WO2020082962A1 - 光纤阵列 - Google Patents

光纤阵列 Download PDF

Info

Publication number
WO2020082962A1
WO2020082962A1 PCT/CN2019/107492 CN2019107492W WO2020082962A1 WO 2020082962 A1 WO2020082962 A1 WO 2020082962A1 CN 2019107492 W CN2019107492 W CN 2019107492W WO 2020082962 A1 WO2020082962 A1 WO 2020082962A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
fiber array
type
preset
shaped groove
Prior art date
Application number
PCT/CN2019/107492
Other languages
English (en)
French (fr)
Inventor
易简
蔡景农
Original Assignee
武汉驿路通科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉驿路通科技股份有限公司 filed Critical 武汉驿路通科技股份有限公司
Priority to US16/968,353 priority Critical patent/US11435521B2/en
Priority to JP2020565513A priority patent/JP7171764B2/ja
Publication of WO2020082962A1 publication Critical patent/WO2020082962A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/04Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings formed by bundles of fibres
    • G02B6/06Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings formed by bundles of fibres the relative position of the fibres being the same at both ends, e.g. for transporting images
    • G02B6/08Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings formed by bundles of fibres the relative position of the fibres being the same at both ends, e.g. for transporting images with fibre bundle in form of plate
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/3628Mechanical coupling means for mounting fibres to supporting carriers
    • G02B6/36642D cross sectional arrangements of the fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/04Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings formed by bundles of fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/354Switching arrangements, i.e. number of input/output ports and interconnection types
    • G02B6/356Switching arrangements, i.e. number of input/output ports and interconnection types in an optical cross-connect device, e.g. routing and switching aspects of interconnecting different paths propagating different wavelengths to (re)configure the various input and output links

Definitions

  • Embodiments of the present disclosure relate to the field of optical fiber transmission technology, and more specifically, to an optical fiber array.
  • optical fiber array uses a V-shaped groove to install a plurality of optical fibers on the substrate, and covers the optical fibers with a cover plate to achieve fixation.
  • Optical fiber arrays are widely used in optical devices. Using different channels of optical splitter chips and optical fiber arrays, corresponding optical splitting ratios of 1: 4, 1: 8, 1:16, 1:32, etc. can be produced. Road device.
  • ROADM dynamic reconfigurable optical add / drop multiplexer
  • Wavelength selective switch WSS is a technical choice implemented by current RODAM technology. For 1 ⁇ N WSS, 1 refers to the common port (ie COM port), and N refers to the branch port.
  • WDM Wavelength Division Multiplexing
  • the traditional optical fiber array transmits light beams on the same plane.
  • the distribution of the input beam on the cross section needs to meet a certain curve form, that is, the input beam It is not transmitted on the same plane, but the traditional fiber array cannot output a beam whose cross-section distribution meets a certain curve form, and thus cannot be used as an input to the WSS system.
  • embodiments of the present disclosure provide an optical fiber array.
  • An embodiment of the present disclosure provides an optical fiber array, including: a substrate, a cover plate, and a preset number of optical fibers;
  • the base plate is provided with the preset number of first-type V-shaped grooves
  • the cover plate is provided with a second-type V-shaped groove matched with each of the first-type V-shaped grooves, and each optical fiber passes through one
  • the first type V-shaped groove and the matched second type V-shaped groove are fixed;
  • the distribution of the cores of the preset number of optical fibers on the port section of the optical fiber array satisfies the preset curve.
  • An optical fiber array provided by an embodiment of the present disclosure fixes a predetermined number of optical fibers through a base plate and a cover plate that are both provided with V-shaped grooves, and the distribution of the cores of the predetermined number of optical fibers on the port section of the optical fiber array is satisfied
  • the preset curve makes the light beam transmitted through the fiber array not output on the same plane, and meets the position requirement on the preset curve, thereby meeting the application requirements of the new WSS system, and can be widely used in the new WSS system and Scenes with special requirements for other beam positions.
  • FIG. 1 is a schematic structural diagram of an optical fiber array provided by an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of a complete structure of an optical fiber array provided by an embodiment of the present disclosure.
  • the terms “installation”, “connected”, and “connected” should be understood in a broad sense, for example, it can be a fixed connection or a Detachable connection, or integral connection; it can be mechanical connection or electrical connection; it can be directly connected, or it can be indirectly connected through an intermediate medium, or it can be the connection between two components.
  • installation should be understood in a broad sense, for example, it can be a fixed connection or a Detachable connection, or integral connection; it can be mechanical connection or electrical connection; it can be directly connected, or it can be indirectly connected through an intermediate medium, or it can be the connection between two components.
  • the specific meaning of the above terms in the embodiments of the present disclosure may be understood in specific situations.
  • Fiber arrays are usually used in optical devices, such as WSS systems.
  • WSS systems optical crystals are required to process the input beam, which has certain requirements on the incident position of the input beam.
  • the optical fiber array used at the input end of the WSS system can only transmit the light beam on the same plane, and cannot meet the requirements of the new WSS system. Therefore, a new type of optical fiber array is provided in the embodiments of the present disclosure, so that the transmitted light beam has a specific position distribution, thereby meeting the requirements of the incident position in the WSS system. It should be noted that, due to the principle of reversible optical path, the optical fiber array provided in the embodiments of the present disclosure can also be used in the output position of the WSS system.
  • the WSS system is used as an example to illustrate the application scenarios of the optical fiber array provided in the embodiments of the present disclosure, and for other scenarios that have special requirements on the position of the incident or outgoing beams, the embodiments of the present disclosure can be adopted The fiber array provided in.
  • an embodiment of the present disclosure provides an optical fiber array, including: a substrate 12, a cover plate 11, and a preset number of optical fibers 13.
  • the substrate 12 is provided with a preset number of first-type V-shaped grooves 121, and the cover plate 11 is provided with a second-type V-shaped groove 111 matching each of the first-type V-shaped grooves 121.
  • Each optical fiber 13 passes through a The first type V-shaped groove 111 and the matched second type V-shaped groove 121 are fixed;
  • the distribution of the cores of the preset number of optical fibers 13 on the port section of the optical fiber array satisfies the preset curve.
  • FIG. 1 only takes 9 optical fibers in the optical fiber array as an example for description, that is, the preset number is 9, but the embodiment of the present disclosure is not limited to this.
  • the substrate 12 is provided with nine first-type V-shaped grooves 121
  • the cover plate 11 is provided with nine second-type V-shaped grooves 111.
  • the first-type V-shaped grooves 121 correspond to the second-type V-shaped grooves 111 one by one.
  • each of the first type V-shaped groove 121 and the matched second type V-shaped groove 111 are used to fix an optical fiber.
  • each of the first-type V-shaped groove and the matched second-type V-shaped groove are in contact with the internal optical fiber, and the first-type V-shaped groove, the matched second-type V-shaped groove and the internal The gap between the optical fibers is filled with UV adhesive curing adhesive.
  • Both the first type V-shaped groove and the second type V-shaped groove can be respectively provided on the substrate 12 and the cover plate 11 by etching.
  • the distribution of the cores of the preset number of optical fibers 13 on the port section of the optical fiber array satisfies the preset curve. As shown by the dotted line in FIG. 1, the cores of the nine optical fibers are all on the preset curve.
  • the specific form of the preset curve can be set as needed, and it can be a Gaussian function curve or a curve that satisfies other function forms, which is not specifically limited in the embodiments of the present disclosure.
  • An optical fiber array provided in an embodiment of the present disclosure fixes a predetermined number of optical fibers through a substrate and a cover plate each provided with a V-shaped groove, and distributes the cores of the predetermined number of optical fibers on the port cross section of the optical fiber array Satisfy the preset curve, so that the light beams transmitted through the fiber array and output are not transmitted on the same plane, and meet the position requirements on the preset curve, thereby meeting the application requirements of the new WSS system, and can be widely used in the new WSS system And other scenes with special requirements for beam position.
  • an embodiment of the present disclosure further provides an optical fiber array, and the preset curve is specifically a Gaussian function curve.
  • the formula form of the Gaussian function is as follows:
  • a, b and c are constants, and a> 0 and c ⁇ 0.
  • an embodiment of the present disclosure also provides an optical fiber array, where the position and depth of each first type V-shaped groove and matched second type V-shaped groove are determined by the preset curve .
  • the distribution of the cores of the preset number of optical fibers on the port section of the optical fiber array satisfies the preset curve, it is necessary to determine the first type V groove and the matched second type V according to the form of the preset curve The position and depth of the groove, in this process, it is necessary to ensure that the optical fiber inside the first type V groove and the matched second type V groove and the groove wall of the first type V groove and the matched second type V groove The groove walls are in contact to ensure that the optical fiber can be firmly fixed in the first type V-shaped groove and the matched second type V-shaped groove.
  • an embodiment of the present disclosure also provides an optical fiber array, wherein the distance between every two adjacent optical fibers in the preset number of optical fibers is a preset distance.
  • the distance between each two adjacent optical fibers is the same, and both are preset distances.
  • the distance between each two adjacent optical fibers refers to the distance between the cores of the two optical fibers.
  • the preset distance can be set as needed, for example, the preset distance can be set to greater than or equal to 125 ⁇ m. When the preset distance is set to 125 ⁇ m, then the distance between every two adjacent fibers is 125 ⁇ m, every two adjacent fibers are in contact; when the preset distance is set to greater than 125 ⁇ m, every two adjacent fibers There is a gap between the optical fiber surfaces.
  • the distance between each two adjacent optical fibers in the preset number of optical fibers may be set to be partially the same as required, or All of them are different, which is not specifically limited in the embodiments of the present disclosure.
  • an embodiment of the present disclosure further provides an optical fiber array, in which the opening angles of each first type V-shaped groove and each second type V-shaped groove are the same.
  • the opening angles of the first type V-groove on the substrate of the optical fiber array and the second type V-groove on the cover plate can be set as needed, and the opening angle of each V-groove can be the same Or different, as long as the distribution of the core of the internally fixed optical fiber on the port section of the optical fiber array satisfies the preset curve.
  • the opening angle of each V-shaped groove can be set to be the same to ensure that the etching is convenient and fast, and is easy to implement.
  • an optical fiber array is also provided in the embodiments of the present disclosure, and the optical fiber section inside each first type V-shaped groove and the matched second type V-shaped groove is a decoated optical fiber section .
  • the optical fiber array transmits the light beam, in addition to the residual light beam in the cladding of the optical fiber, there is also a part of the light beam leaking from the core to the cladding. If the beam in the cladding is not stripped but output directly, it will affect the quality of the output beam. Therefore, as a preferred solution, the optical fiber segment inside each first type V-shaped groove and the matched second type V-shaped groove may be an optical fiber segment after the coating layer and the optical fiber cladding are stripped to prevent the occurrence of the above phenomenon.
  • an embodiment of the present disclosure further provides an optical fiber array, and a predetermined oblique angle is provided between the optical fiber end face of the coupling end of the optical fiber array and the optical fiber axis.
  • the fiber end face 14 at the coupling end of the optical fiber array and the fiber axis have A preset bevel angle, that is, there is a preset bevel angle between the end face of each fiber at the coupling end of the fiber array and the fiber axis.
  • the preset bevel angle may specifically be 81.5 ° -82.5 °.
  • an optical fiber array is also provided in the embodiments of the present disclosure, and the substrate and the cover plate are made of high borosilicate glass material.
  • the use of high borosilicate glass materials in the embodiments of the present disclosure to make the substrate and the cover plate can make the resulting optical fiber array have low expansion rate, high temperature resistance, high strength, high hardness, high light transmittance and high chemical stability.
  • the device embodiments described above are only schematic, wherein the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in One place, or it can be distributed to multiple network elements. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution of this embodiment. Those of ordinary skill in the art can understand and implement without paying creative labor.
  • each embodiment can be implemented by means of software plus a necessary general hardware platform, and of course, it can also be implemented by hardware.
  • the above technical solutions can be embodied in the form of software products in essence or part that contributes to the existing technology, and the computer software products can be stored in computer-readable storage media, such as ROM / RAM, magnetic Discs, optical discs, etc., include several instructions to enable a computer device (which may be a personal computer, server, or network device, etc.) to perform the methods described in the various embodiments or some parts of the embodiments.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Coupling Of Light Guides (AREA)

Abstract

一种光纤阵列,通过均设置有V型槽的基板(12)和盖板(11)固定预设数量根光纤(13),且使预设数量根光纤(13)的纤芯在光纤阵列的端口截面上的分布满足预设曲线,使经光纤阵列传输并输出的光束不在同一个平面上传输,且满足在预设曲线上的位置要求,进而符合新型的WSS系统的应用需求,可以广泛应用于新型的WSS系统以及其他光束位置有特殊要求的场景。

Description

光纤阵列
相关申请的交叉引用
本申请要求于2018年10月23日提交的申请号为2018112382749,发明名称为“光纤阵列”的中国专利申请的优先权,其通过引用方式全部并入本公开。
技术领域
本公开实施例涉及光纤传输技术领域,更具体地,涉及光纤阵列。
背景技术
目前,随着通信技术的快速发展和实际应用的迅猛增长,大容量光纤通信系统的研究具有很大的应用价值。随着长距离信息传递的需求变大,光纤的使用越来越广泛,其中光纤阵列的使用需求也越来越大。光纤阵列利用V型槽将多根光纤安装在基板上,并在光纤上盖有盖板实现固定。
光纤阵列广泛应用于光器件中,使用不同通道的光分路器芯片和光纤阵列,即可制作出相应的1:4、1:8、1:16、1:32等不同分支比的光分路器。对于光传输网络设备而言,动态可重构光分插复用(Reconfigurable Optical Add/Drop Multiplexer,ROADM)技术的使用能够灵活地扩大网络容量并减少运营成本。波长选择开关(Wavelength Selective Switch,WSS)是当前RODAM技术实现的一项技术选择。对于1×N WSS而言,1是指公共端口(即COM端口),N是指分支端口。当一组波分复用(Wavelength Division Multiplexing,WDM)信号从COM端口进入时,该组WDM信号按照光波长分开,然后根据系统要求,各波长经由WSS分别被路由至N个分支端口中的一个分支端口。相反地,WSS也可以将N个分支端口作为输入,将公共端口作为输出,用以进行合束。
传统的光纤阵列传输光束时是在同一个平面上传输光束,而在新的WSS系统中,由于特殊晶体的使用,需要使输入的光束在横截面上的分布满足一定曲线形式,即输入的光束不在同一个平面上传输,但是传统的光纤阵列无法输出在横截面上的分布满足一定曲线形式的光束,进而无法作 为WSS系统的输入。
因此,现急需提供一种能够输出分布满足一定曲线形式的光束的光纤阵列。
发明内容
为克服上述问题或者至少部分地解决上述问题,本公开实施例提供了一种光纤阵列。
本公开实施例提供了一种光纤阵列,包括:基板、盖板和预设数量的光纤;
所述基板上设置有所述预设数量的第一类V型槽,所述盖板上设置有与每个第一类V型槽匹配的第二类V型槽,每根光纤分别通过一第一类V型槽和匹配的第二类V型槽固定;
所述预设数量的光纤的纤芯在所述光纤阵列的端口截面上的分布满足预设曲线。
本公开实施例提供的一种光纤阵列,通过均设置有V型槽的基板和盖板固定预设数量根光纤,且使预设数量根光纤的纤芯在光纤阵列的端口截面上的分布满足预设曲线,使经光纤阵列传输并输出的光束不在同一个平面上传输,且满足在预设曲线上的位置要求,进而符合新型的WSS系统的应用需求,可以广泛应用于新型的WSS系统以及其他光束位置有特殊要求的场景。
附图说明
为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本公开实施例提供的一种光纤阵列的结构示意图;
图2为本公开实施例提供的一种光纤阵列的完整结构示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本 公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
在本公开实施例的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开实施例的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本公开实施例的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本公开实施例中的具体含义。
由于光纤阵列通常应用于光器件中,例如应用于WSS系统中,而新型的WSS系统中由于需要光学晶体实现对输入的光束进行处理,对输入的光束的入射位置具有一定要求。而现有技术中在WSS系统的输入端采用的光纤阵列仅仅能够传输在同一平面上的光束,无法满足新型的WSS系统的要求。因此,本公开实施例中提供了一种新型的光纤阵列,使传输的光束具有特定的位置分布,进而满足WSS系统中对入射位置的要求。需要说明的是,由于光路可逆原理,本公开实施例中提供的光纤阵列也可以用于WSS系统的输出位置。另外,本公开实施例中仅以WSS系统为例说明本公开实施例中提供的光纤阵列的应用场景,而对于其他对入射或出射的光束位置有特殊要求的场景,均可以采用本公开实施例中提供的光纤阵列。
如图1所示,本公开实施例提供了一种光纤阵列,包括:基板12、盖板11和预设数量的光纤13。
基板12上设置有预设数量的第一类V型槽121,盖板11上设置有与每个第一类V型槽121匹配的第二类V型槽111,每根光纤13分别通过一第一类V型槽111和匹配的第二类V型槽121固定;
所述预设数量的光纤13的纤芯在光纤阵列的端口截面上的分布满足预设曲线。
具体地,图1中仅以光纤阵列中包含9根光纤为例进行说明,即预设数量为9,但本公开实施例中并不限于此。基板12上设置有9个第一类V型槽121,盖板11上设置有9个第二类V型槽111,第一类V型槽121与第二类V型槽111一一对应且匹配,每个第一类V型槽121和与之匹配的第二类V型槽111均用于固定一根光纤。需要说明的是,每个第一类V型槽以及匹配的第二类V型槽均与内部的光纤相接触设置,且第一类V型槽、匹配的第二类V型槽以及内部的光纤之间的缝隙通过紫外胶固化胶填充。第一类V型槽以及第二类V型槽均可以通过刻蚀的方式分别设置在基板12上和盖板11上。
预设数量的光纤13的纤芯在光纤阵列的端口截面上的分布满足预设曲线,如图1中的虚线所示,9根光纤的纤芯均在预设曲线上。需要说明的是,预设曲线的具体形式可以根据需要进行设置,具体可以为高斯函数曲线,或满足其他函数形式的曲线,本公开实施例中不对此做具体限定。
本公开实施例中提供的一种光纤阵列,通过均设置有V型槽的基板和盖板固定预设数量根光纤,且使预设数量根光纤的纤芯在光纤阵列的端口截面上的分布满足预设曲线,使经光纤阵列传输并输出的光束不在同一个平面上传输,且满足在预设曲线上的位置要求,进而符合新型的WSS系统的应用需求,可以广泛应用于新型的WSS系统以及其他光束位置有特殊要求的场景。
在上述实施例的基础上,本公开实施例中还提供了一种光纤阵列,所述预设曲线具体为高斯函数曲线。其中,高斯函数的公式形式具体如下:
Figure PCTCN2019107492-appb-000001
其中,a、b和c均为常数,且a>0且c≠0。
在上述实施例的基础上,本公开实施例中还提供了一种光纤阵列,其中每个第一类V型槽和匹配的第二类V型槽的位置和深度由所述预设曲 线确定。
具体地,由于要使预设数量根光纤的纤芯在光纤阵列的端口截面上的分布满足预设曲线,则需要根据预设曲线的形式确定第一类V型槽和匹配的第二类V型槽的位置和深度,在此过程中需要保证第一类V型槽和匹配的第二类V型槽内部的光纤与第一类V型槽的槽壁以及匹配的第二类V型槽的槽壁均接触,以保证光纤可以牢固的固定在第一类V型槽和匹配的第二类V型槽内。
在上述实施例的基础上,本公开实施例中还提供了一种光纤阵列,其中预设数量的光纤中每两根相邻的光纤之间的间距均为预设距离。
具体地,本公开实施例为保证光纤阵列的规范性以及传输并输出的光束均匀分布,每两根相邻的光纤之间的间距相同,且均为预设距离。其中,每两根相邻的光纤之间的间距是指两根光纤的纤芯之间的距离。预设距离可根据需要进行设置,例如具体可以将预设距离设置为大于或等于125μm。当预设距离设置为125μm时,则每两根相邻的光纤之间的间距为125μm时,每两根相邻的光纤相接触;当预设距离设置为大于125μm时,每两根相邻的光纤表面之间存在缝隙。
需要说明的是,为保证本公开实施例中提供的光纤阵列具有广泛的使用范围,还可以根据需要将预设数量的光纤中每两根相邻的光纤之间的间距设置为部分相同,或者均不相同,本公开实施例中对此不作具体限定。
在上述实施例的基础上,本公开实施例中还提供了一种光纤阵列,其中每个第一类V型槽和每个第二类V型槽的开口角度均相同。
具体地,本公开实施例中光纤阵列的基板上的第一类V型槽和盖板上的第二类V型槽的开口角度可以根据需要进行设置,每个V型槽的开口角度可以相同或不同,只要能够是内部固定的光纤的纤芯在光纤阵列的端口截面上的分布满足预设曲线即可。作为优选方案,可以将每个V型槽的开口角度设置为相同,以保证刻蚀的方便快捷,且易于实现。
在上述实施例的基础上,本公开实施例中还提供了一种光纤阵列,每个第一类V型槽和匹配的第二类V型槽内部的光纤段为去涂覆层的光纤段。由于光纤阵列在传输光束时,光纤的包层中除了有残留的光束,还存在一部分从纤芯泄露到包层中的光束。如果包层内的光束没有被剥离而是 被直接输出,则会影响输出的光束的质量。因此,作为优选方案,每个第一类V型槽和匹配的第二类V型槽内部的光纤段可以是剥离涂覆层以及光纤包层后的光纤段,以防止上述现象的发生。
在上述实施例的基础上,本公开实施例中还提供了一种光纤阵列,所述光纤阵列的耦合端的光纤端面与光纤轴之间具有预设斜角。
具体地,如图2所示,为保证光纤阵列更好的使用,与其他光器件配合使用时更好的进行耦合,防止回波损耗,光纤阵列的耦合端的光纤端面14与光纤轴之间具有预设斜角,即光纤阵列耦合端的每根光纤的端面与光纤轴之间均具有预设斜角。作为优选方案,预设斜角的角度具体可以为81.5°-82.5°。
在上述实施例的基础上,本公开实施例中还提供了一种光纤阵列,所述基板和所述盖板均为高硼硅玻璃材料制成。
具体地,本公开实施例中采用高硼硅玻璃材料制作基板和盖板,可以使得到的光纤阵列具有低膨胀率、耐高温、高强度、高硬度、高透光率和高化学稳定性。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,上述技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行各个实施例或者实施例的某些部分所述的方法。
最后应说明的是:以上实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述实施例对本公开进行了详细的说明,本领域的普通 技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的精神和范围。

Claims (10)

  1. 一种光纤阵列,其特征在于,包括:基板、盖板和预设数量的光纤;
    所述基板上设置有所述预设数量的第一类V型槽,所述盖板上设置有与每个第一类V型槽匹配的第二类V型槽,每根光纤分别通过一第一类V型槽和匹配的第二类V型槽固定;
    所述预设数量的光纤的纤芯在所述光纤阵列的端口截面上的分布满足预设曲线。
  2. 根据权利要求1所述的光纤阵列,其特征在于,所述预设曲线具体为高斯函数曲线。
  3. 根据权利要求1所述的光纤阵列,其特征在于,每个第一类V型槽和匹配的第二类V型槽的位置和深度由所述预设曲线确定。
  4. 根据权利要求1所述的光纤阵列,其特征在于,所述预设数量的光纤中每两根相邻的光纤之间的间距均为预设距离。
  5. 根据权利要求4所述的光纤阵列,其特征在于,所述预设距离大于或等于125μm。
  6. 根据权利要求1-5中任一项所述的光纤阵列,其特征在于,每个第一类V型槽和每个第二类V型槽的开口角度均相同。
  7. 根据权利要求1-5中任一项所述的光纤阵列,其特征在于,每个第一类V型槽和匹配的第二类V型槽内部的光纤段为去涂覆层的光纤段。
  8. 根据权利要求1-5中任一项所述的光纤阵列,其特征在于,所述光纤阵列的耦合端的光纤端面与光纤轴之间具有预设斜角。
  9. 根据权利要求8所述的光纤阵列,其特征在于,所述预设斜角的角度具体为81.5°-82.5°。
  10. 根据权利要求1-5中任一项所述的光纤阵列,其特征在于,所述基板和所述盖板均为高硼硅玻璃材料制成。
PCT/CN2019/107492 2018-10-23 2019-09-24 光纤阵列 WO2020082962A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/968,353 US11435521B2 (en) 2018-10-23 2019-09-24 Optical fiber array
JP2020565513A JP7171764B2 (ja) 2018-10-23 2019-09-24 光ファイバーアレイ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811238274.9 2018-10-23
CN201811238274.9A CN109407206A (zh) 2018-10-23 2018-10-23 光纤阵列

Publications (1)

Publication Number Publication Date
WO2020082962A1 true WO2020082962A1 (zh) 2020-04-30

Family

ID=65469001

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/107492 WO2020082962A1 (zh) 2018-10-23 2019-09-24 光纤阵列

Country Status (4)

Country Link
US (1) US11435521B2 (zh)
JP (1) JP7171764B2 (zh)
CN (1) CN109407206A (zh)
WO (1) WO2020082962A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109407206A (zh) * 2018-10-23 2019-03-01 武汉驿路通科技股份有限公司 光纤阵列

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104796631A (zh) * 2014-01-16 2015-07-22 宝山钢铁股份有限公司 一种曲面展开成像装置及方法
JP2015215517A (ja) * 2014-05-12 2015-12-03 日本電信電話株式会社 光分岐装置
CN206684343U (zh) * 2017-04-25 2017-11-28 南京华脉科技股份有限公司 一种多直径光纤非等间距的光纤阵列
CN207380288U (zh) * 2017-11-23 2018-05-18 中国工程物理研究院核物理与化学研究所 一种线性光纤阵列
CN109407206A (zh) * 2018-10-23 2019-03-01 武汉驿路通科技股份有限公司 光纤阵列
CN209248072U (zh) * 2018-10-23 2019-08-13 武汉驿路通科技股份有限公司 光纤阵列

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4978193A (en) * 1989-08-24 1990-12-18 Raychem Corporation Optical fiber connector which provides a high signal return loss
JPH095576A (ja) * 1995-06-16 1997-01-10 Furukawa Electric Co Ltd:The 多心光伝送体端末部
US20020190431A1 (en) * 2001-06-13 2002-12-19 Ngk Insulators, Ltd. Mold for molding substrate, method for producing a substrate using the mold and the substrate
JP4640643B2 (ja) 2005-11-08 2011-03-02 日本電気硝子株式会社 光ファイバアレイ用基板及びその製造方法
JP5135513B2 (ja) * 2008-02-20 2013-02-06 並木精密宝石株式会社 光ファイバアレイ
US20100111478A1 (en) * 2008-11-04 2010-05-06 Aidi Corporation Non-linear fiber array having opposing v-groove structures
JP2012190877A (ja) 2011-03-09 2012-10-04 Fujifilm Corp ナノインプリント方法およびそれに用いられるナノインプリント装置
CN202929240U (zh) 2012-10-25 2013-05-08 任金淼 金属化封装光纤密排模块
CN104765101B (zh) * 2015-03-27 2017-11-10 武汉光迅科技股份有限公司 一种光纤阵列及其制作方法
JP2016200735A (ja) 2015-04-10 2016-12-01 住友電気工業株式会社 光学デバイス
JP2017003726A (ja) 2015-06-09 2017-01-05 Nttエレクトロニクス株式会社 光ファイバ実装用光部品及び光ファイバ実装用光部品の製造方法
CN205404901U (zh) * 2016-03-07 2016-07-27 深圳市鹏大光电技术有限公司 一种用于与vscel或pin阵列耦合的光纤阵列
CN205539584U (zh) 2016-04-14 2016-08-31 南京华脉科技股份有限公司 一种二维双层光纤阵列

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104796631A (zh) * 2014-01-16 2015-07-22 宝山钢铁股份有限公司 一种曲面展开成像装置及方法
JP2015215517A (ja) * 2014-05-12 2015-12-03 日本電信電話株式会社 光分岐装置
CN206684343U (zh) * 2017-04-25 2017-11-28 南京华脉科技股份有限公司 一种多直径光纤非等间距的光纤阵列
CN207380288U (zh) * 2017-11-23 2018-05-18 中国工程物理研究院核物理与化学研究所 一种线性光纤阵列
CN109407206A (zh) * 2018-10-23 2019-03-01 武汉驿路通科技股份有限公司 光纤阵列
CN209248072U (zh) * 2018-10-23 2019-08-13 武汉驿路通科技股份有限公司 光纤阵列

Also Published As

Publication number Publication date
JP7171764B2 (ja) 2022-11-15
JP2021513689A (ja) 2021-05-27
US11435521B2 (en) 2022-09-06
US20210088721A1 (en) 2021-03-25
CN109407206A (zh) 2019-03-01

Similar Documents

Publication Publication Date Title
US7113674B2 (en) Method of manufacturing a fiber-type optical coupler with slanting bragg diffraction gratings
CN203301489U (zh) 具有多路波长通道的光发射器件、光接收器件及光模块
US6442310B1 (en) Optical coupling device and method
US10484094B2 (en) Optical signal transmission system, a method for transmitting a plurality of optical signals, and a method for making a photonic device
Marom et al. Optical switching in future fiber-optic networks utilizing spectral and spatial degrees of freedom
Jinno et al. Unified architecture of an integrated SDM-WSS employing a PLC-based spatial beam transformer array for various types of SDM fibers
CN105629381A (zh) 光纤模式旋转器、全光纤模式复用器和解复用器
CN106019486A (zh) 一种波分复用光器件及波分解复用光器件
US20030081908A1 (en) Dual fiber collimator assembly pointing control
WO2020082962A1 (zh) 光纤阵列
Tottori et al. Integrated optical connection module for 7-core multi-core fiber and 7 single mode fibers
US9182550B1 (en) Dispersionless optical tap filter in bi-directional multimode fiber optic link
US20210396933A1 (en) Optical add/drop device and assemly, and communications network node
CN109212670A (zh) 一种波分复用器件以及相应的光模块
Sahara et al. Proposal and experimental demonstration of SDM node enabling path assignment to arbitrary wavelengths, cores, and directions
US6792211B1 (en) Compact optical wavelength add/drop multiplexer
EP4141502A1 (en) Diffraction compensated compact wavelength division multiplexing devices
US20230007943A1 (en) Optical fiber connector, single-fiber bidirectional optical assembly, and optical fiber transmission system
CN104487878A (zh) 偏振分离器、偏振分离结构、光混合器和偏振分离器的制造方法
CN209248072U (zh) 光纤阵列
JPH10282350A (ja) 光スプリッタ
WO2021227660A1 (zh) 光交换装置、重定向方法、可重构光分插复用器及系统
US20160105237A1 (en) Bi-directional traffic access point
Tottori et al. Multi functionality demonstration for multi core fiber fan-in/fan-out devices using free space optics
Nomoto et al. SC-type multi-core optical-fiber connectors using a pressurization spring

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19874828

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020565513

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19874828

Country of ref document: EP

Kind code of ref document: A1