WO2023108388A1 - 卫星通信方法、装置、设备、存储介质、程序产品以及芯片 - Google Patents

卫星通信方法、装置、设备、存储介质、程序产品以及芯片 Download PDF

Info

Publication number
WO2023108388A1
WO2023108388A1 PCT/CN2021/137701 CN2021137701W WO2023108388A1 WO 2023108388 A1 WO2023108388 A1 WO 2023108388A1 CN 2021137701 W CN2021137701 W CN 2021137701W WO 2023108388 A1 WO2023108388 A1 WO 2023108388A1
Authority
WO
WIPO (PCT)
Prior art keywords
orbit satellite
low
base station
cell
ground base
Prior art date
Application number
PCT/CN2021/137701
Other languages
English (en)
French (fr)
Inventor
邢金强
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN202180103023.3A priority Critical patent/CN118044303A/zh
Priority to PCT/CN2021/137701 priority patent/WO2023108388A1/zh
Publication of WO2023108388A1 publication Critical patent/WO2023108388A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the embodiment of the present application relates to the technical field of satellite communication, and specifically relates to a satellite communication method, device, equipment, storage medium, program product and chip
  • the satellite communication system is a typical non-terrestrial mobile communication system.
  • the satellite and the ground base station establish a communication connection through the ground gateway, and the satellite can transmit the communication signal of the ground base station, thereby supplementing the area that the ground base station cannot cover. , especially for areas that cannot be covered by ground base stations such as remote areas, deserts, mountains, and oceans, satellites can effectively cover them.
  • satellites in a satellite communication system include low-orbit satellites and high-orbit satellites.
  • the cells corresponding to high-orbit satellites (which can be called high-orbit satellite cells) have relatively wide coverage, while the cells corresponding to low-orbit satellites
  • the coverage of the low-orbit satellite cell (which may be called a low-orbit satellite cell) is relatively small, and the coverage of the low-orbit satellite cell will move with the movement of the low-orbit satellite.
  • embodiments of the present application provide a satellite communication method, device, equipment, storage medium, program product, and chip.
  • an embodiment of the present application provides a satellite communication method, the method comprising:
  • the user equipment UE receives the downlink signal sent by the high-orbit satellite, and the downlink signal carries the system information of the low-orbit satellite cell and the ephemeris information of the low-orbit satellite corresponding to the low-orbit satellite cell; the UE based on the system information and the The ephemeris information is connected to the low-orbit satellite cell.
  • an embodiment of the present application provides a satellite communication method, the method comprising:
  • the high-orbit satellite sends a downlink signal, and the downlink signal carries the system information of the low-orbit satellite cell and the ephemeris information of the low-orbit satellite corresponding to the low-orbit satellite cell; wherein, the system information and the ephemeris information are used for UE Accessing a low-orbit satellite cell based on the system information and the ephemeris information.
  • an embodiment of the present application provides a satellite communication method, the method comprising:
  • the UE establishes dual connections with the low-orbit satellite cell and the high-orbit satellite cell; the high-orbit satellite corresponding to the high-orbit satellite cell is used to forward the downlink data of the ground base station to the UE, and the low-orbit satellite corresponding to the low-orbit satellite cell is used for receiving and forwarding the uplink data sent by the UE to the ground base station, and forwarding the downlink data of the ground base station to the UE.
  • an embodiment of the present application provides a satellite communication method, the method comprising:
  • the ground base station receives the connection support capability of the UE reported through the low-orbit satellite cell after the UE accesses the low-orbit satellite cell; the ground base station configures a high-orbit satellite cell for the UE according to the connection support capability, so that all The UE establishes a downlink connection with the high-orbit satellite cell, wherein the high-orbit satellite corresponding to the high-orbit satellite cell is used to forward the downlink data of the ground base station to the UE, and the low-orbit satellite corresponding to the low-orbit satellite cell is used to receive and Forwarding the uplink data sent by the UE to the ground base station, and for forwarding the downlink data of the ground base station to the UE.
  • an embodiment of the present application provides a satellite communication method, the method comprising:
  • the low-orbit satellite receives and forwards the connection support capability of the UE reported by the UE to the ground base station, so that the ground base station configures a high-orbit satellite cell for the UE according to the connection support capability; wherein, the high-orbit satellite cell corresponds to The high-orbit satellite is used to forward the downlink data of the ground base station to the UE, and the low-orbit satellite is used to receive and forward the uplink data sent by the UE to the ground base station, and is used to forward the ground base station to the UE downlink data.
  • an embodiment of the present application provides a satellite communication device, the device comprising:
  • the receiving module is used to receive the downlink signal sent by the high-orbit satellite, and the downlink signal carries the system information of the low-orbit satellite cell and the ephemeris information of the low-orbit satellite corresponding to the low-orbit satellite cell;
  • An access module configured to access a low-orbit satellite cell based on the system information and the ephemeris information.
  • an embodiment of the present application provides a satellite communication device, the device comprising:
  • a sending module configured to send a downlink signal, the downlink signal carrying the system information of the low-orbit satellite cell and the ephemeris information of the low-orbit satellite corresponding to the low-orbit satellite cell; wherein, the system information and the ephemeris information are used for For the UE to access a low-orbit satellite cell based on the system information and the ephemeris information.
  • an embodiment of the present application provides a satellite communication device, the device comprising:
  • the connection module is used to establish dual connections with the low-orbit satellite cell and the high-orbit satellite cell; among them, the high-orbit satellite corresponding to the high-orbit satellite cell is used to forward the downlink data of the ground base station to the UE, and the low-orbit satellite corresponding to the low-orbit satellite cell It is used for receiving and forwarding the uplink data sent by the UE to the ground base station, and for forwarding the downlink data of the ground base station to the UE.
  • an embodiment of the present application provides a satellite communication device, the device comprising:
  • the receiving module is used to receive the connection support capability of the UE reported by the low-orbit satellite cell after the UE accesses the low-orbit satellite cell;
  • a configuration module configured to configure a high-orbit satellite cell for the UE according to the connection support capability, so that the UE can establish a downlink connection with the high-orbit satellite cell, wherein the high-orbit satellite corresponding to the high-orbit satellite cell is used to send to the high-orbit satellite cell
  • the UE forwards the downlink data of the ground base station, and the low-orbit satellite corresponding to the low-orbit satellite cell is used for receiving and forwarding the uplink data sent by the UE to the ground base station, and for forwarding the data of the ground base station to the UE. downlink data.
  • an embodiment of the present application provides a satellite communication device, the device comprising:
  • the communication module is configured to receive and forward the connection support capability of the UE reported by the UE to the ground base station, so that the ground base station configures a high-orbit satellite cell for the UE according to the connection support capability; wherein, the high-orbit satellite cell
  • the corresponding high-orbit satellite is used to forward the downlink data of the ground base station to the UE
  • the low-orbit satellite corresponding to the low-orbit satellite cell is used to receive and forward the uplink data sent by the UE to the ground base station, and is used to transmit the uplink data sent by the UE to the ground base station.
  • the UE forwards the downlink data of the ground base station.
  • the embodiment of the present application provides a communication device, the communication device includes: a processor and a memory, the memory is used to store a computer program, and the processor is used to call and run the program stored in the memory A computer program for performing the method described in any one of the first to fifth aspects above.
  • the embodiments of the present application provide a computer-readable storage medium, the computer-readable storage medium is used to store a computer program, and the computer program enables the computer to execute any one of the above-mentioned first to fifth aspects the method described.
  • the embodiments of the present application provide a chip, the chip includes a processing circuit for calling and running a computer program from a memory, so that the device installed with the chip executes the above-mentioned first to fifth aspects any one of the methods described.
  • the embodiments of the present application provide a computer program product, the computer program product includes computer program instructions, and the computer program instructions cause the computer to execute the method described in any one of the first to fifth aspects above .
  • an embodiment of the present application provides a computer program, the computer program causes a computer to execute the method described in any one of the first to fifth aspects above.
  • the UE by carrying the system information of the low-orbit satellite cell and the ephemeris information of the low-orbit satellite corresponding to the low-orbit satellite cell in the downlink signal sent by the high-orbit satellite, the UE can transmit information based on the high-orbit satellite.
  • the system information and the ephemeris information in the downlink signal are connected to the low-orbit satellite cell, so that the time for the UE to search for the low-orbit satellite cell can be accelerated, and the power consumption of the UE can be saved.
  • the embodiment of the present application provides In the technical solution, the UE establishes dual connections with the low-orbit satellite cell and the high-orbit satellite cell, so that communication continuity can be maintained and communication capacity can be expanded.
  • Fig. 1 is a schematic diagram of a satellite communication system provided by an embodiment
  • Fig. 2 is a schematic diagram of a satellite in a satellite communication system provided by an embodiment
  • Fig. 3 is a schematic diagram of a satellite communication system provided by an embodiment
  • Fig. 4 is a schematic diagram of a satellite communication system provided by an embodiment
  • Fig. 5 is a schematic diagram of a satellite communication system provided by an embodiment
  • FIG. 6 is a schematic diagram of cell coverage provided by an embodiment
  • Figure 7 is a schematic diagram of cell coverage provided by an embodiment
  • FIG. 8 is a flowchart of a satellite communication method provided by an embodiment
  • FIG. 9 is a flowchart of a satellite communication method provided by an embodiment
  • FIG. 10 is a flowchart of a satellite communication method provided by an embodiment
  • Fig. 11 is a flowchart of a satellite communication method provided by an embodiment
  • Fig. 12 is a flowchart of a satellite communication method provided by an embodiment
  • Fig. 13 is a schematic diagram of satellite communication provided by an embodiment
  • Fig. 14 is a flowchart of a satellite communication method provided by an embodiment
  • Fig. 15 is a flowchart of a satellite communication method provided by an embodiment
  • Fig. 16 is a flowchart of a satellite communication method provided by an embodiment
  • Fig. 17 is a flowchart of a satellite communication method provided by an embodiment
  • Fig. 18 is a flowchart of a satellite communication method provided by an embodiment
  • Fig. 19 is a flowchart of a satellite communication method provided by an embodiment
  • Fig. 20 is a block diagram of a satellite communication device provided by an embodiment
  • Fig. 21 is a block diagram of a satellite communication device provided by an embodiment
  • Fig. 22 is a block diagram of a satellite communication device provided by an embodiment
  • Fig. 23 is a block diagram of a satellite communication device provided by an embodiment
  • Fig. 24 is a block diagram of a satellite communication device provided by an embodiment
  • Fig. 25 is a block diagram of a satellite communication device provided by an embodiment
  • Fig. 26 is a block diagram of a satellite communication device provided by an embodiment
  • Fig. 27 is a block diagram of a communication device provided by an embodiment
  • Fig. 28 is a block diagram of a chip provided by an embodiment.
  • Satellite communication system is a typical non-terrestrial mobile communication system.
  • a satellite communication system generally can include a satellite 101, a ground gateway 102, a ground base station 103, and a core network 104, wherein the satellite 101 and the ground base station 103 establish a communication connection through the ground gateway 102, and the ground base station 103 and the core network 104 Establish a communication connection.
  • the satellite 101 can retransmit the communication signal of the ground base station 103, so as to supplement the area that the ground base station 103 cannot cover.
  • UE English: User Equipment; Chinese: User Equipment
  • satellites 101 in a satellite communication system may include low-orbit satellites and high-orbit satellites.
  • the low-orbit satellites and high-orbit satellites are relative concepts.
  • a satellite with a relatively low flying altitude is called a low-orbit satellite
  • a satellite with a relatively high flying altitude is called a high-orbit satellite.
  • ground base station interface between the high-orbit satellite g1 and the low-orbit satellite g2, that is, the high-orbit satellite g1 and the low-orbit satellite g2 establish a communication connection with the same ground base station through a ground gateway, or, the high-orbit satellite Establish communication connections with low-orbit satellites through ground gateways and different ground base stations with interfaces between base stations.
  • ground base stations can coordinate and configure high-orbit satellites and low-orbit satellites.
  • a cell corresponding to a high-orbit satellite (which may be called a high-orbit satellite cell) has a relatively wide coverage area
  • a cell corresponding to a low-orbit satellite (which may be called a low-orbit satellite cell) has a relatively small coverage area, and , the coverage area of the low-orbit satellite cell will move with the movement of the low-orbit satellite.
  • low-orbit satellite cells Since the coverage of low-orbit satellite cells is relatively small, and the coverage of low-orbit satellite cells will move with the movement of low-orbit satellites, it is difficult for low-orbit satellite cells to achieve continuous coverage, that is, there are coverage holes , in contrast, the coverage of high-orbit satellite cells is relatively large, and high-orbit satellites generally do not have coverage blind spots.
  • the UE is within the coverage of the low-orbit satellite cell, and it can communicate with the ground base station through the low-orbit satellite cell.
  • the time period from t2 to t3 due to the current coverage of UE The low-orbit satellite flies away, but the new low-orbit satellite has not arrived. Therefore, during this period of time, the UE has no low-orbit satellite coverage, and the new low-orbit satellite arrives within the time between t3 and t4, which makes the UE re-enter the low-orbit satellite cell within the coverage.
  • the communication of the UE is discontinuous.
  • UE can only receive downlink signals in high-orbit satellite cells, but cannot perform uplink communication.
  • the distance between low-orbit satellites and the ground Recently, the UE can generally perform uplink and downlink bidirectional communication in the low-orbit satellite cell.
  • the satellite communication system Since the satellite communication system has a different architecture and characteristics from the general wireless communication system, it is necessary to conduct separate research on the satellite communication system. At present, how to improve the performance of the satellite communication system has become a key research direction.
  • the embodiment of the present application provides a satellite communication method, which can be applied to UE, please refer to FIG. 8, the satellite communication method includes the following steps:
  • step 801 the UE receives a downlink signal sent by a high-orbit satellite.
  • the downlink signal carries the system information of the low-orbit satellite cell and the ephemeris information of the low-orbit satellite corresponding to the low-orbit satellite cell.
  • the downlink signal may be system broadcast information
  • the system information may include the operating frequency and/or bandwidth of the low-orbit satellite cell
  • the ephemeris information may include the operating speed, orbit Position and other information used to track, predict, calculate, and describe the operational status of low-orbit satellites.
  • Step 802 the UE accesses the low-orbit satellite cell based on the system information and the ephemeris information.
  • the coverage of low-orbit satellite cells is relatively small, and the coverage of low-orbit satellite cells will move with the movement of low-orbit satellites, it is difficult for low-orbit satellite cells to achieve continuous coverage. coverage holes.
  • the UE After the UE loses the coverage of the low-orbit satellite cell, it will search for the low-orbit satellite cell on all possible bandwidths and operating frequencies of the low-orbit satellite cell, and in the coverage blind area of the low-orbit satellite, this The search is futile, and the UE can access the low-orbit satellite cell through search until the UE re-enters the coverage of the low-orbit satellite cell.
  • the above method in the prior art requires the UE to search the network for a long time, and the UE's network search in a certain period of time is futile, which leads to low network search efficiency and high power consumption of the UE.
  • the UE can preferentially search for the high-orbit satellite cell on all possible bandwidths and operating frequencies of the high-orbit satellite cell to obtain the downlink signal of the high-orbit satellite cell, wherein the downlink signal carries The system information of the low-orbit satellite cell and the ephemeris information of the low-orbit satellite corresponding to the low-orbit satellite cell, so that the UE can perform targeted network search based on the system information and the ephemeris information, thus greatly reducing Reduce the time for UE to search the network, improve the efficiency of UE network search, and reduce the power consumption of UE.
  • FIG. 9 shows a flow chart of the process of UE accessing a low-orbit satellite cell based on system information and ephemeris information. As shown in FIG. 9, the process includes the following step:
  • Step 901 the UE determines the arrival time of the low-orbit satellite cell based on the ephemeris information.
  • the arrival time is used to indicate the moment when the coverage of the low-orbit satellite cell moves to the target area, and the target area is the area where the UE is located.
  • Step 902 the UE determines the cell access time according to the arrival time, and accesses the low-orbit satellite cell based on the system information at the cell access time.
  • the UE can determine the time when the low-orbit satellite cell begins to cover the UE based on the ephemeris information, that is, the arrival time above, and the UE can determine the cell access time based on the arrival time, wherein the The cell access time can be the arrival time, or a time with a small difference from the arrival time.
  • the UE searches the network and accesses the low-orbit satellite cell at the cell access time to avoid the coverage of the UE in the low-orbit satellite.
  • the network is searched in vain in the blind area, therefore, the time for the UE to search the network can be greatly reduced, the efficiency of the UE to search the network can be improved, and the power consumption of the UE can be reduced.
  • the UE can determine the operating frequency and/or bandwidth of the low-orbit satellite cell based on system information, so that the UE does not need to search on all possible bandwidths and operating frequencies of the low-orbit satellite cell when performing network search. Instead, the network can be searched on a specific bandwidth and/or operating frequency according to system information. Therefore, it can also reduce the time for the UE to search the network, improve the efficiency of the UE's network search, and reduce the power consumption of the UE.
  • the embodiment of the present application also provides another satellite communication method, which can be applied to high-orbit satellites in a satellite communication system. Please refer to FIG. 10.
  • the satellite communication method includes the following steps:
  • Step 1001 the high-orbit satellite sends a downlink signal.
  • the downlink signal carries the system information of the low-orbit satellite cell and the ephemeris information of the low-orbit satellite corresponding to the low-orbit satellite cell. Orbital satellite cell.
  • the downlink signal may be system broadcast information, and the system information may include the working frequency and/or bandwidth of the low-orbit satellite cell.
  • the embodiment of the present application also provides another satellite communication method, which can be applied to a satellite communication system. Please refer to FIG. 11.
  • the satellite communication method includes the following steps:
  • Step 1101 the high-orbit satellite sends a downlink signal.
  • the downlink signal carries the system information of the low-orbit satellite cell and the ephemeris information of the low-orbit satellite corresponding to the low-orbit satellite cell.
  • Step 1102 the UE receives a downlink signal sent by a high-orbit satellite.
  • Step 1103 the UE determines the arrival time of the low-orbit satellite cell based on the ephemeris information.
  • Step 1104 the UE determines the cell access time according to the arrival time, and accesses the low-orbit satellite cell based on the system information at the cell access time.
  • the satellite communication method includes the following steps:
  • Step 1201 the UE establishes dual connections with the low-orbit satellite cell and the high-orbit satellite cell.
  • the high-orbit satellite corresponding to the high-orbit satellite cell is used to forward the downlink data of the ground base station to the UE
  • the low-orbit satellite corresponding to the low-orbit satellite cell is used to receive and forward the uplink data sent by the UE to the ground base station, and to forward the data to the UE Downlink data from ground base stations.
  • the UE can perform uplink and downlink communication with the ground base station through the low-orbit satellite cell, and can perform downlink communication with the ground base station through the high-orbit satellite cell.
  • the coverage of low-orbit satellite cells is small, and there are coverage blind spots, while the coverage of high-orbit satellite cells is large, and generally there are no coverage blind spots, but due to the limitation of transmission power, UEs generally cannot perform uplink communication with ground base stations through high-orbit satellite cells.
  • the UE can establish dual connections with the low-orbit satellite cell and the high-orbit satellite cell.
  • the high-orbit satellite cell can Realize the signal coverage of the UE, so that in the coverage blind area of the low-orbit satellite, the UE can receive the downlink data of the ground base station through the high-orbit satellite cell, so that the high-orbit satellite cell can be used as a coverage supplement for the low-orbit satellite cell, thereby realizing The continuous signal coverage of UE improves the performance of the satellite communication system.
  • the high-orbit satellite and the low-orbit satellite can jointly send the downlink data of the ground base station to the UE. Therefore, the load offloading of the low-orbit satellite can be realized, and the communication capacity can be expanded. Higher data throughput.
  • FIG. 14 shows an exemplary technical process for a UE to establish dual connectivity with a low-orbit satellite cell and a high-orbit satellite cell.
  • the technical process includes the following steps:
  • Step 1401 the UE accesses the low-orbit satellite cell, and reports the connection support capability of the UE to the ground base station through the low-orbit satellite cell, so that the ground base station configures a high-orbit satellite cell for the UE according to the connection support capability.
  • the UE may access the low-orbit satellite cell based on any corresponding satellite communication method in FIG. 8 to FIG. 11 above.
  • connection support capability may include at least one of the following: the operating frequency of the cell that the UE supports access to; the operating frequency band of the cell that the UE supports access to; the dual connectivity frequency band supported by the UE combination.
  • the high-orbit satellite cell configured by the ground base station for the UE needs to meet at least one of the following: the operating frequency of the high-orbit satellite cell is the same as the operating frequency of the cell that the UE supports access to. Matching; the working frequency band of the high-orbit satellite cell matches the working frequency band of the cell supported by the UE; the working frequency band of the high-orbit satellite cell and the low-orbit satellite cell accessed by the UE match the dual connection frequency band combination supported by the UE match.
  • Step 1402 the UE establishes a downlink connection with the high-orbit satellite cell based on the configuration of the ground base station.
  • the low-orbit satellite cell has a coverage hole.
  • the communication link between the UE and the low-orbit satellite cell will be disconnected.
  • the UE needs to re-access the low-orbit satellite cell. If the UE frequently performs the process of accessing the low-orbit satellite cell, and, after each access to the low-orbit satellite cell, it performs In the process of reporting the connection support capability of the UE by the base station, the base station on the ground performs the process of configuring a high-orbit satellite cell for the UE, which will cause the whole process to be very cumbersome and inefficient.
  • the ground base station when the UE enters the coverage hole, the ground base station does not release the connection between the UE and the low-orbit satellite cell and the high-orbit satellite cell at the signaling level, but retains its connection information, and when the UE re-enters the After the coverage of the low-orbit satellite cell, the ground base station sends the connection information to the new low-orbit satellite to reactivate the connection between the UE and the low-orbit satellite cell.
  • the UE always maintains the connection with the low-orbit satellite
  • the connection between the satellite and the high-orbit satellite cell therefore, the UE does not need to frequently perform the process of accessing the low-orbit satellite cell, and does not need to perform the process of reporting the connection support capability of the UE to the ground base station multiple times, and the ground base station does not need to perform multiple procedures.
  • the process of configuring a high-orbit cell for the UE is performed once, so the process can be simplified and the communication efficiency can be improved.
  • Fig. 15 shows a flow chart of an exemplary satellite communication method.
  • the satellite communication method comprises the following steps:
  • Step 1501 the UE receives the coverage time delivered by the ground base station through the high-orbit satellite cell or the low-orbit satellite cell.
  • the coverage time is used to indicate a time period during which the communication signal of the low-orbit satellite cell covers the UE.
  • the terrestrial base station may issue the coverage time to the UE through RRC high layer signaling, or may issue the coverage time to the UE through downlink control information, which is not specifically limited in this embodiment of the application.
  • Step 1502 the UE communicates with the ground base station through at least one of the high-orbit satellite cell and the low-orbit satellite cell according to the coverage time.
  • the ground base station does not release the connection between the UE and the low-orbit satellite cell and the high-orbit satellite cell at the signaling level after the UE enters the coverage hole, in fact, the UE cannot communicate with the low-orbit satellite cell.
  • Ground base station for communication different UEs have different capabilities. Some UEs can only maintain one communication connection at a time. A communication link is maintained with one of the high-orbit satellite cells to communicate with a ground base station.
  • the ground base station can send the communication signal of the low-orbit satellite cell to the UE to cover the time period of the UE, that is, the coverage time.
  • the UE can pass through at least one of the high-orbit satellite cell and the low-orbit satellite cell according to the coverage time.
  • the UE within the coverage time, can perform uplink and downlink communication with the ground base station through the low-orbit satellite cell, and perform downlink communication with the ground base station through the high-orbit satellite cell (the UE has two or, the UE suspends downlink communication with the ground base station through the high-orbit satellite cell, and performs uplink and downlink communication with the ground base station through the low-orbit satellite cell (the UE only has the ability to maintain only one communication connection at the same time) .
  • the UE performs downlink communication with the ground base station through the high-orbit satellite cell, and suspends the uplink and downlink communication with the ground base station through the low-orbit satellite cell.
  • FIG. 16 shows a flowchart of another satellite communication method, which is applied to a ground base station of a satellite communication system.
  • the satellite communication method includes the following steps:
  • Step 1601 the ground base station receives the connection support capability of the UE reported through the low-orbit satellite cell after the UE accesses the low-orbit satellite cell.
  • connection support capability includes at least one of the following: the operating frequency of the cell that the UE supports access to; the operating frequency band of the cell that the UE supports access to; the combination of dual connectivity frequency bands supported by the UE .
  • Step 1602 the ground base station configures a high-orbit satellite cell for the UE according to the connection support capability, so that the UE can establish a downlink connection with the high-orbit satellite cell.
  • the high-orbit satellite corresponding to the high-orbit satellite cell is used to forward the downlink data of the ground base station to the UE
  • the low-orbit satellite corresponding to the low-orbit satellite cell is used to receive and forward the uplink data sent by the UE to the ground base station, and to forward the data to the UE Downlink data from ground base stations.
  • the ground base station does not release the connection between the UE and the low-orbit satellite cell and the high-orbit satellite cell at the signaling level. connection, but retain its connection information.
  • the ground base station sends the connection information to the new low-orbit satellite to reactivate the connection between the UE and the low-orbit satellite cell.
  • the UE always maintains connections with low-orbit satellites and high-orbit satellite cells.
  • the present application also provides another satellite communication method, which includes the following steps:
  • Step 1701 the base station on the ground issues the coverage time to the UE through the low-orbit satellite cell or the high-orbit satellite cell.
  • the coverage time is used to indicate the time period during which the communication signal of the low-orbit satellite cell covers the UE, so that the UE can communicate with the ground base station through at least one of the high-orbit satellite cell and the low-orbit satellite cell according to the coverage time.
  • the satellite communication methods corresponding to FIG. 12 to FIG. 17 can be applied to an architecture in which a communication link exists between a low-orbit satellite and a high-orbit satellite.
  • the high-orbit satellite and the low-orbit satellite can be connected based on the interface of the ground base station.
  • the downlink can be realized by the ground base station Data load sharing, that is, the ground base station can send downlink data to at least one of the high-orbit satellite and the low-orbit satellite, so that the high-orbit satellite and/or the low-orbit satellite forwards the downlink data to the UE.
  • the high-orbit satellite and the low-orbit satellite can also be connected based on the inter-satellite interface communication.
  • the ground base station can send downlink data to The low-orbit satellites transmit the downlink data to the high-orbit satellites based on the inter-satellite interface, and then the high-orbit satellites and the low-orbit satellites jointly forward the downlink data to the UE.
  • FIG. 18 shows another satellite communication method provided by the embodiment of the present application, which is applied to a low-orbit satellite in a satellite communication system.
  • the satellite communication method includes the following steps:
  • Step 1801 the low-orbit satellite receives and forwards the connection support capability of the UE reported by the UE to the ground base station, so that the ground base station configures a high-orbit satellite cell for the UE according to the connection support capability.
  • the high-orbit satellite corresponding to the high-orbit satellite cell is used to forward the downlink data of the ground base station to the UE
  • the low-orbit satellite is used to receive and forward the uplink data sent by the UE to the ground base station, and is used to forward the downlink data of the ground base station to the UE.
  • the low-orbit satellite can receive the downlink data sent by the ground base station, and forward the downlink data to the high-orbit satellite based on the inter-satellite interface, and then, The downlink data is forwarded to the UE jointly by the high-orbit satellite and the low-orbit satellite.
  • FIG. 19 shows that on the basis of the satellite communication method shown in FIG. 18, the embodiment of the present application also provides another satellite communication method.
  • the satellite communication method includes the following steps:
  • Step 1901 the low-orbit satellite receives and forwards the coverage time sent by the ground base station to the UE.
  • the coverage time is used to indicate the time period during which the communication signal of the low-orbit satellite cell covers the UE, so that the UE can communicate with the ground base station through at least one of the high-orbit satellite cell and the low-orbit satellite cell according to the coverage time.
  • a satellite communication device including: a receiving module 2001 and an access module 2002 .
  • the receiving module 2001 is configured to receive a downlink signal sent by a high-orbit satellite, and the downlink signal carries system information of a low-orbit satellite cell and ephemeris information of a low-orbit satellite corresponding to the low-orbit satellite cell.
  • the access module 2002 is used for accessing low-orbit satellite cells based on system information and ephemeris information.
  • the access module 2002 is specifically configured to: determine the arrival time of the low-orbit satellite cell based on the ephemeris information, and the arrival time is used to indicate that the coverage of the low-orbit satellite cell moves to the target area , the target area is the area where the UE is located; the cell access time is determined according to the arrival time, and the low-orbit satellite cell is accessed based on system information at the cell access time.
  • the downlink signal includes system broadcast information.
  • the system information includes the operating frequency and/or bandwidth of the low-orbit satellite cell.
  • a satellite communication device including: a sending module 2101 .
  • the sending module 2101 is used to send a downlink signal
  • the downlink signal carries the system information of the low-orbit satellite cell and the ephemeris information of the low-orbit satellite corresponding to the low-orbit satellite cell
  • the system information and the ephemeris information are used for providing
  • the UE accesses the low-orbit satellite cell based on the system information and the ephemeris information.
  • the downlink signal includes system broadcast information.
  • the system information includes the operating frequency and/or bandwidth of the low-orbit satellite cell.
  • a satellite communication device including: a connection module 2201 .
  • the connection module 2201 is used to establish dual connections with low-orbit satellite cells and high-orbit satellite cells;
  • the high-orbit satellite corresponding to the high-orbit satellite cell is used to forward the downlink data of the ground base station to the UE
  • the low-orbit satellite corresponding to the low-orbit satellite cell is used to receive and forward the uplink data sent by the UE to the ground base station, and to forward the data to the UE Downlink data from ground base stations.
  • connection module 2201 is specifically configured to: access a low-orbit satellite cell, and report the connection support capability of the UE to the ground base station through the low-orbit satellite cell, so that the ground base station can Configure the high-orbit satellite cell for UE; establish a downlink connection with the high-orbit satellite cell based on the configuration of the ground base station.
  • connection support capability includes at least one of the following:
  • the operating frequency of the cell that the UE supports access to
  • the working frequency band of the cell that the UE supports to access
  • the dual connectivity frequency band combinations supported by the UE are the dual connectivity frequency band combinations supported by the UE.
  • FIG. 23 another satellite communication device is provided.
  • a receiving module 2202 and a communication module 2203 are also included.
  • the receiving module 2202 is configured to receive the coverage time issued by the ground base station through the high-orbit satellite cell or the low-orbit satellite cell, and the coverage time is used to indicate the time period during which the communication signal of the low-orbit satellite cell covers the UE.
  • the communication module 2203 is configured to communicate with the ground base station through at least one of the high-orbit satellite cell and the low-orbit satellite cell according to the coverage time.
  • the communication module 2203 is specifically used for: within the coverage time, the UE performs uplink and downlink communication with the ground base station through the low-orbit satellite cell, and performs downlink communication with the ground base station through the high-orbit satellite cell or, the UE suspends downlink communication with the ground base station through the high-orbit satellite cell, and performs uplink and downlink communication with the ground base station through the low-orbit satellite cell.
  • the communication module 2203 is specifically used for: outside the coverage time, the UE performs downlink communication with the ground base station through the high-orbit satellite cell, and suspends the uplink and downlink communication with the ground base station through the low-orbit satellite cell communication.
  • a satellite communication device including: a receiving module 2401 and a configuration module 2402 .
  • the receiving module 2401 is configured to receive the connection support capability of the UE reported through the low-orbit satellite cell after the UE accesses the low-orbit satellite cell.
  • the configuration module 2402 is configured to configure a high-orbit satellite cell for the UE according to the connection support capability, so that the UE can establish a downlink connection with the high-orbit satellite cell, wherein the high-orbit satellite corresponding to the high-orbit satellite cell is used to forward the ground base station to the UE
  • the low-orbit satellite corresponding to the low-orbit satellite cell is used to receive and forward the uplink data sent by the UE to the ground base station, and to forward the downlink data of the ground base station to the UE.
  • connection support capability includes at least one of the following:
  • the operating frequency of the cell that the UE supports access to
  • the working frequency band of the cell that the UE supports to access
  • the dual connectivity frequency band combinations supported by the UE are the dual connectivity frequency band combinations supported by the UE.
  • FIG. 25 another satellite communication device is provided.
  • a sending module 2403 is also included.
  • the sending module 2403 is configured to deliver the coverage time to the UE through the low-orbit satellite cell or the high-orbit satellite cell, and the coverage time is used to indicate the time period during which the communication signal of the low-orbit satellite cell covers the UE, so that the UE time, communicate with the ground base station through at least one of the high-orbit satellite cell and the low-orbit satellite cell.
  • the high-orbit satellite is connected to the low-orbit satellite based on a ground base station interface, and the sending module 2403 is also used to send downlink data to at least one of the high-orbit satellite and the low-orbit satellite.
  • the high-orbit satellite and the low-orbit satellite are connected based on the inter-satellite interface. Forward downlink data to high-orbit satellites.
  • a satellite communication device including: a communication module 2601 .
  • the communication module 2601 is used to receive and forward the connection support capability of the UE reported by the UE to the ground base station, so that the ground base station configures high-orbit satellite cells for the UE according to the connection support capability;
  • the high-orbit satellite corresponding to the high-orbit satellite cell is used to forward the downlink data of the ground base station to the UE
  • the low-orbit satellite is used to receive and forward the uplink data sent by the UE to the ground base station, and is used to forward the downlink data of the ground base station to the UE.
  • the high-orbit satellite and the low-orbit satellite are connected based on the inter-satellite interface, and the communication module 2601 is also used to: receive the downlink data sent by the ground base station, and forward the downlink data based on the inter-satellite interface high orbit satellite.
  • the communication module 2601 is also used to receive and forward to the UE the coverage time sent by the ground base station, the coverage time is used to indicate the time period during which the communication signal of the low-orbit satellite cell covers the UE, for The UE communicates with the ground base station through at least one of the high-orbit satellite cell and the low-orbit satellite cell according to the coverage time.
  • Each module in the above-mentioned satellite communication device may be fully or partially realized by software, hardware and a combination thereof.
  • the above-mentioned modules can be embedded in or independent of the processor in the communication device in the form of hardware, or can be stored in the memory of the computer device in the form of software, so that the processor can invoke and execute the corresponding operations of the above-mentioned modules.
  • Fig. 27 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the communication device may be a UE or a network device.
  • the network device refers to, for example, a low-orbit satellite, a high-orbit satellite, or a ground base station.
  • the communication device 2700 shown in FIG. 27 includes a processor 2710, The processor 2710 can invoke and run a computer program from the memory, so as to implement the method in the embodiment of the present application.
  • the communication device 2700 may further include a memory 2720 .
  • the processor 2710 can invoke and run a computer program from the memory 2720, so as to implement the method in the embodiment of the present application.
  • the memory 2720 may be an independent device independent of the processor 2710 , or may be integrated in the processor 2710 .
  • the communication device 2700 may further include a transceiver 2730, and the processor 2710 may control the transceiver 2730 to communicate with other devices, specifically, to send information or data to other devices, or to receive other devices. Information or data sent by the device.
  • the transceiver 2730 may include a transmitter and a receiver.
  • the transceiver 2730 may further include antennas, and the number of antennas may be one or more.
  • the communication device 2700 may implement corresponding processes implemented by UE, low-orbit satellite, high-orbit satellite, or ground base station in each method of the embodiments of the present application. For the sake of brevity, details are not repeated here.
  • FIG. 28 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • the chip 2800 shown in FIG. 28 includes a processor 2810, and the processor 2810 can call and run a computer program from the memory, so as to implement the method in the embodiment of the present application.
  • the chip 2800 may further include a memory 2820 .
  • the processor 2810 can invoke and run a computer program from the memory 2820, so as to implement the method in the embodiment of the present application.
  • the memory 2820 may be an independent device independent of the processor 2810 , or may be integrated in the processor 2810 .
  • the chip 2800 may also include an input interface 2830 .
  • the processor 2810 can control the input interface 2830 to communicate with other devices or chips, specifically, can obtain information or data sent by other devices or chips.
  • the chip 2800 may also include an output interface 2840 .
  • the processor 2810 can control the output interface 2840 to communicate with other devices or chips, specifically, can output information or data to other devices or chips.
  • the chip 2800 can be applied to the communication device 2700 in the embodiment of the present application, and the chip 2800 can implement the corresponding functions implemented by the UE, low-orbit satellite, high-orbit satellite or ground base station in each method of the embodiment of the present application.
  • the process will not be repeated here.
  • the chip 2800 mentioned in the embodiment of the present application may also be called a system-on-chip, a system-on-chip, a system-on-a-chip, or a system-on-a-chip.
  • An embodiment of the present application also provides a communication system, which includes a UE, a low-orbit satellite, a high-orbit satellite, and a ground base station.
  • the UE can be used to realize the corresponding functions realized by the UE in the above method
  • the low-orbit satellite can be used to realize the corresponding functions realized by the low-orbit satellite in the above method
  • the high-orbit satellite can be used to realize the above method
  • the ground base station can be used to realize the corresponding functions realized by the ground base station in the above method.
  • the processor in the embodiment of the present application may be an integrated circuit chip, which has a signal processing capability.
  • each step of the above-mentioned method embodiments may be completed by an integrated logic circuit of hardware in a processor or instructions in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application-specific integrated circuit (Application Specific Integrated Circuit, ASIC), an off-the-shelf programmable gate array (Field Programmable Gate Array, FPGA) or other available Program logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the steps of the method disclosed in connection with the embodiments of the present application may be directly implemented by a hardware decoding processor, or implemented by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, register.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a nonvolatile memory, or may include both volatile and nonvolatile memories.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electronically programmable Erase Programmable Read-Only Memory (Electrically EPROM, EEPROM) or Flash.
  • the volatile memory can be Random Access Memory (RAM), which acts as external cache memory.
  • RAM Static Random Access Memory
  • SRAM Static Random Access Memory
  • DRAM Dynamic Random Access Memory
  • Synchronous Dynamic Random Access Memory Synchronous Dynamic Random Access Memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM, DDR SDRAM enhanced synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM synchronous connection dynamic random access memory
  • Synchlink DRAM, SLDRAM Direct Memory Bus Random Access Memory
  • Direct Rambus RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch linkDRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DRRAM), etc. That is, the memory in the embodiments of the present application is intended to include, but not be limited to, these and any other suitable types of memory.
  • the embodiment of the present application also provides a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium can be applied to the UE, low-orbit satellite, high-orbit satellite, or ground base station in the embodiments of the present application, and the computer program enables the UE, low-orbit satellite, high-orbit satellite, or ground base station to execute
  • the procedures correspondingly implemented by the UE, the low-orbit satellite, the high-orbit satellite, or the ground base station in each method of the embodiments of the present application will not be repeated here.
  • the embodiment of the present application also provides a computer program product, including computer program instructions.
  • the computer program product can be applied to the UE, low-orbit satellite, high-orbit satellite, or ground base station in the embodiments of the present application, and the computer program instructions enable the UE, low-orbit satellite, high-orbit satellite, or ground base station to execute the present invention.
  • the procedures correspondingly implemented by the UE, the low-orbit satellite, the high-orbit satellite, or the ground base station in each method of the embodiment of the application are not repeated here.
  • the embodiment of the present application also provides a computer program.
  • the computer program can be applied to the UE, low-orbit satellite, high-orbit satellite, or ground base station in the embodiments of the present application.
  • the UE, the low-orbit satellite, the high-orbit satellite, or the ground base station execute the processes corresponding to the UE, the low-orbit satellite, the high-orbit satellite, or the ground base station in each method of the embodiments of the present application. For the sake of brevity, details are not repeated here.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the functions described above are realized in the form of software function units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory,) ROM, random access memory (Random Access Memory, RAM), magnetic disk or optical disc, etc., which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Relay Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请涉及一种卫星通信方法、装置、设备、存储介质、程序产品以及芯片,属于卫星通信技术领域,在该卫星通信方法中,用户设备UE接收高轨道卫星发送的下行信号,所述下行信号携带低轨道卫星小区的系统信息和低轨道卫星小区对应的低轨道卫星的星历信息;所述UE基于所述系统信息和所述星历信息接入低轨道卫星小区,本申请实施例提供的卫星通信方法,可以提升卫星通信系统的性能。

Description

卫星通信方法、装置、设备、存储介质、程序产品以及芯片 技术领域
本申请实施例涉及卫星通信技术领域,具体涉及一种卫星通信方法、装置、设备、存储介质、程序产品以及芯片
背景技术
卫星通信系统是一种典型的非地面移动通信系统,在卫星通信系统中,卫星与地面基站通过地面网关建立通信连接,卫星可以转发地面基站的通信信号,从而对地面基站无法覆盖的区域进行补充,尤其是对于偏远地区、沙漠、高山、海洋等地面基站无法覆盖的区域,卫星能够实现对其有效覆盖。一般来说,卫星通信系统中的卫星包括低轨道卫星以及高轨道卫星,其中,高轨道卫星对应的小区(可以称为高轨道卫星小区)的覆盖范围相对较广,而低轨道卫星对应的小区(可以称为低轨道卫星小区)的覆盖范围相对较小,且,低轨道卫星小区的覆盖范围会随着低轨道卫星的运动而移动。
当前,如何提升卫星通信系统的性能已经成为重点研究方向。
发明内容
基于此,本申请实施例提供了一种卫星通信方法、装置、设备、存储介质、程序产品以及芯片。
第一方面,本申请的实施例提供一种卫星通信方法,所述方法包括:
用户设备UE接收高轨道卫星发送的下行信号,所述下行信号携带低轨道卫星小区的系统信息和低轨道卫星小区对应的低轨道卫星的星历信息;所述UE基于所述系统信息和所述星历信息接入低轨道卫星小区。
第二方面,本申请的实施例提供一种卫星通信方法,所述方法包括:
高轨道卫星发送下行信号,所述下行信号携带低轨道卫星小区的系统信息和低轨道卫星小区对应的低轨道卫星的星历信息;其中,所述系统信息和所述星历信息用于供UE基于所述系统信息和所述星历信息接入低轨道卫星小区。
第三方面,本申请的实施例提供一种卫星通信方法,所述方法包括:
UE与低轨道卫星小区和高轨道卫星小区建立双连接;其中,高轨道卫星小区对应的高轨道卫星用于向所述UE转发地面基站的下行数据,低轨道卫星小区对应的低轨道卫星用于接收以及向所述地面基站转发所述UE发送的上行数据,并用于向所述UE转发所述地面基站的下行数据。
第四方面,本申请的实施例提供一种卫星通信方法,所述方法包括:
地面基站接收UE在接入低轨道卫星小区后通过低轨道卫星小区上报的所述UE的连接支持能力;所述地面基站根据所述连接支持能力为所述UE配置高轨道卫星小区,以供所述UE与高轨道卫星小区建立下行连接,其中,高轨道卫星小区对应的高轨道卫星用于向所述UE转发所述地面基站的下行数据,低轨道卫星小区对应的低轨道卫星用于接收以及向所述地面基站转发所述UE发送的上行数据,并用于向所述UE转发所述地面基站的下行数据。
第五方面,本申请的实施例提供一种卫星通信方法,所述方法包括:
低轨道卫星接收并向地面基站转发UE上报的所述UE的连接支持能力,以供所述地面基站根据所述连接支持能力为所述UE配置高轨道卫星小区;其中,高轨道卫星小区对应的高轨道卫星用于向所述UE转发所述地面基站的下行数据,低轨道卫星用于接收以及向所述地面基站转发所述UE发送的上行数据,并用于向所述UE转发所述地面基站的下行数据。
第六方面,本申请的实施例提供了一种卫星通信装置,所述装置包括:
接收模块,用于接收高轨道卫星发送的下行信号,所述下行信号携带低轨道卫星小区的系统信息和低轨道卫星小区对应的低轨道卫星的星历信息;
接入模块,用于基于所述系统信息和所述星历信息接入低轨道卫星小区。
第七方面,本申请的实施例提供了一种卫星通信装置,所述装置包括:
发送模块,用于发送下行信号,所述下行信号携带低轨道卫星小区的系统信息和低轨道卫星小区对应的低轨道卫星的星历信息;其中,所述系统信息和所述星历信息用于供UE基于所述系统信息和所述星历信息接入低轨道卫星小区。
第八方面,本申请的实施例提供了一种卫星通信装置,所述装置包括:
连接模块,用于与低轨道卫星小区和高轨道卫星小区建立双连接;其中,高轨道卫星小区对应的高轨道卫星用于向UE转发地面基站的下行数据,低轨道卫星小区对应的低轨道卫星用于接收以及向所述地面基站转发所述UE发送的上行数据,并用于向所述UE转发所述地面基站的下行数据。
第九方面,本申请的实施例提供了一种卫星通信装置,所述装置包括:
接收模块,用于接收UE在接入低轨道卫星小区后通过低轨道卫星小区上报的所述UE的连接支持 能力;
配置模块,用于根据所述连接支持能力为所述UE配置高轨道卫星小区,以供所述UE与高轨道卫星小区建立下行连接,其中,高轨道卫星小区对应的高轨道卫星用于向所述UE转发所述地面基站的下行数据,低轨道卫星小区对应的低轨道卫星用于接收以及向所述地面基站转发所述UE发送的上行数据,并用于向所述UE转发所述地面基站的下行数据。
第十方面,本申请的实施例提供了一种卫星通信装置,所述装置包括:
通信模块,用于接收并向地面基站转发UE上报的所述UE的连接支持能力,以供所述地面基站根据所述连接支持能力为所述UE配置高轨道卫星小区;其中,高轨道卫星小区对应的高轨道卫星用于向所述UE转发所述地面基站的下行数据,低轨道卫星小区对应的低轨道卫星用于接收以及向所述地面基站转发所述UE发送的上行数据,并用于向所述UE转发所述地面基站的下行数据。
第十一方面,本申请的实施例提供一种通信设备,所述通信设备包括:处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以执行上述第一至第五方面中任一项所述的方法。
第十二方面,本申请的实施例提供一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机程序,所述计算机程序使得计算机执行上述第一至第五方面中任一项所述的方法。
第十三方面,本申请的实施例提供一种芯片,所述芯片包括处理电路,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行上述第一至第五方面中任一项所述的方法。
第十四方面,本申请的实施例提供一种计算机程序产品,所述计算机程序产品包括计算机程序指令,所述计算机程序指令使得计算机执行上述第一至第五方面中任一项所述的方法。
第十五方面,本申请的实施例提供一种计算机程序,所述计算机程序使得计算机执行上述第一至第五方面中任一项所述的方法。
本申请实施例提供的技术方案,通过在高轨道卫星发送的下行信号中携带低轨道卫星小区的系统信息以及低轨道卫星小区对应的低轨道卫星的星历信息,使得UE可以基于高轨道卫星发送的下行信号中的该系统信息和该星历信息接入低轨道卫星小区中,这样,就可以加快UE搜索低轨道卫星小区的时间,节省UE的耗电,除此以外,本申请实施例提供的技术方案中,UE与低轨道卫星小区和高轨道卫星小区建立双连接,从而可以保持通信连续性并且可以实现通信容量的扩充。
附图说明
图1为一个实施例提供的卫星通信系统的示意图;
图2为一个实施例提供的卫星通信系统中卫星的示意图;
图3为一个实施例提供的卫星通信系统的示意图;
图4为一个实施例提供的卫星通信系统的示意图;
图5为一个实施例提供的卫星通信系统的示意图;
图6为一个实施例提供的小区覆盖的示意图;
图7为一个实施例提供的小区覆盖的示意图
图8为一个实施例提供的卫星通信方法的流程图;
图9为一个实施例提供的卫星通信方法的流程图;
图10为一个实施例提供的卫星通信方法的流程图;
图11为一个实施例提供的卫星通信方法的流程图;
图12为一个实施例提供的卫星通信方法的流程图;
图13为一个实施例提供的卫星通信的示意图;
图14为一个实施例提供的卫星通信方法的流程图;
图15为一个实施例提供的卫星通信方法的流程图;
图16为一个实施例提供的卫星通信方法的流程图;
图17为一个实施例提供的卫星通信方法的流程图;
图18为一个实施例提供的卫星通信方法的流程图;
图19为一个实施例提供的卫星通信方法的流程图;
图20为一个实施例提供的卫星通信装置的框图;
图21为一个实施例提供的卫星通信装置的框图;
图22为一个实施例提供的卫星通信装置的框图;
图23为一个实施例提供的卫星通信装置的框图;
图24为一个实施例提供的卫星通信装置的框图;
图25为一个实施例提供的卫星通信装置的框图;
图26为一个实施例提供的卫星通信装置的框图;
图27为一个实施例提供的通信设备的框图;
图28为一个实施例提供的芯片的框图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
卫星通信系统是一种典型的非地面移动通信系统。如图1所示,卫星通信系统一般可以包括卫星101、地面网关102、地面基站103以及核心网104,其中,卫星101与地面基站103通过地面网关102建立通信连接,地面基站103与核心网104建立通信连接。卫星101可以转发地面基站103的通信信号,从而实现对地面基站103无法覆盖的区域的补充。在这些区域里面UE(英文:User Equipment;中文:用户设备)可以和卫星进行通信,尤其是对于偏远地区、沙漠、高山、海洋等地面基站无法覆盖的区域,卫星能够实现对其有效覆盖。
如图2所示,通常来说,卫星通信系统中的卫星101可以包括低轨道卫星和高轨道卫星,需要指出的是,这里的低轨道卫星和高轨道卫星是相对的概念,换言之,在本申请实施例中,飞行高度相对较低的卫星称为低轨道卫星,而飞行高度相对较高的卫星称为高轨道卫星。
在一种可能的情况下,低轨道卫星和高轨道卫星之间没有通信链路,这意味着高轨道卫星与低轨道卫星之间是相对独立的状态。如图3所示,高轨道卫星g1通过地面网关w1和地面基站d1进行通信,低轨道卫星g2通过地面网关w2和地面基站d2进行通信,在图3中,低轨道卫星和高轨道卫星之间没有通信链路,是相对独立的状态。
在另一种可能的情况下,低轨道卫星和高轨道卫星之间存在通信链路,在这种情况下,典型的系统架构如图4和图5所示。
在图4中,高轨道卫星g1与低轨道卫星g2之间存在地面基站接口,也即是,高轨道卫星g1与低轨道卫星g2通过地面网关与同一地面基站建立通信连接,或者,高轨道卫星与低轨道卫星通过地面网关与存在基站间接口的不同的地面基站建立通信连接,在这种架构中,地面基站可以对高轨道卫星与低轨道卫星进行协调和配置。
在图5中,高轨道卫星g1与低轨道卫星g2存在卫星间接口,高轨道卫星g1和低轨道卫星g2可以通过卫星间接口直接通信,以进行相互协调,需要指出的是,尽管图5中示出高轨道卫星g1不与地面基站通信连接,但是,在实际实现时,这种架构中的高轨道卫星g1也可以通过地面网关与地面基站通信连接。
一般来说,高轨道卫星对应的小区(可以称为高轨道卫星小区)的覆盖范围相对较广,而低轨道卫星对应的小区(可以称为低轨道卫星小区)的覆盖范围相对较小,且,低轨道卫星小区的覆盖范围会随着低轨道卫星的运动而移动。
由于低轨道卫星小区的覆盖范围相对较小,且,低轨道卫星小区的覆盖范围会随着低轨道卫星的运动而移动,因此,低轨道卫星小区难以实现连续覆盖,也即是存在着覆盖盲区,相比之下,高轨道卫星小区的覆盖范围相对较大,且,高轨道卫星一般不存在覆盖盲区。
请参考图6,在t1到t2的时间段内UE处于低轨道卫星小区的覆盖范围内,其可以通过低轨道卫星小区与地面基站进行通信,在t2到t3的时间段内由于当前覆盖UE的低轨道卫星飞离,而新的低轨道卫星并未抵达,因此,在这段时间内UE没有低轨道卫星覆盖,t3到t4时间内新的低轨道卫星抵达,使得UE重新进入低轨道卫星小区的覆盖范围内。如图6所示,由于存在覆盖盲区,因此,UE的通信是不连续的。
请参考图7,在图7中,t1至t4的时间段内,高轨道卫星小区一直对UE进行覆盖,其一直可以为UE提供通信服务,因此,高轨道卫星小区的覆盖能力相较于低轨道卫星小区而言较强,其一般不存在覆盖盲区。
除此以外,由于高轨道卫星与地面的距离较远,受到发射功率的限制,UE一般只能在高轨道卫星小区中进行下行信号的接收,而无法进行上行通信,低轨道卫星与地面的距离较近,UE一般可以在低轨道卫星小区内进行上下行双向通信。
由于卫星通信系统具有和一般的无线通信系统不同的架构以及特性,因此,需要针对卫星通信系统进行单独地研究,当前,如何提升卫星通信系统的性能已经成为重点研究方向。
有鉴于此,本申请实施例提供了一种卫星通信方法,可以应用于UE中,请参考图8,该卫星通信 方法包括以下步骤:
步骤801、UE接收高轨道卫星发送的下行信号。
其中,该下行信号携带低轨道卫星小区的系统信息和低轨道卫星小区对应的低轨道卫星的星历信息。
在本申请的可选实施例中,该下行信号可以为系统广播信息,该系统信息可以包括低轨道卫星小区的工作频率和/或带宽,该星历信息可以包括低轨道卫星的运行速度、轨道位置等用于跟踪、预测、计算以及描绘低轨道卫星运行状态的信息。
步骤802、UE基于该系统信息和该星历信息接入低轨道卫星小区。
如上文所述,由于低轨道卫星小区的覆盖范围相对较小,且,低轨道卫星小区的覆盖范围会随着低轨道卫星的运动而移动,因此,低轨道卫星小区难以实现连续覆盖,存在着覆盖盲区。现有技术中,UE在失去低轨道卫星小区的覆盖之后,就会在低轨道卫星小区的所有可能的带宽以及工作频率上搜索低轨道卫星小区,而在低轨道卫星的覆盖盲区中,这种搜索是徒劳的,直至UE重新进入低轨道卫星小区的覆盖范围内,UE才可以通过搜索接入低轨道卫星小区中。
上述现有技术的方式需要UE进行长时间的搜网,而且,UE在部分时段内的搜网是徒劳的,这导致UE的搜网效率较低,功耗较大。
而在本申请提供的实施例中,UE可以优先在高轨道卫星小区的所有可能的带宽以及工作频率上搜索高轨道卫星小区,以获取高轨道卫星小区的下行信号,其中,该下行信号中携带低轨道卫星小区的系统信息和低轨道卫星小区对应的低轨道卫星的星历信息,这样,UE就可以基于该系统信息和该星历信息进行有针对性地搜网,因此,可以极大地减小UE搜网的时间,提升UE搜网的效率,降低UE的功耗。
请参考图9,在图8所示实施方式的基础上,其示出了UE基于系统信息和星历信息接入低轨道卫星小区的过程的流程图,如图9所示,该过程包括以下步骤:
步骤901、UE基于星历信息确定低轨道卫星小区的到达时间。
其中,该到达时间用于指示低轨道卫星小区的覆盖范围移动至目标区域的时刻,该目标区域为UE所处的区域。
步骤902、UE根据到达时间确定小区接入时间,并在小区接入时间基于系统信息接入低轨道卫星小区。
换言之,在本申请实施例中,UE可以基于星历信息确定低轨道卫星小区开始覆盖UE的时间,也即是上文中的到达时间,UE可以基于该到达时间确定小区接入时间,其中,该小区接入时间可以为该到达时间,也可以为与该到达时间相差较小的一个时间,UE在该小区接入时间进行搜网并接入低轨道卫星小区可以避免UE在低轨道卫星的覆盖盲区中进行徒劳地搜网,因此,可以极大地减小UE搜网的时间,提升UE搜网的效率,降低UE的功耗。
除此以外,UE可以基于系统信息确定低轨道卫星小区的工作频率和/或带宽,这样,UE在进行搜网时就不需要在低轨道卫星小区的所有可能的带宽以及工作频率上进行搜索,而是可以根据系统信息在特定的带宽和/或工作频率上搜网,因此,也可以起到减小UE搜网的时间,提升UE搜网的效率,降低UE的功耗的作用。
请参考图10,本申请实施例还提供了另一种卫星通信方法,可以应用于卫星通信系统的高轨道卫星中,请参考图10,该卫星通信方法包括以下步骤:
步骤1001、高轨道卫星发送下行信号。
其中,该下行信号携带低轨道卫星小区的系统信息和低轨道卫星小区对应的低轨道卫星的星历信息,该系统信息和该星历信息用于供UE基于系统信息和星历信息接入低轨道卫星小区。
与上文所述同理地,在本申请的可选实施例中,该下行信号可以为系统广播信息,该系统信息可以包括低轨道卫星小区的工作频率和/或带宽。
请参考图11,本申请实施例还提供了另一种卫星通信方法,可以应用于卫星通信系统中,请参考图11,该卫星通信方法包括以下步骤:
步骤1101、高轨道卫星发送下行信号。
其中,该下行信号携带低轨道卫星小区的系统信息和低轨道卫星小区对应的低轨道卫星的星历信息。
步骤1102、UE接收高轨道卫星发送的下行信号。
步骤1103、UE基于星历信息确定低轨道卫星小区的到达时间。
步骤1104、UE根据到达时间确定小区接入时间,并在小区接入时间基于系统信息接入低轨道卫星小区。
需要指出的是,图8至图11对应的卫星通信方法,可以应用于低轨道卫星和高轨道卫星之间没有通信链路,以及低轨道卫星和高轨道卫星之间存在通信链路的架构中。
请参考图12,本申请实施例还提供了另一种卫星通信方法,可以应用于UE中,如图11所示,该卫星通信方法包括以下步骤:
步骤1201、UE与低轨道卫星小区和高轨道卫星小区建立双连接。
其中,高轨道卫星小区对应的高轨道卫星用于向UE转发地面基站的下行数据,低轨道卫星小区对应的低轨道卫星用于接收以及向地面基站转发UE发送的上行数据,并用于向UE转发地面基站的下行数据。
换言之,请参考图13,在本申请实施例中,UE可以通过低轨道卫星小区与地面基站进行上下行通信,并可以通过高轨道卫星小区与地面基站进行下行通信。
如上文所述,低轨道卫星小区的覆盖范围较小,且,存在着覆盖盲区,而高轨道卫星小区的覆盖范围较大,且,一般不存在覆盖盲区,但是,由于受到发射功率的限制,UE一般无法通过高轨道卫星小区与地面基站进行上行通信。
基于以上情况,在本申请实施例提供的卫星通信方法中,UE可以与低轨道卫星小区和高轨道卫星小区建立双连接,这样,在低轨道卫星的覆盖盲区中,就可以由高轨道卫星小区实现对UE的信号覆盖,使得在低轨道卫星的覆盖盲区中,UE可以通过高轨道卫星小区接收地面基站的下行数据,这样,高轨道卫星小区就可以作为低轨道卫星小区的覆盖补充,从而实现对UE的连续信号覆盖,提升卫星通信系统的性能。
同时,在低轨道卫星小区的覆盖范围内,可以由高轨道卫星和低轨道卫星共同向UE发送地面基站的下行数据,因此,可以实现对低轨道卫星的负载分流,实现通信容量的扩充,实现更高的数据吞吐量。
请参考图14,其示出了一种示例性地UE与低轨道卫星小区和高轨道卫星小区建立双连接的技术过程,该技术过程包括以下步骤:
步骤1401、UE接入低轨道卫星小区,并通过低轨道卫星小区向地面基站上报UE的连接支持能力,以供地面基站根据连接支持能力为UE配置高轨道卫星小区。
在本申请的可选实施例中,UE可以基于上文中图8至图11任一对应的卫星通信方法接入低轨道卫星小区中。
在本申请的可选实施例中,该连接支持能力可以包括以下内容中的至少一种:UE支持接入的小区的工作频率;UE支持接入的小区的工作频段;UE支持的双连接频段组合。
与上文所述的连接支持能力对应的,地面基站为UE配置的高轨道卫星小区需要满足以下内容中的至少一种:高轨道卫星小区的工作频率和UE支持接入的小区的工作频率相匹配;高轨道卫星小区的工作频段和UE支持接入的小区的工作频段相匹配;高轨道卫星小区的工作频段以及UE接入的低轨道卫星小区的工作频段与UE支持的双连接频段组合相匹配。
步骤1402、UE基于地面基站的配置与高轨道卫星小区建立下行连接。
需要指出的是,如上文所述,低轨道卫星小区具有覆盖盲区,在现有技术中,进入覆盖盲区之后,UE与低轨道卫星小区的通信链路将会断开,在由覆盖盲区重新进入低轨道卫星小区的覆盖范围之后,UE需要重新接入低轨道卫星小区,如果UE频繁地执行接入低轨道卫星小区的过程,并且,在每次接入低轨道卫星小区之后,都执行向地面基站上报UE的连接支持能力的过程,地面基站都执行为UE配置高轨道卫星小区的过程,会导致整个过程非常繁琐,效率较低。
而考虑到虽然与UE通信连接的低轨道卫星会发生变化,但对于UE而言,与其保持连接的地面基站是不变的。因此,在本申请实施例中,当UE进入覆盖盲区之后,地面基站并不在信令层面上释放UE与低轨道卫星小区和高轨道卫星小区的连接,而是保留其连接信息,在UE重新进入低轨道卫星小区的覆盖范围之后,地面基站将该连接信息发送至新的低轨道卫星中,以重新激活UE与低轨道卫星小区的连接,这样,在信令层面上,UE始终保持与低轨道卫星和高轨道卫星小区的连接,因此,UE不需要频繁地执行接入低轨道卫星小区的过程,也不需要多次执行向地面基站上报UE的连接支持能力的过程,地面基站也不需要多次执行为UE配置高轨道小区的过程,故而可以简化流程,提升通信效率。
请参考图15,在上文所述的基础上,图15示出了一种示例性卫星通信方法的流程图,如图15所 示,该卫星通信方法包括以下步骤:
步骤1501、UE通过高轨道卫星小区或者低轨道卫星小区接收地面基站下发的覆盖时间。
其中,该覆盖时间用于指示低轨道卫星小区的通信信号覆盖UE的时间段。
在本申请的可选实施例中,地面基站可以通过RRC高层信令向UE下发该覆盖时间,也可以通过下行控制信息向UE下发该覆盖时间,本申请实施例对此不作具体限定。
步骤1502、UE根据覆盖时间,通过高轨道卫星小区和低轨道卫星小区中的至少一个与地面基站进行通信。
在本申请实施例中,虽然在UE进入覆盖盲区之后,地面基站并不在信令层面上释放UE与低轨道卫星小区和高轨道卫星小区的连接,但是,实际上UE无法通过低轨道卫星小区与地面基站进行通信。除此以外,不同的UE的能力不同,有些UE在同一时间只能保持一个通信连接,对于这部分UE而言,其需要在位于低轨道卫星小区的覆盖范围内时,选择与低轨道卫星小区和高轨道卫星小区中的一个保持通信连接,以与地面基站进行通信。
考虑到以上情况,地面基站可以向UE下发低轨道卫星小区的通信信号覆盖UE的时间段,也即是覆盖时间,UE可以根据覆盖时间,通过高轨道卫星小区和低轨道卫星小区中的至少一个与地面基站进行通信。
其中,在本申请的可选实施例中,在覆盖时间内,UE可以通过低轨道卫星小区与地面基站进行上下行通信,并通过高轨道卫星小区与地面基站进行下行通信(UE具有同时保持两个通信连接的能力);或者,UE暂停通过高轨道卫星小区与地面基站进行下行通信,并通过低轨道卫星小区与地面基站进行上下行通信(UE只有在同一时间仅保持一个通信连接的能力)。
在覆盖时间之外,UE通过高轨道卫星小区与地面基站进行下行通信,并暂停通过低轨道卫星小区与地面基站进行上下行通信。
请参考图16,其示出了另一种卫星通信方法的流程图,应用于卫星通信系统的地面基站中,如图16所示,该卫星通信方法包括以下步骤:
步骤1601、地面基站接收UE在接入低轨道卫星小区后通过低轨道卫星小区上报的UE的连接支持能力。
在本申请的可选实施例中,该连接支持能力包括以下内容中的至少一种:UE支持接入的小区的工作频率;UE支持接入的小区的工作频段;UE支持的双连接频段组合。
步骤1602、地面基站根据该连接支持能力为UE配置高轨道卫星小区,以供UE与高轨道卫星小区建立下行连接。
其中,高轨道卫星小区对应的高轨道卫星用于向UE转发地面基站的下行数据,低轨道卫星小区对应的低轨道卫星用于接收以及向地面基站转发UE发送的上行数据,并用于向UE转发地面基站的下行数据。
如上文所述,在UE于高轨道卫星小区和低轨道卫星小区建立双连接之后,当UE进入覆盖盲区之后,地面基站并不在信令层面上释放UE与低轨道卫星小区和高轨道卫星小区的连接,而是保留其连接信息,在UE重新进入低轨道卫星小区的覆盖范围之后,地面基站将该连接信息发送至新的低轨道卫星中,以重新激活UE与低轨道卫星小区的连接,这样,在信令层面上,UE始终保持与低轨道卫星和高轨道卫星小区的连接。
请参考图17,在图16所示的方法的基础上,本申请还提供了另一种卫星通信方法,该卫星通信方法包括以下步骤:
步骤1701、地面基站通过低轨道卫星小区或者高轨道卫星小区向UE下发覆盖时间。
其中,该覆盖时间用于指示低轨道卫星小区的通信信号覆盖UE的时间段,以供UE根据覆盖时间,通过高轨道卫星小区和低轨道卫星小区中的至少一个与地面基站进行通信。
需要指出的是,图12至图17对应的卫星通信方法,可以应用于低轨道卫星和高轨道卫星之间存在通信链路的架构中。
如上文所述,在低轨道卫星和高轨道卫星之间存在通信链路的架构中,高轨道卫星与低轨道卫星可以基于地面基站接口通信连接,在这种情况下,可以由地面基站实现下行数据的负载分流,也即是,地面基站可以将下行数据发送至高轨道卫星和低轨道卫星中的至少一个,以由高轨道卫星和/或低轨道卫星将下行数据转发至UE。
此外,在低轨道卫星和高轨道卫星之间存在通信链路的架构中,高轨道卫星与低轨道卫星还可以基于卫星间接口通信连接,在这种情况下,地面基站可以将下行数据发送至低轨道卫星,以由低轨道卫星 基于卫星间接口将下行数据转发至高轨道卫星,而后,再由高轨道卫星和低轨道卫星共同将下行数据转发至UE。
请参考图18,其示出了本申请实施例提供的另一种卫星通信方法,应用于卫星通信系统中的低轨道卫星中,如图18所示,该卫星通信方法包括以下步骤:
步骤1801、低轨道卫星接收并向地面基站转发UE上报的UE的连接支持能力,以供地面基站根据连接支持能力为UE配置高轨道卫星小区。
其中,高轨道卫星小区对应的高轨道卫星用于向UE转发地面基站的下行数据,低轨道卫星用于接收以及向地面基站转发UE发送的上行数据,并用于向UE转发地面基站的下行数据。
如上文所述,在高轨道卫星与低轨道卫星基于卫星间接口通信连接的情况下,低轨道卫星可以接收地面基站发送的下行数据,并基于卫星间接口将下行数据转发至高轨道卫星,而后,再由高轨道卫星和低轨道卫星共同将下行数据转发至UE。
请参考图19,其示出了在图18所示的卫星通信方法的基础上,本申请实施例还提供了另一种卫星通信方法,如图19所示,该卫星通信方法包括以下步骤:
步骤1901、低轨道卫星接收并向UE转发地面基站发送的覆盖时间。
其中,该覆盖时间用于指示低轨道卫星小区的通信信号覆盖UE的时间段,以供UE根据覆盖时间,通过高轨道卫星小区和低轨道卫星小区中的至少一个与地面基站进行通信。
应该理解的是,虽然图8-19的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,图8-19中的至少一部分步骤可以包括多个子步骤或者多个阶段,这些子步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些子步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤的子步骤或者阶段的至少一部分轮流或者交替地执行。
在一个实施例中,如图20所示,提供了一种卫星通信装置,包括:接收模块2001和接入模块2002。
其中,该接收模块2001,用于接收高轨道卫星发送的下行信号,该下行信号携带低轨道卫星小区的系统信息和低轨道卫星小区对应的低轨道卫星的星历信息。
该接入模块2002,用于基于系统信息和星历信息接入低轨道卫星小区。
在本申请的可选实施例中,该接入模块2002,具体用于:基于星历信息确定低轨道卫星小区的到达时间,该到达时间用于指示低轨道卫星小区的覆盖范围移动至目标区域的时刻,该目标区域为UE所处的区域;根据到达时间确定小区接入时间,并在小区接入时间基于系统信息接入低轨道卫星小区。
在本申请的可选实施例中,下行信号包括系统广播信息。
在本申请的可选实施例中,系统信息包括低轨道卫星小区的工作频率和/或带宽。
上述实施例提供的一种卫星通信装置,其实现原理和技术效果与上述方法实施例类似,在此不再赘述。
在一个实施例中,如图21所示,提供了一种卫星通信装置,包括:发送模块2101。
其中,该发送模块2101,用于发送下行信号,该下行信号携带低轨道卫星小区的系统信息和低轨道卫星小区对应的低轨道卫星的星历信息,该系统信息和该星历信息用于供UE基于该系统信息和该星历信息接入低轨道卫星小区。
在本申请的可选实施例中,下行信号包括系统广播信息。
在本申请的可选实施例中,系统信息包括低轨道卫星小区的工作频率和/或带宽。
上述实施例提供的一种卫星通信装置,其实现原理和技术效果与上述方法实施例类似,在此不再赘述。
在一个实施例中,如图22所示,提供了一种卫星通信装置,包括:连接模块2201。
该连接模块2201,用于与低轨道卫星小区和高轨道卫星小区建立双连接;
其中,高轨道卫星小区对应的高轨道卫星用于向UE转发地面基站的下行数据,低轨道卫星小区对应的低轨道卫星用于接收以及向地面基站转发UE发送的上行数据,并用于向UE转发地面基站的下行数据。
在本申请的可选实施例中,该连接模块2201,具体用于:接入低轨道卫星小区,并通过低轨道卫星小区向地面基站上报UE的连接支持能力,以供地面基站根据连接支持能力为UE配置高轨道卫星小 区;基于地面基站的配置与高轨道卫星小区建立下行连接。
在本申请的可选实施例中,该连接支持能力包括以下内容中的至少一种:
UE支持接入的小区的工作频率;
UE支持接入的小区的工作频段;
UE支持的双连接频段组合。
如图23所示,提供了另一种卫星通信装置,除了包括图22所示的卫星通信装置包括的连接模块2201外,可选的,还包括:接收模块2202以及通信模块2203。
其中,该接收模块2202,用于通过高轨道卫星小区或者低轨道卫星小区接收地面基站下发的覆盖时间,覆盖时间用于指示低轨道卫星小区的通信信号覆盖UE的时间段。
该通信模块2203,用于根据覆盖时间,通过高轨道卫星小区和低轨道卫星小区中的至少一个与地面基站进行通信。
在本申请的可选实施例中,该通信模块2203,具体用于:在覆盖时间内,UE通过低轨道卫星小区与地面基站进行上下行通信,并通过高轨道卫星小区与地面基站进行下行通信;或者,UE暂停通过高轨道卫星小区与地面基站进行下行通信,并通过低轨道卫星小区与地面基站进行上下行通信。
在本申请的可选实施例中,该通信模块2203,具体用于:在覆盖时间之外,UE通过高轨道卫星小区与地面基站进行下行通信,并暂停通过低轨道卫星小区与地面基站进行上下行通信。
上述实施例提供的一种卫星通信装置,其实现原理和技术效果与上述方法实施例类似,在此不再赘述。
在一个实施例中,如图24所示,提供了一种卫星通信装置,包括:接收模块2401和配置模块2402。
其中,该接收模块2401,用于接收UE在接入低轨道卫星小区后通过低轨道卫星小区上报的UE的连接支持能力。
该配置模块2402,用于根据连接支持能力为UE配置高轨道卫星小区,以供UE与高轨道卫星小区建立下行连接,其中,高轨道卫星小区对应的高轨道卫星用于向UE转发地面基站的下行数据,低轨道卫星小区对应的低轨道卫星用于接收以及向地面基站转发UE发送的上行数据,并用于向UE转发地面基站的下行数据。
在本申请的可选实施例中,连接支持能力包括以下内容中的至少一种:
UE支持接入的小区的工作频率;
UE支持接入的小区的工作频段;
UE支持的双连接频段组合。
如图25所示,提供了另一种卫星通信装置,除了包括图24所示的卫星通信装置包括的接收模块2401以及配置模块2402外,可选的,还包括:发送模块2403。
其中,该发送模块2403,用于通过低轨道卫星小区或者高轨道卫星小区向UE下发覆盖时间,该覆盖时间用于指示低轨道卫星小区的通信信号覆盖UE的时间段,以供UE根据覆盖时间,通过高轨道卫星小区和低轨道卫星小区中的至少一个与地面基站进行通信。
在本申请的可选实施例中,高轨道卫星与低轨道卫星基于地面基站接口通信连接,该发送模块2403,还用于将下行数据发送至高轨道卫星和低轨道卫星中的至少一个。
在本申请的可选实施例中,高轨道卫星与低轨道卫星基于卫星间接口通信连接,该发送模块2403,还用于将下行数据发送至低轨道卫星,以由低轨道卫星基于卫星间接口将下行数据转发至高轨道卫星。
上述实施例提供的一种卫星通信装置,其实现原理和技术效果与上述方法实施例类似,在此不再赘述。
在一个实施例中,如图26所示,提供了一种卫星通信装置,包括:通信模块2601。
其中,该通信模块2601,用于接收并向地面基站转发UE上报的UE的连接支持能力,以供地面基站根据连接支持能力为UE配置高轨道卫星小区;
其中,高轨道卫星小区对应的高轨道卫星用于向UE转发地面基站的下行数据,低轨道卫星用于接收以及向地面基站转发UE发送的上行数据,并用于向UE转发地面基站的下行数据。
在本申请的可选实施例中,高轨道卫星与低轨道卫星基于卫星间接口通信连接,该通信模块2601,还用于:接收地面基站发送的下行数据,并基于卫星间接口将下行数据转发至高轨道卫星。
在本申请的可选实施例中,该通信模块2601,还用于接收并向UE转发地面基站发送的覆盖时间,覆盖时间用于指示低轨道卫星小区的通信信号覆盖UE的时间段,以供UE根据覆盖时间,通过高轨道卫星小区和低轨道卫星小区中的至少一个与地面基站进行通信。
上述实施例提供的一种卫星通信装置,其实现原理和技术效果与上述方法实施例类似,在此不再赘述。
关于卫星通信装置的具体限定可以参见上文中对于卫星通信方法的限定,在此不再赘述。上述卫星通信装置中的各个模块可全部或部分通过软件、硬件及其组合来实现。上述各模块可以硬件形式内嵌于或独立于通信设备中的处理器中,也可以以软件形式存储于计算机设备中的存储器中,以便于处理器调用执行以上各个模块对应的操作。
图27是本申请实施例提供的一种通信设备示意性结构图。该通信设备可以是UE,也可以是网络设备,在本申请实施例中,网络设备指的例如是低轨道卫星、高轨道卫星或者地面基站,图27所示的通信设备2700包括处理器2710,处理器2710可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图27所示,通信设备2700还可以包括存储器2720。其中,处理器2710可以从存储器2720中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器2720可以是独立于处理器2710的一个单独的器件,也可以集成在处理器2710中。
可选地,如图27所示,通信设备2700还可以包括收发器2730,处理器2710可以控制该收发器2730与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器2730可以包括发射机和接收机。收发器2730还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备2700可以实现本申请实施例的各个方法中由UE、低轨道卫星、高轨道卫星或者地面基站实现的相应流程,为了简洁,在此不再赘述。
图28是本申请实施例的芯片的示意性结构图。图28所示的芯片2800包括处理器2810,处理器2810可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图28所示,芯片2800还可以包括存储器2820。其中,处理器2810可以从存储器2820中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器2820可以是独立于处理器2810的一个单独的器件,也可以集成在处理器2810中。
可选地,该芯片2800还可以包括输入接口2830。其中,处理器2810可以控制该输入接口2830与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片2800还可以包括输出接口2840。其中,处理器2810可以控制该输出接口2840与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片2800可应用于本申请实施例中的通信设备2700,并且该芯片2800可以实现本申请实施例的各个方法中由UE、低轨道卫星、高轨道卫星或者地面基站实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片2800还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
本申请实施例还提供了一种通信系统,该通信系统包括UE、低轨道卫星、高轨道卫星以及地面基站。
其中,该UE可以用于实现上述方法中由UE实现的相应的功能,该低轨道卫星可以用于实现上述方法中由低轨道卫星实现的相应的功能,该高轨道卫星可以用于实现上述方法中由高轨道卫星实现的相应的功能,该地面基站可以用于实现上述方法中由地面基站实现的相应的功能,为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程 只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch linkDRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的UE、低轨道卫星、高轨道卫星或者地面基站,并且该计算机程序使得UE、低轨道卫星、高轨道卫星或者地面基站执行本申请实施例的各个方法中由UE、低轨道卫星、高轨道卫星或者地面基站对应实现的流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的UE、低轨道卫星、高轨道卫星或者地面基站,并且该计算机程序指令使得UE、低轨道卫星、高轨道卫星或者地面基站执行本申请实施例的各个方法中由UE、低轨道卫星、高轨道卫星或者地面基站对应实现的流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的UE、低轨道卫星、高轨道卫星或者地面基站,当该计算机程序在UE、低轨道卫星、高轨道卫星或者地面基站上运行时,使得UE、低轨道卫星、高轨道卫星或者地面基站执行本申请实施例的各个方法中由UE、低轨道卫星、高轨道卫星或者地面基站对应实现的流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,)ROM、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。
本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。

Claims (31)

  1. 一种卫星通信方法,其特征在于,所述方法包括:
    用户设备UE接收高轨道卫星发送的下行信号,所述下行信号携带低轨道卫星小区的系统信息和低轨道卫星小区对应的低轨道卫星的星历信息;
    所述UE基于所述系统信息和所述星历信息接入低轨道卫星小区。
  2. 根据权利要求1所述的方法,其特征在于,所述UE基于所述系统信息和所述星历信息接入低轨道卫星小区,包括:
    所述UE基于所述星历信息确定低轨道卫星小区的到达时间,所述到达时间用于指示低轨道卫星小区的覆盖范围移动至目标区域的时刻,所述目标区域为所述UE所处的区域;
    所述UE根据所述到达时间确定小区接入时间,并在所述小区接入时间基于所述系统信息接入低轨道卫星小区。
  3. 根据权利要求1或2所述的方法,其特征在于,所述下行信号包括系统广播信息。
  4. 根据权利要求1或2所述的方法,其特征在于,所述系统信息包括低轨道卫星小区的工作频率和/或带宽。
  5. 一种卫星通信方法,其特征在于,所述方法包括:
    高轨道卫星发送下行信号,所述下行信号携带低轨道卫星小区的系统信息和低轨道卫星小区对应的低轨道卫星的星历信息;
    其中,所述系统信息和所述星历信息用于供UE基于所述系统信息和所述星历信息接入低轨道卫星小区。
  6. 根据权利要求5所述的方法,其特征在于,所述下行信号包括系统广播信息。
  7. 根据权利要求5所述的方法,其特征在于,所述系统信息包括低轨道卫星小区的工作频率和/或带宽。
  8. 一种卫星通信方法,其特征在于,所述方法包括:
    UE与低轨道卫星小区和高轨道卫星小区建立双连接;
    其中,高轨道卫星小区对应的高轨道卫星用于向所述UE转发地面基站的下行数据,低轨道卫星小区对应的低轨道卫星用于接收以及向所述地面基站转发所述UE发送的上行数据,并用于向所述UE转发所述地面基站的下行数据。
  9. 根据权利要求8所述的方法,其特征在于,所述UE与低轨道卫星小区和高轨道卫星小区建立双连接,包括:
    所述UE接入低轨道卫星小区,并通过低轨道卫星小区向所述地面基站上报所述UE的连接支持能力,以供所述地面基站根据所述连接支持能力为所述UE配置高轨道卫星小区;
    所述UE基于所述地面基站的配置与高轨道卫星小区建立下行连接。
  10. 根据权利要求9所述的方法,其特征在于,所述连接支持能力包括以下内容中的至少一种:
    所述UE支持接入的小区的工作频率;
    所述UE支持接入的小区的工作频段;
    所述UE支持的双连接频段组合。
  11. 根据权利要求8所述的方法,其特征在于,所述方法还包括:
    所述UE通过高轨道卫星小区或者低轨道卫星小区接收所述地面基站下发的覆盖时间,所述覆盖时间用于指示低轨道卫星小区的通信信号覆盖所述UE的时间段;
    所述UE根据所述覆盖时间,通过高轨道卫星小区和低轨道卫星小区中的至少一个与所述地面基站进行通信。
  12. 根据权利要求11所述的方法,其特征在于,所述UE根据所述覆盖时间,通过高轨道卫星小 区和低轨道卫星小区中的至少一个与所述地面基站进行通信,包括:
    在所述覆盖时间内,所述UE通过低轨道卫星小区与所述地面基站进行上下行通信,并通过高轨道卫星小区与所述地面基站进行下行通信;或者,所述UE暂停通过高轨道卫星小区与所述地面基站进行下行通信,并通过低轨道卫星小区与所述地面基站进行上下行通信。
  13. 根据权利要求11所述的方法,其特征在于,所述UE根据所述覆盖时间,通过高轨道卫星小区和低轨道卫星小区中的至少一个与所述地面基站进行通信,包括:
    在所述覆盖时间之外,所述UE通过高轨道卫星小区与所述地面基站进行下行通信,并暂停通过低轨道卫星小区与所述地面基站进行上下行通信。
  14. 一种卫星通信方法,其特征在于,所述方法包括:
    地面基站接收UE在接入低轨道卫星小区后通过低轨道卫星小区上报的所述UE的连接支持能力;
    所述地面基站根据所述连接支持能力为所述UE配置高轨道卫星小区,以供所述UE与高轨道卫星小区建立下行连接,其中,高轨道卫星小区对应的高轨道卫星用于向所述UE转发所述地面基站的下行数据,低轨道卫星小区对应的低轨道卫星用于接收以及向所述地面基站转发所述UE发送的上行数据,并用于向所述UE转发所述地面基站的下行数据。
  15. 根据权利要求14所述的方法,其特征在于,所述连接支持能力包括以下内容中的至少一种:
    所述UE支持接入的小区的工作频率;
    所述UE支持接入的小区的工作频段;
    所述UE支持的双连接频段组合。
  16. 根据权利要求14所述的方法,其特征在于,所述方法还包括:
    所述地面基站通过低轨道卫星小区或者高轨道卫星小区向所述UE下发覆盖时间,所述覆盖时间用于指示低轨道卫星小区的通信信号覆盖所述UE的时间段,以供所述UE根据所述覆盖时间,通过高轨道卫星小区和低轨道卫星小区中的至少一个与所述地面基站进行通信。
  17. 根据权利要求14所述的方法,其特征在于,高轨道卫星与低轨道卫星基于地面基站接口通信连接,所述方法还包括:
    所述地面基站将下行数据发送至高轨道卫星和低轨道卫星中的至少一个。
  18. 根据权利要求14所述的方法,其特征在于,高轨道卫星与低轨道卫星基于卫星间接口通信连接,所述方法还包括:
    所述地面基站将下行数据发送至低轨道卫星,以由低轨道卫星基于卫星间接口将下行数据转发至高轨道卫星。
  19. 一种卫星通信方法,其特征在于,所述方法包括:
    低轨道卫星接收并向地面基站转发UE上报的所述UE的连接支持能力,以供所述地面基站根据所述连接支持能力为所述UE配置高轨道卫星小区;
    其中,高轨道卫星小区对应的高轨道卫星用于向所述UE转发所述地面基站的下行数据,低轨道卫星用于接收以及向所述地面基站转发所述UE发送的上行数据,并用于向所述UE转发所述地面基站的下行数据。
  20. 根据权利要求19所述的方法,其特征在于,高轨道卫星与低轨道卫星基于卫星间接口通信连接,所述方法还包括:
    低轨道卫星接收所述地面基站发送的下行数据,并基于卫星间接口将下行数据转发至高轨道卫星。
  21. 根据权利要求19所述的方法,其特征在于,所述方法还包括:
    低轨道卫星接收并向所述UE转发所述地面基站发送的覆盖时间,所述覆盖时间用于指示低轨道卫星小区的通信信号覆盖所述UE的时间段,以供所述UE根据所述覆盖时间,通过高轨道卫星小区和低轨道卫星小区中的至少一个与所述地面基站进行通信。
  22. 一种卫星通信装置,其特征在于,所述装置包括:
    接收模块,用于接收高轨道卫星发送的下行信号,所述下行信号携带低轨道卫星小区的系统信息和低轨道卫星小区对应的低轨道卫星的星历信息;
    接入模块,用于基于所述系统信息和所述星历信息接入低轨道卫星小区。
  23. 一种卫星通信装置,其特征在于,所述装置包括:
    发送模块,用于发送下行信号,所述下行信号携带低轨道卫星小区的系统信息和低轨道卫星小区对应的低轨道卫星的星历信息;
    其中,所述系统信息和所述星历信息用于供UE基于所述系统信息和所述星历信息接入低轨道卫星小区。
  24. 一种卫星通信装置,其特征在于,所述装置包括:
    连接模块,用于与低轨道卫星小区和高轨道卫星小区建立双连接;
    其中,高轨道卫星小区对应的高轨道卫星用于向UE转发地面基站的下行数据,低轨道卫星小区对应的低轨道卫星用于接收以及向所述地面基站转发所述UE发送的上行数据,并用于向所述UE转发所述地面基站的下行数据。
  25. 一种卫星通信装置,其特征在于,所述装置包括:
    接收模块,用于接收UE在接入低轨道卫星小区后通过低轨道卫星小区上报的所述UE的连接支持能力;
    配置模块,用于根据所述连接支持能力为所述UE配置高轨道卫星小区,以供所述UE与高轨道卫星小区建立下行连接,其中,高轨道卫星小区对应的高轨道卫星用于向所述UE转发所述地面基站的下行数据,低轨道卫星小区对应的低轨道卫星用于接收以及向所述地面基站转发所述UE发送的上行数据,并用于向所述UE转发所述地面基站的下行数据。
  26. 一种卫星通信装置,其特征在于,所述装置包括:
    通信模块,用于接收并向地面基站转发UE上报的所述UE的连接支持能力,以供所述地面基站根据所述连接支持能力为所述UE配置高轨道卫星小区;
    其中,高轨道卫星小区对应的高轨道卫星用于向所述UE转发所述地面基站的下行数据,低轨道卫星用于接收以及向所述地面基站转发所述UE发送的上行数据,并用于向所述UE转发所述地面基站的下行数据。
  27. 一种通信设备,其特征在于,所述通信设备包括:处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以执行如权利要求1至21中任一项所述的方法。
  28. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至21中任一项所述的方法。
  29. 一种芯片,其特征在于,所述芯片包括处理电路,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至21中任一项所述的方法。
  30. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机程序指令,所述计算机程序指令使得计算机执行如权利要求1至21中任一项所述的方法。
  31. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1至21中任一项所述的方法。
PCT/CN2021/137701 2021-12-14 2021-12-14 卫星通信方法、装置、设备、存储介质、程序产品以及芯片 WO2023108388A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180103023.3A CN118044303A (zh) 2021-12-14 2021-12-14 卫星通信方法、装置、设备、存储介质、程序产品以及芯片
PCT/CN2021/137701 WO2023108388A1 (zh) 2021-12-14 2021-12-14 卫星通信方法、装置、设备、存储介质、程序产品以及芯片

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/137701 WO2023108388A1 (zh) 2021-12-14 2021-12-14 卫星通信方法、装置、设备、存储介质、程序产品以及芯片

Publications (1)

Publication Number Publication Date
WO2023108388A1 true WO2023108388A1 (zh) 2023-06-22

Family

ID=86774963

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/137701 WO2023108388A1 (zh) 2021-12-14 2021-12-14 卫星通信方法、装置、设备、存储介质、程序产品以及芯片

Country Status (2)

Country Link
CN (1) CN118044303A (zh)
WO (1) WO2023108388A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116582875A (zh) * 2023-07-07 2023-08-11 中国电信股份有限公司 双连接建立方法、装置、电子设备以及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104753580A (zh) * 2013-12-31 2015-07-01 深圳航天东方红海特卫星有限公司 一种数据通信卫星星座系统及其通信方法
CN108112281A (zh) * 2015-05-01 2018-06-01 高通股份有限公司 用于卫星通信的切换
CN111106865A (zh) * 2018-10-25 2020-05-05 华为技术有限公司 基于卫星网络的通信方法、装置及系统
CN111565067A (zh) * 2020-05-09 2020-08-21 重庆邮电大学 一种卫星通信系统中的移动管理的实现方法
CN111866878A (zh) * 2020-07-17 2020-10-30 中国科学院上海微系统与信息技术研究所 一种卫星通信系统中的终端登录方法
CN112351445A (zh) * 2019-08-08 2021-02-09 千寻位置网络有限公司 通信方法、地基网络系统、通信系统及终端

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104753580A (zh) * 2013-12-31 2015-07-01 深圳航天东方红海特卫星有限公司 一种数据通信卫星星座系统及其通信方法
CN108112281A (zh) * 2015-05-01 2018-06-01 高通股份有限公司 用于卫星通信的切换
CN111106865A (zh) * 2018-10-25 2020-05-05 华为技术有限公司 基于卫星网络的通信方法、装置及系统
CN112351445A (zh) * 2019-08-08 2021-02-09 千寻位置网络有限公司 通信方法、地基网络系统、通信系统及终端
CN111565067A (zh) * 2020-05-09 2020-08-21 重庆邮电大学 一种卫星通信系统中的移动管理的实现方法
CN111866878A (zh) * 2020-07-17 2020-10-30 中国科学院上海微系统与信息技术研究所 一种卫星通信系统中的终端登录方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116582875A (zh) * 2023-07-07 2023-08-11 中国电信股份有限公司 双连接建立方法、装置、电子设备以及存储介质
CN116582875B (zh) * 2023-07-07 2023-10-03 中国电信股份有限公司 双连接建立方法、装置、电子设备以及存储介质

Also Published As

Publication number Publication date
CN118044303A (zh) 2024-05-14

Similar Documents

Publication Publication Date Title
US10020861B2 (en) Method and system for distributed transceivers and mobile device connectivity
US10206239B2 (en) Simultaneous data transmission method based on multiple networks, and apparatus therefor
JP6772271B2 (ja) フィードバック情報の伝送方法及び装置
US11444651B2 (en) Transceiver, vehicle, method, and computer program for a transceiver
US20210336732A1 (en) Method for data transmission and terminal device
WO2023108388A1 (zh) 卫星通信方法、装置、设备、存储介质、程序产品以及芯片
EP3826220B1 (en) D2d communication method and terminal device
WO2023185615A1 (zh) 通信方法和装置
US10027440B2 (en) Control circuit of wireless user equipment
EP4311149A1 (en) Method and device for communication
US11894974B2 (en) Network switching method, network node, chip and communication system
US20210127277A1 (en) Terminal coverage method, communications apparatus, and computer-readable storage medium
US11184864B2 (en) Method for wireless communication, terminal device, network device, and network node
WO2023065335A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023283776A1 (zh) 功率控制的方法、终端设备和网络设备
WO2023077439A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023216880A1 (zh) 通信方法及相关装置
WO2023115545A1 (zh) 信息传输方法、第一接入网设备、第二接入网设备和终端
WO2022246648A1 (zh) 用于终端的通信方法及通信装置
US20230099072A1 (en) Information processing method, terminal device and network device
WO2023241271A9 (zh) 一种寻呼方法及通信装置
WO2022126640A1 (zh) 干扰规避方法和基站
WO2022021448A1 (zh) 检测控制信息的方法、传输控制信息的方法、终端设备和网络设备
US11510199B2 (en) Wireless communication method, terminal device and network device
WO2023142922A1 (zh) 卫星控制方法、服务切换方法、设备和存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21967528

Country of ref document: EP

Kind code of ref document: A1