WO2020083030A1 - 基于卫星网络的通信方法、装置及系统 - Google Patents

基于卫星网络的通信方法、装置及系统 Download PDF

Info

Publication number
WO2020083030A1
WO2020083030A1 PCT/CN2019/110378 CN2019110378W WO2020083030A1 WO 2020083030 A1 WO2020083030 A1 WO 2020083030A1 CN 2019110378 W CN2019110378 W CN 2019110378W WO 2020083030 A1 WO2020083030 A1 WO 2020083030A1
Authority
WO
WIPO (PCT)
Prior art keywords
satellite
user terminal
management
information
class
Prior art date
Application number
PCT/CN2019/110378
Other languages
English (en)
French (fr)
Inventor
乔云飞
余荣道
杜颖钢
王斌
王天祥
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2020083030A1 publication Critical patent/WO2020083030A1/zh
Priority to US17/239,117 priority Critical patent/US11876602B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1853Satellite systems for providing telephony service to a mobile station, i.e. mobile satellite service
    • H04B7/18539Arrangements for managing radio, resources, i.e. for establishing or releasing a connection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • H04B7/18513Transmission in a satellite or space-based system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/029Location-based management or tracking services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/543Allocation or scheduling criteria for wireless resources based on quality criteria based on requested quality, e.g. QoS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/30Connection release
    • H04W76/34Selective release of ongoing connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/20Selecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/06Airborne or Satellite Networks

Definitions

  • the embodiments of the present invention belong to the field of satellite communications, and more specifically, relate to a satellite network-based communication method, device, and system.
  • Satellite communication networks have the characteristics of long communication distance, large coverage area, and flexible networking. In some important areas, such as space communication, aviation communication, military communication, etc., satellite communication technology plays an irreplaceable role. Satellite networks can Fixed terminals provide services, and can also provide services for various mobile terminals.
  • satellite communication systems can be divided into geostationary (GEO, Geostationary Earth Orbit) satellite systems and non-geostationary orbit (NGEO, Non-Geostationary Earth Orbit) satellite systems.
  • GEO Geostationary Earth Orbit
  • NGEO Non-Geostationary Earth Orbit
  • MEO Medium Earth Orbit
  • LEO Low Earth Orbit
  • low-orbit satellites have become a hotspot in the global communications field due to their low orbit height and small propagation delay.
  • the orbital height of the low-orbit satellite system is about 500-1000km.
  • the coverage area of a single satellite on the ground is small, and it moves at high speed relative to the ground (25000km / h).
  • the average coverage time is only about a few minutes. For example, when the orbital height is 1000km,
  • the low-orbit satellite system with a minimum elevation angle of 10 degrees has an average time to cover the terminal of about 6 minutes.
  • the satellites serving user terminals will frequently switch. If satellite communications use a cellular network-like handover scheme, the user terminal needs to report the measurement results of the channel quality of the local cell and the neighboring cell to the original satellite according to the original satellite's configuration signaling. Switch. If satellite switching is required, the original satellite initiates a switching request to the target satellite. When the target satellite allows user terminal access, the target satellite will allocate time domain resources, frequency domain resources, code domain resources, baseband processing resources, etc. to the user terminal New cell resources, and send a handover confirmation message to the original satellite, and the RRC connection configuration is re-completed between the user terminal and the target satellite. The target satellite will report the path switching request to the gateway station again, waiting for the gateway station to feedback the path switching request confirmation information. In addition, the target satellite needs to perform signaling operations such as user context release with the source satellite.
  • low-orbit satellites For a communication network composed of only low-orbit satellites in the space segment, low-orbit satellites move at high speed relative to the ground, and when the coverage time is only a few minutes, user terminals will frequently switch between satellites, and may face multiple Switch between satellites.
  • the negotiation process between the satellites will initiate signaling such as a switch request between the source satellite and the target satellite and a path switch request between the target satellite and the gateway station, increasing the load on the network control plane and causing a huge data cache And data forwarding load.
  • the present application provides a communication method, device, and system applied to a satellite network, which can reduce signaling caused by satellite switching during satellite communication, reduce the load on the network control plane, and reduce the data cache and data forwarding load.
  • a satellite communication method includes: a user terminal receives a sounding signal sent by a management satellite on a management channel, and the management satellite manages one or more service satellites; the user terminal reports to the management The satellite sends a breathing signal, and the breathing signal carries information of the user terminal, and the information of the user terminal is used to determine service satellite information serving the user terminal.
  • the set of areas covered by one or more service satellites managed by the management satellite constitutes a supercell; optionally, a number of management beams transmitted by the management satellite cover
  • the area constitutes a super cell; optionally, the set of multiple management satellite coverage areas constitutes a super cell; optionally, the set of areas covered by multiple service satellites managed by multiple management satellites constitute a super cell.
  • the user terminal has a unique user identity in the super cell, the The information of the user terminal includes the user identification.
  • the super cell has a super cell identity, and the user identity is based on the super The cell identification and the device identification of the user terminal are determined.
  • the user terminal receives resource scheduling information sent by the management satellite, and the resource scheduling The information includes service satellite information serving the user terminal.
  • a fifth possible implementation manner of the first aspect after the management satellite receives the respiration signal sent by the user terminal, if The user terminal has a communication service requirement, and the user terminal sends a communication request signal to the management satellite.
  • the method further includes that the user terminal obtains location information of the user terminal, The information of the user terminal includes the location information.
  • the method further includes sending the user terminal to the management satellite After the breathing signal, the user terminal establishes a radio resource control (RRC, Radio Resource Control) connection with the serving satellite, and the user terminal receives and sends communication service data.
  • RRC Radio Resource Control
  • a satellite communication method includes: a user terminal receives a sounding signal sent by a management satellite on a management channel, the management satellite also has a function of serving a satellite; the user terminal sends to the management satellite A breath signal, the breath signal carries information of the user terminal, and the information of the user terminal is used to determine management satellite information serving the user terminal.
  • an area covered by a plurality of management beams transmitted by the management satellite constitutes a supercell; optionally, a collection of multiple management satellite coverage areas constitutes a supercell.
  • the user terminal has a unique user identity in the super cell, the The information of the user terminal includes the user identification.
  • the super cell has a super cell identity, and the user identity is based on the super The cell identification and the device identification of the user terminal are determined.
  • the user terminal receives resource scheduling information sent by the management satellite, and the resource scheduling The information includes service satellite information serving the user terminal.
  • a fifth possible implementation manner of the second aspect after the management satellite receives the respiration signal sent by the user terminal, if the The user terminal has a communication service requirement, and the user terminal sends a communication request signal to the management satellite.
  • the method further includes that the user terminal obtains location information of the user terminal, The information of the user terminal includes the location information.
  • the method further includes sending a breathing signal to the management satellite at the user terminal After that, the user terminal establishes a radio resource control (RRC, Radio Resource Control) connection with the management satellite, and the user terminal receives and sends communication service data.
  • RRC Radio Resource Control
  • a satellite communication method includes: a management satellite sends a sounding signal to a user terminal on a management channel, the management satellite manages one or more service satellites; the management satellite receives the user terminal The transmitted respiration signal, the respiration signal carries information of the user terminal, and the information of the user terminal is used to determine service satellite information serving the user terminal.
  • the set of areas covered by one or more service satellites managed by the management satellite constitutes a supercell; optionally, a number of management beams transmitted by the management satellite cover
  • the area constitutes a super cell; optionally, the set of multiple management satellite coverage areas constitutes a super cell; optionally, the set of areas covered by multiple service satellites managed by multiple management satellites constitute a super cell.
  • the user terminal has a unique user identity in the super cell, the The information of the user terminal includes the user identification.
  • the super cell has a super cell identity, and the user identity is based on the super The cell identification and the device identification of the user terminal are determined.
  • the management satellite after the management satellite receives the respiration signal sent by the user terminal, the management The satellite receives the communication request signal sent by the user terminal.
  • the method further includes: the management satellite determines resource scheduling information, and the resource scheduling information includes Information about the service satellite serving the user terminal.
  • the method further includes: after the management satellite completes the judgment on the resource scheduling of the serving satellite, determining the resource scheduling information.
  • the method further includes: the management satellite receives resource scheduling information sent by a ground station, the The resource scheduling information includes information of service satellites serving the user terminal.
  • the method further includes: after the ground station completes the serving satellite resource scheduling decision, determining the resource scheduling information.
  • the management satellite sends the resource scheduling information to the serving satellite; or The management satellite sends the resource scheduling information to the target service satellite and the original service satellite when the service satellite is switched; or the management satellite may send the resource scheduling information to the user terminal; or the management satellite When a service satellite switch occurs, the resource scheduling information may be sent to the target management satellite.
  • the management satellite releases communication resources, and the communication resources are used to implement the user Terminal business communication.
  • the method further includes: the management satellite sends to the ground station all stations received by the management satellite Say the breathing signal.
  • the management satellite after the management satellite receives the respiration signal sent by the user terminal , The management satellite sends the communication request signal received by the management satellite to the ground station.
  • the method further includes: the management satellite receives the first A service data, and the first service data includes data after the service satellite performs radio frequency signal processing on the communication data from the user terminal.
  • the method further includes: the management satellite sends the first Two service data, the second service data includes data after the management satellite performs baseband signal processing on the first service data.
  • a user terminal including:
  • the receiving module is used to receive the detection signal sent by the management satellite on the management channel, the management satellite manages one or more service satellites; the transmission module is used to send the breathing signal to the management satellite, the breathing signal carries the user Terminal information, the user terminal information is used to determine service satellite information serving the user terminal.
  • the set of areas covered by one or more service satellites managed by the management satellite constitutes a supercell; or areas covered by several management beams transmitted by the management satellite constitute A supercell; or a collection of multiple management satellite coverage areas constitutes a supercell; or a collection of areas covered by multiple management satellites managed by multiple management satellites constitute a supercell, the supercell having a supercell identity.
  • the user terminal further includes: a generating module, configured to be in the super cell A unique user identification is generated, and the information of the user terminal includes the user identification.
  • the generation module is configured to use the super cell identifier and the user terminal ’s
  • the device identification generates a user identification.
  • the receiving module is further configured to receive resource scheduling information sent by the management satellite,
  • the resource scheduling information includes service satellite information serving the user terminal.
  • the user terminal further includes: an acquiring module, configured to acquire the location of the user terminal Information, the information of the user terminal includes the location information.
  • the sending module is further configured to send a communication request signal to the management satellite.
  • the user terminal further includes a communication module for establishing wireless resources with the serving satellite Control (RRC, Radio Resource Control) connection, to achieve business communication between the user terminal and the serving satellite.
  • RRC Radio Resource Control
  • a management satellite manages one or more service satellites.
  • the management satellite includes: a sending module for sending a probe signal to a user terminal on a management channel; a receiving module for Receiving a breathing signal sent by the user terminal, the breathing signal carrying information of the user terminal, and the information of the user terminal is used to determine service satellite information serving the user terminal.
  • a set of areas covered by one or more service satellites managed by the management satellite constitute a supercell; or an area covered by multiple management beams transmitted by the management satellite A supercell is formed; or a collection of multiple management satellite coverage areas constitutes a supercell; or a collection of areas covered by multiple service satellites managed by multiple management satellites constitutes a supercell.
  • the user terminal has a unique user identity in the super cell, the The information of the user terminal includes the user identification.
  • the super cell has a super cell identity, and the user identity is based on the super The cell identification and the device identification of the user terminal are determined.
  • the management satellite further includes: a determining module, configured to determine information based on the user terminal Determine resource scheduling information, the resource scheduling information includes information of a service satellite serving the user terminal.
  • the receiving module is further configured to receive the resource scheduling information sent by the ground station.
  • the sending module is further configured to send the resource scheduling information to a serving satellite; or When the service satellite switching occurs, send the resource scheduling information to the target serving satellite and the original service satellite; or send the resource scheduling information to the user terminal, or send the resource scheduling when the service satellite switching occurs Resource scheduling information is given to the target management satellite.
  • the sending module is further configured to send the slave terminal to the ground station The respiration signal received.
  • the receiving module is further configured to receive the first service data sent by the serving satellite ,
  • the first service data includes data after the service satellite performs radio frequency signal processing on the communication data from the user terminal.
  • the sending module is configured to send the second service data to the serving satellite ,
  • the second service data includes data after the management satellite performs baseband signal processing on the first service data.
  • the management satellite further includes a release module, and the release module is used for scheduling After the result is sent to the target management satellite, the resource is released.
  • the sending module is further configured to receive the communication request sent by the user terminal on the management satellite After the signal, the communication request signal is sent to the ground station for processing.
  • the management satellite further includes a communication module for establishing radio resource control with the serving satellite (RRC, Radio, Resource, Control) connection.
  • RRC Radio, Resource, Control
  • a user terminal including:
  • a memory for storing computer program instructions; a processor for executing the program instructions stored in the memory; the processor is connected to the memory; when the user terminal is running, the processor executes the The computer program instructions stored in the memory to cause the user terminal to execute any one of the first aspect and all possible embodiments of the first aspect, the second aspect and all possible embodiments of the second aspect Satellite communication method.
  • the user terminal further includes: a transceiver; and the processor executes the computer program instructions stored in the memory to enable the user terminal to send and receive
  • the device implements the first aspect and any possible implementation manner of the first aspect, and the second aspect and any possible implementation manner of the second aspect.
  • a management satellite including:
  • a memory for storing computer program instructions; a processor for executing the program instructions stored in the memory; the processor is connected to the memory; when the management satellite is running, the processor executes the The computer program instructions stored in the memory to cause the management satellite to execute the satellite communication method described in any one of the third aspect of the invention and all possible implementation manners of the third aspect.
  • a computer-readable storage medium in which instructions are stored in a computer-readable storage medium, which when executed on a computer, enables the computer to execute the first aspect and all possible implementation manners of the first aspect ,
  • the satellite communication method according to any one of the second aspect and any possible implementation manner of the second aspect.
  • a computer-readable storage medium in which instructions are stored in the computer-readable storage medium, which when run on a computer, enables the computer to execute the third aspect and all possible implementations of the third aspect
  • a computer program product containing instructions that, when run on a computer, enable the computer to execute the first aspect and all possible implementation manners of the first aspect, and the second aspect and all possible aspects of the second aspect
  • the satellite communication method according to any one of the embodiments.
  • a computer program product containing instructions which, when run on a computer, enable the computer to perform the satellite communication described in any one of the third aspect and any possible implementation manner of the third aspect method.
  • a satellite communication system comprising: the user terminal according to any one of the fourth aspect of the invention and any possible implementation manner of the fourth aspect, and the fifth according to the invention
  • the management satellite according to any one of aspects and all possible implementations of the fifth aspect; or, the satellite communication system includes: as described in the sixth aspect of the invention and any one of all possible implementations of the sixth aspect User terminal, and the management satellite as described in any one of the seventh aspect and all possible implementations of the seventh aspect.
  • a satellite communication method includes:
  • the management satellite sends a sounding signal to the user terminal on the management channel, and the management satellite manages one or more service satellites;
  • the user terminal receives the sounding signal sent by the management satellite on the management channel;
  • the user terminal sends a breathing signal to the management satellite on a management channel, the breathing signal carries information of the user terminal, and the information of the user terminal is used to determine service satellite information serving the user terminal;
  • the management satellite receives the breathing signal sent by the user terminal on the management channel.
  • the set of areas covered by one or more service satellites managed by the management satellite constitutes a supercell; optionally, several management beams transmitted by the management satellite
  • the covered area constitutes a super cell; optionally, the set of multiple management satellite coverage areas constitutes a super cell; optionally, the set of areas covered by multiple service satellites managed by multiple management satellites constitute a super cell.
  • the user terminal has a unique user identifier in the super cell ,
  • the information of the user terminal includes the user identification.
  • the super cell has a super cell identity, and the user identity is based on The super cell identifier and the device identifier of the user terminal are determined.
  • the management satellite sends the management satellite to a ground station The respiration signal received.
  • a fifth possible implementation manner of the thirteenth aspect if the user terminal has a communication service requirement, the user terminal The management satellite sends a communication request signal.
  • the The management satellite if the user terminal has a communication service requirement, the The management satellite sends the communication request signal collected by the management satellite to the ground station.
  • the user terminal receives resource scheduling information sent by the management satellite, so
  • the resource scheduling information includes service satellite information serving the user terminal.
  • the management satellite receives resource scheduling information sent by the ground station ,
  • the ground station completes the service satellite resource scheduling decision, and the resource scheduling information includes information of the service satellite serving the user terminal.
  • the management satellite sends the resource scheduling information to the serving satellite, Or the management satellite sends the resource scheduling information to the target service satellite and the original service satellite when the service satellite is switched; or the management satellite may send the resource scheduling information to the user terminal, or the The management satellite may send the resource scheduling information to the target management satellite when the service satellite is switched.
  • the method further includes that the user terminal is established with the management satellite Radio Resource Control (RRC, Radio Resource Control) connection.
  • RRC Radio Resource Control
  • the method further includes that the user terminal receives communication service data from the service satellite and sends communication service data to the service satellite.
  • the management satellite or ground station can uniformly dispatch the service satellite to serve the user terminal.
  • the step of negotiating between serving satellites is omitted, saving signaling overhead.
  • new service satellites are directly dispatched to provide services, reducing the phenomenon of unstable or even interrupted communication caused by satellite switching, making the satellite communication of user terminals smoother.
  • Figure 1 is a schematic diagram of the structure of a satellite communication system
  • FIG. 2 is a basic architecture diagram of a multi-layer structure satellite communication network provided by an embodiment of the present application
  • FIG. 3 is a schematic flowchart of a satellite communication method according to an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of a satellite network communication method according to an embodiment of the present application.
  • 5 is a schematic flowchart of a communication method for satellite switching during satellite communication
  • FIG. 6 is a schematic diagram of a satellite communication network architecture provided by an embodiment of the present application.
  • FIG. 7 is a schematic flowchart of a satellite network communication method according to an embodiment of the present application.
  • FIG. 8 is a schematic flowchart of a communication method for satellite switching during satellite communication
  • FIG. 9 is a schematic diagram of a satellite communication network architecture provided by an embodiment of this application.
  • FIG. 10 is a schematic flowchart of a satellite network communication method according to an embodiment of this application.
  • 11 is a schematic flowchart of a communication method for satellite switching during satellite communication
  • FIG. 12 is a schematic flowchart of a satellite network communication method according to an embodiment of the present application.
  • FIG. 13 is a schematic flowchart of a communication method for satellite switching during satellite communication
  • FIG. 14 is a schematic structural diagram of a user terminal 1400 provided by an embodiment of the present application.
  • FIG. 15 is a schematic structural diagram of a user terminal 1500 according to an embodiment of this application.
  • 16 is a schematic structural diagram of a management satellite (type A satellite) 1600 provided by an embodiment of the present application;
  • FIG. 17 is a schematic structural diagram of a management satellite (type A satellite) 1700 provided by an embodiment of the present application.
  • the satellite communication system 100 is generally composed of three parts: a space segment, a ground segment, and a user segment.
  • the space segment can be composed of multiple satellite networks 101 consisting of GEO satellites, NGEO satellites, or both;
  • the ground segment generally includes a satellite measurement and control center 102, a network control center (NCC, Network Control Center) 103, and various gateway stations (or letters).
  • NCC Network Control Center
  • the network control center is also called the system control center (SCC, System Control Center);
  • the user segment is composed of various user terminals, which can be various mobile terminals 106, such as mobile satellite phones It may also be various fixed terminals 107, such as communication ground stations.
  • the dotted line in FIG. 1 refers to the communication signal between the satellite and the terminal, the solid line refers to the communication signal between the satellite and the ground segment equipment, and the bidirectional arrow line represents the communication signal between the network elements of the ground segment.
  • the satellite measurement and control center 102 in the ground segment is responsible for maintaining, monitoring, and controlling the satellite's orbital position, attitude, and management of the satellite's ephemeris.
  • the network control center 103 is responsible for handling user registration, identity confirmation, billing and other network management functions.
  • the network control center and the satellite measurement and control center are combined in some satellite mobile communication systems.
  • the gateway 104 is responsible for functions such as call processing, switching, and interface with the ground communication network.
  • the ground communication network 105 is an integral part of the ground segment of the satellite network and is used to exchange satellite data packets to the core network and send them to the final user terminal.
  • the ground communication network can be a public switched telephone network (PSTN, Public Switched Telephone), a public ground mobile network (PLMN, Public Land Mobile) Network, or various other private networks. Different ground communication networks require gateways to have different gateway functions.
  • FIG. 2 is a basic architecture diagram of a multi-layer structure satellite communication network provided by an embodiment of the present application.
  • the space segment of the multi-layer satellite communication network 200 can generally be divided into a management satellite 201 and one or more service satellites 203.
  • the space segment if it is a networked multi-layer satellite communication network, the space segment generally includes multiple management satellites and service satellites managed by the corresponding management satellites.
  • the management satellite is called a class A satellite
  • the service satellite is called a class B satellite.
  • Class A satellites can be high-orbit satellites
  • class B satellites can be low-orbit satellites. High and low orbits are only relative concepts.
  • Class A satellites and class B satellites do not specifically refer to satellites with specific orbits. The following embodiments are for illustration only and will not be repeated here.
  • Class A satellites and class B satellites can communicate through optical signals, millimeter wave signals, or terahertz signals.
  • the communication methods between class A satellites and class B satellites include but are not limited to the above methods, and can also be electromagnetic in other frequency bands. signal.
  • Class A satellites are used as management satellites to manage service satellites.
  • the Class B satellite is used to provide communication service for the user terminal 204.
  • Class B satellites can be used to send and receive data signals from user terminals and perform business communications with user terminals.
  • Class B satellites handle the communication needs of user terminals and are responsible for the communication services of user terminals in the logical sub-cell 205 covered by them. If Class A satellites exist in the satellite communication network, Class B satellites can be managed and scheduled by Class A satellites.
  • the antenna array of the Class B satellite forms multiple communication service beams 207, and the collection of the coverage areas of the communication service beams of several Class B satellites constitutes a virtual logical sub-cell 205. .
  • Supercell 206 The collection of all Type B satellite coverage areas managed or controlled by the same Type A satellite is called a supercell.
  • a super cell may also be defined as a management beam coverage area of a Class A satellite, that is, an area covered by several management beams 202 transmitted by a Class A satellite constitutes a super cell, and the area covered by it also includes the coverage area of one or more serving satellites.
  • the set of areas covered by multiple Class B satellites managed by multiple Class A satellites constitutes a supercell; or the set of multiple Class A satellite coverage areas constitutes a supercell.
  • Each super cell has a super cell identity (or super cell ID, super cell identity).
  • the user terminal has a unique user identification in each super cell.
  • the user identification may be determined by the super cell ID and the device identification (or device ID) of the user terminal.
  • the generation method of the user ID may be directly cascaded by the super cell ID and the device ID, or a unique user ID may be obtained through a calculation method such as calculation of a set function.
  • the user identification of the user terminal may also be generated in other ways.
  • the embodiment of the present application does not limit the generation method of the user identification, as long as the user terminal can be identified in the super cell. Since the user identification of the user terminal in the entire super cell is uniform, even if the Class B satellite serving the user terminal switches within the super cell, such switching is unperceptible to the user terminal.
  • the management beam 202 is a wide coverage beam, which transmits and receives interactive management information of all users and satellites within the coverage area on the agreed physical resources.
  • the management information includes information about the interaction between the user terminal and the satellite on a dedicated management beam, such as sounding signals, breathing signals, and scheduling signaling.
  • the baseband unit and radio frequency unit for handling management information and business communication data for Class A satellites and Class B satellites can have different deployment methods.
  • the radio frequency units are deployed in Class A and Class B satellites in a distributed manner.
  • Table 1 is the deployment method for processing management information
  • Table 2 is the deployment method for processing communication service data.
  • the serial numbers respectively indicate the deployment method numbers.
  • the radio frequency unit and the baseband unit are functionally divided into hardware systems or chip systems, rather than divided into hardware structures. Specifically, on a satellite having both a radio frequency unit for processing management information and a radio frequency unit for processing communication service data, the radio frequency unit for management information and the radio frequency unit for communication service data may be implemented by the same hardware system or chip system For the same reason, the baseband unit is not repeated here.
  • Class A satellites are deployed in sequence number 2 in Table 1.
  • Class A satellites deploy baseband units and RF units that process management information. Management information can be sent directly to Class A satellites for RF signal processing and baseband signals. deal with.
  • Class B satellites adopt the deployment method of serial number 1 in Table 2.
  • Class B satellites deploy baseband units and radio frequency units that process communication service data, and are used to perform radio frequency signal processing and baseband signal processing on user terminal communication service data.
  • the A satellite adopts the deployment method of serial number 4 in Table 1, the A-type satellite only deploys the baseband unit that processes management information, the RF unit that processes the management information is deployed on the B-type satellite, and the management management information is managed by the B-type satellite After receiving and receiving and performing RF signal processing, it is sent to Class A satellite for baseband signal processing.
  • Class B satellites deploy baseband units and radio frequency units that process management information.
  • Class B satellites use the deployment method of number 1 in Table 2.
  • Class B satellites deploy radio frequency units and radio frequency units that process communication service data.
  • the radio frequency unit that handles management information for Class B satellites performs operations such as filtering, frequency conversion, amplification, and beamforming on the management information.
  • the B-type satellite also performs radio frequency signal processing of management information.
  • Class B satellites are deployed in sequence number 2 in Table 2.
  • Class B satellites may only deploy radio frequency units that process communication service data, while the baseband unit that processes communication service data is deployed on Class A satellites.
  • the Class B satellite will receive the communication data of the user terminal, obtain the first service data after being processed by the radio unit of the Class B satellite, and then send the first service data to the Class A satellite for baseband signal processing, The baseband unit of the Class A satellite processes the first service data to obtain the second service data.
  • the user terminal 204 needs to access the mobile satellite communication network through the ground segment of the satellite communication system for mobile communication.
  • the user terminal in the embodiment of the present application may refer to user equipment, access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or User device.
  • Terminal devices can also be cellular phones, cordless phones, Session Initiation Protocol (SIP) phones, wireless local loop (Wireless Local Loop, WLL) stations, personal digital processing (Personal Digital Assistant (PDA), wireless communication Functional handheld devices, computing devices, or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in 5G networks, public land mobile communications networks (PLMN) or future Terminal devices in other communication systems are not limited in this embodiment of the present application.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • wireless communication Functional handheld devices computing devices
  • computing devices or other processing devices connected to wireless modems
  • in-vehicle devices wearable devices
  • terminal devices in 5G networks public land mobile communications networks
  • PLMN public land mobile communications networks
  • PLMN public land mobile communications networks
  • PLMN public land mobile communications networks
  • the user terminal implements the setting and acquisition of the communication state by installing a wireless transceiver antenna to complete
  • the satellite communication network includes: Class A satellites, Class B satellites, and user terminals.
  • the Class A satellite may be a high-orbit satellite, specifically, a GEO satellite.
  • Class A communication satellites deployed in GEO orbit are stationary relative to the ground.
  • the B-type satellite may be a low-orbit satellite, specifically, a LEO satellite.
  • Class B communication satellites deployed in LEO orbit are moving rapidly relative to the ground.
  • the Class A satellite in this specific embodiment may only be loaded with a baseband unit for baseband signal processing of management information to perform baseband data processing, backhaul, etc.
  • the management information is processed by the Class B satellite for RF signal before being sent to the Class A satellite Perform baseband signal processing.
  • the Class B satellite in this specific embodiment may only carry the radio frequency unit, and the Class B satellite is responsible for performing operations such as filtering, frequency conversion, amplification, beam forming, and baseband data forwarding.
  • the B-type satellite receives the data signal from the terminal and sends it to the A-satellite.
  • the A-satellite is responsible for processing the baseband data of user services.
  • the Class B satellite also serves as the radio frequency signal processing task for the management information.
  • FIG. 3 is a schematic flowchart of a satellite communication method according to an embodiment of the present application. The method includes:
  • the management satellite sends a sounding signal to the user terminal, and the user terminal receives the sounding signal sent by the management satellite on the management channel.
  • the management satellite management has one or more service satellites.
  • a super cell may be defined, and each super cell has a super cell identifier for identifying the super cell.
  • a super cell There may be many definitions of a super cell, for example, a set of areas covered by one or more service satellites managed by a management satellite constitutes a super cell; or an area covered by several management beams transmitted by a management satellite constitutes a super cell; or The set of two or more management satellite coverage areas constitutes a supercell; or the set of two or more management satellites covered by multiple service satellites constitute a supercell.
  • the user terminal has a unique user identification in the super cell.
  • the user identity may be determined according to the super cell identity and the device identity of the user terminal.
  • the user terminal sends a breathing signal to the management satellite, and the management satellite receives the breathing signal.
  • the breathing signal sent by the user terminal may carry information of the user terminal.
  • the user terminal information may be used to determine service satellite information serving the user terminal.
  • the information of the user terminal may be information related to the user terminal such as user identification and / or location information.
  • the satellite communication method may further include:
  • the management satellite sends resource scheduling information to the user terminal, and the user terminal receives the resource scheduling information sent by the management satellite.
  • the resource scheduling information includes service satellite information serving the user terminal.
  • the service satellite information is used to indicate the service satellite serving the user terminal, for example, the service satellite identification can be used to identify the service satellite.
  • the satellite communication method may further include:
  • the user terminal sends a communication request signal to the management satellite, and the management satellite receives the communication request signal sent by the user terminal.
  • the communication request signal indicates that the user terminal has data to send, which may also be called a data sending request or a resource scheduling request.
  • the satellite communication method may further include:
  • the management satellite makes a resource scheduling decision, that is, determines the service satellite information serving the terminal according to the user terminal information.
  • the management satellite may determine at least one serving satellite and beam serving the user terminal's communication this time in combination with the user terminal's location information and satellite network ephemeris information and other related content.
  • the management satellite may also determine the other service satellite and the service satellite of the service user terminal's communication by combining the user terminal's location information and the satellite network's ephemeris information and other related content.
  • Beam. Step 305 is an optional step.
  • the resource scheduling decision is not necessarily performed by the management satellite, but may also be performed by a central node or ground station. The central node or ground station determines the resource scheduling information and sends it to the management satellite.
  • the satellite communication method further includes:
  • the user terminal generates a user identification.
  • the user terminal has a unique user identification in the super cell.
  • the user terminal may join a super cell for the first time.
  • the user terminal may perform step 306.
  • the generation element of the user identity may include a super cell ID and a device ID.
  • the user identification in the super cell may be generated only when the user terminal accesses the super cell for the first time. If the user terminal has accessed the super cell and already has a user identity in the super cell, the step of generating the user identity can be omitted.
  • the communication method may further include:
  • the user terminal obtains its own location information.
  • the method for the user terminal to obtain its own position may be obtained by a global satellite navigation system or a baseband satellite-based OTDOA (Observed Time Difference of Arrival) positioning method.
  • the user terminal information carried in the breathing information may include user location information, that is, information indicating the location of the user terminal.
  • the embodiment of the present application manages the service satellite serving the user terminal through the management satellite in a unified manner. If the service satellite serving the terminal is switched, the management satellite determines the switched service satellite. The user terminal does not need to negotiate the switch, which can save signaling Overhead.
  • FIG. 4 is a schematic flowchart of a satellite network communication method according to an embodiment of the present application.
  • the method is used in a satellite communication network architecture including a type A satellite, a type B satellite, and a user terminal.
  • Class A satellites are deployed with radio frequency units and baseband units that process management information
  • Class B satellites are deployed with radio frequency units and baseband units that process communication service data.
  • the area covered by the management beam emitted by a Class A satellite constitutes a supercell, or the set of coverage areas of all Class B satellites managed or controlled by the Class A satellite constitutes a supercell.
  • This method can be applied to the case where a user terminal initially joins a super cell.
  • the method includes:
  • a user terminal in a super cell generates a user identification.
  • the generating element of the user identity may include a super cell ID (identifier) and a device ID.
  • the super cell ID is used to identify a certain super cell
  • the device ID may be the device serial number of the user terminal.
  • the user identification in the super cell may be generated only when the user terminal accesses the super cell for the first time. If the user terminal has accessed the super cell and already has a user identity in the super cell, the step of generating the user identity can be omitted.
  • the user ID may be unique in the super cell, and is generated by a combination of information such as a super cell ID and a device ID.
  • the specific generation method includes but is not limited to the following methods: the super cell ID and the device ID are directly cascaded, the super cell ID, the device ID, and other related information are cascaded or the unique user identification is obtained through calculation of a preset functional relationship.
  • the method may further include the step 401 'of the user terminal acquiring its own location information.
  • the method for the user terminal to obtain its own position may be obtained by a global satellite navigation system or a baseband satellite-based OTDOA (Observed Time Difference of Arrival) positioning method.
  • OTDOA Observed Time Difference of Arrival
  • the navigation satellite system refers to a space-based radio navigation positioning system that can provide users with all-weather three-dimensional coordinates and speed and time information at any location on the surface of the earth or in near-Earth space.
  • Common systems are GPS (Global Positioning System, GPS), BDS (BeiDou Navigation, Satellite System, China Beidou Satellite Navigation System, BDS), GLONASS (GLOBALNAVIGATION SATELLITE SYSTEM, Global Satellite Navigation System, GLONASS) and GALILEO (Galileo satellite navigation system, Galileo satellite navigation system, referred to as GALILEO) four major satellite navigation systems.
  • the OTDOA positioning method refers to determining the specific location of the terminal device by detecting the time difference of arrival of signals from different base stations.
  • This step does not limit the order in which user IDs and location information are acquired, but may be that the user terminal first acquires the generated unique user ID, and then acquires its own location information through the method. It may be that the user terminal first obtains its own location information through the method, and then obtains the generated unique user identifier. Of course, the user terminal may also obtain the unique user identification and its own location information at the same time. This step is applicable to subsequent specific embodiments.
  • the sounding signal sent by the Class A satellite on the dedicated management channel, the user terminal receives the sounding signal.
  • the dedicated management channel may be a complete logical link agreed between the Class A satellite and the user terminal within the super cell range it manages.
  • the logical link includes agreed physical layer resources, MAC layer resources, upper layer interfaces, etc., and each protocol layer has corresponding resources.
  • the corresponding physical resources include but are not limited to the time domain, frequency domain and code domain resources of the satellite communication network.
  • the breathing signal sent by the user terminal may contain content such as user identification, location information, etc., and is sent in a periodic form configured by the system or an acyclic form scheduled by the system.
  • step 401 (401 ') and step 402 are not necessarily in the order of execution. It may be the following optional solution, which is not specifically limited in this embodiment of the present application.
  • the user terminal may first detect the sounding signal sent by the Class A satellite on the agreed management channel, and then generate the user identification and obtain the user terminal's own location information. Then select the corresponding physical resource to send the breathing signal containing user identification, location information and so on.
  • the user terminal may first generate a user identification, and then detect the sounding signal sent by the Class A satellite on the agreed management channel, and after detecting the sounding signal, obtain the user terminal's own location information. Then select the corresponding physical resource to send the breathing signal containing user identification, location information and so on.
  • the user terminal may first obtain its own location information, and then detect the sounding signal sent by the Class A satellite on the agreed management channel. After detecting the detection signal, the user identification is generated. Then select the corresponding physical resource to send the breathing signal containing user identification, location information and so on.
  • the user terminal sends a breathing signal
  • the Class A satellite receives the breathing signal
  • the breathing information carries the user identification and / or the user terminal location information, etc.
  • the Class A satellite refreshes the user identification and location information of the user terminal in the supercell, etc. content.
  • the user terminal may select the agreed physical resource to send the breathing signal periodically or non-periodically.
  • the type A satellite can detect the respiratory signal through the periodic configuration of the system configuration or the non-periodic configuration of the system scheduling.
  • the user terminal when the user terminal has a communication service requirement, the user terminal sends a communication request signal on the management channel, and the Class A satellite receives the communication request signal.
  • the Class A satellite determines the at least one Class B satellite and beam serving the user terminal's communication this time in conjunction with the user terminal's location information and the satellite network's ephemeris information and other related content.
  • the ephemeris information refers to the satellite's orbit information, identity information, satellite's communication capabilities, security level and other information. This information can be used as one of the factors determining the type B satellite serving the user terminal.
  • the type A satellite will also determine the next type B communication for the service user terminal in conjunction with the user terminal ’s location information and the satellite network ’s ephemeris information and other relevant content. Satellite and beam.
  • Class A satellites can comprehensively consider the location information of user terminals and the orbits of Class B satellites and provide ephemeris information such as communication capabilities to allocate Class B satellites and beams for communication services.
  • the beam in step 405 refers to the beam used by the Class B satellite to process communication service data.
  • a method for determining the type B satellite and beam in step 405 is given.
  • the method first sorts the type B satellites within a certain range centered on the location of the user terminal to be served according to the length of time covering the user terminal , Then remove the Class B satellites that do not meet the security level of the communication, do not have the ability to serve the user terminal, or the communication capability does not reach a certain level, and sort again according to the coverage time.
  • the user terminal is given.
  • a method for determining the type B satellite and beam in step 405 may first sort the type B satellites within a certain range centered on the user terminal to be served according to the time that the user terminal can be covered, Select the type B satellites that meet the requirements of the security level of the communication, have the ability to serve user terminals, and have a certain level of business communication capabilities, sort the selected type B satellites again according to the coverage time, and select the top type B satellite and its ranking The beam serves the user terminal.
  • Class B satellites and beams is not limited to the above method, the above method is only an alternative method of step 405, any method obtained by the above method or obtained by combining the above steps can be considered as this application One of the methods disclosed in the examples.
  • the Class A satellite informs the corresponding Class B satellite and user terminal of the resource scheduling information through the management channel.
  • the user terminal performs data communication through the allocated type B satellite and beam, and the determined type B satellite reserves resources for the user terminal.
  • the user terminal establishes an RRC connection with the Class B satellite.
  • the user terminal receives and sends communication service data to the Class B satellite.
  • the communication resource of the original Class B satellite serving the user terminal is released.
  • the user terminal and the Class A satellite continue to perform steps 402 to 404 until the entire communication ends.
  • FIG. 5 is a schematic flowchart of a communication method for satellite switching during satellite communication, and introduces a situation where a user terminal encounters a type B satellite switching during service communication.
  • the resource scheduling decision is specifically the service satellite switching decision
  • the class A satellite sends the resource scheduling information to the original class B satellite and the target class B satellite
  • the target class B satellite Reserve resources establish RRC connections with user terminals and send and receive data, while the original Class B satellites release resources.
  • the Class A satellite can also send resource scheduling information to the user terminal.
  • the handover process includes:
  • a class A satellite sends a sounding signal to a user terminal.
  • the user terminal receives a sounding signal sent by a class A satellite on an agreed management channel.
  • the user terminal obtains its own location information.
  • the user terminal sends a breathing signal to the Class A satellite, and the Class A satellite detects the breathing signal.
  • the user terminal can periodically or non-periodically send a breathing signal to prove that it is still in the current supercell, and receive the communication service of the Class B satellite in the supercell, where the breathing signal can carry the user identification and / or location information, etc. information.
  • the Class A satellite detects breathing signals in a periodic or aperiodic form, and accordingly refreshes the user identification and location information of user terminals in the supercell.
  • Class A satellite makes a handover decision.
  • Class A satellites determine whether the user terminal is beyond the coverage of the satellite based on user identification and location information and the ephemeris information of the currently served class B satellite.
  • the Class A satellite determines the next Class B satellite and beam serving the user terminal according to the method of determining the Class B satellite and beam serving the user terminal in step 405, and the Class A satellite uses the above method Enforce baseband satellite switching decisions.
  • the Class A satellite After the Class A satellite determines the next Class B satellite and beam serving the user terminal, the Class A satellite notifies the target Class B satellite and the original Class B satellite of the resource scheduling information.
  • the target class B satellite reserves resources for the user terminal.
  • the user terminal is triggered by the original Class B satellite or the target Class B satellite, and the terminal is instructed to establish a connection with the target Class B satellite.
  • the user terminal establishes an RRC connection with the target Class B satellite.
  • the user terminal receives and sends communication service data to the target Class B satellite, and the target Class B satellite begins to be responsible for the communication service of the user terminal.
  • the Class A satellite may also notify the user terminal of the scheduling result, and the user terminal actively establishes a connection with the target Class B satellite And complete the follow-up operation.
  • the communication resources are managed independently by each satellite, there is a lot of signaling interaction in the satellite negotiation process when switching occurs, such as initiating switching requests between the original satellite and the target satellite, admission control, uplink and downlink synchronization, and re-access signaling , Path switching request and confirmation signaling between the target satellite and the control gateway.
  • signaling interaction such as initiating switching requests between the original satellite and the target satellite, admission control, uplink and downlink synchronization, and re-access signaling , Path switching request and confirmation signaling between the target satellite and the control gateway.
  • Class A satellites when a Class B satellite switching occurs during the communication process, due to the presence of a dedicated management channel, the user terminal has been performing operations such as receiving the detection signal of the Class A satellite and sending its own breath signal on the channel , Class A satellites can uniformly schedule Class B satellites to serve user terminals. Therefore, when a Class B satellite handover occurs, the Class A satellite can omit the above-mentioned inter-satellite negotiation step, saving signaling overhead. According to the user status and satellite resources mastered by Class A satellites, new Class B satellites are directly scheduled to provide services without the negotiating process of satellite switching in the prior art, so that user terminals can communicate smoothly and cannot perceive the satellite switching process.
  • the satellite communication network includes two or more Class A satellites 601, multiple Class B satellites 602, a ground station 603, and a user terminal 604 .
  • the area covered by the management wave speeds transmitted by the two or more Class A satellites constitutes a supercell, or the set of coverage areas of all Class B satellites managed or controlled by the two or more Class A satellites may constitute a supercell.
  • the satellite network includes:
  • the class A communication satellite may be a GEO satellite that is stationary relative to the ground, or a high-orbit satellite that is not stationary relative to the ground. Multiple Class A satellites are connected to maintain a communication connection with the ground station 603. Management information exchanged between Class A satellites and ground stations, such as breathing signals, detection signals, and scheduling signaling.
  • the Class A satellite is equipped with a radio frequency unit and a baseband unit that process management information.
  • the type A satellite when the type A satellite is a high-orbit satellite moving relatively to the ground, the position of the type A satellite relative to the ground will change, and the type B satellite covered and managed by the type A satellite will change.
  • Relevant information of Class B satellites managed by the Class A satellite network can be transmitted through ground stations or between Class A satellites.
  • Type B satellite 602. The type B satellite in the embodiment of the present application has the general characteristics of the above type B satellite.
  • the type B satellite has a radio frequency unit and a baseband unit that process service communication data.
  • the ground station 603 as the management unit of the embodiment of the present application, has a baseband unit for baseband signal processing and a radio frequency unit for radio frequency signal processing in the communication system, can interact with Class A satellites for management information, and has a powerful information processing capability.
  • the ground station maintains communication connection with multiple Class A satellites in the network, and manages and dispatches Class B satellites in a unified manner.
  • the user terminal 604, the user terminal in the embodiment of the present application has the above general characteristics of the user terminal.
  • FIG. 7 is a schematic flowchart of a satellite network communication method according to an embodiment of the present application.
  • the method can be used in the satellite communication network architecture shown in FIG. 6.
  • the method includes:
  • a user terminal in a super cell generates a user identification, and the user identification in the super cell may be generated only when the user terminal accesses the super cell for the first time. If the user terminal has accessed the super cell and already has a user identity in the super cell, the step of generating the user identity can be omitted.
  • the method further includes step 701 '.
  • the user terminal obtains its own location information.
  • the user ID and location information acquisition method reference may be made to step 401 of the aforementioned satellite network communication method, which will not be repeated here.
  • the sounding signal sent by the Class A satellite on the dedicated management channel.
  • the user terminal receives the sounding signal sent by the Class A satellite.
  • the Class A satellite selects the corresponding physical resource timing or sends the breathing signal as needed. For this step, reference may be made to step 402 of the aforementioned satellite network communication method, which will not be repeated here.
  • step 701 (701 ') and step 702 are not necessarily in the order of execution. Reference may be made to the optional solutions in the foregoing application embodiments, which are not specifically limited in this embodiment of the present application.
  • the user terminal sends a breathing signal
  • the Class A satellite receives the breathing signal
  • the breathing information carries the user identification and / or the user terminal's position information, etc.
  • the Class A satellite receives the breathing signal and transmits it to the ground station for unified processing. Refresh the user terminal identification and location information in the super cell.
  • the user terminal may select the agreed physical resource to send the breathing signal periodically or non-periodically.
  • the type A satellite can detect the respiratory signal through the periodic configuration of the system configuration or the non-periodic configuration of the system scheduling.
  • the Class A satellite transmits the breathing signals of the user terminals in the super cell to the ground station in a periodic or aperiodic form.
  • the ground station grasps the user identification and location information in the super cell, and refreshes the super signal according to the received breath signal.
  • User identification and location information in the cell can send management information containing user terminals and Class B satellites to Class A satellites in the system according to the needs of the system.
  • the networked Class A satellite detects the breathing signal, and refreshes the user ID and location information based on it.
  • the management information including user terminals and B-type satellites is transmitted between the A-type satellites in the network through information sharing. This method does not require the ground station to participate in the processing and transmission of management information.
  • the user terminal when the user terminal has a communication service requirement, the user terminal sends a communication request signal on the management channel, and the Class A satellite receives the communication request signal, which is received by the Class A satellite and transmitted to the ground station for processing.
  • the ground station determines at least one type B satellite and beam serving the user terminal's communication this time in combination with the location information of the user terminal and the ephemeris information of the satellite network.
  • Class A satellites can detect the communication request signal in a periodic or aperiodic form.
  • the ephemeris information refers to the satellite's orbit information, identity information, satellite's communication capabilities, security level and other information. This information can be used as one of the factors determining the type B satellite serving the user terminal.
  • the type A satellite will also determine the next type B communication for the service user terminal in conjunction with the user terminal ’s location information and the satellite network ’s ephemeris information and other relevant content. Satellite and beam.
  • the ground station When determining the Class B satellites and beams, the ground station will comprehensively consider the location information of the user terminal and the orbits of the Class B satellites, and provide ephemeris information such as communication capabilities to allocate the Class B satellites and beams for communication services.
  • the beam in step 705 refers to the beam used by the Class B satellite for service data processing.
  • the ground station may first sort the type B satellites within a certain range centered on the user terminal to be served according to the length of time covering the user terminal, After that, remove the Class B satellites that do not meet the security level of the communication, do not have the ability to serve the user terminal, or the communication capability does not reach a certain level, and sort again according to the coverage time, select the Class B satellite and its beam service with the longest coverage time in the sort The user terminal.
  • the ground station may first sort the type B satellites within a certain range centered on the user terminal to be served according to the length of time that the user terminal can be covered , Select the type B satellites that meet the requirements of the security level of communication, have the ability to serve user terminals, and have a certain level of business communication capabilities, sort the selected type B satellites again according to coverage time, and select the type B with the longest coverage time in the ranking The satellite and its beam serve the user terminal.
  • the ground station sends the scheduling result to the reported Class A satellite through the management channel, and the Class A satellite notifies the user terminal and the corresponding Class B satellite to prepare for communication.
  • the user terminal performs data communication through the allocated type B satellite and beam, and the determined type B satellite reserves resources for the user terminal.
  • the user terminal establishes an RRC connection with the Class B satellite.
  • the user terminal receives and sends communication service data to the Class B satellite.
  • the communication resource of the original Class B satellite serving the user terminal is released.
  • the user terminal and the Class A satellite continue to perform steps 702 to 704 until the entire communication ends.
  • the sequence of steps may be adjusted and new steps added according to specific application scenarios. There is no necessary execution sequence for the steps, which is not specifically limited in the embodiments of the present application.
  • FIG. 8 is a schematic flowchart of a communication method for satellite switching during satellite communication.
  • the switching process includes:
  • the Class B satellite sends a sounding signal to the user terminal, and the user terminal receives the sounding signal sent by the Class A satellite on the agreed management channel.
  • the user terminal obtains its own location information.
  • the user terminal sends a breathing signal to the Class A satellite.
  • the Class A satellite detects the breathing signal.
  • the Class A satellite receives the breathing signal and transmits it to the ground station for unified processing.
  • the ground station refreshes the user terminal identification and location information in the supercell accordingly.
  • Etc. The user terminal can periodically or non-periodically send a breathing signal to prove that it is still in the current supercell, and receive the communication service of the Class B satellite in the supercell, where the breathing signal can carry the user identification and / or location information, etc. information.
  • the ground station makes a handover decision.
  • the ground station determines whether the user terminal exceeds the coverage of the satellite based on the user terminal identification and location information in the super cell and the ephemeris information of the currently served B-type satellite, etc.
  • the ground station determines the next Class B satellite and beam serving the user terminal according to the method of determining the Class B satellite and beam serving the user terminal communication in step 705.
  • the ground station After the ground station determines the next Class B satellite and beam serving the user terminal, the ground station first sends the resource scheduling information to the reported Class A satellite. The Class A satellite then notifies the target Class B satellite and the original B of the scheduling result. Satellite-like,
  • the target class B satellite reserves resources according to step 707.
  • the user terminal is triggered by the original Class B satellite or the target Class B satellite, and the user terminal is instructed to establish a connection with the target Class B satellite.
  • the user terminal establishes an RRC connection with the target Class B satellite.
  • the user terminal receives and sends communication service data to the target Class B satellite, and the target Class B satellite begins to be responsible for the communication service of the user terminal.
  • the Class A satellite may also notify the user terminal of the scheduling result, and the user terminal actively establishes a connection with the target Class B satellite And complete the follow-up operation.
  • FIG. 9 is a schematic diagram of a satellite communication network architecture provided by an embodiment of the present application.
  • the satellite communication network includes multiple Class A satellites 901 and user terminals 902, but does not include Class B satellites.
  • the Class A satellite also has the service function of a Class B satellite. It is equipped with a radio frequency unit and baseband unit that processes management information and a radio frequency unit and baseband unit that processes business communication data.
  • the area covered by multiple Class A satellites can constitute a supercell .
  • FIG. 10 is a schematic flowchart of a satellite network communication method according to an embodiment of the present application.
  • the method can be used in the satellite communication network architecture shown in FIG. 9.
  • the method includes:
  • a user terminal in a super cell generates a user identification, and the user identification in the super cell may be generated only when the user terminal accesses the super cell for the first time. If the user terminal has accessed the super cell and already has a user identity in the super cell, the step of generating the user identity can be omitted.
  • step 1001 ' The user terminal acquires its own location information.
  • the method of acquiring the user identification and location information refer to step 401 of the aforementioned satellite network communication method, which will not be repeated here.
  • the sounding signal sent by the Class A satellite on the dedicated management channel.
  • the user terminal receives the sounding signal sent by the Class A satellite.
  • the Class A satellite selects the corresponding physical resource timing or sends the breathing signal as needed. For this step, reference may be made to step 402 of the aforementioned satellite network communication method, which will not be repeated here.
  • step 1001 (1001 ') and step 1002 are not necessarily in the order of execution.
  • step 1002 Reference may be made to the optional solutions in the foregoing application embodiments, which are not specifically limited in this embodiment of the present application.
  • the user terminal sends a breathing signal, and the Class A satellite receives the breathing signal.
  • the Class A satellite shares the detected user terminal related information to the entire satellite network through the inter-satellite connection, and accordingly refreshes the information of the user terminal in the super cell.
  • the user terminal information mentioned above may include the priority of each type A satellite serving the user terminal and the like.
  • the type A satellite detects the respiratory signal in a periodic form of system configuration or an acyclic form of system scheduling.
  • the networked Class A satellite refreshes the user terminal identification and location information in the super cell through breathing signals.
  • the inter-satellite connection refers to sending and receiving management information between two adjacent Class A satellites, and sharing the management information of the user terminal in the entire Class A satellite network.
  • the priority of the user terminal means that in the case of limited communication resources, users with high priority can receive communication service first, users with low priority need to wait for users with high priority to get communication service before being assigned Resources.
  • the user terminal when the user terminal has a communication service requirement, the user terminal sends a communication request signal on the management channel, and the Class A satellite receives the communication request signal.
  • the Class A satellite network After the Class A satellite receives the communication request signal, the Class A satellite network combines the location information of the user terminal and the ephemeris information of the satellite network, etc. to negotiate and determine at least one Class A satellite and beam serving the user terminal for this communication.
  • Class A satellites can detect the communication request signal in a periodic or aperiodic form.
  • the ephemeris information refers to the satellite's orbit information, identity information, satellite communication capabilities, security capabilities, etc.
  • the above information can be included in the ephemeris information transmission. This information can be used as one of the factors determining the type A satellite serving the user terminal.
  • the type A satellite network of the network will comprehensively consider the location information of the user terminal and the orbit of the type A satellite, and provide ephemeris information such as communication capabilities.
  • the beam in step 1005 refers to a beam used by a class A satellite for service data processing.
  • the A-type satellites within a certain range centered on the user terminal to be served can be sorted according to the time that the user terminal can be covered, and then the service terminal capabilities or service communication capabilities that are not available
  • the A-class satellites that have not reached a certain level are sorted again according to the coverage time, and the top-ranked A-class satellite is selected as the A-class satellite serving the user terminal.
  • the Class A satellites within a certain range centered on the user terminal to be served can be sorted according to the time that the user terminal can be covered, and the service user terminal capability and service communication capability reaching a certain level can be selected.
  • the screened Class A satellites are sorted again according to coverage time, and the most sorted Class A satellite is selected as the Class A satellite serving the user terminal.
  • the Class A satellite sends resource scheduling information to the user terminal through the management channel to inform the user terminal to prepare for communication.
  • the user terminal performs data communication through the allocated type A satellite and beam, and the determined type A satellite reserves resources for the user terminal.
  • the user terminal establishes an RRC connection with the Class A satellite.
  • the user terminal receives and sends communication service data to the Class A satellite.
  • the communication resource of the original Class A satellite serving the user terminal is released.
  • the user terminal and the networked A-type satellite continue to perform steps 1002 to 1004 until the entire communication ends.
  • FIG. 11 is a schematic flowchart of a communication method for satellite switching during satellite communication.
  • the switching process includes:
  • Type A satellite sends a sounding signal to the user terminal, and the user terminal receives the sounding signal sent by the type A satellite on the agreed management channel.
  • the user terminal obtains its own location information.
  • the user terminal sends a breathing signal to the Class A satellite, and the Class A satellite detects the breathing signal.
  • the user terminal can periodically or non-periodically send a breathing signal to prove that it is still in the current supercell, and receive the communication service of the Class B satellite in the supercell, where the breathing signal can carry the user identification and / or location information, etc. information.
  • Class A satellites detect breathing signals in a periodic or aperiodic form, and accordingly refresh the user identification and location information of user terminals in the supercell.
  • Class A satellite makes a handover decision.
  • the original Class A satellite judges whether the user terminal exceeds the coverage of the Class A satellite through the content of the user terminal identification and location information in the super cell. When the user terminal reaches a certain threshold from the edge of the coverage of the Class A satellite or the Class A When the service time of the satellite reaches a certain threshold, the original Class A satellite will determine the next target Class A satellite and beam serving the user terminal communication according to the method in step 1004.
  • the original Class A satellite network executes the satellite switching judgment according to the above method.
  • the original Class A satellite After determining the target Class A satellite and beam serving the user terminal, the original Class A satellite will notify the target Class A satellite resource scheduling information,
  • the target class A satellite performs step 1007 to reserve resources.
  • the user terminal is triggered by the original Class A satellite or the target Class A satellite, and the terminal is instructed to establish a connection with the target Class A satellite.
  • the user terminal establishes an RRC connection with the target Class A satellite.
  • the user terminal receives and sends communication service data to the target Class A satellite, and the target Class A satellite begins to be responsible for the communication service of the user terminal.
  • the user terminal starts to detect the detection signal of the target Class A satellite.
  • step 1105 in addition to the original Class A satellite may notify the target Class A satellite of the scheduling result, the original Class A satellite may also inform the user terminal of the scheduling result, and the user terminal actively establishes a connection with the target Class A satellite and completes Follow-up operation.
  • FIG. 12 is a schematic flowchart of a satellite network communication method according to an embodiment of the present application.
  • the method is used in a satellite communication network architecture including a type A satellite, a type B satellite, and a user terminal.
  • Class A satellites are deployed with radio frequency units and baseband units that process management information.
  • class A satellites are deployed with baseband units that process communication service data.
  • Class B satellites are deployed with radio frequency units that process communication service data. The case of joining the super cell initially.
  • the method includes:
  • the user terminal in a super cell generates a user identification, and the user identification in the super cell may be generated only when the user terminal accesses the super cell for the first time. If the user terminal has accessed the super cell and already has a user identity in the super cell, the step of generating the user identity can be omitted.
  • the method may further include the step 1201 'in which the user terminal obtains its own location information.
  • the user identification and location information acquisition method can refer to step 401 of the aforementioned satellite network communication method, which will not be repeated here.
  • the user terminal For a probe signal sent by a Class A satellite on a dedicated management channel, the user terminal receives the probe signal. For this step, reference may be made to step 402 of the aforementioned satellite network communication method, which will not be repeated here.
  • step 1201 (1201 ') and step 1202 are not necessarily in the order of execution. Reference may be made to the optional solutions in the foregoing application embodiments, which are not specifically limited in this embodiment of the present application.
  • the user terminal sends a breathing signal
  • the Class A satellite receives the breathing signal
  • the breathing information carries the user identification and / or the user terminal location information, etc.
  • the Class A satellite updates the user identification and location information of the user terminal in the supercell content.
  • the user terminal may select the agreed physical resource to send the breathing signal periodically or non-periodically.
  • the type A satellite can detect the respiratory signal through the periodic configuration of the system configuration or the non-periodic configuration of the system scheduling.
  • the user terminal when the user terminal has a communication service requirement, the user terminal sends a communication request signal on the management channel, and the Class A satellite receives the communication request signal.
  • the Class A satellite executes the service satellite scheduling judgment. After receiving the communication request signal, the Class A satellite determines at least one Class B of the service user terminal's current communication by combining the user terminal's location information and the satellite network's ephemeris information and other related content Satellite and beam. Step 1205 can refer to step 405 of the aforementioned satellite network communication method, which will not be repeated here.
  • the Class A satellite sends resource scheduling information to the corresponding Class B satellite and user terminal through the management channel.
  • the user terminal performs data communication through the allocated type B satellite and beam, and the determined type B satellite reserves resources for the user terminal.
  • the user terminal establishes an RRC connection with the Class B satellite, and the Class B satellite establishes an RRC connection with the Class A satellite that manages the Class B satellite.
  • the user terminal sends communication service data to the target Class B satellite.
  • the Class B satellite After receiving the communication service data sent by the user terminal, the Class B satellite uses a deployed radio frequency unit that processes the communication service data to perform radio frequency signal processing on the data to obtain first service data.
  • the first service data includes data obtained by the Class B satellite after performing radio frequency signal processing on the communication service data from the user terminal.
  • the Class B satellite sends the first service data to the Class A satellite that manages the Class B satellite.
  • the baseband unit deployed by the Class A satellite to process the communication service data processes the first service data to obtain the second service data.
  • the second service data includes data obtained by the class A satellite after performing baseband signal processing on the first service data from the class B satellite.
  • the Class A satellite sends the second service data back to the target Class B satellite.
  • the target Class B satellite then sends the data to the user terminal.
  • the communication resource of the original Class B satellite serving the user terminal is released.
  • the user terminal and the Class A satellite continue to perform steps 1202 to 1204 until the entire communication ends.
  • FIG. 13 is a schematic flowchart of a communication method for satellite switching in a satellite communication process. This process is substantially the same as the process of FIG. 5, and the main difference is that the baseband unit and the radio frequency unit that process communication service data in this embodiment are distributed For deployment, business data requires the participation of Class A satellites to complete processing and realize satellite communication for user terminals.
  • the handover process includes:
  • a class A satellite sends a sounding signal to the user terminal, and the user terminal receives the sounding signal sent by the class A satellite on the agreed management channel.
  • the user terminal obtains its own location information.
  • the user terminal sends a breathing signal to the Class A satellite, and the Class A satellite detects the breathing signal.
  • the user terminal can periodically or non-periodically send a breathing signal to prove that it is still in the current supercell, and receive the communication service of the Class B satellite in the supercell, where the breathing signal can carry the user identification and / or location information, etc. information.
  • the Class A satellite detects breathing signals in a periodic or aperiodic form, and accordingly refreshes the user identification and location information of user terminals in the supercell.
  • Class A satellite makes a handover decision.
  • Class A satellites determine whether the user terminal is beyond the coverage of the satellite based on user identification and location information and the ephemeris information of the currently served class B satellite.
  • the Class A satellite determines the next Class B satellite and beam serving the user terminal according to the method of determining the Class B satellite and beam serving the user terminal in step 405, and the Class A satellite uses the above method Enforce baseband satellite switching decisions.
  • the Class A satellite After the Class A satellite determines the next Class B satellite and beam serving the user terminal, the Class A satellite notifies the target Class B satellite and the original Class B satellite of the resource scheduling information.
  • the target class B satellite reserves resources for the user terminal.
  • the user terminal is triggered by the original Class B satellite or the target Class B satellite, and the terminal is instructed to establish a connection with the target Class B satellite.
  • the user terminal establishes an RRC connection with the Class B satellite, and the Class B satellite establishes an RRC connection with the Class A satellite that manages the Class B satellite.
  • the user terminal sends communication service data to the target Class B satellite.
  • the target class B satellite performs radio frequency signal processing on the communication service data sent by the user terminal to obtain first service data.
  • the target Class B satellite sends the first service data obtained by processing the radio frequency signal to the Class A satellite.
  • the baseband unit deployed by the Class A satellite to process the communication service data will process the first service data to obtain the second service data.
  • the second service data processed by the Class A satellite is sent back to the target Class B satellite.
  • the target Class B satellite then sends the data to the user terminal, and the target Class B satellite begins to be responsible for the communication service of the user terminal.
  • the Class A satellite in addition to the Class A satellite notifying the target Class B satellite and the original Class B satellite, the Class A satellite may also notify the user terminal of the scheduling result, and the user terminal actively establishes a connection with the target Class B satellite And complete the follow-up operation.
  • the user terminal, the management satellite, and the system provided by the embodiments of the present application will be briefly described below with reference to FIGS. 14 to 17, for performing the method or process of each embodiment described above.
  • the contents of the foregoing embodiments are applicable to the embodiments of FIGS. 14-17, and thus will not be described in detail.
  • FIG. 14 is a schematic structural diagram of a user terminal 1400 provided by the present application.
  • the user terminal 1400 includes:
  • the receiving module 1401 is configured to receive a sounding signal sent by a management satellite on a management channel, where the management satellite manages one or more service satellites;
  • the sending module 1402 is configured to send a breathing signal to the management satellite, where the breathing signal carries information of the user terminal, and the information of the user terminal is used to determine service satellite information serving the user terminal.
  • the generating module 1403 is configured to generate a unique user identification in the super cell, and the information of the user terminal includes the user identification.
  • the generating module is configured to generate a user ID through the super cell ID and the device ID of the user terminal.
  • the receiving module 1402 is further configured to receive resource scheduling information sent by the management satellite, where the resource scheduling information includes service satellite information serving the user terminal.
  • the sending module 1402 is further configured to send a communication request signal to the management satellite.
  • the user terminal further includes an obtaining module 1404, configured to obtain location information of the user terminal, and the information of the user terminal includes the location information.
  • the user terminal further includes a communication module 1405, configured to establish a radio resource control (RRC, Radio Resource Control) connection with the serving satellite, so as to implement business communication between the user terminal and the serving satellite.
  • RRC Radio Resource Control
  • the user terminal 1500 includes:
  • the memory 1501 is used to store computer program instructions
  • a processor 1502 configured to execute the program stored in the memory
  • the processor executes the computer program instructions stored in the memory, so that the user terminal implements the satellite communication method related to the user terminal in any of the foregoing embodiments.
  • the user terminal 1500 further includes a transceiver 1503, and when the program is executed, the processor executes the computer program instructions stored in the memory to enable the transceiver of the user terminal to implement any of the above The steps of receiving and transmitting in the satellite communication method related to the user terminal in the embodiment.
  • the management satellite 1600 includes:
  • the sending module 1601 is configured to send a probe signal to a user terminal on a management channel, where the management satellite manages one or more service satellites;
  • the receiving module 1602 is configured to receive a respiration signal sent by the user terminal, where the respiration signal carries information of the user terminal, and the information of the user terminal is used to determine service satellite information serving the user terminal.
  • it further includes a determination module 1603, configured to determine resource scheduling information according to the information of the user terminal, where the resource scheduling information includes information of a service satellite serving the user terminal.
  • the receiving module 1602 is further configured to receive the resource scheduling information sent by the ground station.
  • the sending module 1601 is further configured to send the resource scheduling information to a serving satellite, or send the resource scheduling information to a target serving satellite and an original serving satellite; or send the resource scheduling information to the user The terminal, or send the resource scheduling information to the target management satellite.
  • the sending module 1601 is further configured to send the breathing signal received from the user terminal to the ground station.
  • the receiving module 1602 is further configured to receive first service data sent by the service satellite, where the first service data includes the service satellite performing radio frequency signal processing on the communication data from the user terminal The data.
  • the sending module 1601 is further configured to send the second service data to the service satellite, where the second service data includes the baseband signal processed by the management satellite on the first service data data.
  • the management satellite further includes a release module 1604, and the release module is configured to release resources after sending the scheduling result to the target management satellite.
  • the sending module 1601 is further configured to send the communication request signal to the ground station for processing after the management satellite receives the communication request signal sent by the user terminal.
  • the management satellite further includes a communication module 1605 for establishing a radio resource control (RRC, Radio Resource Control) connection with the serving satellite.
  • RRC Radio Resource Control
  • FIG. 17 is a schematic structural diagram of a management satellite (type A satellite) 1700 provided by the present application.
  • the management satellite 1700 includes:
  • the memory 1701 is used to store computer program instructions
  • a processor 1702 configured to execute the program stored in the memory
  • the processor executes the computer program instructions stored in the memory, so that the class A satellite implements the satellite communication method related to the class A satellite in any of the foregoing embodiments.
  • the management satellite further includes a transceiver 1703.
  • the processor executes the computer program instructions stored in the memory, so that the transceiver of the management satellite implements any of the foregoing implementations In the example, it manages the steps of receiving and transmitting satellite-related satellite communication methods.
  • the Class A satellite 1700 may further include a baseband unit 1704; used to perform baseband signal processing on the first service data described in any of the foregoing embodiments.
  • An embodiment of the present application further provides a computer-readable medium on which computer program instructions are stored, and when the computer program instructions are executed by a computer, the method in any of the foregoing embodiments is implemented.
  • An embodiment of the present application also provides a computer program product that implements the method in any of the foregoing embodiments when the computer program product is executed by a computer.
  • An embodiment of the present application also provides a satellite communication system, which includes a user terminal and a Class A satellite.
  • the user terminal may be the user terminal 1400 provided in the foregoing embodiment
  • the type A satellite may be the type A satellite 1600 provided in the foregoing embodiment
  • the user terminal may be the user terminal 1500 provided in the foregoing embodiment
  • the class A satellite may be the class A satellite 1700 provided in the foregoing embodiment.
  • An embodiment of the present application further provides a system chip.
  • the system chip includes: a processing unit and a communication unit.
  • the processing unit may be, for example, a processor.
  • the communication unit may be, for example, an input / output interface, a pin, a circuit, or the like.
  • the processing unit can execute computer instructions to cause the chip in the communication device to execute any of the methods provided in the embodiments of the present application.
  • the exemplary units and method processes described in the embodiments of the present application can be implemented by electronic hardware, or a combination of computer software and electronic hardware. Whether these functions are executed in hardware or software depends on the specific application of the technical solution and design constraints. Professional technicians can use different methods to implement the described functions for each specific application.
  • the disclosed device and method may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the unit is only a logical function division, and there may be other division manners in actual implementation.
  • multiple units or components may be combined or may be integrated into another system. Some steps in the method can be ignored or not executed.
  • the coupling or direct coupling or communication connection between the various units may be achieved through some interfaces, and these interfaces may be in electrical, mechanical, or other forms.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units are integrated into one unit.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted through the computer-readable storage medium.
  • the computer instructions can be sent from one website site, computer, server or data center to another website site by wire (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) , Computer, server or data center for transmission.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device including a server, a data center, and the like integrated with one or more available media.
  • the usable media may be magnetic media (for example, floppy disk, hard disk, magnetic tape, U disk, ROM, RAM, etc.), optical media (for example, CD, DVD, etc.), or semiconductor media (for example, Solid State Disk (SSD) ))Wait.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种应用于卫星网络的通信方法、装置及系统,所述方法包括:用户终端在管理信道上接收管理卫星发送的探测信号,所述管理卫星管理有一个或多个服务卫星;所述用户终端向所述管理卫星发送呼吸信号,所述呼吸信号携带所述用户终端的信息,所述用户终端的信息用于确定服务所述用户终端的服务卫星信息。由于用户终端接收探测信号,发送呼吸信号等操作,管理卫星或者地面站可以统一调度服务卫星为用户终端服务。当服务卫星切换时,可以省略卫星间协商的步骤,节省了信令开销,用户终端的卫星通信体验流畅。

Description

基于卫星网络的通信方法、装置及系统 技术领域
本发明实施例属于卫星通信领域,并且更具体地,涉及一种基于卫星网络的通信方法、装置及系统。
背景技术
通信技术日新月异,人们也对通信技术的高效、机动、多样性等指标不断提出更高的要求。目前,通信领域的一个重要发展方向是全球移动通信,而卫星通信是全球移动通信的重要组成部分。卫星通信网络具备通信距离远、覆盖面积大、组网灵活等特点,在一些重要领域,如空间通信、航空通信、军事通信等,卫星通信技术发挥着无可替代的作用,卫星网络既可以为固定终端提供服务,也可为各种移动终端提供服务。
根据提供服务的卫星所在的轨道高度,卫星通信系统可分为静止轨道(GEO,Geostationary Earth Orbit)卫星系统和非静止轨道(NGEO,Non-Geostationary Earth Orbit)卫星系统,其中非静止轨道卫星系统又可以分为中轨(MEO,Medium Earth Orbit)卫星系统和低轨(LEO,Low Earth Orbit)卫星系统。其中低轨卫星由于轨道高度低,传播时延小,成为全球通信领域一个发展热点。低轨卫星系统轨道高度约为500-1000km,单颗卫星对地面覆盖面积较小,并相对于地面高速移动(25000km/h),平均覆盖时间只有几分钟左右,例如当轨道高度为1000km时,最小仰角为10度的低轨卫星系统,其平均覆盖终端的时间为6分钟左右。
由于卫星移动速度快,为用户终端服务的卫星会发生频繁的切换。若卫星通信采用蜂窝网络类似切换方案,用户终端需要根据原卫星的配置信令,将本小区和邻小区信道质量的测量结果上报给原卫星,原卫星通过自身的卫星切换算法判断是否需要进行卫星切换。如果需要进行卫星切换,原卫星向目标卫星发起切换请求,当目标卫星允许用户终端接入时,目标卫星会为所述用户终端分配时域资源、频域资源、码域资源、基带处理资源等新小区资源,并向原卫星发送切换确认信息,用户终端与目标卫星之间重新完成RRC连接配置。目标卫星会再向关口站报告路径切换请求,等待关口站反馈路径切换请求确认信息。另外,目标卫星还要与源卫星间进行用户上下文的释放等信令操作。
对于空间段只由低轨道卫星构成的通信网络来说,低轨道卫星相对地面高速移动,覆盖时间只有几分钟的情况下,用户终端会频繁进行卫星间切换,一次通信过程中就可能面临多次卫星间切换。每次切换,卫星间的协商过程会发起源卫星和目标卫星之间的切换请求和目标卫星与关口站之间的路径切换请求等信令,增大网络控制面的负载,造成庞大的数据缓存和数据前转负荷等问题。
发明内容
本申请提供一种应用于卫星网络的通信方法、装置及系统,能够减少卫星通信过程中卫星切换带来的信令,减少网络控制面的负载,降低数据缓存和数据前转负荷。
第一方面,提供一种卫星通信方法,该方法包括:用户终端在管理信道上接收管理卫星发送的探测信号,所述管理卫星管理有一个或多个服务卫星;所述用户终端向所述管理卫星发送呼吸信号,所述呼吸信号携带所述用户终端的信息,所述用户终端的信息用于确定服务所述用户终端的服务卫星信息。
在第一方面的第一种可能的实施方式中,所述管理卫星管理的一个或多个服务卫星所覆盖区 域的集合构成一个超小区;可选的,所述管理卫星发射的若干管理波束覆盖的区域构成一个超小区;可选的,多个管理卫星覆盖区域的集合构成一个超小区;可选的,多个管理卫星管理的多个服务卫星所覆盖区域的集合构成一个超小区。
结合第一方面或其第一方面的第一种可能的实施方式,在第一方面的第二种可能的实施方式中,所述用户终端在所述超小区内具有唯一的用户标识,所述用户终端的信息包括所述用户标识。
结合第一方面或其第一方面上述的所有可能的实施方式,在第一方面的第三种可能的实施方式中,所述超小区具有一个超小区标识,所述用户标识是根据所述超小区标识和所述用户终端的设备标识确定的。
结合第一方面或其第一方面上述的所有可能的实施方式,在第一方面的第四种可能的实施方式中,所述用户终端接收所述管理卫星发送的资源调度信息,所述资源调度信息包括服务所述用户终端的服务卫星信息。
结合第一方面或其第一方面上述的所有可能的实施方式,在第一方面的第五种可能的实施方式中,在所述管理卫星接收所述用户终端发送的所述呼吸信号之后,若所述用户终端有通信业务需求,所述用户终端向所述管理卫星发送通信请求信号。
结合第一方面或其第一方面上述的所有可能的实施方式,在第一方面的第六种可能的实施方式中,所述方法还包括,所述用户终端获取所述用户终端的位置信息,所述用户终端的信息包括所述位置信息。
结合第一方面或其第一方面上述的所有可能的实施方式,在第一方面的第六种可能的实施方式中,所述方法还包括,在所述用户终端向所述管理卫星发送所述呼吸信号之后,所述用户终端与所述服务卫星建立无线资源控制(RRC,Radio Resource Control)连接,所述用户终端接收和发送通信业务数据。
第二方面,提供一种卫星通信方法,该方法包括:用户终端在管理信道上接收管理卫星发送的探测信号,所述管理卫星还具有服务卫星的功能;所述用户终端向所述管理卫星发送呼吸信号,所述呼吸信号携带所述用户终端的信息,所述用户终端的信息用于确定服务所述用户终端的管理卫星信息。
在第二方面的第一种可能的实施方式中,所述管理卫星发射的若干管理波束覆盖的区域构成一个超小区;可选的,多个管理卫星覆盖区域的集合构成一个超小区。
结合第二方面或其第二方面的第一种可能的实施方式,在第二方面的第二种可能的实施方式中,所述用户终端在所述超小区内具有唯一的用户标识,所述用户终端的信息包括所述用户标识。
结合第二方面或其第二方面上述的所有可能的实施方式,在第二方面的第三种可能的实施方式中,所述超小区具有一个超小区标识,所述用户标识是根据所述超小区标识和所述用户终端的设备标识确定的。
结合第二方面或其第二方面上述的所有可能的实施方式,在第二方面的第四种可能的实施方式中,所述用户终端接收所述管理卫星发送的资源调度信息,所述资源调度信息包括服务所述用户终端的服务卫星信息。
结合第二方面或其第二方面上述的所有可能的实施方式,在第二方面的第五种可能的实施方式中,在所述管理卫星接收所述用户终端发送的呼吸信号之后,若所述用户终端有通信业务需求,所述用户终端向所述管理卫星发送通信请求信号。
结合第二方面或其第二方面上述的所有可能的实施方式,在第二方面的第六种可能的实施方 式中,所述方法还包括,所述用户终端获取所述用户终端的位置信息,所述用户终端的信息包括所述位置信息。
结合第二方面或其第二方面上述的所有可能的实施方式,在第二方面的第七种可能的实施方式中,所述方法还包括,在所述用户终端向所述管理卫星发送呼吸信号之后,所述用户终端与所述管理卫星建立无线资源控制(RRC,Radio Resource Control)连接,所述用户终端接收和发送通信业务数据。
第三方面,提供一种卫星通信方法,该方法包括:管理卫星在管理信道上向用户终端发送探测信号,所述管理卫星管理有一个或多个服务卫星;所述管理卫星接收所述用户终端发送的呼吸信号,所述呼吸信号携带所述用户终端的信息,所述用户终端的信息用于确定服务所述用户终端的服务卫星信息。
在第三方面的第一种可能的实施方式中,所述管理卫星管理的一个或多个服务卫星所覆盖区域的集合构成一个超小区;可选的,所述管理卫星发射的若干管理波束覆盖的区域构成一个超小区;可选的,多个管理卫星覆盖区域的集合构成一个超小区;可选的,多个管理卫星管理的多个服务卫星所覆盖区域的集合构成一个超小区。
结合第三方面或其第三方面的第一种可能的实施方式,在第三方面的第二种可能的实施方式中,所述用户终端在所述超小区内具有唯一的用户标识,所述用户终端的信息包括所述用户标识。
结合第三方面或其第三方面上述的所有可能的实施方式,在第三方面的第三种可能的实施方式中,所述超小区具有一个超小区标识,所述用户标识是根据所述超小区标识和所述用户终端的设备标识确定的。
结合第三方面或其第三方面上述的所有可能的实施方式,在第三方面的第四种可能的实施方式中,在所述管理卫星接收所述用户终端发送的呼吸信号之后,所述管理卫星接收所述用户终端发送的通信请求信号。
结合第三方面或其第三方面上述的所有可能的实施方式,在第三方面的第五种可能的实施方式中,方法还包括:所述管理卫星确定资源调度信息,所述资源调度信息包括服务所述用户终端的服务卫星的信息。可选的,方法还包括:所述管理卫星完成对服务卫星资源调度判决后,确定所述资源调度信息。
结合第三方面或其第三方面上述的所有可能的实施方式,在第三方面的第六种可能的实施方式中,方法还包括:所述管理卫星接收地面站发送的资源调度信息,所述资源调度信息包括服务所述用户终端的服务卫星的信息。可选的,方法还包括:所述地面站完成所述服务卫星资源调度判决后,确定所述资源调度信息。
结合第三方面或其第三方面上述的所有可能的实施方式,在第三方面的第七种可能的实施方式中,所述管理卫星发送所述资源调度信息给所述服务卫星;或者所述管理卫星在发生服务卫星切换的情况下,发送所述资源调度信息给目标服务卫星和原服务卫星;或者所述管理卫星可以发送所述资源调度信息给所述用户终端;或者所述管理卫星在发生服务卫星切换的情况下,可以发送所述资源调度信息给目标管理卫星。
结合第三方面或其第三方面上述的所有可能的实施方式,在第三方面的第八种可能的实施方式中,所述管理卫星进行通信资源释放,所述通信资源用于实现所述用户终端的业务通信。
结合第三方面或其第三方面上述的所有可能的实施方式,在第三方面的第九种可能的实施方式中,方法还包括:所述管理卫星向地面站发送所述管理卫星接收的所述呼吸信号。
结合第三方面或其第三方面上述的第九种可能的实施方式,在第三方面的第十种可能的实施方式中,在所述管理卫星接收所述用户终端发送的所述呼吸信号之后,所述管理卫星向所述地面站发送所述管理卫星接收的所述通信请求信号。
结合第三方面或其第三方面上述的所有可能的实施方式,在第三方面的第十一种可能的实施方式中,所述方法还包括:所述管理卫星接收所述服务卫星发送的第一业务数据,所述第一业务数据包括所述服务卫星对来自所述用户终端的通信数据进行射频信号处理后的数据。
结合第三方面或其第三方面第十一种可能的实施方式,在第三方面的第十二种可能的实施方式中,所述方法还包括:所述管理卫星向所述服务卫星发送第二业务数据,所述第二业务数据包括所述管理卫星对所述第一业务数据进行基带信号处理后的数据。
第四方面,提供一种用户终端,包括:
接收模块,用于接收管理卫星在管理信道上发送的探测信号,所述管理卫星管理有一个或多个服务卫星;发送模块,用于向管理卫星发送呼吸信号,所述呼吸信号携带所述用户终端的信息,所述用户终端的信息用于确定服务所述用户终端的服务卫星信息。
在第四方面的第一种可能的实施方式中,所述管理卫星管理的一个或多个服务卫星所覆盖区域的集合构成一个超小区;或者所述管理卫星发射的若干管理波束覆盖的区域构成一个超小区;或者多个管理卫星覆盖区域的集合构成一个超小区;或者多个管理卫星管理的多个服务卫星所覆盖区域的集合构成一个超小区,所述超小区具有一个超小区标识。
结合第四方面或其第四方面的第一种可能的实施方式,在第四方面的第二种可能的实施方式中,所述用户终端还包括:生成模块,用于在所述超小区内生成唯一的用户标识,所述用户终端的信息包括所述用户标识。
结合第四方面或其第四方面上述的所有可能的实施方式,在第四方面的第三种可能的实施方式中,所述生成模块,用于通过所述超小区标识和所述用户终端的设备标识生成用户标识。
结合第四方面或其第四方面上述的所有可能的实施方式,在第四方面的第四种可能的实施方式中,所述接收模块,还用于接收所述管理卫星发送的资源调度信息,所述资源调度信息包括服务所述用户终端的服务卫星信息。
结合第四方面或其第四方面上述的所有可能的实施方式,在第四方面的第五种可能的实施方式中,所述用户终端还包括:获取模块,用于获取所述用户终端的位置信息,所述用户终端的信息包括所述位置信息。
结合第四方面或其第四方面上述的所有可能的实施方式,在第四方面的第六种可能的实施方式中,所述发送模块还用于向所述管理卫星发送通信请求信号。
结合第四方面或其第四方面上述的所有可能的实施方式,在第四方面的第七种可能的实施方式中,所述用户终端还包括通信模块,用于与所述服务卫星建立无线资源控制(RRC,Radio Resource Control)连接,实现所述用户终端与服务卫星之间的业务通信。
第五方面,提供一种管理卫星,所述管理卫星管理有一个或多个服务卫星;所述管理卫星包括:发送模块,用于在管理信道上向用户终端发送探测信号;接收模块,用于接收所述用户终端发送的呼吸信号,所述呼吸信号携带所述用户终端的信息,所述用户终端的信息用于确定服务所述用户终端的服务卫星信息。
在第五方面的第一种可能的实施方式中,所述管理卫星管理的一个或多个服务卫星所覆盖区域的集合构成一个超小区;或者所述管理卫星发射的多个管理波束覆盖的区域构成一个超小区;或 者多个管理卫星覆盖区域的集合构成一个超小区;或者多个管理卫星管理的多个服务卫星所覆盖区域的集合构成一个超小区。
结合第五方面或其第五方面的第一种可能的实施方式,在第五方面的第二种可能的实施方式中,所述用户终端在所述超小区内具有唯一的用户标识,所述用户终端的信息包括所述用户标识。
结合第五方面或其第五方面上述的所有可能的实施方式,在第五方面的第三种可能的实施方式中,所述超小区具有一个超小区标识,所述用户标识是根据所述超小区标识和所述用户终端的设备标识确定的。
结合第五方面或其第五方面上述的所有可能的实施方式,在第五方面的第四种可能的实施方式中,所述管理卫星还包括:确定模块,用于根据所述用户终端的信息确定资源调度信息,所述资源调度信息包括服务所述用户终端的服务卫星的信息。
结合第五方面或其第五方面上述的所有可能的实施方式,在第五方面的第五种可能的实施方式中,所述接收模块,还用于接收地面站发送的所述资源调度信息。
结合第五方面或其第五方面上述的所有可能的实施方式,在第五方面的第六种可能的实施方式中,所述发送模块,还用于发送所述资源调度信息给服务卫星;或者在发生服务卫星切换的情况下,发送所述资源调度信息给目标服务卫星和原服务卫星;或者发送所述资源调度信息给所述用户终端,或者在发生服务卫星切换的情况下,发送所述资源调度信息给目标管理卫星。
结合第五方面或其第五方面上述的所有可能的实施方式,在第五方面的第七种可能的实施方式中,所述发送模块,还用于向所述地面站发送从所述用户终端收到的所述呼吸信号。
结合第五方面或其第五方面上述的所有可能的实施方式,在第五方面的第八种可能的实施方式中,所述接收模块,还用于接收所述服务卫星发送的第一业务数据,所述第一业务数据包括所述服务卫星对来自所述用户终端的通信数据进行射频信号处理后的数据。
结合第五方面或其第五方面上述的所有可能的实施方式,在第五方面的第九种可能的实施方式中,所述发送模块,用于向所述服务卫星发送所述第二业务数据,所述第二业务数据包括所述管理卫星对所述第一业务数据进行基带信号处理后的数据。
结合第五方面或其第五方面上述的所有可能的实施方式,在第五方面的第十种可能的实施方式中,所述管理卫星还包括释放模块,所述释放模块,用于在将调度结果发送给目标管理卫星之后,进行资源释放。
结合第五方面的第七种可能的实施方式,在第五方面的第十一种可能的实施方式中,所述发送模块,还用于在所述管理卫星接收所述用户终端发送的通信请求信号之后,将所述通信请求信号发送给所述地面站处理。
结合第五方面或其第五方面上述的所有可能的实施方式,在第五方面的第十二种可能的实施方式中,所述管理卫星还包括通信模块,用于与服务卫星建立无线资源控制(RRC,Radio Resource Control)连接。
第六方面,提供一种用户终端,包括:
存储器,用于存储计算机程序指令;处理器,用于执行所述存储器存储的所述程序指令;所述处理器与所述存储器连接;当所述用户终端运行时,所述处理器执行所述存储器存储的所述计算机程序指令,以使所述用户终端执行如发明内容第一方面以及第一方面所有可能的实施方式,第二方面以及第二方面所有可能的实施方式中任意一项所述的卫星通信方法。
在第六方面的第一种可能的实施方式中,所述用户终端还包括:收发器;所述处理器执行所 述存储器存储的所述计算机程序指令,以使所述用户终端的所述收发器执行如第一方面以及第一方面任意一种可能的实施方式,第二方面以及第二方面任意一种可能的实施方式。
第七方面,提供一种管理卫星,包括:
存储器,用于存储计算机程序指令;处理器,用于执行所述存储器存储的所述程序指令;所述处理器与所述存储器连接;当所述管理卫星运行时,所述处理器执行所述存储器存储的所述计算机程序指令,以使所述管理卫星执行如发明内容第三方面以及第三方面所有可能的实施方式中任意一项所述的卫星通信方法。
第八方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机可以执行上述第一方面以及第一方面所有可能的实施方式,第二方面以及第二方面所有可能的实施方式中任意一项所述的卫星通信方法。
第九方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机可以执行上述第三方面以及第三方面所有可能的实施方式中任意一项所述的卫星通信方法。
第十方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机可以执行上述第一方面以及第一方面所有可能的实施方式,第二方面以及第二方面所有可能的实施方式中任意一项所述的卫星通信方法。
第十一方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机可以执行上述第三方面以及第三方面所有可能的实施方式中任意一项所述的卫星通信方法。
第十二方面,提供一种卫星通信系统,所述卫星通信系统包括:如发明内容第四方面以及第四方面所有可能的实施方式中任意一项所述的用户终端、以及如发明内容第五方面以及第五方面所有可能的实施方式中任意一项所述的管理卫星;或者,所述卫星通信系统包括:如发明内容第六方面以及第六方面所有可能的实施方式中任意一项所述的用户终端、以及如发明内容第七方面以及第七方面所有可能的实施方式中任意一项所述的管理卫星。
第十三方面,提供一种卫星通信方法,该方法包括:
管理卫星在管理信道上向用户终端发送探测信号,所述管理卫星管理有一个或多个服务卫星;
所述用户终端在管理信道上接收所述管理卫星发送的探测信号;
所述用户终端在管理信道上向所述管理卫星发送呼吸信号,所述呼吸信号携带所述用户终端的信息,所述用户终端的信息用于确定服务所述用户终端的服务卫星信息;
所述管理卫星在管理信道上接收所述用户终端发送的呼吸信号。
在第十三方面的第一种可能的实施方式中,所述管理卫星管理的一个或多个服务卫星所覆盖区域的集合构成一个超小区;可选的,所述管理卫星发射的若干管理波束覆盖的区域构成一个超小区;可选的,多个管理卫星覆盖区域的集合构成一个超小区;可选的,多个管理卫星管理的多个服务卫星所覆盖区域的集合构成一个超小区。
结合第十三方面或其第十三方面的第一种可能的实施方式,在第十三方面的第二种可能的实施方式中,所述用户终端在所述超小区内具有唯一的用户标识,所述用户终端的信息包括所述用户标识。
结合第十三方面或其第十三方面上述的所有可能的实施方式,在第十三方面的第三种可能的实施方式中,所述超小区具有一个超小区标识,所述用户标识是根据所述超小区标识和所述用户终端的设备标识确定的。
可选的,结合第十三方面或其第十三方面上述的所有可能的实施方式,在第十三方面的第四种可能的实施方式中,所述管理卫星向地面站发送所述管理卫星接收的所述呼吸信号。
结合第十三方面或其第十三方面上述的所有可能的实施方式,在第十三方面的第五种可能的实施方式中,若所述用户终端有通信业务需求,所述用户终端向所述管理卫星发送通信请求信号。
可选的,结合第十三方面或其第十三方面上述的所有可能的实施方式,在第十三方面的第六种可能的实施方式中,若所述用户终端有通信业务需求,所述管理卫星向所述地面站发送所述管理卫星收集的所述通信请求信号。
结合第十三方面或其第十三方面上述的所有可能的实施方式,在第十三方面的第七种可能的实施方式中,所述用户终端接收所述管理卫星发送的资源调度信息,所述资源调度信息包括服务所述用户终端的服务卫星信息。
可选的,结合第十三方面或其第十三方面上述的所有可能的实施方式,在第十三方面的第八种可能的实施方式中,所述管理卫星接收地面站发送的资源调度信息,所述地面站完成所述服务卫星资源调度判决,所述资源调度信息包括服务所述用户终端的服务卫星的信息。
结合第十三方面或其第十三方面上述的所有可能的实施方式,在第十三方面的第九种可能的实施方式中,所述管理卫星发送所述资源调度信息给所述服务卫星,或者所述管理卫星在发生服务卫星切换的情况下,发送所述资源调度信息给目标服务卫星和原服务卫星;或者所述管理卫星可以发送所述资源调度信息给所述用户终端,或者所述管理卫星在发生服务卫星切换的情况下,可以发送所述资源调度信息给目标管理卫星。
结合第十三方面或其第十三方面上述的所有可能的实施方式,在第十三方面的第十种可能的实施方式中,所述方法还包括,所述用户终端与所述管理卫星建立无线资源控制(RRC,Radio Resource Control)连接。可选的,所述方法还包括,所述用户终端从所述服务卫星接收通信业务数据,向所述服务卫星发送通信业务数据。
当发生服务卫星切换时,由于用户终端一直在该信道上执行接收管理卫星的探测信号,发送自身的呼吸信号等操作,管理卫星或者地面站可以统一调度服务卫星为用户终端服务。省略服务卫星间协商的步骤,节省了信令开销。根据管理卫星或者地面站所掌握的用户状态和卫星资源,直接调度新的服务卫星提供服务,减少卫星切换导致的通信不稳定甚至通信中断的现象,使得用户终端卫星通信更流畅。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍。
图1是卫星通信系统的结构示意图;
图2为本申请实施例提供的多层结构的卫星通信网络的基本架构图;
图3为本申请实施例提供的一种卫星通信方法的基本流程示意图;
图4为本申请实施例提供的一种卫星网络的通信方法流程示意图;
图5为卫星通信过程中卫星切换的通信方法流程示意图;
图6为本申请实施例提供的一种卫星通信网络架构示意图;
图7为本申请实施例提供的一种卫星网络的通信方法流程示意图;
图8为卫星通信过程中卫星切换的通信方法流程示意图;
图9为本申请实施例提供的一种卫星通信网络架构示意图;
图10为本申请实施例提供的一种卫星网络的通信方法流程示意图;
图11为卫星通信过程中卫星切换的通信方法流程示意图;
图12为本申请实施例提供的一种卫星网络的通信方法流程示意图;
图13为卫星通信过程中卫星切换的通信方法流程示意图;
图14为本申请实施例提供的一种用户终端1400的结构示意图;
图15为本申请实施例提供的一种用户终端1500的结构示意图;
图16为本申请实施例提供的一种管理卫星(A类卫星)1600的结构示意图;
图17为本申请实施例提供的一种管理卫星(A类卫星)1700的结构示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述。
如图1所示为卫星通信系统的结构示意图,卫星通信系统100通常由空间段、地面段和用户段三部分组成。空间段可以由GEO卫星、NGEO卫星或者两者构成的多颗卫星网络101构成;地面段一般包括卫星测控中心102、网络控制中心(NCC,Network Control Center)103以及各类关口站(或称信关站,Gateway)104等,其中网络控制中心(NCC)也称为系统控制中心(SCC,System Control Center);用户段由各种用户终端构成,可以是各种移动终端106,例如移动卫星电话,也可以是各种固定终端107,例如通信地面站等。图1中虚线指卫星与终端之间的通信信号,实线指卫星与地面段设备之间的通信信号,双向箭头线代表地面段网元之间的通信信号。
地面段中的卫星测控中心102负责保持、监视和控制卫星的轨道位置、姿态并管理卫星的星历表等功能。网络控制中心103负责处理用户登记、身份确认、计费和其它的网络管理功能,网络控制中心和卫星测控中心在有些卫星移动通信系统中是合二为一的。关口站104负责呼叫处理、交换以及与地面通信网的接口等功能。地面通信网105是卫星网络的地面段的一个组成部分,用于将卫星的数据包交换到核心网、发送至最终的用户终端。地面通信网可以是公共交换电话网(PSTN,Public Switched Telephone Network)、公共地面移动网(PLMN,Public Land Mobile Network)或其它各种专用网络,不同地面通信网要求关口站具有不同的网关功能。
图2为本申请实施例提供的一种多层结构的卫星通信网络的基本架构图。如图2所示,多层结构的卫星通信网络200的空间段一般可分成管理卫星201和一个或多个服务卫星203。可选的,如果是组网的多层结构卫星通信网络,空间段一般包括多颗管理卫星和对应管理卫星管理的服务卫星。
本申请中,为了描述方便,将管理卫星称作A类卫星,服务卫星称作B类卫星。A类卫星可以是高轨道卫星,B类卫星可以是低轨道卫星。高、低轨道仅为相对概念,A类卫星和B类卫星不特指特定轨道的卫星,以下实施例仅进行举例说明,不再赘述。
A类卫星和B类卫星可以通过光信号、毫米波信号或太赫兹信号等进行通信,当然,A类卫星与B类卫星间的通信方式包括但不限于以上方式,还可以是其他频段的电磁信号。
A类卫星作为管理卫星,用于管理服务卫星。B类卫星作为服务卫星,用于为用户终端204提供通信业务服务。具体的,B类卫星可以用于发送和接收用户终端的数据信号,与用户终端进行业务通信。例如,B类卫星处理用户终端的通信需求,负责其覆盖的逻辑子小区205内用户终端的通信业务。如果卫星通信网络中存在A类卫星,则B类卫星可以由A类卫星进行管理与调度。
B类卫星的天线阵形成多个通信业务波束207,若干B类卫星的通信业务波束覆盖区域的集合构成了一个虚拟的逻辑子小区205,用户终端可获知虚拟子小区内的B类卫星相关信息。
超小区206:同一A类卫星管理或控制的所有B类卫星覆盖区域的集合称为一个超小区。超小区也可以定义为A类卫星的管理波束覆盖区域,即A类卫星发射的若干管理波束202覆盖的区域构成一个超小区,其覆盖的区域也包括了一个或多个服务卫星的覆盖区域。当A类卫星网络组网时,多个A类卫星管理的多个B类卫星所覆盖区域的集合构成一个超小区;或者是多个A类卫星覆盖区域的集合构成一个超小区。
每一个超小区具有一个超小区标识(或称超小区ID,super cell identity)。用户终端在每一个超小区内具有一个唯一的用户标识。在一个例子中,该用户标识可以由超小区ID和用户终端的设备标识(或称设备ID)确定。具体地,用户标识的生成方式可以由超小区ID和设备ID直接级联,或者通过设定函数计算等生成方式获得唯一的用户标识。当然,用户终端的用户标识也可以通过其他方式生成,本申请实施例对用户标识的生成方式不做限定,只要在超小区内能识别出该用户终端即可。由于用户终端在整个超小区内的用户标识是统一的,即使为用户终端服务的B类卫星在超小区内发生切换,对于用户终端来说这种切换是无感知的。
管理波束202是一种广覆盖波束,在约定的物理资源上发送和接收覆盖范围内所有用户和卫星交互管理信息。管理信息包括用户终端和卫星在专用的管理波束上交互的信息,例如探测信号、呼吸信号、调度信令等。
A类卫星和B类卫星处理管理信息和业务通信数据的基带单元和射频单元可以有不同的部署方式,例如可以是基带单元和射频单元集中部署在同一颗卫星的情况,也可以是基带单元和射频单元分布式的方式分别部署在A类卫星和B类卫星。下面两张表格列举了一些具体的部署方式,表1是处理管理信息的部署方式,表2是处理通信业务数据的部署方式,序号分别表示部署方式的编号。
表1 管理信息处理单元的部署方式
Figure PCTCN2019110378-appb-000001
表2.通信业务数据处理单元的部署方式
Figure PCTCN2019110378-appb-000002
实际应用中不限于上述表中列举的部署方式,还可以有其它部署方式,而且管理信息处理单元和通信业务数据处理单元的部署方式彼此不产生影响,彼此相互独立。此外,此处的射频单元和基带单元是从功能上对硬件系统或者芯片系统进行的划分,而不是硬件结构上的划分。具体地,在 同时具有处理管理信息的射频单元与处理通信业务数据的射频单元的卫星上,所述管理信息的射频单元与所述通信业务数据的射频单元可以由同一个硬件系统或者芯片系统实现,基带单元同理,不再赘述。
在一个具体的例子中,A类卫星采用表1中序号2的部署方式,A类卫星部署处理管理信息的基带单元和射频单元,管理信息可以直接发送给A类卫星进行射频信号处理和基带信号处理。B类卫星采用表2中序号1的部署方式,B类卫星部署处理通信业务数据的基带单元和射频单元,用于对用户终端的通信业务数据进行射频信号处理和基带信号处理。
在一个具体的例子中,A卫星采用表1中序号4的部署方式,A类卫星只部署处理管理信息的基带单元,处理管理信息的射频单元部署在B类卫星,管理管理信息由B类卫星接收接收并进行射频信号处理后再发送到A类卫星进行基带信号处理。在这个例子中,B类卫星部署处理管理信息的基带单元和射频单元,同时,B类卫星采用表2中序号1的部署方式,B类卫星部署了处理通信业务数据的射频单元和射频单元。B类卫星处理管理信息的射频单元对管理信息执行滤波、变频、放大、波束成型等操作。该B类卫星除了完成数据信号的处理外,也兼任完成管理信息的射频信号处理。
在一个具体的例子中,B类卫星采用表2中序号2的部署方式,B类卫星可以只部署处理通信业务数据的射频单元,而负责处理通信业务数据的基带单元部署在A类卫星。在这种情况下,B类卫星将接收用户终端的通信数据,经所述B类卫星的射频单元处理后得到第一业务数据,再将第一业务数据发送给A类卫星进行基带信号处理,由A类卫星的基带单元处理第一业务数据,得到第二业务数据。
用户终端204需要通过卫星通信系统的地面段接入移动卫星通信网络中进行移动通信。本申请实施例中的用户终端可以指用户设备、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备还可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,5G网络中的终端设备、未来演进的公用陆地移动通信网络(Public Land Mobile Network,PLMN)或未来的其他通信系统中的终端设备等,本申请实施例对此并不限定。以卫星电话、车载卫星系统为代表的移动终端,这些设备可以与卫星直接通信,以地面通信站为代表的固定终端,这些通信设备需要经地面站中继后才能与卫星通信。用户终端通过安装有无线收发天线实现对通信状态的设置、获取,完成通信。
在一个具体实施例中,卫星通信网络包括:A类卫星、B类卫星和用户终端。
A类卫星可以是高轨道卫星,具体地,可以是GEO卫星。部署在GEO轨道上的A类通信卫星,相对地面呈静止状态。
B类卫星可以是低轨道卫星,具体地,可以是LEO卫星。部署在LEO轨道上的B类通信卫星,相对地面呈快速移动状态征。
本具体实施例中的A类卫星可以仅装载了管理信息基带信号处理的基带单元,执行基带数据的处理、回传等操作,管理信息由B类卫星进行射频信号处理后再发送到A类卫星进行基带信号处理。
本具体实施例中的B类卫星可以仅携带射频单元,B类卫星负责执行滤波、变频、放大、波束成型、基带数据转发等操作。这种情况下,B类卫星接收终端的数据信号并发送给A卫星,由A卫星负责处理用户业务的基带数据。除了完成数据信号的处理外,由于管理该B类卫星的A类卫星只装载 基带单元,该B类卫星也兼任完成管理信息的射频信号处理工作。
如图3所示为本申请实施例提供的一种卫星通信方法的基本流程示意图,该方法包括:
301、管理卫星向用户终端发送探测信号,用户终端接收管理卫星在管理信道上发送的探测信号。其中,管理卫星管理有一个或多个服务卫星。
本申请可以定义一个超小区,每个超小区有一个的超小区标识,用于标识该超小区。超小区的定义可以有多种,例如,一个管理卫星管理的一个或多个服务卫星所覆盖区域的集合构成一个超小区;或者一个管理卫星发射的若干管理波束覆盖的区域构成一个超小区;或者两个或多个管理卫星覆盖区域的集合构成一个超小区;或者两个或多个管理卫星管理的多个服务卫星所覆盖区域的集合构成一个超小区。
用户终端在所述超小区内具有唯一的用户标识。在一个例子中,用户标识可以根据所述超小区标识和所述用户终端的设备标识确定的。
302、用户终端向管理卫星发送呼吸信号,管理卫星接收呼吸信号。
用户终端发送的呼吸信号可以携带用户终端的信息。用户终端的信息可以用于确定服务该用户终端的服务卫星信息。用户终端的信息可以例如用户标识和/或位置信息等与用户终端有关的信息。
可选的,该卫星通信方法还可以包括:
303、管理卫星向用户终端发送资源调度信息,用户终端接收管理卫星发送的资源调度信息。其中,资源调度信息包括为用户终端服务的服务卫星信息。服务卫星信息用于向指示为用户终端服务的服务卫星,例如可以使服务卫星标识等可以识别该服务卫星的信息。
可选的,该卫星通信方法还可以包括:
304、用户终端向管理卫星发送通信请求信号,管理卫星接收用户终端发送的通信请求信号。该通信请求信号表示用户终端有数据要发送,也可以叫做数据发送请求或者资源调度请求。
可选的,该卫星通信方法还可以包括:
305、管理卫星进行资源调度判决,即根据用户终端的信息确定为终端服务的服务卫星信息。
管理卫星可以结合用户终端的位置信息和卫星网络的星历信息等相关内容确定服务用户终端此次通信的至少一个服务卫星及波束。可选的,当服务用户终端的服务卫星需要发生切换时,管理卫星也可以结合用户终端的位置信息和卫星网络的星历信息等相关内容确定服务用户终端此次通信的另一个服务类卫星及波束。步骤305是可选的步骤,资源调度判决并不一定由管理卫星执行,也可以由一个中心节点或地面站执行。中心节点或地面站确定资源调度信息后,再发给管理卫星。
可选的,该卫星通信方法还包括:
306、用户终端生成用户标识。
用户终端在超小区内具有唯一的用户标识。用户终端可能是首次加入某一超小区,在这种情况中,用户终端可以执行步骤306。具体的,用户标识的生成元素可以包括超小区ID和设备ID。可以仅在用户终端首次接入超小区的时候生成超小区内的用户标识。若用户终端已经接入超小区,并已经有在超小区内的用户标识,则生成用户标识的步骤是可以省略的。
可选的,该通信方法还可以包括:
307、用户终端获取自身位置信息。用户终端获取自身位置的方法可以是全球卫星导航系统或基于基带卫星的OTDOA(Observed Time Difference Of Arrival)定位方法获取。呼吸信息携带的用户终端的信息中可以包括用户位置信息,即指示用户终端所在位置的信息。
本申请实施例通过管理卫星来统一管理为用户终端服务的服务卫星,若为终端服务的服务卫星发生切换,由管理卫星确定切换后的服务卫星,不需要用户终端去协商切换,可以节省信令开销。
在本申请实施例以及下文所述的任何一个申请实施例中,步骤的先后顺序可以根据具体的应用场景发生调整与添加新的步骤。步骤没有必然的先后执行顺序,本申请实施例对此不作具体限定。
如图4所示为本申请实施例提供的一种卫星网络的通信方法流程示意图,方法用于包含A类卫星、B类卫星和用户终端的卫星通信网络架构。A类卫星部署有处理管理信息的射频单元和基带单元,B类卫星部署有处理通信业务数据的射频单元和基带单元。一颗A类卫星发射的管理波束覆盖的区域构成一个超小区,或者所述A类卫星所管理或控制的所有B类卫星的覆盖区域的集合构成一个超小区。该方法可以适用于用户终端初始加入超小区的情形。该方法包括:
401、在某超小区中的用户终端生成用户标识。具体的,用户标识的生成元素可以包括超小区ID(identifier)和设备ID。具体地,超小区ID用于识别某个超小区,设备ID可以如用户终端的设备序列号。
可以仅在用户终端首次接入超小区的时候生成超小区内的用户标识。若用户终端已经接入超小区,并已经有在超小区内的用户标识,则生成用户标识的步骤是可以省略的。
可选的,所述用户标识在该超小区中可以具有唯一性,由超小区ID、设备ID等信息组合生成。具体生成方法包括但不限于如下方法:超小区ID和设备ID直接级联,超小区ID、设备ID和其他相关信息级联或者通过预设函数关系计算等方式获得唯一用户标识。
可选的,该方法还可以包括用户终端获取自身位置信息的步骤401’。用户终端获取自身位置的方法可以是全球卫星导航系统或基于基带卫星的OTDOA(Observed Time Difference Of Arrival)定位方法获取。
具体地,导航卫星系统是指能在地球表面或近地空间的任何地点为用户提供全天候的三维坐标和速度以及时间信息的空基无线电导航定位系统。常见系统有GPS(Global Positioning System,全球定位系统,简称GPS)、BDS(BeiDou Navigation Satellite System,中国北斗卫星导航系统,简称BDS)、GLONASS(GLOBAL NAVIGATION SATELLITE SYSTEM,全球卫星导航系统,简称GLONASS)和GALILEO(Galileo satellite navigation system,伽利略卫星导航系统,简称GALILEO)四大卫星导航系统。OTDOA定位方法是指通过检测不同基站信号到达的时间差来确定终端设备的具体位置。
本步骤并不限定用户标识和位置信息获取的先后顺序,可以是用户终端首先获取生成的唯一用户标识,再通过所述方法获取自身位置信息。可以是用户终端首先通过所述方法获取自身位置信息,再获取生成的唯一用户标识。当然,也可以是用户终端同时获取唯一用户标识和自身位置信息。本步骤适用于后续的具体实施例。
402、A类卫星在专用的管理信道上发送的探测信号,用户终端接收探测信号。
具体地,专用的管理信道可以是A类卫星与其管理的超小区范围内的用户终端之间约定的完整逻辑链路。该逻辑链路包括约定的物理层资源、MAC层资源、上层接口等,各协议层均有对应的资源。
其中,相应的物理资源包括但不限于该卫星通信网络的时域,频域和码域资源。用户终端发送的呼吸信号中可以包含用户标识、位置信息等内容,以系统配置的周期形式或者系统调度的非周期形式发送。
步骤401(401’)和步骤402之间的具体操作没有必然的执行先后顺序。可以是如下可选方案, 本申请实施例对此不作具体限定。
可选的,用户终端可以首先检测A类卫星在约定好的管理信道上发送的探测信号,再生成用户标识和获取用户终端自身位置信息。然后选择相应的物理资源发送包含用户标识、位置信息等内容的呼吸信号。
可选的,用户终端可以首先生成用户标识,再检测A类卫星在约定好的管理信道上发送的的探测信号,在检测探测信号之后,获取用户终端自身位置信息。然后选择相应的物理资源发送包含用户标识、位置信息等内容的呼吸信号。
可选的,用户终端可以首先获取自身位置信息,再检测A类卫星在约定好的管理信道上发送的探测信号。在检测探测信号之后,再生成用户标识。然后选择相应的物理资源发送包含用户标识、位置信息等内容的呼吸信号。
403、用户终端发送呼吸信号,A类卫星接收呼吸信号,呼吸信息携带有用户标识和/或用户终端的位置信息等,据此A类卫星刷新该超小区中用户终端的用户标识和位置信息等内容。用户终端可以选择约定的物理资源周期性或非周期性发送呼吸信号。相应地,A类卫星可以通过系统配置的周期形式或者系统调度的非周期形式检测呼吸信号。
404、可选的,当用户终端有通信业务需求时,用户终端在管理信道上发送通信请求信号,A类卫星接收通信请求信号。
405、A类卫星接收通信请求信号后,结合用户终端的位置信息和卫星网络的星历信息等相关内容确定服务用户终端此次通信的至少一个B类卫星及波束。
具体地,所述星历信息是指卫星的轨道信息,身份信息,卫星具备的通信能力,安全等级等信息。该信息可以作为确定为用户终端服务的B类卫星的因素之一。
可选的,当服务用户终端的B类卫星需要发生切换时,A类卫星也会结合用户终端的位置信息和卫星网络的星历信息等相关内容确定服务用户终端此次通信的下一个B类卫星及波束。
在确定B类卫星和波束时,A类卫星可以综合考虑用户终端的位置信息和B类卫星的轨道、可提供通信能力等星历信息来分配B类卫星及波束进行通信服务。步骤405中的波束是指B类卫星用于处理通信业务数据的波束。
可选的,给出步骤405确定B类卫星和波束的一种方法,该方法先将以待服务的用户终端所在位置为中心的一定范围内的B类卫星按照覆盖用户终端的时间长度进行排序,之后去除不满足通信的安全等级、不具备服务用户终端能力或者通信能力未达到一定水平的B类卫星,再次按照覆盖时间进行排序,选择排序中覆盖时间最长的B类卫星及其波束服务该用户终端。
可选的,给出步骤405确定B类卫星和波束的一种方法,该方法可以先将以待服务的用户终端为中心的一定范围内的B类卫星按照可覆盖用户终端的时间进行排序,选择通信的安全等级满足要求、具备服务用户终端能力并且业务通信能力达到一定水平的B类卫星,将筛选完的B类卫星再次按照覆盖时间进行排序,选择排序最靠前的B类卫星及其波束服务该用户终端。
需要说明的是在确定B类卫星和波束时并不限于以上方法,以上方法仅是步骤405的备选方法,任何通过上述方法获得启示或者将上述步骤进行组合而得到的方法可以认为是本申请实施例公开的方法之一。
406、A类卫星将资源调度信息通过管理信道告知相应的B类卫星及用户终端。
407、用户终端通过分配的B类卫星及波束执行数据通信,确定的B类卫星为用户终端预留资源。
408、用户终端与所述B类卫星建立RRC连接。
409、用户终端向所述B类卫星接收和发送通信业务数据。
410、可选的,当存在服务卫星发生切换时,服务用户终端的原B类卫星的通信资源释放。
通信过程中用户终端和A类卫星持续执行步骤402至404,直至整个通信结束。
图5所示为卫星通信过程中卫星切换的通信方法流程示意图,介绍了用户终端在业务通信过程中遇到B类卫星切换的情况。该流程中与图4的流程大致相同,主要区别点在于,资源调度判决具体为服务卫星切换判决,A类卫星将资源调度信息发给原B类卫星和目标B类卫星,由目标B类卫星进行资源预留,并与用户终端建立RRC连接并进行数据收发,而原B类卫星则进行资源释放。可选的,A类卫星还可以将资源调度信息发给用户终端。
如图5所示,切换流程包括:
501、A类卫星向用户终端发送探测信号,用户终端接收A类卫星在约定好的管理信道上发送的探测信号。
502、用户终端获取自身的位置信息。
503、用户终端向A类卫星发送呼吸信号,A类卫星检测呼吸信号。用户终端可以周期性或非周期性的发送呼吸信号,证明自身仍处于目前的超小区范围内,接收该超小区内B类卫星的通信服务,其中呼吸信号可以携带用户标识和/或位置信息等信息。
在业务通信过程中,A类卫星以周期或者非周期地形式检测呼吸信号,据此刷新该超小区中的用户终端的用户标识和位置信息等内容。
504、A类卫星进行切换判决。A类卫星通过用户标识和位置信息以及目前服务的B类卫星的星历信息等内容判断用户终端是否超出卫星的覆盖范围,当用户终端距离B类卫星的覆盖范围边缘达到一定阈值或者B类卫星的服务时间达到一定阈值时,A类卫星按照步骤405中确定服务用户终端通信的B类卫星及波束的方法,确定服务该用户终端的下一颗B类卫星及波束,A类卫星按照上述方法执行基带卫星切换判决。
505、A类卫星确定服务该用户终端的下一颗B类卫星及波束后,A类卫星将资源调度信息通知目标B类卫星和原B类卫星。
506、目标B类卫星为用户终端进行资源预留。
507、再由原B类卫星或者目标B类卫星触发用户终端,指示终端与目标B类卫星建立连接。
508、用户终端与所述目标B类卫星建立RRC连接。
509、用户终端向所述目标B类卫星接收和发送通信业务数据,目标B类卫星开始负责用户终端的通信业务。
510、原B类卫星进行资源释放。
可选的,步骤505中,除了A类卫星将调度结果通知目标B类卫星和原B类卫星以外,A类卫星也可以把调度结果告知用户终端,由用户终端主动和目标B类卫星建立连接并完成后续操作。
若通信资源由各卫星独立管理,所以发生切换时,卫星的协商过程存在大量信令交互,例如发起原卫星和目标卫星之间的切换请求、接纳控制、上下行同步和重新接入等信令,目标卫星和控制网关之间的路径切换请求及确认等信令。除了产生庞大的信令开销之外,甚至可能发生目标卫星资源已被全部占用,无法分配资源给该用户终端使用导致通信中断的情况。
在本申请的申请实施例中,当通信过程中发生B类卫星切换时,由于专用管理信道的存在,用户终端一直在该信道上执行接收A类卫星的探测信号,发送自身的呼吸信号等操作,A类卫星可以统一调度B类卫星为用户终端服务。所以在发生B类卫星切换时,A类卫星可以省略上述卫星间协商的 步骤,节省了信令开销。根据A类卫星所掌握的用户状态和卫星资源,直接调度新的B类卫星提供服务,无需现有技术中卫星切换时的协商过程,做到用户终端流畅通信,感知不到卫星切换过程。
如图6所示为本申请实施例提供的一种卫星通信网络架构示意图,该卫星通信网络包括2个或者2个以上A类卫星601,多个B类卫星602,地面站603,用户终端604。该两个以上的A类卫星发射的管理波速覆盖的区域构成一个超小区,或者该两个以上的A类卫星所管理或控制的所有B类卫星的覆盖区域的集合可构成一个超小区。所述卫星网络包括:
A类卫星601,本申请实施例中A类通信卫星既可以是相对地面呈静止状态的GEO卫星,也可以是不相对地面静止的高轨道卫星。多颗A类卫星组网,与地面站603保持通信连接。A类卫星与地面站之间交互接收到的管理信息,如呼吸信号、探测信号、调度信令等。所述A类卫星部署有处理管理信息的射频单元和基带单元。
具体地,在一个实施例中,当A类卫星是相对地面运动的高轨道卫星时,A类卫星相对地面的位置会发生变化,A类卫星所覆盖管理的B类卫星会发生变化,多颗A类卫星组网管理的B类卫星的相关信息可以通过地面站进行传递或者A类卫星之间进行传递。
B类卫星602,本申请实施例中的B类卫星具有上述B类卫星的一般特征,所述B类卫星具有处理业务通信数据的射频单元和基带单元。
地面站603,作为该申请实施例的管理单元,具有通信系统中用于基带信号处理的基带单元和射频信号处理的射频单元,能够与A类卫星交互管理信息,具有强大的信息处理能力。地面站与组网的多颗A类卫星保持通信连接,统一管理和调度B类卫星。
用户终端604,本申请实施例中的用户终端具有上述用户终端的一般特征。
如图7所示为本申请实施例提供的一种卫星网络的通信方法流程示意图,方法可用于图6所示的卫星通信网络架构。该方法包括:
701、在某超小区中的用户终端生成用户标识,可以仅在用户终端首次接入超小区的时候生成超小区内的用户标识。若用户终端已经接入超小区,并已经有在超小区内的用户标识,则生成用户标识的步骤是可以省略的。
可选的、还包括步骤701’,用户终端获取自身位置信息,用户标识和位置信息的获取方法可参考前述卫星网络通信方法的步骤401,在此不再赘述。
702、A类卫星在专用的管理信道上发送的探测信号,用户终端接收A类卫星发送的探测信号,A类卫星选择相应的物理资源定时或按需发送呼吸信号。本步骤可参考前述卫星网络通信方法的步骤402,在此不再赘述。
需要说明的是,步骤701(701’)和步骤702之间的具体操作没有必然的执行先后顺序。可以参考前述申请实施例中的可选方案,本申请实施例对此不作具体限定。
703、用户终端发送呼吸信号,A类卫星接收呼吸信号,呼吸信息携带有用户标识和/或用户终端的位置信息等,A类卫星接收呼吸信号后传送给地面站进行统一处理,地面站据此刷新该超小区中的用户终端标识和位置信息等内容。用户终端可以选择约定的物理资源周期性或非周期性发送呼吸信号。相应地,A类卫星可以通过系统配置的周期形式或者系统调度的非周期形式检测呼吸信号。
其中,A类卫星以周期形式或者非周期形式传送超小区内用户终端的呼吸信号给地面站处理,地面站掌握该超小区中的用户标识和位置信息,并根据收到的呼吸信号刷新该超小区中的用户标识和位置信息等内容。地面站可以根据系统需要,将包含用户终端和B类卫星的管理信息发送给该系统中的A类卫星。
可选的,组网的A类卫星检测呼吸信号,据此刷新用户标识和位置信息等内容。组网的A类卫星之间通过信息共享传递包含用户终端和B类卫星的管理信息,该方式不需要地面站参与管理信息的处理与传递。
704、可选的,当用户终端有通信业务需求时,用户终端在管理信道上发送通信请求信号,A类卫星接收通信请求信号,由A类卫星接收后传送给地面站处理。
705、地面站结合用户终端的位置信息和卫星网络的星历信息等,确定服务用户终端此次通信的至少一个B类卫星及波束。
其中,A类卫星可以通过周期或者非周期形式检测通信请求信号。
具体地,所述星历信息是指卫星的轨道信息,身份信息,卫星具备的通信能力,安全等级等信息。该信息可以作为确定为用户终端服务的B类卫星的因素之一。
可选的,当服务用户终端的B类卫星需要发生切换时,A类卫星也会结合用户终端的位置信息和卫星网络的星历信息等相关内容确定服务用户终端此次通信的下一个B类卫星及波束。
在确定B类卫星和波束时,地面站会综合考虑用户终端的位置信息和B类卫星的轨道、可提供通信能力等星历信息分配B类卫星及波束进行通信服务。步骤705所述波束是指B类卫星用于业务数据处理的波束。
可选的,给出步骤705确定B类卫星和波束的一种方法,地面站可以先将以待服务的用户终端为中心的一定范围内的B类卫星按照覆盖用户终端的时间长度进行排序,之后,去除不满足通信的安全等级、不具备服务用户终端能力或者通信能力未达到一定水平的B类卫星,再次按照覆盖时间进行排序,选择排序中覆盖时间最长的B类卫星及其波束服务该用户终端。
可选的,给出步骤705确定B类卫星和波束的一种方法,地面站可以先将以待服务的用户终端为中心的一定范围内的B类卫星按照可覆盖用户终端的时间长度进行排序,选择通信的安全等级满足要求、具备服务用户终端能力并且业务通信能力达到一定水平的B类卫星,将筛选完的B类卫星再次按照覆盖时间进行排序,选择排序中覆盖时间最长的B类卫星及其波束服务该用户终端。
需要说明的是在确定B类卫星和波束时并不限于以上方法,以上方法仅是步骤705的备选方法。
706、所述地面站通过管理信道将调度结果发送给上报的A类卫星,由该A类卫星告知用户终端及相应的B类卫星准备通信。
707、可选的,用户终端通过分配的B类卫星及波束执行数据通信,确定的B类卫星为用户终端预留资源。
708、用户终端与所述B类卫星建立RRC连接。
709、用户终端向所述B类卫星接收和发送通信业务数据。
710、可选的,当存在服务卫星发生切换时,服务用户终端的原B类卫星的通信资源释放。
通信过程中用户终端和A类卫星持续执行步骤702至704,直至整个通信结束。
本申请实施例中步骤的先后顺序可以根据具体的应用场景发生调整与添加新的步骤。步骤没有必然的先后执行顺序,本申请实施例对此不作具体限定。
具体地,在一个实施例中,用户终端在业务通信过程中会遇到B类卫星切换的情况。图8所示为卫星通信过程中卫星切换的通信方法流程示意图。
切换流程包括:
801、B类卫星向用户终端发送探测信号,用户终端接收A类卫星在约定好的管理信道上发送的探测信号。
802、用户终端获取自身的位置信息。
803、用户终端向A类卫星发送呼吸信号,A类卫星检测呼吸信号,A类卫星接收呼吸信号后传送给地面站进行统一处理,地面站据此刷新该超小区中的用户终端标识和位置信息等内容。用户终端可以周期性或非周期性的发送呼吸信号,证明自身仍处于目前的超小区范围内,接收该超小区内B类卫星的通信服务,其中呼吸信号可以携带用户标识和/或位置信息等信息。
804、地面站进行切换判决。地面站通过该超小区中的用户终端标识和位置信息以及目前服务的B类卫星的星历信息等内容判断用户终端是否超出卫星的覆盖范围,当用户终端距离B类卫星的覆盖范围边缘达到一定阈值或者B类卫星的服务时间达到一定阈值时,地面站按照步骤705中确定服务用户终端通信的B类卫星及波束的方法,确定服务该用户终端的下一颗B类卫星及波束。
805、地面站确定服务该用户终端的下一颗B类卫星及波束后,地面站首先将资源调度信息发送给上报的A类卫星,A类卫星再将调度结果通知目标B类卫星和原B类卫星,
806、目标B类卫星按照步骤707进行资源预留。
807、再由原B类卫星或者目标B类卫星触发用户终端,指示用户终端与目标B类卫星建立连接,
808、用户终端与所述目标B类卫星建立RRC连接。
809、用户终端向所述目标B类卫星接收和发送通信业务数据,目标B类卫星开始负责用户终端的通信业务。
810、原B类卫星进行资源释放。
可选的,步骤805中,除了A类卫星将调度结果通知目标B类卫星和原B类卫星以外,A类卫星也可以把调度结果告知用户终端,由用户终端主动和目标B类卫星建立连接并完成后续操作。
如图9所示为本申请实施例提供的一种卫星通信网络架构示意图,该卫星通信网络包括多个A类卫星901和用户终端902,但不包括B类卫星。该A类卫星兼具有B类卫星的服务功能,部署有处理管理信息的射频单元和基带单元以及处理业务通信数据的射频单元和基带单元,多个A类卫星覆盖的区域可以构成一个超小区。
如图10所示为本申请实施例提供的一种卫星网络的通信方法流程示意图,方法可用于图9所示的卫星通信网络架构。该方法包括:
1001、在某超小区中的用户终端生成用户标识,可以仅在用户终端首次接入超小区的时候生成超小区内的用户标识。若用户终端已经接入超小区,并已经有在超小区内的用户标识,则生成用户标识的步骤是可以省略的。
可选的,还包括步骤1001’,用户终端获取自身位置信息,用户标识和位置信息的获取方法可参考前述卫星网络通信方法的步骤401,在此不再赘述。
1002、A类卫星在专用的管理信道上发送的探测信号,用户终端接收A类卫星发送的的探测信号,A类卫星选择相应的物理资源定时或按需发送呼吸信号。本步骤可参考前述卫星网络通信方法的步骤402,在此不再赘述。
需要说明的是,步骤1001(1001’)和步骤1002之间的具体操作没有必然的执行先后顺序。可以参考前述申请实施例中的可选方案,本申请实施例对此不作具体限定。
1003、用户终端发送呼吸信号,A类卫星接收呼吸信号,A类卫星将检测到的用户终端相关信息通过星间连接共享给整个卫星网络,据此刷新超小区内用户终端的信息,此处所述的用户终端信息可以包括各A类卫星服务所述用户终端的优先级等。
其中,具体地,A类卫星以系统配置的周期形式或者系统调度的非周期形式检测呼吸信号。组 网的A类卫星通过呼吸信号来刷新该超小区中的用户终端标识和位置信息等内容。所述星间连接是指相邻两颗A类卫星之间发送和接收管理信息,在整个A类卫星网络中共享用户终端的管理信息。
其中,具体地,用户终端的优先级是指在通信资源有限的情况下,优先级高的用户可以优先得到通信服务,优先级低的用户需要等待优先级高的用户得到通信服务后才能被分配资源。
1004、可选的,当用户终端有通信业务需求时,用户终端在管理信道上发送通信请求信号,A类卫星接收通信请求信号。
1005、A类卫星接收通信请求信号后,A类卫星网络结合用户终端的位置信息和卫星网络的星历信息等,协商确定服务用户终端此次通信的至少一个A类卫星及波束,
其中,A类卫星可以通过周期或者非周期形式检测通信请求信号。
具体地,星历信息是指卫星的轨道信息,身份信息,卫星具备的通信能力,安全能力等,以上信息都可以包括在星历信息中传输。该信息可以作为确定为用户终端服务的A类卫星的因素之一。
其中,需要指出的是在确定A类卫星和波束时,组网的A类卫星网络会综合考虑用户终端的位置信息和A类卫星的轨道、可提供通信能力等星历信息分配A类卫星及波束进行通信服务。步骤1005所述波束是指A类卫星用于业务数据处理的波束。
具体地,在一个实施例中,可以先将以待服务的用户终端为中心的一定范围内的A类卫星按照可覆盖用户终端的时间进行排序,再去除不具备服务用户终端能力或者业务通信能力未达到一定水平的A类卫星,再次按照覆盖时间进行排序,选择排序最靠前的A类卫星作为服务该用户终端的A类卫星。
在另一个实施例中,可以先将以待服务的用户终端为中心的一定范围内的A类卫星按照可覆盖用户终端的时间进行排序,选择具备服务用户终端能力且业务通信能力达到一定水平的A类卫星,将筛选完的A类卫星再次按照覆盖时间进行排序,选择排序最靠前的A类卫星作为服务该用户终端的A类卫星。
1006、所述A类卫星通过管理信道向用户终端发送资源调度信息,告知用户终端准备通信。
1007、可选的,用户终端通过分配的A类卫星及波束执行数据通信,确定的A类卫星为用户终端预留资源。
1008、用户终端与所述A类卫星建立RRC连接。
1009、用户终端向所述A类卫星接收和发送通信业务数据。
1010、可选的,当存在服务卫星发生切换时,服务用户终端的原A类卫星的通信资源释放。
通信过程中用户终端和组网的A类卫星持续执行步骤1002至1004,直至整个通信结束。
具体地,在一个实施例中,用户终端高速运动跨越不同A类卫星覆盖的超小区。图11所示为卫星通信过程中卫星切换的通信方法流程示意图。
切换流程包括:
1101、A类卫星向用户终端发送探测信号,用户终端接收A类卫星在约定好的管理信道上发送的探测信号。
1102、用户终端获取自身的位置信息。
1103、用户终端向A类卫星发送呼吸信号,A类卫星检测呼吸信号。用户终端可以周期性或非周期性的发送呼吸信号,证明自身仍处于目前的超小区范围内,接收该超小区内B类卫星的通信服务,其中呼吸信号可以携带用户标识和/或位置信息等信息。
在业务通信过程中,A类卫星以周期或者非周期地形式检测呼吸信号,据此刷新该超小区中的 用户终端的用户标识和位置信息等内容。
1104、A类卫星进行切换判决。原A类卫星通过该超小区中的用户终端标识和位置信息等内容判断用户终端是否超出该A类卫星的覆盖范围,当用户终端距离该A类卫星的覆盖范围边缘达到一定阈值或者该A类卫星的服务时间达到一定阈值时,原A类卫星会按照步骤1004中的方法确定服务用户终端通信的下一颗目标A类卫星及波束。原A类卫星网络按照上述方法执行卫星切换判决。
1105、确定服务该用户终端的目标A类卫星及波束后,原A类卫星会通知目标A类卫星资源调度信息,
1106、目标A类卫星执行步骤1007进行资源预留。
1107、再由原A类卫星或者目标A类卫星触发用户终端,指示终端与目标A类卫星建立连接,
1108、用户终端与所述目标A类卫星建立RRC连接。
1109、用户终端向所述目标A类卫星接收和发送通信业务数据,目标A类卫星开始负责用户终端的通信业务。
1110、原A类卫星进行资源释放。
1111、用户终端开始检测目标A类卫星的探测信号。
1112、持续向目标A类卫星发送呼吸信号,证明自身处于目标A类卫星的超小区管理范围,接收目标A类卫星的服务。
可选的,步骤1105中,除了原A类卫星可以将调度结果通知目标A类卫星以外,原A类卫星也可以把调度结果告知用户终端,由用户终端主动和目标A类卫星建立连接并完成后续操作。
如图12所示为本申请实施例提供的一种卫星网络的通信方法流程示意图,方法用于包含A类卫星、B类卫星和用户终端的卫星通信网络架构。A类卫星部署有处理管理信息的射频单元和基带单元,同时,A类卫星部署有处理通信业务数据的基带单元,B类卫星部署有处理通信业务数据的射频单元,该方法可以适用于用户终端初始加入超小区的情形。该方法包括:
1201、在某超小区中的用户终端生成用户标识,可以仅在用户终端首次接入超小区的时候生成超小区内的用户标识。若用户终端已经接入超小区,并已经有在超小区内的用户标识,则生成用户标识的步骤是可以省略的。
可选的,该方法还可以包括用户终端获取自身位置信息的步骤1201’。
用户标识和位置信息的获取方法可参考前述卫星网络通信方法的步骤401,在此不再赘述。
1202、A类卫星在专用的管理信道上发送的探测信号,用户终端接收探测信号。本步骤可参考前述卫星网络通信方法的步骤402,在此不再赘述。
需要说明的是,步骤1201(1201’)和步骤1202之间的具体操作没有必然的执行先后顺序。可以参考前述申请实施例中的可选方案,本申请实施例对此不作具体限定。
1203、用户终端发送呼吸信号,A类卫星接收呼吸信号,呼吸信息携带有用户标识和/或用户终端的位置信息等,据此A类卫星刷新该超小区中用户终端的用户标识和位置信息等内容。用户终端可以选择约定的物理资源周期性或非周期性发送呼吸信号。相应地,A类卫星可以通过系统配置的周期形式或者系统调度的非周期形式检测呼吸信号。
1204、可选的,当用户终端有通信业务需求时,用户终端在管理信道上发送通信请求信号,A类卫星接收通信请求信号。
1205、A类卫星执行服务卫星调度判决,所述A类卫星接收通信请求信号后,结合用户终端的位置信息和卫星网络的星历信息等相关内容确定服务用户终端此次通信的至少一个B类卫星及波束。 步骤1205可参考前述卫星网络通信方法的步骤405,在此不再赘述。
1206、A类卫星将资源调度信息通过管理信道发送给相应的B类卫星及用户终端。
1207、用户终端通过分配的B类卫星及波束执行数据通信,确定的B类卫星为用户终端预留资源。
1208、用户终端与所述B类卫星建立RRC连接,所述B类卫星与管理该B类卫星的A类卫星建立RRC连接。
1209、用户终端向目标B类卫星发送通信业务数据。
1210、所述B类卫星接收所述用户终端发送的通信业务数据后,利用部署的处理通信业务数据的射频单元将所述数据进行射频信号处理,得到第一业务数据。
其中,所述的第一业务数据包括该B类卫星对来自用户终端的通信业务数据进行射频信号处理后所得到的数据。
1211、B类卫星将第一业务数据发送给管理该B类卫星的A类卫星。
1212、A类卫星接收所述B类卫星发送的第一业务数据后,A类卫星部署的处理通信业务数据的基带单元会处理第一业务数据,得到第二业务数据。
其中,所述的第二业务数据包括该A类卫星对来自B类卫星的第一业务数据进行基带信号处理后所得到的数据。
1213、A类卫星会将所述的第二业务数据发送回所述的目标B类卫星。
1214、目标B类卫星再将数据发送给用户终端。
1215、可选的,当存在服务卫星发生切换时,服务用户终端的原B类卫星的通信资源释放。
通信过程中用户终端和A类卫星持续执行步骤1202至1204,直至整个通信结束。
具体地,在一个实施例中,用户终端在业务通信过程中会遇到B类卫星切换的情况。图13所示为卫星通信过程中卫星切换的通信方法流程示意图,该流程中与图5的流程大致相同,主要区别点在于,本实施例中处理通信业务数据的基带单元和射频单元是分布式部署的,业务数据需要A类卫星的参与才能完成处理,实现用户终端的卫星通信。
如图13所示,切换流程包括:
1301、A类卫星向用户终端发送探测信号,用户终端接收A类卫星在约定好的管理信道上发送的探测信号。
1302、用户终端获取自身的位置信息。
1303、用户终端向A类卫星发送呼吸信号,A类卫星检测呼吸信号。用户终端可以周期性或非周期性的发送呼吸信号,证明自身仍处于目前的超小区范围内,接收该超小区内B类卫星的通信服务,其中呼吸信号可以携带用户标识和/或位置信息等信息。
在业务通信过程中,A类卫星以周期或者非周期地形式检测呼吸信号,据此刷新该超小区中的用户终端的用户标识和位置信息等内容。
1304、A类卫星进行切换判决。A类卫星通过用户标识和位置信息以及目前服务的B类卫星的星历信息等内容判断用户终端是否超出卫星的覆盖范围,当用户终端距离B类卫星的覆盖范围边缘达到一定阈值或者B类卫星的服务时间达到一定阈值时,A类卫星按照步骤405中确定服务用户终端通信的B类卫星及波束的方法,确定服务该用户终端的下一颗B类卫星及波束,A类卫星按照上述方法执行基带卫星切换判决。
1305、A类卫星确定服务该用户终端的下一颗B类卫星及波束后,A类卫星将资源调度信息通知 目标B类卫星和原B类卫星。
1306、目标B类卫星为用户终端进行资源预留。
1307、再由原B类卫星或者目标B类卫星触发用户终端,指示终端与目标B类卫星建立连接。
1308、用户终端与所述B类卫星建立RRC连接,所述B类卫星与管理该B类卫星的A类卫星建立RRC连接。
1309、用户终端向目标B类卫星发送通信业务数据。
1310、目标B类卫星将用户终端发送的通信业务数据进行射频信号处理,得到第一业务数据。
1311、目标B类卫星将射频信号处理后得到的第一业务数据发送给A类卫星。
1312、A类卫星部署的处理通信业务数据的基带单元会处理第一业务数据,得到第二业务数据。
1313、A类卫星处理后的第二业务数据发送回目标B类卫星。
1314、目标B类卫星再将数据发送给用户终端,目标B类卫星开始负责用户终端的通信业务。
1315、原B类卫星进行资源释放。
可选的,步骤1305中,除了A类卫星将调度结果通知目标B类卫星和原B类卫星以外,A类卫星也可以把调度结果告知用户终端,由用户终端主动和目标B类卫星建立连接并完成后续操作。
以下将结合图14到17简要介绍本申请实施例提供的用户终端、管理卫星和系统,用于执行以上介绍的各个实施例的方法或流程。上述各个实施例的内容适用于到图14-17的实施例中,因此不再赘述。
图14所示为本申请提供的一种用户终端1400的结构示意图,用户终端1400包括:
接收模块1401,用于接收管理卫星在管理信道上发送的探测信号,所述管理卫星管理有一个或多个服务卫星;
发送模块1402,用于向管理卫星发送呼吸信号,所述呼吸信号携带所述用户终端的信息,所述用户终端的信息用于确定服务所述用户终端的服务卫星信息。
可选的,生成模块1403,用于在所述超小区内生成唯一的用户标识,所述用户终端的信息包括所述用户标识。所述生成模块,用于通过所述超小区标识和所述用户终端的设备标识生成用户标识。
可选的,所述接收模块1402,还用于接收所述管理卫星发送的资源调度信息,所述资源调度信息包括服务所述用户终端的服务卫星信息。
可选的,所述发送模块1402还用于向所述管理卫星发送通信请求信号。
可选的,所述用户终端还包括获取模块1404,用于获取所述用户终端的位置信息,所述用户终端的信息包括所述位置信息。
可选的,所述用户终端还包括通信模块1405,用于与所述服务卫星建立无线资源控制(RRC,Radio Resource Control)连接,实现所述用户终端与服务卫星之间的业务通信。
图15所示为本申请提供的一种用户终端1500的结构示意图,用户终端1500包括:
存储器1501,用于存储计算机程序指令;
处理器1502,用于执行所述存储器存储的所述程序;
当所述程序被执行时,所述处理器执行所述存储器存储的所述计算机程序指令,以使所述用户终端实现上述任一实施例中用户终端相关的卫星通信方法。
可选的,用户终端1500还包括收发器1503,当所述程序被执行时,所述处理器执行所述存储器存储的所述计算机程序指令,以使所述用户终端的收发器实现上述任一实施例中用户终端相关的 卫星通信方法中接收和发送的步骤。
图16所示为本申请提供的一种管理卫星(A类卫星)1600的结构示意图,管理卫星1600包括:
发送模块1601,用于在管理信道上向用户终端发送探测信号,所述管理卫星管理有一个或多个服务卫星;
接收模块1602,用于接收所述用户终端发送的呼吸信号,所述呼吸信号携带所述用户终端的信息,所述用户终端的信息用于确定服务所述用户终端的服务卫星信息。
可选的,还包括确定模块1603,用于根据所述用户终端的信息确定资源调度信息,所述资源调度信息包括服务所述用户终端的服务卫星的信息。
可选的,所述接收模块1602还用于,接收地面站发送的所述资源调度信息。
可选的,所述发送模块1601还用于,发送所述资源调度信息给服务卫星,或者发送所述资源调度信息给目标服务卫星和原服务卫星;或者发送所述资源调度信息给所述用户终端,或者发送所述资源调度信息给目标管理卫星。
可选的,所述发送模块1601,还用于向所述地面站发送从所述用户终端收到的所述呼吸信号。
可选的,所述接收模块1602,还用于接收所述服务卫星发送的第一业务数据,所述第一业务数据包括所述服务卫星对来自所述用户终端的通信数据进行射频信号处理后的数据。
可选的,所述发送模块1601,还用于向所述服务卫星发送所述第二业务数据,所述第二业务数据包括所述管理卫星对所述第一业务数据进行基带信号处理后的数据。
可选的,所述管理卫星还包括释放模块1604,所述释放模块,用于在将调度结果发送给目标管理卫星之后,进行资源释放。
可选的,所述发送模块1601,还用于在所述管理卫星接收所述用户终端发送的通信请求信号之后,将所述通信请求信号发送给所述地面站处理。
可选的,所述管理卫星还包括通信模块1605,用于与服务卫星建立无线资源控制(RRC,Radio Resource Control)连接。
图17所示为本申请提供的一种管理卫星(A类卫星)1700的结构示意图,管理卫星1700包括:
存储器1701,用于存储计算机程序指令;
处理器1702,用于执行所述存储器存储的所述程序;
当所述程序被执行时,所述处理器执行所述存储器存储的所述计算机程序指令,以使所述A类卫星实现上述任一实施例中A类卫星相关的卫星通信方法。
可选的,管理卫星还包括收发器1703,当所述程序被执行时,所述处理器执行所述存储器存储的所述计算机程序指令,以使所述管理卫星的收发器实现上述任一实施例中管理卫星相关的卫星通信方法的接收和发送的步骤。
可选的,A类卫星1700还可以包括基带单元1704;用于对上述任一实施例中所述的第一业务数据进行基带信号处理。
本申请实施例还提供了一种计算机可读介质,其上存储有计算机程序指令,该计算机程序指令被计算机执行时实现上述任一实施例中的方法。
本申请实施例还提供了一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一实施例中的方法。
本申请实施例还提供一种卫星通信系统,其包括用户终端和A类卫星。例如,所述用户终端可 以是上述实施例提供的用户终端1400,所述A类卫星可以是上述实施例提供的A类卫星1600;或者,所述用户终端可以是上述实施例提供的用户终端1500,所述A类卫星可以是上述实施例提供的A类卫星1700。
本申请实施例还提供了一种系统芯片,该系统芯片包括:处理单元和通信单元。该处理单元,例如可以是处理器。该通信单元例如可以是输入/输出接口、管脚或电路等。该处理单元可执行计算机指令,以使该通信装置内的芯片执行上述本申请实施例提供的任一种的方法。
本申请实施例描述的各示例的单元及方法过程,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。例如多个单元或组件可以结合或者可以集成到另一个系统。方法中的一些步骤可以忽略,或不执行。此外,各个单元相互之间的耦合或直接耦合或通信连接可以是通过一些接口实现,这些接口可以是电性、机械或其它的形式。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,既可以位于一个地方,也可以分布到多个网络单元上。另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者通过所述计算机可读存储介质进行传输。所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心、等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带、U盘、ROM、RAM等)、光介质(例如,CD、DVD等)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。尽管在此结合各实施例对本申请进行了描述,然而,在实施所要求保护的本申请过程中,本领域技术人员通过查看所述附图、公开内容、以及所附权利要求书,可理解并实现所述公开实施例的其他变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其他单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (24)

  1. 一种卫星通信方法,其特征在于,所述方法包括:
    用户终端在管理信道上接收管理卫星发送的探测信号,所述管理卫星管理有一个或多个服务卫星;
    所述用户终端向所述管理卫星发送呼吸信号,所述呼吸信号携带所述用户终端的信息,所述用户终端的信息用于确定服务所述用户终端的服务卫星信息。
  2. 根据权利要求1所述的方法,其特征在于,所述管理卫星管理的一个或多个服务卫星所覆盖区域的集合构成一个超小区;或者所述管理卫星发射的若干管理波束覆盖的区域构成一个超小区;或者多个管理卫星覆盖区域的集合构成一个超小区;或者多个管理卫星管理的多个服务卫星所覆盖区域的集合构成一个超小区。
  3. 根据权利要求2所述的方法,其特征在于,所述用户终端在所述超小区内具有唯一的用户标识,所述用户终端的信息包括所述用户标识。
  4. 根据权利要求3所述的方法,其特征在于,所述超小区具有一个超小区标识,所述用户标识是根据所述超小区标识和所述用户终端的设备标识确定的。
  5. 根据权利要求1-4任意一项所述的方法,其特征在于,所述方法还包括:
    所述用户终端接收所述管理卫星发送的资源调度信息,所述资源调度信息包括服务所述用户终端的服务卫星信息。
  6. 一种卫星通信方法,其特征在于,所述方法包括:
    管理卫星在管理信道上向用户终端发送探测信号,所述管理卫星管理有一个或多个服务卫星;
    所述管理卫星接收所述用户终端发送的呼吸信号,所述呼吸信号携带所述用户终端的信息,所述用户终端的信息用于确定服务所述用户终端的服务卫星信息。
  7. 根据权利要求6所述的方法,其特征在于,所述管理卫星管理的一个或多个服务卫星所覆盖区域的集合构成一个超小区;或者所述管理卫星发射的多个管理波束覆盖的区域构成一个超小区;或者多个管理卫星覆盖区域的集合构成一个超小区;或者多个管理卫星管理的多个服务卫星所覆盖区域的集合构成一个超小区。
  8. 根据权利要求7所述的方法,其特征在于,所述用户终端在所述超小区内具有唯一的用户标识,所述用户终端的信息包括所述用户标识。
  9. 根据权利要求8所述的方法,其特征在于,所述超小区具有一个超小区标识,所述用户标识是根据所述超小区标识和所述用户终端的设备标识确定的。
  10. 根据权利要求6-9任意一项所述的方法,其特征在于,所述方法还包括:所述管理卫星根据所述用户终端的信息确定资源调度信息,所述资源调度信息包括服务所述用户终端的服务卫星的信息。
  11. 一种用户终端,其特征在于,所述用户终端包括:接收模块、发送模块;
    所述接收模块,用于接收管理卫星在管理信道上发送的探测信号,所述管理卫星管理有一个或多个服务卫星;
    所述发送模块,用于向管理卫星发送呼吸信号,所述呼吸信号携带所述用户终端的信息,所述用户终端的信息用于确定服务所述用户终端的服务卫星信息。
  12. 根据权利要求11所述的用户终端,其特征在于,所述管理卫星管理的一个或多个服务卫 星所覆盖区域的集合构成一个超小区;或者所述管理卫星发射的若干管理波束覆盖的区域构成一个超小区;或者多个管理卫星覆盖区域的集合构成一个超小区;或者多个管理卫星管理的多个服务卫星所覆盖区域的集合构成一个超小区,所述超小区具有一个超小区标识。
  13. 根据权利要求12所述的用户终端,其特征在于,所述用户终端还包括:生成模块,用于在所述超小区内生成唯一的用户标识,所述用户终端的信息包括所述用户标识。
  14. 根据权利要求13所述的用户终端,其特征在于,所述生成模块用于通过所述超小区标识和所述用户终端的设备标识生成用户标识。
  15. 根据权利要求11-14任意一项所述的用户终端,其特征在于,所述接收模块还用于接收所述管理卫星发送的资源调度信息,所述资源调度信息包括服务所述用户终端的服务卫星信息。
  16. 一种管理卫星,其特征在于,所述管理卫星管理有一个或多个服务卫星;所述管理卫星包括:发送模块和接收模块;
    所述发送模块,用于在管理信道上向用户终端发送探测信号;
    所述接收模块,用于接收所述用户终端发送的呼吸信号,所述呼吸信号携带所述用户终端的信息,所述用户终端的信息用于确定服务所述用户终端的服务卫星信息。
  17. 根据权利要求16所述的管理卫星,其特征在于,所述管理卫星管理的一个或多个服务卫星所覆盖区域的集合构成一个超小区;或者所述管理卫星发射的多个管理波束覆盖的区域构成一个超小区;或者多个管理卫星覆盖区域的集合构成一个超小区;或者多个管理卫星管理的多个服务卫星所覆盖区域的集合构成一个超小区。
  18. 根据权利要求17所述的管理卫星,其特征在于,所述用户终端在所述超小区内具有唯一的用户标识,所述用户终端的信息包括所述用户标识。
  19. 根据权利要求18所述的管理卫星,其特征在于,所述超小区具有一个超小区标识,所述用户标识是根据所述超小区标识和所述用户终端的设备标识确定的。
  20. 根据权利要求16-19任意一项所述的管理卫星,其特征在于,所述管理卫星还包括:确定模块,用于根据所述用户终端的信息确定资源调度信息,所述资源调度信息包括服务所述用户终端的服务卫星的信息。
  21. 根据权利要求19或20所述的管理卫星,其特征在于,所述发送模块,还用于发送所述资源调度信息给服务卫星;或者在发生服务卫星切换的情况下,发送所述资源调度信息给目标服务卫星和原服务卫星;或者发送所述资源调度信息给所述用户终端;或者在发生服务卫星切换的情况下,发送所述资源调度信息给目标管理卫星。
  22. 一种用户终端,其特征在于,包括:处理器、存储器,所述处理器与所述存储器连接;
    所述存储器用于存储计算机程序指令,当所述用户终端运行时,所述处理器执行所述存储器存储的所述计算机程序指令,以使所述用户终端执行如权利要求1-5中任意一项所述的卫星通信方法。
  23. 一种管理卫星,其特征在于,包括:处理器、存储器,所述处理器与所述存储器连接;
    所述存储器用于存储计算机程序指令,当所述管理卫星运行时,所述处理器执行所述存储器存储的所述计算机程序指令,以使所述管理卫星执行如权利要求6-10中任意一项所述的卫星通信方法。
  24. 一种计算机可读存储介质,其特征在于,包括指令,当其在计算机上运行时,使得所述计算机执行如权利要求1-10中任意一项所述的卫星通信方法。
PCT/CN2019/110378 2018-10-25 2019-10-10 基于卫星网络的通信方法、装置及系统 WO2020083030A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/239,117 US11876602B2 (en) 2018-10-25 2021-04-23 Communication method, apparatus, and system based on satellite network

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811249213.2 2018-10-25
CN201811249213.2A CN111106865B (zh) 2018-10-25 2018-10-25 基于卫星网络的通信方法、装置及系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/239,117 Continuation US11876602B2 (en) 2018-10-25 2021-04-23 Communication method, apparatus, and system based on satellite network

Publications (1)

Publication Number Publication Date
WO2020083030A1 true WO2020083030A1 (zh) 2020-04-30

Family

ID=70331897

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/110378 WO2020083030A1 (zh) 2018-10-25 2019-10-10 基于卫星网络的通信方法、装置及系统

Country Status (3)

Country Link
US (1) US11876602B2 (zh)
CN (1) CN111106865B (zh)
WO (1) WO2020083030A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113824639A (zh) * 2021-09-06 2021-12-21 天地信息网络研究院(安徽)有限公司 一种复杂度在终端的卫星网络标签交换方法
CN114007182A (zh) * 2020-07-28 2022-02-01 大唐移动通信设备有限公司 一种相对位置确定方法、终端及网络侧设备
CN114553293A (zh) * 2022-01-14 2022-05-27 上海卫星工程研究所 支持气象应急灾害信息处理分发系统
WO2022160739A1 (zh) * 2021-01-31 2022-08-04 华为技术有限公司 卫星网络路由方法、装置、设备、系统及可读存储介质

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111106865B (zh) * 2018-10-25 2021-12-14 华为技术有限公司 基于卫星网络的通信方法、装置及系统
CN111565067B (zh) * 2020-05-09 2022-02-01 重庆邮电大学 一种卫星通信系统中的移动管理的实现方法
US11949496B1 (en) * 2020-06-05 2024-04-02 Space Exploration Technologies Corp. Low latency schedule-driven handovers
CN113810095B (zh) * 2020-06-15 2022-12-06 华为技术有限公司 确定数字处理操作切分点的方法及装置
CN113873667A (zh) * 2020-06-30 2021-12-31 大唐移动通信设备有限公司 一种调度方法、装置、设备及可读存储介质
CN113973313B (zh) * 2020-07-06 2024-04-09 中国移动通信有限公司研究院 移动性管理方法及设备
WO2022011719A1 (zh) * 2020-07-17 2022-01-20 北京小米移动软件有限公司 基于卫星通信的数据传输方法及装置、存储介质
CN111866878B (zh) * 2020-07-17 2021-12-03 中国科学院上海微系统与信息技术研究所 一种卫星通信系统中的终端登录方法
CN112019255B (zh) * 2020-08-20 2022-07-01 航天科工空间工程发展有限公司 一种透明和处理混合的低轨卫星间组网通信系统和方法
CN112311444B (zh) * 2020-10-20 2022-08-23 陕西航天技术应用研究院有限公司 一种多维度卫星通信资源动态调度方法、装置及系统
CN112585888B (zh) * 2020-11-24 2023-12-01 北京小米移动软件有限公司 数据传输方法及装置、通信设备和存储介质
CN114567363A (zh) * 2020-11-27 2022-05-31 中国移动通信有限公司研究院 卫星间信息交互的方法和卫星
CN112787707B (zh) * 2020-12-31 2022-12-23 南京中科晶上通信技术有限公司 基于终端侧的卫星移动通信系统物理专用信道的切换方法
CN113115461B (zh) * 2021-04-23 2023-04-07 北京科技大学 一种基于qmix的无线资源分配优化方法及装置
CN113543173A (zh) * 2021-06-29 2021-10-22 中国电子科技集团公司电子科学研究院 卫星5g融合网络的网元部署架构和网元部署方法
CN113825140A (zh) * 2021-09-03 2021-12-21 天地信息网络研究院(安徽)有限公司 一种卫星通信中用户移动性管理方法
WO2023108388A1 (zh) * 2021-12-14 2023-06-22 Oppo广东移动通信有限公司 卫星通信方法、装置、设备、存储介质、程序产品以及芯片
WO2023132767A1 (en) * 2022-01-05 2023-07-13 Telefonaktiebolaget Lm Ericsson (Publ) Measurement procedure for conditional cell change in a non-terrestrial network (ntn)
CN115001569B (zh) * 2022-08-03 2022-10-21 成都星联芯通科技有限公司 卫星通信终端管理方法、装置及存储介质
CN115441937A (zh) * 2022-09-05 2022-12-06 北京顺圆和合科技有限公司 一种抗干扰的低轨道卫星通信系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001026251A2 (en) * 1999-10-01 2001-04-12 Motorola, Inc. Demand assigned spatial multiplexing
CN104219718A (zh) * 2014-08-27 2014-12-17 深圳市邦彦信息技术有限公司 一种卫星通信系统内的切换方法和装置
CN105812046A (zh) * 2016-03-10 2016-07-27 中国人民解放军国防科学技术大学 一种卫星移动通信系统心跳消息的实现系统及方法
CN108112281A (zh) * 2015-05-01 2018-06-01 高通股份有限公司 用于卫星通信的切换
CN108141277A (zh) * 2015-10-13 2018-06-08 高通股份有限公司 用于低地球轨道(leo)卫星系统中的卫星间切换的方法和装置

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5810297A (en) * 1996-04-29 1998-09-22 Basuthakur; Sibnath Satellite cluster attitude/orbit determination and control system and method
US6341249B1 (en) * 1999-02-11 2002-01-22 Guang Qian Xing Autonomous unified on-board orbit and attitude control system for satellites
US8255149B2 (en) * 1999-07-12 2012-08-28 Skybitz, Inc. System and method for dual-mode location determination
JP3518488B2 (ja) * 2000-06-01 2004-04-12 三菱電機株式会社 衛星通信データ配信方法、その方法に使用する子局及び親局
CN100442910C (zh) * 2005-01-11 2008-12-10 华为技术有限公司 定位提醒方法
EP1913709B1 (en) * 2005-08-09 2010-04-28 ATC Technologies, LLC Satellite communications systems and methods using substantially co-located feeder link antennas
US8538323B2 (en) * 2006-09-26 2013-09-17 Viasat, Inc. Satellite architecture
US10200251B2 (en) * 2009-06-11 2019-02-05 Talari Networks, Inc. Methods and apparatus for accessing selectable application processing of data packets in an adaptive private network
CN102036228A (zh) * 2009-09-29 2011-04-27 中兴通讯股份有限公司 一种实现终端切换的方法及系统
US8271534B2 (en) * 2010-10-01 2012-09-18 At&T Intellectual Property I, Lp System and method for presenting information associated with a media program
CN102122171B (zh) * 2010-12-28 2013-04-17 北京航空航天大学 一种基于智能移动机器人的多微纳探测器组网联合演示验证系统
US8712321B1 (en) * 2013-01-07 2014-04-29 Viasat, Inc. Satellite fleet deployment
CN103945379B (zh) * 2013-01-23 2018-02-27 上海诺基亚贝尔股份有限公司 一种在接入网中实现接入认证和数据通信的方法
CN103650559B (zh) * 2013-06-29 2018-03-09 华为技术有限公司 信号测量方法和装置
EP3069555B1 (en) * 2013-11-15 2019-06-19 Deutsche Telekom AG Improved operation of a cellular telecommunications network in an edge region of the radio coverage area
CN104580430B (zh) * 2014-12-27 2019-03-08 北京奇虎科技有限公司 一种基于通讯群组推送信息的方法和装置
JP6572629B2 (ja) * 2015-06-03 2019-09-11 ソニー株式会社 情報処理装置、情報処理方法及びプログラム
CN113194514A (zh) * 2015-10-13 2021-07-30 华为技术有限公司 一种子带切换的方法、设备及系统
CN105872993B (zh) * 2016-03-23 2019-05-10 中国移动通信集团江苏有限公司 一种基于网络状态的信息请求调度方法及装置
CN107231183A (zh) * 2016-03-24 2017-10-03 北京信威通信技术股份有限公司 路由策略信息的生成方法及装置、路由方法及装置
CN105790824B (zh) * 2016-04-28 2019-06-18 中国移动通信集团江苏有限公司 一种面向卫星系统的多终端寻址方法及装置
CN107734590B (zh) * 2016-08-12 2020-10-30 中国电信股份有限公司 一种蜂窝用户分簇通信方法、系统及eNodeB、终端
CN108089216B (zh) * 2016-11-21 2021-11-05 千寻位置网络有限公司 辅助定位方法和系统
FR3059860B1 (fr) * 2016-12-02 2020-03-06 Airbus Defence And Space Sas Charge utile de satellite a lien passerelle optique, systeme de telecommunications par satellite et procede de controle
CN108574968A (zh) * 2017-03-13 2018-09-25 中兴通讯股份有限公司 基站、混合组网资源信息获取、上报及小区切换方法
US20210036768A1 (en) * 2018-02-13 2021-02-04 Satixfy Israel Ltd. A Method for Implementing Beam Hopping in a Satellite Communications Network
US10917166B2 (en) * 2018-07-23 2021-02-09 Hughes Network Systems, Llc Dynamic allocation of satellite gateway assignments
CN111106865B (zh) * 2018-10-25 2021-12-14 华为技术有限公司 基于卫星网络的通信方法、装置及系统
JP7419369B2 (ja) * 2018-11-19 2024-01-22 ヴィアサット,インコーポレイテッド 離散された衛星コンステレーション
US11737043B2 (en) * 2021-01-15 2023-08-22 Rakuten Mobile, Inc. Satellite signal propagation delay variation compensation
KR20230000804A (ko) * 2021-06-25 2023-01-03 삼성전자주식회사 위성을 이용하는 무선 통신 시스템에서 통신 방법 및 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001026251A2 (en) * 1999-10-01 2001-04-12 Motorola, Inc. Demand assigned spatial multiplexing
CN104219718A (zh) * 2014-08-27 2014-12-17 深圳市邦彦信息技术有限公司 一种卫星通信系统内的切换方法和装置
CN108112281A (zh) * 2015-05-01 2018-06-01 高通股份有限公司 用于卫星通信的切换
CN108141277A (zh) * 2015-10-13 2018-06-08 高通股份有限公司 用于低地球轨道(leo)卫星系统中的卫星间切换的方法和装置
CN105812046A (zh) * 2016-03-10 2016-07-27 中国人民解放军国防科学技术大学 一种卫星移动通信系统心跳消息的实现系统及方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114007182A (zh) * 2020-07-28 2022-02-01 大唐移动通信设备有限公司 一种相对位置确定方法、终端及网络侧设备
CN114007182B (zh) * 2020-07-28 2022-09-13 大唐移动通信设备有限公司 一种相对位置确定方法、终端及网络侧设备
WO2022160739A1 (zh) * 2021-01-31 2022-08-04 华为技术有限公司 卫星网络路由方法、装置、设备、系统及可读存储介质
CN113824639A (zh) * 2021-09-06 2021-12-21 天地信息网络研究院(安徽)有限公司 一种复杂度在终端的卫星网络标签交换方法
CN114553293A (zh) * 2022-01-14 2022-05-27 上海卫星工程研究所 支持气象应急灾害信息处理分发系统
CN114553293B (zh) * 2022-01-14 2024-04-09 上海卫星工程研究所 支持气象应急灾害信息处理分发系统

Also Published As

Publication number Publication date
CN111106865B (zh) 2021-12-14
US20210242934A1 (en) 2021-08-05
US11876602B2 (en) 2024-01-16
CN111106865A (zh) 2020-05-05

Similar Documents

Publication Publication Date Title
WO2020083030A1 (zh) 基于卫星网络的通信方法、装置及系统
US11997725B2 (en) Satellite communication method, apparatus, and system
CN111800830B (zh) 一种通信方法及装置
CN115315931A (zh) 用于基于边缘计算的蜂窝网络系统的动态服务发现和卸载框架
US20230135073A1 (en) Signaling efficiency improvements in non-terrestrial networks
CN111866928A (zh) 一种邻区信息配置的方法和装置
WO2022082757A1 (zh) 通信方法和装置
WO2021022489A1 (zh) 切换控制方法、装置、设备及存储介质
US20220279393A1 (en) Nr v2x mobility
CN114698044A (zh) 一种小区选择方法及装置
US20230082175A1 (en) Method, apparatus and computer program product for management of sidelink based relaying
US20220353636A1 (en) Positioning configuration method and electronic device
US20230231614A1 (en) Apparatus for selecting radio beams
CN116918384A (zh) 用于使用有条件切换和小区间波束管理报告的快速小区选择的方法、装置和计算机程序产品
CN116602010A (zh) 小数据传输控制
WO2024026640A1 (en) Apparatus, method, and computer program
RU2787012C2 (ru) Система, устройство и способ спутниковой связи
WO2024037371A1 (en) Apparatus, method, and computer program
WO2024060197A1 (en) Group scheduling and/or group message transmission
US20230388890A1 (en) Handover of a communication session
WO2024007176A1 (en) Methods, devices, and medium for communication
US20230413219A1 (en) Method and apparatus for positioning using sidelink information
WO2024093733A1 (zh) 一种通信方法、通信设备、计算机可读存储介质及程序产品
WO2023164838A1 (zh) 无线通信的方法及设备
WO2022042476A1 (zh) 一种定位方法及相关装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19876092

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19876092

Country of ref document: EP

Kind code of ref document: A1