WO2020082620A1 - 基于肺动脉ct图像的血管排序方法 - Google Patents
基于肺动脉ct图像的血管排序方法 Download PDFInfo
- Publication number
- WO2020082620A1 WO2020082620A1 PCT/CN2019/071202 CN2019071202W WO2020082620A1 WO 2020082620 A1 WO2020082620 A1 WO 2020082620A1 CN 2019071202 W CN2019071202 W CN 2019071202W WO 2020082620 A1 WO2020082620 A1 WO 2020082620A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- blood vessel
- pulmonary artery
- center line
- point
- pulmonary
- Prior art date
Links
- 210000004204 blood vessel Anatomy 0.000 title claims abstract description 53
- 210000001147 pulmonary artery Anatomy 0.000 title claims abstract description 53
- 238000000034 method Methods 0.000 title claims abstract description 17
- 230000002685 pulmonary effect Effects 0.000 claims description 4
- 238000009877 rendering Methods 0.000 claims description 4
- 230000002792 vascular Effects 0.000 claims description 4
- 239000003086 colorant Substances 0.000 claims description 3
- 238000001356 surgical procedure Methods 0.000 abstract description 3
- 238000003384 imaging method Methods 0.000 abstract 1
- 238000002588 pulmonary angiography Methods 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 4
- 208000031481 Pathologic Constriction Diseases 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000036262 stenosis Effects 0.000 description 2
- 208000037804 stenosis Diseases 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 230000036772 blood pressure Effects 0.000 description 1
- 238000002591 computed tomography Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000003902 lesion Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/52—Devices using data or image processing specially adapted for radiation diagnosis
- A61B6/5211—Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data
- A61B6/5217—Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data extracting a diagnostic or physiological parameter from medical diagnostic data
Definitions
- the invention relates to the technical field of medical image processing, in particular to a blood vessel sorting method based on pulmonary artery CT images, which can be applied to the analysis of pulmonary artery CT images in clinical research.
- the object of the present invention is to provide a blood vessel sorting method based on CT images of pulmonary arteries, which sorts the pulmonary arteries according to changes in pressure drop, improves the accuracy of pulmonary arteriography surgery, and greatly shortens the treatment time.
- a blood vessel sorting method based on CT images of pulmonary arteries includes the following steps:
- step S02 specifically includes the following steps:
- the method further includes one-to-one correspondence between the blood vessels and the list in the three-dimensional view, and visual display through color rendering.
- each one in the pulmonary artery blood vessel list to a blood vessel in the three-dimensional view;
- the center line on each blood vessel is composed of several points, each point has a scalar value p, p represents the blood vessel at that point Pressure drop, each point also has a scalar value d, d represents the cross-sectional diameter of the blood vessel at that point;
- the three-dimensional view of the pulmonary vascular model is generated by three elements: the center line, the diameter of each point on the center line, and the pressure drop at each point on the center line; the center line is responsible for drawing the shape and spatial position of the blood vessel; the center line The diameter of each point is responsible for drawing the thickness and outline of the blood vessel; the pressure drop at each point on the center line is responsible for drawing different colors on the blood vessel.
- the color changes from red to blue, the greater the pressure, the redder the color, and the lower the pressure, the bluer the color.
- the method of the invention can sort the pulmonary artery blood vessels according to the pressure drop change, improve the accuracy of pulmonary arteriography operation, and greatly shorten the treatment time. At the same time, it can save the operation cost, reduce the operation risk, and improve the patient's quality of life.
- FIG. 1 is a flowchart of the method of the present invention
- FIG. 2 is a corresponding schematic diagram of the blood vessel list and form of the present invention.
- FIG. 3 is the rendering result of the pulmonary artery blood vessel of the present invention.
- the method for sorting blood vessels based on CT images of pulmonary arteries of the present invention by analyzing the CT images of pulmonary arteries, sorts the potentially problematic pulmonary blood vessels in a certain order, and gives reference pulmonary angiography surgical indexes, including the following step:
- Each of the pulmonary artery blood vessel lists maps one blood vessel in the three-dimensional view one by one;
- the centerline Line on each blood vessel is composed of several points. Each point has a scalar value p (the physical meaning of p represents the pressure drop of the blood vessel at this point, which is obtained by hydrodynamic analysis of 2.5); each point also There is a scalar value d (the physical meaning of d represents the cross-sectional diameter of the blood vessel at this point, which is obtained by calculating the blood vessel centerline in 2.2)
- p the physical meaning of p represents the pressure drop of the blood vessel at this point, which is obtained by hydrodynamic analysis of 2.5
- d the physical meaning of d represents the cross-sectional diameter of the blood vessel at this point, which is obtained by calculating the blood vessel centerline in 2.2
- the pulmonary vascular model in the three-dimensional view is generated by three elements: the centerline, the diameter of each point on the centerline, and the pressure drop at each point on the centerline.
- the center line is responsible for drawing the shape and spatial position of the blood vessel; the diameter of each point on the center line is responsible for drawing the thickness and outline of the blood vessel; the pressure drop at each point on the center line is responsible for drawing different colors on the blood vessel, from red to blue, The greater the pressure, the redder the color, and the lower the pressure, the bluer the color.
- the doctor can start the operation on the pulmonary artery blood vessel with the highest probability of causing the patient's illness according to the results obtained by the analysis.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Medical Informatics (AREA)
- Optics & Photonics (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- High Energy & Nuclear Physics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Physiology (AREA)
- Pathology (AREA)
- Radiology & Medical Imaging (AREA)
- Physics & Mathematics (AREA)
- Heart & Thoracic Surgery (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Apparatus For Radiation Diagnosis (AREA)
Abstract
一种基于肺动脉CT图像的血管排序方法,包括:对肺动脉CT图像进行分割,得到左肺动脉血管和右肺动脉血管;计算肺动脉血管中心线,通过中心线得到肺动脉血管列表;计算每个血管的压力降;根据压力降将血管列表重新排序。将肺动脉血管按照压力降变化进行排序,提高肺动脉造影手术精准度,大幅度缩短治疗时间。
Description
本发明涉及医学图像处理技术领域,具体地涉及一种基于肺动脉CT图像的血管排序方法,可应用于临床研究中肺动脉CT图像分析。
在当前肺动脉造影手术中,患者病灶部位的特征单个体积小,位置不确定,数量不固定,这样造成了医生面临的问题是肺动脉血管数量繁多,结构复杂,检查难度太大。当前,医生的手术方案大多都靠经验,并且会进行多次手术。这种情况下,患者将面临手术费用和身体恢复的双重压力,一些经济条件不允许的患者会选择拖延治疗,甚至放弃治疗。本发明因此而来。
发明内容
为了解决上述存在的技术问题,本发明的目的是:提供了一种基于肺动脉CT图像的血管排序方法,将肺动脉血管按照压力降变化进行排序,提高肺动脉造影手术精准度,大幅度缩短治疗时间。
本发明的技术方案是:
一种基于肺动脉CT图像的血管排序方法,包括以下步骤:
S01:对肺动脉CT图像进行分割,得到左肺动脉血管和右肺动脉血管;
S02:计算肺动脉血管中心线,通过中心线得到肺动脉血管列表;
S03:计算每个血管的压力降;
S04:根据压力降将血管列表重新排序。
优选的技术方案中,所述步骤S02具体包括以下步骤:
S21:计算肺动脉血管的中心线及血管半径;
S22:将中心线按照左二叉树规则分成独立的单根血管;
S23:按照左二叉树的顺序将肺动脉血管编号,得到肺动脉血管列表。
优选的技术方案中,所述步骤S04之后还包括在三维视图中将血管与列表一一对应,并通过颜色渲染直观显示。
优选的技术方案中,具体包括以下步骤:
将肺动脉血管列表中的每一条都一一映射到三维视图中的一根血管;每根血管上的中心线由若干点构成,每个点有一个标量值p,p代表血管在该点的压力降,每个点还有一个标量值d,d代表血管在该点的横截面直径;
三维视图中的肺血管模型由3个元素生成:中心线、中心线上各点的直径、中心线上各点的压力降;所述中心线负责绘制血管的走向形态及空间位置;中心线上各点的直径负责绘制血管的粗细形态及轮廓外形;中心线上各点的压力降负责绘制血管上不同颜色。
优选的技术方案中,所述颜色由红到蓝,压力越大颜色越红,压力越小颜色越蓝。
与现有技术相比,本发明的优点是:
本发明方法可以将肺动脉血管按照压力降变化进行排序,提高肺动脉造影手术精准度,大幅度缩短治疗时间。同时节省手术成本,降低手术风险,提高患者生活质量。
下面结合附图及实施例对本发明作进一步描述:
图1为本发明的方法流程图;
图2为本发明血管列表与形态的对应示意图;
图3为本发明肺动脉血管渲染结果。
为使本发明的目的、技术方案和优点更加清楚明了,下面结合具体实施方式并参照附图,对本发明进一步详细说明。应该理解,这些描述只是示例性的,而并非要限制本发明的范围。此外,在以下说明中,省略了对公知结构和技术的描述,以避免不必要地混淆本发明的概念。
如图1所示,本发明的基于肺动脉CT图像的血管排序方法,通过分析肺动脉CT图像,将可能有问题的肺血管按照一定顺序排序,并给出有参考意义的肺动脉造影手术指标,包括以下步骤:
(1)导入患者肺动脉CT扫描切片影像;
(2)分割肺动脉血管,左肺动脉血管/右侧肺动脉血管分开获取;
(3)获得肺动脉血管列表;正确分割出肺动脉血管后,通过算法可以得到肺动脉血管的中心线及血管半径,然后将中心线按照左二叉树规则分成独立的一根一根的单根血管(从根节点开始分3次分叉节点),然后按照左二叉树的顺序将肺动脉血管排序,从而得到肺动脉血管列表,如图2所示。
(4)分析列表中的每根血管,例如包括狭窄、斑块等等。将狭窄和斑块考虑在内,可以得到符合事实的血管三维形态。
(5)由其他仪器测量得到肺动脉入口端的血压;
(6)通过流体力学分析得到每根血管的压力降;
(7)按照压力降变化将血管列表从大到小排序,压力降越大,患者的病症概率也越大。
(8)在三维视图中将血管与列表一一对应,并通过颜色渲染直观显示,如图3所示。
具体包括:
肺动脉血管列表中的每一条都一一映射三维视图中的一根血管;
每根血管上的中心线Line由若干点Point构成,每个点有一个标量值p(p的物理意义代表血管在该点的压力降,由2.5通过流体力学分析得到);每个点还有一个标量值d(d的物理意义代表血管在该点的横截面直径,由2.2计算血管中心线同步得到)。
三维视图中的肺血管模型由3个元素生成:中心线、中心线上各点的直径、中心线上各点的压力降。中心线负责绘制血管的走向形态及空间位置;中心线上各点的直径负责绘制血管的粗细形态及轮廓外形;中心线上各点的压力降负责绘制血管上不同颜色,颜色由红到蓝,压力越大颜色越红,压力越小颜色越蓝。
医生在肺动脉造影手术中,可以依据分析得到的结果,先对造成患者病症概率最大的肺动脉血管开始手术。
应当理解的是,本发明的上述具体实施方式仅仅用于示例性说明或解释本发明的原理,而不构成对本发明的限制。因此,在不偏离本发明的精神和范围的情况下所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。此外,本发明所附权利要求旨在涵盖落入所附权利要求范围和边界、或者这种范围和边界的等同形式内的全部变化和修改例。
Claims (5)
- 一种基于肺动脉CT图像的血管排序方法,其特征在于,包括以下步骤:S01:对肺动脉CT图像进行分割,得到左肺动脉血管和右肺动脉血管;S02:计算肺动脉血管中心线,通过中心线得到肺动脉血管列表;S03:计算每个血管的压力降;S04:根据压力降将血管列表重新排序。
- 根据权利要求1所述的基于肺动脉CT图像的血管排序方法,其特征在于,所述步骤S02具体包括以下步骤:S21:计算肺动脉血管的中心线及血管半径;S22:将中心线按照左二叉树规则分成独立的单根血管;S23:按照左二叉树的顺序将肺动脉血管编号,得到肺动脉血管列表。
- 根据权利要求1所述的基于肺动脉CT图像的血管排序方法,其特征在于,所述步骤S04之后还包括在三维视图中将血管与列表一一对应,并通过颜色渲染直观显示。
- 根据权利要求3所述的基于肺动脉CT图像的血管排序方法,其特征在于,具体包括以下步骤:将肺动脉血管列表中的每一条都一一映射到三维视图中的一根血管;每根血管上的中心线由若干点构成,每个点有一个标量值p,p代表血管在该点的压力降,每个点还有一个标量值d,d代表血管在该点的横截面直径;三维视图中的肺血管模型由3个元素生成:中心线、中心线上各点的直径、中心线上各点的压力降;所述中心线负责绘制血管的走向形态及空间位置;中心线上各点的直径负责绘制血管的粗细形态及轮廓外形;中心线上各点的压力降负责绘制血管上不同颜色。
- 根据权利要求4所述的基于肺动脉CT图像的血管排序方法,其特征在于,所述颜色由红到蓝,压力越大颜色越红,压力越小颜色越蓝。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811247599.3 | 2018-10-25 | ||
CN201811247599.3A CN109480873B (zh) | 2018-10-25 | 2018-10-25 | 基于肺动脉ct图像的血管排序方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020082620A1 true WO2020082620A1 (zh) | 2020-04-30 |
Family
ID=65691562
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/071202 WO2020082620A1 (zh) | 2018-10-25 | 2019-01-10 | 基于肺动脉ct图像的血管排序方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN109480873B (zh) |
WO (1) | WO2020082620A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111932495B (zh) * | 2020-06-30 | 2021-09-07 | 数坤(北京)网络科技股份有限公司 | 一种医学图像检测方法、装置及存储介质 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101116103A (zh) * | 2005-02-11 | 2008-01-30 | 皇家飞利浦电子股份有限公司 | 从三维医学图像中自动提取肺动脉树的方法 |
CN102243759A (zh) * | 2010-05-10 | 2011-11-16 | 东北大学 | 一种基于几何形变模型的三维肺血管图像分割方法 |
US20150127082A1 (en) * | 2011-11-30 | 2015-05-07 | Abbott Cardiovascular Systems Inc. | Pediatric application of bioabsorbable polymer stents in infants and children with congenital heart defects |
CN105326486A (zh) * | 2015-12-08 | 2016-02-17 | 上海交通大学 | 血管压力差与血流储备分数的计算方法及系统 |
CN106535746A (zh) * | 2014-07-11 | 2017-03-22 | 皇家飞利浦有限公司 | 用于脉管处置的设备、系统和方法 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130274712A1 (en) * | 2011-11-02 | 2013-10-17 | Stuart O. Schecter | Haptic system for balloon tipped catheter interventions |
WO2013141419A1 (ko) * | 2012-03-21 | 2013-09-26 | 연세대학교 원주산학협력단 | 양손을 이용한 혈관 및 심폐기능 평가를 위한 생체 계측 시스템 |
CN103246883B (zh) * | 2013-05-20 | 2016-02-17 | 中国矿业大学(北京) | 一种煤矿井下热红外图像人脸识别方法 |
NL2012459B1 (en) * | 2014-03-18 | 2016-01-08 | Medis Ass B V | Method and device for determining deviation in pressure in a blood vessel. |
JP6380949B2 (ja) * | 2014-07-17 | 2018-08-29 | 富士通株式会社 | 可視化装置、可視化方法、および可視化プログラム |
CN104794973B (zh) * | 2015-04-29 | 2016-04-13 | 中国人民解放军第四军医大学 | 分布式心血管系统仿真模型 |
CN106446360B (zh) * | 2016-09-08 | 2019-07-09 | 天津大学 | 基于显微ct测量的缺损颅骨组织工程血管支架参数化设计方法 |
CN106780527B (zh) * | 2016-11-29 | 2020-09-15 | 上海联影医疗科技有限公司 | 医学图像中血管进出口、边界条件获取方法及处理装置 |
CN107392910B (zh) * | 2017-07-06 | 2020-01-07 | 东软医疗系统股份有限公司 | 一种基于ct图像的肺叶分割方法及装置 |
-
2018
- 2018-10-25 CN CN201811247599.3A patent/CN109480873B/zh active Active
-
2019
- 2019-01-10 WO PCT/CN2019/071202 patent/WO2020082620A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101116103A (zh) * | 2005-02-11 | 2008-01-30 | 皇家飞利浦电子股份有限公司 | 从三维医学图像中自动提取肺动脉树的方法 |
CN102243759A (zh) * | 2010-05-10 | 2011-11-16 | 东北大学 | 一种基于几何形变模型的三维肺血管图像分割方法 |
US20150127082A1 (en) * | 2011-11-30 | 2015-05-07 | Abbott Cardiovascular Systems Inc. | Pediatric application of bioabsorbable polymer stents in infants and children with congenital heart defects |
CN106535746A (zh) * | 2014-07-11 | 2017-03-22 | 皇家飞利浦有限公司 | 用于脉管处置的设备、系统和方法 |
CN105326486A (zh) * | 2015-12-08 | 2016-02-17 | 上海交通大学 | 血管压力差与血流储备分数的计算方法及系统 |
Also Published As
Publication number | Publication date |
---|---|
CN109480873A (zh) | 2019-03-19 |
CN109480873B (zh) | 2021-08-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Saba et al. | Automatic detection of papilledema through fundus retinal images using deep learning | |
US20220284584A1 (en) | Computerised tomography image processing | |
CN107007352B (zh) | 用于患者特异性血流建模的方法和系统 | |
US20160196660A1 (en) | Segmentation apparatus for interactively segmenting blood vessels in angiographic image data | |
US9189866B2 (en) | Vascular tree from anatomical landmarks and a clinical ontology | |
CN114299072B (zh) | 一种基于人工智能的解剖变异识别提示方法及系统 | |
CN110880366B (zh) | 一种医学影像处理系统 | |
JP2022167972A (ja) | 医用画像処理方法、医用画像処理装置、医用画像処理システム及び医用画像処理プログラム | |
US20210256689A1 (en) | Medical image process apparatus, medical image learning method, and medical image process method | |
CN110742633B (zh) | B型主动脉夹层术后风险预测方法、装置和电子设备 | |
Polańczyk et al. | Evaluating an algorithm for 3D reconstruction of blood vessels for further simulations of hemodynamic in human artery branches | |
WO2020082620A1 (zh) | 基于肺动脉ct图像的血管排序方法 | |
CN113920077A (zh) | 一种训练眼底图像分割模型的方法以及动静脉分割方法 | |
CN116309235A (zh) | 一种针对糖尿病预测的眼底图像的处理方法和系统 | |
EP4174762A1 (en) | Deep learning-based aortic image acquisition system | |
CN117036332A (zh) | 网状血管的血流参数计算方法和系统 | |
Gharleghi et al. | Computed tomography coronary angiogram images, annotations and associated data of normal and diseased arteries | |
Liu et al. | A curriculum learning-based fully automated system for quantification of the choroidal structure in highly myopic patients | |
Park et al. | Automatic detection of posterior superior alveolar artery in dental cone-beam CT images using a deeply supervised multi-scale 3D network | |
Mantecón et al. | Coronary artery identification on echocardiograms for kawasaki disease diagnosis | |
Miao et al. | Visual quantification of the circle of willis: An automated identification and standardized representation | |
CN115222665B (zh) | 一种斑块检测方法、装置、电子设备及可读存储介质 | |
CN111789572B (zh) | 从视网膜脉管系统图像中确定高血压水平 | |
Markiewicz et al. | Computerized system for quantitative assessment of atherosclerotic plaques in the femoral and iliac arteries visualized by multislice computed tomography | |
Gharleghi et al. | Computed Tomography Coronary Angiogram Images, Annotations and Associated Data of Normal and Diseased Arteries, 2017-2020 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19876394 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19876394 Country of ref document: EP Kind code of ref document: A1 |