WO2020082972A1 - 一种基于贝叶斯网络的锅炉运行数据监测方法和装置 - Google Patents

一种基于贝叶斯网络的锅炉运行数据监测方法和装置 Download PDF

Info

Publication number
WO2020082972A1
WO2020082972A1 PCT/CN2019/107944 CN2019107944W WO2020082972A1 WO 2020082972 A1 WO2020082972 A1 WO 2020082972A1 CN 2019107944 W CN2019107944 W CN 2019107944W WO 2020082972 A1 WO2020082972 A1 WO 2020082972A1
Authority
WO
WIPO (PCT)
Prior art keywords
model
boiler system
observation
state
boiler
Prior art date
Application number
PCT/CN2019/107944
Other languages
English (en)
French (fr)
Inventor
杨杰
Original Assignee
新智数字科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新智数字科技有限公司 filed Critical 新智数字科技有限公司
Priority to SG11202102671VA priority Critical patent/SG11202102671VA/en
Priority to EP19875735.3A priority patent/EP3822868A4/en
Priority to JP2021514420A priority patent/JP7344960B2/ja
Priority to US17/256,654 priority patent/US20210262900A1/en
Publication of WO2020082972A1 publication Critical patent/WO2020082972A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M99/00Subject matter not provided for in other groups of this subclass
    • G01M99/005Testing of complete machines, e.g. washing-machines or mobile phones
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B35/00Control systems for steam boilers
    • F22B35/18Applications of computers to steam boiler control
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N7/00Computing arrangements based on specific mathematical models
    • G06N7/01Probabilistic graphical models, e.g. probabilistic networks
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/0265Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computing arrangements using knowledge-based models
    • G06N5/04Inference or reasoning models
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/27Design optimisation, verification or simulation using machine learning, e.g. artificial intelligence, neural networks, support vector machines [SVM] or training a model

Definitions

  • the invention relates to the technical field of data processing, in particular to a method and a device for monitoring boiler operation data based on Bayesian networks.
  • industrial equipment can collect a large amount of data through sensors during the work process. Through these data, we can judge the working state of the equipment. For example, during the working process of the boiler, temperature and pressure data can be collected through the sensor. Through these data, we can judge the working state of the boiler.
  • the embodiment of the present invention provides a method and device for monitoring boiler operation data based on Bayesian network.
  • a model of equipment operation is constructed based on the Bayesian network.
  • the model monitors the correctness of data and completes missing data.
  • Equipment remote diagnosis provides convenience.
  • an embodiment of the present invention provides a method for monitoring boiler operation data based on Bayesian networks.
  • the method includes:
  • S2 Collect the operating status of each component and different positions of each component through the sensor to obtain the boiler system observation model
  • n represents the system state variable, which can be calculated according to the system model Probability distribution Further calculation Expected value Use the expected value as an estimate of missing data or incomplete observation data for data completion.
  • the system model will infer the correctness of the data according to the consistency of the state of each part of the system and can prompt a warning to the erroneous data or further automatically correct the error.
  • the observation value of the sensor at a certain moment Observation probability can be calculated according to system model according to It can be judged whether the observation is abnormal (the abnormality with low observation probability is generally considered to be high), and the data abnormality can be corrected under certain circumstances.
  • the overall state distribution of the boiler system state model in S1 is expressed by the formula:
  • the relationship between input z n-1 and output z n is:
  • F is the system state model function
  • u is the noise of the system state model, which conforms to the Gaussian distribution.
  • conditional probability distribution between input z n-1 and output z n is:
  • N (F (z n-1 ), ⁇ ) represents a Gaussian distribution.
  • the boiler system observation model in S2 is expressed by the formula as:
  • z) is the measured probability distribution under the state z; x represents the sensor observation value; H is the system observation model function; N (H (z), ⁇ 2 ) represents the Gaussian distribution.
  • the sensor observation value and the system observation model function satisfy the formula:
  • is the noise of the observation model, which conforms to the Gaussian distribution.
  • the boiler system model in S3 is expressed by the formula as:
  • P (z 1: n , x 1: n ) is the joint probability distribution of state and measurement.
  • an embodiment of the present invention provides a boiler operation data monitoring device based on a Bayesian network, the device includes: a status module, an observation module, an integration module, and a monitoring module, wherein,
  • the status module is used to establish a boiler system status model based on the correlation between the components of the boiler system and the different positions of the components;
  • the observation module is used to collect the operating status of each component and different positions of each component through a sensor to obtain an observation model of the boiler system;
  • the integration module is used to combine a boiler system state model established by the state module and a boiler system observation model obtained by the observation module to obtain a boiler system model.
  • the monitoring module is used to predict missing observation data and determine whether the observation data is abnormal according to the boiler system model.
  • the overall state distribution of the boiler system state model established by the state module is expressed by the formula as:
  • the relationship between input z n-1 and output z n is:
  • F is the system state model function
  • u is the noise of the system state model, which conforms to the Gaussian distribution.
  • conditional probability distribution between input z n-1 and output z n is:
  • N (F (z n-1 ), ⁇ ) represents a Gaussian distribution.
  • the observation model of the boiler system obtained by the observation module is expressed by a formula as:
  • z) is the measured probability distribution under the state z; x represents the sensor observation value; H is the system observation model function; N (H (z), ⁇ 2 ) represents the Gaussian distribution.
  • the sensor observation value and the system observation model function satisfy the formula:
  • is the noise of the observation model, which conforms to the Gaussian distribution.
  • the boiler system model obtained by the integration module is expressed by the formula as:
  • P (z 1: n , x 1: n ) is the joint probability distribution of state and measurement.
  • the present invention has at least the following beneficial effects:
  • FIG. 1 is a flowchart of a method for monitoring boiler operation data based on Bayesian network according to an embodiment of the present invention
  • FIG. 2 is a dependency diagram of a system model based on Bayesian network provided by an embodiment of the present invention
  • FIG. 3 is a structural block diagram of a method for monitoring boiler operation data based on a Bayesian network according to an embodiment of the present invention.
  • an embodiment of the present invention provides a method for monitoring boiler operation data based on Bayesian networks.
  • the method may include the following steps:
  • S2 Collect the operating status of each component and different positions of each component through the sensor to obtain the boiler system observation model
  • a statistical model of the system operation is established according to the physical laws of the boiler system operation and a large number of system operation data.
  • the equipment IoT data is collected by sensors to collect physical states at different positions of each component of the equipment.
  • the physical states of different parts of the equipment are not independent of each other.
  • Each state has a certain correlation according to the physical law.
  • These states constitute different subsystem inputs and outputs.
  • a state is both an input and a subsystem.
  • the output of another subsystem; secondly, the use of sensors to observe the state is an incompletely reliable system. While introducing observation noise, there are also problems of missing observations, incomplete observations, and abnormal observations. Solve the problem of inaccurate observation and so on.
  • the overall state distribution of the boiler system state model in S1 is expressed by the formula as:
  • F is the system state model function
  • u is the noise of the system state model, which conforms to the Gaussian distribution.
  • conditional probability distribution between input z n-1 and output z n is:
  • N (F (z n-1 ), ⁇ ) represents a Gaussian distribution.
  • the system state model represents the relationship between the various states within the system.
  • one state is both the input of one subsystem and the output of another subsystem as input.
  • the subsystem can be called a parent node, and the subsystem as an output can be called a child node.
  • the interdependence between the various nodes, the distribution of nodes can be calculated from the parent node to the child node according to the conditional probability, the formula is:
  • z n-1 is the parent node of z n ;
  • F represents the system model, which can be defined by business experts based on relevant domain knowledge;
  • u is the noise of the system state model, which conforms to the Gaussian distribution, and can be expressed as u ⁇ N (0, ⁇ ).
  • conditional probability distribution between the parent node z n-1 and the child node z n is:
  • N (F (z n-1 ), ⁇ ) represents a Gaussian distribution.
  • the boiler system observation model in S2 is expressed by the formula as:
  • z) is the measured probability distribution under the state z; x represents the sensor observation value; H is the system observation model function; N (H (z), ⁇ 2 ) represents the Gaussian distribution.
  • the sensor observation value and the system observation model function satisfy the formula:
  • is the noise of the observation model, which conforms to the Gaussian distribution.
  • the system observation refers to observing the operating state of the system through the sensor.
  • the observation of the state using the sensor is an incompletely reliable system. Observation noise is introduced here.
  • the system observation model satisfies the following formula:
  • x represents the sensor observation value
  • H is the system observation model function
  • is the noise of the observation model, which conforms to the Gaussian distribution; it can be expressed as ⁇ ⁇ N (0, ⁇ 2 ).
  • system observation model can be expressed by the formula as:
  • the boiler system model in S3 is expressed by the formula as:
  • P (z 1: n , x 1: n ) is the joint probability distribution of state and measurement.
  • a system model by integrating the system state model and the system observation model, a system model can be obtained, which is expressed by the formula as:
  • a system model is briefly represented.
  • the system model is composed of multiple states and sensor observations corresponding to the state in the system. It is represented by a directed acyclic graph, which contains 4 types of nodes, respectively : Nodes representing the state of the system (unobservable hidden variables); nodes observed by sensors; missing or partial observation nodes; abnormal observation nodes.
  • the arrows in the figure represent the interdependence between nodes, that is, the interrelationship between the various states in the system.
  • step S4 based on the boiler system model, it is speculated that the observation data is missing and whether the observation data is abnormal.
  • a system model can be trained from the system operating data.
  • the system model reflects the joint probability distribution of various states when the system is working. The normal working state of the system has a higher probability. It can complete multiple data fault tolerance tasks according to the system model.
  • n represents the system state variable, which can be calculated according to the system model Probability distribution Further calculation Expected value Use the expected value as an estimate of missing data or incomplete observation data for data completion.
  • the system model will infer the correctness of the data according to the consistency of the state of each part of the system and can prompt a warning to the erroneous data or further automatically correct the error.
  • the observation value of the sensor at a certain moment Observation probability can be calculated according to system model
  • an embodiment of the present invention provides ...
  • the method may include the following steps:
  • the embodiment of the present invention provides a Bayesian network-based boiler operation data monitoring device, which includes: a status module , Observation module, integration module and monitoring module, where,
  • the status module is used to establish a boiler system status model based on the correlation between the components of the boiler system and the different positions of the components;
  • the observation module is used to collect the operating status of each component and different positions of each component through a sensor to obtain an observation model of the boiler system;
  • the integration module is used to combine a boiler system state model established by the state module and a boiler system observation model obtained by the observation module to obtain a boiler system model.
  • the monitoring module is used to predict missing observation data and determine whether the observation data is abnormal according to the boiler system model.
  • a statistical model of the system operation is established according to the physical laws of the boiler system operation and a large number of system operation data.
  • the equipment IoT data is collected by sensors to collect physical states at different positions of each component of the equipment.
  • the physical states of different parts of the equipment are not independent of each other.
  • Each state has a certain correlation according to the physical law.
  • These states constitute different subsystem inputs and outputs.
  • a state is both an input and a subsystem.
  • the output of another subsystem; secondly, the use of sensors to observe the state is an incompletely reliable system. While introducing observation noise, there are also problems of missing observations, incomplete observations, and abnormal observations. Through the overall modeling of the system, you can Solve the problem of inaccurate observation and so on.
  • the system state model represents the relationship between the various states within the system. Different subsystem inputs and outputs. A state is both the input of one subsystem and the output of another subsystem.
  • the input subsystem can be called a parent node
  • the subsystem as an output can be called a child node.
  • the interdependence between the various nodes, the distribution of nodes can be calculated from the parent node to the child node according to the conditional probability, the formula is:
  • z n-1 is the parent node of z n ;
  • F represents the system model, which can be defined by business experts based on relevant domain knowledge;
  • u is the noise of the system state model, which conforms to the Gaussian distribution, and can be expressed as u ⁇ N (0, ⁇ ).
  • conditional probability distribution between the parent node z n-1 and the child node z n is:
  • N (F (z n-1 ), ⁇ ) represents a Gaussian distribution.
  • x represents the sensor observation value
  • H is the system observation model function
  • is the noise of the observation model, which conforms to the Gaussian distribution; it can be expressed as ⁇ ⁇ N (0, ⁇ 2 ).
  • system observation model can be expressed by the formula as:
  • a system model can be trained from the system operating data.
  • the system model reflects the joint probability distribution of various states when the system is working.
  • the normal working state of the system has a higher probability. It can complete multiple data fault tolerance tasks according to the system model.
  • n represents the system state variable, which can be calculated according to the system model Probability distribution Further calculation Expected value Use the expected value as an estimate of missing data or incomplete observation data for data completion.
  • the system model will infer the correctness of the data according to the consistency of the state of each part of the system and can prompt a warning to the erroneous data or further automatically correct the error.
  • the observation value of the sensor at a certain moment Observation probability can be calculated according to system model

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Artificial Intelligence (AREA)
  • General Engineering & Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Software Systems (AREA)
  • Mathematical Physics (AREA)
  • Computing Systems (AREA)
  • Data Mining & Analysis (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computational Mathematics (AREA)
  • Algebra (AREA)
  • Probability & Statistics with Applications (AREA)
  • Computational Linguistics (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Medical Informatics (AREA)
  • Automation & Control Theory (AREA)
  • Computer Hardware Design (AREA)
  • Geometry (AREA)
  • Testing And Monitoring For Control Systems (AREA)

Abstract

一种基于贝叶斯网络的锅炉系统运行数据监测方法和装置,该方法包括:S1:根据锅炉系统各部件以及各部件不同位置之间的关联关系,建立锅炉系统状态模型;S2:通过传感器采集各部件以及各部件不同位置的运行状态,得到锅炉系统观测模型;S3:结合锅炉系统状态模型和锅炉系统观测模型,得到锅炉系统模型。S4:根据锅炉系统模型,推测缺失观测数据以及判断观测数据是否存在异常。上述方法和装置基于贝叶斯网络构建设备运行的模型,通过模型监测数据的正确性以及补全缺失的数据,为后续的设备远程诊断提供便利。

Description

一种基于贝叶斯网络的锅炉运行数据监测方法和装置 技术领域
本发明涉及数据处理技术领域,特别涉及一种基于贝叶斯网络的锅炉运行数据监测方法和装置。
背景技术
工业生产现场,工业设备在工作的过程中可以通过传感器采集到大量的数据,通过这些数据我们可以判断设备的工作状态。比如锅炉在工作的过程中通过传感器可以采集到温度、压力等数据,通过这些数据我们可以判断锅炉的工作状态。
但是在实际的场景下,往往由于各种原因使得数据的采集有部分缺失或者不够准确,并且不能对部分缺失或错误的数据未采取相应的补全或检测措施,比如传感器原因、物联数据传输问题等。这会使得依靠物联数据的设备远程诊断不方便。
发明内容
本发明实施例提供了一种基于贝叶斯网络的锅炉运行数据监测方法和装置,基于贝叶斯网络构建设备运行的模型,通过模型监测数据的正确性以及补全缺失的数据,为后续的设备远程诊断提供便利。
第一方面,本发明实施例提供了一种基于贝叶斯网络的锅炉运行数据监测方法,该方法包括:
S1:根据锅炉系统各部件以及各部件不同位置之间的关联关系,建立锅炉系统状态模型;
S2:通过传感器采集各部件以及各部件不同位置的运行状态,得到锅炉系统观测模型;
S3:结合锅炉系统状态模型和锅炉系统观测模型,得到锅炉系统模型。
S4:根据锅炉系统模型,推测缺失观测数据以及判断观测数据是否存在 异常。
对于缺失观测数据的问题,从系统的角度考虑如果能正确观测到大部分数据,同时只是缺失部分观测数据,由于缺失数据和观测数据都作为系统整体状态的一部分,之间存在一定相互的关系(比如蒸汽的出口温度和入口温度),这使得根据观测数据推测缺失数据成为一种可能。假定
Figure PCTCN2019107944-appb-000001
为缺失数据或不完全观测数据,
Figure PCTCN2019107944-appb-000002
为可以完全观测的数据,z 1:n表示系统状态变量,可以根据系统模型计算得到
Figure PCTCN2019107944-appb-000003
的概率分布
Figure PCTCN2019107944-appb-000004
进一步计算
Figure PCTCN2019107944-appb-000005
的期望值
Figure PCTCN2019107944-appb-000006
使用期望值作为缺失数据或不完全观测数据的估计值进行数据补全。
对于异常数据的问题,系统模型会根据系统各部分状态的一致性推理数据的正确性并可以对错误数据提示警告或进一步自动修改错误。假定某个时刻在传感器的观测值为
Figure PCTCN2019107944-appb-000007
根据系统模型可以计算观测概率
Figure PCTCN2019107944-appb-000008
根据
Figure PCTCN2019107944-appb-000009
可以判断观测是否异常(通常认为观测概率低的异常可能性大),并且在一定的情况下可以修正该数据异常。
优选地,S1中锅炉系统状态模型的整体状态分布由公式表示为:
P(z 1:n)=P(z 1)P(z 2|z 1)…P(z n|z 1:n-1)
其中,z 1:n为锅炉系统中不同部件的合集;z n为锅炉系统中第n个部件的状态。
优选地,在锅炉系统状态模型中,输入z n-1和输出z n的关系为:
z n=F(z n-1)+u
其中,F为系统状态模型函数;u为系统状态模型的噪声,符合高斯分布。
优选地 在锅炉系统状态模型中,输入z n-1和输出z n之间的条件概率分布为:
P(z n|z n-1)=N(F(z n-1),∑)
其中,N(F(z n-1),∑)表示高斯分布。
优选地,S2中锅炉系统观测模型由公式表示为:
P(x|z)=N(H(z),σ 2)
其中,P(x|z)为在状态z下的测量的概率分布;x表示传感器观测值;H为系统观测模型函数;N(H(z),σ 2)表示高斯分布。
优选地,传感器观测值与系统观测模型函数满足公式:
x=H(z)+ε
其中,ε为观测模型的噪声,符合高斯分布。
优选地,S3中锅炉系统模型由公式表示为:
P(z 1:n,x 1:n)=P(z 1)P(z 2|z 1)…P(z n|z 1:n-1)P(x 2|z 1)…P(x n|z n)
其中,P(z 1:n,x 1:n)为状态和测量的联合概率分布。
第二方面,本发明实施例提供了一种基于贝叶斯网络的锅炉运行数据监测装置,该装置包括:状态模块、观测模块、整合模块和监测模块,其中,
所述状态模块,用于根据锅炉系统各部件以及各部件不同位置之间的关联关系,建立锅炉系统状态模型;
所述观测模块,用于通过传感器采集各部件以及各部件不同位置的运行状态,得到锅炉系统观测模型;
所述整合模块,用于结合所述状态模块建立的锅炉系统状态模型和所述观测模块得到的锅炉系统观测模型,得到锅炉系统模型。
所述监测模块,用于根据锅炉系统模型,推测缺失观测数据以及判断观测数据是否存在异常。
优选地,所述状态模块建立的锅炉系统状态模型的整体状态分布由公式表示为:
P(z 1:n)=P(z 1)P(z 2|z 1)…P(z n|z 1:n-1)
其中,z 1:n为锅炉系统中不同部件的合集;z n为锅炉系统中第n个部件的状态。
优选地,在锅炉系统状态模型中,输入z n-1和输出z n的关系为:
z n=F(z n-1)+u
其中,F为系统状态模型函数;u为系统状态模型的噪声,符合高斯分布。
优选地,在锅炉系统状态模型中,输入z n-1和输出z n之间的条件概率分布为:
P(z n|z n-1)=N(F(z n-1),∑)
其中,N(F(z n-1),∑)表示高斯分布。
优选地,所述观测模块得到的锅炉系统观测模型由公式表示为:
P(x|z)=N(H(z),σ 2)
其中,P(x|z)为在状态z下的测量的概率分布;x表示传感器观测值;H为系统观测模型函数;N(H(z),σ 2)表示高斯分布。
优选地,传感器观测值与系统观测模型函数满足公式:
x=H(z)+ε
其中,ε为观测模型的噪声,符合高斯分布。
优选地,所述整合模块得到的锅炉系统模型由公式表示为:
P(z 1:n,x 1:n)=P(z 1)P(z 2|z 1)…P(z n|z 1:n-1)P(x 2|z 1)…P(x n|z n)
其中,P(z 1:n,x 1:n)为状态和测量的联合概率分布。
与现有技术相比,本发明至少具有以下有益效果:
从系统的角度出发,利用系统的物理规律作为先验知识,结合传感器观测构建系统运行数据的统计模型,基于该模型实现数据的质量改进和异常检测。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面 描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明一个实施例提供的一种基于贝叶斯网络的锅炉运行数据监测方法的流程图;
图2是本发明一个实施例提供的一种基于贝叶斯网络构建的系统模型的依赖关系图;
图3是本发明一个实施例提供的一种基于贝叶斯网络的锅炉运行数据监测方法的结构框图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例,基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1所示,本发明实施例提供了一种基于贝叶斯网络的锅炉运行数据监测方法,该方法可以包括以下步骤:
S1:根据锅炉系统各部件以及各部件不同位置之间的关联关系,建立锅炉系统状态模型;
S2:通过传感器采集各部件以及各部件不同位置的运行状态,得到锅炉系统观测模型;
S3:结合锅炉系统状态模型和锅炉系统观测模型,得到锅炉系统模型。
S4:根据锅炉系统模型,推测缺失观测数据以及判断观测数据是否存在异常。
在该实施例中,根据锅炉系统运行物理规律以及大量系统的运行数据建立系统运行的统计模型,设备物联数据是通过传感器采集设备各部件不同位置上的物理状态。首先,设备各部件不同位置上的物理状态并不是相互独立 的,各个状态按照物理规律有一定的相关性,这些状态构成了不同的子系统输入输出,一个状态既是一个子系统的输入,同时也是另一个子系统的输出;其次,使用传感器对状态的观测是一个不完全可靠的系统,在引入观测噪声的同时还存在缺失观测、不完全观测、异常观测等问题,通过系统的整体建模可以解决观测缺失不准确等问题。
在本发明一个实施例中,S1中锅炉系统状态模型的整体状态分布由公式表示为:
P(z 1:n)=P(z 1)P(z 2|z 1)…P(z n|z 1:n-1)
其中,z 1:n为锅炉系统中不同部件的合集;z n为锅炉系统中第n个部件的状态。
在锅炉系统状态模型中,输入z n-1和输出z n的关系为:
z n=F(z n-1)+u
其中,F为系统状态模型函数;u为系统状态模型的噪声,符合高斯分布。
在锅炉系统状态模型中,输入z n-1和输出z n之间的条件概率分布为:
P(z n|z n-1)=N(F(z n-1),∑)
其中,N(F(z n-1),∑)表示高斯分布。
在该实施例中,对于系统状态模型表示了系统内部各个状态之间的关联关系,不同的子系统输入输出,一个状态既是一个子系统的输入,同时也是另一个子系统的输出,作为输入的子系统可以叫做父节点,作为输出的子系统可以叫做子节点。各个节点之间的相互依赖,节点的分布可以根据条件概率由其父节点计算得到子节点,公式为:
z n=F(z n-1)+u
其中,z n-1是z n的父节点;F表示系统模型,可以由业务专家根据相关的领域知识定义;u为系统状态模型的噪声,符合高斯分布,可以表示为u~N(0,∑)。
同时,父节点z n-1和子节点z n之间的条件概率分布为:
P(z n|z n-1)=N(F(z n-1),∑)
其中,N(F(z n-1),∑)表示高斯分布。
因此,状态模块建立的锅炉系统状态模型的条件概率系统整体状态分布由公式表示为:
P(z 1:n)=P(z 1)P(z 2|z 1)…P(z n|z 1:n-1)
其中,z 1:n为锅炉系统中不同部件的合集;z n为锅炉系统中第n个部件的状态。
在本发明一个实施例中,S2中锅炉系统观测模型由公式表示为:
P(x|z)=N(H(z),σ 2)
其中,P(x|z)为在状态z下的测量的概率分布;x表示传感器观测值;H为系统观测模型函数;N(H(z),σ 2)表示高斯分布。
传感器观测值与系统观测模型函数满足公式:
x=H(z)+ε
其中,ε为观测模型的噪声,符合高斯分布。
在该实施例中,对于系统观测是指通过传感器观测系统的运行状态,使用传感器对状态的观测是一个不完全可靠的系统,在此引入观测噪声,系统观测模型满足以下公式:
x=H(z)+ε
其中,x表示传感器观测值;H为系统观测模型函数;ε为观测模型的噪声,符合高斯分布;可以表示为ε~N(0,σ 2)。
从而可得到系统观测模型由公式表示为:
P(x|z)=N(H(z),σ 2)
其中,P(x|z)为在状态z下的测量的概率分布;N(H(z),σ 2)表示高斯分布。
在本发明一个实施例中,S3中锅炉系统模型由公式表示为:
P(z 1:n,x 1:n)=P(z 1)P(z 2|z 1)…P(z n|z 1:n-1)P(x 2|z 1)…P(x n|z n)
其中,P(z 1:n,x 1:n)为状态和测量的联合概率分布。
在该实施例中,综合系统状态模型和系统观测模型,可以得到系统模型,由公式表示为:
P(z 1:n,x 1:n)=P(z 1)P(z 2|z 1)…P(z n|z 1:n-1)P(x 2|z 1)…P(x n|z n)
值得说明的是,通过对系统模型的推理计算,可以从数据中得到许多有价值的信息,比如传感器的观测数据是否合理,当前系统运行状态是否正常等。
对于带有不完全观测的动态随机系统,由于该系统的同时具有多个相关联的状态,使用带有隐含变量的贝叶斯网络对该系统建模是一个有效地方法。如图2所示,简要表示了一个系统模型,该系统模型由系统内部的多个状态和状态相对应的传感器观测组成,用一个有向无环图表示,图中包含4类节点,分别是:表示系统状态的节点(不可观测的隐含变量);传感器观测的节点;缺失或部分观测节点;异常观测节点。图中的箭头来表示节点之间的相互依赖关系,也就是系统中各个状态之间的相互关系。
在本发明一个实施例中,步骤S4,根据锅炉系统模型,推测缺失观测数据以及判断观测数据是否存在异常。可以从系统运行数据中训练完成一个系统模型,系统模型反映了系统工作时各个状态的联合概率分布,系统正常工作状态具有较高的概率,可以根据系统模型完成多项数据容错任务。
对于缺失观测数据的问题,从系统的角度考虑如果能正确观测到大部分数据,同时只是缺失部分观测数据,由于缺失数据和观测数据都作为系统整体状态的一部分,之间存在一定相互的关系(比如蒸汽的出口温度和入口温度),这使得根据观测数据推测缺失数据成为一种可能。假定
Figure PCTCN2019107944-appb-000010
为缺失数据或不完全观测数据,
Figure PCTCN2019107944-appb-000011
为可以完全观测的数据,z 1:n表示系统状态变量,可以根据系统模型计算得到
Figure PCTCN2019107944-appb-000012
的概率分布
Figure PCTCN2019107944-appb-000013
进 一步计算
Figure PCTCN2019107944-appb-000014
的期望值
Figure PCTCN2019107944-appb-000015
使用期望值作为缺失数据或不完全观测数据的估计值进行数据补全。
对于异常数据的问题,系统模型会根据系统各部分状态的一致性推理数据的正确性并可以对错误数据提示警告或进一步自动修改错误。假定某个时刻在传感器的观测值为
Figure PCTCN2019107944-appb-000016
根据系统模型可以计算观测概率
Figure PCTCN2019107944-appb-000017
根据
Figure PCTCN2019107944-appb-000018
可以判断观测是否异常(通常认为观测概率低的异常可能性大),并且在一定的情况下可以修正该数据异常。
因此,基于贝叶斯网络构建设备运行的系统模型,通过系统模型监测数据的正确性以及补全缺失的数据,为后续的设备远程诊断提供便利。
如图3所示,本发明实施例提供了一种……,该方法可以包括以下步骤:本发明实施例提供了一种基于贝叶斯网络的锅炉运行数据监测装置,该装置包括:状态模块、观测模块、整合模块和监测模块,其中,
所述状态模块,用于根据锅炉系统各部件以及各部件不同位置之间的关联关系,建立锅炉系统状态模型;
所述观测模块,用于通过传感器采集各部件以及各部件不同位置的运行状态,得到锅炉系统观测模型;
所述整合模块,用于结合所述状态模块建立的锅炉系统状态模型和所述观测模块得到的锅炉系统观测模型,得到锅炉系统模型。
所述监测模块,用于根据锅炉系统模型,推测缺失观测数据以及判断观测数据是否存在异常。
在该实施例中,根据锅炉系统运行物理规律以及大量系统的运行数据建立系统运行的统计模型,设备物联数据是通过传感器采集设备各部件不同位置上的物理状态。首先,设备各部件不同位置上的物理状态并不是相互独立的,各个状态按照物理规律有一定的相关性,这些状态构成了不同的子系统输入输出,一个状态既是一个子系统的输入,同时也是另一个子系统的输出;其次,使用传感器对状态的观测是一个不完全可靠的系统,在引入观测噪声 的同时还存在缺失观测、不完全观测、异常观测等问题,通过系统的整体建模可以解决观测缺失不准确等问题。
对于系统状态模型表示了系统内部各个状态之间的关联关系,不同的子系统输入输出,一个状态既是一个子系统的输入,同时也是另一个子系统的输出,作为输入的子系统可以叫做父节点,作为输出的子系统可以叫做子节点。各个节点之间的相互依赖,节点的分布可以根据条件概率由其父节点计算得到子节点,公式为:
z n=F(z n-1)+u
其中,z n-1是z n的父节点;F表示系统模型,可以由业务专家根据相关的领域知识定义;u为系统状态模型的噪声,符合高斯分布,可以表示为u~N(0,∑)。
同时,父节点z n-1和子节点z n之间的条件概率分布为:
P(z n|z n-1)=N(F(z n-1),∑)
其中,N(F(z n-1),∑)表示高斯分布。
因此,状态模块建立的锅炉系统状态模型的条件概率系统整体状态分布由公式表示为:
P(z 1:n)=P(z 1)P(z 2|z 1)…P(z n|z 1:n-1)
其中,z 1:n为锅炉系统中不同部件的合集;z n为锅炉系统中第n个部件的状态。
对于系统观测是指通过传感器观测系统的运行状态,使用传感器对状态的观测是一个不完全可靠的系统,在此引入观测噪声,系统观测模型满足以下公式:
x=H(z)+ε
其中,x表示传感器观测值;H为系统观测模型函数;ε为观测模型的噪声,符合高斯分布;可以表示为ε~N(0,σ 2)。
从而可得到系统观测模型由公式表示为:
P(x|z)=N(H(z),σ 2)
其中,P(x|z)为在状态z下的测量的概率分布;N(H(z),σ 2)表示高斯分布。
综上,综合系统状态模型和系统观测模型,可以得到系统模型,由公式表示为:
P(z 1:n,x 1:n)=P(z 1)P(z 2|z 1)…P(z n|z 1:n-1)P(x 2|z 1)…P(x n|z n)
值得说明的是,通过对系统模型的推理计算,可以从数据中得到许多有价值的信息,比如传感器的观测数据是否合理,当前系统运行状态是否正常等。
可以从系统运行数据中训练完成一个系统模型,系统模型反映了系统工作时各个状态的联合概率分布,系统正常工作状态具有较高的概率,可以根据系统模型完成多项数据容错任务。
对于缺失观测数据的问题,从系统的角度考虑如果能正确观测到大部分数据,同时只是缺失部分观测数据,由于缺失数据和观测数据都作为系统整体状态的一部分,之间存在一定相互的关系(比如蒸汽的出口温度和入口温度),这使得根据观测数据推测缺失数据成为一种可能。假定
Figure PCTCN2019107944-appb-000019
为缺失数据或不完全观测数据,
Figure PCTCN2019107944-appb-000020
为可以完全观测的数据,z 1:n表示系统状态变量,可以根据系统模型计算得到
Figure PCTCN2019107944-appb-000021
的概率分布
Figure PCTCN2019107944-appb-000022
进一步计算
Figure PCTCN2019107944-appb-000023
的期望值
Figure PCTCN2019107944-appb-000024
使用期望值作为缺失数据或不完全观测数据的估计值进行数据补全。
对于异常数据的问题,系统模型会根据系统各部分状态的一致性推理数据的正确性并可以对错误数据提示警告或进一步自动修改错误。假定某个时刻在传感器的观测值为
Figure PCTCN2019107944-appb-000025
根据系统模型可以计算观测概率
Figure PCTCN2019107944-appb-000026
根据
Figure PCTCN2019107944-appb-000027
可以判断观测是否异常(通常认为观测概率低的异常可能性大),并且在一定的情况下可以修正该数据异常。
因此,基于贝叶斯网络构建设备运行的系统模型,通过系统模型监测数 据的正确性以及补全缺失的数据,为后续的设备远程诊断提供便利。
上述装置内的各模块之间的信息交互、执行过程等内容,由于与本发明方法实施例基于同一构思,具体内容可参见本发明方法实施例中的叙述,此处不再赘述。
需要说明的是,在本文中,诸如第一和第二之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个······”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同因素。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储在计算机可读取的存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质中。
最后需要说明的是:以上所述仅为本发明的较佳实施例,仅用于说明本发明的技术方案,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内所做的任何修改、等同替换、改进等,均包含在本发明的保护范围内。

Claims (10)

  1. 一种基于贝叶斯网络的锅炉系统运行数据监测方法,其特征在于,该方法包括:
    S1:根据锅炉系统各部件以及各部件不同位置之间的关联关系,建立锅炉系统状态模型;
    S2:通过传感器采集各部件以及各部件不同位置的运行状态,得到锅炉系统观测模型;
    S3:结合锅炉系统状态模型和锅炉系统观测模型,得到锅炉系统模型。
    S4:根据锅炉系统模型,推测缺失观测数据以及判断观测数据是否存在异常。
  2. 根据权利要求1所述的基于贝叶斯网络的锅炉系统运行数据监测方法,其特征在于,
    S1中锅炉系统状态模型的整体状态分布由公式表示为:
    P(z 1:n)=P(z 1)P(z 2|z 1)…P(z n|z 1:n-1)
    其中,z 1:n为锅炉系统中不同部件的合集;z n为锅炉系统中第n个部件的状态。
  3. 根据权利要求2所述的基于贝叶斯网络的锅炉系统运行数据监测方法,其特征在于,
    在锅炉系统状态模型中,输入z n-1和输出z n的关系为:
    z n=F(z n-1)+u
    其中,F为系统状态模型函数;u为系统状态模型的噪声,符合高斯分布。
  4. 根据权利要求3所述的基于贝叶斯网络的锅炉系统运行数据监测方法,其特征在于,
    在锅炉系统状态模型中,输入z n-1和输出z n之间的条件概率分布为:
    P(z n|z n-1)=N(F(z n-1),∑)
    其中,N(F(z n-1),∑)表示高斯分布。
  5. 根据权利要求2所述的基于贝叶斯网络的锅炉系统运行数据监测方法,其特征在于,
    S2中锅炉系统观测模型由公式表示为:
    P(x|z)=N(H(z),σ 2)
    其中,P(x|z)为在状态z下的测量的概率分布;x表示传感器观测值;H为系统观测模型函数;N(H(z),σ 2)表示高斯分布。
  6. 根据权利要求5所述的基于贝叶斯网络的锅炉系统运行数据监测方法,其特征在于,
    传感器观测值与系统观测模型函数满足公式:
    x=H(z)+ε
    其中,ε为观测模型的噪声,符合高斯分布。
  7. 根据权利要求5所述的基于贝叶斯网络的锅炉系统运行数据监测方法,其特征在于,
    S3中锅炉系统模型由公式表示为:
    P(z 1:n,x 1:n)=P(z 1)P(z 2|z 1)…P(z n|z 1:n-1)P(x 2|z 1)…P(x n|z n)
    其中,P(z 1:n,x 1:n)为状态和测量的联合概率分布。
  8. 一种基于贝叶斯网络的锅炉运行数据监测装置,其特征在于,该装置包括:状态模块、观测模块、整合模块和监测模块,其中,
    所述状态模块,用于根据锅炉系统各部件以及各部件不同位置之间的关联关系,建立锅炉系统状态模型;
    所述观测模块,用于通过传感器采集各部件以及各部件不同位置的运行状态,得到锅炉系统观测模型;
    所述整合模块,用于结合所述状态模块建立的锅炉系统状态模型和所述观测模块得到的锅炉系统观测模型,得到锅炉系统模型。
    所述监测模块,用于根据锅炉系统模型,推测缺失观测数据以及判断观测数据是否存在异常。
  9. 根据权利要求8所述的基于贝叶斯网络的锅炉运行数据监测装置,其特征在于,所述状态模块建立的锅炉系统状态模型的整体状态分布由公式表示为:
    P(z 1:n)=P(z 1)P(z 2|z 1)…P(z n|z 1:n-1)
    其中,z 1:n为锅炉系统中不同部件的合集;z n为锅炉系统中第n个部件的状态;
    在锅炉系统状态模型中,输入z n-1和输出z n的关系为:
    z n=F(z n-1)+u
    其中,F为系统状态模型函数;u为系统状态模型的噪声,符合高斯分布;
    在锅炉系统状态模型中,输入z n-1和输出z n之间的条件概率分布为:
    P(z n|z n-1)=N(F(z n-1),∑)
    其中,N(F(z n-1),∑)表示高斯分布;
    所述观测模块得到的锅炉系统观测模型由公式表示为:
    P(x|z)=N(H(z),σ 2)
    其中,P(x|z)为在状态z下的测量的概率分布;x表示传感器观测值;H为系统观测模型函数;N(H(z),σ 2)表示高斯分布;
    传感器观测值与系统观测模型函数满足公式:
    x=H(z)+ε
    其中,ε为观测模型的噪声,符合高斯分布。
  10. 根据权利要求9所述的基于贝叶斯网络的锅炉运行数据监测装置,其特征在于,
    所述整合模块得到的锅炉系统模型由公式表示为:
    P(z 1:n,x 1:n)=P(z 1)P(z 2|z 1)…P(z n|z 1:n-1)P(x 2|z 1)…P(x n|z n)
    其中,P(z 1:n,x 1:n)为状态和测量的联合概率分布。
PCT/CN2019/107944 2018-10-22 2019-09-25 一种基于贝叶斯网络的锅炉运行数据监测方法和装置 WO2020082972A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
SG11202102671VA SG11202102671VA (en) 2018-10-22 2019-09-25 Method and apparatus for monitoring operating data of boiler based on bayesian network
EP19875735.3A EP3822868A4 (en) 2018-10-22 2019-09-25 METHOD AND DEVICE FOR MONITORING OPERATING DATA OF A BOILER ON THE BASIS OF A BAVARIAN NETWORK
JP2021514420A JP7344960B2 (ja) 2018-10-22 2019-09-25 ベイジアンネットワークによるボイラーの運転データの監視方法及び装置
US17/256,654 US20210262900A1 (en) 2018-10-22 2019-09-25 Method and apparatus for monitoring operating data of boiler based on bayesian network

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811227347.4A CN109523027B (zh) 2018-10-22 2018-10-22 一种基于贝叶斯网络的锅炉运行数据监测方法和装置
CN201811227347.4 2018-10-22

Publications (1)

Publication Number Publication Date
WO2020082972A1 true WO2020082972A1 (zh) 2020-04-30

Family

ID=65772785

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/107944 WO2020082972A1 (zh) 2018-10-22 2019-09-25 一种基于贝叶斯网络的锅炉运行数据监测方法和装置

Country Status (6)

Country Link
US (1) US20210262900A1 (zh)
EP (1) EP3822868A4 (zh)
JP (1) JP7344960B2 (zh)
CN (1) CN109523027B (zh)
SG (1) SG11202102671VA (zh)
WO (1) WO2020082972A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113444851A (zh) * 2021-06-28 2021-09-28 中冶赛迪重庆信息技术有限公司 一种高炉冷却壁水温差检测系统、方法、介质及电子终端

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109523027B (zh) * 2018-10-22 2021-01-05 新智数字科技有限公司 一种基于贝叶斯网络的锅炉运行数据监测方法和装置
CN111061149B (zh) * 2019-07-01 2022-08-02 浙江恒逸石化有限公司 基于深度学习预测控制优化的循环流化床节煤降耗的方法
CN111122199A (zh) * 2019-12-31 2020-05-08 新奥数能科技有限公司 一种锅炉故障诊断方法及装置
CN116383612B (zh) * 2023-06-07 2023-09-01 浙江天铂云科光电股份有限公司 基于温度数据的电力设备部件框的检测补全方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4027145A (en) * 1973-08-15 1977-05-31 John P. McDonald Advanced control system for power generation
CN101436057A (zh) * 2008-12-18 2009-05-20 浙江大学 数控机床热误差贝叶斯网络补偿方法
CN104865956A (zh) * 2015-03-27 2015-08-26 重庆大学 一种基于贝叶斯网络的复杂系统中传感器故障诊断方法
CN105718717A (zh) * 2016-01-12 2016-06-29 叶翔 利用贝叶斯网络算法建立锅炉燃烧过程模型的方法和装置
CN108596229A (zh) * 2018-04-13 2018-09-28 北京华电智慧科技产业有限公司 在线异常的监测诊断方法和系统
CN108663980A (zh) * 2018-06-11 2018-10-16 哈尔滨锅炉厂有限责任公司 电站锅炉远程在线诊断系统及其在线诊断方法
CN109523027A (zh) * 2018-10-22 2019-03-26 新智数字科技有限公司 一种基于贝叶斯网络的锅炉运行数据监测方法和装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102063625B (zh) * 2010-12-10 2012-12-26 浙江大学 一种用于多视角下多目标追踪的改进型粒子滤波方法
US9366451B2 (en) * 2010-12-24 2016-06-14 Commonwealth Scientific And Industrial Research Organisation System and method for the detection of faults in a multi-variable system utilizing both a model for normal operation and a model for faulty operation
GB2496386A (en) * 2011-11-08 2013-05-15 Ge Aviat Systems Ltd Method for integrating models of a vehicle health management system
CN104238516B (zh) * 2014-09-15 2017-10-13 厦门大学 一种锅炉系统设备状态监测方法
EP3295327A4 (en) * 2015-05-13 2018-09-26 Sikorsky Aircraft Corporation Integrated model for failure diagnosis and prognosis
US20180150486A1 (en) * 2015-05-28 2018-05-31 Rycharde Hawkes Linking datasets
CN105117772B (zh) * 2015-09-02 2017-10-27 电子科技大学 一种多状态系统可靠性模型的参数估计方法
CN105548764B (zh) * 2015-12-29 2018-11-06 山东鲁能软件技术有限公司 一种电力设备故障诊断方法
CN105913124B (zh) * 2016-04-08 2018-08-24 北京航空航天大学 基于贝叶斯网络及基层数据的系统健康状态预测方法
CN107194026B (zh) * 2017-04-17 2021-03-23 中国大唐集团科学技术研究院有限公司火力发电技术研究所 基于贝叶斯网络的吸收塔脱硫过程建模方法
CN107290965B (zh) * 2017-08-01 2019-11-08 浙江大学 基于局部加权贝叶斯网络的自适应软测量预测方法
CN108304661B (zh) * 2018-02-05 2021-05-07 南京航空航天大学 基于tdp模型的诊断预测方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4027145A (en) * 1973-08-15 1977-05-31 John P. McDonald Advanced control system for power generation
CN101436057A (zh) * 2008-12-18 2009-05-20 浙江大学 数控机床热误差贝叶斯网络补偿方法
CN104865956A (zh) * 2015-03-27 2015-08-26 重庆大学 一种基于贝叶斯网络的复杂系统中传感器故障诊断方法
CN105718717A (zh) * 2016-01-12 2016-06-29 叶翔 利用贝叶斯网络算法建立锅炉燃烧过程模型的方法和装置
CN108596229A (zh) * 2018-04-13 2018-09-28 北京华电智慧科技产业有限公司 在线异常的监测诊断方法和系统
CN108663980A (zh) * 2018-06-11 2018-10-16 哈尔滨锅炉厂有限责任公司 电站锅炉远程在线诊断系统及其在线诊断方法
CN109523027A (zh) * 2018-10-22 2019-03-26 新智数字科技有限公司 一种基于贝叶斯网络的锅炉运行数据监测方法和装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113444851A (zh) * 2021-06-28 2021-09-28 中冶赛迪重庆信息技术有限公司 一种高炉冷却壁水温差检测系统、方法、介质及电子终端

Also Published As

Publication number Publication date
US20210262900A1 (en) 2021-08-26
JP2022502737A (ja) 2022-01-11
EP3822868A4 (en) 2021-08-18
EP3822868A1 (en) 2021-05-19
JP7344960B2 (ja) 2023-09-14
CN109523027B (zh) 2021-01-05
SG11202102671VA (en) 2021-04-29
CN109523027A (zh) 2019-03-26

Similar Documents

Publication Publication Date Title
WO2020082972A1 (zh) 一种基于贝叶斯网络的锅炉运行数据监测方法和装置
US20120215450A1 (en) Distinguishing between sensor and process faults in a sensor network with minimal false alarms using a bayesian network based methodology
Tornil-Sin et al. Robust fault diagnosis of nonlinear systems using interval constraint satisfaction and analytical redundancy relations
Li et al. Fault diagnosis expert system of semiconductor manufacturing equipment using a Bayesian network
WO2022222026A1 (zh) 医疗诊断缺失数据补全方法及补全装置、电子设备、介质
Sayed et al. Ontology-driven generation of Bayesian diagnostic models for assembly systems
CN110175085B (zh) 一种利用图分析的Hadoop系统异常原因诊断方法及装置
CN110968061A (zh) 设备故障的预警方法、装置、存储介质和计算机设备
CN110825798A (zh) 一种电力应用数据维护方法及装置
Nguyen et al. A probabilistic model-based diagnostic framework for nuclear engineering systems
CN116611712A (zh) 基于语义推断的电网工作票评估系统
CN111664083A (zh) 一种基于贝叶斯网络的核电主泵故障诊断方法
EP3999983B1 (en) Time-series data condensation and graphical signature analysis
Dimovska et al. A control theoretic look at granger causality: extending topology reconstruction to networks with direct feedthroughs
CN117556366A (zh) 基于数据筛选的数据异常检测系统及方法
He et al. A control scheme for autocorrelated bivariate binomial data
CN115118621A (zh) 一种基于依赖关系图的微服务性能诊断方法及系统
US11474509B2 (en) System and method for casual inference in manufacturing process
CN108362957B (zh) 设备故障诊断方法、装置、储存介质和电子设备
WO2021074905A1 (en) Systems and methods for real-time root cause analysis in industrial processes
JP2007293553A (ja) フィールド機器診断システムおよびフィールド機器診断方法
Guo et al. Fault Diagnosis Combining Information Entropy with Transfer Entropy for Chemical Processes
CN114019946A (zh) 工控终端的监控数据处理方法及装置
JPWO2018142694A1 (ja) 特徴量生成装置、特徴量生成方法及びプログラム
Onnes et al. Bayesian network conflict detection for normative monitoring of black-box systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19875735

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021514420

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE