WO2020080508A1 - アライメントシステム及び位置合わせ用シール - Google Patents

アライメントシステム及び位置合わせ用シール Download PDF

Info

Publication number
WO2020080508A1
WO2020080508A1 PCT/JP2019/041027 JP2019041027W WO2020080508A1 WO 2020080508 A1 WO2020080508 A1 WO 2020080508A1 JP 2019041027 W JP2019041027 W JP 2019041027W WO 2020080508 A1 WO2020080508 A1 WO 2020080508A1
Authority
WO
WIPO (PCT)
Prior art keywords
alignment
sample
charged particle
image
sample carrier
Prior art date
Application number
PCT/JP2019/041027
Other languages
English (en)
French (fr)
Inventor
躍 前田
吉延 星野
公徳 豊岡
Original Assignee
株式会社日立ハイテクノロジーズ
国立研究開発法人理化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテクノロジーズ, 国立研究開発法人理化学研究所 filed Critical 株式会社日立ハイテクノロジーズ
Priority to US17/281,296 priority Critical patent/US11538657B2/en
Priority to JP2020553329A priority patent/JP7110383B2/ja
Publication of WO2020080508A1 publication Critical patent/WO2020080508A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/261Details
    • H01J37/265Controlling the tube; circuit arrangements adapted to a particular application not otherwise provided, e.g. bright-field-dark-field illumination
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/20Means for supporting or positioning the objects or the material; Means for adjusting diaphragms or lenses associated with the support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/22Optical or photographic arrangements associated with the tube
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/20Positioning, supporting, modifying or maintaining the physical state of objects being observed or treated
    • H01J2237/202Movement
    • H01J2237/20278Motorised movement
    • H01J2237/20285Motorised movement computer-controlled
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/22Treatment of data
    • H01J2237/221Image processing

Definitions

  • the present invention relates to an alignment system that enables correlation observation between an imaging device that acquires an image and a charged particle beam device.
  • a charged particle beam device represented by a scanning electron microscope (SEM)
  • SEM scanning electron microscope
  • a charged particle beam finely focused by an electrostatic lens or an electromagnetic lens is scanned on a sample to obtain desired information (eg, , Sample surface image).
  • desired information eg, , Sample surface image.
  • the charged particle beam device uses a charged particle beam having a shorter wavelength than light, it has a higher resolution than an optical microscope and can observe a sample (or a sample structure) with a size of several nm to several ⁇ m.
  • the minimum magnification for observing the sample is set to a magnification that does not fit the entire view of the sample depending on the conditions of the electron optical system. As a result, for example, it is difficult to find a field of view for specifying an observation field of view of several nm to several hundreds of ⁇ m from the whole area of the sample of several cm or several mm order.
  • Patent Document 1 proposes the same sample holder having alignment marks in both devices in order to realize the correlation observation between the charged particle beam device and the optical microscope. Further, Patent Document 2 proposes a sample holder that detects an alignment mark by providing an opening or an optical transmission portion in an optical microscope, which may be used for transmitted light.
  • Patent Document 3 a single optical microscope is used, but when observing the same field of view when observing the slide glass many times, a label, a corner of the cover glass, a corner of the slide glass, or the like is used as an alignment point.
  • An example is disclosed that may be used.
  • the sample to be observed When observing a sample such as a cell section, generally, the sample to be observed is placed on a cover glass, and the cover glass on which the sample is placed is fixed to a sample holder for observation by an observation device. . Therefore, the cover glass attached to the sample holder is replaced for each sample to be observed.
  • the cover glass with a square or rectangular shape which is a general shape, can be attached to the sample holder when re-observing, even if it is rotated by 90 ° or 180 ° with respect to the mounting direction at the previous observation. Is. Further, in the case of the round cover glass, since the rotation direction is free, it is difficult to attach the sample holder to the sample holder at exactly the same angle as the attachment direction at the time of the previous observation when re-observing.
  • the sample holder is provided with an alignment mark, and the observation position is recorded based on the alignment mark of the sample holder. Therefore, in the re-observation, the cover glass should be aligned with the mounting direction at the previous observation. If is not installed, re-observation is not possible.
  • the cover glass installation part of the sample holder is designed to be slightly larger than the size of the cover glass for installing the cover glass. , Allows minute parallel movement and rotation.
  • the cover glass is reattached for re-observation, the positional relationship between the alignment mark and the sample to be observed is slightly different from that of the previous observation. Strictly, it does not match the position information when doing.
  • it is a minute error, it becomes a large error in a charged particle beam apparatus with a high observation magnification, and it may cause a target structure to escape from the visual field range particularly when observing at a high magnification.
  • Patent Document 3 a label or a corner of a slide glass, which does not lose its positional relationship with a cell section, is given as an example, but nothing about alignment with anything other than an optical microscope is mentioned. Since it is necessary to have conductivity when observing with a charged particle beam device, generally non-conductive labels and slide glasses cannot be observed with a charged particle beam device.
  • An alignment system includes a sample carrier on which a sample is placed, a charged particle optical system for irradiating a sample placed on the sample carrier with a charged particle beam, and a charged particle beam for irradiating the sample.
  • a charged particle beam device including a detector that detects a signal generated by the image capturing device, a first image obtained by capturing an image of a sample placed on a sample carrier with the image capturing device, and an image capturing device corresponding to the first image.
  • Alignment system with high reproducibility of position information at the time of re-observation is realized, and the user can re-observe the region of interest efficiently and easily.
  • 6 is an example of a user interface screen for guiding the placement of alignment marks.
  • 10A is an example in which a characteristic structure of an observed image is set as an alignment point using the user interface screen of FIG. 10A.
  • It is a master data creation workflow. It is an example of a user interface screen for creating master data.
  • It is a correlation observation workflow of an observation sample by a scanning electron microscope in the alignment system. It is a flowchart which acquires the visual field information of an alignment point.
  • a user interface screen for acquiring the visual field information of the alignment point and executing the alignment It is an example of a user interface screen of the input image display unit.
  • FIG. 1 is a schematic configuration diagram of an alignment system to which a scanning electron microscope is applied as a charged particle beam device and an optical microscope is applied as an imaging device.
  • the alignment system has a system control unit 103 that controls each of the scanning electron microscope 100, the optical microscope 104, the scanning electron microscope 100, and the optical microscope 104, as its main configuration.
  • a lens barrel 101 and a sample chamber 102 are integrated, and the inside thereof can be maintained in a high vacuum state.
  • the lens barrel 101 is provided with an electron gun 111 that emits an electron beam 110 and an electron optical system 112 that controls the irradiation of the electron beam 110.
  • the electron optical system 112 focuses the electron beam 110 so that the condenser lens 113 that focuses the electron beam 110 emitted from the electron gun 111, the deflector 114 that scans the electron beam 110, and the surface of the sample 120 are in focus.
  • the objective lens 115 for Further, in the illustrated example, a detector 131 for detecting a signal 130 (for example, secondary electron, reflected electron, X-ray, etc.) generated by irradiating the sample 120 with the electron beam 110 is also provided in the lens barrel 101. Has been.
  • a signal 130 for example, secondary electron, reflected electron, X-ray, etc.
  • sample carrier an electron microscope sample holder 122 on which a sample support member (hereinafter referred to as “sample carrier”) 121 is mounted is provided through the inlet / outlet port. Be accommodated. The sample 120 to be observed is placed on the sample carrier 121. Although details will be described later, marks or patterns for alignment are formed or attached to the sample carrier 121.
  • the electron microscope sample stage 123 is provided in the sample chamber 102.
  • the electron microscope sample stage 123 includes an electron microscope sample holder attached portion 124 to which an electron microscope sample holder 122 is detachably attached, and an electron microscope sample holder attached portion 124.
  • An electron microscope in which the position and orientation of the sample 120 (and the sample carrier 121) are displaced together with the sample holder 122 for an electron microscope by moving, rotating, or tilting the sample holder attachment part 124 in a horizontal plane or in a direction perpendicular to the plane.
  • a sample moving mechanism 125 is provided in the sample chamber 102.
  • the electron microscope sample stage 123 includes an electron microscope sample holder attached portion 124 to which an electron microscope sample holder 122 is detachably attached, and an electron microscope sample holder attached portion 124.
  • An electron microscope in which the position and orientation of the sample 120 (and the sample carrier 121) are displaced together with the sample holder 122 for an electron microscope by moving, rotating, or tilting the sample holder attachment part
  • the electron microscope control unit 152 of the system control unit 103 controls the sample moving mechanism 125 and the electron optical system 112 to irradiate a desired position on the sample 120 with the electron beam 110, and the generated signal 130 is detected by the detector 131. By doing so, the electron microscope observation of the sample 120 can be performed at a desired position and magnification.
  • a secondary electron detector suitable for detecting the surface structure of the sample 120 will be described as an example of the detector 131, but the detector 131 is not limited to this.
  • a detector can be applied according to the object or purpose of correlation observation. For example, a backscattered electron detector may be used for the purpose of detecting the composition of the sample 120, and an X-ray detector may be used for the purpose of elemental analysis.
  • the optical microscope 104 has the difference that it uses visible light, while the electron microscope uses an electron beam, but the basic configuration is the same as that of the electron microscope, and the electron optical system of the electron microscope corresponds to the objective lens 140.
  • the detector of the electron microscope corresponds to the image sensor 141.
  • As the image sensor 141 a CCD (Charge Coupled Device) or a CMOS sensor is used. Image data (still image or moving image) of the sample is acquired by the image sensor 141.
  • the sample carrier 121 is mounted on the optical microscope sample holder 142 of the optical microscope 104.
  • the optical microscope 104 is provided with an optical microscope sample stage 143.
  • the optical microscope sample stage 143 includes an optical microscope sample holder attached portion 144 to which an optical microscope sample holder 142 is detachably attached, and an optical microscope sample.
  • a moving mechanism 145 may be either an electric type or a manual type.
  • FIG. 2 is a functional block diagram of the system control unit 103 in FIG.
  • the system control unit 103 includes an optical microscope control unit 151, an electron microscope control unit 152, and an alignment control unit 153.
  • Each control unit is realized as a computer in which a program that executes each function is installed, and communication between each control unit is assumed to be exchanged by TCP / IP communication. This is because the alignment function of this embodiment is not necessary when operating the scanning electron microscope alone or the optical microscope alone, so when operating each microscope alone, unnecessary functions are hidden and user convenience is improved. In addition to this, it is for distributing the load to the central processing unit (CPU). However, in the case of having a computer having sufficient performance, the system control unit 103 may be configured by one computer.
  • the computer refers to a control device that includes a storage device such as a CPU and a memory, an input / output device such as a keyboard, a mouse, and a monitor, and operates when a program is executed by the CPU.
  • a control device that includes a storage device such as a CPU and a memory, an input / output device such as a keyboard, a mouse, and a monitor, and operates when a program is executed by the CPU.
  • a general desktop PC It may be a notebook PC, a tablet terminal, a smartphone, or an embedded microcomputer.
  • the program may be executed by a logic circuit such as FPGA, a parallel processing device such as GPU, or a distributed high-speed computer.
  • a logic circuit such as FPGA, a parallel processing device such as GPU, or a distributed high-speed computer.
  • Each control unit has a user interface (hereinafter referred to as “UI”) for exchanging information with the user.
  • UI user interface
  • the optical microscope control unit 151 has a control function of the optical microscope 104 according to an operation from a user input / output unit.
  • An optical microscope operation input / output unit 210 that receives an operation from a user is provided, and the optical system control unit 211 and the optical microscope sample moving mechanism control unit 212 each are based on the information input to the optical microscope operation input / output unit 210.
  • the field of view is set by controlling the objective lens 140 of the optical microscope and the optical microscope sample moving mechanism 145.
  • the optical system control unit 211 also controls the image sensor 141, and captures an image of the visual field set according to the operation by the user.
  • the magnification set at this time and the coordinate position of the sample moving mechanism are managed in association with the image.
  • the user can set an arbitrary visual field with the optical microscope 104 based on his / her operation and acquire the image data and visual field information.
  • the visual field information may include coordinate data in the height direction of the sample moving mechanism and information in the height direction such as the focus position of the camera.
  • the image pickup device 141 is connected to the optical microscope image management unit 220 of the optical microscope control unit 151, and the captured image data is directly sent to the image input unit 250 of the alignment control unit 153. There is.
  • the image pickup device 141 does not necessarily need to be connected to the optical microscope image management unit 220.
  • the image data of the imaged observation object is stored based on the format of digital image data, and the stored image data file is subjected to alignment control. You may input into the image input part 250 of the part 153.
  • the visual field information needs to be embedded in the image data file or managed and linked in a file of another format in the image data file.
  • the electron microscope control unit 152 has a control function of the scanning electron microscope 100 according to an operation from the user's input / output unit.
  • An electron microscope operation input / output unit 230 that receives an operation from a user is provided, and the electron optical system control unit 231 and the electron microscope sample moving mechanism control unit 232 are based on the information input to the electron microscope operation input / output unit 230.
  • the field of view is set by controlling the electron optical system 112 and the electron microscope sample moving mechanism 125, respectively.
  • the field-of-view signal is acquired by the detector 131, formed as an image by the electron microscope image generation unit 240, and drawn by the electron microscope observation image drawing unit 241 on an output device such as a monitor.
  • the alignment control unit 153 converts the visual field information of the optical microscope 104 input by the user into the visual field information of the scanning electron microscope 100, and controls the electron optical system 112 and the sample moving mechanism 125, so that the same scanning electron microscope 100 is obtained. It has the function of setting the field of view.
  • the alignment control unit 153 includes an alignment processing unit 260 that controls the entire workflow for converting the coordinate system of the optical microscope 104 and the coordinate system of the scanning electron microscope 100 (hereinafter referred to as “alignment”).
  • an affine transformation capable of correcting translation, rotation, scaling (enlargement / reduction), sharing (shear deformation), etc. is used as an alignment method.
  • the image data of the optical microscope 104 and the corresponding visual field information, and the scanning electron microscope 100 are obtained for at least three sets of arbitrary same points (hereinafter, referred to as “registration points”). Image data and corresponding visual field information are required.
  • the alignment control unit 153 includes an image input unit 250 and a visual field information input unit 251, receives image data captured by the optical microscope 104 and visual field information, scales and translates the image data based on the visual field information, and then inputs the image data. The image is displayed on the image display unit 271.
  • the registration point acquisition unit 280 acquires information about the image data of the electron microscope image generation unit 240 corresponding to the three registration points specified for the image data displayed on the input image display unit 271. .
  • the three points specified as the alignment points are the vertices of an equilateral triangle, it is desirable to arrange the alignment points so that the object to be observed falls within the triangle.
  • the three points are specified by an alignment mark provided on the sample carrier 121, a sticker indicating an alignment mark is attached to the sample carrier 121, or a mark indicating an alignment mark is stamped, or A specifying method such as specifying by a characteristic shape included in the image data can be applied. Each specifying method will be described later.
  • the alignment processing unit 260 calculates a conversion matrix for alignment using the image data and the visual field information of the three sets of registration points acquired by the registration point acquisition unit 280.
  • the image data and the visual field information used for calculating the conversion matrix can be used at the time of re-observation (meaning that the sample carrier 121 once removed from the sample holder 122 is placed on the sample holder 122 again and then observed).
  • the data is stored in the alignment data management unit 261 configured by a storage device such as a memory or a hard disk on the computer.
  • the alignment control unit 153 includes a visual field input unit 281 and a visual field information calculation unit 262, the user acquires arbitrary visual field range information to be observed with respect to the optical microscope image from the visual field input unit 281, and the visual field information calculation unit 262 Using the conversion matrix obtained from the acquired alignment points, the input arbitrary visual field range information is converted into visual field information of the electron microscope 100.
  • the alignment processing unit 260 controls the field information converted by the user by controlling the electron optical system 112 and the sample moving mechanism 125 of the scanning electron microscope 100 via the electron microscope operation input / output unit 230.
  • the field of view of the scanning electron microscope 100 is matched.
  • An optical microscope image display unit (not shown) is provided for the purpose of easily determining whether the same visual field is being observed, and optical microscope image data of the visual field range input by the user is acquired from the alignment processing unit 260.
  • an optical microscope image of the same field of view may be drawn on the electron microscope observation image drawing unit 241 with transparency.
  • FIG. 3 shows a flowchart of the simple alignment function.
  • the simple alignment function is used at the time of scanning electron microscope observation, but the simple alignment function can be applied to any observation device including a sample moving mechanism and a system for controlling the same.
  • the simple alignment function is more effective for a scanning electron microscope having a narrow field of view, for example, the simple alignment function can also be used for an optical microscope.
  • Step 301 First, the user operates the scanning electron microscope 100 from the electron microscope operation input / output unit 230 to bring the first alignment point into the visual field.
  • Step 302 The alignment processing unit 260 extracts the image data of the first alignment point registered in the alignment data management unit 261, and creates template data for alignment from the extracted image data. Image processing of template matching is performed based on the image data and the template data acquired from the electron microscope image generation unit 240, and the alignment point and the rotation angle are recognized.
  • Step 303 Calculate the relative distance between the registration point and the image center position from the number of pixels of the registration point from the image center position and the pixel size acquired from the electron optical system 112, and coordinate data of the image center position. Is obtained from the sample moving mechanism 125, the coordinates of the first alignment point (the coordinate position of the sample moving mechanism 125 when the alignment point is at the image center position) are obtained. Based on the relative distance between the rotation angle obtained in step 302 and the next alignment point registered in the alignment data management unit 261, the sample moving mechanism 125 is controlled and moved to the next alignment point.
  • Step 304 Recognize the second and third points by repeating the above steps 302 and 303. As a result, it is possible to automatically acquire the information regarding the alignment points other than the first point.
  • the alignment processing unit 260 may move the visual field by providing a mechanical mechanism and registering the relative position to the first point in the alignment data management unit 261. Particularly in a device having a narrow field of view such as a scanning electron microscope, automating the field of view movement to the first point has a great merit. On the other hand, in the case of an optical microscope, the first point can be easily brought into the observation visual field by controlling the sample moving mechanism while generally visually recognizing, so there is little merit.
  • the alignment point is specified by the alignment mark provided on the sample carrier 121, or a seal or stamp indicating the alignment mark.
  • 4A and 4B show configuration examples of alignment marks used for a sample carrier, a seal, and the like.
  • a rectangular or square cover glass or a slide glass is used as the sample carrier 121 (that is, both the cover glass and the slide glass are used for mounting a sample). , The usage is the same). Therefore, when observing with a scanning electron microscope, there is a possibility that the sample holder 122 may be placed in a state rotated by 90 ° to 180 ° with respect to the direction during observation with an optical microscope and inserted into the sample chamber 102. is there. Further, since the round cover glass is freely rotatable, it is easily inserted in a rotated state.
  • the sample holder 122 is provided with a counterbore portion in which the place for mounting the sample carrier 121 is one step lower than the surroundings. Since the counterbore has a size slightly larger than the size of the sample carrier 121, the sample carrier 121 may slightly rotate when the sample holder 122 is attached to the stage 123. Although it is a minute rotation, it may cause a problem in the movement (steps 301 and 303) between the alignment points of the simple alignment function shown in FIG. For example, when the distance between the alignment points is 5 mm, it is calculated that if the rotation angle deviates by 3 degrees, it deviates from the expected position based on the relative coordinates by about 260 ⁇ m.
  • the scanning electron microscope is operated at a magnification that provides a field of view of less than 200 ⁇ m, and if the mark is shifted by 260 ⁇ m, the mark of the moving destination is out of the field of view.
  • the L-shaped mark whose rotation angle is recognizable is used in this embodiment.
  • FIG. 4A is an example of the configuration of the alignment mark.
  • the alignment mark may be previously displayed on the sample carrier 121, may be displayed on a sticker, or may be stamped.
  • the observation fields of view of the optical microscope 104 and the scanning electron microscope 100 are very different.
  • the field of view of the optical microscope 104 is determined by the magnification of the objective lens 140, the magnification of a camera adapter (not shown), and the size of the image sensor 141, and ranges from several tens of ⁇ m to several tens of mm.
  • the field of view of the scanning electron microscope 100 is determined by the setting conditions of the electron gun 111 and the electron optical system 112, and can be observed up to several hundreds nm at high magnification.
  • a large L-shaped mark 400 (hereinafter referred to as a "course mark") for observation with the optical microscope 104 and a small L-shaped mark for observation with the scanning electron microscope 100 are provided so that they can be surely seen in the visual fields of both devices.
  • a character mark 401 (hereinafter referred to as “fine mark”).
  • Each shape has the same aspect ratio so that it can be recognized by the same template in template matching.
  • the size of the long side X and the short side Y of the L-shape considers the operational magnification of the simple alignment function, the mechanical error of the sample moving mechanism 125 (for example, the moving accuracy of one stroke of the motor), and the rotation amount that cannot be detected by template matching.
  • the size For example, in the scanning electron microscope 100, the operational magnification of the simple alignment function is 120 ⁇ m in the horizontal direction ⁇ 90 ⁇ m in the vertical direction, the mechanical error of the sample moving mechanism 125 is ⁇ 10 ⁇ m, the distance between the alignment points is 5 mm, and the rotation angle is 0.
  • the long side X of the fine mark 401 is 80 ⁇ m so that it will fall within the visual field range in any direction.
  • the short side Y is 50 ⁇ m or less.
  • the thickness T of the L-shaped line of the course mark 400 is set to a thickness that can be visually recognized during observation with the optical microscope 104, and the scanning is performed so that the user can recognize the line as it is during observation with the scanning electron microscope 100. It is sufficient that the line fits within one field of the electron microscope.
  • the space S between the course mark 400 and the fine mark 401 is found from the alignment point (for example, point 402) of the course mark 400 at the minimum magnification in the scanning electron microscope 100 so that the user can easily find the fine mark 401. It is sufficient if the intervals are set.
  • the course mark 400 has a mark 430 for recognizing which mark the user is looking at.
  • each position is distinguished by the number of circular marks.
  • the shape of the mark is arbitrary and may be a number or a symbol.
  • the mark 430 is arranged in the course mark so that the user can recognize the course mark 400 at one time when checking the course mark 400, for the purpose of commonalizing the processing such that all marks are recognized by the same template, The mark 430 may be arranged at a position adjacent to and different from the course mark 400.
  • FIG. 4C shows an example in which front and back / direction identification marks 451 and alignment marks 452a to 452d are provided on the surface of a round cover glass 450.
  • the front / back / direction identification mark 451 is provided so that the user can easily identify the front / back and the direction of the sample carrier when replacing the sample.
  • the alignment mark having the same shape will come to the expected same position, so it is not possible to determine which state it is in.
  • a plurality of alignment marks are arranged on the round cover glass so that the arrangement of the plurality of alignment marks 452a to 452a will not be the same even if the round cover glass 450 is rotated at an arbitrary angle. For example, make sure that the figure formed by the multiple alignment marks arranged on the sample carrier does not have rotational symmetry (it means that it overlaps itself when rotated about the center by (360 / n) °, where n> 1). Deploy.
  • Alignment marks that can correct the rotation angle are not limited to the L-shape, and any shape that can determine the rotation angle, such as characters or symbols that are not point / line symmetry or rotation symmetry, may be used.
  • it may be a symmetric cross that is easy to recognize, or a special character or symbol shape that does not exist in the natural environment to reduce erroneous recognition of the mark.
  • the shape may be point / line symmetrical or rotational symmetrical.
  • the error in the mounting direction of the sample carrier 121 to the sample holder 122 as described above can be prevented by making the shape of the counterbore part of the sample holder 122 such that the sample carrier 121 can be mounted only in a specific direction. Is possible.
  • the problem of movement between the alignment points of the simple alignment function is avoided by operating at a low magnification in consideration of the movement amount of the mark caused by the rotation of the mounting error in order to keep the mark within the visual field range. It is also possible.
  • alignment at low magnification tends to cause errors, and in the case of a scanning electron microscope, the center of the visual field may shift when changing from low magnification to high magnification, making it difficult to observe at high magnification. There may be restrictions such as
  • a mark that can be recognized if a specific range is within the field of view may be used.
  • the mark 420 is divided into two colors, and the L-shaped intersection 421 that is the boundary thereof may be recognized as the alignment point.
  • the vicinity of the L-shaped intersection 421 is included in the visual field range, so that the visual field range necessary for the simple alignment function can be narrowed.
  • the necessary visual field range becomes narrower. Operation at high magnification is possible.
  • template matching may require processing time. This is because the position shifts and the ratio of the two-color regions changes according to the mechanical error of the sample moving mechanism and the amount of rotation that cannot be corrected.
  • FIG. 5A is a configuration example of a sample carrier 500 with an alignment mark having the alignment mark described in FIG. 4A.
  • the sample carrier shows an example of a round cover glass, but the present invention is not limited to this, and one alignment mark 501 is provided so that the sample can be aligned no matter where it is placed on the sample carrier.
  • Quartz glass is generally used as the material of the sample carrier 500, but it may be formed of a material such as metal.
  • the shape is not limited to a circle, and may be a polygon such as a triangle or a quadrangle.
  • the sample and the sample carrier need to have conductivity. Therefore, if the material of the sample or sample carrier is non-conductive, the sample or sample carrier is coated with a conductive material such as osmium, indium tin oxide (ITO), gold, platinum, carbon, polythiophene, or ionic liquid. To make it conductive. At this time, the conductive material to be used is appropriately selected by coating so as not to affect the observation of the charged particle device.
  • a conductive material such as osmium, indium tin oxide (ITO), gold, platinum, carbon, polythiophene, or ionic liquid.
  • a plurality of alignment marks 501, a grid pattern 502 and an address mark 503 arranged so that the user can easily recognize the current observation visual field are provided.
  • the grid patterns 502 are arranged at intervals according to the size of the widest observation field, and the area where the sample and the grid overlap is reduced as much as possible so as not to be included in the field of view when observing the sample.
  • the address mark 503 is arranged at the intersection of the grid pattern, and the address designating the area surrounded by the grid is written.
  • the address mark illustrated in FIG. 5A indicates a region of row C and column 1.
  • the grid patterns 502 may be arranged at any intervals, and may be coarser or may not be provided if one field-of-view area that the user wants to observe is wide. For example, instead of providing a grid, points or symbols for specifying regions in the row direction and the column direction may be arranged at equal intervals (see FIG. 6).
  • the grid pattern under the sample can be easily observed by adjusting the intensity of a light source used for illumination.
  • a signal generated from a grid pattern located under the sample can be detected by setting an acceleration voltage that allows the electron beam to pass through the sample.
  • the surface of the sample can be observed by lowering the energy of electrons so that the sample does not pass through the sample.
  • the alignment mark selected as the alignment point should be the vertex of the selected alignment mark.
  • the triangle is preferably a right triangle or an isosceles triangle having a wide angle. Therefore, as shown in FIG. 5A, the alignment marks 501 are arranged so that the alignment marks forming such a triangle have a positional relationship that facilitates selection. Further, the alignment mark 501 is arranged within a range 520 in consideration of a mounting error of the sample holder (deviation of a mounting position and displacement of a fixture such as a pressing lid) so that the alignment mark 501 is not hidden.
  • each alignment mark is provided with a mark for identifying each alignment mark, as described with reference to FIG. 4A.
  • a front / back / direction identification mark 504 and a rotation direction alignment mark 505 are also provided so that the user can easily identify the front and back of the sample carrier and the direction when exchanging the sample.
  • the user mounts the sample carrier 500 on the sample holder so that the observation visual field and the grid pattern 502 or the rotation direction alignment mark 505 are horizontal, so that the rotation angle of the sample carrier 500 with respect to the observation visual field is at most ⁇ 10 °. Can be expected to fit in.
  • a rotation correction mark 506 may be provided for rotation correction of the simple alignment function.
  • the shape of the rotation correction mark 506 is the same as that of the fine mark.
  • the scanning resolution of the scanning electron microscope is 800 ⁇ 600 pixels
  • the deviation of the straight line with the rotation angle of 1 ° has an inclination of several pixels. Since the image includes not only noise but also blurring due to a mismatch in focus, the inclination of several pixels is likely to be unrecognizable due to these influences.
  • the finer the correction of the rotation angle the higher the resolution is required.
  • the image pickup device of an optical microscope often has a maximum of about 5000 pixels ⁇ 5000 pixels, and it is difficult to correct less than 0.2 °.
  • the sample moving mechanism of the scanning electron microscope when the mechanical error of the sample moving mechanism of the scanning electron microscope is sufficiently small, the sample moving mechanism is moved and the two rotation correction marks 506 are recognized and acquired as in the simple alignment function.
  • the rotation angle may be obtained and corrected by performing Helmert conversion from the coordinate data of two points.
  • the pattern or mark provided on the sample carrier 500 may be any one that can be observed with an optical microscope and a charged particle beam device, and the forming method thereof may be printing, vapor deposition, engraving, engraving or punching. Further, the forming method and material may be appropriately selected according to the observation device.
  • a scale may be provided on the sample carrier 500 so that the visual field information can be obtained even with a microscope that does not have the visual field information and does not have the control software as described in FIG.
  • the scale may be any scale that covers the field of view of each observation device.For example, in an optical microscope, the magnification is fixed by the magnification of the objective lens, intermediate lens, and camera adapter. You may arrange.
  • the initial position mark 510 may be provided on the sample carrier 500.
  • the initial position mark 510 illustrated in FIG. 5B different numbers of circles are provided in the cross-shaped mark and the area partitioned by the mark to express four directions.
  • the initial position mark 510 is a mark arranged at the initial position (home position) of the observation device.
  • the initial position mark 510 In an apparatus such as a scanning electron microscope having a narrow observation field of view and it is difficult to understand the observation direction, the user generally moves a plurality of fields of view to recognize the initial position and the rotation direction. By arranging the initial position, the user can recognize the rotation direction and the initial position without moving the visual field.
  • the initial position mark 510 may be used to automate the movement to the first point in the simple alignment function.
  • the initial position (home position) of the observing device is usually the center position of the sample carrier 500, there is a high possibility that the initial position mark 510 will overlap with the sample placed on the sample carrier.
  • FIG. 6 shows a state in which a seal having an isosceles triangle carbon tape as a base material of the seal and an alignment mark is attached to the sample carrier 610.
  • the shape and material of the seal are not limited to those illustrated.
  • the material of the seal base material may be formed of a conductive material such as metal or a non-conductive material.
  • conductivity in order to observe the seal with a charged particle beam device, it is necessary to have conductivity.
  • a conductive material such as ITO, gold, platinum, carbon, polythiophene, or ionic liquid is used as the seal base material. It is necessary to coat it to make it conductive. Further, a plurality of alignment marks may be displayed on one sticker.
  • the alignment mark-attached sticker 600 is composed of an inner fine mark 601, an outer edge course mark 602, and a mark 603 for distinguishing each mark.
  • the example in the figure is a mark that uses the outer edge of the seal.However, the mark is not limited to this, and there is a space for handling to allow the outer edge to bend, and then the alignment is performed inside the seal.
  • a mark may be displayed.
  • the L-shaped mark shown in FIG. 4A may be displayed at the center of the seal having a margin.
  • the mark of the seal with the alignment mark may be any one that can be observed with an optical microscope and a charged particle beam device, and its forming method may be printing, vapor deposition, engraving, engraving or punching. Further, the forming method and material may be appropriately selected according to the observation device.
  • the alignment mark may be processed into a printing material such as rubber, plastic, or metal with a laser or a focused ion beam, and the sample carrier may be stamped with an oil-based pigment or dye.
  • the advantage of using a seal with an alignment mark or a stamp that imprints an alignment mark is that the alignment point for alignment can be set by attaching the seal with an alignment mark after the sample is placed on the sample carrier, or by stamping the alignment mark. The point is that you can choose freely.
  • the observation target is a biological sample
  • the positional relationship between the alignment mark and the sample does not collapse even if the sample carrier is removed from the observation device.
  • the sample placed on the sample carrier can be observed with either an optical microscope or a scanning electron microscope, and a system with good reproducibility at the time of re-observation can be realized.
  • the alignment mark and the sample are affected by the deviation such as rotation of the sample carrier when the sample carrier is attached to the sample holder. The positional relationship changes a lot. This method can avoid such a problem.
  • FIG. 7 is a bird's-eye view of the sample holder.
  • a dedicated sample holder 700 that is easily fixed and placed so as not to damage the sample for re-observation is used, but the sample holder 700 is not limited to this. Any mechanism can be used as long as it is electrically conductive and can be fixed.
  • the sample carrier may be mounted on the sample mounting part of a general sample holder with carbon tape or the like, and damage when peeled from the carbon tape is ensured. When avoiding this, the mounting portion of the sample carrier such as the sample holder may be stored.
  • the sample holder 700 has, as its main components, a sample mounting part 713 on which the sample carrier 121 is mounted, a sample base part 711 serving as a base of the sample mounting part 713, and a sample cover part 712 for fixing the sample carrier 121.
  • a counterbore part 710 having the same shape and thickness as the sample carrier 121 used for observation is provided on the upper surface of the sample mounting part 713, and the sample carrier 121 mounted on the counterbore part 710 and the sample mounting part 713 and 713 are flat.
  • the sample cover part 712 holds down the sample carrier 121 from the upper surface and contacts the sample mounting part 713 to fix it, so that the sample cover part 712 conducts electricity with the sample carrier 121 and reduces the influence of vibration.
  • the sample cover part 712 is fixed by a fixing jig 722 while the sample carrier 121 is being pressed down, the sample carrier 121 is irradiated with an electron beam from the opening 721, and the generated signal is detected to observe the sample.
  • the thickness of the cover glass shown in FIGS. 5A and 6 is generally as thin as 0.17 mm, and there is a high possibility that it will be damaged if it is directly touched with tweezers or the like to adjust the mounting position. Therefore, the sample mounting portion 713 has a rotary knob portion 714, and by operating the rotary knob portion 714, the sample carrier 121 placed on the sample mounting portion 713 is rotated at an arbitrary angle while keeping the horizontal position. , Configured to hold. As a result, the user can adjust the sample carrier 121 at any angle of 360 ° after the sample carrier 121 is placed without damaging the sample carrier.
  • an orientation flat indicating the horizontal direction in the initial imaging visual field during observation with the scanning electron microscope 100 is provided in the opening 721.
  • the user can efficiently and correctly mount the sample carrier 121 on the sample holder 700 by arranging it in parallel with the rotation direction alignment mark 505 and the grid pattern 502 (see FIG. 5A) that are easily visible.
  • the shape for indicating the directionality may be a notch shape, and the direction may be the vertical direction.
  • the material forming the sample holder 700 has electrical conductivity such as SUS316, SUS303, Al, C (graphite), Cu, Ta, Mo, Ti, W, brass, bronze, and compounds and alloys containing these substances. Any non-magnetic material may be used.
  • the recommended position guide of the alignment point displayed on the user interface (UI) of the program for setting the alignment point will be described with reference to FIG.
  • UI user interface
  • the guide 810 when there are three alignment points will be described as an example, but when setting three or more alignment points, any guide may be used.
  • the recommended position guide 810 guides the display units 811a to 811c indicating the recommended position range of the alignment point and the observation field of view to be arranged within the triangle formed by the alignment points.
  • Display 812 showing the range of the triangle for the purpose, the first input section 813 for designating the range of the recommended position range 811 of the alignment point, and the scaling operation of the display section 812 while maintaining the recommended positional relationship among the three points.
  • the second input unit 814 that performs the rotation operation of the display unit 812 while maintaining the recommended positional relationship between the three points
  • the third input unit 815 that rotates the display unit 812 while maintaining the recommended positional relationship of the three points.
  • a fourth input unit 816 that performs parallel movement. For example, when the input unit is focused on the display unit by the mouse cursor or the like, the mouse cursor is changed to the shape of the arrow as shown in FIG. 8, and the guide is adjusted by dragging the mouse.
  • the user may guide the alignment point on the sample carrier 121 to be within the recommended position range 811, or conversely may select the alignment point from within the recommended position range 811. In any case, the user can use the recommended position guide 810 to ensure the alignment accuracy and efficiently set the alignment point.
  • the use of the UI using the recommended position guide 810 will be described in the workflow of the alignment system for the scanning electron microscope and the optical microscope described below.
  • FIG. 9 shows an observation workflow of an observation sample by an optical microscope in the workflow of the alignment system shown in FIG.
  • the flow of FIG. 9 is operated by the user through the UI of the optical microscope operation input / output unit 210.
  • the sample 120 is placed on the sample carrier 121 (step 901), the sample carrier 121 is placed on the sample holder 142 for the optical microscope, and the stage 143 is fixed so as not to move during observation (step 902).
  • the sample holder 142 is attached to the stage 143 (step 903). If there is no alignment mark or the like for the sample carrier 121, it is necessary to attach a seal with alignment mark for alignment (see FIG. 6) to the sample carrier 121 or stamp the alignment mark. Yes (steps 904, 905).
  • the alignment mark or the like in step 904 may be the alignment mark described in FIG. 5A, may be the characteristic structure of the sample 120, or may be a surface scratch of the sample carrier 121. May be
  • step 901 the sample 120 is arranged so as not to overlap the alignment mark.
  • the observation target is a cell section
  • a slide glass sample carrier
  • a seal with an alignment mark is used or an alignment mark is stamped, it is not necessary to care about the mounting position of the sample in step 901, and a mark for alignment is later provided in step 905.
  • the sticker may be attached using the UI using the recommended position guide 810 shown in FIG.
  • FIG. 10A shows the UI screen 830 in this case.
  • an observation image including a sample carrier (here, a rectangular slide glass) image 820 and an observation sample image 821 is displayed, and the recommended position guide 810 is superimposed on the image.
  • the user adjusts the recommended position guide 810 so that the observation sample image 821 is included in the display portion 812 of the recommended position guide 810. If the recommended position guide 810 can be adjusted, the alignment mark sticker 600 is attached to the position on the corresponding sample carrier in each of the three recommended position ranges 811 of the recommended position guide 810 while looking at the UI screen 830.
  • an alignment mark is stamped. Accordingly, the alignment mark can be arranged at a position where the alignment accuracy can be expected, depending on the position of the sample placed on the sample carrier. It is also preferable to properly use the sample carrier with the alignment mark and the seal with the alignment mark or the alignment mark stamp according to the mounting method of the sample 120 on the sample carrier 121.
  • the same UI can be used when the characteristic structure of the observed image is used as the alignment point.
  • An example thereof is shown in FIG. 10B.
  • the user adjusts the characteristic structures such as the corners of the observation sample image 821 and the scratch image 822 on the sample carrier image 820 so that they are included in the three recommended position ranges 811 of the recommended position guide 810, and thus the alignment accuracy is improved.
  • the alignment point can be set at a position that can be expected.
  • step 906 for the sample carrier 121 on which the sample is placed, image data of all the alignment points on the sample carrier and corresponding visual field information (magnification and sample movement set when the images of the alignment points were acquired. It is determined whether or not data (hereinafter referred to as “master data”) having the coordinate position of the mechanism 145 has been created. If master data has not been created (first observation), master data is created (step 907). Creation of master data will be described later with reference to FIG. When the master data has been created (in the case of re-observation), the visual field information of the alignment point in the main observation is acquired using the master data (step 908).
  • master data data having the coordinate position of the mechanism 145
  • step 908 may be omitted if the visual field information of the alignment point matches the master data, or if it does not completely match and is within a range that can be ignored by the user as a minute error.
  • the user then observes the position of interest on the sample (step 909).
  • FIG. 12 shows an example of a UI screen 1200 for creating master data.
  • the process of FIG. 11 is performed by the alignment processing unit 260 based on the user's device operation from the UI screen 1200.
  • the relative distance between the alignment points on the sample carrier may be known or unknown from the design data of the sample carrier.
  • An example of the known case is a case where the relative distance between the alignment marks is given by design data or the like in the case of the sample carrier 500 with the alignment marks as shown in FIG. 5A.
  • the user inputs the relative distance between the alignment points based on the design data or the like, or actually controls the optical microscope 104 to input the relative distance between the alignment points, selects a design value / acquired value selection radio button 1201. (See FIG. 12) to select (step 1101). If there is no known relative distance information, the design value / acquired value selection radio button 1201 is set to "acquired value" (step 1102).
  • the observation position selection radio button 1210 is set to the N point (step 1103), and the sample moving mechanism and the optical system are controlled so that the N point mark enters the field of view (step 1104).
  • the current field of view is displayed in the alignment point selection window 1215. Since the image displayed in the alignment point selection window 1215 is registered as image data used for pattern matching, the sample moving mechanism and the optical system are controlled so that the image is displayed in an appropriate size and position for that purpose.
  • the visual field information acquisition button 1212 the image used for pattern matching is determined (step 1105).
  • the alignment point is selected on the alignment point selection window 1215 (step 1106).
  • the position selected on the selection window 1215 is displayed by the selection position cursor 1221, and the (N-1) th alignment point calculated from the coordinates between the alignment points (note that the 0th point is the initial coordinate (home).
  • the relative distance to the position) is displayed in the corresponding relative distance text box 1203.
  • the relative distance is calculated based on the coordinates of the sample moving mechanism 145 and the coordinates of the selection position cursor 1221 on the selection window 1215. It should be noted that the position to be the alignment point in the alignment mark may be made into a rule in advance to automatically set the alignment point by image processing.
  • the position selected as the alignment point is also displayed on the top view 1216 showing the positional relationship between the points by the alignment point mark 1231 based on the coordinates of the sample moving mechanism 145.
  • the mark 1231-0 of the top view 1216 indicates the initial coordinate position
  • the mark 1231-1 indicates the position of the first alignment point.
  • the save button 1213 is pressed to save the acquired master data in the alignment data management unit 261 (step 1108).
  • step 1106 the relative distance of the initial position mark 510 from the initial coordinates (home position) is displayed in the optical microscope initial coordinate value text box 1202. Further, in this case, the relative distance input to the relative distance text box 1203 of the first alignment point is the relative distance from the alignment point of the initial position mark 510.
  • the first alignment point serves as a reference and the relative distance from the first alignment point to the second alignment point.
  • the relative distance from the second alignment point to the third alignment point is registered.
  • the design value / acquired value selection radio button 1201 is set to “design value”, and in this case, the image data and the visual field information based on the design data are input from the UI screen 1200. To do. Specifically, based on the design data, the initial coordinate position and the relative distance between the points are input in the relative distance text boxes 1202 and 1203, and the image data of each point is registered with the image registration button together with the magnification at which the image was acquired. It registers by 1205.
  • FIG. 13 is a flowchart of correlation observation by the scanning electron microscope in the alignment system between the scanning electron microscope and the optical microscope.
  • Step 1001 The sample carrier 121 observed by the optical microscope 104 is placed on the sample holder 122 for the scanning electron microscope 100, and is fixed so as not to move by the movement of the stage 123 during observation. If the sample carrier 121 to the sample 120 do not have conductivity, a pretreatment for imparting conductivity is performed before this step.
  • Step 1002 The sample holder 122 with the sample carrier 121 fixed is attached to the stage 123.
  • Step 1003 Acquires the visual field information of the alignment point of the scanning electron microscope 100. This processing will be described in detail with reference to FIG.
  • Step 1004 The alignment processing unit 260 obtains the position information and the magnification of the alignment point obtained from the visual field information of the alignment point of the optical microscope obtained in step 907 or step 908 of FIG. 9, and in step 1003 of FIG. Alignment is performed to obtain a transformation matrix for converting the coordinate system of the optical microscope and the coordinate system of the scanning electron microscope based on the position information of the alignment point and the magnification obtained from the field information of the alignment point of the scanning electron microscope.
  • Step 1005 Observe with a scanning electron microscope.
  • the user specifies the visual field to be observed by the scanning electron microscope with respect to the optical microscope image displayed on the input image display unit 271, and the visual field information calculation unit 262 uses the conversion matrix obtained in step 1004.
  • the specified visual field can be observed by converting the visual field information into the visual field information.
  • FIG. 14 is a flow chart for acquiring the visual field information of the alignment point
  • FIG. 15 shows an example of the UI screen 1400 for acquiring the visual field information of the alignment point and executing the alignment.
  • the processing of FIG. 14 is performed by the alignment point acquisition unit 280 based on the user's device operation from the UI screen 1400.
  • the UI screen 1400 is a window used by both the optical microscope (step 908 in FIG. 9) and the scanning electron microscope (step 1003 in FIG. 13), which one is used is selected by the radio button 1401 for selecting the observation device. To do.
  • the observation device selection radio button 1401 is set to "electron microscope" (steps 1301 and 1302).
  • the read button 1402 Press the read button 1402 to read the image data and view field information of the alignment point.
  • the alignment point in the observation with the optical microscope (step 909 in FIG. 9) is the master data itself (step 907 in FIG. 9)
  • the master data is acquired, and the visual field information of the alignment point in the optical microscope is acquired to obtain the master data.
  • the visual field information is corrected (step 908 in FIG. 9)
  • the image data of the master data and the corrected visual field information are read.
  • the master data stored in the alignment data management unit 261 may be used even at the time of re-observation.
  • the top view 1216 (same as FIG. 12) showing the positional relationship of each alignment point is also displayed.
  • the observation position selection radio button 1420 is set to the Nth point (step 1304).
  • the image data of the Nth registration point read in step 1303 is displayed in the registration point display window 1430.
  • the alignment processing unit 260 recognizes the shift in the rotation direction based on the image data of the alignment point read in step 1303, calculates the relative distance based on the visual field information, and determines the relative distance at the Nth position of the electron microscope.
  • the sample moving mechanism 125 is moved.
  • the coordinates after the movement are displayed in the coordinate position text box 1421, and the visual field after the movement is displayed in the observation visual field display window 1440.
  • the alignment processing unit 260 It is determined whether or not the alignment mark including the alignment point is included in the visual field range after being moved by automatic control by the alignment processing unit 260 displayed in the observation visual field display window 1440. When the entire alignment mark is within the field of view, the alignment processing unit 260 automatically recognizes the alignment point corresponding to the alignment point 1221 on the alignment mark 1220 and automatically processes the next alignment point. (Step 1305).
  • the sample moving mechanism and the optical system are controlled so that at least the Nth alignment point 1442 enters the visual field. Then, the visual field information acquisition button 1422 is pressed.
  • the alignment processing unit 260 queries the control unit of the observation apparatus for information and acquires the coordinates of the sample moving mechanism 125 in the current observation visual field (step 1306).
  • An alignment point selection mark may be displayed at the selected position as in FIG.
  • the coordinates of the alignment point 1442 are calculated based on the coordinates of the sample moving mechanism 145 and the coordinates of the alignment point 1442 on the observation visual field display window 1440, and the coordinate position text box 1421 is updated (step 1307).
  • Steps 1304 to 1307 are repeated up to the third alignment point (step 1308), the save button 1403 is pressed, and the alignment point information is saved (step 1309).
  • the visual field information of the alignment point at the time of observing the optical microscope and the visual field information of the alignment point at the time of observing the scanning electron microscope are respectively obtained, so that the alignment is executed by pressing the alignment execution button 1404 (FIG. 13 step 1004).
  • the observation visual field of the optical microscope and the observation visual field of the scanning electron microscope can be arranged on the same two-dimensional coordinates (hereinafter, referred to as mapping).
  • the observation device selection radio button 1401 is set to “optical microscope” (step 1320).
  • FIG. 16 shows an example of the UI of the input image display unit 271 (see FIG. 2). The user performs the correlation observation while observing the mapping image displayed in the window 1500.
  • the image information and visual field information acquired by the optical microscope 104 in step 909 of FIG. 9 are automatically sent from the optical microscope control unit 151 to the alignment control unit 153 by communication.
  • the alignment processing unit 260 maps the sent image and displays it on the input image display unit 271 (window 1500).
  • the optical microscope image sent to the alignment control unit 153 is arranged on the top view 1501 showing the entire observation range.
  • an optical microscope image of the designated visual field range is displayed in the virtual visual field window 1502.
  • the alignment processing unit 260 controls the scanning electron microscope, automatically observes the same visual field, and displays it on the scanning electron microscope observation image drawing unit 241.
  • the correlation observation becomes possible by comparing the image displayed in the virtual visual field window 1502 and the image displayed in the scanning electron microscope observation image drawing unit 241.
  • FIG. 16 shows a display example of the UI screen 1500 in that case.
  • the optical microscope image is a still image that was acquired, but since the electron microscope is an observed image, the sample moving mechanism and the optical system of the electron microscope can be used even when the fields of view do not agree subtly.
  • the same field of view can be specified by controlling. An electron microscope needs to scan slowly when obtaining a high-quality image with little noise, and it may take time to acquire an image.Therefore, it is possible to correlate efficiently by predetermining the same field of view, without re-taking. You can observe.
  • the optical microscope image and the electron microscope image sent to the alignment control unit 153 are registered and managed for each image in the image list 1503.
  • the optical microscope image 1521a and the electron microscope image 1522a are displayed as thumbnail images.
  • An area of interest to the user is designated on the top view 1501 by an operation such as mouse dragging, and the designated area is displayed in the virtual visual field window 1502.
  • the virtual microscope window 1502 displays the optical microscope image 1521b and the electron microscope image 1522b of the designated area in a superimposed manner.
  • the layer relationship of the superimposed images can be adjusted using the arrangement order change button 1541 to adjust the positional relationship between the front and the back, and the transparency and brightness of the superimposed images can be edited with the image correction slider 1504. It is also possible.
  • a function to absorb the error of affine transformation at the time of image acquisition may be provided in the superimposing image processing.
  • the images when superimposing electron microscope images, the images may be individually selected and superimposed so that they can be horizontally moved, rotated, and enlarged / reduced.
  • the alignment processing unit 260 may be provided with an input unit for moving, rotating, and enlarging / reducing operations, and using the amount of change as an alignment error component (parallel movement, rotation, enlarging / reducing), offset processing.
  • an input unit for simply inputting parallel translation, rotation, and enlargement / reduction as offsets from a text box may be provided.
  • the image may be deformed by using image processing such as feature point matching.
  • the method for alignment is not limited to affine transformation, and any method capable of transforming a two-dimensional coordinate system may be used.
  • a Helmert transform that corrects only translations and rotations can be used.
  • magnifications match, such as re-observation with the same microscope, or a case where the correction of scaling is not always necessary.
  • the theoretically matching visual fields by affine transformation Even if the sample moving mechanism 125 is controlled, the expected field of view is unlikely to fall. In such a case, it is desirable to operate at a magnification that additionally considers the degree of error or deformation.
  • multiple alignment points may be set for one alignment mark for alignment. For example, a mark whose rotation direction can be identified is used, the positional relationship between two or three points is recognized within the mark, and the Helmer transform or affine transformation matrix is calculated to obtain the rotation angle, and then the first point is set as the origin. The sample moving mechanism 125 is moved in relative coordinates. Conversely, four or more alignment marks may be used. A sample such as a cell section that is easily damaged by an electron beam and easily contracts, or a sample that needs pretreatment before observation with a charged particle beam device is likely to be nonuniform and locally deformed.
  • alignment can be performed by an affine transformation matrix based on three points that covers the whole, but it is difficult to absorb a local error. Therefore, four or more alignment points may be prepared, and alignment may be performed by an affine transformation matrix formed by combining three of the alignment points.
  • the coordinate data in the visual field information may be calculated from the coordinate data of the sample moving mechanism of the observation device, the pixel position of the image data, and the pixel size. Template matching is performed for alignment, but this has the advantage that the mark has general versatility.
  • the alignment mark may be a dedicated mark and image processing specialized for the mark shape may be performed.
  • various factors that make it difficult to distinguish the mark image such as noise and defocus, and a combination of rotated marks are prepared as learning data, and by using the discriminator created by machine learning or deep learning, the alignment mark May be extracted.
  • a charged particle beam apparatus includes a sample moving mechanism capable of arbitrarily setting an observation position on a sample and an electron optical system capable of setting an arbitrary visual field range, and irradiates a sample with a charged particle beam.
  • a sample moving mechanism capable of arbitrarily setting an observation position on a sample
  • an electron optical system capable of setting an arbitrary visual field range
  • irradiates a sample with a charged particle beam When acquiring the observation image of the sample by using the observation condition, it is only necessary to be able to acquire the observation condition and the coordinate information of the sample moving mechanism that can calculate the dimension information of the visual field range such as the magnification at the time of observation.
  • it may be a scanning ion microscope, a scanning transmission electron microscope, a transmission electron microscope, a combined device of these and a sample processing device, or an analysis / inspection device to which these are applied.
  • the imaging device that constitutes the alignment system is not limited to an optical microscope.
  • the imaging device according to the present invention only needs to have means for acquiring image data of an observation image, and observations such as the presence or absence of a sample moving mechanism, bright field, dark field, phase difference, differential interference, deflection, and fluorescence observation method.
  • the shape is not limited to an upright type or an inverted type.
  • biological microscopes for example, biological microscopes, metallurgical microscopes, ultraviolet microscopes, infrared microscopes, measurement microscopes, confocal laser microscopes, charged particle beam devices, imaging devices using X-rays other than charged particle beam devices, ultrasonic imaging devices, nuclear magnetic resonance It also includes an imaging device using an image method, a scanning probe microscope, a combined device of these and a sample processing device, or an analysis / inspection device to which these are applied.
  • An imaging device for research and industrial use has been taken as an example, but a general digital camera is also applicable.
  • the alignment mark and the seal with the alignment mark attached to the sample carrier can be variously modified depending on the observation device and the imaging device that configure the alignment system.
  • the sample carrier 121 is an optically transparent material such as glass, partial printing or vapor deposition is performed.
  • Optically opaque marks may be formed, and if the sample carrier 121 is an optically opaque material, recognizable marks may be formed by punching and optically transmitting. .
  • the confocal laser microscope it is possible to observe in the depth direction by changing the focus position.
  • the focused ion beam / electron beam processing apparatus it is possible to observe the depth direction while physically scraping the surface of the sample 120.
  • printing, vapor deposition, or marking with a thickness may be performed.
  • an observation device capable of fluorescence observation printing, vapor deposition, or stamping may be performed with a material containing a fluorescent substance.
  • printing or vapor deposition with a thickness may be performed, or a mark having unevenness may be formed by engraving.
  • information on the height direction of the sample surface can be acquired by a laser microscope or the like, in addition to coordinates and relative distances on a plane, information on the height direction is also acquired as visual field information, and the sample moving mechanism of the scanning electron microscope 100.
  • the focus position may be adjusted by controlling the movement of 125 in the height direction or by controlling the electron optical system 112. As a result, the user can always perform a focused correlation observation, improve the observation efficiency, and shorten the working time.
  • 100 scanning electron microscope, 101: lens barrel, 102: sample chamber, 103: system controller, 104: optical microscope, 110: electron beam, 111: electron gun, 112: electron optical system, 120: sample, 121: sample Support member, 122: electron microscope sample holder, 123: electron microscope sample stage, 131: detector, 140: objective lens, 141: image sensor, 142: optical microscope sample holder, 143: optical microscope sample stage, 151 : Optical microscope control unit, 152: electron microscope control unit, 153: alignment control unit, 400: course mark, 401: fine mark, 500: sample carrier with alignment mark, 501: alignment mark, 502: grid pattern, 503: address Mark, 504: front / back / direction identification mark, 505: rotational direction matching Was Mark, 506: rotation correction mark, 510: initial position mark, 600: an alignment mark with the seal, 700: sample holder.

Abstract

再観察時の位置情報の再現性の高いアライメントシステムを実現し、ユーザが効率的かつ容易に、関心のある領域を再観察することを可能とする。撮像装置(104)と荷電粒子線装置(100)との相関観察を可能とするアライメントシステムにおいて、複数の位置合わせ点が、試料が載置された状態での試料キャリアに設定され、アライメント制御部(153)は、撮像装置により第1の画像が撮像されるときにおける複数の位置合わせ点のそれぞれの位置情報と倍率及び、荷電粒子線装置により観察するときにおける複数の位置合わせ点のそれぞれの位置情報と倍率に基づき、撮像装置の座標系と荷電粒子線装置の座標系を変換する変換行列を求め、第1の画像に対して指定された視野に対して変換行列を使用し、荷電粒子線装置の視野情報に変換する。

Description

アライメントシステム及び位置合わせ用シール
 本発明は、画像を取得する撮像装置と荷電粒子線装置との相関観察を可能にするアライメントシステムに関する。
 走査電子顕微鏡(SEM:Scanning Electron Microscope)に代表される荷電粒子線装置では、静電レンズや電磁レンズなどにより細く集束された荷電粒子線を試料上で走査して、試料から所望の情報(例えば、試料表面画像)を得る。このような装置で試料を観察する際には、現在の視野は試料のどの位置にあたるのかを判断し、観察したい箇所まで視野を動かすこと(以下、「視野探し」という)が必要になってくる。
 荷電粒子線装置は、光よりも波長の短い荷電粒子線を用いているため、光学顕微鏡よりも分解能が高く、数nmから数μmオーダーの大きさの試料(もしくは試料の構造)を観察できるという利点がある。一方、荷電粒子線装置は電子光学系の条件によっては、試料を観察する際の最低倍率が試料の全景を収められない倍率に定まってしまう。その結果、例えば、数cmあるいは数mmオーダーの試料全域の中から数nmから数百μmの観察視野を特定する視野探しは困難なものとなっている。
 この問題に対し、特許文献1では、荷電粒子線装置と光学顕微鏡との相関観察を実現するために、両装置でアライメント用のマークを持つ同一の試料ホルダが提案されている。また、特許文献2では、光学顕微鏡は透過光を対象としても良く、開口部ないし光学的な透過部を設け、アライメントマークを検知する試料ホルダが提案されている。
 また、特許文献3では単一の光学顕微鏡ではあるが、スライドガラスを何度も観察する際に同一視野を観察する際に、アライメント点としてラベルやカバーガラスの角、スライドガラスの角などを用いても良いとの例が開示されている。
米国特許出願公開第2012/0133757号明細書 米国特許第8304745号明細書 国際公開第2006/033273号
 細胞切片のような試料を観察する場合において、一般に、観察対象とする試料はカバーガラスの上に載置され、試料が載置されたカバーガラスを試料ホルダに固定して観察装置による観察を行う。したがって、試料ホルダに取り付けるカバーガラスは、観察する試料ごとに付け替えられる。一般的な形状である正方形または長方形の形状をしたカバーガラスは、再観察を行う場合に、前回観察時の取り付け方向を基準として90°回転または180°回転していても試料ホルダに取り付けが可能である。また、丸形カバーガラスの場合は回転方向が自由であるため、再観察を行う場合に、試料ホルダに対して前回観察時の取り付け方向と厳密に同じ角度で取り付けることは難しい。特許文献1、2では試料ホルダにアライメントマークが設けられ、試料ホルダのアライメントマークを基準に観察位置を記録することになるため、再観察において、前回観察時の取り付け方向と一致するようにカバーガラスが設置されないと再観察ができない。
 また、取り付け方向が一致しているとしても、試料ホルダのカバーガラスの設置部は、カバーガラスを設置するために、カバーガラスの大きさよりも多少大きく設計されるため、カバーガラスを設置する際に、微小な平行移動と回転を許容する。すなわち、再観察するためにカバーガラスを再度取り付けた際にはアライメントマークの位置関係と観察対象である試料との位置関係が前回観察時とは少なからずずれていることになるため、前に観察したときの位置情報とは厳密には一致しない。微小な誤差ではあるものの、観察倍率の高い荷電粒子線装置では大きな誤差となり、特に高倍率での観察時には視野範囲内から目的とした構造が逃げてしまう要因にもなる。
 特許文献3では細胞切片と位置関係が崩れないラベルやスライドガラスの角等を例に挙げているが、光学顕微鏡以外とのアライメントについては何ら述べられていない。荷電粒子線装置で観察する際には導電性をもつ必要があるため、一般的に非導電性であるラベルやスライドガラスは荷電粒子線装置では観察することができない。
 本発明の一実施の形態であるアライメントシステムは、試料を載置する試料キャリアと、試料キャリアに載置された試料に荷電粒子線を照射する荷電粒子光学系と、荷電粒子線が試料に照射されることにより発生する信号を検出する検出器とを備える荷電粒子線装置と、試料キャリアに載置された試料を撮像装置により撮像した第1の画像及び第1の画像に対応する撮像装置の視野情報が入力されるアライメント制御部とを有し、アライメント制御部は、荷電粒子線装置に載置された試料キャリアの複数の位置合わせ点の視野情報を取得する位置合わせ点取得部と、撮像装置により第1の画像が撮像されるときにおける複数の位置合わせ点のそれぞれの位置情報と倍率及び、位置合わせ点取得部により取得された複数の位置合わせ点のそれぞれの位置情報と倍率に基づき、撮像装置の座標系と荷電粒子線装置の座標系を変換する変換行列を求めるアライメント処理部と、第1の画像に対して指定された視野に対して変換行列を使用し、荷電粒子線装置の視野情報に変換する視野情報算出部とを有し、複数の位置合わせ点は、試料が載置された状態での試料キャリアに設定される。
 その他の課題と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。
 再観察時の位置情報の再現性の高いアライメントシステムが実現され、ユーザは効率的かつ容易に、関心のある領域を再観察することが可能となる。
走査電子顕微鏡と光学顕微鏡とのアライメントシステムの概略構成図である。 アライメントシステムのシステム制御部の機能ブロック図である。 簡易アライメント機能のフローチャートである。 アライメントマークの構成例である。 アライメントマークの別の構成例である。 アライメントマーク付き試料キャリアの構成例である。 アライメントマーク付き試料キャリアの構成例である。 初期位置マークの例である。 アライメントマーク付きシールを試料キャリアに貼付した状態を示す図である。 試料ホルダの鳥瞰図である。 位置合わせ点の推奨位置をガイドするための推奨位置ガイドの例である。 アライメントシステムにおける、光学顕微鏡による観察試料の観察ワークフローである。 アライメントマークの配置をガイドするユーザインタフェース画面例である。 図10Aのユーザインタフェース画面を用いて観察画像の特徴的な構造を位置合わせ点に設定する例である。 マスターデータ作成ワークフローである。 マスターデータを作成するユーザインタフェース画面例である。 アライメントシステムにおける、走査電子顕微鏡による観察試料の相関観察ワークフローである。 位置合わせ点の視野情報を取得するフローチャートである。 位置合わせ点の視野情報を取得し、アライメントを実行するユーザインタフェース画面例である。 入力画像表示部のユーザインタフェース画面例である。
 以下、本発明の実施の形態である荷電粒子線装置と撮像装置間のアライメントシステムについて図面に基づいて説明する。図1は、荷電粒子線装置として走査電子顕微鏡を、撮像装置として光学顕微鏡を適用したアライメントシステムの概略構成図である。アライメントシステムは、その主要な構成として、走査電子顕微鏡100、光学顕微鏡104及び走査電子顕微鏡100、光学顕微鏡104のそれぞれを制御するシステム制御部103を有する。
 走査電子顕微鏡100は、鏡筒101と試料室102とが一体化され、その内部を高真空状態に保持可能とされている。鏡筒101には、電子ビーム110を放出する電子銃111及び電子ビーム110を照射制御する電子光学系112が設けられている。電子光学系112は、電子銃111から放出された電子ビーム110を集束するコンデンサレンズ113と、電子ビーム110を走査する偏向器114と、試料120の表面に焦点が合うように電子ビーム110を集束させる対物レンズ115とを含む。また、図示の例では、電子ビーム110が試料120に照射されることにより発生する信号130(例えば、二次電子や反射電子、X線等)を検出する検出器131も鏡筒101内に設けられている。
 試料室102には開閉可能な導入/導出口が設けられており、導入/導出口を介して試料支持部材(以下、「試料キャリア」という)121が載置された電子顕微鏡用試料ホルダ122が収容される。観察対象である試料120は試料キャリア121に載置される。詳細については後述するが、試料キャリア121には位置合わせのためのマークやパターンが形成または貼付されている。
 試料室102には、電子顕微鏡試料ステージ123が設けられており、電子顕微鏡試料ステージ123は、電子顕微鏡用試料ホルダ122が着脱自在に取り付けられる電子顕微鏡用試料ホルダ被取付部124と、電子顕微鏡用試料ホルダ被取付部124を水平面内または面直方向へ移動させたり、回転や傾斜させたりして、試料120(及び試料キャリア121)の位置や向きを電子顕微鏡用試料ホルダ122ごと変位させる電子顕微鏡試料移動機構125とを備えている。
 システム制御部103の電子顕微鏡制御部152により、試料移動機構125と電子光学系112とを制御し、試料120の所望の位置に電子ビーム110を照射し、発生した信号130を検出器131で検出することにより、所望の位置と倍率により試料120の電子顕微鏡観察を実施することができる。なお、以下の説明では、検出器131として、試料120の表面構造を検出するのに適した二次電子検出器を例に説明するが、検出器131はこれには限らない。相関観察する対象や目的に応じた検出器が適用できる。例えば、試料120の組成の検出を目的として反射電子検出器を使用することもでき、元素分析を目的としてX線検出器を使用することもできる。
 光学顕微鏡104は、電子顕微鏡が電子線を用いるのに対して可視光線を用いる違いはあるが、基本的な構成は電子顕微鏡と同一といえ、電子顕微鏡の電子光学系が対物レンズ140に相当し、電子顕微鏡の検出器が撮像素子141に相当する。撮像素子141としてはCCD(Charge Coupled Device)やCMOSセンサが用いられる。撮像素子141により試料の画像データ(静止画像または動画像)を取得する。
 試料キャリア121は、光学顕微鏡104の光学顕微鏡用試料ホルダ142に載置される。光学顕微鏡104には光学顕微鏡試料ステージ143が設けられており、光学顕微鏡試料ステージ143は、光学顕微鏡用試料ホルダ142が着脱自在に取り付けられる光学顕微鏡用試料ホルダ被取付部144と、光学顕微鏡用試料ホルダ被取付部144を水平面内または面直方向へ移動させたり、回転や傾斜させたりして、試料120(及び試料キャリア121)の位置や向きを光学顕微鏡用試料ホルダ142ごと変位させる光学顕微鏡試料移動機構145とを備えている。光学顕微鏡試料移動機構145は、電動式または手動式の何れであってもよい。
 図2は図1におけるシステム制御部103の機能ブロック図である。システム制御部103は光学顕微鏡制御部151、電子顕微鏡制御部152、アライメント制御部153から構成される。各制御部は、それぞれの機能を実行するプログラムがインストールされたコンピュータとして実現され、各制御部間の通信は、TCP/IP通信でやり取りされるものとする。これは、本実施例のアライメント機能は走査電子顕微鏡単体または光学顕微鏡単体で運用する場合には必要ではないため、各顕微鏡を単体で運用する際には不要な機能は隠してユーザの使い勝手をよくする他、中央処理装置(CPU)への負荷を分散するためである。しかし、十分な性能をもつコンピュータを有する場合は、システム制御部103を1つのコンピュータで構成してもよい。この場合は、応答性をよくするために、名前付きパイプで実現してもよい。また、ユーザが各顕微鏡を単体で運用する機会が少ない場合にも1つのコンピュータで実現し、各制御部間の通信負荷をなくすことも好ましい。ここで、コンピュータとはCPUやメモリなどの記憶装置、キーボードやマウス、モニタなどの入出力装置を備え、プログラムがCPUによって実行されることで動作する制御装置を指し、例えば、一般的なデスクトップPC、ノートPC、タブレット端末やスマートフォンでもよいし、組み込み型のマイクロコンピュータでもよい。また、プログラムの一部の処理における処理速度の向上、処理時間の短縮を目的にFPGAのような論理回路やGPUのような並列処理装置、もしくは分散型の高速計算機で実行してもよい。各制御部はユーザと情報をやり取りするユーザインターフェース(以下、「UI」という)を有している。
 光学顕微鏡制御部151は、ユーザの入出力部からの操作に伴う光学顕微鏡104の制御機能を有している。ユーザからの操作を受け付ける光学顕微鏡操作入出力部210を備えており、光学顕微鏡操作入出力部210に入力された情報を基に光学系制御部211および光学顕微鏡試料移動機構制御部212は、それぞれ光学顕微鏡の対物レンズ140と光学顕微鏡試料移動機構145を制御することで視野を設定する。また、光学系制御部211は撮像素子141も制御しており、ユーザからの操作に応じて設定された視野を撮像する。その際、このときに設定されている倍率と試料移動機構の座標位置(以下、「視野情報」という)を画像に紐づけて管理する。以上の構成により、ユーザは自身の操作に基づき、光学顕微鏡104で任意の視野を設定し、その画像データおよび視野情報を取得可能となる。なお、視野情報として、試料移動機構の高さ方向の座標データやカメラのフォーカス位置といった高さ方向の情報を含めてもよい。
 なお、図2の例では、撮像素子141は光学顕微鏡制御部151の光学顕微鏡画像管理部220に接続され、撮像した画像データをアライメント制御部153の画像入力部250に直接送出するようになっている。必ずしも撮像素子141が光学顕微鏡画像管理部220に接続される必要はなく、撮像された観察対象物の画像データをデジタル画像データの様式に基づいて保存し、この保存された画像データファイルをアライメント制御部153の画像入力部250に入力してもよい。ただし、画像と視野情報とは紐づけられている必要があるので、画像データファイルには、視野情報を画像データファイルに埋め込むなり、別形式のファイルで管理してリンクするなりする必要がある。
 電子顕微鏡制御部152は、ユーザの入出力部からの操作に伴う走査電子顕微鏡100の制御機能を有している。ユーザからの操作を受け付ける電子顕微鏡操作入出力部230を備えており、電子顕微鏡操作入出力部230に入力された情報を基に電子光学系制御部231および電子顕微鏡試料移動機構制御部232は、それぞれ電子光学系112と電子顕微鏡試料移動機構125を制御することで視野を設定する。視野の信号は検出器131によって取得され、電子顕微鏡画像生成部240で画像として形成され、電子顕微鏡観察像描画部241によってモニタ等の出力機器に描画される。以上の構成により、ユーザは自身の操作に基づき、走査電子顕微鏡100で任意の視野を設定し、観察が可能となる。
 アライメント制御部153は、ユーザが入力した光学顕微鏡104の視野情報から走査電子顕微鏡100の視野情報に変換し、電子光学系112と試料移動機構125を制御することで、走査電子顕微鏡100で同一の視野を設定する機能を有する。
 アライメント制御部153は、光学顕微鏡104の座標系と走査電子顕微鏡100の座標系を変換する(以下、「アライメントする」という)ためのワークフロー全体を制御するアライメント処理部260を備える。本実施例ではアライメントする手法として平行移動・回転・スケーリング(拡大・縮小)・シェアリング(せん断変形)等が補正可能なアフィン変換を使用する。アフィン変換の変換行列を計算するためには、少なくとも3組の任意の同一箇所(以下、「位置合わせ点」という)について、光学顕微鏡104の画像データ及びそれに対応する視野情報と、走査電子顕微鏡100の画像データ及びそれに対応する視野情報とが必要になる。
 アライメント制御部153は、画像入力部250および視野情報入力部251を備え、光学顕微鏡104で撮像された画像データと視野情報とを受け取り、視野情報に基づき画像データをスケーリング・平行移動した上で入力画像表示部271に表示する。
 位置合わせ点取得部280は、入力画像表示部271に表示された画像データに対して特定された3点の位置合わせ点にそれぞれ対応する電子顕微鏡画像生成部240の画像データについての情報を取得する。このとき、位置合わせ点として特定する3点は正三角形の頂点となる位置関係が望ましいため、観察したい対象がその三角形内に収まるように位置合わせ点を配置することが望ましい。この3点の特定には、試料キャリア121に設けられたアライメントマークによって特定する、あるいは試料キャリア121にアライメントマークを示すシールを貼付する、あるいはアライメントマークを示すマークをスタンプすることによって特定する、あるいは画像データに含まれる特徴的な形状によって特定する、といった特定方法が適用できる。それぞれの特定方法については後述する。
 アライメント処理部260は、位置合わせ点取得部280で取得された3組の位置合わせ点の画像データと視野情報とを用いてアライメントのための変換行列を算出する。変換行列の算出に利用される画像データおよび視野情報は、再観察時(一旦試料ホルダ122から取り外した試料キャリア121を再度試料ホルダ122上に載置し、観察を行うことをいう)に利用できるように、コンピュータ上のメモリ、ないしハードディスクといった記憶装置で構成されるアライメントデータ管理部261に保存される。なお、再観察目的のデータを保存するだけではなく、設計に基づき位置合わせ点が既定の位置にあるような試料キャリアを利用するために既定の距離と画像データとをアライメントデータ管理部261に登録してもよい。
 アライメント制御部153は視野入力部281と視野情報算出部262を備え、視野入力部281からユーザが、光学顕微鏡画像に対して観察したい任意の視野範囲情報を取得し、視野情報算出部262で、取得した位置合わせ点から求めた変換行列を使用し、入力された任意の視野範囲情報を電子顕微鏡100の視野情報に変換する。
 アライメント処理部260は、変換された視野情報を、電子顕微鏡操作入出力部230を介し、走査電子顕微鏡100の電子光学系112と試料移動機構125を制御することでユーザが任意に入力した視野と走査電子顕微鏡100の視野とを一致させる。なお、同一視野を観察しているか容易に判断することを目的に、光学顕微鏡画像表示部(図示せず)を設け、アライメント処理部260からユーザが入力した視野範囲の光学顕微鏡画像データを取得し、電子顕微鏡観察像描画部241上に同一視野の光学顕微鏡画像を、透過度を持たせて描画してもよい。
 なお、アライメント処理部260は、アライメントデータ管理部261に登録された対象を再観察する際に、位置合わせ点となる3点の内、2、3点目を自動で認識する機能(以下、「簡易アライメント機能」という)を有する。図3に簡易アライメント機能のフローチャートを示す。ここでは、走査電子顕微鏡観察時に簡易アライメント機能を使用する例を説明するが、試料移動機構とそれを制御するシステムを備えた観察機器であれば簡易アライメント機能は適用可能である。視野の狭い走査電子顕微鏡に対して簡易アライメント機能はより効果的であるものの、例えば、光学顕微鏡においても簡易アライメント機能は利用可能である。
 ステップ301:はじめにユーザが走査電子顕微鏡100を電子顕微鏡操作入出力部230から操作し、1点目の位置合わせ点を視野内に収める。
 ステップ302:アライメント処理部260は、アライメントデータ管理部261に登録された1点目の位置合わせ点の画像データを抽出し、抽出した画像データより位置合わせのためのテンプレートデータを作成する。電子顕微鏡画像生成部240から取得した画像データとテンプレートデータを基にテンプレートマッチングの画像処理を行い、位置合わせ点と回転角度を認識する。
 ステップ303:位置合わせ点の画像中心位置からのピクセル数と、電子光学系112から取得されるピクセルサイズとから、位置合わせ点と画像中心位置との相対距離を算出し、画像中心位置の座標データを試料移動機構125から取得することで、1点目の位置合わせ点の座標(位置合わせ点が画像中心位置にある場合の試料移動機構125の座標位置)を求める。ステップ302で求めた回転角度とアライメントデータ管理部261に登録された次の位置合わせ点との間の相対距離を基に、次の位置合わせ点に試料移動機構125を制御して移動させる。
 ステップ304:2、3点目も前述のステップ302、303を繰り返すことで認識する。これにより、1点目以外の位置合わせ点については、その情報を自動で取得することができる。
 図3のフローチャートでは1点目への視野移動はユーザが実施するものとしているが、試料移動機構の初期位置(ホームポジション)と位置合わせ点の1点目への相対位置関係を固定するように機械的な機構を設け、1点目への相対位置もアライメントデータ管理部261に登録することで、アライメント処理部260が視野移動を行ってもよい。特に、走査電子顕微鏡のように観察視野の狭い装置においては、1点目への視野移動を自動化することは大きなメリットがある。一方、光学顕微鏡の場合は一般的に視認しながら試料移動機構を制御することで容易に1点目を観察視野内に収めることができるためメリットは少ない。
 先に位置合わせ点を、試料キャリア121に設けられるアライメントマーク、あるいはアライメントマークを示すシールやスタンプによって特定する、と述べた。図4A,Bに試料キャリアやシール等に用いられるアライメントマークの構成例を示す。
 一般的に、植物細胞や生物細胞を観察する際には、長方形や正方形のカバーガラスやスライドガラスを試料キャリア121として利用する(すなわち、カバーガラスもスライドガラスも試料を載置するために用いられ、使い方としては同じである)。このため、走査電子顕微鏡による観察を行う際に、試料ホルダ122に、光学顕微鏡観察時の方向に対して90°ないし180°回転した状態で載置し、試料室102に挿入される可能性がある。さらに、丸形カバーガラスは回転が自由なため、容易に回転した状態で挿入されてしまう。実際、走査電子顕微鏡のような装置は電子ビームのスキャン方向を視認することができないため、光学顕微鏡と同じ方向で観察するためには、どの方向で試料を載置すればよいかがユーザにはわかり難く、意図と違う方向で試料を載置して挿入してしまう可能性も少なくない。走査電子顕微鏡では観察時には試料室を真空に近い状態とする必要があり、観察するためには真空引きの時間を要する。そのため、一度間違って挿入すると、回転方向を直して再観察するためには数分から十数分消費し、観察の効率が著しく低下する。また、試料キャリア121を取り付け易いように、試料ホルダ122には、試料キャリア121を載置する場所を周囲よりも一段低くしたザグリ部が設けられている。ザグリ部は試料キャリア121の大きさよりもわずかに大きいサイズとなるため、試料キャリア121は試料ホルダ122をステージ123に取り付ける際にもわずかに回転するおそれがある。微小な回転ではあるが、図3に示した簡易アライメント機能の位置合わせ点間の移動(ステップ301,303)において問題となる場合がある。例えば、位置合わせ点間が5mmの場合、回転角度が3度ずれると相対座標を基に期待した位置から260μmほどずれる計算となる。走査電子顕微鏡は200μm未満の視野となる倍率で運用するケースが多いため、260μmもずれると移動先のマークは視野外にいることになる。以上の理由から、本実施例では回転角度が認識可能なL字形状のマークとする。
 図4Aはアライメントマークの構成例である。アライメントマークは試料キャリア121にあらかじめ表示されてあってもよく、シールに表示されてもよく、スタンプされてもよい。光学顕微鏡104と走査電子顕微鏡100の観察視野は大きく異なる。例えば、光学顕微鏡104の視野は対物レンズ140の倍率、カメラアダプタ(図示せず)の倍率及び撮像素子141のサイズによって決まり、数十μmから十数mmとなる。これに対して、走査電子顕微鏡100の視野は、電子銃111と電子光学系112の設定条件で決まり、高倍率だと数百nmまで観察可能である。また、走査電子顕微鏡100の倍率は視野に換算すると、電子銃111や電子光学系112の条件によっては、数十μmまでしか下がらないこともある。このため、両装置それぞれの視野で確実にみえるように、光学顕微鏡104での観察用に大きなL字のマーク400(以下、「コースマーク」という)と走査電子顕微鏡100での観察用に小さなL字のマーク401(以下、「ファインマーク」という)とを備える。
 それぞれの形状は、テンプレートマッチングで同一のテンプレートにより認識可能なように同一の縦横比の形状とする。L字の長辺X、短辺Yのサイズは、簡易アライメント機能の運用倍率と試料移動機構125の機械的誤差(例えば、モータの1ストロークの移動精度)とテンプレートマッチングで検知できない回転量を考慮したサイズとする。例えば、走査電子顕微鏡100で、簡易アライメント機能の運用倍率を横方向120μm×縦方向90μmの視野、試料移動機構125の機械的誤差が±10μm、位置合わせ点間の距離が5mm、回転角度を0.1°刻みで判別可能であると仮定した場合、視野中心から約±20μm程度ずれる可能性があるため、どの方向にずれても視野範囲に収まるように、ファインマーク401の長辺Xは80μm、短辺Yは50μm以下とする。一方、コースマーク400のL字のラインの太さTは、光学顕微鏡104での観察時に視認できる太さとし、走査電子顕微鏡100での観察時に、ライン上であるとユーザが認識できるように、走査電子顕微鏡の一視野内にラインが収まる範囲であればよい。また、コースマーク400とファインマーク401間の間隔Sは、ユーザがファインマーク401を見つけやすいように、走査電子顕微鏡100での最低倍率で、コースマーク400の位置合わせ点(例えば点402)から見つけられる間隔であればよい。
 また、コースマーク400には、ユーザがどの位置のマークをみているか認識するための印430をもつ。この例は円形状の印の個数で各位置を区別するものである。各マークが互いに区別できればよいので、印の形は任意であり、数字や記号であってもよい。また、ユーザがコースマーク400を確認する際に一度で認識できるようにコースマーク内に印430を配置しているが、全てのマークを同一のテンプレートで認識するといった処理の共通化を目的として、印430をコースマーク400とは別の近接する位置に配置してもよい。
 印430を付すことなく、マークの配置位置やマークの配置方向を工夫することで実現してもよい。図4Cは、丸形カバーガラス450の表面に、表裏・方向識別マーク451、アライメントマーク452a~dを設けた例を示す。表裏・方向識別マーク451は、ユーザが試料交換時に試料キャリアの表裏と方向とを容易に識別できるように設けられるものである。この例では、右または左に180°回転させると、期待する同じ位置に同じ形状のアライメントマークが来てしまうため、どちらの状態にあるのか判断することができない。そこで、丸形カバーガラス450を任意の角度に回転させても、複数のアライメントマーク452a~dの配置が同一になることがないように、丸形カバーガラス上に複数のアライメントマークを配置する。例えば、試料キャリアに配置された複数のアライメントマークで形成される図形が回転対称(中心の周りを(360/n)°回転させると自らと重なることをいう、ただしn>1)とならないように配置する。
 回転角度を補正可能なアライメントマークはL字形状に限られず、点・線対称や回転対称ではない文字や記号のように回転角度が判別可能な形状であればよい。例えば、認識し易い不等辺の十字や、マークの誤認識を低減するため自然環境には存在しないような特殊な文字や記号の形状であってもよい。
 また、回転角度の補正を前提としない場合には、点・線対称または回転対称の形状であってもよい。先に述べたような試料キャリア121の試料ホルダ122へ取り付け方向の誤りは、試料ホルダ122のザグリ部の形状を試料キャリア121が特定の方向でしか載置できないような形状とすることで防ぐことが可能である。また、簡易アライメント機能の位置合わせ点間の移動時の問題はマークを視野範囲に収めるために、取り付け誤差の回転により生じるマークの移動量を考慮した上での低倍率で運用することで回避することも可能である。ただし、低倍率でのアライメントは誤差が大きくなりやすく、また、走査電子顕微鏡の場合、低倍率から高倍率に変更すると視野の中心がずれることがあるため、高倍率に変更しての観察が難しくなるといった制約が生じる可能性がある。
 また、図4Bのように特定の範囲が視野内に収まれば認識できるようなマークでもよい。例えば、マーク420は二色に分かれており、その境界となるL字の交点421を位置合わせ点として認識してもよい。この場合、L字の交点421付近が視野範囲に含まれていればよいので、簡易アライメント機能において必要な視野範囲を狭めることができる。このようなマークの場合、形状全体を視野範囲に収める必要がないため、試料移動機構の機械的誤差と画像処理で検知できない回転量だけを考慮すればよく、必要な視野範囲が狭くなり、より高倍率での運用が可能となる。ただし、テンプレートマッチングに処理時間を要する場合がある。試料移動機構の機械的な誤差や補正しきれない回転量に応じて位置がずれ、二色の領域の比率が変わるためである。
 図5Aは、図4Aで説明したアライメントマークが付されたアライメントマーク付き試料キャリア500の構成例である。試料キャリアは丸形カバーガラスの例を示しているが、これに限定されるものではなく、試料が試料キャリア上のどこに載置されても位置合わせが可能なように、アライメントマーク501が1個以上付されていればよい。試料キャリア500の材料としては石英ガラスが一般的であるが、金属などの材料で形成されていてもよい。形状も円形に限られず、三角形、四角形等の多角形であってもよい。一般的に光学顕微鏡観察に使用される厚みが0.04mmから0.6mm程のカバーガラス、厚みが0.8mmから1.5mm程度のスライドガラスも適用可能である。試料キャリア500に試料を載置し、荷電粒子線装置で観察するには、試料および試料キャリアは導電性を持つ必要がある。このため、試料や試料キャリアの材料が非導電性である場合は、オスミウムや酸化インジウムスズ(ITOという)、金、白金、カーボン、ポリチオフェン、イオン液体などの導電性材料を試料や試料キャリアにコーティングして導電性を持たせる。このとき、使用する導電性材料はコーティングにより荷電粒子装置観察に影響がない様に適宣選択する。
 図5Aに示す丸形カバーガラス500の表面には、アライメントマーク501が複数個と、ユーザが現在の観察視野を認識易いように配置したグリッドパターン502と番地マーク503が設けられている。グリッドパターン502は、最も観察視野の広いサイズに合わせた間隔とし、試料観察時に極力視野に含まれないよう、試料とグリッドとが重なる領域を最大限減らすようにする。番地マーク503はグリッドパターンの交点に配置され、グリッドに囲まれる領域を指定する番地が書き込まれている。図5Aに例示した番地マークはC行1列の領域を示している。なお、グリッドパターン502の間隔は任意であり、ユーザの観察したい1つの視野領域が広い場合にはより粗くてもよいし、さらには設けなくてもよい。例えばグリッドを設けるのではなく、行方向、列方向に領域を特定するための点や記号を等間隔に整列させたもの(図6を参照)であっても構わない。
 なお、試料が試料キャリア500のグリッドパターン502上に載置された場合でも、試料の下にあるグリッドパターン502を確認することは可能である。例えば、光学顕微鏡観察で生物試料を観察する場合、照明に用いる光源の強度を調節することにより試料の下のグリッドパターンを容易に観察することができる。電子顕微鏡観察の場合は、試料を電子ビームが透過しうる加速電圧を設定することで、試料の下に位置するグリッドパターンから発生する信号を検出することができる。一方、試料を透過しない程度に電子のエネルギーを低くすることで、試料表面の観察ができる。
 アライメントのための位置合わせ点はアフィン変換の特性上、可能な限り一つの直線状から外れる位置関係となることが望ましいため、位置合わせ点として選択されるアライメントマークは、選択されたアライメントマークを頂点とする三角形が、直角三角形ないし、角度が広くなる二等辺三角形となることが望ましい。このため、アライメントマーク501は、図5Aに示されるように、そのような三角形を形成するアライメントマークを選択しやすい位置関係となるように配置する。また、アライメントマーク501は、試料ホルダの取り付け誤差(載置位置のずれと押さえ蓋等の固定具のずれ)を考慮した範囲520内に配置し、必ずアライメントマーク501が隠れないようにする。なお、図5Aには示されないが、図4Aで説明したように、各アライメントマークにはそれぞれを特定するための印が設けられている。
 また、ユーザが試料交換時に試料キャリアの表裏と方向とを容易に識別できるように表裏・方向識別マーク504や回転方向合わせマーク505も併せて設けられている。ユーザが観察視野とグリッドパターン502ないし回転方向合わせマーク505が水平となるように試料キャリア500を試料ホルダに載置することにより、観察視野に対する試料キャリア500の回転角度を大きくとも±10°の範囲に収めることが期待できる。
 また、簡易アライメント機能の回転補正のために、回転補正用マーク506を設けてもよい。回転補正用マーク506の形状はファインマークの形状と同一とする。走査電子顕微鏡の撮影解像度が800×600ピクセルの場合、回転角度が1°の直線のずれは数ピクセルの傾きとなる。画像にはノイズの他、少なからずフォーカスの不一致によるボケがあることから数ピクセル分の傾きは、これらの影響を受けて認識できない可能性が高い。回転角度の補正が細かいほど高解像度が必要となるが、一般的に光学顕微鏡の撮像素子などは約5000ピクセル×5000ピクセルなどが最大であることも多く、0.2°未満の補正は難しい。このような場合、走査電子顕微鏡の試料移動機構の機械的誤差が十分に小さい場合は、簡易アライメント機能と同様に、試料移動機構を移動し、2つの回転補正用マーク506を認識し、取得した2点の座標データからヘルマート変換することで、回転角度を求め、補正してもよい。
 なお、試料キャリア500に付されるパターンやマークは光学顕微鏡と荷電粒子線装置で観察可能であればよく、その形成方法は印刷や蒸着、刻設、刻印または打抜きであってもよい。また、観察装置に合わせて形成方法や材料は適宜選択すればよい。
 また、図2で説明したような制御ソフトウェアがなく、視野情報がわからない顕微鏡であっても視野情報を得ることができるよう、試料キャリア500上にスケールを設けてもよい。スケールは、各観察装置の視野範囲をカバーするスケールであればよく、例えば、光学顕微鏡は対物レンズや中間レンズ、カメラアダプタの倍率によって、倍率が固定されるため、これらの倍率に合わせたスケールを配置してもよい。
 また、試料キャリア500上に初期位置マーク510を設けてもよい。図5Bに例示する初期位置マーク510では十字型のマークとそれにより仕切られる領域にそれぞれ異なる数の丸印を設け、4つの方向を表現している。初期位置マーク510は、観察装置の初期位置(ホームポジション)に配置されるマークである。走査電子顕微鏡のような観察視野が狭く、観察方向を理解しにくい装置において、一般的にユーザは、複数視野を移動して初期位置、回転方向を認識するが、初期位置マーク510を観察装置の初期位置となる位置に配置することでユーザは視野を移動することなく、回転方向と初期位置の認識が可能となる。初期位置マーク510を設けた場合には、初期位置マーク510を使用して簡易アライメント機能における1点目への移動を自動化してもよい。一方で、観察装置の初期位置(ホームポジション)は通常、試料キャリア500の中心位置となるため、初期位置マーク510が試料キャリア上に載置される試料と重なってしまう可能性は高い。
 図5Aの形態ではアライメントマークが試料キャリアに恒久的に形成されているのに対し、図6を用いて、アライメントマーク付きシール600を試料キャリア610に貼付する形態について説明する。図6はシールの基材となる二等辺三角形のカーボンテープ上にアライメントマークが表示されたシールを試料キャリア610に貼付した状態を示している。シールの形状、材料ともに例示のものに限定されるものではない。例えば、シール基材の材料は金属のような導電性の材料や非導電性の材料で形成されていてもよい。ただし、シールを荷電粒子線装置で観察するには導電性を持つ必要があるため、非導電性である場合はITO、金、白金、カーボン、ポリチオフェン、イオン液体などの導電性材料をシール基材にコーティングして導電性を持たせる必要がある。また、1枚のシールに対して複数のアライメントマークを表示するようにしてもよい。
 アライメントマーク付きシール600は、内側のファインマーク601、外縁部のコースマーク602と各マークを区別するための印603から構成される。図の例はシールの外縁部を使用したマークであるが、これに限られず、外縁部のたわみを許容することを目的に、ハンドリングするためのスペースを持たせた上で、シールの内側にアライメントマークを表示してもよい。例えば、余白を持たせたシールの中心に図4Aに示すL字のマークを表示するようなものであってもよい。
 なお、アライメントマーク付きシールのマークは光学顕微鏡と荷電粒子線装置で観察可能であればよく、その形成方法は印刷や蒸着、刻設、刻印または打抜きであってもよい。また、観察装置に合わせて形成方法や材料は適宜選択すればよい。
 また、アライメントマークをレーザー、集束イオンビームなどで印材となるゴム、プラスチック、金属などに加工し、試料キャリアに対して油性顔料または染料によりスタンプしてもよい。
 アライメントマーク付きシールまたはアライメントマークを押印するスタンプを用いる利点は、試料キャリアに試料を載置した後にアライメントマーク付きシールを貼付する、またはアライメントマークをスタンプすることにより、アライメントのための位置合わせ点を自由に選択することができる点にある。観察対象が生物試料のような場合、試料キャリアに試料を載せる位置を制御することが難しく、試料キャリアにあらかじめアライメントマークが付されている場合には、試料の位置によってはアライメントマークの一部が隠れてしまうといったことが起こる。試料の載置後に、シールを貼付、またはアライメントマークをスタンプしてアライメントマークを設ける場合にはこのような問題は生じない。
 以上のように、試料が載置された試料キャリアに対してアライメントマークを設定することにより、位置合わせのマークと試料との位置関係が観察装置から試料キャリアを取り外しても崩れることがないため、試料キャリアに載せた試料を光学顕微鏡でも走査電子顕微鏡の何れでも観察でき、再観察時に再現性がよいシステムが実現できる。従来技術のように試料ホルダに位置合わせ用のマークを付する方式では、試料キャリアの試料ホルダへの取り付け時の試料キャリアの回転等のずれの影響を受けて位置合わせ用のマークと試料との位置関係が少なからず変わってしまう。本方式ではそのような問題を回避することができる。
 図7は、試料ホルダの鳥瞰図である。試料ホルダ700は再観察のために試料が破損しないように固定、載置が容易な専用の試料ホルダ700を使用するが、これに限られない。導電性をとり、固定できる機構であればよく、例えば、一般的な試料ホルダの試料搭載部にカーボンテープ等で試料キャリアを載置してもよいし、カーボンテープから剥がす際の破損を確実に避ける場合には試料ホルダなどの試料キャリアの載置部ごと保管してもよい。
 試料ホルダ700は、その主要な構成として、試料キャリア121を載置する試料搭載部713と、試料搭載部713の土台となる試料台部711と、試料キャリア121を固定する試料カバー部712とを有する。試料交換作業の効率化のために、観察に使用する試料キャリア121の形状、厚みに揃えたザグリ部710を試料搭載部713上面に設けて、ザグリ部710に載せた試料キャリア121と試料搭載部713とが平坦になるようにしている。
 試料カバー部712は試料キャリア121を上面から押さえ込み、試料搭載部713と接触させ固定することで、試料キャリア121との導電をとると共に振動による影響を低減する。試料カバー部712を、試料キャリア121を押さえ込んだ状態で固定治具722により固定し、開口部721から試料キャリア121に電子ビームを照射し、生成した信号を検出することで試料の観察を行う。
 また、図5Aや図6に示したカバーガラスの厚さは一般に0.17mmと非常に薄く、直接ピンセット等で触れて載置位置を調整すると破損する可能性が高い。このため、試料搭載部713は、回転つまみ部714を有し、回転つまみ部714を操作することで、試料搭載部713に載置した試料キャリア121を、水平を保ったまま任意の角度に回転、保持するよう構成されている。これにより、ユーザは試料キャリア121の載置後に試料キャリアを破損することなく360°どの角度にも調整が可能となる。
 さらに、試料キャリア121の回転方向の確認を容易にするため、走査電子顕微鏡100で観察を行う際の初期撮像視野における水平方向を示すオリエンテーションフラットを開口部721に設けている。視認が容易な回転方向合わせマーク505やグリッドパターン502(図5A参照)などと平行位置を取ることでユーザは効率的に正しく試料キャリア121を試料ホルダ700に載置できる。方向性を示すための形状はノッチ形状であってもよく、示す向きも垂直方向であってもよい。
 試料ホルダ700を構成する材料は、SUS316、SUS303、Al、C(グラファイト)、Cu、Ta、Mo、Ti、W、黄銅、青銅、及びこれら物質を含んだ化合物や合金等、電気導通性があり、非磁性体であればよい。
 図8を用いて、位置合わせ点を設定するプログラムのユーザインタフェース(UI)に表示される位置合わせ点の推奨位置ガイドについて説明する。試料キャリア121にアライメントマークを示すシールを貼付する、アライメントマークをスタンプする、あるいは画像データに含まれる特徴的な形状によって位置合わせ点を設定する場合には、このガイドが表示されるユーザインタフェースを用いて設定する。ここでは位置合わせ点が3点の場合のガイド810を例に説明するが、3点以上の位置合わせ点を設定する場合には、それに応じたガイドであればよい。
 アライメントのためアフィン変換を利用する場合、位置合わせ点とする3点は正三角形の頂点となる位置関係とし、観察したい視野をその三角形内に収めるように配置することが望ましい。そこで、推奨位置ガイド810は、図8に示すように、位置合わせ点の推奨位置範囲を示す表示部811a~cと、観察視野を位置合わせ点で構築された三角形内に配置するように誘導するための三角形の範囲を示す表示部812と、位置合わせ点の推奨位置範囲811の範囲を指定する第1の入力部813と、3点間の推奨位置関係を保ちつつ表示部812の拡大縮小操作を行う第2の入力部814と、3点間の推奨位置関係を保ちつつ表示部812の回転操作を行う第3の入力部815と、3点間の推奨位置関係を保ちつつ表示部812の平行移動を行う第4の入力部816とを有する。例えば、各入力部は表示部上にマウスカーソルなどのフォーカスがあたると、マウスカーソルが図8に示すような矢印の形状に変更することで示し、マウスドラッグの操作でガイドを調整する。ユーザは試料キャリア121上の位置合わせ点が、推奨位置範囲811内に収まるようにガイドしてもよいし、逆に推奨位置範囲811内から位置合わせ点を選択してもよい。何れにせよ、ユーザは推奨位置ガイド810を使用することで、アライメントの精度を確保すると共に、位置合わせ点を効率よく設定できるものである。この推奨位置ガイド810を用いたUIの使用については、以下に説明する、走査電子顕微鏡と光学顕微鏡とのアライメントシステムのワークフローの中で説明する。
 図9は図1に示したアライメントシステムのワークフローのうち、光学顕微鏡による観察試料の観察ワークフローである。図9のフローは光学顕微鏡操作入出力部210のUIを通してユーザから操作される。
 はじめに試料キャリア121に試料120を載置し(ステップ901)、試料キャリア121を光学顕微鏡用の試料ホルダ142に載置し、観察中にステージ143の移動で動かないように固定し(ステップ902)、試料ホルダ142をステージ143に取り付ける(ステップ903)。ここで、試料キャリア121の位置合わせ用のマーク等が無い場合には、試料キャリア121に位置合わせ用のアライメントマーク付きシール(図6参照)を貼付したり、アライメントマークをスタンプしたりする必要がある(ステップ904,905)。ここで、ステップ904の位置合わせ用のマーク等とは図5Aで説明したアライメントマークであってもよく、試料120の特徴的な構造であってもよく、試料キャリア121の表面傷のようなものであってもよい。
 試料キャリア121がアライメントマーク(図5A参照)を備えている場合、ステップ901では、試料120がアライメントマークに重ならないように配置する。ところで、観察対象が細胞切片である場合に、ミクロトームによりトリミングされ水に浮いた薄い切片(試料)を、そのままスライドガラス(試料キャリア)で抄いあげる手法がある。このような手法の場合、試料の載置位置の微調整が難しく、位置合わせ用のマークが配置されるような外縁部近くに試料が載りやすい傾向がある。このような場合に、アライメントマーク付きシールを用いたり、アライメントマークをスタンプしたりすると、ステップ901では試料の載置位置を気にする必要がなくなり、ステップ905により、後から位置合わせ用のマークを備えさせることができる。この際、図8に示した推奨位置ガイド810を用いたUIを用いてシールの貼付を行うとよい。図10Aにこの場合のUI画面830を示す。UI画面830には、試料キャリア(ここでは、長方形状のスライドガラス)像820、観察試料像821を含む観察画像が表示され、この画像に推奨位置ガイド810が重畳して表示されている。ユーザは、推奨位置ガイド810の表示部812に観察試料像821が含まれるように、推奨位置ガイド810を調整する。推奨位置ガイド810が調整できれば、UI画面830を見ながら、推奨位置ガイド810の3つの推奨位置範囲811のそれぞれの該当する試料キャリア上の位置にアライメントマーク付きシール600を貼り付ける。あるいは、アライメントマークをスタンプする。これにより、試料キャリア上に載置された試料の位置に応じて、アライメント精度が期待できる位置にアライメントマークを配置できる。試料120の試料キャリア121への載置方法に合わせて、アライメントマーク付き試料キャリアとアライメントマーク付きシールまたはアライメントマークスタンプとを使い分けることも好ましい。
 なお、観察画像の特徴的な構造を位置合わせ点とする場合に、同じUIを用いることもできる。その例を図10Bに示す。ユーザは観察試料像821の角や試料キャリア像820上の傷の像822などの特徴的な構造が、推奨位置ガイド810の3つの推奨位置範囲811に含まれるように調整することで、アライメント精度が期待できる位置に位置合わせ点を設定することができる。
 図9のフローの説明に戻る。ステップ906において、試料を載置した試料キャリア121について、試料キャリア上の全ての位置合わせ点の画像データと対応する視野情報(位置合わせ点の画像を取得したときに設定されていた倍率と試料移動機構145の座標位置)を有するデータ(以下、「マスターデータ」という)が作成済みであるかどうかを判断する。マスターデータが未作成の場合(初観察の場合)には、マスターデータを作成する(ステップ907)。マスターデータの作成については図11を用いて後述する。マスターデータが作成済の場合(再観察の場合)には、マスターデータを用いて、本観察における位置合わせ点の視野情報を取得する(ステップ908)。再観察の場合は、初観察の場合とは、試料キャリアの試料ホルダ142への載置位置等のずれが生じる。このため、マスターデータにおける位置合わせ点の視野情報を再観察における視野情報に補正するものである。この処理の詳細は図14において説明する。なお、ステップ908は、位置合わせ点の視野情報がマスターデータと一致する場合、あるいは完全に一致しなくてもユーザが微小な誤差として無視できる範囲であれば省略してもよい。その後、ユーザは試料の興味のある位置を観察する(ステップ909)。
 マスターデータ作成のワークフローを図11のフローチャートに示す。また、図12にマスターデータを作成するUI画面1200の例を示す。図11の処理は、UI画面1200からのユーザの装置操作に基づき、アライメント処理部260にて行われる。
 試料キャリア上の位置合わせ点間の相対距離は、試料キャリアの設計データなどから既知である場合と未知である場合がある。既知の場合の例としては、図5Aに示したようなアライメントマーク付き試料キャリア500のような場合に、アライメントマーク間の相対距離が設計データ等により与えられている場合である。ユーザは設計データなどに基づき位置合わせ点間の相対距離を入力するか、実際に光学顕微鏡104を制御して位置合わせ点間の相対距離を入力するかを、設計値/取得値選択ラジオボタン1201(図12参照)により選択する(ステップ1101)。既知の相対距離情報がない場合、設計値/取得値選択ラジオボタン1201を「取得値」に設定する(ステップ1102)。
 続いて、観察位置選択ラジオボタン1210をN点目に設定し(ステップ1103)、N点目のマークが視野に入るように試料移動機構及び光学系を制御する(ステップ1104)。現在の視野は、位置合わせ点選択ウィンドウ1215に表示される。位置合わせ点選択ウィンドウ1215に表示される画像をパターンマッチングに用いる画像データとして登録するため、そのために適切な大きさ、位置で表示されるように試料移動機構及び光学系を制御する。視野情報取得ボタン1212を押下することにより、パターンマッチングに用いる画像が確定する(ステップ1105)。
 さらに、位置合わせ点を位置合わせ点選択ウィンドウ1215上で選択する(ステップ1106)。選択ウィンドウ1215上で選択した位置が選択位置カーソル1221で表示されるとともに、位置合わせ点間の座標から算出した(N-1)点目の位置合わせ点(なお、0点目を初期座標(ホームポジション)とする)との相対距離が対応する相対距離テキストボックス1203に表示される。相対距離は、試料移動機構145の座標及び選択ウィンドウ1215上における選択位置カーソル1221の座標に基づいて算出する。なお、アライメントマークにおいて位置合わせ点とする位置をあらかじめルール化しておくことで、画像処理により位置合わせ点を自動で設定してもよい。
 また、各点間の位置関係を示すトップビュー1216にも、位置合わせ点として選択した位置が、試料移動機構145の座標に基づき、位置合わせ点マーク1231により表示される。この例では、トップビュー1216のマーク1231-0は初期座標位置を示し、マーク1231-1は1点目の位置合わせ点の位置を示すものである。
 3点目までステップ1103から1106を繰り返す(ステップ1107)した後、保存ボタン1213を押下し、取得したマスターデータをアライメントデータ管理部261に保存する(ステップ1108)。
 なお、初期位置マーク510(図5B参照)が試料キャリアに設けられている場合には、N=0として、初期位置マークに対してステップ1103~1106を実行する。この場合、ステップ1106において、初期位置マーク510の初期座標(ホームポジション)からの相対距離が光学顕微鏡初期座標値テキストボックス1202に表示される。また、この場合、1点目の位置合わせ点の相対距離テキストボックス1203に入力される相対距離は、初期位置マーク510の位置合わせ点からの相対距離となる。
 また、初期座標(ホームポジション)が設定されていない光学顕微鏡の場合には、1点目の位置合わせ点が基準となり、1点目の位置合わせ点から2点目の位置合わせ点への相対距離、2点目の位置合わせ点から3点目の位置合わせ点への相対距離が登録される。
 一方、位置合わせ点間の相対距離が既知の場合、設計値/取得値選択ラジオボタン1201を「設計値」に設定し、この場合はUI画面1200から画像データ、設計データに基づく視野情報を入力する。具体的には、設計データに基づき初期座標位置、各点間の相対距離を相対距離テキストボックス1202、1203に入力し、各点の画像データを、その画像が取得された倍率等とともに画像登録ボタン1205により登録する。
 図9により説明した光学顕微鏡による観察試料を行い、それと同じ観察位置に対して走査電子顕微鏡により相関観察を行う観察ワークフローを説明する。図13は走査電子顕微鏡と光学顕微鏡間とのアライメントシステムにおいて、走査電子顕微鏡による相関観察のフローチャートである。
 ステップ1001:光学顕微鏡104で観察した試料キャリア121を走査電子顕微鏡100用の試料ホルダ122に載置し、観察中にステージ123の移動で動かないように固定する。なお、試料キャリア121ないし試料120が導電性を有さない場合には本ステップの前に導電性を持たせるための前処理を行う。
 ステップ1002:試料キャリア121を固定した試料ホルダ122をステージ123に取り付ける。
 ステップ1003:走査電子顕微鏡100の位置合わせ点の視野情報を取得する。この処理については図14を用いて詳述する。
 ステップ1004:アライメント処理部260は、図9のステップ907またはステップ908で得られた光学顕微鏡の位置合わせ点の視野情報から求められる位置合わせ点の位置情報と倍率及び、図13のステップ1003で得られた走査電子顕微鏡の位置合わせ点の視野情報から求められる位置合わせ点の位置情報と倍率に基づき、光学顕微鏡の座標系と走査電子顕微鏡の座標系を変換する変換行列を求めるアライメントを実行する。
 ステップ1005:走査電子顕微鏡で観察を行う。このとき、ユーザは入力画像表示部271に表示される光学顕微鏡像に対して走査電子顕微鏡で観察したい視野を指定し、ステップ1004で求めた変換行列を用いて視野情報算出部262が走査電子顕微鏡の視野情報に変換することにより、指定した視野を観察することができる。
 図14は、位置合わせ点の視野情報を取得するフローチャートであり、また、図15に位置合わせ点の視野情報を取得し、アライメントを実行するUI画面1400の例を示す。図14の処理は、UI画面1400からのユーザの装置操作に基づき、位置合わせ点取得部280にて行われる。
 まず、UI画面1400は、光学顕微鏡(図9のステップ908)と走査電子顕微鏡(図13のステップ1003)の両方で使用するウィンドウであるため、どちらで使用するのか観察装置選択ラジオボタン1401で選択する。ここでは、走査電子顕微鏡での位置合わせ点での視野情報取得であるため、観察装置選択ラジオボタン1401を「電子顕微鏡」に設定する(ステップ1301,1302)。
 読込みボタン1402を押下し、位置合わせ点の画像データおよび視野情報を読みこむ。光学顕微鏡での観察(図9のステップ909)での位置合わせ点がマスターデータそのものの場合(図9のステップ907)はマスターデータを、光学顕微鏡の位置合わせ点の視野情報を取得してマスターデータの視野情報を補正した場合(図9のステップ908)はマスターデータの画像データと補正した視野情報とを読みこむ。あるいは、再観察時においてもアライメントデータ管理部261に格納されているマスターデータを用いてもよい。このとき、各位置合わせ点の位置関係を示すトップビュー1216(図12と同じ)も表示される。
 次に、観察位置選択ラジオボタン1420をN点目に設定する(ステップ1304)。ステップ1303で読み込んだN点目の位置合わせ点の画像データは、位置合わせ点表示ウィンドウ1430に表示される。また、ステップ1303で読み込んだ位置合わせ点の画像データを基にアライメント処理部260は、回転方向のずれを認識し、視野情報を基に相対距離を算出し、電子顕微鏡のN点目の位置に試料移動機構125を移動する。移動後の座標は座標位置テキストボックス1421に表示され、移動後の視野が観察視野表示ウィンドウ1440に表示される。観察視野表示ウィンドウ1440に表示されるアライメント処理部260による自動制御で移動した後の視野範囲に位置合わせ点を含むアライメントマークが入っているかを判断する。アライメントマーク全域が視野範囲内に入っている場合は、アライメント処理部260が、アライメントマーク1220上の位置合わせ点1221に対応する位置合わせ点を自動で認識し、次の位置合わせ点の処理を自動で実行する(ステップ1305)。
 一方、図15の例のように、アライメントマーク全域が観察視野表示ウィンドウ1440に含まれない場合には、少なくともN点目の位置合わせ点1442が視野に入るように試料移動機構と光学系を制御し、視野情報取得ボタン1422を押下する。アライメント処理部260は観察装置の制御部に情報を問い合わせ、現在の観察視野における試料移動機構125の座標を取得する(ステップ1306)。
 位置合わせ点表示ウィンドウ1430に表示されている位置合わせ点1221と同一の位置を観察視野表示ウィンドウ1440で選択する。選択位置に図12と同様に位置合わせ点選択マークを表示するようにしてもよい。位置合わせ点1442の座標を試料移動機構145の座標及び観察視野表示ウィンドウ1440上における位置合わせ点1442の座標に基づいて算出し、座標位置テキストボックス1421を更新する(ステップ1307)。
 ステップ1304からステップ1307を3点目の位置合わせ点まで繰り返し(ステップ1308)、保存ボタン1403を押下し、位置合わせ点の情報を保存する(ステップ1309)。これにより、光学顕微鏡観察時の位置合わせ点の視野情報と走査電子顕微鏡観察時の位置合わせ点の視野情報とがそれぞれ求まったので、アライメント実行ボタン1404を押下することにより、アライメントを実行する(図13のステップ1004)。これにより、光学顕微鏡の観察視野と走査電子顕微鏡の観察視野とを同じ二次元座標上に配置する(以下、マッピングするという)ことができる。
 なお、再観察の場合に光学顕微鏡の位置合わせ点の視野情報を取得する場合(図9におけるステップ908)も図14の処理と同様である。繰り返しの説明は省略するが、本実施例では共通のUI画面1400を使用しているため、この場合は観察装置選択ラジオボタン1401を「光学顕微鏡」に設定する(ステップ1320)。
 図16は入力画像表示部271(図2参照)のUI例である。ユーザはウィンドウ1500に表示されるマッピング像をみながら相関観察を実施する。
 図9のステップ909において光学顕微鏡104で取得した画像情報と視野情報は光学顕微鏡制御部151からアライメント制御部153に自動で通信により送付される。アライメント処理部260は送られてきた画像をマッピングし、入力画像表示部271(ウィンドウ1500)に表示する。
 アライメント完了後はウィンドウ1500に表示されるマッピング像をみながら、観察を行う。アライメント制御部153に送られた光学顕微鏡像は観察範囲全域を示すトップビュー1501上に配置される。トップビュー1501上で任意の観察したい視野範囲を指定することにより、指定した視野範囲の光学顕微鏡像が仮想視野ウィンドウ1502に表示される。これとともに、アライメント処理部260は走査電子顕微鏡を制御し、自動で同一視野を観察し、走査電子顕微鏡観察像描画部241に表示する。これにより、仮想視野ウィンドウ1502に表示された画像と走査電子顕微鏡観察像描画部241に表示された画像を比較することで相関観察が可能になる。
 さらに、走査電子顕微鏡制御部152からアライメント制御部153の画像入力部250と視野情報入力部251へのパスを設け、走査電子顕微鏡100で取得した走査電子顕微鏡像と対応する視野情報(図13のステップ1005)をアライメント制御部153に自動で通信により送付するようにしてもよい。これにより、電子顕微鏡像と光学顕微鏡像とを重ね合わせて表示することが可能となり、ユーザは更に直感的な相関観察が可能となる。図16はその場合のUI画面1500の表示例を示している。また、画像入力部250と視野情報入力部251から走査電子顕微鏡制御部152の電子顕微鏡観察像描画部241へのパスを用意し、電子顕微鏡の観察像と光学顕微鏡像を重ねて表示してもよい。電子顕微鏡で観察する際には光学顕微鏡像は取得した静止画像であるが、電子顕微鏡は観察像であるため、視野が微妙に一致してなかった際にも電子顕微鏡の試料移動機構や光学系を制御することで、同一視野を特定することができる。電子顕微鏡はノイズが少ない高画質の画像を得る場合、遅く走査する必要があり、画像の取得に時間を要する場合があるため、同一視野を先に断定することで取り直しがなく、効率的に相関観察をすることができる。
 アライメント制御部153に送られた光学顕微鏡像と電子顕微鏡像とは、画像リスト1503に画像別に登録・管理される。画像リスト1503には、光学顕微鏡像1521a、電子顕微鏡像1522aがサムネイル画像として表示されている。ユーザに興味のある領域をマウスドラッグなどの操作によりトップビュー1501上で領域を指定させ、指定された領域を仮想視野ウィンドウ1502に表示する。指定された領域1512をトップビュー上に表示することで、ユーザは全体のどの領域をみているか、トップビュー1501をみることで容易に認識できる。また、仮想視野ウィンドウ1502には指定された領域の光学顕微鏡像1521b及び電子顕微鏡像1522bが重畳して表示される。重畳された画像のレイヤー関係は配置順序変更ボタン1541を使用し、前面、背面の位置関係を調整可能であり、また、重畳された画像の透過度や明るさなどを画像補正スライダ1504で編集することも可能である。
 このように画像同士を重畳する場合には、重畳する画像処理の中に画像取得時のアフィン変換の誤差を吸収する機能を設けてもよい。例えば、電子顕微鏡像を重畳する場合には、画像を個別に選択し、水平移動、回転、拡大・縮小ができるようにして重畳してもよいし、画像同士が重畳するように、ユーザに水平移動、回転、拡大・縮小操作をさせる入力部を設け、その変化量をアライメントの誤差成分(平行移動、回転、拡大・縮小)として、オフセットする処理をアライメント処理部260に設けてもよい。また、単純に平行移動、回転、拡大・縮小をオフセットとしてテキストボックスから入力するような入力部を設けてもよい。また、特徴点マッチング等の画像処理を用いることで画像を変形させてもよい。
 以上、実施の形態を具体的に説明したが、本発明は記載された実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。
 例えば、アライメントするための手法としては、アフィン変換に限定されるものではなく、2次元の座標系を変換できる手法であればよい。平行移動と回転だけを補正するヘルマート変換が使用できる場合もある。例えば、同一顕微鏡での再観察のように倍率が一致する場合やスケーリングの補正が必ずしも必要ではない場合である。例えば、視野情報の機械的な誤差が大きかったり、光学顕微鏡での観察から電子顕微鏡での観察との間で試料120が大きく変形しまったりするような場合には、アフィン変換により理論上一致する視野に試料移動機構125を制御しても、期待した視野が収まる可能性は低い。そのような場合には、加えて、誤差や変形の度合いを考慮した倍率で運用することが望ましい。
 また、複数のアライメントマークではなく、1つのアライメントマークに対して複数の位置合わせ点を設定してアライメントしてもよい。例えば、回転方向が識別可能なマークを用い、マーク内で2点ないし3点の位置関係を認識し、ヘルマート変換ないしアフィン変換行列を求めることで回転角度を求めた後に1点目を原点とした相対座標で試料移動機構125を移動する。逆に4以上のアライメントマークを利用してもよい。細胞切片のような電子ビームによるダメージを受けて縮小しやすい試料や荷電粒子線装置で観察する前に前処理が必要な試料は、不均一で局所的な変形がおきやすい。平均的な縮小であれば全体をカバーする3点に基づくアフィン変換行列によりアライメント可能であるが、局所的な誤差は吸収が難しい。このため、4点以上の位置合わせ点を用意し、その中の3点の組み合わせによるアフィン変換行列によりアライメントを行うようにしてもよい。
 また、視野情報における座標データとしては、観察装置の試料移動機構の座標データ、画像データのピクセル位置、ピクセルサイズから算出してもよい。位置合わせのためにテンプレートマッチングを行っているが、これはマークに汎用性を持たせられる利点がある。これに対して、アライメントマークを専用のマークとし、そのマーク形状に特化した画像処理としてもよい。また、予めノイズやフォーカスずれといったマークの像を判別しにくくする各種要因とマークを回転させた組み合わせを学習データとして用意し、機械学習や深層学習で作成した判別器を使用することで、アライメントマークを抽出してもよい。
 さらに、アライメントシステムを構成する荷電粒子線装置は走査電子顕微鏡に限られない。本発明に係る荷電粒子線装置は、試料上の観察位置を任意に設定可能な試料移動機構と、任意の視野範囲を設定可能な電子光学系を備えており、試料に荷電粒子線を照射して試料の観察像を取得する際、観察時の倍率といった当該視野範囲の寸法情報が計算可能な観察条件と試料移動機構の座標情報を取得できるものであればよい。例えば、走査イオン顕微鏡や走査透過電子顕微鏡や透過電子顕微鏡、これらと試料加工装置との複合装置、またはこれらを応用した解析・検査装置等であってもよい。
 また、アライメントシステムを構成する撮像装置としては光学顕微鏡に限られない。本発明に係る撮像装置は、観察像の画像データを取得する手段を有しておればよく、試料移動機構の有無や明視野、暗視野、位相差、微分干渉、偏向、蛍光観察法といった観察手法の他、正立型、倒立型といった形状にも限定されない。例えば生物顕微鏡、金属顕微鏡、紫外線顕微鏡、赤外線顕微鏡、測定顕微鏡、共焦点レーザー顕微鏡 、荷電粒子線装置、または荷電粒子線装置以外のX線を使用した撮像装置、超音波による撮像装置、核磁気共鳴画像法による撮像装置、走査型プローブ顕微鏡、これらと試料加工装置との複合装置、またはこれらを応用した解析・検査装置等も含まれる。研究、工業用途の撮像装置を例に挙げたが、一般的なデジタルカメラでも適用可能である。
 試料キャリアに付されるアライメントマークやアライメントマーク付きシールは、アライメントシステムを構成する観察装置、撮像装置に応じて種々の変形がなされうる。例えば、透過光で観察する生物顕微鏡や共焦点レーザー顕微鏡との相関観察を目的とする場合、試料キャリア121がガラスのように光学的に透過する材料であれば、部分的に印刷や蒸着をして光学的に不透過なマークを形成してもよく、試料キャリア121が光学的に非透過な材料であれば、打ち抜きをして光学的に透過することで認識できるマークを形成してもよい。また、共焦点レーザー顕微鏡では、焦点位置を変更することで深さ方向の観察が可能である。また、集束イオンビーム/電子ビーム加工装置の場合は、試料120表面を物理的に削りながら深さ方向の観察をすることができる。このような観察装置間の相関観察を目的に、厚みを持たせた印刷や蒸着、刻印を行ってもよい。また、蛍光観察可能な観察装置との相関観察を目的に、蛍光物質を含む材料で印刷、蒸着、スタンプしてもよい。また、測定顕微鏡やレーザー顕微鏡などの高さ方向の相関観察を目的に、厚みをもたせた印刷、蒸着をしてもよいし、刻設して凹凸をもつマークとしてもよい。
 さらに、レーザー顕微鏡などで試料表面の高さ方向の情報が取得可能な場合、平面での座標、相対距離に加え、高さ方向の情報も視野情報として取得し、走査電子顕微鏡100の試料移動機構125の高さ方向の移動制御ないし、電子光学系112を制御することで焦点位置を調整してもよい。これにより、ユーザは、常にフォーカスがあった相関観察が可能となり、観察の効率が向上し作業時間を短縮することが可能となる。
100:走査電子顕微鏡、101:鏡筒、102:試料室、103:システム制御部、104:光学顕微鏡、110:電子ビーム、111:電子銃、112:電子光学系、120:試料、121:試料支持部材、122:電子顕微鏡用試料ホルダ、123:電子顕微鏡試料ステージ、131:検出器、140:対物レンズ、141:撮像素子、142:光学顕微鏡用試料ホルダ、143:光学顕微鏡用試料ステージ、151:光学顕微鏡制御部、152:電子顕微鏡制御部、153:アライメント制御部、400:コースマーク、401:ファインマーク、500:アライメントマーク付き試料キャリア、501:アライメントマーク、502:グリッドパターン、503:番地マーク、504:表裏・方向識別マーク、505:回転方向合わせマーク、506:回転補正用マーク、510:初期位置マーク、600:アライメントマーク付きシール、700:試料ホルダ。

Claims (19)

  1.  試料を載置する試料キャリアと、
     前記試料キャリアに載置された前記試料に荷電粒子線を照射する荷電粒子光学系と、前記荷電粒子線が前記試料に照射されることにより発生する信号を検出する検出器とを備える荷電粒子線装置と、
     前記試料キャリアに載置された前記試料を撮像装置により撮像した第1の画像及び前記第1の画像に対応する前記撮像装置の視野情報が入力されるアライメント制御部とを有し、
     前記アライメント制御部は、前記荷電粒子線装置に載置された前記試料キャリアの複数の位置合わせ点の視野情報を取得する位置合わせ点取得部と、
     前記撮像装置により前記第1の画像が撮像されるときにおける前記複数の位置合わせ点のそれぞれの位置情報と倍率及び、前記位置合わせ点取得部により取得された前記複数の位置合わせ点のそれぞれの位置情報と倍率に基づき、前記撮像装置の座標系と前記荷電粒子線装置の座標系を変換する変換行列を求めるアライメント処理部と、
     前記第1の画像に対して指定された視野に対して前記変換行列を使用し、前記荷電粒子線装置の視野情報に変換する視野情報算出部とを有し、
     前記複数の位置合わせ点は、前記試料が載置された状態での前記試料キャリアに設定されるアライメントシステム。
  2.  請求項1において、
     前記撮像装置は、前記撮像装置の試料ホルダに固定した前記試料キャリアを前記撮像装置のステージに載置して、前記試料キャリアに載置された前記試料を撮像し、
     前記荷電粒子線装置は、前記荷電粒子線装置の試料ホルダに固定した前記試料キャリアを前記荷電粒子線装置のステージに載置して、前記試料キャリアに載置された前記試料に前記荷電粒子線を照射し、
     前記撮像装置の視野情報は、前記撮像装置が前記試料を撮像したときの倍率及び前記撮像装置のステージの座標を含み、
     前記荷電粒子線装置の視野情報は、前記荷電粒子光学系が前記試料に前記荷電粒子線を照射するときの倍率及び前記荷電粒子線装置のステージの座標を含むアライメントシステム。
  3.  請求項2において、
     前記アライメント制御部は、前記試料キャリアの前記複数の位置合わせ点のそれぞれを前記撮像装置により撮像した複数の第2の画像及び前記複数の第2の画像のそれぞれに対応する前記撮像装置の視野情報を格納するアライメントデータ管理部を有するアライメントシステム。
  4.  請求項3において、
     前記位置合わせ点取得部は、前記アライメントデータ管理部に格納された前記複数の第2の画像及び前記複数の第2の画像のそれぞれに対応する前記撮像装置の視野情報を用いて、前記荷電粒子線装置に載置された前記試料キャリアの前記複数の位置合わせ点の視野情報を取得するアライメントシステム。
  5.  請求項3において、
     前記位置合わせ点取得部は、前記アライメントデータ管理部に格納された前記複数の第2の画像及び前記複数の第2の画像のそれぞれに対応する前記撮像装置の視野情報を用いて、前記複数の位置合わせ点のそれぞれについて、前記第1の画像が撮像されるときにおける前記撮像装置の視野情報を取得し、
     前記アライメント処理部は、前記位置合わせ点取得部が取得した前記第1の画像が撮像されるときにおける前記撮像装置の視野情報から、前記第1の画像が撮像されるときにおける前記複数の位置合わせ点のそれぞれの位置情報を求めるアライメントシステム。
  6.  請求項1において、
     前記試料キャリアは位置合わせのための複数のアライメントマークを有し、
     前記試料キャリアに配置された前記複数のアライメントマークで形成される図形が回転対称とならないよう、前記複数のアライメントマークが配置されるアライメントシステム。
  7.  請求項1において、
     前記試料キャリアは位置合わせのための複数のアライメントマークを有し、
     前記複数の位置合わせ点は、前記試料が載置された状態で、前記複数のアライメントマークから選択されたアライメントマークに基づき設定されるアライメントシステム。
  8.  請求項1において、
     前記複数の位置合わせ点は、前記試料が載置された状態で、アライメントマークを示すシールを前記試料キャリアに貼付する、またはアライメントマークをスタンプすることにより設定されるアライメントシステム。
  9.  請求項6~8のいずれか一項において、
     前記アライメントマークは、点対称または線対称または回転対称ではない形状を有するアライメントシステム。
  10.  請求項9において、
     前記アライメントマークは、前記撮像装置で認識可能な第1のマークと前記荷電粒子線装置で認識可能な第2のマークとを有し、
     前記第1のマークと前記第2のマークとは同一の形状比を有するアライメントシステム。
  11.  試料を載置する試料キャリアと、
     前記試料キャリアに載置された前記試料に荷電粒子線を照射する荷電粒子光学系と、前記荷電粒子線が前記試料に照射されることにより発生する信号を検出する検出器とを備える荷電粒子線装置と、
     前記試料キャリアに載置された前記試料を撮像する撮像装置と、
     前記撮像装置を制御する撮像装置制御部と、
     前記試料キャリアに載置された前記試料を前記撮像装置により撮像した第1の画像及び前記第1の画像に対応する前記撮像装置の視野情報が入力されるアライメント制御部とを備え、
     前記撮像装置制御部は前記試料キャリアに対して複数の位置合わせ点の推奨位置を示す推奨位置ガイドを前記撮像装置が撮像する前記試料キャリアの像に重畳して表示し、
     前記アライメント制御部は、前記推奨位置ガイドを用いて前記試料キャリアに設定された前記複数の位置合わせ点のそれぞれを前記撮像装置により撮像した複数の第2の画像及び前記複数の第2の画像のそれぞれに対応する前記撮像装置の視野情報を格納するアライメントデータ管理部と、
     前記荷電粒子線装置に載置された前記試料キャリアの前記複数の位置合わせ点の視野情報を取得する位置合わせ点取得部と、
     前記撮像装置により前記第1の画像が撮像されるときにおける前記複数の位置合わせ点のそれぞれの位置情報と倍率及び、前記位置合わせ点取得部により取得された前記複数の位置合わせ点のそれぞれの位置情報と倍率に基づき、前記撮像装置の座標系と前記荷電粒子線装置の座標系を変換する変換行列を求めるアライメント処理部と、
     前記第1の画像に対して指定された視野に対して前記変換行列を使用し、前記荷電粒子線装置の視野情報に変換する視野情報算出部とを有するアライメントシステム。
  12.  請求項11において、
     前記撮像装置は、前記撮像装置の試料ホルダに固定した前記試料キャリアを前記撮像装置のステージに載置して、前記試料キャリアに載置された前記試料を撮像し、
     前記荷電粒子線装置は、前記荷電粒子線装置の試料ホルダに固定した前記試料キャリアを前記荷電粒子線装置のステージに載置して、前記試料キャリアに載置された前記試料に前記荷電粒子線を照射し、
     前記撮像装置の視野情報は、前記撮像装置が前記試料を撮像したときの倍率及び前記撮像装置のステージの座標を含み、
     前記荷電粒子線装置の視野情報は、前記荷電粒子光学系が前記試料に前記荷電粒子線を照射するときの倍率及び前記荷電粒子線装置のステージの座標を含むアライメントシステム。
  13.  請求項11において、
     前記推奨位置ガイドは、前記複数の位置合わせ点の推奨位置範囲を指定する複数の第1の入力部と、前記複数の第1の入力部間の位置関係を保ちつつ拡大縮小操作を行う第2の入力部と、前記複数の第1の入力部間の位置関係を保ちつつ回転操作を行う第3の入力部と、前記複数の第1の入力部間の位置関係を保ちつつ平行移動を行う第4の入力部とを有するアライメントシステム。
  14.  請求項11において、
     前記試料キャリアの像における前記試料または前記試料キャリアの特徴的な構造が、前記推奨位置ガイドの前記複数の第1の入力部のそれぞれに含まれるように前記推奨位置ガイドを調整することにより、前記複数の位置合わせ点が前記試料キャリアに設定されるアライメントシステム。
  15.  請求項11において、
     アライメントマークを示すシールの像が前記推奨位置ガイドの前記複数の第1の入力部のそれぞれに含まれるように前記シールを前記試料キャリアに貼付することにより、またはアライメントマークを前記推奨位置ガイドの前記複数の第1の入力部のそれぞれに含まれるようにスタンプすることにより、前記複数の位置合わせ点が前記試料キャリアに設定されるアライメントシステム。
  16.  撮像装置による観察と荷電粒子線装置による観察との位置合わせのために試料キャリアに貼付されるシールであって、
     導電性基材と、
     前記導電性基材に表示されるアライメントマークとを有するシール。
  17.  請求項16において、
     前記アライメントマークは、前記撮像装置で認識可能な第1のマークと前記荷電粒子線装置で認識可能な第2のマークとを有し、前記第1のマークと前記第2のマークとは同一の形状比を有するシール。
  18.  請求項16において、
     前記導電性基材に表示される、前記アライメントマークを互いに識別可能とする印を有するシール。
  19.  請求項16~18のいずれか一項において、
     前記アライメントマークは、点対称または線対称または回転対称ではない形状を有するシール。
PCT/JP2019/041027 2018-10-19 2019-10-18 アライメントシステム及び位置合わせ用シール WO2020080508A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/281,296 US11538657B2 (en) 2018-10-19 2019-10-18 Alignment system and seal for positional alignment
JP2020553329A JP7110383B2 (ja) 2018-10-19 2019-10-18 アライメントシステム及び位置合わせ用シール

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018197708 2018-10-19
JP2018-197708 2018-10-19

Publications (1)

Publication Number Publication Date
WO2020080508A1 true WO2020080508A1 (ja) 2020-04-23

Family

ID=70283022

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/041027 WO2020080508A1 (ja) 2018-10-19 2019-10-18 アライメントシステム及び位置合わせ用シール

Country Status (3)

Country Link
US (1) US11538657B2 (ja)
JP (1) JP7110383B2 (ja)
WO (1) WO2020080508A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102476186B1 (ko) * 2018-12-06 2022-12-12 주식회사 히타치하이테크 하전 입자선 장치

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0613011A (ja) * 1991-12-12 1994-01-21 Denshi Kogaku Kenkyusho:Kk 電子顕微鏡の試料位置制御装置
US20030025087A1 (en) * 2001-08-01 2003-02-06 Aspex, Llc Apparatus for correlating an optical image and a SEM image and method of use thereof
JP2009176572A (ja) * 2008-01-24 2009-08-06 Jeol Ltd 電子顕微鏡の制御装置及び制御方法
US20130101188A1 (en) * 2011-10-19 2013-04-25 Carl Zeiss Microscopy Gmbh Microscopy of several samples using optical microscopy and particle beam microscopy
JP2015062200A (ja) * 2009-03-12 2015-04-02 株式会社荏原製作所 試料観察方法及び試料検査方法
JP2016119300A (ja) * 2014-12-22 2016-06-30 エフ・イ−・アイ・カンパニー 基準マークに基づく相関顕微鏡法
JP2017069024A (ja) * 2015-09-30 2017-04-06 株式会社日立ハイテクサイエンス 試料位置合わせ方法および荷電粒子ビーム装置
JP2018055924A (ja) * 2016-09-28 2018-04-05 日本電子株式会社 観察方法および試料観察装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1804107B1 (en) 2004-09-22 2018-10-24 Nikon Corporation Microscope system and image processing method
TWI473140B (zh) 2008-04-11 2015-02-11 Ebara Corp 試料觀察方法與裝置,及使用該方法與裝置之檢查方法與裝置
DE102009020663A1 (de) 2009-05-11 2010-11-25 Carl Zeiss Ag Mikroskopie eines Objektes mit einer Abfolge von optischer Mikroskopie und Teilchenstrahlmikroskopie
DE102010052674A1 (de) 2010-11-24 2012-05-24 Carl Zeiss Ag Probenträger mit Justiermarkierung
DE102014008383B9 (de) * 2014-06-06 2018-03-22 Carl Zeiss Microscopy Gmbh Teilchenstrahlsystem und Verfahren zum Betreiben einer Teilchenoptik

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0613011A (ja) * 1991-12-12 1994-01-21 Denshi Kogaku Kenkyusho:Kk 電子顕微鏡の試料位置制御装置
US20030025087A1 (en) * 2001-08-01 2003-02-06 Aspex, Llc Apparatus for correlating an optical image and a SEM image and method of use thereof
JP2009176572A (ja) * 2008-01-24 2009-08-06 Jeol Ltd 電子顕微鏡の制御装置及び制御方法
JP2015062200A (ja) * 2009-03-12 2015-04-02 株式会社荏原製作所 試料観察方法及び試料検査方法
US20130101188A1 (en) * 2011-10-19 2013-04-25 Carl Zeiss Microscopy Gmbh Microscopy of several samples using optical microscopy and particle beam microscopy
JP2016119300A (ja) * 2014-12-22 2016-06-30 エフ・イ−・アイ・カンパニー 基準マークに基づく相関顕微鏡法
JP2017069024A (ja) * 2015-09-30 2017-04-06 株式会社日立ハイテクサイエンス 試料位置合わせ方法および荷電粒子ビーム装置
JP2018055924A (ja) * 2016-09-28 2018-04-05 日本電子株式会社 観察方法および試料観察装置

Also Published As

Publication number Publication date
JPWO2020080508A1 (ja) 2021-09-09
US11538657B2 (en) 2022-12-27
US20210407761A1 (en) 2021-12-30
JP7110383B2 (ja) 2022-08-01

Similar Documents

Publication Publication Date Title
USRE44035E1 (en) Apparatus for correlating an optical image and a SEM image and method of use thereof
US8674301B2 (en) Magnifying observation apparatus
JP5285036B2 (ja) 小型の走査型電子顕微鏡
US9217694B2 (en) Method for automatically generating laser cutting lines in laser microdissection processes
KR101344415B1 (ko) 스캐닝 탐침 현미경을 포함하는 측정 시스템 동작 방법 및측정 시스템
WO2013183573A1 (ja) 荷電粒子線装置
EP2450936A1 (en) Microscope system, method for operating a charged-particle microscope
CN104885187A (zh) 傅立叶重叠关联成像系统、设备和方法
JP6549313B2 (ja) 荷電粒子線装置および試料ホルダ
JP5788719B2 (ja) ステージ装置およびステージ装置の制御方法
CN104048979A (zh) 多重图像度量
WO2020080508A1 (ja) アライメントシステム及び位置合わせ用シール
US20130334034A1 (en) Ion beam device and machining method
EP2966668A1 (en) Method of calibrating a scanning transmission charged-particle microscope
JP5491817B2 (ja) 電子顕微鏡における薄膜試料位置認識装置
JP4456962B2 (ja) 試料表示装置、試料表示装置の操作方法、試料表示装置操作プログラムおよびコンピュータで読み取り可能な記録媒体又は記録した機器
CN112634361A (zh) 使用语义分段的位姿估计
JP4616631B2 (ja) 試料分析装置
TW202238135A (zh) 掃描型探針顯微鏡、試料觀察加工系統及電特性評估裝置
Inoue et al. PHI X-tool: A Fully Automated XPS Microprobe
KR20230084035A (ko) 정확한 피듀셜을 찾기 위한 형상 불변 방법
TW202028802A (zh) 用於自動映射流體物體在基板上之方法及系統
Komuro et al. The FlexSEM 1000: A Scanning Electron Microscope Specializing in 3D Morphology Measurements
JP2012015031A (ja) 拡大観察装置及び拡大観察方法
Vertsanova SOLVING RESEARCH TASKS USING PHENOM PROX DESKTOP SCANNING ELECTRON MICROSCOPE

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19872390

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020553329

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19872390

Country of ref document: EP

Kind code of ref document: A1