WO2020082730A1 - 显示面板及其制备方法、显示装置 - Google Patents

显示面板及其制备方法、显示装置 Download PDF

Info

Publication number
WO2020082730A1
WO2020082730A1 PCT/CN2019/088581 CN2019088581W WO2020082730A1 WO 2020082730 A1 WO2020082730 A1 WO 2020082730A1 CN 2019088581 W CN2019088581 W CN 2019088581W WO 2020082730 A1 WO2020082730 A1 WO 2020082730A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
area
transmitting
display panel
pixel
Prior art date
Application number
PCT/CN2019/088581
Other languages
English (en)
French (fr)
Inventor
楼均辉
林立
蔡世星
籍亚男
Original Assignee
云谷(固安)科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 云谷(固安)科技有限公司 filed Critical 云谷(固安)科技有限公司
Publication of WO2020082730A1 publication Critical patent/WO2020082730A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/50OLEDs integrated with light modulating elements, e.g. with electrochromic elements, photochromic elements or liquid crystal elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/86Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • H10K50/865Arrangements for improving contrast, e.g. preventing reflection of ambient light comprising light absorbing layers, e.g. light-blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass

Definitions

  • the present application relates to the field of display technology, and in particular, to a display panel, a preparation method thereof, and a display device.
  • the proportion of the display area of a display device affects the overall aesthetics of the display device, the screen display effect, and the user experience.
  • a photosensitive element such as a front camera is usually provided on the display device.
  • a display panel includes a functional layer and a filter layer provided on the functional layer.
  • the functional layer includes at least one first light-transmitting area.
  • the filter layer includes at least one second light-transmitting area.
  • the proportion of the display area of the display panel can be increased to improve the display effect .
  • the filter layer further includes a filter region surrounding the second light-transmitting region.
  • the filter area includes a plurality of black matrices and a plurality of color groups, the plurality of black matrices are arranged at intervals, and a color resistance is set between two adjacent black matrices.
  • the combination of the black matrix and the color resist can not only reduce the reflectance of ambient light incident on the filter area, but also have high manufacturing accuracy and alignment accuracy ( ⁇ 3 microns), so Compared with the case of using a polarizer, the ratio of the display area of the display panel is increased, and the thickness of the display panel is reduced.
  • the functional layer further includes a display area surrounding the first light-transmitting area, the display area including a plurality of pixel defining layers.
  • the orthographic projection of each of the black matrix and each of the pixel-defining layers in the light incident direction substantially coincides.
  • the black matrix can be fully utilized to prevent light leakage between pixels without sacrificing the proportion of the display area effect.
  • the functional layer further includes a display area surrounding the first light-transmitting area.
  • the display area includes a plurality of pixels including red pixels, green pixels, and blue pixels.
  • the plurality of color resists include red color resists, green color resists, and blue color resists. In the light incident direction, the orthographic projections of the red pixel, the green pixel, and the blue pixel respectively approximately coincide with the orthographic projections of the red color resist, the green color resist, and the blue color resist .
  • the excellent resistance can be fully utilized to accurately select the desired light without sacrificing the proportion of the display area, The effect of reflecting off unwanted light.
  • the first light-transmitting area is an opening or a transparent area.
  • the second light-transmitting area is an opening or a transparent area.
  • a display panel that is perforated in the display area to accommodate photosensitive elements such as cameras and sensors can be further improved The proportion of the display area of the display panel.
  • the thickness of the plurality of color resists ranges from 1 ⁇ m to 2 ⁇ m.
  • a color set and a matrix are used to reduce the reflectance of ambient light.
  • the thickness of the color set used can significantly reduce the thickness of the display panel compared to the thickness of the polarizer.
  • the display panel conforms to the development trend of thinness.
  • a method for manufacturing a display panel includes: forming a functional layer including at least one first light-transmitting region; forming a filter layer including at least one second light-transmitting region on the functional layer; when moving from the filter layer toward the function
  • the direction of the layer is defined as the light incident direction, the orthographic projections of at least one of the first light-transmitting regions and at least one of the second light-transmitting regions in the light incident direction substantially coincide.
  • the process is simple, the cost is low, and the yield is high.
  • the filter layer further includes a filter region surrounding the second light-transmitting region, the filter region includes a plurality of black matrices and a plurality of color groups, and the plurality of black matrices are arranged at intervals , A color resistance is set between two adjacent black matrices.
  • the functional layer further includes a display area surrounding the first light-transmitting area, the display area includes a plurality of pixel defining layers, such that each black matrix and each pixel defining layer The orthographic projections in the light incident direction substantially coincide.
  • the display area includes multiple pixels including red pixels, green pixels, and blue pixels.
  • the plurality of color resists include a red color resist, a green color resist, and a blue color resist, and in the light incident direction, the orthographic projections of the red pixel, the green pixel, and the blue pixel are respectively The orthographic projections of the red color resist, the green color resist and the blue color resist substantially coincide.
  • the degree of freedom of operation is increased, and the manufacturing efficiency is improved.
  • the first light-transmitting area is an opening or a transparent area.
  • the second light-transmitting area is an opening or a transparent area.
  • a display panel that is perforated in the display area to accommodate photosensitive elements such as cameras and sensors can be further improved The proportion of the display area of the display panel.
  • a display device includes any of the above display panels and at least one photosensitive element, the photosensitive element being located below the first light-transmitting area.
  • the display device of the present application by positioning the photosensitive element directly below the first light-transmitting area and the second light-transmitting area as openings or transparent areas, it is possible to obtain a photosensitive element such as a camera and a sensor by punching the display area
  • the display device increases the proportion of the display area of the display device.
  • FIG. 1 is a schematic structural diagram of an embodiment of a display panel according to the present application.
  • FIG. 2 is a schematic structural diagram of another embodiment of a display panel according to the present application.
  • FIG. 3 is a schematic diagram of a first intermediate structure of a display panel according to the present application.
  • FIG. 4 is a schematic diagram of the second intermediate structure of the display panel according to the present application.
  • FIG. 5 is a schematic diagram of a display panel according to the present application when forming a color resist
  • FIG. 6 is a schematic diagram of a third intermediate structure of the display panel according to the present application.
  • FIG. 7 is a schematic structural diagram of a display device according to the present application.
  • FIGS. 1 and 2 are schematic diagrams of the display panel 100 according to the present application. 1 and 2, the display panel 100 includes a functional layer 1, a filter layer 2, a light-transmitting substrate 3, and an encapsulation layer 4.
  • the direction from the functional layer 1 to the filter layer 2 is defined as up
  • the direction from the filter layer 2 to the functional layer 1 is defined as down
  • the direction from top to bottom is defined as The direction of light incidence.
  • the functional layer 1 when divided into layers, the functional layer 1 includes a thin film transistor (TFT) layer 12 and an organic light-emitting diode (OLED) layer 13.
  • TFT thin film transistor
  • OLED organic light-emitting diode
  • the OLED layer 13 is formed on the TFT layer 12.
  • the TFT layer 12 may include several TFTs, such as TFTs for switching and driving.
  • a TFT (not shown in the figure) includes a semiconductor layer, a gate insulating layer, a gate, an interlayer insulating layer, source / drain, and a planarization layer that are sequentially stacked.
  • the OLED layer 13 may include a plurality of pixels, and adjacent pixels are separated by a pixel defining layer 131.
  • the pixel includes an anode, an organic light emitting layer, and a cathode that are sequentially stacked.
  • the anode is electrically connected to the drain through the contact hole on the planarization layer, so that the OLED layer 13 can emit light when the display panel is in operation.
  • the pixels may include red pixels R, green pixels G, and blue pixels B.
  • the functional layer 1 When divided by area, the functional layer 1 includes a first light-transmitting area 11 and a display area (the area where pixels R, G, and B are located in the figure).
  • the display area surrounds the first light-transmitting area 11 and is used for display.
  • the first light transmitting region 11 includes a first light transmitting region 121 of the TFT layer 12 and a second light transmitting region 132 of the OLED layer 13. The first area 121 and the second area 132 overlap.
  • conductive elements such as source / drain and gate in the first area 121 and conductive elements such as anode in the second area 132 are formed of a light-transmitting material.
  • the light-transmitting material may be, for example, ITO (indium tin oxide).
  • ITO indium tin oxide
  • the anode in the second region 132 may not be in contact with the drain in the first region 121, so that when the display panel is in operation, the second region 132 does not emit light.
  • no conductive element may be provided in the first light-transmitting region 11.
  • the first light-transmitting area 11 is an opening.
  • the filter layer 2 when divided into regions, includes a second light-transmitting region 22 and a filter region 21.
  • the second light-transmitting region 22 is disposed opposite to the first light-transmitting region 11 so that light entering the second light-transmitting region 22 can pass through the first light-transmitting region 11.
  • the filter area 21 surrounds the second light-transmitting area 22.
  • the filter area 21 includes a black matrix 211 and a color resister 212 for reducing the reflectance of ambient light incident on the filter area 21.
  • the black matrix 211 is disposed at intervals and is located above the pixel defining layer 131, and the color resist 212 is disposed between adjacent black matrices 211 and above the pixels. Since the manufacturing accuracy and alignment accuracy of the black matrix 211 and the color resister 212 are high ( ⁇ 3 ⁇ m), the error is small, and the alignment accuracy of the second light-transmitting region 22 and the first light-transmitting region 11 can be high.
  • the color resist 212 may include a red color resist 2121, a green color resist 2122, and a blue color resist 2123 located above the red pixel R, the green pixel G, and the blue pixel B, respectively.
  • the orthographic projections of the red pixel R, the green pixel G, and the blue pixel B substantially coincide with the orthographic projections of the red color resistor 2121, the green color resistor 2122, and the blue color resistor 2123, respectively.
  • the materials of the black matrix 211 and the color resist 212 are not particularly limited.
  • the black matrix 211 may use resin, carbon black, etc.
  • the color resist 212 may use a combination of a binder and a colorant.
  • the binder may be a high-transparency and heat-resistant polymer resin
  • the colorant may be a dye or a pigment.
  • the display panel according to the present application may be applied to a display device, for example, a mobile terminal such as a mobile phone.
  • the display device includes a photosensitive element 200 as shown in FIG. 7 located directly below the first light-transmitting area 11, and the photosensitive element 200 is disposed on the side of the display panel 100 where the light-transmitting substrate 3 is located.
  • the photosensitive element 200 may be a front camera and / or other photosensitive elements such as a distance sensor.
  • polarizers are generally used to reduce the reflectance of ambient light incident on the filter area.
  • a polarizing plate is used will be described in detail by taking an example in which the photosensitive element 200 is a camera and its light receiving end is circular.
  • the cutting accuracy and fitting accuracy of polarizers are low, and the cutting error and fitting error are generally greater than 0.1mm. Therefore, when the size of the light receiving end of the camera is determined, for example, the diameter is 4 mm, in order to reduce the influence of the cutting error and the fitting error of the polarizer, it is necessary to make an opening on the polarizer to be located directly above the light receiving end (second The diameter of the light-transmitting area 22) is greater than 4.1 mm to ensure that the light-receiving end can be completely exposed without being blocked by the polarizer, thereby ensuring that the light-receiving end can obtain a sufficient amount of incoming light to ensure the quality of the camera.
  • the polarizer is used to reduce the reflectivity of the ambient light incident on the filter area, so the polarizer needs to completely cover the display area of the functional layer 1 below it to avoid the first light transmission
  • the metal traces around area 11 are reflective.
  • the diameter of the opening of the polarizer needs to be smaller than the diameter of the first light-transmitting region 11 (for example, 4.2 mm). In this way, for the functional layer 1, the proportion of the first light-transmitting region 11 will increase, and the proportion of the display region will decrease. This is inconsistent with the development trend of increasing the proportion of the display area.
  • the black matrix 211 and the color resister 212 are used to reduce the reflectance of the ambient light incident on the filter area 21.
  • the alignment accuracy of the black matrix 211 and the color resist 212 is high, so that when the size of the light receiving end of the camera is determined, for example, the diameter is 4 mm, the diameters of the first light-transmitting area 11 and the second light-transmitting area 22 are also approximately 4mm. In this way, the ratio of the display area is increased compared to the case of using a polarizer.
  • the diameter of the first light-transmitting region 11 may be approximately 4 mm to 4.003 mm, and the diameter of the second light-transmitting region 22 may be approximately 4 mm. That is, the diameter of the first light-transmitting area 11 is slightly larger than 4 mm, so that the proportion of the display area is slightly reduced. Even in this case, compared with the case of using a polarizer, the proportion of the display area is greatly increased.
  • the thickness of the polarizer is usually 100 ⁇ m to 200 ⁇ m.
  • the thickness of the color resist 212 may be 1 ⁇ m to 2 ⁇ m, such as 1.2 ⁇ m, 1.4 ⁇ m, 1.6 ⁇ m, 1.8 ⁇ m, and so on. This allows the thickness of the display panel to be significantly reduced, which can conform to the development trend of thinness.
  • the orthographic projections of the first light-transmitting area 11 and the second light-transmitting area 22 in the light incident direction substantially coincide.
  • the proportion of the display area of the display panel can be increased to improve the display effect.
  • first light-transmitting region 11 and the second light-transmitting region 22 have a circular shape whose diameter is approximately equal to the size of the light receiving end of the photosensitive element 200. In another embodiment, the first light-transmitting region 11 and the second light-transmitting region 22 have other shapes such as a rectangle.
  • the first light-transmitting area 11 and / or the second light-transmitting area 22 are openings. In another embodiment, the first light transmitting area 11 and / or the second light transmitting area 22 are transparent areas.
  • the transparent area may be formed by filling a transparent material in the opening.
  • the filled transparent material may be transparent optical adhesive (optically clear adhesive, hereinafter referred to as OCA) and so on.
  • OCA can not only play a role in flattening, but also can play a role in isolating water and oxygen to prevent water and oxygen in the air from eroding the functional layer 1.
  • the light-transmitting substrate 3 and the encapsulation layer 4 of the display panel 100 are not particularly limited.
  • the light-transmitting substrate 3 may be a rigid substrate or a flexible substrate, such as a glass substrate.
  • the encapsulation layer 4 formed between the OLED layer 13 and the filter layer 2 may be a thin-film encapsulation layer.
  • the application also provides a preparation method of the display panel.
  • the preparation method includes the following steps 1 to 4.
  • a light-transmitting substrate 3 is provided.
  • the light-transmitting substrate 3 may be a rigid substrate or a flexible substrate, for example, a glass substrate or the like.
  • step 2 the functional layer 1 is formed on the light-transmitting substrate 3 to obtain the first intermediate structure.
  • the functional layer 1 includes a first light-transmitting area 11 having a first area 121 and a second area 132.
  • the functional layer 1 includes a TFT layer 12 and an OLED layer 13.
  • the TFT layer 12 is first formed on the light-transmitting substrate 3, and then the OLED layer 13 is formed on the TFT layer 12.
  • the method of forming the TFT layer 12 is not particularly limited.
  • the method of forming the TFT layer 12 may be the following method. First, a semiconductor layer is formed on a light-transmitting substrate.
  • the semiconductor layer includes a source region, a drain region, and a channel region between the source region and the drain region formed by doping N-type impurity ions or P-type impurity ions.
  • a gate insulating layer, a gate, and an interlayer insulating layer are sequentially formed on the semiconductor layer.
  • a contact hole extending to the source region and the drain region is formed on the interlayer insulating layer and the gate insulating layer, and the contact hole is filled with metal, and the source electrode and the drain electrode are formed on the interlayer insulating layer to make the source electrode
  • the drain and the drain are electrically connected to the source and drain regions in the semiconductor layer through contact holes in the interlayer insulating layer and the gate insulating layer, respectively.
  • a planarization layer is formed on the source and drain.
  • step 3 an encapsulation layer 4 is formed on the functional layer 1.
  • step 4 the filter layer 2 is formed on the encapsulation layer 4.
  • step 4 may include the following steps a and b.
  • step a a black matrix 211 is formed on the encapsulation layer 4 at intervals.
  • FIG. 4 is a schematic diagram of the second intermediate structure obtained through step a.
  • a black coating layer is formed on the entire encapsulation layer 4 first, and then the black coating layer is exposed with a mask plate having a hollow pattern or a light-transmitting pattern and developed with a developing solution.
  • the part that is not dissolved by the developing solution is The black matrix 211.
  • the black matrix 211 is located above the pixel defining layer 131, and the orthographic projections of the black matrix 211 and the pixel defining layer 131 in the light incident direction substantially coincide.
  • a second light-transmitting area 22 (orthogonal projection in the light incident direction) substantially overlapping the first light-transmitting area 11 is formed (in FIG. 4 Not shown).
  • step b as shown in FIG. 5, a color resist is formed on the second intermediate structure, and the color resist intervals are distributed between adjacent black matrices 211 to obtain a third intermediate structure as shown in FIG. 6.
  • the color resist may further include a green color resist 2122 and a blue color resist 2123 not shown in FIG. 5.
  • the step of forming a color resist on the second intermediate structure may be that a red coating is applied on the second intermediate structure, and then a mask plate with a hollow pattern or a light-transmitting pattern is used to match the red pixel R The corresponding position is exposed to the red coating and developed with a developer to form a red color resist 2121. Then, in a similar manner, the green color resist 2122 and the blue color resist 2123 are formed at positions corresponding to the green pixel G and the blue pixel B, respectively.
  • the formation order of the red color resist 2121, the green color resist 2122, and the blue color resist 2123 is not particularly limited.
  • the green color resist 2122 or the blue color resist 2123 may be formed first.
  • the area where the opening 213 is located can be used as the second light-transmitting area 22, and the third intermediate structure is the display panel 100.
  • the preparation method further includes: filling a transparent sealant in the opening 213 to form a transparent region, and the transparent region serves as the second light-transmitting region 22 to obtain the display panel 100.
  • the second light-transmitting area 22 is a circular area, and the diameter of the circular area can meet the lighting requirements of the camera and other photosensitive elements, and can be 1 mm-5 mm, such as 2 mm, 3 mm, 4 mm.
  • the second light-transmitting region 22 may be other shapes such as rectangular.
  • the filter layer 2 formed on the functional layer 1 includes the black matrix 211 and the color resister 212 and the second light-transmitting region 22, the second light-transmitting region 22 and the first of the functional layer 1
  • the light-transmitting area 11 is opposed.
  • the manufacturing accuracy and alignment accuracy of the black matrix 211 and the color resister 212 are high ( ⁇ 3 microns), the error is small, and the alignment accuracy of the second light-transmitting region 22 and the first light-transmitting region 11 can be high, thereby When the size of the light-receiving end of the photosensitive element 200 is constant, the orthographic projections of the first light-transmitting region 11 and the second light-transmitting region 22 in the light incident direction can substantially overlap.
  • the sizes of the first light-transmitting region 11 and the second light-transmitting region 22 can be set smaller, and the size of the non-light-transmitting region of the functional layer 1, that is, the display region can be increased, and the proportion of the display region can be increased To improve the display effect.
  • the present application also provides a display device.
  • the display device includes the display panel 100 and the photosensitive element 200 described above.
  • the photosensitive element 200 may include a camera such as a front camera and / or other photosensitive elements such as a distance sensor.
  • the light-receiving end of the photosensitive element 200 and the first light-transmitting region 11 are opposite in position and approximately equal in size.
  • approximately equal in size means that the size of the orthographic projection of the light-receiving end of the photosensitive element 200 in the direction of light incidence is approximately the same as the orthographic projection of the first light-transmitting region 11 in the direction of light incidence, ie The orthographic projection of the light receiving end of the photosensitive element 200 and the first light-transmitting area 11 in the light incident direction substantially coincides.
  • the size of the first light-transmitting area 11 may be slightly larger than the size of the light receiving end. However, it is preferable that the size of the first light-transmitting region 11 and the size of the light receiving end are substantially equal.
  • the display device in this application may be any device with a display function, such as a mobile phone, a tablet computer, a television, a notebook computer, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Filters (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

提供了显示面板及其制备方法、显示装置。作为一个示例,显示面板包括:功能层和设在所述功能层上的滤光层。所述功能层包括至少一个第一透光区域。所述滤光层包括至少一个第二透光区域。当将从所述滤光层朝向所述功能层的方向定义为光线入射方向时,至少一个所述第一透光区域和至少一个所述第二透光区域在所述光线入射方向上的正投影大致重合。

Description

显示面板及其制备方法、显示装置 技术领域
本申请涉及显示技术领域,尤其涉及一种显示面板及其制备方法、显示装置。
背景技术
手机等显示装置的显示区域的占比大小影响着显示装置的整体美观性、屏幕显示效果以及用户体验度。
为了实现自拍或可视通话等功能,通常都会在显示装置上设置前置摄像头等感光元件。
如何在设置感光元件的前提下提高显示装置的显示区域的占比成为研究的重点。
发明内容
根据本申请的第一方面,提供一种显示面板。该显示面板包括功能层和设在所述功能层上的滤光层。所述功能层包括至少一个第一透光区域。所述滤光层包括至少一个第二透光区域。当将从所述滤光层朝向所述功能层的方向定义为光线入射方向时,至少一个所述第一透光区域和至少一个所述第二透光区域在所述光线入射方向上的正投影大致重合。
根据本申请的显示面板,通过使至少一个第一透光区域和至少一个第二透光区域在光线入射方向上的正投影大致重合,能够提高显示面板的显示区域的占比,以改善显示效果。
在一个实施方式中,所述滤光层还包括围绕所述第二透光区域的滤光区域。所述滤光区域包括多个黑矩阵和多个色组,所述多个黑矩阵间隔设置,在相邻两个所述黑矩阵之间设置一个色阻。
在该实施方式中,由于黑矩阵和色阻这一组合不仅能够降低入射到滤光区域的环境光的反射率,而且还具有较高的制作精度和对位精度(<3微米),所以与采用偏光片的情况相比,提高了显示面板的显示区域的占比,减小了显示面板的厚度。
在一个实施方式中,所述功能层还包括围绕所述第一透光区域的显示区域,所述显示区域包括多个像素限定层。每个所述黑矩阵和每个所述像素限定层在所述光线入射方 向上的正投影大致重合。
在该实施方式中,通过使黑矩阵和像素限定层在光线入射方向上的正投影大致重合,能够在不牺牲显示区域的占比的情况下,充分发挥出黑矩阵防止像素之间的漏光的效果。
在一个实施方式中,所述功能层还包括围绕所述第一透光区域的显示区域。所述显示区域包括多个像素,所述多个像素包括红色像素、绿色像素和蓝色像素。所述多个色阻包括红色色阻、绿色色阻和蓝色色阻。在所述光线入射方向上,所述红色像素、所述绿色像素和所述蓝色像素的正投影分别与所述红色色阻、所述绿色色阻和所述蓝色色阻的正投影大致重合。
在该实施方式中,通过使像素和相应的色阻在光线入射方向上的正投影大致重合,能够在不牺牲显示区域的占比的情况下,充分发挥出色阻精确选择所期望通过的光线、反射掉不期望通过的光线的效果。
在一个实施方式中,所述第一透光区域为开孔或透明区域。
在一个实施方式中,所述第二透光区域为开孔或透明区域。
在上述两个实施方式中,通过使第一透光区和第二透光区域为开孔或透明区域,能够得到在显示区域打孔以收纳摄像头和传感器等的感光元件的显示面板,进一步提高了显示面板的显示区域的占比。
在一个实施方式中,所述多个色阻的厚度范围为1微米~2微米。
在该实施方式中,不是使用偏光片而是使用色组和矩阵来降低环境光的反射率,所使用的色组的厚度与偏光片的厚度相比,能够使显示面板的厚度显著减小,使显示面板符合薄型化的发展趋势。
根据本申请的第二方面,提供一种显示面板的制备方法。该制备方法包括:形成包括至少一个第一透光区域的功能层;在所述功能层上形成包括至少一个第二透光区域的滤光层;当将从所述滤光层朝向所述功能层的方向定义为光线入射方向时,使至少一个所述第一透光区域和至少一个所述第二透光区域在所述光线入射方向上的正投影大致重合。
根据本申请的制备方法,工艺简单,成本低下,良率较高。
在一个实施方式中,所述滤光层还包括围绕所述第二透光区域的滤光区域,所述滤光区域包括多个黑矩阵和多个色组,所述多个黑矩阵间隔设置,在相邻两个所述黑矩阵 之间设置一个色阻。
在一个实施方式中,所述功能层还包括围绕所述第一透光区域的显示区域,所述显示区域包括多个像素限定层,使每个所述黑矩阵和每个所述像素限定层在所述光线入射方向上的正投影大致重合。
在一个实施方式中,所述显示区域包括多个像素,所述多个像素包括红色像素、绿色像素和蓝色像素。所述多个色阻包括红色色阻、绿色色阻和蓝色色阻,并且在所述光线入射方向上,使所述红色像素、所述绿色像素和所述蓝色像素的正投影分别与所述红色色阻、所述绿色色阻和所述蓝色色阻的正投影大致重合。
在该实施方式中,归因于黑矩阵和色阻具有较高的制作精度和对位精度(<3微米),增大了操作自由度,提高了制备效率。
在一个实施方式中,所述第一透光区域为开孔或透明区域。
在一个实施方式中,所述第二透光区域为开孔或透明区域。
在上述两个实施方式中,通过使第一透光区和第二透光区域为开孔或透明区域,能够得到在显示区域打孔以收纳摄像头和传感器等的感光元件的显示面板,进一步提高了显示面板的显示区域的占比。
根据本申请的第三方面,提供一种显示装置。该显示装置包括上述任一显示面板和至少一个感光元件,所述感光元件位于所述第一透光区域的下方。
根据本申请的显示装置,通过使感光元件位于作为开孔或透明区域的第一透光区和第二透光区域正下方,能够得到在显示区域打孔以收纳例如摄像头和传感器等的感光元件的显示装置,提高了显示装置的显示区域的占比。
附图说明
图1是根据本申请的显示面板的一个实施方式的结构示意图;
图2是根据本申请的显示面板的另一个实施方式的结构示意图;
图3是根据本申请的显示面板的第一中间结构的示意图;
图4是根据本申请的显示面板的第二中间结构的示意图;
图5是根据本申请的显示面板的在形成色阻时的示意图;
图6是根据本申请的显示面板的第三中间结构的示意图;
图7是根据本申请的显示装置的结构示意图。
具体实施方式
下面结合附图,对本申请的显示面板及其制备方法和显示装置进行详细说明。在不冲突的情况下,下述实施方式中的特征可以相互补充或相互组合。
图1和图2是根据本申请的显示面板100的结构示意图。参见图1和图2,显示面板100包括功能层1、滤光层2、透光基板3和封装层4。
在本申请中,为便于说明,将从功能层1指向滤光层2的方向定义为上,将从滤光层2指向功能层1的方向定义为下,将从上到下的方向定义为光线入射方向。
如图1和图2所示,当按层划分时,功能层1包括薄膜晶体管(thin film transistor,以下简称TFT)层12和有机发光二极管(organic light-emitting diode,以下简称OLED)层13。OLED层13形成在TFT层12上。
TFT层12可以包括若干TFT,例如起到开关和驱动作用的TFT。作为示例,TFT(图中未示出)包括依次层叠设置的半导体层、栅极绝缘层、栅极、层间绝缘层、源/漏极和平坦化层。
OLED层13可以包括多个像素,相邻像素之间通过像素限定层131隔开。像素包括依次层叠设置的阳极、有机发光层和阴极。阳极通过平坦化层上的接触孔电连接至漏极,以使显示面板在工作时,OLED层13能够发光。像素可以包括红色像素R、绿色像素G和蓝色像素B。
当按区域划分时,功能层1包括第一透光区域11和显示区域(图中的像素R、G和B所在区域)。显示区域围绕第一透光区域11并用于显示。第一透光区域11包括TFT层12的能够透光的第一区域121和OLED层13的能够透光的第二区域132。第一区域121和第二区域132重叠。
在一个实施方式中,第一区域121中的例如源/漏极和栅极等的导电元件以及第二区域132中的例如阳极等的导电元件由透光材料形成。透光材料可以是例如ITO(indium tin oxid,氧化铟锡)。第二区域132中的阳极可以不与第一区域121中的漏极接触,以使显示面板在工作时,第二区域132不发光。在另一实施方式中,第一透光区域11中可以不设置导电元件。在再一实施方式中,第一透光区域11为开孔。
同样地,当按区域划分时,滤光层2包括第二透光区域22和滤光区域21。第二透光区域22与第一透光区域11相对设置,使得进入到第二透光区域22的光能够通过第一透光区域11。滤光区域21围绕第二透光区域22。
滤光区域21包括用于降低入射到滤光区域21的环境光的反射率的黑矩阵211和色阻212。黑矩阵211间隔设置且位于像素限定层131上方,色阻212设置在相邻黑矩阵211之间且位于像素上方。由于黑矩阵211和色阻212的制作精度和对位精度较高(<3微米),误差较小,能够使第二透光区域22与第一透光区域11的对位精度较高。
色阻212可以包括分别位于红色像素R、绿色像素G和蓝色像素B上方的红色色阻2121、绿色色阻2122和蓝色色阻2123。在光线入射方向上,红色像素R、绿色像素G和蓝色像素B的正投影分别与红色色阻2121、绿色色阻2122和蓝色色阻2123的正投影大致重合。通过使像素和相应的色阻在光线入射方向上的正投影大致重合,能够在不牺牲显示区域的占比的情况下,充分发挥出色阻精确选择所期望通过的光线、反射掉不期望通过的光线的效果。
在本申请中,不特别限制黑矩阵211和色阻212的材料。例如,黑矩阵211可以采用树脂、炭黑等,色阻212可以采用粘合剂和着色剂的组合。其中,粘合剂可以采用高透明性和耐热性的高分子树脂,着色剂可以采用染料或颜料。
根据本申请的显示面板可以应用于显示装置,例如应用于例如手机等的移动终端。显示装置包括位于第一透光区域11正下方的如图7所示的感光元件200,感光元件200设置在显示面板100的透光基板3所在侧。感光元件200可以为前置摄像头和/或例如距离传感器等的其它感光元件。
在本领域中,通常采用偏光片来降低入射到滤光区域的环境光的反射率。以下将以感光元件200是摄像头且其光接收端是圆形为例,对采用偏光片的情况进行详细说明。
偏光片的切割精度和贴合精度较低,切割误差和贴合误差一般均大于0.1mm。因此,在摄像头的光接收端的尺寸确定、例如直径为4mm的情况下,为了减轻偏光片的切割误差和贴合误差的影响,需要使偏光片上的待位于光接收端正上方的开孔(第二透光区域22)的直径大于4.1mm,以确保光接收端能够不被偏光片遮挡而完全暴露出来,进而确保光接收端能够获得足够的进光量,从而保证摄像质量。
进一步地,如上所述,偏光片用于降低入射到滤光区域的环境光的反射率,因此需要使偏光片完全遮盖住位于其下方的功能层1的显示区域,以避免位于第一透光区域11 周围的金属走线反光。考虑到偏光片的切割误差和贴合误差,需要使偏光片的开孔的直径小于第一透光区域11的直径(例如,4.2mm)。如此,对于功能层1而言,第一透光区域11的占比将提高,显示区域的占比将降低。这不符合提高显示区域占比的发展趋势。
然而,在本申请中,采用黑矩阵211和色阻212降低入射到滤光区域21的环境光的反射率。黑矩阵211和色阻212的对位精度高,能够使得在摄像头的光接收端的尺寸确定、例如直径为4mm的情况下,第一透光区域11和第二透光区域22的直径也为大致4mm。如此,与采用偏光片的情况相比,提高了显示区域的占比。
尽管如此,考虑到实际生产时不可避免的公差等原因,可能存在如下情况。如图2所示,由于公差等原因,第一透光区域11的直径可能为大致4mm~4.003mm,第二透光区域22的直径可能为大致4mm。即,第一透光区域11的直径略大于4mm,使得显示区域的占比略微减小。即使在这种情况下,与采用偏光片的情况相比,也大幅提高了显示区域的占比。
此外,当采用偏光片时,偏光片的厚度通常为100微米~200微米。当采用黑矩阵211和色阻212时,色阻212的厚度可以为1微米~2微米,诸如1.2微米、1.4微米、1.6微米、1.8微米等。这使得显示面板的厚度显著减小,从而能够符合薄型化的发展趋势。
也就是说,在本申请中,第一透光区域11和第二透光区域22在光线入射方向上的正投影大致重合。这样,能够提高显示面板的显示区域的占比,以改善显示效果。
在一个实施方式中,第一透光区域11和第二透光区域22具有直径与感光元件200的光接收端的尺寸大致相等的圆形。在另一实施方式中,第一透光区域11和第二透光区域22具有例如矩形等的其它形状。
在一个实施方式中,第一透光区域11和/或第二透光区域22为开孔。在另一实施方式中,第一透光区域11和/或第二透光区域22为透明区域。透明区域可以通过在开孔中填充透明材料而形成。所填充的透明材料可以是透明光学胶(optically clear adhesive,以下简称OCA)等。OCA不仅能够起到平坦化的作用,而且还能够起到隔绝水氧的作用,以防止空气中的水氧侵蚀功能层1。
在本申请中,不特别限制显示面板100的透光基板3和封装层4。例如,透光基板3可以是硬性基板或柔性基板,如玻璃基板。形成在OLED层13与滤光层2之间的封装 层4可以是薄膜封装层。
本申请还提供一种显示面板的制备方法。制备方法包括如下步骤1至步骤4。
在步骤1中,提供透光基板3。其中,透光基板3可以是硬性基板或柔性基板,例如可以是玻璃基板等。
在步骤2中,在透光基板3上形成功能层1,以得到第一中间结构。功能层1包括具有第一区域121和第二区域132的第一透光区域11。
图3是第一中间结构的示意图。如图3所示,功能层1包括TFT层12和OLED层13。对应地,在透光基板3上形成功能层1时,首先在透光基板3上形成TFT层12,然后在TFT层12上形成OLED层13。
在本申请中,不特别限制TFT层12的形成方法。例如,TFT层12的形成方法可以为如下方法。首先,在透光基板上形成半导体层,半导体层包括通过掺杂N型杂质离子或P型杂质离子而形成的源区、漏区以及位于源区和漏区之间的沟道区。然后,在半导体层上依次形成栅极绝缘层、栅极和层间绝缘层。接着,在层间绝缘层和栅极绝缘层上形成延伸至源区和漏区的接触孔,并在接触孔中填充金属,在层间绝缘层上形成源极和漏极,以使源极和漏极分别通过层间绝缘层和栅极绝缘层中的接触孔电连接至半导体层中的源区和漏区。最后,在源极和漏极上形成平坦化层。
在步骤3中,在功能层1上形成封装层4。
在步骤4中,在封装层4上形成滤光层2。在一个实施方式中,步骤4可以包括如下步骤a和步骤b。
在步骤a中,在封装层4上形成间隔排布的黑矩阵211。
图4是通过步骤a得到的第二中间结构的示意图。在该步骤中,首先在整个封装层4上形成黑色涂层,然后采用具有镂空图案或透光图案的掩膜版对黑色涂层曝光并采用显影液显影,未被显影液溶解的部分即为黑矩阵211。黑矩阵211位于像素限定层131上方,并且黑矩阵211和像素限定层131在光线入射方向上的正投影大致重合。在被显影液溶解的部分中、在与第一透光区域11对应的位置,形成在光线入射方向上的正投影与第一透光区域11大致重合的第二透光区域22(图4中未示出)。
在步骤b中,如图5所示,在第二中间结构上形成色阻,色阻间隔分布在相邻黑矩阵211之间,以得到如图6所示的第三中间结构。出于示意性示出的目的,图5中仅示 出了红色色阻2121。色阻还可以包括图5中未示出的绿色色阻2122和蓝色色阻2123。
在一个实施方式中,在第二中间结构上形成色阻的步骤可以是,在第二中间结构上方涂覆红色涂层,然后采用具有镂空图案或透光图案的掩膜版在与红色像素R对应的位置对红色涂层曝光并采用显影液显影,以形成红色色阻2121。然后以类似的方式,分别在与绿色像素G和蓝色像素B对应的位置形成绿色色阻2122和蓝色色阻2123。
在本申请中,不特别限制红色色阻2121、绿色色阻2122和蓝色色阻2123的形成顺序。例如,在另一实施方式中,可以先形成绿色色阻2122或蓝色色阻2123。
在一个实施方式中,可以将开孔213所在区域作为第二透光区域22,则第三中间结构即为显示面板100。
在另一个实施方式中,在步骤b之后,该制备方法还包括:在开孔213内填充透明密封胶,以形成透明区域,透明区域作为第二透光区域22,以得到显示面板100。
在一个实施方式中,第二透光区域22为圆形区域,圆形区域的直径范围能够满足摄像头和其它感光元件的采光需求,可为1mm-5mm,诸如2mm、3mm、4mm。当然,在另一实施方式中,第二透光区域22可以是例如矩形等的其它形状。
根据本申请的显示面板的制备方法,形成在功能层1上的滤光层2包括黑矩阵211和色阻212以及第二透光区域22,第二透光区域22与功能层1的第一透光区域11相对。由于黑矩阵211和色阻212的制作精度和对位精度较高(<3微米),误差较小,能够使第二透光区域22与第一透光区域11的对位精度较高,从而在感光元件200的光接收端的尺寸一定时,能够使第一透光区域11和第二透光区域22在光线入射方向上的正投影大致重合。借此,能够将第一透光区域11和第二透光区域22的尺寸设置得较小,进而能够增大功能层1的非透光区域、即显示区域的尺寸,提高显示区域的占比,改善显示效果。
本申请还提供一种显示装置,如图7所示,显示装置包括上述的显示面板100和感光元件200。感光元件200可以包括例如前置摄像头等的摄像头和/或例如距离传感器等的其它感光元件。感光元件200的光接收端与第一透光区域11在位置上相对、在尺寸上大致相等。
在这里,“在尺寸上大致相等”是指感光元件200的光接收端在光线入射方向上的正投影的尺寸与第一透光区域11在光线入射方向上的正投影的尺寸大致相等,即感光元件200的光接收端和第一透光区域11在光线入射方向上的正投影大致重合。
如上所述,出于避免影响感光元件200的光接收端的采光的目的,在实际生产时,第一透光区域11的尺寸略大于光接收端的尺寸也是可以的。然而,优选地,第一透光区域11的尺寸与光接收端的尺寸大致相等。
本申请中的显示装置可以为例如手机、平板电脑、电视机和笔记本电脑等的任何具有显示功能的装置。

Claims (14)

  1. 一种显示面板,包括:
    功能层,所述功能层包括至少一个第一透光区域;和
    设在所述功能层上的滤光层,所述滤光层包括至少一个第二透光区域;
    当将从所述滤光层朝向所述功能层的方向定义为光线入射方向时,至少一个所述第一透光区域和至少一个所述第二透光区域在所述光线入射方向上的正投影大致重合。
  2. 根据权利要求1所述的显示面板,其中,所述滤光层还包括围绕所述第二透光区域的滤光区域,
    所述滤光区域包括多个黑矩阵和多个色组,所述多个黑矩阵间隔设置,在相邻两个所述黑矩阵之间设置一个色阻。
  3. 根据权利要求2所述的显示面板,其中,所述功能层还包括围绕所述第一透光区域的显示区域,所述显示区域包括多个像素限定层,
    每个所述黑矩阵和每个所述像素限定层在所述光线入射方向上的正投影大致重合。
  4. 根据权利要求2或3所述的显示面板,其中,所述功能层还包括围绕所述第一透光区域的显示区域,所述显示区域包括多个像素,所述多个像素包括红色像素、绿色像素和蓝色像素,
    所述多个色阻包括红色色阻、绿色色阻和蓝色色阻,
    在所述光线入射方向上,所述红色像素、所述绿色像素和所述蓝色像素的正投影分别与所述红色色阻、所述绿色色阻和所述蓝色色阻的正投影大致重合。
  5. 根据权利要求1至3中任一项所述的显示面板,其中,所述第一透光区域为开孔或透明区域。
  6. 根据权利要求1至3中任一项所述的显示面板,其中,所述第二透光区域为开孔或透明区域。
  7. 根据权利要求2所述的显示面板,其中,所述多个色阻的厚度范围为1微米~2微米。
  8. 一种显示面板的制备方法,包括:
    形成包括至少一个第一透光区域的功能层;
    在所述功能层上形成包括至少一个第二透光区域的滤光层;
    当将从所述滤光层朝向所述功能层的方向定义为光线入射方向时,使至少一个所述第一透光区域和至少一个所述第二透光区域在所述光线入射方向上的正投影大致重合。
  9. 根据权利要求8所述的制备方法,其中,所述滤光层还包括围绕所述第二透光区域的滤光区域,所述滤光区域包括多个黑矩阵和多个色组,所述多个黑矩阵间隔设置,在相邻两个所述黑矩阵之间设置一个色阻。
  10. 根据权利要求9所述的制备方法,其中,
    所述功能层还包括围绕所述第一透光区域的显示区域,所述显示区域包括多个像素限定层,使每个所述黑矩阵和每个所述像素限定层在所述光线入射方向上的正投影大致重合。
  11. 根据权利要求10所述的制备方法,其中,所述显示区域包括多个像素,所述多个像素包括红色像素、绿色像素和蓝色像素,所述多个色阻包括红色色阻、绿色色阻和蓝色色阻,并且在所述光线入射方向上,使所述红色像素、所述绿色像素和所述蓝色像素的正投影分别与所述红色色阻、所述绿色色阻和所述蓝色色阻的正投影大致重合。
  12. 根据权利要求8至11中任一项所述的制备方法,其中,所述第一透光区域为开孔或透明区域。
  13. 根据权利要求8至11中任一项所述的制备方法,所述第二透光区域为开孔或透明区域。
  14. 一种显示装置,包括权利要求1所述的显示面板和至少一个感光元件,所述感光元件位于所述第一透光区域的下方。
PCT/CN2019/088581 2018-10-23 2019-05-27 显示面板及其制备方法、显示装置 WO2020082730A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811237170.6A CN109411519A (zh) 2018-10-23 2018-10-23 显示面板及其制备方法、显示装置
CN201811237170.6 2018-10-23

Publications (1)

Publication Number Publication Date
WO2020082730A1 true WO2020082730A1 (zh) 2020-04-30

Family

ID=65468415

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/088581 WO2020082730A1 (zh) 2018-10-23 2019-05-27 显示面板及其制备方法、显示装置

Country Status (2)

Country Link
CN (1) CN109411519A (zh)
WO (1) WO2020082730A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113823666A (zh) * 2021-09-08 2021-12-21 湖北长江新型显示产业创新中心有限公司 显示面板及显示装置

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109411519A (zh) * 2018-10-23 2019-03-01 云谷(固安)科技有限公司 显示面板及其制备方法、显示装置
CN109887984B (zh) * 2019-03-21 2021-11-26 京东方科技集团股份有限公司 有机发光显示面板、电子设备及制造方法
CN110047882B (zh) * 2019-03-29 2020-12-08 武汉华星光电半导体显示技术有限公司 Oled面板
KR20200118266A (ko) 2019-04-03 2020-10-15 삼성디스플레이 주식회사 표시 장치 및 이의 제조 방법
CN110767716B (zh) * 2019-04-30 2023-05-02 昆山国显光电有限公司 显示面板和显示装置
CN110289286B (zh) * 2019-05-27 2021-07-27 Oppo广东移动通信有限公司 显示面板及其制作方法、电子设备
CN110137237B (zh) * 2019-06-06 2022-01-04 京东方科技集团股份有限公司 防窥装置和显示装置
CN110323259B (zh) * 2019-06-28 2022-04-15 云谷(固安)科技有限公司 像素结构、掩膜板及显示面板
CN110335890A (zh) 2019-07-11 2019-10-15 京东方科技集团股份有限公司 一种显示面板及其制备方法、显示装置
CN111554829B (zh) * 2020-05-15 2023-04-07 京东方科技集团股份有限公司 Oled显示基板及其制备方法、oled显示装置
CN111584594B (zh) * 2020-05-25 2022-12-09 京东方科技集团股份有限公司 显示面板、显示装置及其制造方法
CN111933665B (zh) * 2020-08-05 2023-04-07 维沃移动通信有限公司 显示模组和电子设备
CN112270894A (zh) * 2020-09-14 2021-01-26 夏晶 显示装置
CN112233563B (zh) * 2020-11-09 2023-07-14 湖北长江新型显示产业创新中心有限公司 显示面板和显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006317955A (ja) * 2006-05-24 2006-11-24 Semiconductor Energy Lab Co Ltd 液晶表示装置
CN204087149U (zh) * 2013-08-13 2015-01-07 速博思股份有限公司 内嵌式有机发光二极管触控显示面板结构
CN207264062U (zh) * 2017-09-26 2018-04-20 昆山龙腾光电有限公司 显示装置
CN107946341A (zh) * 2017-11-10 2018-04-20 上海天马微电子有限公司 显示装置和显示装置的制造方法
CN109411519A (zh) * 2018-10-23 2019-03-01 云谷(固安)科技有限公司 显示面板及其制备方法、显示装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107516664A (zh) * 2017-09-28 2017-12-26 京东方科技集团股份有限公司 一种阵列基板的制备方法、阵列基板及显示装置
CN107621857A (zh) * 2017-09-30 2018-01-23 联想(北京)有限公司 一种显示屏、电子设备及光强检测方法
CN108666348B (zh) * 2018-05-07 2021-08-13 京东方科技集团股份有限公司 显示基板及显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006317955A (ja) * 2006-05-24 2006-11-24 Semiconductor Energy Lab Co Ltd 液晶表示装置
CN204087149U (zh) * 2013-08-13 2015-01-07 速博思股份有限公司 内嵌式有机发光二极管触控显示面板结构
CN207264062U (zh) * 2017-09-26 2018-04-20 昆山龙腾光电有限公司 显示装置
CN107946341A (zh) * 2017-11-10 2018-04-20 上海天马微电子有限公司 显示装置和显示装置的制造方法
CN109411519A (zh) * 2018-10-23 2019-03-01 云谷(固安)科技有限公司 显示面板及其制备方法、显示装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113823666A (zh) * 2021-09-08 2021-12-21 湖北长江新型显示产业创新中心有限公司 显示面板及显示装置
CN113823666B (zh) * 2021-09-08 2024-01-19 湖北长江新型显示产业创新中心有限公司 显示面板及显示装置

Also Published As

Publication number Publication date
CN109411519A (zh) 2019-03-01

Similar Documents

Publication Publication Date Title
WO2020082730A1 (zh) 显示面板及其制备方法、显示装置
TWI719738B (zh) 顯示面板及顯示裝置
CN109065582B (zh) 一种阵列基板及显示面板、显示装置
CN110649081B (zh) 一种显示面板、制备方法及显示装置
US11508176B2 (en) Display substrate and method for manufacturing the same, display apparatus
US20220158137A1 (en) Organic light-emitting display substrate, method for manufacturing same, display panel, and display device
WO2020119490A1 (zh) 显示组件、显示装置及其驱动方法
WO2018153078A1 (zh) 光学指纹识别组件、显示面板和显示装置
US20230157138A1 (en) Display panel and display device
US11874999B2 (en) Display panel with under-screen camera and manufacturing method thereof
JP2020516006A (ja) 表示パネルおよびその製造方法、並びに表示装置
US20150331161A1 (en) Color filter substrate, manufacturing method thereof and display device
US11985844B2 (en) Display substrate panel and preparation method thereof, and display panel
JP2009070683A (ja) 照明装置及び液晶表示装置
WO2022052686A1 (zh) 显示面板、其制作方法及显示装置
CN110419109B (zh) 显示面板及其制造方法、显示装置
WO2021233354A1 (zh) 显示模组及其制作方法、显示装置
WO2018188354A1 (zh) 光源面板和显示装置
US20220093690A1 (en) Display panel, display screen and display device
TW594235B (en) Transflective LCD apparatus and method for forming the same
WO2022247180A1 (zh) 显示面板及显示装置
WO2023092680A1 (zh) 一种oled显示模组及显示终端
WO2023245899A1 (zh) 显示面板及显示装置
CN112864214B (zh) 显示模组及显示装置
WO2020087858A1 (zh) 显示面板、显示终端和掩模板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19875685

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19875685

Country of ref document: EP

Kind code of ref document: A1