locking bolt drive device may include stop driving the movement of the locking bolt when the signal indicative of the driving current of the power device of the locking bolt drive device indicates that the driving current is less than a threshold.
  • a system configured to include an obtaining module configured to obtain a signal associated with a lock pin, and a driving module configured to drive a movement of a locking bolt based at least in part on the signal associated with the lock pin.
  • a non-transitory computer readable medium may include executable instructions that, when executed by at least one processor, direct the at least one processor to perform a method.
  • the method may include obtaining a signal associated with a lock pin and driving a movement of a locking bolt based at least in part on the signal associated with the lock pin.
  • a lock may include a lock pin and a locking mechanism.
  • the locking mechanism may include a locking bolt, a first sensor configured to detect a signal associated with a lock pin, and a locking bolt drive device configured to drive a movement of the locking bolt based at least in part on the signal associated with the lock pin.
  • the lock may further include a housing.
  • the locking bolt drive device may include a locking bolt reset device.
  • the lock pin may be moveably disposed in the housing relative to the housing, and include a lock hole or a groove for accommodating at least part of the locking bolt.
  • the locking bolt reset device may be transmissibly connected to the lock pin.
  • the locking bolt may be movably disposed in the housing relative to the housing such that the at least part of the locking bolt can enter or exit the lock hole or the groove.
  • a vehicle may include a lock and a locking mechanism of the lock.
  • the locking mechanism may include a locking bolt, a first sensor configured to detect a signal associated with a lock pin, and a locking bolt drive device configured to drive a movement of the locking bolt based at least in part on the signal associated with the lock pin.
  • FIG. 1 is a schematic diagram illustrating an exemplary lock in a locking state according to some embodiments of the present disclosure
  • FIG. 2 is a schematic diagram illustrating an exemplary lock in an unlocking state according to some embodiments of the present disclosure
  • FIG. 3 is a schematic diagram illustrating an exemplary locking bolt according to some embodiments of the present disclosure
  • FIG. 4 is a flowchart illustrating an exemplary process for lock control according to some embodiments of the present disclosure
  • FIG. 5 is a block diagram illustrating a lock control system according to some embodiments of the present disclosure.
  • FIG. 6 is a schematic diagram illustrating an exemplary lock in a locking state according to some embodiments of the present disclosure
  • FIG. 7 is a schematic diagram illustrating an exemplary lock in an unlocking state according to some embodiments of the present disclosure.
  • FIG. 8 is a flowchart illustrating an exemplary process for lock control according to some embodiments of the present disclosure
  • FIG. 9 is a block diagram illustrating an exemplary lock control system according to some embodiments of the present disclosure.
  • FIG. 10 is a schematic diagram illustrating an exemplary lock in a locking state according to some embodiments of the present disclosure.
  • FIG. 11 is a schematic diagram illustrating an exemplary lock in an unlocking state according to some embodiments of the present disclosure.
  • FIG. 12 is a flowchart illustrating an exemplary process for lock control according to some embodiments in the present disclosure.
  • FIG. 13 is a block diagram illustrating an exemplary lock control system according to some embodiments of the present disclosure.
  • the flowcharts used in the present disclosure illustrate operations that systems implement according to some embodiments in the present disclosure. It is to be expressly understood, the operations of the flowchart may be implemented not in order. In some embodiments, the operations may be implemented in inverted order, or simultaneously. Moreover, one or more other operations may be added to the flowcharts. One or more operations may be removed from the flowcharts.
  • the present disclosure relates to a locking mechanism, a lock, and a vehicle.
  • the vehicle may include but not limited to a bicycle, an electric vehicle, a balance vehicle, a motorcycle, a tricycle, a car, a bus, a train, a boat, a vessel, an aircraft, an autonomous vehicle, or the like, or a combination thereof.
  • the lock may be used to secure the vehicle, for example, prevent the vehicle from being stolen, prevent the vehicle from being illegally used, etc.
  • the lock may be independently from the vehicle or disposed on the vehicle.
  • the application scenario of the lock is not limited to securing the vehicle.
  • the application scenario of the lock may include securing a door, a cabinet, a box, etc.
  • the lock may include a lock pin and a locking mechanism.
  • the lock pin may be used to change a state of the lock (e.g., locking or unlocking the lock) .
  • the lock pin may have various shapes.
  • the lock pin may include a ring lock pin (e.g., a lock ring) , a linear lock pin, a hook-shaped lock pin, etc.
  • the lock used on the vehicle may be a lock ring, which may pass through a spoke clearance of a wheel in the locking state to limit the rotation of the wheel.
  • the lock may further include a lock pin reset device which may be used to reset the lock pin during a process for unlocking the lock.
  • the lock pin reset device may include a spring, such as a compression spring, a tension spring, a coil spring, etc.
  • the locking mechanism may be used to control the lock pin, thereby controlling unlocking or locking the lock.
  • the locking mechanism may include a locking bolt and a locking bolt drive device.
  • the locking bolt drive device may be configured to drive a movement of the locking bolt.
  • the lock pin may include a lock hole or a groove for accommodating the locking bolt, and the locking bolt may snap into or disengage from the lock hole or the groove of the lock pin through movement.
  • the locking mechanism may restrict the movement of the lock pin, thereby locking the lock.
  • the locking mechanism may remove the restriction on the movement of the lock pin and the lock pin may be reset by the lock pin reset device, thereby unlocking the lock.
  • FIG. 1 is a schematic diagram illustrating an exemplary lock in a locking state according to some embodiments of the present disclosure.
  • FIG. 2 is a schematic diagram illustrating an exemplary lock in an unlocking state according to some embodiments of the present disclosure.
  • FIG. 3 is a schematic diagram illustrating an exemplary locking bolt according to some embodiments of the present disclosure.
  • 100 refers to a lock
  • 110 refers to a lock pin
  • 120 refers to a locking bolt
  • 121 refers to a sliding chute
  • 130 refers to a groove
  • 131 refers to a motor
  • 132 refers to a cam
  • 140 refers to a lock pin reset device
  • 141 refers to a slot
  • 151 refers to a magnetic control switch
  • 152 refers to a magnet
  • 160 refers to a touch switch
  • 161 refers to a spring strip
  • 170 refers to a lock pin handle.
  • the locking mechanism of the lock 100 may include a locking bolt 120 and a locking bolt drive device.
  • the locking bolt drive device may be configured to drive a movement of the locking bolt 120.
  • the locking bolt drive device may apply a driving force to the locking bolt 120 to drive the movement of the locking bolt 120.
  • the locking bolt drive device may include a power device and a driving portion.
  • the driving portion may be transmissibly connected to the power device and may be configured to move under the driving of the power device to drive the movement of the locking bolt 120.
  • the power device may be a motor 131 and the driving portion may be a cam 132.
  • the cam 132 may include two cylinders whose end faces are fixed to each other.
  • the cam 132 may include a first cylinder and a second cylinder, wherein a diameter of the first cylinder is larger than a diameter of the second cylinder.
  • the first cylinder (also referred to as “large cylinder” ) may be fixed on a rotation shaft of the motor 131.
  • the end surface of the second cylinder (also referred to as “small cylinder” ) may be fixed to the end surface of the large cylinder and a position of the small cylinder may deviate from a rotation center of the large cylinder.
  • a circumference of the small cylinder may be tangent to a circumference of the large cylinder.
  • the diameter of the small cylinder may be less than half of the diameter of the large cylinder.
  • a ratio of the diameter of the small cylinder to the diameter of the large cylinder may be 1/3, 1/4, 1/5, 1/6, etc.
  • a face of the locking bolt 120 that is facing toward a face of the cam 132 may be provided with a long-shaped sliding chute 121 for accommodating a part (e.g., the small cylinder) of the cam 132 and supporting the part of the cam 132 to slide inside the long-shaped sliding chute 121.
  • the locking bolt 120 may be driven to move (e.g., move toward or away from the lock pin 110) .
  • the cam 132 may drive the locking bolt 120 to move away from the lock pin 110 through a forward rotation (e.g., a clockwise rotation) , and drive the locking bolt 120 to move toward the lock pin 110 through a reverse rotation (e.g., a counterclockwise rotation) .
  • a forward rotation e.g., a clockwise rotation
  • a reverse rotation e.g., a counterclockwise rotation
  • the locking bolt drive device may also include any other suitable devices capable of driving the locking bolt 120 to move toward or away from the lock pin 110.
  • the locking bolt drive device may be a rack and pinion mechanism, wherein a rack can be driven to move by a rotation of a pinion, thereby driving the movement of the locking bolt.
  • the locking bolt drive device may be a worm gear mechanism, wherein a worm can be driven to move by a rotation of a gear, thereby driving the movement of the locking bolt.
  • the locking bolt drive device may also drive the movement of the locking bolt by a wire drive, a chain drive, a belt drive, or the like, or any combination thereof.
  • the motor 131 may be a reduction motor.
  • the reduction motor may refer to an integration of a reducer and a motor.
  • the advantages of using a reduction motor in the present disclosure may include that the design can be simplified, the space can be saved, the reduction motor is reliable and durable, and the reduction motor also has a high overload capability, a low energy consumption, and a high efficiency.
  • the locking bolt drive device may also be a reciprocating drive mechanism such as a crank rocker mechanism.
  • the power device may be a motor and the driving portion may be a rocker.
  • the locking bolt drive device may also be a magnetic drive device.
  • the power device may be an electromagnet and the driving portion may be a magnetic block driven by the electromagnet.
  • the locking mechanism may also include a first sensor configured to detect a position of the lock pin 110 (also referred to as a “signal indicative of the position of the lock pin” ) of the lock 100.
  • the first sensor may be configured to detect whether the lock pin 110 is located at a predetermined position of the lock pin 110.
  • the predetermined position of the lock pin 110 may be a position of the lock pin 110 when the lock is in a locking state.
  • the first sensor may include a magnetic control switch 151.
  • An element e.g., a magnet 152 used to generate a magnetic field may be disposed on the lock pin 110.
  • the magnetic control switch 151 may determine the position of the lock pin 110 by sensing a position of the magnet 152. Specifically, the magnetic control switch 151 may receive a magnetic field generated by the magnet 152 and generate an electric signal reflecting an intensity of the magnetic field.
  • a controller (which may be integrated in the lock 100 or a component (e.g., the locking mechanism) of the lock 100) may determine the position of the lock pin 110 by processing the electric signal (e.g., performing a comparison operation) .
  • the magnetic control switch 151 and the magnet 152 may be set oppositely to each other in the locking state of the lock 100.
  • the magnet 152 may be disposed at a tail end of the lock pin 110 and the magnetic control switch 151 may be disposed in the vicinity of the magnet 152 when the lock 100 is in the locking state.
  • the magnetic control switch 151 may be disposed right above or below the magnet 152 when the lock 100 is in the locking state.
  • “in the vicinity of” refers to that a distance between the magnet 152 and the magnetic control switch 151 is less than a predetermined distance threshold.
  • the magnet 152 may be disposed at other suitable positions (e.g., a middle part of the lock pin 110, a head end of the lock pin 110) and the magnetic control switch 151 may be disposed in the vicinity of the magnet 152 when the lock 100 is in the locking state.
  • the magnetic control switch 151 may include any sensor which can detect information using the magnetic induction sensing principle, such as a Hall sensor, an electromagnetic induction sensor (e.g., a fluxgate sensor, an eddy current sensor) , a magnetoresistive sensor (e.g., a giant magnetoresistive sensor, a magnetostrictive sensor) , etc.
  • a Hall sensor e.g., a Hall sensor, an electromagnetic induction sensor (e.g., a fluxgate sensor, an eddy current sensor) , a magnetoresistive sensor (e.g., a giant magnetoresistive sensor, a magnetostrictive sensor) , etc.
  • an electromagnetic induction sensor e.g., a fluxgate sensor, an eddy current sensor
  • a magnetoresistive sensor e.g., a giant magnetoresistive sensor, a magnetostrictive sensor
  • the first sensor may be a sensor of other types.
  • the first sensor may be a photoelectric sensor.
  • the first sensor may be a photoelectric sensor, such as a slot type photoelectric sensor, a through-beam type photoelectric sensor, a reflector type photoelectric switch, a diffuse reflection type photoelectric switch, etc.
  • a first baffle or a first light source may be fixed on the lock pin 110.
  • the first baffle or the first light source may be configured to change an intensity of a light entering the photoelectric sensor when the lock pin 110 is in a locking position, so that whether the lock pin 110 is in the locking position may be determined based on an output signal of the photoelectric sensor.
  • the first sensor may be a touch switch 160.
  • a protrusion (not shown) opposite to the touch switch 160 may be fixed on the lock pin 110.
  • the protrusion may be configured to open or close the touch switch 160 when the lock pin 110 is moving, so that the position of the lock pin 110 may be determined based on a state of the touch switch 160, then the unlocking state or the locking state of the lock 100 may be determined based on the position of the lock pin 1040.
  • the first sensor may be any sensor capable of detecting the position of the lock pin 110.
  • the locking mechanism may further include a second sensor configured to detect a position of the locking bolt 120.
  • the position of the locking bolt 120 may reflect the unlocking state or the locking state of the lock 100.
  • the second sensor may be configured to detect whether the locking bolt 120 is located at a first predetermined position or a second predetermined position of the locking bolt 120.
  • the first predetermined position of the locking bolt 120 may be a position when the locking bolt 120 has disengaged from a lock hole or a groove 130 of the lock pin 110.
  • the first predetermined position of the locking bolt 120 may be the farthest position from lock pin 110 during the movement of the locking bolt 120.
  • the second predetermined position of the locking bolt 120 may be a position when the locking bolt 120 has snapped into the lock hole or the groove 130 of the lock pin 110 in the locking state.
  • the second sensor may be a touch switch 160
  • the locking bolt 120 e.g., a head end of the locking bolt 120
  • the locking bolt 120 may touch or disengage from the touch switch 160 while moving relative to a housing, thereby changing the state (e.g., on or off) of the touch switch 160.
  • the tail end of the locking bolt 120 may touch (e.g., the touch switch 160 may be closed) the touch switch 160; when the locking bolt 120 moves toward the lock pin 110, the tail end of the locking bolt 120 may disengage from (e.g., the touch switch 160 may be opened) the touch switch 160 (e.g., a spring strip 161 of the touch switch 160) .
  • the first predetermined position of the locking bolt 120 may be a position of the locking bolt 120 when the locking bolt 120 closes the touch switch 160.
  • the second predetermined position of the locking bolt 120 may be a position of the locking bolt 120 when the locking bolt 120 disengages from the touch switch 160 (i.e., when the locking bolt 120 switches on the touch switch 160) .
  • the output signals of the touch switch 160 may be different under different states (on or off) .
  • the touch switch 160 may be in communication with (e.g., electrically connected to) the controller. The controller may receive an output signal of the touch switch 160, determine the position of the locking bolt 120 based on the output signal, and then determine the state of the lock 100.
  • the touch switch 160 may be disposed at a position in the vicinity of the middle part of the locking bolt 120 and the locking bolt 120 may include a first protrusion used to touch the touch switch 160.
  • the first protrusion on the locking bolt 120 may disengage from the touch switch 160.
  • the lock 100 is in an unlocking state, the first protrusion on the locking bolt 120 may touch the touch switch 160.
  • the second sensor may be any other suitable device.
  • the second sensor may be a photoelectric sensor.
  • the locking bolt 120 may include a baffle or a light source configured to change an intensity of a light entering the photoelectric sensor when the locking bolt 120 is moving, then the position of the locking bolt 120 may be determined based on an output signal of the photoelectric sensor .
  • the second sensor may be a Hall sensor.
  • a magnetic element e.g., a magnet
  • used for triggering the Hall sensor may be fixed on the locking bolt 120 and the Hall sensor can sense the magnetic element when the magnetic element moves toward or away from the Hall sensor, then the position of the locking bolt 120 may be determined based on an output signal of the Hall sensor.
  • the magnetic element e.g., a magnet
  • the Hall sensor may be disposed at a position opposite to the magnetic element when the locking bolt 120 disengages from the lock hole or the groove 130.
  • the second sensor may also be any sensor capable of detecting the position of the locking bolt 120.
  • the locking bolt drive device may be configured to drive the movement the locking bolt 120 based on the position of the lock pin 110. For example, when the lock pin 110 is located at the predetermined position (e.g., when the lock hole or the groove 130 of the lock pin 110 is aligned with an end (e.g., a tail end) of the locking bolt 120) , the locking bolt drive device may drive the locking bolt 120 to move toward the lock pin 110, thereby driving the locking bolt 120 to snap into the lock hole or the groove 130 of the lock pin 110.
  • the predetermined position e.g., when the lock hole or the groove 130 of the lock pin 110 is aligned with an end (e.g., a tail end) of the locking bolt 120
  • the locking bolt drive device may be configured to drive the movement of the locking bolt 120 based on the position of the lock pin 110 and the position of the locking bolt 120. For example, when the lock pin 110 is located at the predetermined position (e.g., when the lock hole or groove 130 on the lock pin 110 is aligned with the tail end of the locking bolt 120) , the locking bolt drive device may drive the locking bolt 120 to move toward the lock pin 110; when the locking bolt 120 moves to the second predetermined position of the locking bolt 120 (e.g., a position where the locking bolt 120 is located when the locking bolt 120 snaps into the lock hole or the groove 130) , the locking bolt drive device may control the locking bolt 120 to stop moving.
  • the predetermined position e.g., when the lock hole or groove 130 on the lock pin 110 is aligned with the tail end of the locking bolt 120
  • the locking bolt drive device may drive the locking bolt 120 to move toward the lock pin 110
  • the locking bolt 120 moves to the second predetermined position of the locking bolt 120 (e.g., a position
  • the locking bolt drive device may be configured to drive the locking bolt 120 to move to the second predetermined position of the locking bolt 120. Further, when the locking bolt 120 is located at the second predetermined position of the locking bolt 120, the locking bolt drive device may stop driving the locking bolt 120.
  • the locking mechanism may further include a controller in communication with the first sensor and the locking bolt drive device.
  • the controller may be configured to control the locking bolt drive device based on an output signal of the first sensor.
  • the present disclosure also discloses a lock 100 which may include the locking mechanism of any of the embodiments of the present disclosure.
  • the lock 100 may also include a housing, a lock pin 110, and a lock pin reset device 140.
  • the lock pin 110 may be movably disposed in the housing relative to the housing, and the lock pin 110 may include the groove 130 for accommodating at least part (e.g., an end) of the locking bolt 120.
  • the lock pin 110 may be a lock ring which may be configured to pass through a spoke clearance of a wheel in the locking state to limit the rotation of the wheel.
  • the groove 130 on the lock pin 110 may also be a lock hole.
  • the lock pin reset device 140 may be transmissibly connected to the lock pin 110 and may be used to reset the lock pin 110 when the lock 100 is being unlocked.
  • the lock pin reset device 140 may be a spring (e.g., a tension spring) .
  • the locking bolt 120 may be movably disposed in the housing relative to the housing such that the at least part of the locking bolt 120 can enter or exit the lock hole or the groove 130.
  • an end (e.g., a tail end) of the locking bolt 120 may snap into or disengage from the lock hole or the groove 130 on the lock pin 110.
  • the locking bolt drive device may be configured to drive the locking bolt 120 to move relative to the housing.
  • the controller may receive an instruction (e.g., an unlocking instruction from a server or a mobile terminal) and control the locking bolt drive device based on the instruction.
  • the controller may control other components (e.g., the locking bolt drive device, the first sensor, the second sensor) of the lock 100 through a control system 500 shown in FIG. 5.
  • the locking bolt drive device, the first sensor, and the second sensor may be in communication with the controller.
  • the controller may be configured to control the locking bolt drive device based on the position of the locking bolt 120.
  • the locking bolt drive device may include a motor 131 and a cam 132
  • the first sensor may be a magnetic control switch 151
  • the second sensor may be a touch switch 160.
  • the motor 131 may drive the cam 132 to rotate in a forward direction (e.g., a clockwise direction) and the locking bolt 120 may be driven by the cam 132 to move away from the lock pin 110 until the locking bolt 120 disengages from the lock hole or the groove 130. Meanwhile, the locking bolt 120 may trigger the touch switch 160. Thereby, the system may determine that the lock has been unlocked and the motor 131 may stop rotating.
  • the lock pin 110 When the lock is being locked, the lock pin 110 may be subject to a tensile force and the lock pin reset device 140 may be elongated. Then the magnet 152 on the lock pin 110 approaches the magnetic control switch 151. Thereby, the system may determine that a locking operation is to be performed and then control the motor 131 to drive the cam 132 to rotate in a reverse direction (e.g., a counterclockwise direction) .
  • the locking bolt 120 may be driven by the cam 132 to move downward to snap into the lock hole or the groove 130. Meanwhile, the locking bolt 120 may disengage from the touch switch 160. Thereby, the system may determine that the lock has been locked and the motor 131 may stop rotating.
  • the touch switch 160, the magnetic switch 151, and the motor 131 may be in communication with (e.g., electrically connected to) the controller.
  • the controller may control the motor 131 to rotate based on signals of the touch switch 160 and the magnetic control switch 151.
  • the motor 131 may drive the cam 132 to rotate to control the movement of the locking bolt 120 to achieve an unlocking operation or a locking operation.
  • the lock hole or the groove 130 may be a rectangular opening groove.
  • the lock hole or the groove 130 may be disposed in the vicinity of the tail end of the lock pin 110 for accommodating the locking bolt 120.
  • the lock pin 110 can no longer rotate, which indicates that the lock 100 has been in the locking state.
  • the magnet 152 may be disposed at a position where the tail end of the lock pin 110 is connected to the lock pin reset device 140.
  • the function of the magnet 152 is that when the magnet 152 is detected by the magnetic control switch 151, it may be determined that the lock pin reset device 140 has been stretched to the locking position.
  • the magnetic control switch 151 which is disposed at a stop position of the magnet 152 in the locking state may detect the magnet 152.
  • a distance range within which the magnetic control switch 151 can detect the magnet 152 may be 0.2cm -1cm.
  • the lock 100 may further include a battery disposed in the housing and used for providing power supply.
  • the battery may be charged by a solar panel disposed on a vehicle and may provide power to the lock 100.
  • the tail end of the lock pin 110 may include a slot 141 used for connecting to the lock pin reset device 140.
  • the slot 141 may be configured to fixedly connect to the lock pin reset device 140.
  • the lock pin reset device 140 may be engaged with the lock pin 110 through the slot 141.
  • the lock pin 110 may be made of a stainless steel. Since the lock of the present disclosure may be applied in an application scenario of locking or unlocking a bicycle, the lock may be exposed to the natural environment at most of the time and may be easily damaged.
  • the stainless steel may refer to a steel that is resistant to weakly corrosive media (e.g., air, steam, water) and chemically etch media (e.g., acid, alkali, salt) . Therefore, it is beneficial to extend the life of the lock by using the lock pin made of stainless steel.
  • the lock 100 may also include a lock pin handle 170 used for controlling the movement of the lock pin 110 when a user locks the lock 100.
  • the lock pin handle 170 may be disposed at a predetermined position (e.g., a third of a head end) of the lock pin 110.
  • FIG. 4 is a flow chart illustrating an exemplary process for lock control according to some embodiments of the present disclosure.
  • a position of the lock pin 110 may be detected. Specifically, operation 410 may be performed by a detection module 510.
  • a controller e.g., the detection module 510 may detect the position of the lock pin 110 based on a first sensor. Specifically, the detection module 510 may detect whether the lock pin 110 is located at a predetermined position of the lock pin 110 (e.g., a position where the lock pin 110 is located when the lock is in a locking state) .
  • a position of the locking bolt 120 may be detected. Specifically, operation 420 may be performed by the detection module 510.
  • the controller e.g., the detection module 510 may detect the position of the locking bolt 120 based on a second sensor. Specifically, the detection module 510 may detect whether the locking bolt 120 is located at a first predetermined position of the locking bolt 120 or a second predetermined position of the locking bolt 120.
  • a movement of a locking bolt drive device may be controlled based on the position of the lock pin 110.
  • operation 430 may be performed by a locking bolt drive device control module 520.
  • the controller e.g., the locking bolt drive device control module 520
  • the locking bolt drive device control module 520 may control the locking bolt drive device to move to achieve a locking operation.
  • the locking bolt drive device control module 520 may further control the locking bolt drive device to move based on the position of the lock pin 110 and the position of the locking bolt 120.
  • the locking bolt drive device control module 520 may control the locking bolt drive device to drive the locking bolt 120 to move to the second predetermined position of the locking bolt 120 to achieve the locking operation.
  • the process for unlocking the lock 100 may include the following operations.
  • the controller may receive an unlocking instruction.
  • the locking bolt drive device control module 520 may drive the locking bolt 120 to move away from the lock hole or the groove 130 until the locking bolt 120 disengages from the lock hole or the groove 130 of the lock pin 110.
  • the lock pin 110 may be reset (e.g., contract back into the housing) by the lock pin reset device 140 to unlock the lock 100.
  • the controller may determine that the lock 100 has been unlocked and control the motor 131 to stop rotating.
  • process 400 is merely provided for the purposes of illustration, and not intended to limit the scope of the present disclosure.
  • process 400 may be accomplished with the operations in an order described above or simultaneously.
  • operation 420 may be omitted.
  • FIG. 5 is a block diagram illustrating an exemplary lock control system according to some embodiments of the present disclosure.
  • the lock control system 500 may include a detection module 510 and a locking bolt drive device control module 520.
  • the detection module 510 may be configured to detect a position of the lock pin 110. For example, the detection module 510 may detect whether the lock pin 110 reaches the predetermined position of the lock pin 110. In some embodiments, the detection module 510 may also be configured to detect a position of the locking bolt 120. For example, the detection module 510 may detect whether the locking bolt 120 is located at a first predetermined position of the locking bolt 120 or a second predetermined position of the locking bolt 120.
  • the locking bolt drive device control module 520 may be configured to control the locking bolt drive device to move based on the position of the lock pin 110. In some embodiments, the locking bolt drive device control module may also be configured to control the locking bolt drive device to move based on the position of the lock pin 110 and the position of the locking bolt 120. For example, in response to detecting that the lock pin 110 has reached the predetermined position of the lock pin 110 and the locking bolt 120 is located at the first predetermined position of the locking bolt 120, the locking bolt drive device control module 520 may control the locking bolt drive device to drive the locking bolt 120 to move to the second predetermined position of the locking bolt 120 to achieve the locking operation.
  • system and the modules thereof shown in FIG. 5 may be implemented in various ways.
  • the system and the modules thereof may be implemented as hardware, software, or a combination of software and hardware.
  • the hardware may be implemented by a specific logic and the software may be stored in a storage and executed by an appropriate instruction execution system (e.g., a microprocessor, a dedicated design hardware) .
  • an appropriate instruction execution system e.g., a microprocessor, a dedicated design hardware
  • the above method and system may be implemented as computer-executable instructions and/or be embedded in control codes of a processor.
  • control codes may be provided by a storage medium (e.g., a disk, a CD, a DVD-ROM) , a programmable storage device (e.g., a read-only storage (e.g., firmware) ) , or a data carrier (e.g., an optical carrier, an electric signal carrier) .
  • the system and the modules thereof of the present disclosure may be implemented by a hardware circuit (e.g., a super large scale integrated circuit, a gate array) , a semiconductor (e.g., a logic chip, a transistor) , a programmable hardware device (e.g., a field-programmable gate array, a programmable logic device) , etc.
  • the system and the modules thereof may be implemented by software that can be executed by various processors.
  • the system and the modules thereof may also be implemented by a combination (e.g., firmware) of the hardware circuit and the software.
  • the detection module 510 and the locking bolt drive device control module 520 may be different modules in the system, or may be integrated as a single module to implement the functions of the two modules described above
  • the modules may share a storage module, or each of the modules may include a respective storage module.
  • the lock 100 disclosed in the present disclosure may be applied to a bicycle, such as a shared bicycle.
  • the lock pin 110 of the lock 100 may pass through a spoke clearance of a wheel of the bicycle to limit the rotation of the wheel.
  • the lock 100 may also be used in other vehicles (e.g., an electric vehicle, a tricycle) and the description above is not intended to be limiting.
  • the advantage effects of the lock and the locking mechanism disclosed in the present disclosure may include but not limited to: (1) a movement of a locking bolt may be driven based on a position of a lock pin to unlock or lock a lock, which can ensure an accuracy of determining an unlocking operation or a locking operation; (2) a touch switch may be used in combination with a magnetic control switch, which can reduce the cost and ensure the accuracy; (3) the magnetic control switch is a non-contact sensor, which has a relatively long usage life and relatively high reliability; and (4) the lock in the present disclosure may be applied to a bicycle, for example, a shared bicycle, which is convenient for the user to use. It should be noted that different embodiments may have different advantage effects. In different embodiments, the advantage effects may include any combination of one or more of the above or any other possible advantage effect.
  • FIG. 6 is a schematic diagram illustrating an exemplary lock in a locking state according to some embodiments of the present disclosure.
  • FIG. 7 is a schematic diagram illustrating an exemplary lock in an unlocking state according to some embodiments of the present disclosure.
  • a locking mechanism, a lock, a vehicle, and systems and methods for lock control according to some embodiments of the present disclosure will be described in detail below with reference to FIG. 6 and FIG. 7. It should be noted that the following embodiments are merely illustrative and do not limit the protection scope of the present disclosure.
  • 610 refers to a lock pin
  • 620 refers to a locking bolt
  • 621 refers to a locking bolt body
  • 622 refers to second protrusion
  • 623 refers to a first protrusion
  • 624 refers to a locking bolt reset component
  • 630 refers to a groove
  • 631 refers to a motor
  • 632 refers to a cam
  • 633 refers to a locking bolt driving component
  • 640 refers to a lock pin reset device
  • 650 refers to a first sensor
  • 651 refers to a magnetic control switch
  • 652 refers to a magnet
  • 660 refers to a second sensor
  • 661 refers to a touch switch protrusion.
  • the locking mechanism of the lock 600 may include a locking bolt 620 and a locking bolt drive device.
  • the locking bolt drive device may be configured to drive a movement of the locking bolt 620.
  • the locking bolt drive device may include a locking bolt driving component 633 and a locking bolt reset component 624 (also referred to as a “locking bolt reset device” ) .
  • the locking bolt driving component 633 may be configured to apply a driving force to the locking bolt 620 to drive the movement of the locking bolt 620.
  • the locking bolt reset component 624 may be configured to conserve and release energy during the movement of the locking bolt 620 to reset the locking bolt 620.
  • the locking bolt reset component 624 e.g., a spring
  • the locking bolt reset component 624 may be transmissibly connected to the locking bolt 620.
  • the locking bolt reset component 624 may be a compression spring.
  • the locking bolt reset component 624 may also be a tension spring, a coil spring, etc.
  • the locking bolt driving component 633 may include a power device and a driving portion.
  • the driving portion may be transmissibly connected to the power device and may be configured to move under the driving of the power device to drive the movement of the locking bolt 620.
  • the power device may be a motor 631 and the driving portion may be a cam 632.
  • the cam 632 may include two cylinders whose end faces are fixed to each other.
  • the cam 632 may include a first cylinder and a second cylinder, wherein a diameter of the first cylinder is larger than a diameter of the second cylinder.
  • the first cylinder also referred to as “large cylinder”
  • the first cylinder may be fixed on a rotation shaft of the motor 631.
  • the end surface of the second cylinder (also referred to as “small cylinder” ) may be fixed to the end surface of the large cylinder and a position of the small cylinder may deviate from a rotation center of the large cylinder.
  • a circumference of the small cylinder may be tangent to a circumference of the large cylinder.
  • the diameter of the small cylinder may be less than half of the diameter of the large cylinder.
  • a ratio of the diameter of the small cylinder to the diameter of the large cylinder may be 1/3, 1/4, 1/5, 1/6, etc.
  • the locking bolt 620 may include a second protrusion 622 for abutting against the cam 632 (e.g., the small cylinder on the cam 632) .
  • the cam 632 e.g., the small cylinder on the cam 632
  • the cam 632 may abut against or disengage from the second protrusion 622, thereby driving the movement of the locking bolt 620.
  • the motor 631 may be a reduction motor.
  • the locking bolt driving component 633 may also be a reciprocating drive mechanism such as a crank rocker mechanism.
  • the power device may be a motor 631 and the driving portion may be a rocker.
  • the locking bolt driving component 633 may also be a magnetic drive device.
  • the power device may be an electromagnet and the driving portion may be a magnetic block driven by the electromagnet.
  • the locking mechanism may also include a first sensor 650 configured to detect a movement of the lock pin 610 (also referred to as a “signal indicative of the movement of the lock pin” ) .
  • the first sensor 650 may include a magnetic control switch 651 (e.g., a magnetic induction sensor) .
  • An element e.g., a magnet 652 used to generate a magnetic field may be disposed on the lock pin 610.
  • the magnetic control switch 651 may determine the movement of the lock pin 610 based on an intensity of the magnetic field generated by the element (e.g., magnet 652) .
  • the magnet may be disposed at any position of the lock pin 610 and the magnetic control switch 651 may be disposed in the vicinity of (e.g., right above or below) a position on a moving path of the magnet.
  • the magnet When the lock pin 610 is moving, the magnet may pass (e.g., close to and/or away from) a position corresponding to the magnetic control switch 651, then the movement of the lock pin 610 may be determined based on an intensity of the magnetic field generated by the magnet 652 and received by the magnetic control switch 651. For example, the magnetic control switch 651 may generate an electric signal reflecting the intensity of the magnetic field. Then a controller (which may be integrated in the lock 600 or a component (e.g., the locking mechanism) of the lock 600) may determine the movement of the lock pin 610 by processing the electric signal (e.g., performing a comparison operation) .
  • the electric signal e.g., performing a comparison operation
  • the first sensor 650 may also determine the movement of the lock pin 610 by detecting whether the lock pin 610 is located at a predetermined position of the lock pin 610.
  • the element e.g., a magnet 652 used to generate a magnetic field
  • the magnetic control switch 651 may receive a signal of the magnetic field generated by the magnet 152 and generate an electric signal reflecting an intensity of the magnetic field.
  • the magnetic control switch 651 may be in communication with (e.g., electrically connected to) the controller.
  • the controller may receive an output signal of the magnetic control switch 651 and determine whether the lock pin 630 reaches the predetermined position based on the output signal.
  • the predetermined position of the lock pin 610 may be a position where the lock pin 610 is located when the lock 600 is in a locking state.
  • the controller determines that the lock pin 610 has moved to the predetermined position based on the output signal of the first sensor 650 (e.g., the magnetic control switch 651) , it may be considered that the lock pin 610 has moved.
  • the magnetic control switch has advantages of no contact, low power consumption, long usage life, and high response frequency. Further, the magnetic control switch packaged with resin can be reliably used in various outdoor harsh environments.
  • the magnetic control switch 651 may include any sensor which can detect information using the magnetic induction sensing principle, such as a Hall sensor, an electromagnetic induction sensor (e.g., a fluxgate sensor, an eddy current sensor) , a magnetoresistive sensor (e.g., a giant magnetoresistive sensor, a magnetostrictive sensor) , etc.
  • a Hall sensor e.g., a Hall sensor, an electromagnetic induction sensor (e.g., a fluxgate sensor, an eddy current sensor) , a magnetoresistive sensor (e.g., a giant magnetoresistive sensor, a magnetostrictive sensor) , etc.
  • an electromagnetic induction sensor e.g., a fluxgate sensor, an eddy current sensor
  • a magnetoresistive sensor e.g., a giant magnetoresistive sensor, a magnetostrictive sensor
  • the first sensor 650 may be a sensor of other types.
  • the first sensor 650 may be a photoelectric sensor, such as a slot type photoelectric sensor, a through-beam type photoelectric sensor, a reflector type photoelectric switch, a diffuse reflection type photoelectric switch, etc.
  • a first baffle or a first light source may be fixed on the lock pin 610.
  • the first baffle or the first light source may be configured to change an intensity of a light entering the photoelectric sensor when the lock pin 610 is moving, so that whether the lock pin 610 is moving may be determined based on an output signal of the photoelectric sensor.
  • the first sensor may be a touch switch.
  • the lock pin 610 (e.g., an end (e.g., a tail end) of the lock pin 610) may open or close the touch switch when moving, so that whether the lock pin 610 has moved (or is moving) may be determined based on a state of the touch switch.
  • the first sensor may be any sensor capable of detecting the movement of the lock pin 610.
  • the first sensor 650 may be a pressure sensor, an infrared sensor, etc.
  • the locking mechanism may further include a second sensor 660 configured to detect the position of the locking bolt 620.
  • the second sensor 660 may include a touch switch
  • the locking bolt 620 may include an element (e.g., a first protrusion 623) which can touch or disengage from the touch switch (e.g., a touch switch protrusion 661) .
  • the second sensor 660 may include a magnetic induction sensor, and an element (e.g., a magnet) used to generate a magnetic field may be disposed at a head end of the locking bolt 620. Then the magnetic induction sensor may determine the position of the locking bolt 620 based on the magnetic field generated by the magnet.
  • an element e.g., a magnet
  • the second sensor 660 may further include a photoelectric sensor, such as a channel type photoelectric sensor, a through-beam type photoelectric sensor, a reflector type photoelectric switch, a diffuse reflection type photoelectric switch, etc.
  • An element e.g., a baffle, a reflective sheet used to change beams may be disposed at a tail end of the locking bolt 620. Then the photoelectric sensor may determine the position of the locking bolt 620 by detecting blocked or reflected beams.
  • the second sensor 660 may further include a pressure sensor, such as a piezoresistive pressure sensor, a sapphire pressure sensor, a diffusion silicon pressure sensor, a ceramic pressure sensor, a piezoelectric pressure sensor, etc.
  • An element e.g., the first protrusion 623 which can touch or disengage from the pressure sensor may be disposed at the head end of the locking bolt 620. Then the pressure sensor may determine the position of the locking bolt 620 by detecting a pressure applied by the protrusion.
  • the element may be any structure (e.g., a rod, a piece, a block) which is fixedly connected to the head end of the locking bolt 620.
  • the second sensor 660 may be configured to detect whether the locking bolt 620 is located at a predetermined position.
  • the predetermined position of the locking bolt 620 may be a position when the locking bolt 620 has disengaged from a groove of the lock pin 610.
  • the second sensor 660 may be a touch switch and the locking bolt may include an element which can touch or disengage from the touch switch (e.g., the first protrusion 623) .
  • the touch switch is under different states (e.g., on or off) , the output signals of the touch switch may be different.
  • the touch switch may be in communication with the controller.
  • the controller may receive the output signal of the touch switch, determine whether the locking bolt 620 is located at the predetermined position based on the output signal, and then determine a state of the lock 600. As shown in FIG. 6, when the lock 600 is in the locking state, the locking bolt 620 disengages from the touch switch and the locking bolt 620 is not located at the predetermined position of the locking bolt 620. As shown in FIG. 7, when the lock 600 is in the unlocking state, the locking bolt 620 touches the touch switch and the locking bolt 620 is located at the predetermined position of the locking bolt 620.
  • the locking bolt driving component 633 may be configured to drive the movement of the locking bolt 620 based on the movement of the lock pin 610. For example, when the lock pin 610 starts to move, which may indicate that a user has an intention to lock the lock 600, the locking bolt driving component 633 may move for a certain time, a certain displacement, or a certain angle, so that the locking bolt driving component 633 releases the restriction on the locking bolt 620 and reserves a space for the locking bolt 620 to reset.
  • the lock pin 610 may continue to move (or has moved in position) until the groove 630 of the locking pin 610 is aligned with an end of the locking bolt 620, under this situation, the locking bolt 620 can snap into the groove 630 of the lock pin 610 under the driving of the locking bolt reset component 624.
  • the locking bolt driving component 633 may be configured to drive the movement of the locking bolt 620 based on the movement of the lock pin 610 and the position of the locking bolt 620. For example, when the lock 600 is being locked, the locking bolt driving component 633 may drive the movement of the locking bolt 620 based on the movement of the lock pin 610. When the lock is being unlocked, the locking bolt driving component 633 may drive the movement of the locking bolt 620 based on the position of the locking bolt 620. For example, when the locking bolt 620 is located at the predetermined position of the locking bolt 620 and the locking bolt 620 has disengaged from the groove 630, the locking bolt driving component 633 may stop moving.
  • the locking bolt driving component 633 may also be configured to drive the movement of the locking bolt 620 when the lock pin 610 has moved (or is moving) and the locking bolt 620 is located at the predetermined position of the locking bolt 620.
  • the locking bolt 620 may disengage from (not abut against) the lock pin 610 and the movement of the lock pin 610 may reflect a user's intention to lock the lock 600.
  • the locking bolt driving component 633 may drive the movement of the locking bolt 620 until the locking bolt driving component 633 releases the restriction on the locking bolt 620 and reserves a space for the locking bolt 620 to reset. At this time, the locking bolt 620 may abut against the lock pin 610 under the driving of the locking bolt reset component 624.
  • the locking bolt driving component 633 may include a motor 631 and a cam 632.
  • the controller may control the motor 631 to drive the cam 632 to continue to rotate for a predetermined time or a predetermined angle, such that a distance between the cam 632 and the protrusion of the locking bolt 620 is greater than or equal to a distance between the end of the locking bolt 620 and the bottom of the groove 630, or the small cylinder of the cam 632 is not located on a reset path of the locking bolt 620.
  • the locking bolt 620 may be reset and abut against the lock pin 610 under a push force of the locking bolt reset component 624.
  • the locking mechanism may also include a controller in communication with the first sensor 650, the second sensor 660, and the locking bolt drive device (e.g., the motor 631 of the locking bolt drive device) .
  • the controller may be configured to control the locking bolt drive device based on the output signal of the first sensor 650 and the output signal of the second sensor 660.
  • the controller may be implemented by a lock control system shown in FIG. 8.
  • the present disclosure also discloses a lock 600 which may include the locking mechanism of any of the embodiments of the present disclosure.
  • the lock 600 may also include a housing, a lock pin 610, and a lock pin reset device 640.
  • the lock pin 610 may be movably disposed in the housing relative to the housing, and the lock pin 610 may include the groove 630 for accommodating at least part (e.g., an end) of the locking bolt 620.
  • the lock pin 610 may be a lock ring which may be configured to pass through a spoke clearance of a wheel in the locking state to limit the rotation of the wheel.
  • the groove 630 on the lock pin 610 may also be a lock hole.
  • the lock pin reset device 640 may be transmissibly connected to the lock pin 610 and may be used to reset the lock pin 610 when the lock is being unlocked.
  • the lock pin reset device 640 may be a spring (e.g., a tension spring) .
  • the locking bolt 620 may be movably disposed in the housing relative to the housing such that at least part of the locking bolt 620 can enter or exit the lock hole or the groove 630.
  • the end (e.g., the tail end) of the locking bolt 620 may snap into or disengage from the lock hole or groove 630 on the lock pin 610.
  • the locking bolt reset component 624 may be transmissibly connected to the locking bolt 620. The locking bolt reset component 624 may reset the locking bolt 620 when the lock is locked and drive the locking bolt 620 to snap into the groove 630 of the lock pin 610.
  • the locking bolt driving component 633 may be configured to drive the locking bolt 620 to move relative to the housing.
  • the controller may receive an instruction (e.g., an unlocking instruction from a server or a mobile terminal) and control the locking bolt drive device based on the instruction.
  • the controller may control other components (e.g., the locking bolt driving component 633, the first sensor 650, the second sensor 660) of the lock 600 through a lock control system 800 shown in FIG. 8.
  • the locking bolt driving component 633, the first sensor 650, and the second sensor 660 may be in communication with the controller.
  • the controller may be configured to control the locking bolt driving component 633 based on the movement of the lock pin 610 or the position of the locking bolt 620.
  • the first sensor 650 may be configured to detect the movement of the lock pin 610 and the second sensor 660 may be configured to detect the position of the locking bolt 620.
  • the controller may be configured to control the locking bolt driving component 633 to release the restriction on the locking bolt 620 and reserve a reset space for the locking bolt 620.
  • the first sensor 650 e.g., the magnetic control switch
  • the second sensor 660 e.g., the touch switch
  • the locking mechanism of the present disclosure in which a touch switch is used in combination with a magnetic control switch may have a longer usage life and has higher reliability. Further, since the first sensor 650 is relatively durable, the cost of the lock 600 may be greatly reduced.
  • the locking bolt driving component 633 may include a motor 631 and a cam 632.
  • the motor 631 may be fixed within the housing and the cam 632 may be fixedly connected to the rotation shaft of the motor 631.
  • the motor 631 may be in communication with (e.g., electrically connected to) the controller.
  • the cam 632 may be configured to drive the locking bolt 620 to move relative to the housing under the driving of the motor 631.
  • the controller may control the motor 631 to drive the cam 632 to continue to rotate for a predetermined time (e.g., 0.5s, 1s, 2s) or a predetermined angle (e.g., 3°, 5°, 10°, 60°, 90°) , so that it can be ensured that the cam 632 can disengage from the second protrusion 622 and the cam 632 does not obstruct the movement of the locking bolt 620 when the locking bolt 620 is being reset by the push force of the locking bolt reset component 624.
  • the motor 631 may be preferably a reduction motor.
  • the locking bolt driving component 633 may also be implemented using other suitable devices known to those skilled in the art.
  • the locking bolt driving component 633 may be implemented using a reciprocating drive mechanism such as a crank rocker mechanism.
  • the lock pin reset device 640 may be a spring, such as a tension spring. Specifically, one end of the tension spring may be fixed on the housing and the other end of the tension spring may be connected to an end of the lock pin 610. Further, when the lock 600 is in a locking state, the tension spring may be in a stretch state; when the lock 600 is in an unlocking state, the tension spring may be in a reset state.
  • the locking bolt reset component 624 may be a spring. Specifically, one end of the spring may be fixed on the housing and the other end of the spring may be connected to the other end (e.g., a head end) of the locking bolt 620. Further, when the lock 600 is in an unlocking state, the spring may be in a compress state; when the lock 600 is in a locking state, the spring may be in a reset state.
  • FIG. 8 is a flowchart illustrating an exemplary process for lock control according to some embodiments of the present disclosure.
  • a movement of the lock pin 610 may be detected. Specifically, the operation 810 may be performed by a detection module 910.
  • a controller e.g., the detection module 910 may detect the movement of the lock pin 610 based on a first sensor 650. Specifically, the controller (e.g., the detection module 910) may receive an output signal of the first sensor 650 and determine the movement of the lock pin 610 based on the output signal of the first sensor 650.
  • a position of the locking bolt 620 may be detected. Specifically, the operation 820 may be performed by the detection module 910.
  • the controller e.g., the detection module 910 may determine the position of the locking bolt 620 based on a second sensor 660. In some embodiments, the detection module 910 may detect whether the locking bolt 620 is located at a predetermined position of the locking bolt 620.
  • the predetermined position may be a position when the locking bolt 620 has been away from (or has disengaged from) the lock pin 610 of the lock 600, for example, a position when the locking bolt 620 disengages from the groove 630, a position when the locking bolt 620 disengages from the lock pin 610, a position when the locking bolt 620 abuts against the lock pin 610, etc.
  • the controller e.g., the detection module 910 may receive the output signal of the second sensor 660 and determine the position of the locking bolt 620 based on the output signal of the second sensor 660.
  • a movement of the locking bolt drive device may be controlled based on the movement of the lock pin 610.
  • operation 820 may be performed by a locking bolt drive device control module 920.
  • the locking bolt drive device control module 920 may control the movement of the locking bolt drive device based on the movement of the lock pin 610 and the position of the locking bolt 620.
  • the locking bolt drive device control module 920 may control the locking bolt drive device to drive the movement of the locking bolt 620.
  • the locking bolt drive device may include a locking bolt driving component 633 and a locking bolt reset component 624.
  • the locking bolt driving component 633 may include a power device (e.g., the motor 631) and a driving portion (e.g., the cam 632) .
  • the driving portion may be transmissibly connected to the power device and the driving portion may be configured to move under the driving of the power device to drive the movement of the locking bolt 620.
  • the process for locking the lock 600 may include operations described below.
  • the lock pin 610 may move relative to the housing under a pulling force until the groove 630 of the lock pin 610 is aligned with the locking bolt 620. Then the locking bolt 620 may move toward the lock pin 610 under the action of the locking bolt reset component 624 until the end (e.g., the tail end) of the locking bolt 620 snaps into the groove 630 of the lock pin 610 and then the lock may be locked.
  • process 800 is merely provided for the purposes of illustration, and not intended to limit the scope of the present disclosure.
  • process 800 may be accomplished with the operations in an order described above or simultaneously.
  • operation 820 may be omitted.
  • FIG. 9 is a block diagram illustrating an exemplary lock control system according to some embodiments of the present disclosure.
  • the lock control system 900 may include a detection module 910 and a locking bolt drive device control module 920.
  • the detection module 910 may be configured to detect a movement of the lock pin 610. In some embodiments, the detection module 910 may also be configured to detect a position of the locking bolt 620. For example, the detection module 910 may detect whether the locking bolt 620 is located at a predetermined position of the locking bolt 620.
  • the locking bolt drive device control module 920 may be configured to control the locking bolt drive device to move based on the movement of the lock pin 610. In some embodiments, the locking bolt drive device control module 920 may also be configured to control the locking bolt drive device to move based on the movement of the lock pin 610 and the position of the locking bolt 620.
  • the locking bolt drive device control module 920 may control the locking bolt drive device to drive the movement of the locking bolt 620.
  • system and the modules thereof shown in FIG. 9 may be implemented in various ways.
  • the system and the modules thereof may be implemented as hardware, software, or a combination of software and hardware.
  • the hardware may be implemented by a specific logic and the software may be stored in a storage and executed by an appropriate instruction execution system (e.g., a microprocessor, a dedicated design hardware) .
  • an appropriate instruction execution system e.g., a microprocessor, a dedicated design hardware
  • the above method and system may be implemented as computer-executable instructions and/or be embedded in control codes of a processor.
  • control codes may be provided by a storage medium (e.g., a disk, a CD, a DVD-ROM) , a programmable storage device (e.g., a read-only storage (e.g., firmware) ) , or a data carrier (e.g., an optical carrier, an electric signal carrier) .
  • the system and the modules thereof of the present disclosure may be implemented by a hardware circuit (e.g., a super large scale integrated circuit, a gate array) , a semiconductor (e.g., a logic chip, a transistor) , a programmable hardware device (e.g., a field-programmable gate array, a programmable logic device) , etc.
  • the system and the modules thereof may be implemented by software that can be executed by various processors.
  • the system and the modules thereof may also be implemented by a combination (e.g., firmware) of the hardware circuit and the software.
  • the detection module 910 and the locking bolt drive device control module 920 may be different modules in a system, or may be integrated as a single module to implement the functions of the two modules.
  • the modules may share a storage module, or each of the modules may include a respective storage module.
  • the lock 600 disclosed in the present disclosure may be applied to a bicycle, such as a shared bicycle.
  • the lock pin 610 of the lock 600 may pass through a spoke clearance of a wheel of the bicycle to limit the rotation of the wheel.
  • the lock 600 may also be used in other vehicles (e.g., an electric vehicle, a tricycle) and the description above is not intended to be limiting.
  • the advantage effects of the lock and the locking mechanism disclosed in the present disclosure may include but not limited to: (1) a movement of a locking bolt may be driven based on a movement of a lock pin to unlock or lock a lock, which can ensure an accuracy of determining an unlocking operation or a locking operation; (2) a touch switch may be used in combination with a magnetic control switch, which can reduce the cost and ensure the accuracy; (3) compared with other inductive elements, the magnetic control switch used in the present disclosure has advantages of no contact, relatively low power consumption, relatively long usage life, and relatively high response frequency, and further the magnetic control switch packaged with resin can be reliably used in various outdoor harsh environments. It should be noted that different embodiments may have different advantage effects. In different embodiments, the advantage effects may include any combination of one or more of the above or any other possible advantage effects.
  • FIG. 10 is a schematic diagram illustrating an exemplary lock in a locking state according to some embodiments of the present disclosure.
  • FIG. 11 is a schematic diagram illustrating an exemplary lock in an unlocking state according to some embodiments of the present disclosure.
  • a locking mechanism, a lock, a vehicle, and systems and methods for lock control according to some embodiments of the present disclosure will be described in detail below with reference to FIG. 10 and FIG. 11. It should be noted that the following embodiments are merely illustrative and do not limit the scope of the present disclosure.
  • 1010 refers to a locking bolt
  • 1011 refers to a second protrusion
  • 1012 refers to a first protrusion
  • 1020 refers to a locking bolt reset component
  • 1030 refers to a locking bolt driving component
  • 1031 refers to a motor
  • 1032 refers to a cam
  • 1040 refers to a lock pin
  • 1041 refers to a groove
  • 1042 refers to a handle
  • 1050 refers to a lock pin reset device
  • 1060 refers to a touch switch.
  • the locking mechanism of the lock 1000 may include a locking bolt 1010 and a locking bolt drive device.
  • the locking bolt drive device may be configured to drive a movement of the locking bolt 1010.
  • the locking bolt drive device may include a locking bolt driving component 1030 and a locking bolt reset component 1020 (also referred to as a “locking bolt reset device” ) .
  • the locking bolt driving component 1030 may be configured to apply a driving force to the locking bolt 1010 to drive the movement of the locking bolt 1010.
  • the locking bolt reset component 1020 may be configured to conserve and release energy during the movement of the locking bolt 1010 to reset the locking bolt 1010.
  • the locking bolt 1010 may be a linear locking bolt or a circular arc locking bolt . If the locking bolt 1010 is a linear locking bolt, the locking bolt 1010 may move along a linear direction thereof. If the locking bolt 1010 is a circular arc locking bolt, the locking bolt 1010 may move along a circumferential direction thereof (i.e., rotates around a center of a circular arc) .
  • the locking bolt reset component 1020 (e.g., a spring) may be transmissibly connected to the locking bolt 1010.
  • the locking bolt reset component 1020 may be a compression spring.
  • the locking bolt reset component 1020 may also be a tension spring, a coil spring, etc.
  • the locking bolt driving component 1030 may include a power device and a driving portion. The driving portion may be transmissibly connected to the power device and may be configured to move under the driving of the power device to drive the movement of the locking bolt 1010.
  • the power device may be a motor 1031 and the driving portion may be a cam 1032.
  • the cam 1032 may include two cylinders whose end faces are fixed to each other.
  • the cam 1032 may include a first cylinder and a second cylinder, wherein a diameter of the first cylinder is larger than a diameter of the second cylinder.
  • the first cylinder also referred to as “large cylinder”
  • the end surface of the second cylinder also referred to as “small cylinder”
  • a circumference of the small cylinder may be tangent to a circumference of the large cylinder.
  • the diameter of the small cylinder may be less than half of the diameter of the large cylinder.
  • a ratio of the diameter of the small cylinder to the diameter of the large cylinder may be 1/3, 1/4, 1/5, 1/6, etc.
  • the locking bolt 1020 may include a second protrusion 1011 for abutting against the cam 1032 (e.g., the small cylinder of the cam 1032) .
  • the cam 1032 e.g., the small cylinder of the cam 1032
  • the cam 1032 may abut against or disengage from the second protrusion 1011, thereby driving the movement of the locking bolt 1010.
  • the motor 1031 may be a reduction motor.
  • the locking bolt driving component 1030 may also be a reciprocating drive mechanism such as a crank rocker mechanism.
  • the power device may be a motor and the driving portion may be a rocker.
  • the locking bolt driving component 1030 may also be a magnetic drive device.
  • the power device may be an electromagnet and the driving portion may be a magnetic block driven by the electromagnet.
  • the locking mechanism may further include a sensor configured to detect a signal reflecting a value of a driving current of the power device (also referred to as a “signal indicative of a driving current of the power device” ) .
  • the sensor may be configured to detect an input current of the power device (e.g., the motor 1031) .
  • the senor may include a resistance, a current transformer, a Hall current sensor, or the like, or any combination thereof.
  • the sensor may be a contact current sensor or a non-contact current sensor.
  • the sensor may further include a fluxgate current sensor, a giant magnetoresistance current sensor, a fiber current sensor, or the like, or any combination thereof. It should be noted that the above current sensors are provided for illustrative purposes, and not intended to limit the scope of the present disclosure. For those skilled in the art, any other sensors may be used for detecting a signal reflecting the value of the driving current of the power device.
  • the value of the driving current of the power device may reflect a moving position of the driving portion.
  • the locking bolt drive device may be configured to drive the movement of the locking bolt 1010 based on the signal reflecting the value of the driving current of the power device. Specifically, the locking bolt drive device may be configured to stop moving when it is detected that the driving current reflected by the signal is less than a threshold.
  • the locking mechanism may further include a controller in communication with (e.g., electrically connected to) the power device (e.g., the motor 1031) and the sensor.
  • the controller may be configured to control the power device based on an output signal of the sensor.
  • the controller may be implemented by a control system shown in FIG. 13.
  • the present disclosure also discloses a lock 1000 which may include the locking mechanism of any of the embodiments of the present disclosure.
  • the lock 1000 may also include a housing, a lock pin 1040, and a lock pin reset device 1050.
  • the lock pin 1040 may be movably disposed in the housing relative to the housing, and the lock pin 1040 may include a groove 1041 for accommodating at least part (e.g., an end) of the locking bolt 1010.
  • the lock pin 1040 may be a lock ring which may be configured to pass through a spoke clearance of a wheel in a locking state to limit the rotation of the wheel.
  • the groove 1041 of the lock pin 1040 may also be a lock hole.
  • the lock pin 1040 may also include a handle 1042 used for pulling the lock pin 1040.
  • the lock pin reset device 1050 may be transmissibly connected to the lock pin 1040 and may be used to reset the lock pin 1040 when the lock is being unlocked.
  • the lock pin reset device 1050 may be a spring (e.g., a tension spring) .
  • the locking bolt 1010 may be movably disposed in the housing relative to the housing such that the at least part of the locking bolt 1010 can enter or exit the lock hole or the groove 1041.
  • the end (e.g., the tail end) of the locking bolt 1010 may snap into or disengage from the lock hole or the groove 1041 of the lock pin 1040.
  • the locking bolt reset component 1020 may be transmissibly connected to the locking bolt 1010.
  • the locking bolt reset component 1020 may reset the locking bolt 1010 when the lock is being locked, for example, the locking bolt reset component 1020 may drive the locking bolt 1010 to snap into the lock hole or the groove 1041 of the lock pin 1040.
  • the locking bolt driving component 1030 may be configured to drive the locking bolt 1010 to move relative to the housing.
  • the controller may receive an instruction (e.g., an unlocking instruction from a server or a mobile terminal) and control the locking bolt drive device based on the instruction.
  • the controller may control other components (e.g., the locking bolt driving component 1030, the sensor) of the lock 1000 through a lock control system 1300 shown in FIG. 13.
  • both the locking bolt driving component 1030 e.g., the power device
  • the controller may be configured to control the power device based on the output signal of the sensor.
  • the lock 1000 may also include a locking state detection device.
  • the lock state detection device may be configured to detect the unlocking state or the locking state of the lock 1000.
  • the lock state detection device may be a touch switch 1060.
  • the locking bolt 1010 may include a first protrusion 1012 opposite to the touch switch 1060. When the locking bolt 1010 moves relative to the housing, the first protrusion 1012 may touch or disengage from the touch switch 1060, thereby changing a state (e.g., on or off) of the touch switch 1060.
  • the first protrusion 1012 may touch (e.g., the touch switch may be opened) the touch switch 1060.
  • the first protrusion 1012 may disengage from (e.g., the touch switch may be closed) the touch switch 1060.
  • the output signals of the touch switch 1060 may be different under different states (on or off) .
  • the touch switch 1060 may be in communication with (e.g., electrically connected to) the controller.
  • the controller may receive an output signal of the touch switch 1060, determine the position of the locking bolt 1010 based on the output signal, and then determine the state of the lock 1000. As shown in FIG.
  • the first protrusion 1012 of the locking bolt 1010 disengages from the touch switch 1060. As shown in FIG. 11, when the lock is in the unlocking state, the first protrusion 1012 of the locking bolt 1010 touches the touch switch 1060.
  • the first protrusion 1012 may be any structure (e.g., a rod, a piece, a block) which is fixedly connected to the locking bolt 1010.
  • the lock state detection device may be any other suitable device.
  • the lock state detection device may be a sensor used to detect the position of the locking bolt 1010.
  • the lock state detection device may be a photoelectric sensor.
  • the locking bolt 1010 may include a first baffle configured to change an intensity of a light entering the photoelectric sensor when the locking bolt 1010 moves relative to the housing, then the position of the locking bolt 1010 may be determined based on an output signal of the photoelectric sensor.
  • the unlocking state or the locking state of the lock 1000 may be determined based on the position of the locking bolt 1010.
  • the lock state detection device may be a touch switch 1060. A protrusion (not shown) opposite to the touch switch 1060 may be fixed on the lock pin 1040.
  • the protrusion may be configured to open or close the touch switch 1060 when the lock pin 1040 moves relative to the housing, so that the position of the lock pin 1040 may be determined based on a state of the touch switch 1060, then the unlocking state and locking state of the lock 1000 may be determined based on the position of the lock pin 1040.
  • the lock state detection device may be any device capable of determining the state of the lock by detecting the position or the movement of the locking bolt 1010 and/or the lock pin 1040.
  • the senor may be configured to detect a value of a driving current (which can be referred to as “driving current” for brevity) of the power device (e.g., the motor 1031) .
  • the sensor may be in communication with the controller.
  • the controller may control the movement of the motor 1031 based on the value of the driving current.
  • the locking bolt 1010 when the locking bolt 1010 is in the lock hole or the groove 1041 of the lock pin 1040 (e.g., an end (e.g., a tail end) of the locking bolt 1010 is in the lock hole or the groove 1041 of the lock pin 1040) , the locking bolt 1010 may be subjected to a lateral pulling force of the lock pin reset device 1050 and a resistance of the locking bolt reset component 1020.
  • the motor 1031 needs to overcome the lateral pulling force of the lock pin reset device 1050 and the resistance of the locking bolt reset component 1020. Accordingly, a required driving current is relatively large.
  • the motor 1031 may drive the cam 1032 to continue to rotate. At this time, in order to drive the cam 1032, the motor 1031 only needs to overcome the resistance of the locking bolt reset component 1020. Accordingly, the required driving current may begin to decrease. Further, the motor 1031 may drive the cam 1032 to continue to rotate. When the cam 1032 disengages from the locking bolt 1010, the motor 1031 no longer needs to overcome the forces described above to drive the cam 1032. Accordingly, the required driving current may further decrease or even rapidly decrease. Therefore, whether the cam 1032 has disengaged from the locking bolt 1010 may be determined based on the driving current of the motor 1031.
  • the controller may control the motor 1031 to stop rotating.
  • the predetermined current threshold may be set as different values under different situations associated with the lock, the motor, the application scenario, etc. Preferably, the predetermined current threshold may be determined by experiment.
  • the lock pin reset device 1050 may be set as a spring, such as a tension spring.
  • One end of the tension spring may be fixed on the housing and the other end of the tension spring may be disposed at an end of the lock pin 1040.
  • the tension spring is in a stretch state.
  • the end of the locking bolt 1010 may disengage from the lock hole or the groove 1041 of the lock pin 1040, so that the lock pin 1040 moves toward the tension spring to reset under the action of the tension spring and then the lock may be unlocked.
  • the tension spring may be in a stretch state; when the lock 1000 is in the unlocking state, the tension spring may be in a reset state.
  • the locking bolt reset component 1020 may be set as a spring. One end of the spring may be fixed to the housing and the other end of the spring may be disposed at an end (e.g., a head end) of the locking bolt 1010.
  • the locking bolt 1010 may overcome the resistance from the spring under the driving of the locking bolt driving component 1030 and move away from the lock pin 1040 until an end (e.g., a tail end) of the locking bolt 1010 disengages from the lock hole or groove 1041 of the lock pin 1040. Further, the locking bolt driving component 1030 releases the resistance to reset the locking bolt 1010 and the locking bolt 1010 may be driven to move to the lock pin 1040 under the action of the spring.
  • the lock pin 1040 When the lock 1000 is being locked, the lock pin 1040 may be subject to a pulling force applied by the tension spring and overcome the pulling force to move away from the tension spring until the lock hole or the groove 1041 is right below the locking bolt 1010. Further, the locking bolt 1010 continues to move toward the lock hole or the groove 1041 under the action of the spring until the end of the locking bolt 1010 is pushed into the lock hole or the groove 1041 and then the lock is locked. Further, when the lock 1000 is in the unlocking state, the spring may be in a compress state; when the lock 1000 is in the locking state, the tension spring may be in a reset state.
  • FIG. 12 is a flow chart illustrating an exemplary process for lock control according to some embodiments in the present disclosure.
  • the locking bolt drive device may be controlled to move to unlock the lock 1000.
  • operation 1210 may be performed by an unlocking module 1310.
  • the controller e.g., the unlocking module 1310
  • the controller may receive an unlocking instruction and control the locking bolt drive device to move to unlock the lock 1000 based on the unlocking instruction.
  • the unlocking instruction may be an unlocking instruction sent by a server and/or a mobile terminal.
  • the controller may control a movement of the power device (e.g., the motor 1031) to drive the driving portion (e.g., the cam 1032) to rotate.
  • the cam 1032 may rotate to drive the locking bolt 1010 to move away from the lock hole or the groove 1041 until the locking bolt 1010 disengages from the lock hole or the groove 1041 of the lock pin 1040.
  • the lock pin 1040 may be reset (e.g., contracted into the housing) under the action of the lock pin reset device 1050 and the lock 1000 may be unlocked.
  • a driving current of the power device may be detected. Specifically, operation 1220 may be performed by a detection module 1320.
  • the controller e.g., detection module 1320
  • the controller may detect the driving current of the power device based on a sensor (e.g., a current sensor) .
  • the power device may be controlled based on the driving current. Specifically, operation 1230 may be performed by a power device control module 1330.
  • the controller e.g., the power device control module 1330
  • the power device control module 1330 may control the power device to stop rotating.
  • a position of the power device e.g., the cam 1032
  • whether the lock 1000 is in an unlocking state or a locking state may be determined based on the driving current.
  • the process for locking the lock 1000 may include the following operations.
  • the lock pin 1040 moves relative to the housing under a pulling force until the locking bolt 1010 is aligned with the lock hole or the groove 1041 of the lock pin 1040
  • the locking bolt 1010 may move to the lock pin 1040 under the action of the locking bolt reset component 1020 until the end of the locking bolt 1010 snaps into the lock hole or the groove 1041 of the lock pin 1040, then the lock is locked.
  • the description of the process 1200 is merely provided for the purposes of illustration, and not intended to limit the scope of the present disclosure.
  • multiple variations and modifications may be made under the teachings of the present disclosure. However, those variations and modifications do not depart from the scope of the present disclosure.
  • the process 1200 may be accomplished with the operations in an order described above or simultaneously.
  • operation 1210 may be performed first, and then operation 1220 and operation 1230 may be performed simultaneously.
  • the process1200 may further include an operation for receiving an unlocking instruction.
  • operation 1210 may further include controlling a movement of the power device of the locking bolt drive device to unlock the lock based on the unlocking instruction.
  • FIG. 13 is a block diagram illustrating an exemplary lock control system according to some embodiments of the present disclosure.
  • the lock control system 1300 may include an unlocking module 1310, a detection module 1320, and a power device control module 1330.
  • the unlocking module 1310 may be configured to control a movement of the power device of the locking bolt drive device to unlock a lock.
  • the detection module 1320 may be configured to detect a driving current of the power device.
  • the power device control module 1330 may be configured to control the power device based on the driving current.
  • the power device control module 1330 may also be configured to control the power device to stop rotating when the driving current satisfies a predetermined condition.
  • the power device control module 1330 may be further configured to control the power device to stop rotating when the driving current is less than a predetermined current threshold.
  • the lock control system 1300 may also include an obtaining module configured to receive an unlocking instruction.
  • the unlocking module 1310 may be further configured to control the movement of the power device of the locking bolt drive device to unlock the lock based on the unlocking instruction.
  • system and the modules thereof shown in FIG. 13 may be implemented in various ways.
  • the system and the modules thereof may be implemented as hardware, software, or a combination of software and hardware.
  • the hardware may be implemented by a specific logic and the software may be stored in a storage and executed by an appropriate instruction execution system (e.g., a microprocessor, a dedicated design hardware) .
  • an appropriate instruction execution system e.g., a microprocessor, a dedicated design hardware
  • the above method and system may be implemented as computer-executable instructions and/or be embedded in control codes of a processor.
  • control codes may be provided by a storage medium (e.g., a disk, a CD, a DVD-ROM) , a programmable storage device (e.g., a read-only storage (e.g., firmware) ) , or a data carrier (e.g., an optical carrier, an electric signal carrier) .
  • the system and the modules thereof of the present disclosure may be implemented by a hardware circuit (e.g., a super large scale integrated circuit, a gate array) , a semiconductor (e.g., a logic chip, a transistor) , a programmable hardware device (e.g., a field-programmable gate array, a programmable logic device) , etc.
  • the system and the modules thereof may be implemented by software that can be executed by various processors.
  • the system and the modules thereof may also be implemented by a combination (e.g., firmware) of the hardware circuit and the software.
  • the unlocking module 1310 and the detection module 1320 may be different modules in the system, or may be integrated as a single module to implement the functions of the two modules.
  • the modules may share a storage module, or each of the modules may include a respective storage module.
  • the lock 1000 disclosed in the present disclosure may be applied to a bicycle, such as a shared bicycle.
  • the lock pin 1040 of the lock 1000 may pass through a spoke clearance of a wheel of the bicycle to limit the rotation of the wheel.
  • the lock 1000 may also be used in other vehicles (e.g., an electric vehicle, a tricycle) and the description above is not intended to be limiting.
  • the present disclosure also provides a bicycle including the lock of any of the embodiments described above.
  • the advantage effects of the lock and the locking mechanism disclosed in the present disclosure may include but not limited to: (1) a position of a motor may be determined by detecting a value of a driving current and then a lock may be unlocked, under which the state of the lock may be determined in real time, delay can be avoided, and user time can be saved; (2) the use of the touch switch may be reduced, which can simplify the structure of the lock and reduce the manufacture cost of the lock; (3) an unlocking state or a locking state of the lock can be determined accurately. It should be noted that different embodiments may have different advantage effects. In different embodiments, the advantage effects may include any combination of one or more of the above or any other possible advantage effects.
  • the present disclosure also discloses a locking mechanism including a locking bolt (e.g., the locking bolt 120, the locking bolt 620, the locking bolt 1010) , a first sensor, and a locking bolt drive device.
  • a locking bolt e.g., the locking bolt 120, the locking bolt 620, the locking bolt 1010
  • the first sensor may be configured to detect a signal associated with a lock pin (e.g., the lock pin 110, the lock pin 610, the lock pin 1040) .
  • the signal associated with the lock pin may include a signal indicative of a position of the lock pin, a signal indicative of a movement of the lock pin, a signal indicative of a driving current of a power device of the locking bolt drive device, or the like, or a combination thereof.
  • the first sensor may include a pressure sensor, a touch sensor, a photoelectric sensor, a magnetic induction sensor, a current transformer, a Hall current sensor, a fluxgate current sensor, a giant magnetoresistance current sensor, a fiber current sensor, or the like, or a combination thereof.
  • the first sensor may include the magnetic control switch 151.
  • the first sensor may include the magnetic control switch 651.
  • the first sensor may include the sensor configured to detect a signal reflecting a value of a driving current of the power device.
  • the locking bolt drive device may be configured to drive a movement of the locking bolt based at least in part on the signal associated with the lock pin. As described elsewhere in the present disclosure, the locking bolt drive device may be configured to apply a driving force to the locking bolt to drive the movement of the locking bolt. In some embodiments, the locking bolt drive device may include any suitable device capable of driving the locking bolt to move toward or away from the lock pin to lock or unlock the lock.
  • the locking mechanism may further include a second sensor configured to detect a signal indicative of a position of the locking bolt.
  • the second sensor may include a touch switch, a photoelectric sensor, a magnetic induction sensor, or the like, or a combination thereof.
  • the second sensor may include the touch switch 160.
  • the second sensor may include the second sensor 660 (e.g., a touch switch) .
  • the second sensor may include the lock state detection device (e.g., the touch switch 1060) .
  • the signal associated with the lock pin detected by the first sensor may be the signal indicative of the position of the lock pin
  • the locking bolt drive device may be configured to drive the movement of the locking bolt based on the signal indicative of the position of the lock pin and the signal indicative of the position of the locking bolt detected by the second sensor (e.g., the touch switch 160) .
  • the signal indicative of the position of the lock pin indicates that the lock pin reaches a predetermined position of the lock pin and the signal indicative of the position of the locking bolt indicates that the locking bolt is located at a first predetermined position of the locking bolt
  • the locking bolt drive device may be configured to drive the locking bolt to move to a second predetermined position of the locking bolt. More descriptions regarding driving the locking bolt to lock or unlock a lock may be found elsewhere in the present disclosure (e.g., FIGs. 1-5 and the descriptions thereof) .
  • the locking bolt drive device may include a power device and a driving portion.
  • the driving portion may be transmissibly connected to the power device and configured to move under the driving of the power device to drive the movement of the locking bolt.
  • the power device may include a motor.
  • the driving portion may include a cam including a first cylinder (also referred to as a “large cylinder” ) and a second cylinder (also referred to as a “small cylinder” ) .
  • a diameter of the first cylinder may be larger than a diameter of the second cylinder.
  • An end face of the first cylinder and an end face of the second cylinder may be fixedly connected with each other.
  • the first cylinder may be fixed on a rotation shaft of the motor.
  • a position of the second cylinder may deviate from a rotation center of the first cylinder.
  • the locking bolt may include a sliding chute disposed on a face of the locking bolt facing toward the cam and configured for accommodating the second cylinder to slide in the sliding chute. More descriptions regarding the structure of locking bolt drive device may be found elsewhere in the present disclosure (e.g., FIGs. 1-3 and the descriptions thereof) .
  • the signal associated with the lock pin detected by the first sensor may be the signal indicative of the movement of the lock pin
  • the locking bolt drive device may be configured to drive the movement of the locking bolt based on the signal indicative of the movement of the lock pin and the signal indicative of the position of the locking bolt detected by the second sensor (e.g., the second sensor 660) .
  • the signal indicative of the movement of the lock pin indicates that the lock pin is moving (or has moved)
  • the signal indicative of the position of the locking bolt indicates that the locking bolt is located at a predetermined position of the locking bolt
  • the locking bolt drive device may be configured to drive the movement of the locking bolt. More descriptions regarding driving the locking bolt to lock or unlock a lock may be found elsewhere in the present disclosure (e.g., FIGs. 6-7 and the descriptions thereof) .
  • the locking bolt drive device may include a locking bolt reset device (also referred to as a “locking bolt reset component” ) transmissibly connected to the locking bolt, a power device, and a driving portion transmissibly connected to the power device and configured to move under the driving of the power device to drive the movement of the locking bolt, wherein the power device and the driving portion can be collectively referred to as a “locking bolt driving component. ”
  • the power device may include a motor.
  • the driving portion may include a cam including a first cylinder and a second cylinder. A diameter of the first cylinder may be larger than a diameter of the second cylinder. An end face of the first cylinder and an end face of the second cylinder may be fixedly connected with each other.
  • the first cylinder may be fixed on a rotation shaft of the motor.
  • a position of the second cylinder may deviate from a rotation center of the first cylinder.
  • the locking bolt may include a protrusion for abutting against the second cylinder. More descriptions regarding the structure of the locking bolt drive device may be found elsewhere in the present disclosure (e.g., FIGs. 6-7 and the descriptions thereof) .
  • the signal associated with the lock pin may be the signal indicative of the driving current of the power device of the locking bolt drive device detected by the first sensor (e.g., the sensor described in FIGs. 11-12) , accordingly, the locking bolt drive device may be configured to drive the movement of the locking bolt based on the signal indicative of the driving current of the power device of the locking bolt drive device.
  • the signal indicative of the driving current of the power device of the locking bolt drive device indicates that the driving current satisfies a predetermined condition (e.g., less than a predetermined current threshold)
  • the locking bolt drive device may be configured to stop driving the movement of the locking bolt. More descriptions regarding driving the locking bolt to lock or unlock a lock may be found elsewhere in the present disclosure (e.g., FIGs. 10-11 and the descriptions thereof) .
  • the locking bolt drive device may further include a driving portion and a locking bolt reset device transmissibly connected to the locking bolt.
  • the driving portion may be transmissibly connected to the power device and configured to move under the driving of the power device to drive the movement of the locking bolt.
  • the power device may include a motor.
  • the driving portion may include a cam including a first cylinder and a second cylinder. A diameter of the first cylinder may be larger than a diameter of the second cylinder. An end face of the first cylinder and an end face of the second cylinder may be fixedly connected with each other.
  • the first cylinder may be fixed on a rotation shaft of the motor. A position of the second cylinder may deviate from a rotation center of the first cylinder.
  • the locking bolt may include a protrusion for abutting against the second cylinder. More descriptions regarding the structure of the locking bolt drive device may be found elsewhere in the present disclosure (e.g., FIGs. 10-11 and the descriptions thereof) .
  • the locking mechanism may further include a controller in communication with the first sensor and the locking bolt drive device.
  • the controller may be configured to control the locking bolt drive device based on the signal associated with lock pin.
  • the controller may receive an instruction (e.g., an unlocking instruction or a locking instruction from a server or a mobile terminal) and control the locking bolt drive device based on the instruction.
  • the present disclosure also discloses a lock.
  • the lock may include a lock pin, a locking mechanism described above, and a housing.
  • the locking mechanism may include a locking bolt, a first sensor configured to detect a signal associated with a lock pin, and a locking bolt drive device configured to drive a movement of the locking bolt based at least in part on the signal associated with the lock pin.
  • the locking bolt drive device may include a locking bolt reset device.
  • the lock pin may be moveably disposed in the housing relative to the housing and may include a lock hole or a groove for accommodating at least part of the locking bolt.
  • the locking bolt reset device may be transmissibly connected to the lock pin.
  • the locking bolt may be movably disposed in the housing relative to the housing such that the at least part of the locking bolt can enter or exit the lock hole or the groove. More descriptions regarding the structure of the lock may be found elsewhere in the present disclosure (e.g., FIGs. 1-3, 6-7, and 10-11 and the descriptions thereof) .
  • the present disclosure also discloses a vehicle (e.g., a bicycle) .
  • vehicle e.g., a bicycle
  • the vehicle may include a lock and a locking mechanism of the lock described above.
  • the present disclosure also discloses a method for controlling a lock.
  • the method may be implemented by a computing device (e.g., a processor) .
  • the processor e.g., an obtaining module
  • the processor may obtain a signal associated with a lock pin.
  • the signal associated with the lock pin may be detected by a first sensor.
  • the first sensor may include a pressure sensor, a touch sensor, a photoelectric sensor, a magnetic induction sensor, a resistance, a current transformer, a Hall current sensor, a fluxgate current sensor, a giant magnetoresistance current sensor, or a fiber current sensor.
  • the signal associated with the lock pin may include a signal indicative of a position of the lock pin, a signal indicative of a movement of the lock pin, a signal indicative of a driving current of a power device of the locking bolt drive device, or the like, or a combination thereof.
  • the processor e.g., a driving module
  • the processor may drive a movement of the locking bolt based at least in part on the signal associated with the lock pin.
  • the processor may further obtain a signal indicative of a position of the locking bolt by a second sensor.
  • the second sensor may include a touch switch, a photoelectric sensor, a magnetic induction sensor, or the like, or a combination thereof.
  • the signal associated with the lock pin may include the signal indicative of the position of the lock pin
  • the processor may drive the movement of the locking bolt based on the signal indicative of the position of the lock pin and the signal indicative of the position of the locking bolt.
  • the processor may drive the locking bolt to move to a second predetermined position of the locking bolt.
  • the signal associated with the lock pin may include the signal indicative of the movement of the lock pin
  • the processor may drive the movement of the locking bolt based on the signal indicative of the movement of the lock pin and the signal indicative of the position of the locking bolt.
  • the processor may drive the movement of the locking bolt.
  • the signal associated with the lock pin may include the signal indicative of the driving current of the power device of the locking bolt drive device, accordingly, the processor may drive the movement of the locking bolt based on the signal indicative of the driving current of the power device of the locking bolt drive device.
  • the processor may stop driving the movement of the locking bolt.
  • the present disclosure may also disclose a system for controlling a lock.
  • the system may include an obtaining module and a dirving module.
  • the obtaining module may be configured to obtain a signal associated with a lock pin.
  • the dirving module may be configured to drive a movement of a locking bolt based at least in part on the signal associated with the lock pin.
  • any of the modules may be integrated into the lock control system (e.g., the lock control system 500, the lock control system 900, the lock control system 1300) .
  • the present disclosure may also disclose a non-transitory computer readable medium.
  • the non-transitory computer readable medium may include executable instructions. When executed by at least one processor, the executable instructions may direct the at least one processor to perform a method described above.
  • aspects of the present disclosure may be illustrated and described herein in any of a number of patentable classes or context including any new and useful process, machine, manufacture, or composition of matter, or any new and useful improvement thereof. Accordingly, aspects of the present disclosure may be implemented entirely hardware, entirely software (including firmware, resident software, micro-code, etc. ) or combining software and hardware implementation that may all generally be referred to herein as a “unit, ” “module, ” or “system. ” Furthermore, aspects of the present disclosure may take the form of a computer program product embodied in one or more computer readable media having computer readable program code embodied thereon.
  • a computer readable signal medium may include a propagated data signal with computer readable program code embodied therein, for example, in baseband or as part of a carrier wave. Such a propagated signal may take any of a variety of forms, including electro-magnetic, optical, or the like, or any suitable combination thereof.
  • a computer readable signal medium may be any computer readable medium that is not a computer readable storage medium and that may communicate, propagate, or transport a program for use by or in connection with an instruction execution system, apparatus, or device.
  • Program code embodied on a computer readable signal medium may be transmitted using any appropriate medium, including wireless, wireline, optical fiber cable, RF, or the like, or any suitable combination of the foregoing.
  • Computer program code for carrying out operations for aspects of the present disclosure may be written in any combination of one or more programming languages, including an object oriented programming language such as Java, Scala, Smalltalk, Eiffel, JADE, Emerald, C++, C#, VB. NET, Python or the like, conventional procedural programming languages, such as the “C” programming language, Visual Basic, Fortran 2103, Perl, COBOL 2102, PHP, ABAP, dynamic programming languages such as Python, Ruby and Groovy, or other programming languages.
  • the program code may execute entirely on the user’s computer, partly on the user’s computer, as a stand-alone software package, partly on the user’s computer and partly on a remote computer or entirely on the remote computer or server.
  • the remote computer may be connected to the user’s computer through any type of network, including a local area network (LAN) or a wide area network (WAN) , or the connection may be made to an external computer (for example, through the Internet using an Internet Service Provider) or in a cloud computing environment or offered as a service such as a Software as a Service (SaaS) .
  • LAN local area network
  • WAN wide area network
  • SaaS Software as a Service
  • the numbers expressing quantities or properties used to describe and claim certain embodiments of the application are to be understood as being modified in some instances by the term “about, ” “approximate, ” or “substantially. ”
  • “about, ” “approximate, ” or “substantially” may indicate ⁇ 1%, ⁇ 5%, ⁇ 10%, or ⁇ 20%variation of the value it describes, unless otherwise stated.
  • the numerical parameters set forth in the written description and attached claims are approximations that may vary depending upon the desired properties sought to be obtained by a particular embodiment.
  • the numerical parameters should be construed in light of the number of reported significant digits and by applying ordinary rounding techniques. Notwithstanding that the numerical ranges and parameters setting forth the broad scope of some embodiments of the application are approximations, the numerical values set forth in the specific examples are reported as precisely as practicable.

Abstract

A locking mechanism may include a locking bolt(120), a first sensor configured to detect a signal associated with a lock pin(110), a locking bolt drive device configured to drive a movement of the locking bolt (120)based at least in part on the signal associated with the lock pin(110). The signal associated with the lock pin(110) may include at least one of a signal indicative of a position of the lock pin(110), a signal indicative of a movement of the lock pin(110), and/or a signal indicative of a driving current of a power device of the locking bolt drive device. A lock (100)including a lock pin(110) and the locking mechanism described above. Systems and methods for lock control are also disclosed.

Description

LOCKING MECHANISM, LOCK, AND SYSTEMS AND METHODS FOR LOCK CONTROL
CROSS-REFERENCE TO RELATED APPLICATIONS
This application claims priority to Chinese Patent Application No. 201811261958.0, filed on October 26, 2018, Chinese Patent Application No. 201811261985.8, filed on October 26, 2018, and Chinese Patent Application No. 201811261955.7, filed on October 26, 2018, the contents of which are incorporated herein by reference in their entirety.
TECHNICAL FIELD
The present disclosure generally relates to the field of lock, and in particular, to a locking mechanism and systems and methods for lock control.
BACKGROUND
Lock is a widely used tool in people’s daily life. Take a transportation vehicle as an example, in order to prevent the vehicle from being stolen or set a use permission for the vehicle, a lock is usually disposed on the vehicle. Therefore, it is desirable to provide a lock with a locking mechanism which may be relatively simplified, have a relatively long usage time, and/or have a relatively high working efficiency, and further provide systems and methods for controlling the lock through the locking mechanism.
SUMMARY
In one aspect of the present disclosure, a locking mechanism of a lock is provided. The lock may include a locking bolt, a first sensor configured to detect a signal associated with a lock pin, and a locking bolt drive device configured to drive a movement of the locking bolt based at least in part on the signal associated with the lock pin.
In some embodiments, the first sensor may include a pressure sensor, a touch sensor, a photoelectric sensor, a magnetic induction sensor, a current  transformer, a Hall current sensor, a fluxgate current sensor, a giant magnetoresistance current sensor, and/or a fiber current sensor.
In some embodiments, the signal associated with the lock pin may include at least one of a signal indicative of a position of the lock pin, a signal indicative of a movement of the lock pin, and/or a signal indicative of a driving current of a power device of the locking bolt drive device.
In some embodiments, the locking mechanism may further include a second sensor configured to detect a signal indicative of a position of the locking bolt.
In some embodiments, the second sensor may include a touch switch, a photoelectric sensor, and/or a magnetic induction sensor.
In some embodiments, the signal associated with the lock pin may include the signal indicative of the position of the lock pin. The locking bolt drive device may be configured to drive the movement of the locking bolt based on the signal indicative of the position of the lock pin and the signal indicative of the position of the locking bolt.
In some embodiments, when the signal indicative of the position of the lock pin indicates that the lock pin reaches a predetermined position of the lock pin and the signal indicative of the position of the locking bolt indicates that the locking bolt is located at a first predetermined position of the locking bolt, the locking bolt drive device is configured to drive the locking bolt to move to a second predetermined position of the locking bolt.
In some embodiments, the locking bolt drive device may include a power device and a driving portion transmissibly connected to the power device and configured to move under the driving of the power device to drive the movement of the locking bolt.
In some embodiments, the power device may include a motor. The driving portion may include a cam including a first cylinder and a second cylinder. A diameter of the first cylinder may be larger than a diameter of the second cylinder. An end face of the first cylinder and an end face of the second cylinder may be fixedly connected with each other. The first cylinder may be fixed on a rotation  shaft of the motor. A position of the second cylinder may deviate from a rotation center of the first cylinder. The locking bolt may include a sliding chute disposed on a face of the locking bolt facing toward the cam and configured for accommodating the second cylinder to slide in the sliding chute.
In some embodiments, the signal associated with the lock pin may include the signal indicative of the movement of the lock pin. The locking bolt drive device may be configured to drive the movement of the locking bolt based on the signal indicative of the movement of the lock pin and the signal indicative of the position of the locking bolt.
In some embodiments, when the signal indicative of the movement of the lock pin indicates that the lock pin is moving and the signal indicative of the position of the locking bolt indicates that the locking bolt is located at a predetermined position of the locking bolt, the locking bolt drive device is configured to drive the movement of the locking bolt.
In some embodiments, the locking bolt drive device may include a locking bolt reset device transmissibly connected to the locking bolt, a power device, and a driving portion transmissibly connected to the power device and configured to move under the driving of the power device to drive the movement of the locking bolt.
In some embodiments, the power device may include a motor. The driving portion may include a cam including a first cylinder and a second cylinder. A diameter of the first cylinder may be larger than a diameter of the second cylinder. An end face of the first cylinder and an end face of the second cylinder may be fixedly connected with each other. The first cylinder may be fixed on a rotation shaft of the motor. A position of the second cylinder may deviate from a rotation center of the first cylinder. The locking bolt may include a protrusion for abutting against the second cylinder.
In some embodiments, the signal associated with the lock pin may include the signal indicative of the driving current of the power device of the locking bolt drive device. The locking bolt drive device may be configured to drive the movement of the locking bolt based on the signal indicative of the driving current of the power  device of the locking bolt drive device.
In some embodiments, when the signal indicative of the driving current of the power device of the locking bolt drive device indicates that the driving current is less than a threshold, the locking bolt drive device is configured to stop driving the movement of the locking bolt.
In some embodiments, the locking bolt drive device may include a driving portion transmissibly connected to the power device and configured to move under the driving of the power device to drive the movement of the locking bolt, and a locking bolt reset device transmissibly connected to the locking bolt.
In some embodiments, the power device may include a motor. The driving portion may include a cam including a first cylinder and a second cylinder. A diameter of the first cylinder may be larger than a diameter of the second cylinder. An end face of the first cylinder and an end face of the second cylinder may be fixedly connected with each other. The first cylinder may be fixed on a rotation shaft of the motor. A position of the second cylinder may deviate from a rotation center of the first cylinder. The locking bolt may include a protrusion for abutting against the second cylinder.
In some embodiments, the locking mechanism may further include a controller in communication with the first sensor and the locking bolt drive device and configured to control the locking bolt drive device based on the signal associated with lock pin.
In another aspect of the present disclosure, a method is provided. The method may include obtaining a signal associated with a lock pin and driving a movement of the locking bolt based at least in part on the signal associated with the lock pin.
In some embodiments, the signal associated with the lock pin may be detected by a first sensor. The first sensor may include a pressure sensor, a touch sensor, a photoelectric sensor, a magnetic induction sensor, a resistance, a current transformer, a Hall current sensor, a fluxgate current sensor, a giant magnetoresistance current sensor, and/or a fiber current sensor.
In some embodiments, the signal associated with the lock pin may include at least one of a signal indicative of a position of the lock pin, a signal indicative of a movement of the lock pin, and/or a signal indicative of a driving current of a power device of a locking bolt drive device.
In some embodiments, the method may further include detecting a signal indicative of a position of the locking bolt by a second sensor.
In some embodiments, the second sensor may include a touch switch, a photoelectric sensor, and/or a magnetic induction sensor.
In some embodiments, the signal associated with the lock pin may include the signal indicative of the position of the lock pin. The driving the movement of the locking bolt based at least in part on the signal associated with the lock pin may include driving the movement of the locking bolt based on the signal indicative of the position of the lock pin and the signal indicative of the position of the locking bolt.
In some embodiments, the driving the movement of the locking bolt based on the signal indicative of the position of the lock pin and the signal indicative of the position of the locking bolt comprises may include driving the locking bolt to move to a second predetermined position of the locking bolt when the signal indicative of the position of the lock pin indicates that the lock pin reaches a predetermined position of the lock pin and the signal indicative of the position of the locking bolt indicates that the locking bolt is located at a first predetermined position of the locking bolt.
In some embodiments, the signal associated with the lock pin may include the signal indicative of the movement of the lock pin. The driving the movement of the locking bolt based at least in part on the signal associated with the lock pin may include driving the movement of the locking bolt based on the signal indicative of the movement of the lock pin and the signal indicative of the position of the locking bolt.
In some embodiments, the driving the movement of the locking bolt based on the signal indicative of the movement of the lock pin and the signal indicative of the position of the locking bolt may include driving the movement of the locking bolt when the signal indicative of the movement of the lock pin indicates that the lock pin is moving and the signal indicative of the position of the locking bolt indicates that the  locking bolt is located at a predetermined position of the locking bolt.
In some embodiments, the signal associated with the lock pin may include the signal indicative of the driving current of the power device of the locking bolt drive device. The driving the movement of the locking bolt based at least in part on the signal associated with the lock pin may include driving the movement of the locking bolt based on the signal indicative of the driving current of the power device of the locking bolt drive device.
In some embodiments, the driving the movement of the locking bolt based on the signal indicative of the driving current of the power device of the locking bolt drive device may include stop driving the movement of the locking bolt when the signal indicative of the driving current of the power device of the locking bolt drive device indicates that the driving current is less than a threshold.
In a further aspect of the present disclosure, a system is provided. The system may include an obtaining module configured to obtain a signal associated with a lock pin, and a driving module configured to drive a movement of a locking bolt based at least in part on the signal associated with the lock pin.
In a still further aspect of the present disclosure, a non-transitory computer readable medium is provided. The non-transitory computer readable medium may include executable instructions that, when executed by at least one processor, direct the at least one processor to perform a method. The method may include obtaining a signal associated with a lock pin and driving a movement of a locking bolt based at least in part on the signal associated with the lock pin.
In a still further aspect of the present disclosure, a lock is provided. The lock may include a lock pin and a locking mechanism. The locking mechanism may include a locking bolt, a first sensor configured to detect a signal associated with a lock pin, and a locking bolt drive device configured to drive a movement of the locking bolt based at least in part on the signal associated with the lock pin.
In some embodiments, the lock may further include a housing. The locking bolt drive device may include a locking bolt reset device. In some embodiments, the lock pin may be moveably disposed in the housing relative to the housing, and  include a lock hole or a groove for accommodating at least part of the locking bolt. The locking bolt reset device may be transmissibly connected to the lock pin. The locking bolt may be movably disposed in the housing relative to the housing such that the at least part of the locking bolt can enter or exit the lock hole or the groove.
In a still further aspect of the present disclosure, a vehicle is provided. The vehicle may include a lock and a locking mechanism of the lock. The locking mechanism may include a locking bolt, a first sensor configured to detect a signal associated with a lock pin, and a locking bolt drive device configured to drive a movement of the locking bolt based at least in part on the signal associated with the lock pin.
Additional features will be set forth in part in the description which follows, and in part will become apparent to those skilled in the art upon examination of the following and the accompanying drawings or may be learned by production or operation of the examples. The features of the present disclosure may be realized and attained by practice or use of various aspects of the methodologies, instrumentalities and combinations set forth in the detailed examples discussed below.
BRIEF DESCRIPTION OF THE DRAWINGS
The present disclosure is further described in terms of exemplary embodiments. These exemplary embodiments are described in detail with reference to the drawings. These embodiments are non-limiting exemplary embodiments, in which like reference numerals represent similar structures throughout the several views of the drawings, and wherein:
FIG. 1 is a schematic diagram illustrating an exemplary lock in a locking state according to some embodiments of the present disclosure;
FIG. 2 is a schematic diagram illustrating an exemplary lock in an unlocking state according to some embodiments of the present disclosure;
FIG. 3 is a schematic diagram illustrating an exemplary locking bolt according to some embodiments of the present disclosure;
FIG. 4 is a flowchart illustrating an exemplary process for lock control according to some embodiments of the present disclosure;
FIG. 5 is a block diagram illustrating a lock control system according to some embodiments of the present disclosure.
FIG. 6 is a schematic diagram illustrating an exemplary lock in a locking state according to some embodiments of the present disclosure;
FIG. 7 is a schematic diagram illustrating an exemplary lock in an unlocking state according to some embodiments of the present disclosure;
FIG. 8 is a flowchart illustrating an exemplary process for lock control according to some embodiments of the present disclosure;
FIG. 9 is a block diagram illustrating an exemplary lock control system according to some embodiments of the present disclosure;
FIG. 10 is a schematic diagram illustrating an exemplary lock in a locking state according to some embodiments of the present disclosure;
FIG. 11 is a schematic diagram illustrating an exemplary lock in an unlocking state according to some embodiments of the present disclosure;
FIG. 12 is a flowchart illustrating an exemplary process for lock control according to some embodiments in the present disclosure; and
FIG. 13 is a block diagram illustrating an exemplary lock control system according to some embodiments of the present disclosure.
DETAILED DESCRIPTION
The following description is presented to enable any person skilled in the art to make and use the present disclosure, and is provided in the context of a particular application and its requirements. Various modifications to the disclosed embodiments will be readily apparent to those skilled in the art, and the general principles defined herein may be applied to other embodiments and applications without departing from the spirit and scope of the present disclosure. Thus, the present disclosure is not limited to the embodiments shown, but is to be accorded the widest scope consistent with the claims.
The terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting. As used herein, the singular forms “a, ” “an, ” and “the” may be intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprise, ” “comprises, ” and/or “comprising, ” “include, ” “includes, ” and/or “including, ” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
These and other features, and characteristics of the present disclosure, as well as the methods of operation and functions of the related elements of structure and the combination of parts and economies of manufacture, may become more apparent upon consideration of the following description with reference to the accompanying drawings, all of which form a part of this disclosure. It is to be expressly understood, however, that the drawings are for the purpose of illustration and description only and are not intended to limit the scope of the present disclosure. It is understood that the drawings are not to scale.
The flowcharts used in the present disclosure illustrate operations that systems implement according to some embodiments in the present disclosure. It is to be expressly understood, the operations of the flowchart may be implemented not in order. In some embodiments, the operations may be implemented in inverted order, or simultaneously. Moreover, one or more other operations may be added to the flowcharts. One or more operations may be removed from the flowcharts.
The present disclosure relates to a locking mechanism, a lock, and a vehicle. The vehicle may include but not limited to a bicycle, an electric vehicle, a balance vehicle, a motorcycle, a tricycle, a car, a bus, a train, a boat, a vessel, an aircraft, an autonomous vehicle, or the like, or a combination thereof. The lock may be used to secure the vehicle, for example, prevent the vehicle from being stolen, prevent the vehicle from being illegally used, etc. In some embodiments, the lock may be independently from the vehicle or disposed on the vehicle. In some embodiments,  the application scenario of the lock is not limited to securing the vehicle. For example, the application scenario of the lock may include securing a door, a cabinet, a box, etc.
In some embodiments, the lock may include a lock pin and a locking mechanism. The lock pin may be used to change a state of the lock (e.g., locking or unlocking the lock) . In some embodiments, the lock pin may have various shapes. For example, the lock pin may include a ring lock pin (e.g., a lock ring) , a linear lock pin, a hook-shaped lock pin, etc. Specifically, the lock used on the vehicle may be a lock ring, which may pass through a spoke clearance of a wheel in the locking state to limit the rotation of the wheel. The lock may further include a lock pin reset device which may be used to reset the lock pin during a process for unlocking the lock. The lock pin reset device may include a spring, such as a compression spring, a tension spring, a coil spring, etc. The locking mechanism may be used to control the lock pin, thereby controlling unlocking or locking the lock.
In some embodiments, the locking mechanism may include a locking bolt and a locking bolt drive device. The locking bolt drive device may be configured to drive a movement of the locking bolt. Accordingly, the lock pin may include a lock hole or a groove for accommodating the locking bolt, and the locking bolt may snap into or disengage from the lock hole or the groove of the lock pin through movement. When the locking bolt snaps into the lock hole or the groove, the locking mechanism may restrict the movement of the lock pin, thereby locking the lock. When the locking bolt disengages from the lock hole or the groove, the locking mechanism may remove the restriction on the movement of the lock pin and the lock pin may be reset by the lock pin reset device, thereby unlocking the lock.
FIG. 1 is a schematic diagram illustrating an exemplary lock in a locking state according to some embodiments of the present disclosure. FIG. 2 is a schematic diagram illustrating an exemplary lock in an unlocking state according to some embodiments of the present disclosure. FIG. 3 is a schematic diagram illustrating an exemplary locking bolt according to some embodiments of the present disclosure. A locking mechanism, a lock, a vehicle, and systems and methods for  lock control according to some embodiments of the present disclosure will be described in detail below with reference to FIGs. 1-3. It should be noted that the following embodiments are merely illustrative and do not limit the scope of the present disclosure.
For convenience, the reference numerals in FIGs. 1-3 are explained here: 100 refers to a lock, 110 refers to a lock pin, 120 refers to a locking bolt, 121 refers to a sliding chute, 130 refers to a groove, 131 refers to a motor, 132 refers to a cam, 140 refers to a lock pin reset device, 141 refers to a slot, 151 refers to a magnetic control switch, 152 refers to a magnet, 160 refers to a touch switch, 161 refers to a spring strip, 170 refers to a lock pin handle.
The locking mechanism of the lock 100 may include a locking bolt 120 and a locking bolt drive device. The locking bolt drive device may be configured to drive a movement of the locking bolt 120.
In some embodiments, the locking bolt drive device may apply a driving force to the locking bolt 120 to drive the movement of the locking bolt 120. In some embodiments, the locking bolt drive device may include a power device and a driving portion. The driving portion may be transmissibly connected to the power device and may be configured to move under the driving of the power device to drive the movement of the locking bolt 120. In some embodiments, the power device may be a motor 131 and the driving portion may be a cam 132. In some embodiments, the cam 132 may include two cylinders whose end faces are fixed to each other. For example, the cam 132 may include a first cylinder and a second cylinder, wherein a diameter of the first cylinder is larger than a diameter of the second cylinder. The first cylinder (also referred to as “large cylinder” ) may be fixed on a rotation shaft of the motor 131. The end surface of the second cylinder (also referred to as “small cylinder” ) may be fixed to the end surface of the large cylinder and a position of the small cylinder may deviate from a rotation center of the large cylinder. Preferably, a circumference of the small cylinder may be tangent to a circumference of the large cylinder. Preferably, the diameter of the small cylinder may be less than half of the diameter of the large cylinder. For example, a ratio of the diameter of the small  cylinder to the diameter of the large cylinder may be 1/3, 1/4, 1/5, 1/6, etc.
In some embodiments, as shown in FIG. 3, a face of the locking bolt 120 that is facing toward a face of the cam 132 may be provided with a long-shaped sliding chute 121 for accommodating a part (e.g., the small cylinder) of the cam 132 and supporting the part of the cam 132 to slide inside the long-shaped sliding chute 121. Thus, when the cam 132 rotates, the locking bolt 120 may be driven to move (e.g., move toward or away from the lock pin 110) . In some embodiments, the cam 132 may drive the locking bolt 120 to move away from the lock pin 110 through a forward rotation (e.g., a clockwise rotation) , and drive the locking bolt 120 to move toward the lock pin 110 through a reverse rotation (e.g., a counterclockwise rotation) . By using the forward rotation and reverse rotation, a utilization rate of the sliding chute 121 can be effectively increased and the space occupied by the locking bolt 120 can be reduced. In some embodiments, the locking bolt drive device may also include any other suitable devices capable of driving the locking bolt 120 to move toward or away from the lock pin 110. For example, the locking bolt drive device may be a rack and pinion mechanism, wherein a rack can be driven to move by a rotation of a pinion, thereby driving the movement of the locking bolt. As another example, the locking bolt drive device may be a worm gear mechanism, wherein a worm can be driven to move by a rotation of a gear, thereby driving the movement of the locking bolt. As a further example, the locking bolt drive device may also drive the movement of the locking bolt by a wire drive, a chain drive, a belt drive, or the like, or any combination thereof.
In some embodiments, the motor 131 may be a reduction motor. The reduction motor may refer to an integration of a reducer and a motor. The advantages of using a reduction motor in the present disclosure may include that the design can be simplified, the space can be saved, the reduction motor is reliable and durable, and the reduction motor also has a high overload capability, a low energy consumption, and a high efficiency. In some embodiments, the locking bolt drive device may also be a reciprocating drive mechanism such as a crank rocker mechanism. For example, the power device may be a motor and the driving portion  may be a rocker. In some embodiments, the locking bolt drive device may also be a magnetic drive device. For example, the power device may be an electromagnet and the driving portion may be a magnetic block driven by the electromagnet.
In some embodiments, the locking mechanism may also include a first sensor configured to detect a position of the lock pin 110 (also referred to as a “signal indicative of the position of the lock pin” ) of the lock 100.
In some embodiments, the first sensor may be configured to detect whether the lock pin 110 is located at a predetermined position of the lock pin 110. For example, the predetermined position of the lock pin 110 may be a position of the lock pin 110 when the lock is in a locking state. In some embodiments, the first sensor may include a magnetic control switch 151. An element (e.g., a magnet 152) used to generate a magnetic field may be disposed on the lock pin 110. The magnetic control switch 151 may determine the position of the lock pin 110 by sensing a position of the magnet 152. Specifically, the magnetic control switch 151 may receive a magnetic field generated by the magnet 152 and generate an electric signal reflecting an intensity of the magnetic field. Then a controller (which may be integrated in the lock 100 or a component (e.g., the locking mechanism) of the lock 100) may determine the position of the lock pin 110 by processing the electric signal (e.g., performing a comparison operation) . For example, the larger the intensity of the magnetic field is, the smaller the distance between the lock pin 110 (or the magnet 152) and the magnetic control switch 151 may be. In some embodiments, the magnetic control switch 151 and the magnet 152 may be set oppositely to each other in the locking state of the lock 100. Preferably, the magnet 152 may be disposed at a tail end of the lock pin 110 and the magnetic control switch 151 may be disposed in the vicinity of the magnet 152 when the lock 100 is in the locking state. For example, the magnetic control switch 151 may be disposed right above or below the magnet 152 when the lock 100 is in the locking state. As used herein, “in the vicinity of” refers to that a distance between the magnet 152 and the magnetic control switch 151 is less than a predetermined distance threshold. In some embodiments, the magnet 152 may be disposed at other suitable positions (e.g., a  middle part of the lock pin 110, a head end of the lock pin 110) and the magnetic control switch 151 may be disposed in the vicinity of the magnet 152 when the lock 100 is in the locking state. In some embodiments, the magnetic control switch 151 may include any sensor which can detect information using the magnetic induction sensing principle, such as a Hall sensor, an electromagnetic induction sensor (e.g., a fluxgate sensor, an eddy current sensor) , a magnetoresistive sensor (e.g., a giant magnetoresistive sensor, a magnetostrictive sensor) , etc.
In some embodiments, the first sensor may be a sensor of other types. For example, the first sensor may be a photoelectric sensor. For example, the first sensor may be a photoelectric sensor, such as a slot type photoelectric sensor, a through-beam type photoelectric sensor, a reflector type photoelectric switch, a diffuse reflection type photoelectric switch, etc. Specifically, a first baffle or a first light source may be fixed on the lock pin 110. The first baffle or the first light source may be configured to change an intensity of a light entering the photoelectric sensor when the lock pin 110 is in a locking position, so that whether the lock pin 110 is in the locking position may be determined based on an output signal of the photoelectric sensor. As another example, the first sensor may be a touch switch 160. A protrusion (not shown) opposite to the touch switch 160 may be fixed on the lock pin 110. The protrusion may be configured to open or close the touch switch 160 when the lock pin 110 is moving, so that the position of the lock pin 110 may be determined based on a state of the touch switch 160, then the unlocking state or the locking state of the lock 100 may be determined based on the position of the lock pin 1040. As a further example, the first sensor may be any sensor capable of detecting the position of the lock pin 110.
In some embodiments, the locking mechanism may further include a second sensor configured to detect a position of the locking bolt 120. Specifically, the position of the locking bolt 120 may reflect the unlocking state or the locking state of the lock 100. In some embodiments, the second sensor may be configured to detect whether the locking bolt 120 is located at a first predetermined position or a second predetermined position of the locking bolt 120. The first predetermined  position of the locking bolt 120 may be a position when the locking bolt 120 has disengaged from a lock hole or a groove 130 of the lock pin 110. For example, the first predetermined position of the locking bolt 120 may be the farthest position from lock pin 110 during the movement of the locking bolt 120. The second predetermined position of the locking bolt 120 may be a position when the locking bolt 120 has snapped into the lock hole or the groove 130 of the lock pin 110 in the locking state.
In some embodiments shown in FIG. 1 or FIG. 2, the second sensor may be a touch switch 160, and the locking bolt 120 (e.g., a head end of the locking bolt 120) may touch or disengage from the touch switch 160 while moving relative to a housing, thereby changing the state (e.g., on or off) of the touch switch 160. For example, when the locking bolt 120 moves away from the lock pin 110, the tail end of the locking bolt 120 may touch (e.g., the touch switch 160 may be closed) the touch switch 160; when the locking bolt 120 moves toward the lock pin 110, the tail end of the locking bolt 120 may disengage from (e.g., the touch switch 160 may be opened) the touch switch 160 (e.g., a spring strip 161 of the touch switch 160) . Specifically, the first predetermined position of the locking bolt 120 may be a position of the locking bolt 120 when the locking bolt 120 closes the touch switch 160. The second predetermined position of the locking bolt 120 may be a position of the locking bolt 120 when the locking bolt 120 disengages from the touch switch 160 (i.e., when the locking bolt 120 switches on the touch switch 160) . The output signals of the touch switch 160 may be different under different states (on or off) . The touch switch 160 may be in communication with (e.g., electrically connected to) the controller. The controller may receive an output signal of the touch switch 160, determine the position of the locking bolt 120 based on the output signal, and then determine the state of the lock 100. In some embodiments, the touch switch 160 may be disposed at a position in the vicinity of the middle part of the locking bolt 120 and the locking bolt 120 may include a first protrusion used to touch the touch switch 160. When the lock 100 is in a locking state, the first protrusion on the locking bolt 120 may disengage from the touch switch 160. When the lock 100 is in an unlocking state,  the first protrusion on the locking bolt 120 may touch the touch switch 160.
In some embodiments, the second sensor may be any other suitable device. For example, the second sensor may be a photoelectric sensor. The locking bolt 120 may include a baffle or a light source configured to change an intensity of a light entering the photoelectric sensor when the locking bolt 120 is moving, then the position of the locking bolt 120 may be determined based on an output signal of the photoelectric sensor . As another example, the second sensor may be a Hall sensor. A magnetic element (e.g., a magnet) used for triggering the Hall sensor may be fixed on the locking bolt 120 and the Hall sensor can sense the magnetic element when the magnetic element moves toward or away from the Hall sensor, then the position of the locking bolt 120 may be determined based on an output signal of the Hall sensor. Specifically, the magnetic element (e.g., a magnet) may be fixed at the tail end of the locking bolt 120 and the Hall sensor may be disposed at a position opposite to the magnetic element when the locking bolt 120 disengages from the lock hole or the groove 130. It should be noted that the above description is not intended to be limiting and the second sensor may also be any sensor capable of detecting the position of the locking bolt 120.
In some embodiments, the locking bolt drive device may be configured to drive the movement the locking bolt 120 based on the position of the lock pin 110. For example, when the lock pin 110 is located at the predetermined position (e.g., when the lock hole or the groove 130 of the lock pin 110 is aligned with an end (e.g., a tail end) of the locking bolt 120) , the locking bolt drive device may drive the locking bolt 120 to move toward the lock pin 110, thereby driving the locking bolt 120 to snap into the lock hole or the groove 130 of the lock pin 110.
In some embodiments, the locking bolt drive device may be configured to drive the movement of the locking bolt 120 based on the position of the lock pin 110 and the position of the locking bolt 120. For example, when the lock pin 110 is located at the predetermined position (e.g., when the lock hole or groove 130 on the lock pin 110 is aligned with the tail end of the locking bolt 120) , the locking bolt drive device may drive the locking bolt 120 to move toward the lock pin 110; when the  locking bolt 120 moves to the second predetermined position of the locking bolt 120 (e.g., a position where the locking bolt 120 is located when the locking bolt 120 snaps into the lock hole or the groove 130) , the locking bolt drive device may control the locking bolt 120 to stop moving.
In some embodiments, when the lock pin 110 is located at the predetermined position of the lock pin 110 and the locking bolt 120 is located at the first predetermined position of the locking bolt 120, the locking bolt drive device may be configured to drive the locking bolt 120 to move to the second predetermined position of the locking bolt 120. Further, when the locking bolt 120 is located at the second predetermined position of the locking bolt 120, the locking bolt drive device may stop driving the locking bolt 120.
In some embodiments, the locking mechanism may further include a controller in communication with the first sensor and the locking bolt drive device. The controller may be configured to control the locking bolt drive device based on an output signal of the first sensor.
The present disclosure also discloses a lock 100 which may include the locking mechanism of any of the embodiments of the present disclosure. In some embodiments, the lock 100 may also include a housing, a lock pin 110, and a lock pin reset device 140.
In some embodiments shown in FIG. 1 or FIG. 2, the lock pin 110 may be movably disposed in the housing relative to the housing, and the lock pin 110 may include the groove 130 for accommodating at least part (e.g., an end) of the locking bolt 120. In some embodiments, the lock pin 110 may be a lock ring which may be configured to pass through a spoke clearance of a wheel in the locking state to limit the rotation of the wheel. In some embodiments, the groove 130 on the lock pin 110 may also be a lock hole. The lock pin reset device 140 may be transmissibly connected to the lock pin 110 and may be used to reset the lock pin 110 when the lock 100 is being unlocked. In some embodiments, the lock pin reset device 140 may be a spring (e.g., a tension spring) . The locking bolt 120 may be movably disposed in the housing relative to the housing such that the at least part of the  locking bolt 120 can enter or exit the lock hole or the groove 130. For example, an end (e.g., a tail end) of the locking bolt 120 may snap into or disengage from the lock hole or the groove 130 on the lock pin 110. The locking bolt drive device may be configured to drive the locking bolt 120 to move relative to the housing. The controller may receive an instruction (e.g., an unlocking instruction from a server or a mobile terminal) and control the locking bolt drive device based on the instruction. In some embodiments, the controller may control other components (e.g., the locking bolt drive device, the first sensor, the second sensor) of the lock 100 through a control system 500 shown in FIG. 5. In some embodiments, the locking bolt drive device, the first sensor, and the second sensor may be in communication with the controller. The controller may be configured to control the locking bolt drive device based on the position of the locking bolt 120.
In some embodiments, the locking bolt drive device may include a motor 131 and a cam 132, the first sensor may be a magnetic control switch 151, and the second sensor may be a touch switch 160. Specifically, when the lock is being unlocked, the motor 131 may drive the cam 132 to rotate in a forward direction (e.g., a clockwise direction) and the locking bolt 120 may be driven by the cam 132 to move away from the lock pin 110 until the locking bolt 120 disengages from the lock hole or the groove 130. Meanwhile, the locking bolt 120 may trigger the touch switch 160. Thereby, the system may determine that the lock has been unlocked and the motor 131 may stop rotating. When the lock is being locked, the lock pin 110 may be subject to a tensile force and the lock pin reset device 140 may be elongated. Then the magnet 152 on the lock pin 110 approaches the magnetic control switch 151. Thereby, the system may determine that a locking operation is to be performed and then control the motor 131 to drive the cam 132 to rotate in a reverse direction (e.g., a counterclockwise direction) . The locking bolt 120 may be driven by the cam 132 to move downward to snap into the lock hole or the groove 130. Meanwhile, the locking bolt 120 may disengage from the touch switch 160. Thereby, the system may determine that the lock has been locked and the motor 131 may stop rotating.
The touch switch 160, the magnetic switch 151, and the motor 131 may be in communication with (e.g., electrically connected to) the controller. The controller may control the motor 131 to rotate based on signals of the touch switch 160 and the magnetic control switch 151. The motor 131 may drive the cam 132 to rotate to control the movement of the locking bolt 120 to achieve an unlocking operation or a locking operation.
In some embodiments, the lock hole or the groove 130 may be a rectangular opening groove. The lock hole or the groove 130 may be disposed in the vicinity of the tail end of the lock pin 110 for accommodating the locking bolt 120. When the locking bolt 120 snaps into the lock hole or the groove 130, the lock pin 110 can no longer rotate, which indicates that the lock 100 has been in the locking state.
In some embodiments, the magnet 152 may be disposed at a position where the tail end of the lock pin 110 is connected to the lock pin reset device 140. The function of the magnet 152 is that when the magnet 152 is detected by the magnetic control switch 151, it may be determined that the lock pin reset device 140 has been stretched to the locking position. At this time, the magnetic control switch 151 which is disposed at a stop position of the magnet 152 in the locking state may detect the magnet 152. In some embodiments, a distance range within which the magnetic control switch 151 can detect the magnet 152 may be 0.2cm -1cm.
In some embodiments, the lock 100 may further include a battery disposed in the housing and used for providing power supply. The battery may be charged by a solar panel disposed on a vehicle and may provide power to the lock 100.
In some embodiments, the tail end of the lock pin 110 may include a slot 141 used for connecting to the lock pin reset device 140. The slot 141 may be configured to fixedly connect to the lock pin reset device 140. For example, the lock pin reset device 140 may be engaged with the lock pin 110 through the slot 141.
In some embodiments, the lock pin 110 may be made of a stainless steel. Since the lock of the present disclosure may be applied in an application scenario of locking or unlocking a bicycle, the lock may be exposed to the natural environment at most of the time and may be easily damaged. The stainless steel may refer to a  steel that is resistant to weakly corrosive media (e.g., air, steam, water) and chemically etch media (e.g., acid, alkali, salt) . Therefore, it is beneficial to extend the life of the lock by using the lock pin made of stainless steel.
In some embodiments, the lock 100 may also include a lock pin handle 170 used for controlling the movement of the lock pin 110 when a user locks the lock 100. As illustrated in FIG. 1 or FIG. 2, the lock pin handle 170 may be disposed at a predetermined position (e.g., a third of a head end) of the lock pin 110.
FIG. 4 is a flow chart illustrating an exemplary process for lock control according to some embodiments of the present disclosure.
In 410, a position of the lock pin 110 may be detected. Specifically, operation 410 may be performed by a detection module 510. In some embodiments, a controller (e.g., the detection module 510) may detect the position of the lock pin 110 based on a first sensor. Specifically, the detection module 510 may detect whether the lock pin 110 is located at a predetermined position of the lock pin 110 (e.g., a position where the lock pin 110 is located when the lock is in a locking state) .
In 420, a position of the locking bolt 120 may be detected. Specifically, operation 420 may be performed by the detection module 510. In some embodiments, the controller (e.g., the detection module 510) may detect the position of the locking bolt 120 based on a second sensor. Specifically, the detection module 510 may detect whether the locking bolt 120 is located at a first predetermined position of the locking bolt 120 or a second predetermined position of the locking bolt 120.
In 430, a movement of a locking bolt drive device may be controlled based on the position of the lock pin 110. Specifically, operation 430 may be performed by a locking bolt drive device control module 520. In some embodiments, in response to detecting that the lock pin 110 has reached the predetermined position of the lock pin 110, the controller (e.g., the locking bolt drive device control module 520) may control the locking bolt drive device to move to achieve a locking operation. In some embodiments, the locking bolt drive device control module 520 may further  control the locking bolt drive device to move based on the position of the lock pin 110 and the position of the locking bolt 120. For example, in response to detecting that the lock pin 110 has reached the predetermined position of the lock pin 110 and the locking bolt 120 is located at the first predetermined position of the locking bolt 120, the locking bolt drive device control module 520 may control the locking bolt drive device to drive the locking bolt 120 to move to the second predetermined position of the locking bolt 120 to achieve the locking operation.
The process for unlocking the lock 100 may include the following operations. The controller may receive an unlocking instruction. The locking bolt drive device control module 520 may drive the locking bolt 120 to move away from the lock hole or the groove 130 until the locking bolt 120 disengages from the lock hole or the groove 130 of the lock pin 110. The lock pin 110 may be reset (e.g., contract back into the housing) by the lock pin reset device 140 to unlock the lock 100. Meanwhile, when the locking bolt 120 reaches to a position where the locking bolt 120 can trigger the second sensor (e.g., a touch switch) , the controller may determine that the lock 100 has been unlocked and control the motor 131 to stop rotating.
It should be noted that the above description regarding the process 400 is merely provided for the purposes of illustration, and not intended to limit the scope of the present disclosure. For persons having ordinary skills in the art, multiple variations and modifications may be made under the teachings of the present disclosure. However, those variations and modifications do not depart from the scope of the present disclosure. For example, the process 400 may be accomplished with the operations in an order described above or simultaneously. As another example, the operation 420 may be omitted.
FIG. 5 is a block diagram illustrating an exemplary lock control system according to some embodiments of the present disclosure. As shown in FIG. 5, the lock control system 500 may include a detection module 510 and a locking bolt drive device control module 520.
The detection module 510 may be configured to detect a position of the lock  pin 110. For example, the detection module 510 may detect whether the lock pin 110 reaches the predetermined position of the lock pin 110. In some embodiments, the detection module 510 may also be configured to detect a position of the locking bolt 120. For example, the detection module 510 may detect whether the locking bolt 120 is located at a first predetermined position of the locking bolt 120 or a second predetermined position of the locking bolt 120.
The locking bolt drive device control module 520 may be configured to control the locking bolt drive device to move based on the position of the lock pin 110. In some embodiments, the locking bolt drive device control module may also be configured to control the locking bolt drive device to move based on the position of the lock pin 110 and the position of the locking bolt 120. For example, in response to detecting that the lock pin 110 has reached the predetermined position of the lock pin 110 and the locking bolt 120 is located at the first predetermined position of the locking bolt 120, the locking bolt drive device control module 520 may control the locking bolt drive device to drive the locking bolt 120 to move to the second predetermined position of the locking bolt 120 to achieve the locking operation.
It should be understood that the system and the modules thereof shown in FIG. 5 may be implemented in various ways. For example, in some embodiments, the system and the modules thereof may be implemented as hardware, software, or a combination of software and hardware. The hardware may be implemented by a specific logic and the software may be stored in a storage and executed by an appropriate instruction execution system (e.g., a microprocessor, a dedicated design hardware) . It will be understood by those skilled in the art that the above method and system may be implemented as computer-executable instructions and/or be embedded in control codes of a processor. For example, the control codes may be provided by a storage medium (e.g., a disk, a CD, a DVD-ROM) , a programmable storage device (e.g., a read-only storage (e.g., firmware) ) , or a data carrier (e.g., an optical carrier, an electric signal carrier) . The system and the modules thereof of the present disclosure may be implemented by a hardware circuit (e.g., a super large  scale integrated circuit, a gate array) , a semiconductor (e.g., a logic chip, a transistor) , a programmable hardware device (e.g., a field-programmable gate array, a programmable logic device) , etc. The system and the modules thereof may be implemented by software that can be executed by various processors. The system and the modules thereof may also be implemented by a combination (e.g., firmware) of the hardware circuit and the software.
It should be noted that the above description of the lock control system and modules thereof is provided for the purposes of illustration and not intended to limit the scope of the present disclosure. For persons having ordinary skills in the art, various variations and modifications may be conducted under the teaching of the present disclosure. However, those variations and modifications may not depart the spirit and scope of this disclosure. For example, the detection module 510 and the locking bolt drive device control module 520 may be different modules in the system, or may be integrated as a single module to implement the functions of the two modules described above As another example, the modules may share a storage module, or each of the modules may include a respective storage module.
The lock 100 disclosed in the present disclosure may be applied to a bicycle, such as a shared bicycle. The lock pin 110 of the lock 100 may pass through a spoke clearance of a wheel of the bicycle to limit the rotation of the wheel. In some embodiments, the lock 100 may also be used in other vehicles (e.g., an electric vehicle, a tricycle) and the description above is not intended to be limiting.
The advantage effects of the lock and the locking mechanism disclosed in the present disclosure may include but not limited to: (1) a movement of a locking bolt may be driven based on a position of a lock pin to unlock or lock a lock, which can ensure an accuracy of determining an unlocking operation or a locking operation; (2) a touch switch may be used in combination with a magnetic control switch, which can reduce the cost and ensure the accuracy; (3) the magnetic control switch is a non-contact sensor, which has a relatively long usage life and relatively high reliability; and (4) the lock in the present disclosure may be applied to a bicycle, for example, a shared bicycle, which is convenient for the user to use. It should be  noted that different embodiments may have different advantage effects. In different embodiments, the advantage effects may include any combination of one or more of the above or any other possible advantage effect.
FIG. 6 is a schematic diagram illustrating an exemplary lock in a locking state according to some embodiments of the present disclosure. FIG. 7 is a schematic diagram illustrating an exemplary lock in an unlocking state according to some embodiments of the present disclosure. A locking mechanism, a lock, a vehicle, and systems and methods for lock control according to some embodiments of the present disclosure will be described in detail below with reference to FIG. 6 and FIG. 7. It should be noted that the following embodiments are merely illustrative and do not limit the protection scope of the present disclosure.
For convenience, the reference numerals in FIGs. 6-7 are explained here: 610 refers to a lock pin, 620 refers to a locking bolt, 621 refers to a locking bolt body, 622 refers to second protrusion, 623 refers to a first protrusion, 624 refers to a locking bolt reset component, 630 refers to a groove, 631 refers to a motor, 632 refers to a cam, 633 refers to a locking bolt driving component, 640 refers to a lock pin reset device, 650 refers to a first sensor, 651 refers to a magnetic control switch, 652 refers to a magnet, 660 refers to a second sensor, 661 refers to a touch switch protrusion.
The locking mechanism of the lock 600 may include a locking bolt 620 and a locking bolt drive device. The locking bolt drive device may be configured to drive a movement of the locking bolt 620.
In some embodiments, the locking bolt drive device may include a locking bolt driving component 633 and a locking bolt reset component 624 (also referred to as a “locking bolt reset device” ) . The locking bolt driving component 633 may be configured to apply a driving force to the locking bolt 620 to drive the movement of the locking bolt 620. The locking bolt reset component 624 may be configured to conserve and release energy during the movement of the locking bolt 620 to reset the locking bolt 620. Specifically, the locking bolt reset component 624 (e.g., a spring) may be transmissibly connected to the locking bolt 620. In some  embodiments, the locking bolt reset component 624 may be a compression spring. In some embodiments, the locking bolt reset component 624 may also be a tension spring, a coil spring, etc. In some embodiments, the locking bolt driving component 633 may include a power device and a driving portion. The driving portion may be transmissibly connected to the power device and may be configured to move under the driving of the power device to drive the movement of the locking bolt 620. In some embodiments, the power device may be a motor 631 and the driving portion may be a cam 632. In some embodiments, the cam 632 may include two cylinders whose end faces are fixed to each other. For example, the cam 632 may include a first cylinder and a second cylinder, wherein a diameter of the first cylinder is larger than a diameter of the second cylinder. The first cylinder (also referred to as “large cylinder” ) may be fixed on a rotation shaft of the motor 631. The end surface of the second cylinder (also referred to as “small cylinder” ) may be fixed to the end surface of the large cylinder and a position of the small cylinder may deviate from a rotation center of the large cylinder. Preferably, a circumference of the small cylinder may be tangent to a circumference of the large cylinder. Preferably, the diameter of the small cylinder may be less than half of the diameter of the large cylinder. For example, a ratio of the diameter of the small cylinder to the diameter of the large cylinder may be 1/3, 1/4, 1/5, 1/6, etc. In some embodiments, the locking bolt 620 may include a second protrusion 622 for abutting against the cam 632 (e.g., the small cylinder on the cam 632) . When the cam 632 rotates, the cam 632 (e.g., the small cylinder on the cam 632) may abut against or disengage from the second protrusion 622, thereby driving the movement of the locking bolt 620.
In some embodiments, the motor 631 may be a reduction motor. In some embodiments, the locking bolt driving component 633 may also be a reciprocating drive mechanism such as a crank rocker mechanism. For example, the power device may be a motor 631 and the driving portion may be a rocker. In some embodiments, the locking bolt driving component 633 may also be a magnetic drive device. For example, the power device may be an electromagnet and the driving portion may be a magnetic block driven by the electromagnet.
In some embodiments, the locking mechanism may also include a first sensor 650 configured to detect a movement of the lock pin 610 (also referred to as a “signal indicative of the movement of the lock pin” ) .
In some embodiments, the first sensor 650 may include a magnetic control switch 651 (e.g., a magnetic induction sensor) . An element (e.g., a magnet 652) used to generate a magnetic field may be disposed on the lock pin 610. Thus, the magnetic control switch 651 may determine the movement of the lock pin 610 based on an intensity of the magnetic field generated by the element (e.g., magnet 652) . In some embodiments, the magnet may be disposed at any position of the lock pin 610 and the magnetic control switch 651 may be disposed in the vicinity of (e.g., right above or below) a position on a moving path of the magnet. When the lock pin 610 is moving, the magnet may pass (e.g., close to and/or away from) a position corresponding to the magnetic control switch 651, then the movement of the lock pin 610 may be determined based on an intensity of the magnetic field generated by the magnet 652 and received by the magnetic control switch 651. For example, the magnetic control switch 651 may generate an electric signal reflecting the intensity of the magnetic field. Then a controller (which may be integrated in the lock 600 or a component (e.g., the locking mechanism) of the lock 600) may determine the movement of the lock pin 610 by processing the electric signal (e.g., performing a comparison operation) .
In some embodiments, the first sensor 650 may also determine the movement of the lock pin 610 by detecting whether the lock pin 610 is located at a predetermined position of the lock pin 610. For example, when the first sensor 650 is the magnetic control switch 651, the element (e.g., a magnet 652) used to generate a magnetic field may be disposed at a position where a tail end of the lock pin 610 is connected to the lock pin reset device 640. The magnetic control switch 651 may receive a signal of the magnetic field generated by the magnet 152 and generate an electric signal reflecting an intensity of the magnetic field. The magnetic control switch 651 may be in communication with (e.g., electrically connected to) the controller. The controller may receive an output signal of the  magnetic control switch 651 and determine whether the lock pin 630 reaches the predetermined position based on the output signal. For example, the predetermined position of the lock pin 610 may be a position where the lock pin 610 is located when the lock 600 is in a locking state. When the controller determines that the lock pin 610 has moved to the predetermined position based on the output signal of the first sensor 650 (e.g., the magnetic control switch 651) , it may be considered that the lock pin 610 has moved. Compared with other inductive elements, the magnetic control switch has advantages of no contact, low power consumption, long usage life, and high response frequency. Further, the magnetic control switch packaged with resin can be reliably used in various outdoor harsh environments. In some embodiments, the magnetic control switch 651 may include any sensor which can detect information using the magnetic induction sensing principle, such as a Hall sensor, an electromagnetic induction sensor (e.g., a fluxgate sensor, an eddy current sensor) , a magnetoresistive sensor (e.g., a giant magnetoresistive sensor, a magnetostrictive sensor) , etc.
In some alternative embodiments, the first sensor 650 may be a sensor of other types. For example, the first sensor 650 may be a photoelectric sensor, such as a slot type photoelectric sensor, a through-beam type photoelectric sensor, a reflector type photoelectric switch, a diffuse reflection type photoelectric switch, etc. Specifically, a first baffle or a first light source may be fixed on the lock pin 610. The first baffle or the first light source may be configured to change an intensity of a light entering the photoelectric sensor when the lock pin 610 is moving, so that whether the lock pin 610 is moving may be determined based on an output signal of the photoelectric sensor. As another example, the first sensor may be a touch switch. The lock pin 610 (e.g., an end (e.g., a tail end) of the lock pin 610) may open or close the touch switch when moving, so that whether the lock pin 610 has moved (or is moving) may be determined based on a state of the touch switch. As a further example, the first sensor may be any sensor capable of detecting the movement of the lock pin 610. For example, the first sensor 650 may be a pressure sensor, an infrared sensor, etc.
In some embodiments, the locking mechanism may further include a second sensor 660 configured to detect the position of the locking bolt 620.
In some embodiments, the second sensor 660 may include a touch switch, and the locking bolt 620 may include an element (e.g., a first protrusion 623) which can touch or disengage from the touch switch (e.g., a touch switch protrusion 661) . For example, when the locking bolt 620 moves away from the lock pin 610, the first protrusion 623 may touch (e.g., the touch switch may be closed) the touch switch; when the locking bolt 620 moves toward the lock pin 610, the first protrusion 623 may disengage from (e.g., the touch switch may be opened) the touch switch In some embodiments, the second sensor 660 may include a magnetic induction sensor, and an element (e.g., a magnet) used to generate a magnetic field may be disposed at a head end of the locking bolt 620. Then the magnetic induction sensor may determine the position of the locking bolt 620 based on the magnetic field generated by the magnet. In some embodiments, the second sensor 660 may further include a photoelectric sensor, such as a channel type photoelectric sensor, a through-beam type photoelectric sensor, a reflector type photoelectric switch, a diffuse reflection type photoelectric switch, etc. An element (e.g., a baffle, a reflective sheet) used to change beams may be disposed at a tail end of the locking bolt 620. Then the photoelectric sensor may determine the position of the locking bolt 620 by detecting blocked or reflected beams. In some embodiments, the second sensor 660 may further include a pressure sensor, such as a piezoresistive pressure sensor, a sapphire pressure sensor, a diffusion silicon pressure sensor, a ceramic pressure sensor, a piezoelectric pressure sensor, etc. An element (e.g., the first protrusion 623) which can touch or disengage from the pressure sensor may be disposed at the head end of the locking bolt 620. Then the pressure sensor may determine the position of the locking bolt 620 by detecting a pressure applied by the protrusion. The element may be any structure (e.g., a rod, a piece, a block) which is fixedly connected to the head end of the locking bolt 620.
In some embodiments, the second sensor 660 may be configured to detect whether the locking bolt 620 is located at a predetermined position. For example,  the predetermined position of the locking bolt 620 may be a position when the locking bolt 620 has disengaged from a groove of the lock pin 610. In some embodiments shown in FIG. 6 or FIG. 7, the second sensor 660 may be a touch switch and the locking bolt may include an element which can touch or disengage from the touch switch (e.g., the first protrusion 623) . When the touch switch is under different states (e.g., on or off) , the output signals of the touch switch may be different. The touch switch may be in communication with the controller. The controller may receive the output signal of the touch switch, determine whether the locking bolt 620 is located at the predetermined position based on the output signal, and then determine a state of the lock 600. As shown in FIG. 6, when the lock 600 is in the locking state, the locking bolt 620 disengages from the touch switch and the locking bolt 620 is not located at the predetermined position of the locking bolt 620. As shown in FIG. 7, when the lock 600 is in the unlocking state, the locking bolt 620 touches the touch switch and the locking bolt 620 is located at the predetermined position of the locking bolt 620.
In some embodiments, the locking bolt driving component 633 may be configured to drive the movement of the locking bolt 620 based on the movement of the lock pin 610. For example, when the lock pin 610 starts to move, which may indicate that a user has an intention to lock the lock 600, the locking bolt driving component 633 may move for a certain time, a certain displacement, or a certain angle, so that the locking bolt driving component 633 releases the restriction on the locking bolt 620 and reserves a space for the locking bolt 620 to reset. The lock pin 610 may continue to move (or has moved in position) until the groove 630 of the locking pin 610 is aligned with an end of the locking bolt 620, under this situation, the locking bolt 620 can snap into the groove 630 of the lock pin 610 under the driving of the locking bolt reset component 624.
In some embodiments, the locking bolt driving component 633 may be configured to drive the movement of the locking bolt 620 based on the movement of the lock pin 610 and the position of the locking bolt 620. For example, when the lock 600 is being locked, the locking bolt driving component 633 may drive the  movement of the locking bolt 620 based on the movement of the lock pin 610. When the lock is being unlocked, the locking bolt driving component 633 may drive the movement of the locking bolt 620 based on the position of the locking bolt 620. For example, when the locking bolt 620 is located at the predetermined position of the locking bolt 620 and the locking bolt 620 has disengaged from the groove 630, the locking bolt driving component 633 may stop moving. In some embodiments, the locking bolt driving component 633 may also be configured to drive the movement of the locking bolt 620 when the lock pin 610 has moved (or is moving) and the locking bolt 620 is located at the predetermined position of the locking bolt 620. For example, in the unlocking state, the locking bolt 620 may disengage from (not abut against) the lock pin 610 and the movement of the lock pin 610 may reflect a user's intention to lock the lock 600. According to the user's intention to lock the lock 600 and a condition that the locking bolt 620 is located at the predetermined position (i.e., the position when the locking bolt 620 disengages from the lock pin 610) , the locking bolt driving component 633 may drive the movement of the locking bolt 620 until the locking bolt driving component 633 releases the restriction on the locking bolt 620 and reserves a space for the locking bolt 620 to reset. At this time, the locking bolt 620 may abut against the lock pin 610 under the driving of the locking bolt reset component 624. In some embodiments, the locking bolt driving component 633 may include a motor 631 and a cam 632. Specifically, the controller may control the motor 631 to drive the cam 632 to continue to rotate for a predetermined time or a predetermined angle, such that a distance between the cam 632 and the protrusion of the locking bolt 620 is greater than or equal to a distance between the end of the locking bolt 620 and the bottom of the groove 630, or the small cylinder of the cam 632 is not located on a reset path of the locking bolt 620. Thus, the locking bolt 620 may be reset and abut against the lock pin 610 under a push force of the locking bolt reset component 624.
In some embodiments, the locking mechanism may also include a controller in communication with the first sensor 650, the second sensor 660, and the locking bolt drive device (e.g., the motor 631 of the locking bolt drive device) . The  controller may be configured to control the locking bolt drive device based on the output signal of the first sensor 650 and the output signal of the second sensor 660. In some embodiments, the controller may be implemented by a lock control system shown in FIG. 8.
The present disclosure also discloses a lock 600 which may include the locking mechanism of any of the embodiments of the present disclosure. In some embodiments, the lock 600 may also include a housing, a lock pin 610, and a lock pin reset device 640.
In some embodiments shown in FIG. 6 or FIG. 7, the lock pin 610 may be movably disposed in the housing relative to the housing, and the lock pin 610 may include the groove 630 for accommodating at least part (e.g., an end) of the locking bolt 620. In some embodiments, the lock pin 610 may be a lock ring which may be configured to pass through a spoke clearance of a wheel in the locking state to limit the rotation of the wheel. In some embodiments, the groove 630 on the lock pin 610 may also be a lock hole. The lock pin reset device 640 may be transmissibly connected to the lock pin 610 and may be used to reset the lock pin 610 when the lock is being unlocked. In some embodiments, the lock pin reset device 640 may be a spring (e.g., a tension spring) . The locking bolt 620 may be movably disposed in the housing relative to the housing such that at least part of the locking bolt 620 can enter or exit the lock hole or the groove 630. For example, the end (e.g., the tail end) of the locking bolt 620 may snap into or disengage from the lock hole or groove 630 on the lock pin 610. The locking bolt reset component 624 may be transmissibly connected to the locking bolt 620. The locking bolt reset component 624 may reset the locking bolt 620 when the lock is locked and drive the locking bolt 620 to snap into the groove 630 of the lock pin 610. The locking bolt driving component 633 may be configured to drive the locking bolt 620 to move relative to the housing. The controller may receive an instruction (e.g., an unlocking instruction from a server or a mobile terminal) and control the locking bolt drive device based on the instruction. In some embodiments, the controller may control other components (e.g., the locking bolt driving component 633, the first sensor 650,  the second sensor 660) of the lock 600 through a lock control system 800 shown in FIG. 8. In some embodiments, the locking bolt driving component 633, the first sensor 650, and the second sensor 660 may be in communication with the controller. The controller may be configured to control the locking bolt driving component 633 based on the movement of the lock pin 610 or the position of the locking bolt 620.
In some embodiments, the first sensor 650 may be configured to detect the movement of the lock pin 610 and the second sensor 660 may be configured to detect the position of the locking bolt 620. In some embodiments, when the locking bolt 620 is located at the predetermined position of the locking bolt 620 and the lock pin 610 has moved (or is moving) , the controller may be configured to control the locking bolt driving component 633 to release the restriction on the locking bolt 620 and reserve a reset space for the locking bolt 620. According to some embodiments of the present disclosure, the first sensor 650 (e.g., the magnetic control switch) may be used to detect the movement of the lock pin 610 and the second sensor 660 (e.g., the touch switch) may be used to detect the position of the locking bolt 620. Compared with a traditional solution in which two touch switches are used, the locking mechanism of the present disclosure in which a touch switch is used in combination with a magnetic control switch may have a longer usage life and has higher reliability. Further, since the first sensor 650 is relatively durable, the cost of the lock 600 may be greatly reduced.
In some embodiments, the locking bolt driving component 633 may include a motor 631 and a cam 632. The motor 631 may be fixed within the housing and the cam 632 may be fixedly connected to the rotation shaft of the motor 631. The motor 631 may be in communication with (e.g., electrically connected to) the controller. The cam 632 may be configured to drive the locking bolt 620 to move relative to the housing under the driving of the motor 631. In some embodiments, when the lock 600 is in an unlocking state and a locking behavior (e.g., a lock pin has moved or is moving) is detected, the controller may control the motor 631 to drive the cam 632 to continue to rotate for a predetermined time (e.g., 0.5s, 1s, 2s) or a predetermined angle (e.g., 3°, 5°, 10°, 60°, 90°) , so that it can be ensured that  the cam 632 can disengage from the second protrusion 622 and the cam 632 does not obstruct the movement of the locking bolt 620 when the locking bolt 620 is being reset by the push force of the locking bolt reset component 624. In the present disclosure, the motor 631 may be preferably a reduction motor. In some embodiments, the locking bolt driving component 633 may also be implemented using other suitable devices known to those skilled in the art. For example, the locking bolt driving component 633 may be implemented using a reciprocating drive mechanism such as a crank rocker mechanism.
In some embodiments, as shown in FIG. 6 or FIG. 7, the lock pin reset device 640 may be a spring, such as a tension spring. Specifically, one end of the tension spring may be fixed on the housing and the other end of the tension spring may be connected to an end of the lock pin 610. Further, when the lock 600 is in a locking state, the tension spring may be in a stretch state; when the lock 600 is in an unlocking state, the tension spring may be in a reset state.
In some embodiments, as shown in FIG. 6 and FIG. 7, the locking bolt reset component 624 may be a spring. Specifically, one end of the spring may be fixed on the housing and the other end of the spring may be connected to the other end (e.g., a head end) of the locking bolt 620. Further, when the lock 600 is in an unlocking state, the spring may be in a compress state; when the lock 600 is in a locking state, the spring may be in a reset state.
FIG. 8 is a flowchart illustrating an exemplary process for lock control according to some embodiments of the present disclosure.
In 810, a movement of the lock pin 610 may be detected. Specifically, the operation 810 may be performed by a detection module 910. In some embodiments, a controller (e.g., the detection module 910) may detect the movement of the lock pin 610 based on a first sensor 650. Specifically, the controller (e.g., the detection module 910) may receive an output signal of the first sensor 650 and determine the movement of the lock pin 610 based on the output signal of the first sensor 650.
In 820, a position of the locking bolt 620 may be detected. Specifically, the  operation 820 may be performed by the detection module 910. In some embodiments, the controller (e.g., the detection module 910) may determine the position of the locking bolt 620 based on a second sensor 660. In some embodiments, the detection module 910 may detect whether the locking bolt 620 is located at a predetermined position of the locking bolt 620. The predetermined position may be a position when the locking bolt 620 has been away from (or has disengaged from) the lock pin 610 of the lock 600, for example, a position when the locking bolt 620 disengages from the groove 630, a position when the locking bolt 620 disengages from the lock pin 610, a position when the locking bolt 620 abuts against the lock pin 610, etc. Specifically, the controller (e.g., the detection module 910) may receive the output signal of the second sensor 660 and determine the position of the locking bolt 620 based on the output signal of the second sensor 660.
In 830, a movement of the locking bolt drive device may be controlled based on the movement of the lock pin 610. Specifically, operation 820 may be performed by a locking bolt drive device control module 920. In some embodiments, the locking bolt drive device control module 920 may control the movement of the locking bolt drive device based on the movement of the lock pin 610 and the position of the locking bolt 620. In some embodiments, in response to detecting that the lock pin 610 reaches the predetermined position of the lock pin 610 and the locking bolt 620 is located at the predetermined position of the locking bolt 620, the locking bolt drive device control module 920 may control the locking bolt drive device to drive the movement of the locking bolt 620. In some embodiments, the locking bolt drive device may include a locking bolt driving component 633 and a locking bolt reset component 624. The locking bolt driving component 633 may include a power device (e.g., the motor 631) and a driving portion (e.g., the cam 632) . The driving portion may be transmissibly connected to the power device and the driving portion may be configured to move under the driving of the power device to drive the movement of the locking bolt 620.
The process for locking the lock 600 may include operations described below. The lock pin 610 may move relative to the housing under a pulling force  until the groove 630 of the lock pin 610 is aligned with the locking bolt 620. Then the locking bolt 620 may move toward the lock pin 610 under the action of the locking bolt reset component 624 until the end (e.g., the tail end) of the locking bolt 620 snaps into the groove 630 of the lock pin 610 and then the lock may be locked.
It should be noted that the description regarding the process 800 is merely provided for the purposes of illustration, and not intended to limit the scope of the present disclosure. For persons having ordinary skills in the art, multiple variations and modifications may be made under the teachings of the present disclosure. However, those variations and modifications do not depart from the scope of the present disclosure. For example, the process 800 may be accomplished with the operations in an order described above or simultaneously. As another example, the operation 820 may be omitted.
FIG. 9 is a block diagram illustrating an exemplary lock control system according to some embodiments of the present disclosure. As shown in FIG. 9, the lock control system 900 may include a detection module 910 and a locking bolt drive device control module 920.
Specifically, the detection module 910 may be configured to detect a movement of the lock pin 610. In some embodiments, the detection module 910 may also be configured to detect a position of the locking bolt 620. For example, the detection module 910 may detect whether the locking bolt 620 is located at a predetermined position of the locking bolt 620. The locking bolt drive device control module 920 may be configured to control the locking bolt drive device to move based on the movement of the lock pin 610. In some embodiments, the locking bolt drive device control module 920 may also be configured to control the locking bolt drive device to move based on the movement of the lock pin 610 and the position of the locking bolt 620. For example, in response to detecting that the lock pin 610 has moved (or is moving) and the locking bolt 620 is located at the predetermined position of the locking bolt 620, the locking bolt drive device control module 920 may control the locking bolt drive device to drive the movement of the locking bolt 620.
It should be understood that the system and the modules thereof shown in  FIG. 9 may be implemented in various ways. For example, in some embodiments, the system and the modules thereof may be implemented as hardware, software, or a combination of software and hardware. The hardware may be implemented by a specific logic and the software may be stored in a storage and executed by an appropriate instruction execution system (e.g., a microprocessor, a dedicated design hardware) . It will be understood by those skilled in the art that the above method and system may be implemented as computer-executable instructions and/or be embedded in control codes of a processor. For example, the control codes may be provided by a storage medium (e.g., a disk, a CD, a DVD-ROM) , a programmable storage device (e.g., a read-only storage (e.g., firmware) ) , or a data carrier (e.g., an optical carrier, an electric signal carrier) . The system and the modules thereof of the present disclosure may be implemented by a hardware circuit (e.g., a super large scale integrated circuit, a gate array) , a semiconductor (e.g., a logic chip, a transistor) , a programmable hardware device (e.g., a field-programmable gate array, a programmable logic device) , etc. The system and the modules thereof may be implemented by software that can be executed by various processors. The system and the modules thereof may also be implemented by a combination (e.g., firmware) of the hardware circuit and the software.
It should be noted that the above description of the lock control system and modules thereof is provided for the purposes of illustration and not intended to limit the scope of the present disclosure. For persons having ordinary skills in the art, various variations and modifications may be conducted under the teaching of the present disclosure. However, those variations and modifications may not depart the spirit and scope of this disclosure. For example, the detection module 910 and the locking bolt drive device control module 920 may be different modules in a system, or may be integrated as a single module to implement the functions of the two modules. As another example, the modules may share a storage module, or each of the modules may include a respective storage module.
The lock 600 disclosed in the present disclosure may be applied to a bicycle, such as a shared bicycle. The lock pin 610 of the lock 600 may pass through a  spoke clearance of a wheel of the bicycle to limit the rotation of the wheel. In some embodiments, the lock 600 may also be used in other vehicles (e.g., an electric vehicle, a tricycle) and the description above is not intended to be limiting.
The advantage effects of the lock and the locking mechanism disclosed in the present disclosure may include but not limited to: (1) a movement of a locking bolt may be driven based on a movement of a lock pin to unlock or lock a lock, which can ensure an accuracy of determining an unlocking operation or a locking operation; (2) a touch switch may be used in combination with a magnetic control switch, which can reduce the cost and ensure the accuracy; (3) compared with other inductive elements, the magnetic control switch used in the present disclosure has advantages of no contact, relatively low power consumption, relatively long usage life, and relatively high response frequency, and further the magnetic control switch packaged with resin can be reliably used in various outdoor harsh environments. It should be noted that different embodiments may have different advantage effects. In different embodiments, the advantage effects may include any combination of one or more of the above or any other possible advantage effects.
FIG. 10 is a schematic diagram illustrating an exemplary lock in a locking state according to some embodiments of the present disclosure. FIG. 11 is a schematic diagram illustrating an exemplary lock in an unlocking state according to some embodiments of the present disclosure. A locking mechanism, a lock, a vehicle, and systems and methods for lock control according to some embodiments of the present disclosure will be described in detail below with reference to FIG. 10 and FIG. 11. It should be noted that the following embodiments are merely illustrative and do not limit the scope of the present disclosure.
For convenience, the reference numerals in FIGs. 10-11 are explained here: 1010 refers to a locking bolt, 1011 refers to a second protrusion, 1012 refers to a first protrusion, 1020 refers to a locking bolt reset component, 1030 refers to a locking bolt driving component, 1031 refers to a motor, 1032 refers to a cam, 1040 refers to a lock pin, 1041 refers to a groove, 1042 refers to a handle, 1050 refers to a lock pin reset device, and 1060 refers to a touch switch.
The locking mechanism of the lock 1000 may include a locking bolt 1010 and a locking bolt drive device. The locking bolt drive device may be configured to drive a movement of the locking bolt 1010.
In some embodiments, the locking bolt drive device may include a locking bolt driving component 1030 and a locking bolt reset component 1020 (also referred to as a “locking bolt reset device” ) . The locking bolt driving component 1030 may be configured to apply a driving force to the locking bolt 1010 to drive the movement of the locking bolt 1010. The locking bolt reset component 1020 may be configured to conserve and release energy during the movement of the locking bolt 1010 to reset the locking bolt 1010. In some embodiments, the locking bolt 1010 may be a linear locking bolt or a circular arc locking bolt . If the locking bolt 1010 is a linear locking bolt, the locking bolt 1010 may move along a linear direction thereof. If the locking bolt 1010 is a circular arc locking bolt, the locking bolt 1010 may move along a circumferential direction thereof (i.e., rotates around a center of a circular arc) .
In some embodiments, the locking bolt reset component 1020 (e.g., a spring) may be transmissibly connected to the locking bolt 1010. In some embodiments, the locking bolt reset component 1020 may be a compression spring. In some embodiments, the locking bolt reset component 1020 may also be a tension spring, a coil spring, etc. In some embodiments, the locking bolt driving component 1030 may include a power device and a driving portion. The driving portion may be transmissibly connected to the power device and may be configured to move under the driving of the power device to drive the movement of the locking bolt 1010. In some embodiments, the power device may be a motor 1031 and the driving portion may be a cam 1032. In some embodiments, the cam 1032 may include two cylinders whose end faces are fixed to each other. For example, the cam 1032 may include a first cylinder and a second cylinder, wherein a diameter of the first cylinder is larger than a diameter of the second cylinder. The first cylinder (also referred to as “large cylinder” ) may be fixed on a rotation shaft of the motor 1031. The end surface of the second cylinder (also referred to as “small cylinder” ) may be fixed to the end surface of the large cylinder and a position of the small cylinder may deviate  from a rotation center of the large cylinder. Preferably, a circumference of the small cylinder may be tangent to a circumference of the large cylinder. Preferably, the diameter of the small cylinder may be less than half of the diameter of the large cylinder. For example, a ratio of the diameter of the small cylinder to the diameter of the large cylinder may be 1/3, 1/4, 1/5, 1/6, etc. In some embodiments, the locking bolt 1020 may include a second protrusion 1011 for abutting against the cam 1032 (e.g., the small cylinder of the cam 1032) . When the cam 1032 rotates, the cam 1032 (e.g., the small cylinder of the cam 1032) may abut against or disengage from the second protrusion 1011, thereby driving the movement of the locking bolt 1010.
In some embodiments, the motor 1031 may be a reduction motor. In some embodiments, the locking bolt driving component 1030 may also be a reciprocating drive mechanism such as a crank rocker mechanism. For example, the power device may be a motor and the driving portion may be a rocker. In some embodiments, the locking bolt driving component 1030 may also be a magnetic drive device. For example, the power device may be an electromagnet and the driving portion may be a magnetic block driven by the electromagnet.
In some embodiments, the locking mechanism may further include a sensor configured to detect a signal reflecting a value of a driving current of the power device (also referred to as a “signal indicative of a driving current of the power device” ) . In some embodiments, the sensor may be configured to detect an input current of the power device (e.g., the motor 1031) .
In some embodiments, the sensor may include a resistance, a current transformer, a Hall current sensor, or the like, or any combination thereof. In some embodiments, the sensor may be a contact current sensor or a non-contact current sensor. Specifically, the sensor may further include a fluxgate current sensor, a giant magnetoresistance current sensor, a fiber current sensor, or the like, or any combination thereof. It should be noted that the above current sensors are provided for illustrative purposes, and not intended to limit the scope of the present disclosure. For those skilled in the art, any other sensors may be used for detecting  a signal reflecting the value of the driving current of the power device.
In some embodiments, the value of the driving current of the power device may reflect a moving position of the driving portion. In some embodiments, the locking bolt drive device may be configured to drive the movement of the locking bolt 1010 based on the signal reflecting the value of the driving current of the power device. Specifically, the locking bolt drive device may be configured to stop moving when it is detected that the driving current reflected by the signal is less than a threshold.
In some embodiments, the locking mechanism may further include a controller in communication with (e.g., electrically connected to) the power device (e.g., the motor 1031) and the sensor. The controller may be configured to control the power device based on an output signal of the sensor. In some embodiments, the controller may be implemented by a control system shown in FIG. 13.
The present disclosure also discloses a lock 1000 which may include the locking mechanism of any of the embodiments of the present disclosure. In some embodiments, the lock 1000 may also include a housing, a lock pin 1040, and a lock pin reset device 1050.
In some embodiments shown in FIG. 10 or FIG. 11, the lock pin 1040 may be movably disposed in the housing relative to the housing, and the lock pin 1040 may include a groove 1041 for accommodating at least part (e.g., an end) of the locking bolt 1010. In some embodiments, the lock pin 1040 may be a lock ring which may be configured to pass through a spoke clearance of a wheel in a locking state to limit the rotation of the wheel. In some embodiments, the groove 1041 of the lock pin 1040 may also be a lock hole. In some embodiments, the lock pin 1040 may also include a handle 1042 used for pulling the lock pin 1040. The lock pin reset device 1050 may be transmissibly connected to the lock pin 1040 and may be used to reset the lock pin 1040 when the lock is being unlocked. In some embodiments, the lock pin reset device 1050 may be a spring (e.g., a tension spring) . The locking bolt 1010 may be movably disposed in the housing relative to the housing such that the at least part of the locking bolt 1010 can enter or exit the  lock hole or the groove 1041. For example, the end (e.g., the tail end) of the locking bolt 1010 may snap into or disengage from the lock hole or the groove 1041 of the lock pin 1040. The locking bolt reset component 1020 may be transmissibly connected to the locking bolt 1010. The locking bolt reset component 1020 may reset the locking bolt 1010 when the lock is being locked, for example, the locking bolt reset component 1020 may drive the locking bolt 1010 to snap into the lock hole or the groove 1041 of the lock pin 1040. The locking bolt driving component 1030 may be configured to drive the locking bolt 1010 to move relative to the housing. The controller may receive an instruction (e.g., an unlocking instruction from a server or a mobile terminal) and control the locking bolt drive device based on the instruction. In some embodiments, the controller may control other components (e.g., the locking bolt driving component 1030, the sensor) of the lock 1000 through a lock control system 1300 shown in FIG. 13. In some embodiments, both the locking bolt driving component 1030 (e.g., the power device) and the sensor may be in communication with the controller. The controller may be configured to control the power device based on the output signal of the sensor.
In some embodiments, in order to accurately detect the unlocking state or the locking state of the lock 1000, the lock 1000 may also include a locking state detection device. The lock state detection device may be configured to detect the unlocking state or the locking state of the lock 1000. In some embodiments shown in FIG. 10 or FIG. 11, the lock state detection device may be a touch switch 1060. The locking bolt 1010 may include a first protrusion 1012 opposite to the touch switch 1060. When the locking bolt 1010 moves relative to the housing, the first protrusion 1012 may touch or disengage from the touch switch 1060, thereby changing a state (e.g., on or off) of the touch switch 1060. For example, when the locking bolt 1010 moves away from the lock pin 1040, the first protrusion 1012 may touch (e.g., the touch switch may be opened) the touch switch 1060. When the locking bolt 1010 moves toward the lock pin 1040, the first protrusion 1012 may disengage from (e.g., the touch switch may be closed) the touch switch 1060. The output signals of the touch switch 1060 may be different under different states (on or  off) . The touch switch 1060 may be in communication with (e.g., electrically connected to) the controller. The controller may receive an output signal of the touch switch 1060, determine the position of the locking bolt 1010 based on the output signal, and then determine the state of the lock 1000. As shown in FIG. 10, when the lock 1000 is in the locking state, the first protrusion 1012 of the locking bolt 1010 disengages from the touch switch 1060. As shown in FIG. 11, when the lock is in the unlocking state, the first protrusion 1012 of the locking bolt 1010 touches the touch switch 1060. In some embodiments, the first protrusion 1012 may be any structure (e.g., a rod, a piece, a block) which is fixedly connected to the locking bolt 1010.
In some embodiments, the lock state detection device may be any other suitable device. For example, the lock state detection device may be a sensor used to detect the position of the locking bolt 1010. As another example, the lock state detection device may be a photoelectric sensor. The locking bolt 1010 may include a first baffle configured to change an intensity of a light entering the photoelectric sensor when the locking bolt 1010 moves relative to the housing, then the position of the locking bolt 1010 may be determined based on an output signal of the photoelectric sensor. Thus, the unlocking state or the locking state of the lock 1000 may be determined based on the position of the locking bolt 1010. In some embodiments, the lock state detection device may be a touch switch 1060. A protrusion (not shown) opposite to the touch switch 1060 may be fixed on the lock pin 1040. The protrusion may be configured to open or close the touch switch 1060 when the lock pin 1040 moves relative to the housing, so that the position of the lock pin 1040 may be determined based on a state of the touch switch 1060, then the unlocking state and locking state of the lock 1000 may be determined based on the position of the lock pin 1040. As another example, the lock state detection device may be any device capable of determining the state of the lock by detecting the position or the movement of the locking bolt 1010 and/or the lock pin 1040.
In some embodiments, the sensor may be configured to detect a value of a driving current (which can be referred to as “driving current” for brevity) of the power  device (e.g., the motor 1031) . The sensor may be in communication with the controller. The controller may control the movement of the motor 1031 based on the value of the driving current. Specifically, when the locking bolt 1010 is in the lock hole or the groove 1041 of the lock pin 1040 (e.g., an end (e.g., a tail end) of the locking bolt 1010 is in the lock hole or the groove 1041 of the lock pin 1040) , the locking bolt 1010 may be subjected to a lateral pulling force of the lock pin reset device 1050 and a resistance of the locking bolt reset component 1020. At this time, in order to drive the cam 1032, the motor 1031 needs to overcome the lateral pulling force of the lock pin reset device 1050 and the resistance of the locking bolt reset component 1020. Accordingly, a required driving current is relatively large. When the locking bolt 1010 disengages from the lock hole or the groove 1041 but has not disengaged from the cam 1032, the motor 1031 may drive the cam 1032 to continue to rotate. At this time, in order to drive the cam 1032, the motor 1031 only needs to overcome the resistance of the locking bolt reset component 1020. Accordingly, the required driving current may begin to decrease. Further, the motor 1031 may drive the cam 1032 to continue to rotate. When the cam 1032 disengages from the locking bolt 1010, the motor 1031 no longer needs to overcome the forces described above to drive the cam 1032. Accordingly, the required driving current may further decrease or even rapidly decrease. Therefore, whether the cam 1032 has disengaged from the locking bolt 1010 may be determined based on the driving current of the motor 1031. For example, when the driving current is less than a predetermined current threshold, it may be determined that the cam 1032 has disengaged from the locking bolt 1010. When the cam 1032 has disengaged from the locking bolt 1010, which may indicate that the cam 1032 has been rotated in position, the controller may control the motor 1031 to stop rotating. In some embodiments, the predetermined current threshold may be set as different values under different situations associated with the lock, the motor, the application scenario, etc. Preferably, the predetermined current threshold may be determined by experiment.
In the present disclosure, the lock pin reset device 1050 may be set as a  spring, such as a tension spring. One end of the tension spring may be fixed on the housing and the other end of the tension spring may be disposed at an end of the lock pin 1040. When the lock 1000 is being locked, the tension spring is in a stretch state. When the lock 1000 is being unlocked, the end of the locking bolt 1010 may disengage from the lock hole or the groove 1041 of the lock pin 1040, so that the lock pin 1040 moves toward the tension spring to reset under the action of the tension spring and then the lock may be unlocked. Further, when the lock 1000 is in the locking state, the tension spring may be in a stretch state; when the lock 1000 is in the unlocking state, the tension spring may be in a reset state.
In the present disclosure, the locking bolt reset component 1020 may be set as a spring. One end of the spring may be fixed to the housing and the other end of the spring may be disposed at an end (e.g., a head end) of the locking bolt 1010. When the lock 1000 is being unlocked, the locking bolt 1010 may overcome the resistance from the spring under the driving of the locking bolt driving component 1030 and move away from the lock pin 1040 until an end (e.g., a tail end) of the locking bolt 1010 disengages from the lock hole or groove 1041 of the lock pin 1040. Further, the locking bolt driving component 1030 releases the resistance to reset the locking bolt 1010 and the locking bolt 1010 may be driven to move to the lock pin 1040 under the action of the spring. When the lock 1000 is being locked, the lock pin 1040 may be subject to a pulling force applied by the tension spring and overcome the pulling force to move away from the tension spring until the lock hole or the groove 1041 is right below the locking bolt 1010. Further, the locking bolt 1010 continues to move toward the lock hole or the groove 1041 under the action of the spring until the end of the locking bolt 1010 is pushed into the lock hole or the groove 1041 and then the lock is locked. Further, when the lock 1000 is in the unlocking state, the spring may be in a compress state; when the lock 1000 is in the locking state, the tension spring may be in a reset state.
FIG. 12 is a flow chart illustrating an exemplary process for lock control according to some embodiments in the present disclosure.
In 1210, the locking bolt drive device may be controlled to move to unlock  the lock 1000. Specifically, operation 1210 may be performed by an unlocking module 1310. In some embodiments, when the lock 1000 is being unlocked, the controller (e.g., the unlocking module 1310) may receive an unlocking instruction and control the locking bolt drive device to move to unlock the lock 1000 based on the unlocking instruction. The unlocking instruction may be an unlocking instruction sent by a server and/or a mobile terminal. Specifically, the controller may control a movement of the power device (e.g., the motor 1031) to drive the driving portion (e.g., the cam 1032) to rotate. Then the cam 1032 may rotate to drive the locking bolt 1010 to move away from the lock hole or the groove 1041 until the locking bolt 1010 disengages from the lock hole or the groove 1041 of the lock pin 1040. Further, the lock pin 1040 may be reset (e.g., contracted into the housing) under the action of the lock pin reset device 1050 and the lock 1000 may be unlocked.
In 1220, a driving current of the power device may be detected. Specifically, operation 1220 may be performed by a detection module 1320. In some embodiments, the controller (e.g., detection module 1320) may detect the driving current of the power device based on a sensor (e.g., a current sensor) .
In 1230, the power device may be controlled based on the driving current. Specifically, operation 1230 may be performed by a power device control module 1330. In some embodiments, when the driving current satisfies a predetermined condition, the controller (e.g., the power device control module 1330) may control the power device to stop rotating. For example, when the driving current is less than a predetermined current threshold, the power device control module 1330 may control the power device to stop rotating. In some embodiments, a position of the power device (e.g., the cam 1032) may be determined in real-time and accurately by means of detecting the driving current. In some embodiments, whether the lock 1000 is in an unlocking state or a locking state may be determined based on the driving current.
The process for locking the lock 1000 may include the following operations. When the lock pin 1040 moves relative to the housing under a pulling force until the locking bolt 1010 is aligned with the lock hole or the groove 1041 of the lock pin  1040, the locking bolt 1010 may move to the lock pin 1040 under the action of the locking bolt reset component 1020 until the end of the locking bolt 1010 snaps into the lock hole or the groove 1041 of the lock pin 1040, then the lock is locked.
It should be noted that the description of the process 1200 is merely provided for the purposes of illustration, and not intended to limit the scope of the present disclosure. For persons having ordinary skills in the art, multiple variations and modifications may be made under the teachings of the present disclosure. However, those variations and modifications do not depart from the scope of the present disclosure. For example, the process 1200 may be accomplished with the operations in an order described above or simultaneously. As another example, operation 1210 may be performed first, and then operation 1220 and operation 1230 may be performed simultaneously. As a further example, the process1200 may further include an operation for receiving an unlocking instruction. As still a further example, operation 1210 may further include controlling a movement of the power device of the locking bolt drive device to unlock the lock based on the unlocking instruction.
FIG. 13 is a block diagram illustrating an exemplary lock control system according to some embodiments of the present disclosure. As shown in FIG. 13, the lock control system 1300 may include an unlocking module 1310, a detection module 1320, and a power device control module 1330.
Specifically, the unlocking module 1310 may be configured to control a movement of the power device of the locking bolt drive device to unlock a lock. The detection module 1320 may be configured to detect a driving current of the power device. The power device control module 1330 may be configured to control the power device based on the driving current. In some embodiments, the power device control module 1330 may also be configured to control the power device to stop rotating when the driving current satisfies a predetermined condition. In some embodiments, the power device control module 1330 may be further configured to control the power device to stop rotating when the driving current is less than a predetermined current threshold. In some embodiments, the lock control system  1300 may also include an obtaining module configured to receive an unlocking instruction. The unlocking module 1310 may be further configured to control the movement of the power device of the locking bolt drive device to unlock the lock based on the unlocking instruction.
It should be understood that the system and the modules thereof shown in FIG. 13 may be implemented in various ways. For example, in some embodiments, the system and the modules thereof may be implemented as hardware, software, or a combination of software and hardware. The hardware may be implemented by a specific logic and the software may be stored in a storage and executed by an appropriate instruction execution system (e.g., a microprocessor, a dedicated design hardware) . It will be understood by those skilled in the art that the above method and system may be implemented as computer-executable instructions and/or be embedded in control codes of a processor. For example, the control codes may be provided by a storage medium (e.g., a disk, a CD, a DVD-ROM) , a programmable storage device (e.g., a read-only storage (e.g., firmware) ) , or a data carrier (e.g., an optical carrier, an electric signal carrier) . The system and the modules thereof of the present disclosure may be implemented by a hardware circuit (e.g., a super large scale integrated circuit, a gate array) , a semiconductor (e.g., a logic chip, a transistor) , a programmable hardware device (e.g., a field-programmable gate array, a programmable logic device) , etc. The system and the modules thereof may be implemented by software that can be executed by various processors. The system and the modules thereof may also be implemented by a combination (e.g., firmware) of the hardware circuit and the software.
It should be noted that the above description of the lock control system and modules thereof is provided for the purposes of illustration and not intended to limit the scope of the present disclosure. For persons having ordinary skills in the art, various variations and modifications may be conducted under the teaching of the present disclosure. However, those variations and modifications may not depart the spirit and scope of this disclosure. For example, the unlocking module 1310 and the detection module 1320 may be different modules in the system, or may be  integrated as a single module to implement the functions of the two modules. As another example, the modules may share a storage module, or each of the modules may include a respective storage module.
The lock 1000 disclosed in the present disclosure may be applied to a bicycle, such as a shared bicycle. The lock pin 1040 of the lock 1000 may pass through a spoke clearance of a wheel of the bicycle to limit the rotation of the wheel. In some embodiments, the lock 1000 may also be used in other vehicles (e.g., an electric vehicle, a tricycle) and the description above is not intended to be limiting.
The present disclosure also provides a bicycle including the lock of any of the embodiments described above.
The advantage effects of the lock and the locking mechanism disclosed in the present disclosure may include but not limited to: (1) a position of a motor may be determined by detecting a value of a driving current and then a lock may be unlocked, under which the state of the lock may be determined in real time, delay can be avoided, and user time can be saved; (2) the use of the touch switch may be reduced, which can simplify the structure of the lock and reduce the manufacture cost of the lock; (3) an unlocking state or a locking state of the lock can be determined accurately. It should be noted that different embodiments may have different advantage effects. In different embodiments, the advantage effects may include any combination of one or more of the above or any other possible advantage effects.
The present disclosure also discloses a locking mechanism including a locking bolt (e.g., the locking bolt 120, the locking bolt 620, the locking bolt 1010) , a first sensor, and a locking bolt drive device.
The first sensor may be configured to detect a signal associated with a lock pin (e.g., the lock pin 110, the lock pin 610, the lock pin 1040) . The signal associated with the lock pin may include a signal indicative of a position of the lock pin, a signal indicative of a movement of the lock pin, a signal indicative of a driving current of a power device of the locking bolt drive device, or the like, or a combination thereof. In some embodiments, the first sensor may include a  pressure sensor, a touch sensor, a photoelectric sensor, a magnetic induction sensor, a current transformer, a Hall current sensor, a fluxgate current sensor, a giant magnetoresistance current sensor, a fiber current sensor, or the like, or a combination thereof. For example, as described in connection with FIGs. 1-5, the first sensor may include the magnetic control switch 151. As another example, as described in connection with FIGs. 6-9, the first sensor may include the magnetic control switch 651. As a further example, as described in connection with FIGs. 10-13, the first sensor may include the sensor configured to detect a signal reflecting a value of a driving current of the power device.
The locking bolt drive device may be configured to drive a movement of the locking bolt based at least in part on the signal associated with the lock pin. As described elsewhere in the present disclosure, the locking bolt drive device may be configured to apply a driving force to the locking bolt to drive the movement of the locking bolt. In some embodiments, the locking bolt drive device may include any suitable device capable of driving the locking bolt to move toward or away from the lock pin to lock or unlock the lock.
In some embodiments, the locking mechanism may further include a second sensor configured to detect a signal indicative of a position of the locking bolt. The second sensor may include a touch switch, a photoelectric sensor, a magnetic induction sensor, or the like, or a combination thereof. For example, as described in connection with FIGs. 1-5, the second sensor may include the touch switch 160. As another example, as described in connection with FIGs. 6-9, the second sensor may include the second sensor 660 (e.g., a touch switch) . As a further example, as described in connection with FIGs. 10-13, the second sensor may include the lock state detection device (e.g., the touch switch 1060) .
In some embodiments, the signal associated with the lock pin detected by the first sensor (e.g., the magnetic control switch 151) may be the signal indicative of the position of the lock pin, accordingly, the locking bolt drive device may be configured to drive the movement of the locking bolt based on the signal indicative of the position of the lock pin and the signal indicative of the position of the locking bolt  detected by the second sensor (e.g., the touch switch 160) . When the signal indicative of the position of the lock pin indicates that the lock pin reaches a predetermined position of the lock pin and the signal indicative of the position of the locking bolt indicates that the locking bolt is located at a first predetermined position of the locking bolt, the locking bolt drive device may be configured to drive the locking bolt to move to a second predetermined position of the locking bolt. More descriptions regarding driving the locking bolt to lock or unlock a lock may be found elsewhere in the present disclosure (e.g., FIGs. 1-5 and the descriptions thereof) .
In some embodiments, the locking bolt drive device may include a power device and a driving portion. The driving portion may be transmissibly connected to the power device and configured to move under the driving of the power device to drive the movement of the locking bolt. The power device may include a motor. The driving portion may include a cam including a first cylinder (also referred to as a “large cylinder” ) and a second cylinder (also referred to as a “small cylinder” ) . A diameter of the first cylinder may be larger than a diameter of the second cylinder. An end face of the first cylinder and an end face of the second cylinder may be fixedly connected with each other. The first cylinder may be fixed on a rotation shaft of the motor. A position of the second cylinder may deviate from a rotation center of the first cylinder. The locking bolt may include a sliding chute disposed on a face of the locking bolt facing toward the cam and configured for accommodating the second cylinder to slide in the sliding chute. More descriptions regarding the structure of locking bolt drive device may be found elsewhere in the present disclosure (e.g., FIGs. 1-3 and the descriptions thereof) .
In some embodiments, the signal associated with the lock pin detected by the first sensor (e.g., the magnetic control switch 651) may be the signal indicative of the movement of the lock pin, accordingly, the locking bolt drive device may be configured to drive the movement of the locking bolt based on the signal indicative of the movement of the lock pin and the signal indicative of the position of the locking bolt detected by the second sensor (e.g., the second sensor 660) . When the signal indicative of the movement of the lock pin indicates that the lock pin is moving (or  has moved) and the signal indicative of the position of the locking bolt indicates that the locking bolt is located at a predetermined position of the locking bolt, the locking bolt drive device may be configured to drive the movement of the locking bolt. More descriptions regarding driving the locking bolt to lock or unlock a lock may be found elsewhere in the present disclosure (e.g., FIGs. 6-7 and the descriptions thereof) .
In some embodiments, the locking bolt drive device may include a locking bolt reset device (also referred to as a “locking bolt reset component” ) transmissibly connected to the locking bolt, a power device, and a driving portion transmissibly connected to the power device and configured to move under the driving of the power device to drive the movement of the locking bolt, wherein the power device and the driving portion can be collectively referred to as a “locking bolt driving component. ” The power device may include a motor. The driving portion may include a cam including a first cylinder and a second cylinder. A diameter of the first cylinder may be larger than a diameter of the second cylinder. An end face of the first cylinder and an end face of the second cylinder may be fixedly connected with each other. The first cylinder may be fixed on a rotation shaft of the motor. A position of the second cylinder may deviate from a rotation center of the first cylinder. The locking bolt may include a protrusion for abutting against the second cylinder. More descriptions regarding the structure of the locking bolt drive device may be found elsewhere in the present disclosure (e.g., FIGs. 6-7 and the descriptions thereof) .
In some embodiments, the signal associated with the lock pin may be the signal indicative of the driving current of the power device of the locking bolt drive device detected by the first sensor (e.g., the sensor described in FIGs. 11-12) , accordingly, the locking bolt drive device may be configured to drive the movement of the locking bolt based on the signal indicative of the driving current of the power device of the locking bolt drive device. When the signal indicative of the driving current of the power device of the locking bolt drive device indicates that the driving current satisfies a predetermined condition (e.g., less than a predetermined current threshold) , the locking bolt drive device may be configured to stop driving the  movement of the locking bolt. More descriptions regarding driving the locking bolt to lock or unlock a lock may be found elsewhere in the present disclosure (e.g., FIGs. 10-11 and the descriptions thereof) .
In some embodiments, the locking bolt drive device may further include a driving portion and a locking bolt reset device transmissibly connected to the locking bolt. The driving portion may be transmissibly connected to the power device and configured to move under the driving of the power device to drive the movement of the locking bolt. The power device may include a motor. The driving portion may include a cam including a first cylinder and a second cylinder. A diameter of the first cylinder may be larger than a diameter of the second cylinder. An end face of the first cylinder and an end face of the second cylinder may be fixedly connected with each other. The first cylinder may be fixed on a rotation shaft of the motor. A position of the second cylinder may deviate from a rotation center of the first cylinder. The locking bolt may include a protrusion for abutting against the second cylinder. More descriptions regarding the structure of the locking bolt drive device may be found elsewhere in the present disclosure (e.g., FIGs. 10-11 and the descriptions thereof) .
In some embodiments, the locking mechanism may further include a controller in communication with the first sensor and the locking bolt drive device. The controller may be configured to control the locking bolt drive device based on the signal associated with lock pin. As described elsewhere in the present disclosure, the controller may receive an instruction (e.g., an unlocking instruction or a locking instruction from a server or a mobile terminal) and control the locking bolt drive device based on the instruction.
The present disclosure also discloses a lock. The lock may include a lock pin, a locking mechanism described above, and a housing. The locking mechanism may include a locking bolt, a first sensor configured to detect a signal associated with a lock pin, and a locking bolt drive device configured to drive a movement of the locking bolt based at least in part on the signal associated with the lock pin. The locking bolt drive device may include a locking bolt reset device. The lock pin may  be moveably disposed in the housing relative to the housing and may include a lock hole or a groove for accommodating at least part of the locking bolt. The locking bolt reset device may be transmissibly connected to the lock pin. The locking bolt may be movably disposed in the housing relative to the housing such that the at least part of the locking bolt can enter or exit the lock hole or the groove. More descriptions regarding the structure of the lock may be found elsewhere in the present disclosure (e.g., FIGs. 1-3, 6-7, and 10-11 and the descriptions thereof) .
The present disclosure also discloses a vehicle (e.g., a bicycle) . The vehicle may include a lock and a locking mechanism of the lock described above.
The present disclosure also discloses a method for controlling a lock. The method may be implemented by a computing device (e.g., a processor) .
The processor (e.g., an obtaining module) (e.g., interface circuits of the processor) may obtain a signal associated with a lock pin.
In some embodiments, the signal associated with the lock pin may be detected by a first sensor. The first sensor may include a pressure sensor, a touch sensor, a photoelectric sensor, a magnetic induction sensor, a resistance, a current transformer, a Hall current sensor, a fluxgate current sensor, a giant magnetoresistance current sensor, or a fiber current sensor.
In some embodiments, the signal associated with the lock pin may include a signal indicative of a position of the lock pin, a signal indicative of a movement of the lock pin, a signal indicative of a driving current of a power device of the locking bolt drive device, or the like, or a combination thereof.
The processor (e.g., a driving module) (e.g., processing circuits of the processor) may drive a movement of the locking bolt based at least in part on the signal associated with the lock pin.
In some embodiments, the processor may further obtain a signal indicative of a position of the locking bolt by a second sensor. The second sensor may include a touch switch, a photoelectric sensor, a magnetic induction sensor, or the like, or a combination thereof.
In some embodiments, the signal associated with the lock pin may include  the signal indicative of the position of the lock pin, accordingly, the processor may drive the movement of the locking bolt based on the signal indicative of the position of the lock pin and the signal indicative of the position of the locking bolt. When the signal indicative of the position of the lock pin indicates that the lock pin reaches a predetermined position of the lock pin and the signal indicative of the position of the locking bolt indicates that the locking bolt is located at a first predetermined position of the locking bolt, the processor may drive the locking bolt to move to a second predetermined position of the locking bolt.
In some embodiments, the signal associated with the lock pin may include the signal indicative of the movement of the lock pin, accordingly, the processor may drive the movement of the locking bolt based on the signal indicative of the movement of the lock pin and the signal indicative of the position of the locking bolt. When the signal indicative of the movement of the lock pin indicates that the lock pin is moving (or has moved) and the signal indicative of the position of the locking bolt indicates that the locking bolt is located at a predetermined position of the locking bolt, the processor may drive the movement of the locking bolt.
In some embodiments, the signal associated with the lock pin may include the signal indicative of the driving current of the power device of the locking bolt drive device, accordingly, the processor may drive the movement of the locking bolt based on the signal indicative of the driving current of the power device of the locking bolt drive device. When the signal indicative of the driving current of the power device of the locking bolt drive device indicates that the driving current satisfies a predetermined condition (e.g., less than a threshold) , the processor may stop driving the movement of the locking bolt.
The present disclosure may also disclose a system for controlling a lock. The system may include an obtaining module and a dirving module. The obtaining module may be configured to obtain a signal associated with a lock pin. The dirving module may be configured to drive a movement of a locking bolt based at least in part on the signal associated with the lock pin. As described elsewhere in the present disclosure, any of the modules may be integrated into the lock control  system (e.g., the lock control system 500, the lock control system 900, the lock control system 1300) .
The present disclosure may also disclose a non-transitory computer readable medium. The non-transitory computer readable medium may include executable instructions. When executed by at least one processor, the executable instructions may direct the at least one processor to perform a method described above.
Having thus described the basic concepts, it may be rather apparent to those skilled in the art after reading this detailed disclosure that the foregoing detailed disclosure is intended to be presented by way of example only and is not limiting. Various alterations, improvements, and modifications may occur and are intended to those skilled in the art, though not expressly stated herein. These alterations, improvements, and modifications are intended to be suggested by this disclosure, and are within the spirit and scope of the exemplary embodiments of this disclosure.
Moreover, certain terminology has been used to describe embodiments of the present disclosure. For example, the terms “one embodiment, ” “an embodiment, ” and/or “some embodiments” mean that a particular feature, structure or characteristic described in connection with the embodiment is included in at least one embodiment of the present disclosure. Therefore, it is emphasized and should be appreciated that two or more references to “an embodiment” or “one embodiment” or “an alternative embodiment” in various portions of this specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures or characteristics may be combined as suitable in one or more embodiments of the present disclosure.
Further, it will be appreciated by one skilled in the art, aspects of the present disclosure may be illustrated and described herein in any of a number of patentable classes or context including any new and useful process, machine, manufacture, or composition of matter, or any new and useful improvement thereof. Accordingly, aspects of the present disclosure may be implemented entirely hardware, entirely  software (including firmware, resident software, micro-code, etc. ) or combining software and hardware implementation that may all generally be referred to herein as a “unit, ” “module, ” or “system. ” Furthermore, aspects of the present disclosure may take the form of a computer program product embodied in one or more computer readable media having computer readable program code embodied thereon.
A computer readable signal medium may include a propagated data signal with computer readable program code embodied therein, for example, in baseband or as part of a carrier wave. Such a propagated signal may take any of a variety of forms, including electro-magnetic, optical, or the like, or any suitable combination thereof. A computer readable signal medium may be any computer readable medium that is not a computer readable storage medium and that may communicate, propagate, or transport a program for use by or in connection with an instruction execution system, apparatus, or device. Program code embodied on a computer readable signal medium may be transmitted using any appropriate medium, including wireless, wireline, optical fiber cable, RF, or the like, or any suitable combination of the foregoing.
Computer program code for carrying out operations for aspects of the present disclosure may be written in any combination of one or more programming languages, including an object oriented programming language such as Java, Scala, Smalltalk, Eiffel, JADE, Emerald, C++, C#, VB. NET, Python or the like, conventional procedural programming languages, such as the “C” programming language, Visual Basic, Fortran 2103, Perl, COBOL 2102, PHP, ABAP, dynamic programming languages such as Python, Ruby and Groovy, or other programming languages. The program code may execute entirely on the user’s computer, partly on the user’s computer, as a stand-alone software package, partly on the user’s computer and partly on a remote computer or entirely on the remote computer or server. In the latter scenario, the remote computer may be connected to the user’s computer through any type of network, including a local area network (LAN) or a wide area network (WAN) , or the connection may be made to an external computer (for  example, through the Internet using an Internet Service Provider) or in a cloud computing environment or offered as a service such as a Software as a Service (SaaS) .
Furthermore, the recited order of processing elements or sequences, or the use of numbers, letters, or other designations therefore, is not intended to limit the claimed processes and methods to any order except as may be specified in the claims. Although the above disclosure discusses through various examples what is currently considered to be a variety of useful embodiments of the disclosure, it is to be understood that such detail is solely for that purpose, and that the appended claims are not limited to the disclosed embodiments, but, on the contrary, are intended to cover modifications and equivalent arrangements that are within the spirit and scope of the disclosed embodiments. For example, although the implementation of various components described above may be embodied in a hardware device, it may also be implemented as a software only solution, for example, an installation on an existing server or mobile device.
Similarly, it should be appreciated that in the foregoing description of embodiments of the present disclosure, various features are sometimes grouped together in a single embodiment, figure, or description thereof for the purpose of streamlining the disclosure aiding in the understanding of one or more of the various inventive embodiments. This method of disclosure, however, is not to be interpreted as reflecting an intention that the claimed object matter requires more features than are expressly recited in each claim. Rather, inventive embodiments lie in less than all features of a single foregoing disclosed embodiment.
In some embodiments, the numbers expressing quantities or properties used to describe and claim certain embodiments of the application are to be understood as being modified in some instances by the term “about, ” “approximate, ” or “substantially. ” For example, “about, ” “approximate, ” or “substantially” may indicate ±1%, ±5%, ±10%, or ±20%variation of the value it describes, unless otherwise stated. Accordingly, in some embodiments, the numerical parameters set forth in the written description and attached claims are approximations that may vary  depending upon the desired properties sought to be obtained by a particular embodiment. In some embodiments, the numerical parameters should be construed in light of the number of reported significant digits and by applying ordinary rounding techniques. Notwithstanding that the numerical ranges and parameters setting forth the broad scope of some embodiments of the application are approximations, the numerical values set forth in the specific examples are reported as precisely as practicable.
Each of the patents, patent applications, publications of patent applications, and other material, such as articles, books, specifications, publications, documents, things, and/or the like, referenced herein is hereby incorporated herein by this reference in its entirety for all purposes, excepting any prosecution file history associated with same, any of same that is inconsistent with or in conflict with the present document, or any of same that may have a limiting effect as to the broadest scope of the claims now or later associated with the present document. By way of example, should there be any inconsistency or conflict between the description, definition, and/or the use of a term associated with any of the incorporated material and that associated with the present document, the description, definition, and/or the use of the term in the present document shall prevail.
In closing, it is to be understood that the embodiments of the application disclosed herein are illustrative of the principles of the embodiments of the application. Other modifications that may be employed may be within the scope of the application. Thus, by way of example, but not of limitation, alternative configurations of the embodiments of the application may be utilized in accordance with the teachings herein. Accordingly, embodiments of the present application are not limited to that precisely as shown and described.

Claims (104)

  1. A locking mechanism of a lock, comprising a locking bolt and a locking bolt drive device, wherein
    the locking mechanism further comprises a first sensor configured to detect a position of a lock pin of the lock; and
    the locking bolt drive device is configured to drive a movement of the locking bolt based on the position of the lock pin.
  2. The locking mechanism of claim 1, wherein the first sensor is configured to detect whether the lock pin is located at a predetermined position of the lock pin.
  3. The locking mechanism of claim 1 or claim 2, further comprising a second sensor configured to detect a position of the locking bolt.
  4. The locking mechanism of claim 3, wherein the second sensor is configured to detect whether the locking bolt is located at a first predetermined position or a second predetermined position of the locking bolt.
  5. The locking mechanism of claim 3, wherein the locking bolt drive device is configured to drive the movement of the locking bolt based on the position of the lock pin and the position of the locking bolt.
  6. The locking mechanism of claim 3, wherein the locking bolt drive device is configured to drive the locking bolt to move to the second predetermined position of the locking bolt when it is detected that the lock pin is located at the predetermined position of the lock pin and the locking bolt is located at the first predetermined position of the locking bolt.
  7. The locking mechanism of claim 3, wherein the second sensor is a touch switch.
  8. The locking mechanism of claim 1, further comprising a controller in communication with the first sensor and the locking bolt drive device and configured  to control the locking bolt drive device based on an output signal of the first sensor.
  9. The locking mechanism of claim 1, wherein the first sensor detects the position of the lock pin of the lock based on a magnetic induction.
  10. A lock comprising a locking mechanism of any one of claims 1-9.
  11. A lock, comprising a housing, a lock pin, a lock pin reset device, and a locking mechanism of any one of claims 1-9; wherein
    the lock pin is movably disposed in the housing relative to the housing, the lock pin including a lock hole or a groove for accommodating at least part of the locking bolt;
    the lock pin reset device is transmissibly connected to the lock pin; and
    the locking bolt is movably disposed in the housing relative to the housing such that the at least part of the locking bolt can enter or exit the lock hole or the groove.
  12. A vehicle comprising a lock of any one of claims 10-11.
  13. A method for controlling a lock, comprising:
    detecting a position of a lock pin; and
    controlling a movement of a locking bolt drive device based on the position of the lock pin.
  14. The method of claim 13, further comprising:
    detecting whether the lock pin is located at a predetermined position of the lock pin; and
    in response to detecting that the lock pin is located at the predetermined position of the lock pin, controlling the movement of the locking bolt drive device to lock the lock.
  15. The method of claim 13 or claim 14, further comprising:
    detecting a position of a locking bolt; and
    controlling the movement of the locking bolt drive device based on the position of the lock pin and the position of the locking bolt.
  16. The method of claim 15, further comprising:
    detecting whether the locking bolt is located at a first predetermined position or a second predetermined position of the locking bolt.
  17. The method of claim 16, further comprising:
    in response to detecting that the lock pin is located at the predetermined position of the lock pin and the locking bolt is located at the first predetermined position of the locking bolt, controlling the locking bolt drive device to drive the locking bolt to move to the second predetermined position of the locking bolt to lock the lock.
  18. A system for controlling a lock, comprising:
    a detection module configured to detect a position of a lock pin; and
    a locking bolt drive device control module configured to control a movement of a locking bolt drive device based on the position of the lock pin.
  19. The system of claim 18, wherein
    the detection module is further configured to detect whether the lock pin is located at a predetermined position of the lock pin; and
    in response to that the lock pin is located at the predetermined position of the lock pin, the locking bolt drive device control module is further configured to control the movement of the locking bolt drive device to lock the lock.
  20. The system of claim 18 or claim 19, wherein
    the detection module is further configured to detect a position of a locking bolt; and
    the locking bolt drive device control module is further configured to control the movement of the locking bolt drive device based on the position of the lock pin and the position of the locking bolt.
  21. The system of claim 20, wherein the detection module is further configured to detect whether the locking bolt is located at a first predetermined position or a second predetermined position of the locking bolt.
  22. The system of claim 21, wherein the locking bolt drive device control module is further configured to:
    in response to that the lock pin is located at the predetermined position of the lock pin and the locking bolt is located at the first predetermined position of the locking bolt, control the locking bolt drive device to drive the locking bolt to move to the second predetermined position of the locking bolt to lock the lock.
  23. A lock control device, comprising at least one processor and at least one storage medium,
    the at least one storage medium configured to store computer instructions; and
    the at least one processor configured to execute the computer instructions to implement a method for controlling a lock of any one of claims 13-17.
  24. A computer readable storage medium storing computer instructions, wherein when the computer instructions are executed, a method for controlling a lock of any one of claims 13-17 is implemented.
  25. A locking mechanism of a lock, comprising a locking bolt, a locking bolt reset device, and a locking bolt drive device, wherein
    the locking mechanism further comprises a first sensor configured to detect a movement of a lock pin of the lock; and
    the locking bolt drive device is configured to drive a movement of the locking bolt based on the movement of the lock pin.
  26. The locking mechanism of claim 25, further comprising a second sensor configured to detect a position of the locking bolt.
  27. The locking mechanism of claim 26, wherein the second sensor is configured to detect whether the locking bolt is located at a predetermined position of the locking bolt.
  28. The locking mechanism of claim 26 or claim 27, wherein the locking bolt drive device is configured to drive the movement of the locking bolt based on the  movement of the lock pin and the position of the locking bolt.
  29. The locking mechanism of claim 28, wherein the locking bolt drive device is configured to drive the movement of the locking bolt when the lock pin is moving and the locking bolt is located at the predetermined position of the locking bolt.
  30. The locking mechanism of claim 27, wherein the second sensor includes a touch switch, a photoelectric sensor, or a magnetic induction sensor.
  31. The locking mechanism of claim 25, further comprising a controller in communication with the first sensor and the locking bolt drive device and configured to control the locking bolt drive device based on an output signal of the first sensor.
  32. The locking mechanism of claim 25, wherein the first sensor includes a pressure sensor, a touch switch, a photoelectric sensor, or a magnetic induction sensor.
  33. A lock comprising a locking mechanism of any one of claims 25-32.
  34. A lock, comprising a housing, a lock pin, a lock pin reset device, and a locking mechanism of any one of claims 25-32; wherein
    the lock pin is movably disposed in the housing relative to the housing and includes a lock hole or a groove for accommodating at least part of the locking bolt;
    the lock pin reset device is transmissibly connected to the lock pin; and
    the locking bolt is movably disposed in the housing relative to the housing such that the at least part of the locking bolt can enter or exit the lock hole or the groove.
  35. A vehicle comprising a lock of claim 33 or claim 34.
  36. A method for controlling a lock, comprising:
    detecting a movement of a lock pin; and
    controlling a movement of a locking bolt drive device based on the movement of the lock pin.
  37. The method of claim 36, further comprising:
    detecting a position of a locking bolt; and
    controlling the movement of the locking bolt drive device based on the movement of the lock pin and the position of the locking bolt.
  38. The method of claim 37, further comprising:
    detecting whether the locking bolt is located at a predetermined position of the locking bolt.
  39. The method of claim 37 or claim 38, further comprising:
    in response to detecting that the lock pin reaches a predetermined position of the lock pin and the locking bolt is located at the predetermined position of the locking bolt, controlling the locking bolt drive device to drive the movement of the locking bolt.
  40. A system for controlling a lock, comprising:
    a detection module configured to detect a movement of a lock pin; and
    a locking bolt drive device control module configured to control a movement of a locking bolt drive device based on the movement of the lock pin.
  41. The system of claim 40, wherein
    the detection module is further configured to detect a position of a locking bolt; and
    the locking bolt drive device control module is further configured to control the movement of the locking bolt drive device based on the movement of the lock pin and the position of the locking bolt.
  42. The system of claim 41, wherein the detection module is further configured to detect whether the locking bolt is located at a predetermined position of the locking bolt.
  43. The system of claim 41 or claim 42, wherein the locking bolt drive device control module is further configured to:
    in response to that the lock pin is moving and the locking bolt is located at the predetermined position of the locking bolt, control the locking bolt drive device to drive the movement of the locking bolt.
  44. A lock control device, comprising at least one processor and at least one storage medium,
    the at least one storage medium configured to store computer instructions;
    the at least one processor configured to execute the computer instructions to implement a method for controlling a lock of any one of claims 36-39.
  45. A computer readable storage medium storing computer instructions, wherein when the computer instructions are executed, a method for controlling a lock of any one of claims 36-39 is implemented.
  46. A locking mechanism of a lock, comprising a locking bolt and a locking bolt drive device, wherein
    the locking bolt drive device comprises a power device; and
    the locking mechanism further comprises a sensor configured to detect a signal reflecting a value of a driving current of the power device.
  47. The locking mechanism of claim 46, wherein the locking bolt drive device is configured to drive a movement of the locking bolt based on the signal reflecting the value of the driving current of the power device.
  48. The locking mechanism of claim 46, wherein the locking bolt drive device is configured to stop moving when it is detected that the value of the driving current is less than a predetermined threshold.
  49. The locking mechanism of claim 46, wherein the locking bolt drive device further comprises a driving portion transmissibly connected to the power device and configured to move under the driving of the power device to drive a movement of the locking bolt.
  50. The locking mechanism of claim 46, wherein the locking bolt drive device  further comprises a locking bolt reset device transmissibly connected to the locking bolt.
  51. The locking mechanism of claim 46, further comprising a controller in communication with the power device and the sensor and configured to control the power device based on an output signal of the sensor.
  52. The locking mechanism of claim 46, wherein the sensor includes at least one of a resistance, a current transformer, a Hall current sensor, a fluxgate current sensor, a giant magnetoresistance current sensor, or a fiber current sensor.
  53. A lock comprising a locking mechanism of any one of claims 46-52.
  54. A lock, comprising a housing, a lock pin, a lock pin reset device, and a locking mechanism of any one of claims 46-52; wherein
    the lock pin is movably disposed in the housing relative to the housing and includes a lock hole or a groove for accommodating at least part of the locking bolt;
    the lock pin reset device is transmissibly connected to the lock pin; and
    the locking bolt is movably disposed in the housing relative to the housing such that the at least part of the locking bolt can enter or exit the lock hole or the groove.
  55. The lock of claim 54, further comprising a lock state detection device configured to detect an unlocking state or a locking state of the lock.
  56. The lock of claim 55, wherein the lock state detection device is a touch switch;
    the locking bolt includes a first protrusion opposite to the touch switch; and
    the first protrusion is configured to open or close the touch switch when the locking bolt moves relative to the housing.
  57. A method for controlling a lock, comprising:
    controlling a movement of a power device of a locking bolt drive device to unlock the lock;
    detecting a driving current of the power device; and
    controlling the power device based on the driving current.
  58. The method of claim 57, wherein the controlling the power device based on the driving current includes:
    controlling the power device to stop moving when the driving current satisfies a predetermined condition.
  59. The method of claim 57, wherein the controlling the power device based on the driving current includes:
    controlling the power device to stop moving when the driving current is less than a predetermined threshold.
  60. The method of claim 57, further comprising receiving an unlocking instruction;
    the controlling the movement of the power device of the locking bolt drive device to unlock the lock including controlling the movement of the power device of the locking bolt drive device to unlock the lock based on the unlocking instruction.
  61. A system for controlling a lock, comprising:
    an unlocking module configured to control a movement of a power device of a locking bolt drive device to unlock the lock;
    a detection module configured to detect a driving current of the power device; and
    a power device control module configured to control the power device based on the driving current.
  62. The system of claim 61, wherein the power device control module is further configured to control the power device to stop moving when the driving current satisfies a predetermined condition.
  63. The system of claim 61, wherein the power device control module is further configured to control the power device to stop moving when the driving current is less than a predetermined threshold.
  64. The system of claim 61, further comprising an obtaining module configured to receive an unlocking instruction; and
    the unlocking module further configured to control the movement of the power device of the locking bolt drive device to unlock the lock based on the unlocking instruction.
  65. A vehicle comprising a lock of any of claims 53-56.
  66. A lock control device, comprising at least one processor and at least one storage medium,
    the at least one storage medium configured to store computer instructions; and
    the at least one processor configured to execute the computer instructions to implement a method for controlling a lock of any one of claims 57-60.
  67. A computer readable storage medium storing computer instructions, wherein when the computer instructions are executed, a method for controlling a lock of any one of claims 57-60 is implemented.
  68. A locking mechanism of a lock, comprising:
    a locking bolt;
    a first sensor configured to detect a signal associated with a lock pin; and
    a locking bolt drive device configured to drive a movement of the locking bolt based at least in part on the signal associated with the lock pin.
  69. The locking mechanism of claim 68, wherein the first sensor includes a pressure sensor, a touch sensor, a photoelectric sensor, a magnetic induction sensor, a current transformer, a Hall current sensor, a fluxgate current sensor, a giant magnetoresistance current sensor, or a fiber current sensor.
  70. The locking mechanism of claim 68 or claim 69, wherein the signal associated with the lock pin includes at least one of a signal indicative of a position of the lock pin, a signal indicative of a movement of the lock pin, or a signal indicative of a driving current of a power device of the locking bolt drive device.
  71. The locking mechanism of claim 70, wherein the locking mechanism further comprises a second sensor configured to detect a signal indicative of a position of the locking bolt.
  72. The locking mechanism of claim 71, wherein the second sensor includes a touch switch, a photoelectric sensor, or a magnetic induction sensor.
  73. The locking mechanism of claim 71 or claim 72, wherein
    the signal associated with the lock pin includes the signal indicative of the position of the lock pin; and
    the locking bolt drive device is configured to drive the movement of the locking bolt based on the signal indicative of the position of the lock pin and the signal indicative of the position of the locking bolt.
  74. The locking mechanism of claim 73, wherein when the signal indicative of the position of the lock pin indicates that the lock pin reaches a predetermined position of the lock pin and the signal indicative of the position of the locking bolt indicates that the locking bolt is located at a first predetermined position of the locking bolt, the locking bolt drive device is configured to drive the locking bolt to move to a second predetermined position of the locking bolt.
  75. The locking mechanism of claim 73 or claim 74, wherein the locking bolt drive device includes:
    a power device; and
    a driving portion transmissibly connected to the power device and configured to move under the driving of the power device to drive the movement of the locking bolt.
  76. The locking mechanism of claim 75, wherein
    the power device includes a motor;
    the driving portion includes a cam including a first cylinder and a second cylinder, wherein
    a diameter of the first cylinder is larger than a diameter of the second cylinder;
    an end face of the first cylinder and an end face of the second cylinder are fixedly connected with each other;
    the first cylinder is fixed on a rotation shaft of the motor; and
    a position of the second cylinder deviates from a rotation center of the first cylinder; and
    the locking bolt includes a sliding chute disposed on a face of the locking bolt facing toward the cam and configured for accommodating the second cylinder to slide in the sliding chute.
  77. The locking mechanism of any of claims 71-76, wherein
    the signal associated with the lock pin includes the signal indicative of the movement of the lock pin; and
    the locking bolt drive device is configured to drive the movement of the locking bolt based on the signal indicative of the movement of the lock pin and the signal indicative of the position of the locking bolt.
  78. The locking mechanism of claim 77, wherein when the signal indicative of the movement of the lock pin indicates that the lock pin is moving and the signal indicative of the position of the locking bolt indicates that the locking bolt is located at a predetermined position of the locking bolt, the locking bolt drive device is configured to drive the movement of the locking bolt.
  79. The locking mechanism of claim 77 or claim 78, wherein the locking bolt drive device includes:
    a locking bolt reset device transmissibly connected to the locking bolt;
    a power device; and
    a driving portion transmissibly connected to the power device and configured to move under the driving of the power device to drive the movement of the locking bolt.
  80. The locking mechanism of claim 79, wherein
    the power device includes a motor;
    the driving portion includes a cam including a first cylinder and a second cylinder, wherein
    a diameter of the first cylinder is larger than a diameter of the second cylinder;
    an end face of the first cylinder and an end face of the second cylinder are fixedly connected with each other;
    the first cylinder is fixed on a rotation shaft of the motor; and
    a position of the second cylinder deviates from a rotation center of the first cylinder; and
    the locking bolt includes a protrusion for abutting against the second cylinder.
  81. The locking mechanism of any of claims 70-80, wherein
    the signal associated with the lock pin includes the signal indicative of the driving current of the power device of the locking bolt drive device; and
    the locking bolt drive device is configured to drive the movement of the locking bolt based on the signal indicative of the driving current of the power device of the locking bolt drive device.
  82. The locking mechanism of claim 81, wherein when the signal indicative of the driving current of the power device of the locking bolt drive device indicates that the driving current is less than a threshold, the locking bolt drive device is configured to stop driving the movement of the locking bolt.
  83. The locking mechanism of claim 81 or claim 82, wherein the locking bolt drive device further comprises:
    a driving portion transmissibly connected to the power device and configured to move under the driving of the power device to drive the movement of the locking bolt; and
    a locking bolt reset device transmissibly connected to the locking bolt.
  84. The locking mechanism of claim 83, wherein
    the power device includes a motor;
    the driving portion includes a cam including a first cylinder and a second cylinder, wherein
    a diameter of the first cylinder is larger than a diameter of the second cylinder;
    an end face of the first cylinder and an end face of the second cylinder are fixedly connected with each other;
    the first cylinder is fixed on a rotation shaft of the motor; and
    a position of the second cylinder deviates from a rotation center of the first cylinder; and
    the locking bolt includes a protrusion for abutting against the second cylinder.
  85. The locking mechanism of any one of claims 68-84, further comprising a controller in communication with the first sensor and the locking bolt drive device and configured to control the locking bolt drive device based on the signal associated with lock pin.
  86. A method for controlling a lock, comprising:
    obtaining a signal associated with a lock pin; and
    driving a movement of the locking bolt based at least in part on the signal associated with the lock pin.
  87. The method of claim 86, wherein the signal associated with the lock pin is detected by a first sensor, the first sensor including a pressure sensor, a touch sensor, a photoelectric sensor, a magnetic induction sensor, a resistance, a current transformer, a Hall current sensor, a fluxgate current sensor, a giant magnetoresistance current sensor, or a fiber current sensor.
  88. The method of claim 86 or claim 87, wherein the signal associated with the lock pin includes at least one of a signal indicative of a position of the lock pin, a signal indicative of a movement of the lock pin, or a signal indicative of a driving current of a power device of a locking bolt drive device.
  89. The method of claim 88, further comprising:
    detecting, by a second sensor, a signal indicative of a position of the locking bolt.
  90. The method of claim 89, wherein the second sensor includes a touch switch, a photoelectric sensor, or a magnetic induction sensor.
  91. The method of claim 89 or claim 90, wherein
    the signal associated with the lock pin includes the signal indicative of the position of the lock pin; and
    the driving the movement of the locking bolt based at least in part on the signal associated with the lock pin includes driving the movement of the locking bolt based on the signal indicative of the position of the lock pin and the signal indicative of the position of the locking bolt.
  92. The method of claim 91, wherein the driving the movement of the locking bolt based on the signal indicative of the position of the lock pin and the signal indicative of the position of the locking bolt comprises:
    driving the locking bolt to move to a second predetermined position of the locking bolt when the signal indicative of the position of the lock pin indicates that the lock pin reaches a predetermined position of the lock pin and the signal indicative of the position of the locking bolt indicates that the locking bolt is located at a first predetermined position of the locking bolt.
  93. The method of any of claims 88-92, wherein
    the signal associated with the lock pin includes the signal indicative of the movement of the lock pin; and
    the driving the movement of the locking bolt based at least in part on the signal associated with the lock pin includes driving the movement of the locking bolt based on the signal indicative of the movement of the lock pin and the signal indicative of the position of the locking bolt.
  94. The method of claim 93, wherein the driving the movement of the locking bolt based on the signal indicative of the movement of the lock pin and the signal indicative of the position of the locking bolt comprises:
    driving the movement of the locking bolt when the signal indicative of the movement of the lock pin indicates that the lock pin is moving and the signal indicative of the position of the locking bolt indicates that the locking bolt is located at a predetermined position of the locking bolt.
  95. The method of claim 88-94, wherein the signal associated with the lock pin includes the signal indicative of the driving current of the power device of the locking bolt drive device; and
    the driving the movement of the locking bolt based at least in part on the signal associated with the lock pin includes driving the movement of the locking bolt based on the signal indicative of the driving current of the power device of the locking bolt drive device.
  96. The method of claim 95, wherein the driving the movement of the locking bolt based on the signal indicative of the driving current of the power device of the locking bolt drive device comprises:
    stop driving the movement of the locking bolt when the signal indicative of the driving current of the power device of the locking bolt drive device indicates that the driving current is less than a threshold.
  97. A system for controlling a lock, comprising:
    an obtaining module configured to obtain a signal associated with a lock pin; and
    a driving module configured to drive a movement of a locking bolt based at least in part on the signal associated with the lock pin.
  98. A non-transitory computer readable medium, comprising executable instructions that, when executed by at least one processor, direct the at least one processor to perform a method, the method comprising:
    obtaining a signal associated with a lock pin; and
    driving a movement of a locking bolt based at least in part on the signal associated with the lock pin.
  99. A lock comprising a lock pin and a locking mechanism, wherein the locking mechanism comprises:
    a locking bolt,
    a first sensor configured to detect a signal associated with a lock pin, and
    a locking bolt drive device configured to drive a movement of the locking bolt based at least in part on the signal associated with the lock pin.
  100. The lock of claim 99, further comprising a housing, the locking bolt drive device comprising a locking bolt reset device, wherein
    the lock pin is moveably disposed in the housing relative to the housing, and includes a lock hole or a groove for accommodating at least part of the locking bolt;
    the locking bolt reset device is transmissibly connected to the lock pin; and
    the locking bolt is movably disposed in the housing relative to the housing such that the at least part of the locking bolt can enter or exit the lock hole or the groove.
  101. A vehicle comprising a lock and a locking mechanism of the lock, wherein the locking mechanism comprises:
    a locking bolt;
    a first sensor configured to detect a signal associated with a lock pin; and
    a locking bolt drive device configured to drive a movement of the locking bolt based at least in part on the signal associated with the lock pin.
  102. A locking mechanism of a lock, comprising:
    a locking bolt;
    a sensor configured to detect a signal indicative of a position of a lock pin; and
    a locking bolt drive device configured to drive a movement of the locking bolt based at least in part on the signal indicative of a position of the lock pin.
  103. A locking mechanism of a lock, comprising:
    a locking bolt;
    a sensor configured to detect a signal indicative of a movement of a lock pin; and
    a locking bolt drive device configured to drive a movement of the locking bolt based at least in part on the signal indicative of a movement of the lock pin.
  104. A locking mechanism of a lock, comprising:
    a locking bolt;
    a sensor configured to detect a signal indicative of a driving current of a power device of the locking bolt drive device; and
    a locking bolt drive device configured to drive a movement of the locking bolt  based at least in part on the signal indicative of the driving current of the power device of the locking bolt drive device.
PCT/CN2019/112240 2018-10-26 2019-10-21 Locking mechanism, lock, and systems and methods for lock control WO2020083192A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201811261985.8 2018-10-26
CN201811261958.0A CN111101776A (en) 2018-10-26 2018-10-26 Switching lock mechanism, lockset and vehicle
CN201811261955.7A CN110748245A (en) 2018-10-26 2018-10-26 Switching lock mechanism, lockset and vehicle
CN201811261958.0 2018-10-26
CN201811261955.7 2018-10-26
CN201811261985.8A CN111101777A (en) 2018-10-26 2018-10-26 Switching lock mechanism, lockset and vehicle

Publications (1)

Publication Number Publication Date
WO2020083192A1 true WO2020083192A1 (en) 2020-04-30

Family

ID=70330657

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/112240 WO2020083192A1 (en) 2018-10-26 2019-10-21 Locking mechanism, lock, and systems and methods for lock control

Country Status (1)

Country Link
WO (1) WO2020083192A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115306227A (en) * 2022-07-22 2022-11-08 东风柳州汽车有限公司 Electromagnetic lock device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001090414A (en) * 1999-09-20 2001-04-03 Shiroki Corp Locking device for electrically unlocked bicycle
CN206309150U (en) * 2016-12-23 2017-07-07 深圳欧米智能科技有限公司 A kind of structure of horseshoe lock
CN107558826A (en) * 2017-07-18 2018-01-09 北京摩拜科技有限公司 Method for unlocking, smart lock, shared vehicle, server, system
CN108278052A (en) * 2018-03-16 2018-07-13 北京摩拜科技有限公司 Switch latch mechanism and lock assembly and vehicle
CN207920279U (en) * 2017-12-25 2018-09-28 浙江浦江梅花锁业集团有限公司 A kind of electronic lock
CN207917025U (en) * 2018-02-24 2018-09-28 北京摩拜科技有限公司 A kind of lockset and bicycle

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001090414A (en) * 1999-09-20 2001-04-03 Shiroki Corp Locking device for electrically unlocked bicycle
CN206309150U (en) * 2016-12-23 2017-07-07 深圳欧米智能科技有限公司 A kind of structure of horseshoe lock
CN107558826A (en) * 2017-07-18 2018-01-09 北京摩拜科技有限公司 Method for unlocking, smart lock, shared vehicle, server, system
CN207920279U (en) * 2017-12-25 2018-09-28 浙江浦江梅花锁业集团有限公司 A kind of electronic lock
CN207917025U (en) * 2018-02-24 2018-09-28 北京摩拜科技有限公司 A kind of lockset and bicycle
CN108278052A (en) * 2018-03-16 2018-07-13 北京摩拜科技有限公司 Switch latch mechanism and lock assembly and vehicle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115306227A (en) * 2022-07-22 2022-11-08 东风柳州汽车有限公司 Electromagnetic lock device
CN115306227B (en) * 2022-07-22 2023-10-20 东风柳州汽车有限公司 Electromagnetic lock device

Similar Documents

Publication Publication Date Title
US10180014B2 (en) Key drive device
WO2020083192A1 (en) Locking mechanism, lock, and systems and methods for lock control
EP2623700B1 (en) Vehicle door control device and vehicle door control method
WO2016194304A1 (en) Electrical key lock device
EP3560092B1 (en) Controlling motor movement
US10219344B2 (en) Light emitting diode driver for dimming and on/off control
CN111998762B (en) Cabinet and method for detecting closing of cabinet door
US20190368223A1 (en) Locks and waterproof structures thereof
US10218220B2 (en) Wireless power transmitter and method of controlling the same
CN103134420A (en) Position detector
CN203879137U (en) Electromagnetic lock
US20190064340A1 (en) Method and apparatus for detecting object using radar of vehicle
US7233255B2 (en) Indicating instrument
CN211714831U (en) Switching lock mechanism, lockset and vehicle
CN209670577U (en) Electric padlock
CN105612406A (en) Position detection sensor, and throttle device for internal combustion engine
CN105715416A (en) Valve used for exhaust gas recirculation of internal combustion engine
CN111101777A (en) Switching lock mechanism, lockset and vehicle
CN211081363U (en) Switching lock mechanism, lockset and vehicle
DE502004002179D1 (en) turnstile
CN209670578U (en) Electric padlock
CN103679090B (en) Method and system for detecting object passing
JP2017110955A (en) Liquid level estimating device
CN113639789A (en) System and method for detecting closing of cabinet door
KR20150011038A (en) Apparatus and Method for Controlling Door Module by Light Sensing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19875096

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19875096

Country of ref document: EP

Kind code of ref document: A1