WO2020080426A1 - Method for inhibiting progress of corrosion in air conditioners, air conditioner, and refrigerant piping - Google Patents

Method for inhibiting progress of corrosion in air conditioners, air conditioner, and refrigerant piping Download PDF

Info

Publication number
WO2020080426A1
WO2020080426A1 PCT/JP2019/040722 JP2019040722W WO2020080426A1 WO 2020080426 A1 WO2020080426 A1 WO 2020080426A1 JP 2019040722 W JP2019040722 W JP 2019040722W WO 2020080426 A1 WO2020080426 A1 WO 2020080426A1
Authority
WO
WIPO (PCT)
Prior art keywords
corrosion
air conditioner
progress
suppressing
refrigerant pipe
Prior art date
Application number
PCT/JP2019/040722
Other languages
French (fr)
Japanese (ja)
Inventor
伊藤 真一
健吾 熊谷
細木 哲郎
Original Assignee
株式会社コベルコ マテリアル銅管
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018194942A external-priority patent/JP7078510B2/en
Priority claimed from JP2018194943A external-priority patent/JP7128080B2/en
Application filed by 株式会社コベルコ マテリアル銅管 filed Critical 株式会社コベルコ マテリアル銅管
Publication of WO2020080426A1 publication Critical patent/WO2020080426A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/48Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring prior to normal operation, e.g. pre-heating or pre-cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers

Definitions

  • the present invention relates to a method for suppressing the progress of corrosion of an air conditioner, an air conditioner, and a refrigerant pipe.
  • a fin-and-tube heat exchanger having a refrigerant pipe and fins has been used for an indoor unit of an air conditioner.
  • the refrigerant tube a copper tube made of JIS standard phosphorous deoxidized copper C1220 is used because of its excellent thermal conductivity and workability.
  • heat exchangers have been required to more strictly control refrigerant leakage, and in particular, countermeasures against ant nest corrosion occurring in copper pipes have become more necessary.
  • Patent Document 1 describes that it is made of oxygen-free copper containing 0.05 to 1.5% by mass of Mn and an oxygen content of 100 ppm or less, and is resistant to the ant-like corrosion resistance used in heat exchanger pipes.
  • An excellent corrosion resistant copper alloy tube is disclosed.
  • Patent Document 2 copper containing 0.05 to 5% by mass of Mn and 0.05 to 5% by mass of Mg alone or in combination, or further containing 0.05 to 10% by mass of Zn.
  • a fin-tube heat exchanger is disclosed in which a copper alloy tube made of an alloy is used to improve the ant nest corrosion resistance.
  • Japanese Unexamined Patent Publication No. 06-197273 Japanese Patent No. 3046471
  • the corrosion-resistant copper alloy pipe of Patent Document 1 has been significantly improved in corrosion resistance against ant nest corrosion compared to the phosphorus-deoxidized copper pipe, and is therefore used in air conditioner models that place importance on ant nest corrosion countermeasures.
  • it is effective to make the content of Mn exceed 1.5% as described in Patent Document 2, but with the standard material.
  • the present invention has been made in view of such a problem, in an air conditioner including an indoor unit having a heat exchanger using a refrigerant pipe made of copper or copper alloy, in which the corrosion of ant nest corrosion in the refrigerant pipe
  • the first object is to provide a technique having an excellent effect of suppressing the progress.
  • a second object of the present invention is to provide an air conditioner equipped with an indoor unit, which is excellent in the effect of suppressing the progress of corrosion of ant nest corrosion in a refrigerant pipe using a specific copper material. .
  • a method for inhibiting corrosion progress of an air conditioner according to the present invention is a method for inhibiting corrosion progress of an air conditioner including an indoor unit having an indoor heat exchanger using a refrigerant pipe made of phosphorous deoxidized copper.
  • a moisture removing operation is performed to remove the water present inside the corrosion holes generated in the refrigerant pipe, and the moisture removing operation is the cooling operation or the dehumidifying operation end. It will be done within 10 days after the end.
  • a method for controlling the progress of corrosion of an air conditioner according to the present invention is a method for inhibiting the progress of corrosion of an air conditioner including an indoor unit having an indoor heat exchanger that uses a refrigerant pipe made of oxygen-free copper, and At this time, after the end of the cooling operation or the dehumidifying operation, a water removing operation for removing the water present inside the corrosion holes generated in the refrigerant pipe is performed, and the water removing operation ends the cooling operation or the dehumidifying operation. It will be done within 60 days after the later.
  • the display operation is performed until 5 days have elapsed from the end of the cooling operation or the dehumidification operation. Is preferably carried out. Further, in the method for suppressing the progress of corrosion of an air conditioner according to the present invention, when the refrigerant pipe made of oxygen-free copper is used, the display operation is performed until 50 days have elapsed from the end of the cooling operation or the dehumidifying operation. It is preferable to be performed in between.
  • the corrosion hole generated in the refrigerant pipe is It is further suppressed to proceed to the through hole penetrating the wall thickness.
  • the water removal operation is performed by heating and drying the refrigerant pipe.
  • the heating and drying satisfy the following expression (1) when the holding temperature of the refrigerant pipe is X (° C) and the holding time is Y (min). Is preferred. Y ⁇ 4000e ⁇ 0.11X (1)
  • the method for suppressing the progress of corrosion of an air conditioner according to the present invention is an air conditioner in which the Cu content used in the indoor unit of the air conditioner is 99.95% or more, the oxygen content is 10 ppm or less, and the balance is unavoidable impurities.
  • Cuprous oxide is provided on the inner wall surface of the corrosion hole formed in the refrigerant pipe made of the copper pipe for use. By providing cuprous oxide on the inner wall surface of the corrosion hole in this way, the oxidation of copper in the corrosion hole is suppressed, and the progress of ant nest corrosion that progresses to the through hole that penetrates the wall thickness of the corrosion hole is suppressed. can do.
  • a moisture removing operation is performed to provide cuprous oxide in the corrosion hole, and the moisture removing operation is performed by heating and drying the refrigerant pipe.
  • the method for controlling the progress of corrosion of an air conditioner according to the present invention by performing the moisture removal operation, the moisture in the corrosion holes generated in the refrigerant pipe is removed and cuprous oxide is formed in the corrosion holes to form at least cuprous oxide.
  • cuprous oxide is formed in the corrosion holes to form at least cuprous oxide.
  • the moisture removal operation may be performed within 60 days or 90 days after the end of the cooling operation or the dehumidifying operation of the air conditioner. preferable. Further, in the method for suppressing corrosion progress of an air conditioner according to the present invention, it is more preferable to further perform a display operation informing the user that the water removal operation is necessary before the water removal operation.
  • the moisture in the corrosion holes generated in the refrigerant pipe due to the moisture adhered by the cooling operation or the dehumidifying operation is removed. It is possible to suppress the removal of cuprous oxide in the corrosive holes and progress to the through holes penetrating the pipe wall thickness. Further, in the method for suppressing corrosion progress of an air conditioner according to the present invention, it is preferable to further perform a display operation, particularly a display operation performed after a predetermined period. This ensures that the water removal operation is performed.
  • the heating and drying is performed by a heating operation of the air conditioner or a heater provided in the indoor unit.
  • the heating and drying is performed together with the prevention of exhaust from the indoor unit to the room and the prevention of exhaust heat.
  • the exhaust prevention and the exhaust heat prevention are performed by a louver provided in the indoor unit.
  • the exhaust prevention and the exhaust heat prevention are performed by a drain pipe provided in the indoor unit.
  • the water removal operation is performed by vacuuming (pressure reduction processing) for reducing the pressure inside the indoor unit.
  • the corrosion holes generated in the refrigerant pipe can progress to the through holes that penetrate the pipe wall thickness. It is further suppressed.
  • An air conditioner according to the present invention is an air conditioner including an indoor unit having an indoor heat exchanger using a refrigerant pipe, and an outdoor unit, wherein the indoor unit uses the corrosion progress suppressing method for the air conditioner to A control device for controlling the air conditioner will be provided.
  • the indoor unit is provided with a control device that controls the air conditioner by using the above-described corrosion progress suppressing method for the air conditioner, so that the corrosion hole generated in the refrigerant pipe penetrates through the pipe wall thickness. The progress to the hole is suppressed.
  • the refrigerant pipe according to the present invention is a refrigerant pipe used in an indoor heat exchanger provided in an indoor unit of an air conditioner, and using the corrosion progress suppressing method of the air conditioner, corrosion generated in the refrigerant pipe. It is assumed that cuprous oxide is formed inside the pores.
  • the refrigerant tube according to the present invention by forming cuprous oxide inside the corrosion hole generated in the refrigerant tube, it is possible to prevent the corrosion hole from progressing to a through hole that penetrates the wall thickness of the tube.
  • the refrigerant pipe in a configuration including an indoor unit having a heat exchanger using a refrigerant pipe made of phosphorus deoxidized copper or oxygen-free copper, the refrigerant pipe In particular, it is excellent in the effect of suppressing the corrosion progress of ant nest corrosion. As a result, leakage of the refrigerant in the air conditioner can be suppressed, the frequency of exchanging the heat exchanger can be extended, and the operating cost of the air conditioner can be reduced.
  • an indoor unit having a heat exchanger using a refrigerant pipe made of a copper pipe for an air conditioner, the Cu content of which is 99.95% or more, the oxygen content of which is 10 ppm or less, and the balance of which is an unavoidable impurity is provided.
  • it is excellent in the effect of suppressing the progress of corrosion, especially the ant nest corrosion in the refrigerant pipe.
  • leakage of the refrigerant in the air conditioner can be suppressed, the frequency of exchanging the heat exchanger can be extended, and the operating cost of the air conditioner can be reduced.
  • the progress state of corrosion when dried twice a day in a test period of 20 days in an atmosphere of 0.5% formic acid was measured by an X-ray CT scanner (manufactured by Shimadzu Corporation, It is a photograph observed with a model type inspeXio SMX-225CT FPD).
  • 7A is a photograph observed with an X-ray CT scanner (manufactured by Shimadzu Corporation, model inspeXio SMX-225CT FPD) in a state in which the position of the corrosion hole at the observation point is cut in the longitudinal direction of the refrigerant pipe in FIG. 7A.
  • the progress of corrosion when not dried in the atmosphere of 0.5% formic acid during the test period of 20 days was measured by an X-ray CT scanner (manufactured by Shimadzu Corporation, model inspeXio SMX). -225CT FPD).
  • 8A is a photograph observed with an X-ray CT scanner (manufactured by Shimadzu, model inspeXio SMX-225CT FPD) in a state in which the position of the corrosion hole at the observation point in FIG. 8A is cut in the longitudinal direction of the refrigerant pipe.
  • the progress of corrosion once dried before observation was observed with an X-ray CT scanner (manufactured by Shimadzu Corporation, model inspeXio SMX-225CT FPD) once before observation in a test period of 10 days. It is an observed photograph.
  • 9A is a photograph observed with an X-ray CT scanner (manufactured by Shimadzu Corporation, model inspeXio SMX-225CT FPD) with the position of the corrosion hole at the observation point in FIG. 9A being cut in the longitudinal direction of the refrigerant pipe. It is the photograph which expanded the position of the corrosion hole of the observation point of FIG. 9A.
  • FIG. 10A is a photograph observed with an X-ray CT scanner (manufactured by Shimadzu Corporation, model inspeXio SMX-225CT FPD) with the position of the corrosion hole at the observation point in FIG. 10A being cut in the longitudinal direction of the refrigerant pipe.
  • FIG. 11B is a photograph observed with an X-ray CT scanner (manufactured by Shimadzu Corporation, model inspeXio SMX225CT FPD) in a state in which the position of the corrosion hole at the observation point in FIG.
  • FIG. 11A is cut in the longitudinal direction of the refrigerant pipe. It is the photograph which expanded the position of the corrosion hole of the observation point of FIG. 11A. It is the photograph which expanded the position of the corrosion hole of the observation point of FIG. 11B.
  • the progress of corrosion when dried 4 times before observation in 40 days of the test period was measured by an X-ray CT scanner (manufactured by Shimadzu Corporation, model inspeXio SMX-225CT FPD). It is an observed photograph.
  • FIG. 12A is a photograph observed by an X-ray CT scanner (manufactured by Shimadzu Corporation, model inspeXio SMX-225CT FPD) in a state in which the position of the corrosion hole at the observation point in FIG. 12A is cut in the longitudinal direction of the refrigerant pipe. It is the photograph which expanded the position of the corrosion hole of the observation point of FIG. 12A. It is the photograph which expanded the position of the corrosion hole of the observation point of FIG. 12B.
  • FIG. 13A is a photograph observed with an X-ray CT scanner (manufactured by Shimadzu Corp., model inspeXio SMX-225CT FPD) in a state where the position of the corrosion hole at the observation point in FIG. 13A is cut in the longitudinal direction of the refrigerant pipe. It is the photograph which expanded the position of the corrosion hole of the observation point of FIG. 13A.
  • FIG. 16B is a photograph observed with an X-ray CT scanner (manufactured by Shimadzu Corp., model inspeXio SMX-225CT FPD) in a state where the position of the corrosion hole at the observation point in FIG. 16A is cut in the longitudinal direction of the refrigerant pipe. It is the photograph which expanded the position of the corrosion hole of the observation point of FIG. 16A. It is the photograph which expanded the position of the corrosion hole of the observation point of FIG. 16B.
  • the air conditioner 1 includes an outdoor unit 2, an indoor unit 3, and a control device 17 (see FIG. 2), and the outdoor unit 2 and the indoor unit 3 are connected via a refrigerant pipe 9.
  • the outdoor unit 2 connects a compressor 4 for compressing a refrigerant, a four-way valve 5 for switching the flow of the refrigerant, an outdoor heat exchanger 6 for exchanging heat with the refrigerant, and an expansion valve 7 for expanding the refrigerant, respectively.
  • the refrigerant pipe 9 is provided.
  • the indoor unit 3 includes an indoor heat exchanger 8 that is connected to the four-way valve 5 and the expansion valve 7 via a refrigerant pipe 9 to exchange heat with the refrigerant.
  • the refrigerant discharged from the compressor 4 flows through the four-way valve 5, the outdoor heat exchanger 6, the expansion valve 7, the indoor heat exchanger 8 and the four-way valve 5 again.
  • the air is sucked into the compressor 4 via the air conditioning system and the cooling operation or the dehumidifying operation is performed.
  • the refrigerant discharged from the compressor 4 flows through the four-way valve 5, the indoor heat exchanger 8, the expansion valve 7, and the outdoor heat exchanger 6, and is compressed again via the four-way valve 5. It is sucked into the machine 4 and the heating operation is performed.
  • the indoor unit 3 includes a casing 14 and an intake grill 12 that form an indoor air duct 13, an indoor heat exchanger 8 and an indoor blower 10 that are arranged in the indoor air duct 13, and will be described later.
  • the louver 15, the drain pipe 16, and the decompression pump 19 are provided.
  • the indoor unit 3 may include a plurality of indoor heat exchangers 8 and a plurality of indoor fans 10, and the number of the indoor heat exchangers 8 and the number of the indoor fans 10 do not have to be the same.
  • the control device 17 is arranged in the indoor unit 3 in the present embodiment, the present invention is not limited to this embodiment. Further, when the moisture removal operation is performed by the heating operation of the air conditioner 1, the heater 11 and the decompression pump 19 are not always necessary.
  • the indoor air sucked from the intake grill 12 is heat-exchanged by the indoor heat exchanger 8 into cold air or warm air, and the cold air or warm air is used indoors.
  • the blower 10 blows the air from the air outlet 18 into a room that is a living space to perform a cooling operation, a dehumidifying operation, or a heating operation.
  • the indoor heat exchanger 8 includes a straight pipe 21a and a refrigerant pipe 21 including a large number of straight pipes 21a arranged in parallel and a large number of return bend pipes 21b joined to both ends of the straight pipe 21a. And a large number of plate-shaped fins 22 arranged in parallel on the outer surface of the plate at regular intervals.
  • a copper pipe made of phosphorus deoxidized copper C1220 or oxygen-free copper C1020 specified in JIS H 3300: 2012 (CDA10200) is used from the viewpoint of thermal conductivity and workability.
  • An aluminum fin is used for the fin 22 from the viewpoint of thermal conductivity and workability.
  • a straight tube having a smooth inner surface is used as the straight tube 21a, but in order to improve thermal conductivity, it is preferable to use a grooved tube in which a groove having a predetermined shape is formed on the inner surface of the tube.
  • the shape of the groove is not particularly limited, but the groove lead angle of the groove is 15 to 45 degrees, the groove depth is 0.10 to 0.35 mm, and the crest angle of the fin 22 formed between the grooves is 5 to 30 degrees.
  • the fin root radius is preferably 1/10 to 1/3 of the groove depth.
  • a smooth pipe having a smooth inner surface is used as the return bend pipe 21b, it is preferable to use a grooved pipe similar to the straight pipe 21a in order to improve thermal conductivity.
  • the wall thickness of these tubes is generally around 0.2 mm.
  • the refrigerant expanded by the expansion valve 7 of the outdoor unit 2 is supplied to the inside of the refrigerant pipe 21, whereby the indoor air is heat-exchanged with the cool air and the cooling operation is performed.
  • the dehumidifying operation is performed.
  • the fins 22 installed on the outer surface of the refrigerant tube 21 are cooled to a temperature lower than room temperature by the refrigerant flowing through the refrigerant tube 21 of the indoor heat exchanger 8. Thereby, the air around the fins 22 is cooled, and the dew point of the indoor air is higher than the temperature of the fins 22, so that dew condensation occurs on the fins 22.
  • the atmosphere in which the indoor unit 3 is installed contains a lower carboxylic acid or the like, it may dissolve in dew condensation water and cause ant nest corrosion in the refrigerant pipe 21.
  • the refrigerant discharged from the compressor 4 of the outdoor unit 2 is supplied to the inside of the refrigerant pipe 21 via the four-way valve 5, so that the indoor air exchanges heat with warm air.
  • the heating operation is performed.
  • the controller 17 operates the air conditioner 1 after a predetermined period has elapsed from the end of the first cooling operation or dehumidifying operation, or after the first cooling operation or dehumidifying operation after the last moisture removal operation, After a lapse of a predetermined period, the air conditioner 1 is controlled so as to perform a moisture removal operation for removing moisture existing inside the corrosion holes generated in the refrigerant pipe 21 of the indoor unit 3 (indoor heat exchanger 8).
  • the first cooling operation or dehumidifying operation means the first cooling operation or dehumidifying operation when the cooling operation or dehumidifying operation is performed a plurality of times.
  • the moisture removal operation has two types of moisture removal operation modes of heating and drying or evacuation.
  • the control device 17 includes a storage unit 17A, an output unit 17B, and a calculation unit 17D.
  • the storage unit 17A stores the operation history including the cooling mode, the heating mode, the water removal mode, and other operation modes of the air conditioner 1, and the time information such as the operation time.
  • the output unit 17B outputs to the air conditioner 1 (the indoor unit 3 or the outdoor unit 2 and the indoor unit 3) a command (signal) for performing the moisture removal operation.
  • the calculation unit 17D instructs the output unit 17B to output a command based on the operation history of the storage unit 17A and the like.
  • control device 17 further includes an input unit 17C that receives a signal of the moisture removal operation mode from a remote controller or the like during the moisture removal operation of the air conditioner 1.
  • the storage unit 17A stores the water removal operation standby period in which the water removal operation is not performed.
  • the calculation unit 17D counts the water removal operation standby period based on time information such as a timer (not shown), and stores it in the storage unit 17A.
  • the storage unit 17A stores conditions in the water removal operation, specifically, heat drying conditions and vacuum evacuation conditions.
  • the heating and drying conditions are a preset temperature and time.
  • the calculation unit 17D based on the operation history of the storage unit 17A, performs air conditioning until a predetermined number of days elapses after the cooling operation or the dehumidifying operation ends, that is, until the moisture removal operation standby period reaches a predetermined value.
  • the output unit 17B is instructed to automatically output (when the set condition (time) is reached until the predetermined value is reached) for performing the moisture removal operation of the machine 1.
  • the predetermined number of days can be arbitrarily set within the range of the number of days not exceeding the water removal operation standby period (predetermined period).
  • the calculation unit 17D also instructs the output unit 17B to output a command to perform the moisture removal operation of the air conditioner 1 based on the input of the moisture removal operation mode from the remote controller or the like.
  • the water removal operation standby period is 10 days in the case of the refrigerant tube 21 made of phosphorus deoxidized copper, and 60 days in the case of the refrigerant tube 21 made of oxygen-free copper.
  • the calculation unit 17D resets the counter, which is stored in the storage unit 17A and is counting the moisture removal operation standby period, to zero.
  • the calculation unit 17D selects the moisture removal operation mode (heat drying or evacuation) in a preset mode, and the selected moisture removal operation is performed. Based on the mode, the output unit 17B is instructed to output a command to perform the moisture removal operation of the air conditioner 1.
  • the calculation unit 17D instructs the output unit 17B to output the drive command during the normal heating operation to the outdoor unit 2 and the indoor unit 3. It is more preferable to instruct the output unit 17B to output a command to block exhaust and exhaust heat by the louver 15 or the drain pipe 16 when the heating operation is started.
  • the arithmetic unit 17D may instruct the output unit 17B to output a drive command to the heater 11 of the indoor unit 3 when the moisture removal operation mode signal received by the input unit 17C is heating and drying.
  • the calculation unit 17D may instruct the output unit 17B to output a drive command to the decompression pump 19 of the indoor unit 3. preferable.
  • the calculation unit 17D is based on the desired temperature or the desired time for heating and drying input to the input unit 17C from the remote controller or the like during the moisture removal operation of the air conditioner 1.
  • the holding temperature X (° C.) or the holding time Y (min) of the refrigerant pipe 21 during heating and drying that satisfies the above relational expression (1) (Y ⁇ 4000e ⁇ 0.11X 2 ) is calculated. That is, when either the Y value or the X value of the relational expression (1) is input, the calculation unit 17D calculates and sets the heating time and the heating temperature of the heating and drying based on the relational expression (1). change.
  • the calculation unit 17D heats and dries the indoor unit 3 (heater 11) or the outdoor unit 2 and the indoor unit 3 at the holding temperature X (° C) or the holding time Y (min) of the refrigerant pipe 21 calculated by the calculation unit 17D.
  • the output unit 17B is instructed to do so. It should be noted that the input from the remote controller or the like may be only a heating / drying command. In that case, the command is output to the output unit 17B so that the heating / drying operation is performed by the operation of the remote controller or the like.
  • the calculation unit 17D instead of the holding temperature X (° C.) of the refrigerant pipe 21, the temperature difference Z between the environmental temperature of the environment in which the air conditioner 1 is installed during heating and drying and the holding temperature X of the refrigerant pipe 21 is used. Then, the holding temperature X or the holding time Y of the refrigerant pipe 21 may be calculated. At that time, the calculation unit 17D uses the above relational expression (2) (Y ⁇ 1100Z ⁇ 1.5). The ambient temperature is measured by a temperature sensor (not shown) provided in the indoor unit 3 or the like and stored in the storage unit 17A.
  • Desired values of the temperature difference Z and the holding time Y are input by the user to the input unit 17C by a remote controller or the like and sent to the calculation unit 17D.
  • the input from the remote controller or the like may be only a command for heating and drying.
  • the calculation unit 17D outputs the holding time Y and the temperature difference Z of the refrigerant pipe 21 stored in advance in the storage unit 17A to the output unit 17B.
  • the arithmetic unit 17D detects the end of heating and drying based on the preset temperature and time stored in the storage unit 17A, and instructs the output unit 17B to output a command to end the heating and drying. To do.
  • the calculation unit 17D determines whether or not the elapsed time of the relational expression (1) or (2) has elapsed based on the temperature difference between the temperature of the refrigerant pipe 21 and the ambient temperature stored in the storage unit 17A. Thus, the end of heating and drying is detected, and the output unit 17B is instructed to output a command to end the heating and drying.
  • control device 17 controls the air conditioner 1 so as to perform, in addition to the water removal operation, a display operation that notifies the user that the water removal operation is necessary after the cooling operation or the dehumidification operation is completed. Further, it is more preferable that the control device 17 controls the air conditioner 1 so that the first display operation is performed after the end of the cooling operation or the dehumidifying operation and before the lapse of a predetermined number of days.
  • the predetermined number of days is less than a predetermined period (water removal operation standby period), and in the case of the refrigerant pipe 21 made of phosphorus deoxidized copper, for example, 5 days, the refrigerant pipe 21 made of oxygen-free copper is used. In one case, it is 50 days. It is preferable that the display operation is continuously performed until the water removal operation is performed.
  • the control device 17 Based on the operation history of the storage unit 17A, the control device 17 gives an alarm to the user that the water removal operation is necessary at the time when a predetermined period has elapsed from the end of the cooling operation or the dehumidification operation.
  • the arithmetic unit 17D instructs the output unit 17B to output a command to be displayed or lighted on the remote controller, output the command, and send the command to the remote controller or the indoor unit 3.
  • the temperature data of the refrigerant pipe 21 measured by a temperature sensor (not shown) provided in the indoor heat exchanger 8 or the like is fed back to the calculation unit 17D during the moisture removal operation (heating and drying) to feed the refrigerant pipe.
  • the holding temperature X or the holding time Y of 21 may be recalculated by the calculation unit 17D, and the result may be instructed and output to the output unit 17B.
  • the corrosion progress suppressing method of the present invention is a corrosion progress suppressing method for an air conditioner 1 including an indoor unit 3 having an indoor heat exchanger 8 using a refrigerant pipe 21, and a water removal operation is performed.
  • Water removal operation In the moisture removal operation, when the air conditioner 1 is in operation, after the cooling operation or the dehumidification operation is completed, the water present inside the corrosion holes generated in the refrigerant pipe 21 is removed. The water removal operation is performed during the period from the end of the first cooling operation or dehumidification operation to the elapse of a predetermined period (water removal operation standby period). In addition, even when the air conditioner 1 is stopped or the heating operation is performed after the water removal operation is completed, the water removal operation is performed for a predetermined period after the end of the first cooling operation or dehumidification operation thereafter.
  • the first cooling operation or dehumidifying operation means the first cooling operation or dehumidifying operation when the cooling operation or dehumidifying operation is performed a plurality of times.
  • the water removal operation standby period is 10 days for the refrigerant pipe 21 made of phosphorus-deoxidized copper and 60 days for the refrigerant pipe 21 made of oxygen-free copper. Then, by performing the moisture removal operation within the predetermined period in this manner, the corrosion holes generated in the refrigerant pipe 21 are suppressed from proceeding to the through holes penetrating the pipe wall thickness.
  • the water removal operation is preferably controlled by the control device 17 provided in the indoor unit 3 and automatically performed based on preset conditions, but the remote controller of the air conditioner 1 (wired connection type and The wireless connection type: see FIG. 4), the user may manually control the implementation.
  • the moisture removal operation is not particularly limited as long as it is possible to remove the moisture present inside the corrosion holes generated in the refrigerant pipe 21, but the heat drying, the exhaust prevention and the exhaust prevention without the exhaust prevention and the exhaust heat prevention. Heat drying with heat inhibition or evacuation is preferable.
  • a condensation medium generated during the cooling operation or dehumidifying operation of the air conditioner dissolves a corrosive medium such as formic acid contained in the atmosphere and stays on the outer surface of the refrigerant pipe 21 to form a starting point for ant nest corrosion. It From this starting point, the corrosion progresses toward the inside of the refrigerant pipe while forming a ant-hole-shaped corrosion hole.
  • water containing a corrosion medium and cuprous oxide (Cu 2 O) that is a corrosion product are formed inside the corrosion holes.
  • the cuprous oxide fills at least a part of the inside of the corrosion hole by coating the inner surface of the corrosion hole.
  • the air conditioner is heated and dried, and vacuum treatment is performed to remove water from the inside of the corrosion hole, and the inner surface of the corrosion hole is covered with dried cuprous oxide.
  • cuprous oxide existing from the entrance of the corrosion hole to the inside after removing the water is densely filled in the inside of the corrosion hole by drying (however, the inside of the corrosion hole is not only cuprous oxide but also copper oxide (CuO) as an impurity). May be slightly included). Further, the cuprous oxide once formed by the corrosion reaction can be stably present even after being dried and then contacted again with the water containing the corrosion medium.
  • Corrosion holes especially ant nest-like corrosion holes, have a very small hole shape, and therefore a driving force such as a pressure difference between the inside and outside of the hole is required to remove water that has once entered the inside of the hole.
  • a driving force such as a pressure difference between the inside and outside of the hole is required to remove water that has once entered the inside of the hole.
  • heat drying the pressure inside the pores rises due to volume expansion and vaporization of water inside the pores due to heating, resulting in a pressure difference inside and outside the pores.
  • This pressure difference acts on the water inside the holes as a driving force for removal from the inside of the holes.
  • evacuation the pressure on the outer surface of the refrigerant pipe decreases, so that a pressure difference occurs inside and outside the hole.
  • This pressure difference acts on the water inside the holes as a driving force for removal from the inside of the holes.
  • the heating and drying is for heating and drying the refrigerant pipe 21 of the indoor heat exchanger 8.
  • the heating and drying conditions are set with preset temperature and time.
  • the holding temperature X (° C.) and the holding time of the refrigerant pipe 21 are set to Y (min) in the heat drying, it is preferable to satisfy the following formula (1).
  • the holding temperature X of the refrigerant pipe 21 is the reached temperature of the refrigerant pipe 21 itself. Then, the reached temperature is a value measured by a sensor directly provided in the refrigerant pipe 21, or a value calculated by measuring the indoor heat exchanger 8 and calculating a preset temperature from the measured temperature. It's temperature.
  • X is preferably 25 ° C. or higher in normal operation.
  • Y ⁇ 4000e ⁇ 0.11X The heating and drying conditions include a temperature difference Z (° C.) between the environmental temperature (° C.) of the environment in which the air conditioner 1 is installed and the holding temperature X (° C.) of the refrigerant tube 21 in the heating and drying, and the holding time Y ( min) may satisfy the above-mentioned formula (2).
  • the above relational expression (1) or (2) is derived by the (heating drying condition confirmation test) described later.
  • the temperature of the refrigerant flowing through the indoor heat exchanger 8 is high on the upstream side (refrigerant inlet side) and low on the downstream side (refrigerant outlet side). Therefore, in order to perform the heating and drying reliably and in a short time, it is desirable to measure the holding temperature X in the refrigerant pipe on the downstream side of the indoor heat exchanger 8. Further, when the indoor unit 3 includes a plurality of indoor heat exchangers 8, it is desirable to use the value of the indoor heat exchanger 8 that has the lowest temperature as the holding temperature X. Even when the heating and drying are performed by the heater, the measurement point of the holding temperature X may be determined in the same manner as in the heating operation.
  • the water content can be removed, and the corrosion holes can be prevented from advancing to the through holes penetrating the wall thickness of the pipe.
  • the air inside the corrosion holes can be sufficiently removed in a shorter time than the above formula (1) or the above formula (2) by performing air blowing at the same time as heating and drying.
  • the air is blown by, for example, the indoor blower 10 provided inside the indoor unit 3.
  • the refrigerant pipe 21 forming the indoor heat exchanger 8 is covered with the aluminum fins 22, and when heated and dried, the temperature of the refrigerant pipe 21 and the aluminum fins 22 increases as a unit. Then, the temperature of the moisture retained between the aluminum fins 22 first rises, and the vaporization of this moisture begins. When the moisture between the aluminum fins 22 evaporates due to the vaporization, the temperature of the refrigerant pipe 21 and the aluminum fins 22 further rises, and the moisture in the gap between the refrigerant pipes 21 and the aluminum fins 22 and the ant nest-like corrosion are formed. Evaporation of water inside the corroded corrosion holes of the refrigerant pipe 21 becomes active.
  • the refrigerant pipe 21 Since the refrigerant pipe 21 is covered with the aluminum fins 22, it takes time to vaporize the water. In the present invention, the water inside the corrosion holes of the refrigerant pipe 21 is also vaporized and removed. In the actual indoor heat exchanger 8, the outer diameter and wall thickness of the refrigerant tubes 21, the thickness of the aluminum fins 22, the pitch, and the number of the refrigerant tubes 21 forming the indoor heat exchanger 8 are different. Therefore, it is desirable to experimentally determine the actual time required to dry the indoor heat exchanger 8 based on the relational expression (1) or (2) at the design stage of the heat exchanger.
  • the method for suppressing corrosion of an air conditioner and the air conditioner according to the present invention is a technique for removing even water in the gap between the aluminum fin 22 and the refrigerant pipe (copper pipe) 21 and the water inside the corrosion hole formed in the copper pipe. This point is different from the above-mentioned technique for the purpose of preventing mildew.
  • the heating operation of the air conditioner 1 or the driving of the heater 11 provided in the indoor unit 3 described in FIG. 2, or the heating operation of the air conditioner 1 and the driving of the heater 11 provided in the indoor unit 3 are performed at the same time. It is preferably carried out by carrying out.
  • the heating operation of the air conditioner 1 or the driving of the heater 11 is controlled by the control device 17 provided in the indoor unit 3.
  • the heating operation of the air conditioner 1 is the same as the normal heating operation described above.
  • the heater 11 is disposed between the indoor heat exchanger 8 and the indoor blower 10 in the indoor air passage 13, but the cold air that has been heat-exchanged by the indoor heat exchanger 8 or When the warm air is blown by the indoor blower 10, it is preferably arranged at a position where it does not hinder the blowing.
  • the number of heaters 11 is not limited to one and may be plural, but it is preferable that the number is the same as the number of indoor heat exchangers 8 or half of the number of indoor heat exchangers 8. Further, it is preferable that the heater 11 is installed at a position where concentrated heat can be dried on a portion of the indoor heat exchanger 8 where corrosion is likely to proceed. As a place where corrosion easily progresses, for example, a drain pan and the like where water is relatively present can be considered.
  • the heating and drying be performed together with the prevention of exhaust from the indoor unit 3 to the room and the prevention of exhaust heat. It is preferable that the exhaust prevention and the exhaust heat prevention are performed by the louver 15 or the drain pipe 16 provided in the indoor unit 3 shown in FIG.
  • the louver 15 is provided at the air outlet 18 of the casing 14, and by closing it, high heat and high humidity gas phase generated by the heating and drying operation can be prevented from being exhausted and exhausted from the air outlet 18 into the room. Further, for example, by providing an exhaust air passage (not shown) connected to the outdoor unit or the outdoor unit 2 in the indoor unit 3 and providing a blower or the like in the exhaust air passage, high heat of the indoor air passage 13 can be passed through the exhaust air passage. High humidity gas phase can be exhausted and exhausted to the outside.
  • drain pipes 16 are provided below the indoor heat exchangers 8 in the indoor air duct 13.
  • the drain pipe 16 is inclined toward the exhaust air duct side (not shown), and a blower or the like is provided in the exhaust air duct, so that the high heat of the indoor air duct 13 generated by the heating and drying operation is generated through the exhaust air duct.
  • High humidity gas phase can be exhausted and exhausted to the outside. As a result, it is possible to prevent the high heat and high humidity vapor phase generated by the heating and drying operation from being exhausted and exhausted from the air outlet 18 into the room.
  • the evacuation is not particularly limited as long as the indoor air passage 13 of the indoor unit 3 can be depressurized, but it is preferable to perform the evacuation with the decompression pump 19 shown in FIG. 2 with the louver 15 closed.
  • the control of the decompression pump 19 and the degree of decompression is preferably performed by the control device 17 provided in the indoor unit 3. Then, by performing such vacuuming, the water inside the corrosion holes generated in the refrigerant pipe 21 is removed, and the corrosion holes generated in the refrigerant pipe 21 progress to the through holes penetrating the pipe wall thickness. Is suppressed.
  • the vapor pressure of water in the corrosion holes of the refrigerant pipe 21 is determined by the temperature of the refrigerant pipe 21.
  • the degree of vacuum in the indoor unit 3 is smaller than the vapor pressure obtained from the temperature of the refrigerant pipe 21.
  • ⁇ Display operation The display operation informs the user that the water removal operation is necessary, and the alarm is displayed or lit on the indoor unit 3 or the remote controller. If the air conditioner 1 is connected to the Internet, it may be announced by e-mail. Then, the control of the display operation is performed by the control device 17 provided in the indoor unit 3 shown in FIG.
  • the display operation is performed before the water removal operation and before a predetermined period of time has elapsed after the end of the first cooling operation or dehumidification operation.
  • the predetermined period of time elapses after the end of the first cooling operation or dehumidifying operation thereafter. It is preferable to carry out the display operation.
  • the first cooling operation or dehumidifying operation means the first cooling operation or dehumidifying operation when the cooling operation or dehumidifying operation is performed a plurality of times.
  • the predetermined period is 5 days in the case of the refrigerant pipe 21 made of phosphorus deoxidized copper, 90 days in the case of the refrigerant pipe 21 made of oxygen-free copper, more preferably 60 days, and further preferably 50 days. In this way, by further performing the display operation, the moisture removal operation is reliably performed, so that the corrosion holes generated in the refrigerant pipe 21 are further suppressed from advancing to the through holes penetrating the pipe wall thickness. .
  • the copper pipe for an air conditioner used in the method for suppressing the progress of corrosion of an air conditioner according to the present invention has a Cu content of 99.95% or more, an oxygen content of 10 ppm or less, and the balance being unavoidable impurities.
  • This composition includes compositions of oxygen-free copper C1020 defined by JIS H3300: 2012 and oxygen-free copper C10200 of the CDA standard.
  • C1020 and C10200 can be used, but these copper pipes are high-purity pure copper having an oxygen content of 10 ppm or less and a conductivity of 101% IACS or more, and are usually vacuum. It is manufactured by using special melting and casting equipment such as melting and atmosphere melting, and strict control of raw materials and impurities. In addition, not only equipment but also advanced operation technology based on experience and know-how is required for its production. Therefore, the manufacturing cost tends to increase.
  • the Cu content is 99.95% or more and the oxygen content is 10 ppm or less, and P, Si, Al, Mg, Zn, Be, as unavoidable impurities
  • An oxygen-free copper equivalent copper tube containing up to 0.035% of one or more selected from elements such as Ca, Fe, Ni, Co, Mn, Ti, Cr, and Zr may be used.
  • the oxygen-free copper equivalent copper tube can be manufactured at a lower cost than oxygen-free copper by utilizing an element having a greater affinity for oxygen than Cu as a deoxidizing element.
  • the electrical conductivity of the copper tube corresponding to oxygen-free copper is preferably 90% IACS or more, and more preferably 95% IACS or more.
  • the contents of P, Si, Al, and Fe, which reduce the conductivity even in a small amount be 0.005% or less.
  • P is an element that promotes ant nest corrosion, so 0.004% or less is desirable, 0.0035% or less is more desirable, and 0.003% or less is even more desirable.
  • the following simulated corrosion test was conducted in order to evaluate the corrosion progress inhibiting effect of the corrosion progress inhibiting method according to the present invention in an actual air conditioner.
  • a heating and drying condition confirmation test was conducted in order to derive the heating and drying conditions in the actual air conditioner according to the present invention.
  • a water removal operation standby period confirmation test was conducted in order to derive the water removal operation standby period in the actual air conditioner according to the present invention.
  • the corrosion reproducing apparatus 30 includes a closed container 31 having an internal capacity of 2 L, a silicon stopper 34 installed on the upper portion of the closed container 31, and a sample material 33 simulating a refrigerant pipe inserted in the silicon stopper 34. .
  • the sealed container 31 was filled with 500 mL of the corrosive liquid 32 (an aqueous solution containing a corrosive medium), and the inside thereof was replaced with oxygen at 1 L / min for 5 min.
  • test material 33 As the test material 33, a smooth tube made of phosphorus-deoxidized copper C1220 or oxygen-free copper C1020 specified in JIS H3300: 2012 with an outer diameter of 9.52 mm, a wall thickness of 0.80 mm, and a length of 200 mm was used. .
  • the smooth tube sealed the lower end exposed from the silicon stopper 34 to the corrosive liquid 32 side.
  • the closed container 31 In order to adjust the internal environment of the closed container 31 to the humidity saturated state, the closed container 31 was installed in a constant temperature bath (test atmosphere temperature 40 ° C.).
  • the outer surface of the pipe of the test material 33 exposed 100 mm from the corrosive liquid 32 side of the silicon stopper 34 was used as the corrosion evaluation surface.
  • the test material 33 is subjected to a predetermined temperature cycle, specifically, moisture adhesion by cooling (assuming cooling operation), water removal by heating or vacuuming (moisture removal).
  • a cycle operation (assuming a removal operation) and a temperature cycle in which the test atmosphere temperature was kept at 40 ° C. (assuming a stopped state) were repeatedly performed (moisture removal twice a day).
  • the test material 33 was cooled and held in a constant temperature bath. The water was removed by taking out the test material 33 and applying hot air thereto. At this time, the temperature of the copper tube surface was 80 ° C. In this test, as shown in FIGS.
  • water droplets containing a corrosive medium volatilized from the corrosive liquid 32 are condensed on the outer surface of the test material 33 by cooling, and ant nest corrosion occurs and progresses.
  • the water vaporizes due to heating and the water in the corrosion holes is also removed, and the progress of ant nest corrosion is stopped.
  • the test material 33 to which the water containing the corrosive liquid 32 adheres has ant nest-like corrosion at a new location, but the corrosion does not proceed at the existing corrosion hole portion.
  • the outer surface of the pipe of the test material 33 was observed with an X-ray CT scanner (Shimadzu Corporation, model inspeXio SMX-225CTFPD), and corrosion of all corrosion holes generated in the entire circumference of the pipe at a pipe length of 10 mm was observed. The depth was measured, and the corrosion progress inhibiting effect was evaluated at the maximum corrosion depth (see FIGS. 7A and 7B). When the maximum corrosion depth was less than 0.20 mm, which is 1 ⁇ 4 of the wall thickness, it was evaluated that the corrosion progress inhibiting effect was obtained.
  • Example No. that satisfies the requirements of the present invention for removing water.
  • the maximum corrosion hole depth was less than 0.20 mm, and it was confirmed that there was an effect of suppressing corrosion progress.
  • Comparative example No. which does not satisfy the requirements of the present invention in which water is not removed.
  • the maximum corrosive hole depths are 0.80 mm and 0.29 mm, and corrosive holes penetrating the wall thickness (0.20 mm) of the copper pipe generally used for air conditioners are formed. It was
  • Heating and drying condition confirmation test In an environment where the surface of the refrigerant pipe is condensed and ant nest-like corrosion occurs, in order to investigate the time required for heating and drying the refrigerant pipe, we simulated the environment inside the corrosion hole and conducted a test in a humidity saturated environment. It was for the heating and drying condition confirmation test, the corrosion reproducing apparatus 30 shown in FIG. 5 was used as in the simulated corrosion test. Pure water was used as a medium corresponding to the corrosive liquid 32. As the test material 33, a smooth tube made of phosphorus-deoxidized copper C1220 was used. The bottom of the closed container 31 was heated in order to keep the internal environment of the closed container 31 at a temperature of 33 ° C. and in a humidity saturated state.
  • test material (copper tube) 33 was tested for 120 minutes at 20 ° C. for 120 minutes using the corrosion reproducing apparatus 30 shown in FIG. A cycle operation was performed in which a temperature cycle of cooling (assuming water adhesion due to cooling operation) and holding at 40 ° C. for 1320 minutes (assuming a stopped state) was repeatedly performed (no water removal). After the lapse of a predetermined number of days, the maximum corrosion depth of the test material 33 was measured in the same manner as the simulated corrosion test. The results are shown in Table 3.
  • test material 33 of this test a smooth tube made of phosphorus-deoxidized copper C1220 or oxygen-free copper C1020 with an outer diameter of 9.52 mm, a wall thickness of 0.80 mm, and a length of 200 mm was used. A 0.01 vol% formic acid solution simulating the environment was used.
  • the maximum corrosion depth after 10 days was 0.19 mm and after 30 days was 0.34 mm.
  • the sample 33 made of oxygen-free copper had a maximum corrosion depth of 0.12 mm even after 60 days. Since the thickness of a general copper pipe used as a refrigerant pipe of an air conditioner is 0.20 mm, a water removal operation standby period is 10 days in an air conditioner using a refrigerant pipe made of phosphorus deoxidized copper C1220. If the water removal operation is set to 10 days (10 days or less) after the completion of the first cooling operation or dehumidification operation, corrosion holes that penetrate the wall thickness of the refrigerant pipe are generated. It was confirmed that it could be suppressed.
  • test material 33 is taken out of the closed container 31 and subjected to a moisture removal treatment by applying hot air (the surface temperature of the test material is 80 ° C.), and then the X-ray CT scanner described above. Observe and observe.
  • test material 33 From 60 days to 120 days after the start of the test The following [third item] and [fourth item] are repeated twice for the test material 33 held for 60 days in one test.
  • the test material is held for 30 days in a cycle in which the internal environment of the closed container 31 is set to a temperature of 40 ° C for 22 hours and a temperature of 20 ° C for 2 hours (30 cycles).
  • the test material 33 is taken out of the closed container 31 and subjected to a moisture removal treatment by applying hot air (the surface temperature of the test material is 80 ° C.), and then the X-ray CT scanner described above. Observe and observe.
  • FIG. 9A is a photograph of the progress state of corrosion in the refrigerant pipe of the air conditioner, which was observed once during the test period of 10 days before observation by the CT scanner.
  • FIG. 9B is a photograph observed by the above-mentioned CT scanner in a state where the position of the corrosion hole at the observation point in FIG. 9A is cut in the longitudinal direction of the refrigerant pipe.
  • FIG. 9C is an enlarged photograph of the position of the corrosion hole at the observation point in FIG. 9A.
  • FIG. 9D is an enlarged photograph of the position of the corrosion hole at the observation point in FIG. 9B.
  • 10A to 10D to 16A to 16D have the same positional relationship as in FIGS. 9A to 9D, but the test period is different.
  • the first corrosion hole Ch1 of the sample material 33 and other corrosion holes Ch are formed on the pipe surface.
  • the depth of the first corrosion hole Ch1 at this time is 0.24 mm.
  • the first corrosion hole Ch1 of the sample material 33 and the other corrosion holes Ch are formed on the pipe surface.
  • the depth of the first corrosion hole Ch1 at this time is 0.24 mm.
  • the first corrosion hole Ch1 of the sample material 33 and other corrosion holes Ch are formed on the pipe surface.
  • the depth of the first corrosion hole Ch1 at this time is 0.24 mm.
  • the first corrosion hole Ch1 of the sample material 33 and other corrosion holes Ch are formed on the pipe surface.
  • the depth of the first corrosion hole Ch1 at this time is 0.24 mm.
  • the first corrosion hole Ch1 of the sample material 33 and other corrosion holes Ch are formed on the pipe surface.
  • the depth of the first corrosion hole Ch1 at this time is 0.24 mm.
  • the first corrosion hole Ch1 of the sample material 33 and other corrosion holes Ch are formed on the pipe surface.
  • the depth of the first corrosion hole Ch1 at this time is 0.24 mm.
  • the cuprous oxide 40 is provided inside the first corrosion hole Ch1. Therefore, under the heating and drying conditions of the present invention, not only the pipe surface of the refrigerant pipe (test material) but also the water inside the corrosion holes can be sufficiently dried in the actual environment, and the cuprous oxide 40 can be contained in the corrosion holes. It is considered that the provision of the element suppresses the progress of corrosion.
  • the present invention is also suitably applied when the refrigerant pipe connecting the outdoor unit and the indoor unit is a copper pipe.
  • the predetermined period is designated by the number of days, but it may be designated by the time.
  • the moisture content be within 1440 hours after the first cooling operation or the dehumidifying operation is completed or after the first cooling operation or the dehumidifying operation is completed after the last water removing operation. The removal operation is performed.
  • the timing of the water removal operation is set to 60 days in the description, but as shown in FIGS. 15A to 15D and 16A to 16D, the refrigerant pipe 21 is penetrated during the period of 120 days or less. Since no state has occurred, if it is within 120 days, it may be set as 90 days or 100 days, for example.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Thermal Sciences (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

A method for inhibiting progress of corrosion in an air-conditioner comprising an indoor unit that has an indoor heat exchanger with refrigerant piping made from phosphorus deoxidized copper or oxygen-free copper, wherein moisture, which is present in corroded pores occurring in the refrigerant piping, is removed after a cooling operation or a dehumidification operation during air conditioner operation. This moisture removing operation is performed within the interval from after the cooling operation or the dehumidification operation is completed until a designated time period has elapsed. In addition, cuprous oxide is provided on the inner wall face of the corroded pores formed in the refrigerant piping that is formed from copper piping for air conditioners, wherein the copper piping has a copper content of 99.95% or more and an oxygen content of 10 ppm or less, and the remainder is unavoidable impurities.

Description

空調機の腐食進行抑制方法、空調機および冷媒管Method of suppressing corrosion progress of air conditioner, air conditioner and refrigerant pipe
本発明は、空調機の腐食進行抑制方法、空調機および冷媒管に関する。 The present invention relates to a method for suppressing the progress of corrosion of an air conditioner, an air conditioner, and a refrigerant pipe.
 従来から、空調機の室内機には、冷媒管とフィンとを有するフィンアンドチューブ型熱交換器が用いられている。そして、冷媒管には、熱伝導性および加工性に優れるため、JIS規定のりん脱酸銅C1220からなる銅管が用いられている。近年、熱交換器では、冷媒の漏洩をより厳しく管理することが求められ、特に銅管で発生している蟻の巣状腐食の対策がより必要となっている。 Conventionally, a fin-and-tube heat exchanger having a refrigerant pipe and fins has been used for an indoor unit of an air conditioner. As the refrigerant tube, a copper tube made of JIS standard phosphorous deoxidized copper C1220 is used because of its excellent thermal conductivity and workability. In recent years, heat exchangers have been required to more strictly control refrigerant leakage, and in particular, countermeasures against ant nest corrosion occurring in copper pipes have become more necessary.
 特許文献1には、0.05~1.5質量%のMnを含有し、酸素の含有量が100ppm以下である無酸素銅からなり、熱交換器用配管に用いられる耐蟻の巣状腐食性に優れた耐食性銅合金管が開示されている。また、特許文献2には、0.05~5質量%のMnおよび0.05~5質量%のMgを単独または組み合わせて含有するか、さらに0.05~10質量%のZnを含有した銅合金からなる銅合金製チューブを使用して、耐蟻の巣状腐食性を向上させたフィンチューブ型熱交換器が開示されている。 Patent Document 1 describes that it is made of oxygen-free copper containing 0.05 to 1.5% by mass of Mn and an oxygen content of 100 ppm or less, and is resistant to the ant-like corrosion resistance used in heat exchanger pipes. An excellent corrosion resistant copper alloy tube is disclosed. Further, in Patent Document 2, copper containing 0.05 to 5% by mass of Mn and 0.05 to 5% by mass of Mg alone or in combination, or further containing 0.05 to 10% by mass of Zn. A fin-tube heat exchanger is disclosed in which a copper alloy tube made of an alloy is used to improve the ant nest corrosion resistance.
日本国特開平06-192773号公報Japanese Unexamined Patent Publication No. 06-197273 日本国特許第3046471号公報Japanese Patent No. 3046471
 特許文献1の耐食性銅合金管は、りん脱酸銅管に比べ、蟻の巣状腐食に対する耐食性が大幅に向上することから、蟻の巣状腐食対策を重視するエアコン機種に採用されている。蟻巣の状腐食に対する耐食性をさらに向上させるには、特許文献2に記載されているように、Mnの含有量を1.5%を超えて含有させること等が効果的であるが、標準材であるりん脱酸銅管より、転造加工性やろう付性が低下し、製造コストが上昇する問題がある。 The corrosion-resistant copper alloy pipe of Patent Document 1 has been significantly improved in corrosion resistance against ant nest corrosion compared to the phosphorus-deoxidized copper pipe, and is therefore used in air conditioner models that place importance on ant nest corrosion countermeasures. In order to further improve the corrosion resistance to ant-like corrosion, it is effective to make the content of Mn exceed 1.5% as described in Patent Document 2, but with the standard material. Compared with a certain phosphorous deoxidized copper pipe, there is a problem that rolling workability and brazing property are deteriorated and the manufacturing cost is increased.
 本発明はかかる問題を鑑みてなされたものであって、銅または銅合金からなる冷媒管を用いた熱交換器を有する室内機を備える空調機において、冷媒管における特に蟻の巣状腐食の腐食進行抑制効果に優れた技術を提供することを第1の課題とする。
 また、本発明は、室内機を備える空調機において、特定の銅材料を使用した冷媒管における特に蟻の巣状腐食の腐食進行抑制効果に優れた技術を提供することを第2の課題とする。
The present invention has been made in view of such a problem, in an air conditioner including an indoor unit having a heat exchanger using a refrigerant pipe made of copper or copper alloy, in which the corrosion of ant nest corrosion in the refrigerant pipe The first object is to provide a technique having an excellent effect of suppressing the progress.
A second object of the present invention is to provide an air conditioner equipped with an indoor unit, which is excellent in the effect of suppressing the progress of corrosion of ant nest corrosion in a refrigerant pipe using a specific copper material. .
 本発明に係る空調機の腐食進行抑制方法は、りん脱酸銅からなる冷媒管を用いた室内熱交換器を有する室内機を備える空調機の腐食進行抑制方法であって、前記空調機の運転の際、冷房運転または除湿運転の終了後に、前記冷媒管に発生した腐食孔の内部に存在する水分の除去を行う水分除去運転を行い、前記水分除去運転が、前記冷房運転または前記除湿運転終了後から10日経過するまでの間に行われることとする。 A method for inhibiting corrosion progress of an air conditioner according to the present invention is a method for inhibiting corrosion progress of an air conditioner including an indoor unit having an indoor heat exchanger using a refrigerant pipe made of phosphorous deoxidized copper. In this case, after the cooling operation or the dehumidifying operation is completed, a moisture removing operation is performed to remove the water present inside the corrosion holes generated in the refrigerant pipe, and the moisture removing operation is the cooling operation or the dehumidifying operation end. It will be done within 10 days after the end.
 本発明に係る空調機の腐食進行抑制方法は、無酸素銅からなる冷媒管を用いた室内熱交換器を有する室内機を備える空調機の腐食進行抑制方法であって、前記空調機の運転の際、冷房運転または除湿運転の終了後に、前記冷媒管に発生した腐食孔の内部に存在する水分の除去を行う水分除去運転を行い、前記水分除去運転が、前記冷房運転または前記除湿運転の終了後から60日経過するまでの間に行われることとする。 A method for controlling the progress of corrosion of an air conditioner according to the present invention is a method for inhibiting the progress of corrosion of an air conditioner including an indoor unit having an indoor heat exchanger that uses a refrigerant pipe made of oxygen-free copper, and At this time, after the end of the cooling operation or the dehumidifying operation, a water removing operation for removing the water present inside the corrosion holes generated in the refrigerant pipe is performed, and the water removing operation ends the cooling operation or the dehumidifying operation. It will be done within 60 days after the later.
 本発明に係る空調機の腐食進行抑制方法は、水分除去運転が行われることによって、冷媒管に発生した腐食孔が管肉厚を貫通する貫通孔にまで進行することが抑制される。 In the method for suppressing the progress of corrosion of an air conditioner according to the present invention, by performing the water removal operation, the progress of corrosion holes generated in the refrigerant pipe to the through holes that penetrate the pipe wall thickness is suppressed.
 本発明に係る空調機の腐食進行抑制方法は、前記水分除去運転が必要であることをユーザーに伝える表示運転を水分除去運転の前までにさらに行うことが好ましい。 In the method for suppressing the progress of corrosion of an air conditioner according to the present invention, it is preferable to further perform a display operation for notifying the user that the water removal operation is necessary before the water removal operation.
 本発明に係る空調機の腐食進行抑制方法は、りん脱酸銅からなる前記冷媒管を用いた際、前記表示運転が、前記冷房運転または前記除湿運転の終了後から5日経過するまでの間に行われることが好ましい。また、本発明に係る空調機の腐食進行抑制方法は、無酸素銅からなる前記冷媒管を用いた際、前記表示運転が、前記冷房運転または前記除湿運転の終了後から50日経過するまでの間に行われることが好ましい。 In the method for suppressing the progress of corrosion of an air conditioner according to the present invention, when the refrigerant pipe made of phosphorus deoxidized copper is used, the display operation is performed until 5 days have elapsed from the end of the cooling operation or the dehumidification operation. Is preferably carried out. Further, in the method for suppressing the progress of corrosion of an air conditioner according to the present invention, when the refrigerant pipe made of oxygen-free copper is used, the display operation is performed until 50 days have elapsed from the end of the cooling operation or the dehumidifying operation. It is preferable to be performed in between.
 本発明に係る空調機の腐食進行抑制方法は、表示運転、特に所定期間後に行われる表示運転をさらに行うことによって、水分除去運転が確実に実施されるため、冷媒管に発生した腐食孔が管肉厚を貫通する貫通孔にまで進行することがさらに抑制される。 In the method for suppressing corrosion progress of an air conditioner according to the present invention, since the moisture removal operation is reliably performed by further performing the display operation, particularly the display operation performed after a predetermined period, the corrosion hole generated in the refrigerant pipe is It is further suppressed to proceed to the through hole penetrating the wall thickness.
 本発明に係る空調機の腐食進行抑制方法は、前記水分除去運転が、前記冷媒管の加熱乾燥によって行われることが好ましい。 In the method for suppressing corrosion progress of an air conditioner according to the present invention, it is preferable that the water removal operation is performed by heating and drying the refrigerant pipe.
 本発明に係る空調機の腐食進行抑制方法は、前記加熱乾燥が、前記冷媒管の保持温度をX(℃)、保持時間をY(min)としたとき、下式(1)を満足することが好ましい。
 Y≧4000e-0.11X      (1)
In the method for suppressing the progress of corrosion of an air conditioner according to the present invention, the heating and drying satisfy the following expression (1) when the holding temperature of the refrigerant pipe is X (° C) and the holding time is Y (min). Is preferred.
Y ≧ 4000e −0.11X (1)
 本発明に係る空調機の腐食進行抑制方法は、空調機の室内機に用いられるCuの含有量が99.95%以上、酸素の含有量が10ppm以下であり、残部が不可避不純物である空調機用銅管からなる冷媒管に形成された腐食孔の内壁面に亜酸化銅を設けることとする。このように腐食孔の内壁面に亜酸化銅を設けることで、腐食孔の銅の酸化を抑え、腐食孔が管肉厚を貫通する貫通孔にまで進行する蟻の巣状腐食の進行を抑制することができる。 The method for suppressing the progress of corrosion of an air conditioner according to the present invention is an air conditioner in which the Cu content used in the indoor unit of the air conditioner is 99.95% or more, the oxygen content is 10 ppm or less, and the balance is unavoidable impurities. Cuprous oxide is provided on the inner wall surface of the corrosion hole formed in the refrigerant pipe made of the copper pipe for use. By providing cuprous oxide on the inner wall surface of the corrosion hole in this way, the oxidation of copper in the corrosion hole is suppressed, and the progress of ant nest corrosion that progresses to the through hole that penetrates the wall thickness of the corrosion hole is suppressed. can do.
 本発明に係る空調機の腐食進行抑制方法は、前記腐食孔に亜酸化銅を設けるために水分除去運転を行い、前記水分除去運転が、前記冷媒管の加熱乾燥によって行われることが好ましい。 In the method for suppressing the progress of corrosion of an air conditioner according to the present invention, it is preferable that a moisture removing operation is performed to provide cuprous oxide in the corrosion hole, and the moisture removing operation is performed by heating and drying the refrigerant pipe.
 本発明に係る空調機の腐食進行抑制方法は、水分除去運転が行われることによって、冷媒管に発生した腐食孔内の水分が除去され腐食孔内に亜酸化銅が形成され亜酸化銅の少なくとも一部が腐食孔の先端側では孔内に充満することで水分の侵入を阻止し管肉厚を貫通する貫通孔にまで進行することが抑制される。 The method for controlling the progress of corrosion of an air conditioner according to the present invention, by performing the moisture removal operation, the moisture in the corrosion holes generated in the refrigerant pipe is removed and cuprous oxide is formed in the corrosion holes to form at least cuprous oxide. By partially filling the inside of the corrosion hole in the tip side, the penetration of water is blocked and the progress to the through hole penetrating the wall thickness of the tube is suppressed.
 本発明に係る空調機の腐食進行抑制方法は、前記水分除去運転が、前記空調機の冷房運転または除湿運転の終了後から60日経過するまでまたは90日経過するまでの間に行われることが好ましい。また、本発明に係る空調機の腐食進行抑制方法は、前記水分除去運転が必要であることをユーザーに伝える表示運転を、前記水分除去運転前までに、さらに行うことがより好ましい。 In the method for suppressing corrosion progress of an air conditioner according to the present invention, the moisture removal operation may be performed within 60 days or 90 days after the end of the cooling operation or the dehumidifying operation of the air conditioner. preferable. Further, in the method for suppressing corrosion progress of an air conditioner according to the present invention, it is more preferable to further perform a display operation informing the user that the water removal operation is necessary before the water removal operation.
 本発明に係る空調機の腐食進行抑制方法は、水分除去運転を60日あるいは90日以内に行うことで、冷房運転または除湿運転により水分が付着して冷媒管に発生した腐食孔内の水分を除去し腐食孔内に亜酸化銅を設けて管肉厚を貫通する貫通孔にまで進行することが抑制される。また、本発明に係る空調機の腐食進行抑制方法では、表示運転、特に所定期間後に行われる表示運転をさらに行うことが好ましい。これによって、水分除去運転が確実に実施される。 In the method for suppressing corrosion progress of an air conditioner according to the present invention, by performing the moisture removal operation within 60 days or 90 days, the moisture in the corrosion holes generated in the refrigerant pipe due to the moisture adhered by the cooling operation or the dehumidifying operation is removed. It is possible to suppress the removal of cuprous oxide in the corrosive holes and progress to the through holes penetrating the pipe wall thickness. Further, in the method for suppressing corrosion progress of an air conditioner according to the present invention, it is preferable to further perform a display operation, particularly a display operation performed after a predetermined period. This ensures that the water removal operation is performed.
 本発明に係る空調機の腐食進行抑制方法は、前記加熱乾燥が、前記空調機の暖房運転、または、前記室内機が備えるヒーターによって行われることが好ましい。 In the method for suppressing the progress of corrosion of an air conditioner according to the present invention, it is preferable that the heating and drying is performed by a heating operation of the air conditioner or a heater provided in the indoor unit.
 本発明に係る空調機の腐食進行抑制方法は、前記加熱乾燥が、前記室内機からの室内への排気阻止および排熱阻止と共に行われることが好ましい。
 本発明に係る空調機の腐食進行抑制方法は、前記排気阻止および前記排熱阻止が、前記室内機に備えられたルーバーによって行われることが好ましい。
 本発明に係る空調機の腐食進行抑制方法は、前記排気阻止および前記排熱阻止が、前記室内機に備えられたドレイン配管によって行われることが好ましい。
In the method for suppressing the progress of corrosion of an air conditioner according to the present invention, it is preferable that the heating and drying is performed together with the prevention of exhaust from the indoor unit to the room and the prevention of exhaust heat.
In the method for suppressing the progress of corrosion of an air conditioner according to the present invention, it is preferable that the exhaust prevention and the exhaust heat prevention are performed by a louver provided in the indoor unit.
In the method for suppressing corrosion progress of an air conditioner according to the present invention, it is preferable that the exhaust prevention and the exhaust heat prevention are performed by a drain pipe provided in the indoor unit.
 本発明に係る空調機の腐食進行抑制方法は、前記水分除去運転が、前記室内機の内部を減圧にする真空引き(減圧処理)によって行われることが好ましい。 In the method for suppressing the progress of corrosion of an air conditioner according to the present invention, it is preferable that the water removal operation is performed by vacuuming (pressure reduction processing) for reducing the pressure inside the indoor unit.
 本発明に係る空調機の腐食進行抑制方法は、水分除去運転として室内機の真空引きが行われることによって、冷媒管に発生した腐食孔が管肉厚を貫通する貫通孔にまで進行することがさらに抑制される。 In the method for suppressing corrosion progress of an air conditioner according to the present invention, by performing vacuuming of the indoor unit as the moisture removal operation, the corrosion holes generated in the refrigerant pipe can progress to the through holes that penetrate the pipe wall thickness. It is further suppressed.
 本発明に係る空調機は、冷媒管を用いた室内熱交換器を有する室内機と、室外機とを備える空調機において、前記室内機は、前記の空調機の腐食進行抑制方法を用いて前記空調機を制御する制御装置を備えることとする。 An air conditioner according to the present invention is an air conditioner including an indoor unit having an indoor heat exchanger using a refrigerant pipe, and an outdoor unit, wherein the indoor unit uses the corrosion progress suppressing method for the air conditioner to A control device for controlling the air conditioner will be provided.
 本発明に係る空調機は、室内機が前記の空調機の腐食進行抑制方法を用いて空調機を制御する制御装置を備えることによって、冷媒管に発生した腐食孔が管肉厚を貫通する貫通孔にまで進行することが抑制される。 In the air conditioner according to the present invention, the indoor unit is provided with a control device that controls the air conditioner by using the above-described corrosion progress suppressing method for the air conditioner, so that the corrosion hole generated in the refrigerant pipe penetrates through the pipe wall thickness. The progress to the hole is suppressed.
 本発明に係る冷媒管は、空調機の室内機に備えられた室内熱交換器に用いられる冷媒管であって、前記の空調機の腐食進行抑制方法を用いて、前記冷媒管に発生した腐食孔の内部に亜酸化銅が形成されたこととする。 The refrigerant pipe according to the present invention is a refrigerant pipe used in an indoor heat exchanger provided in an indoor unit of an air conditioner, and using the corrosion progress suppressing method of the air conditioner, corrosion generated in the refrigerant pipe. It is assumed that cuprous oxide is formed inside the pores.
 本発明に係る冷媒管は、冷媒管に発生した腐食孔の内部に亜酸化銅を形成することによって、腐食孔が管肉厚を貫通する貫通孔にまで進行することが抑制される。 In the refrigerant tube according to the present invention, by forming cuprous oxide inside the corrosion hole generated in the refrigerant tube, it is possible to prevent the corrosion hole from progressing to a through hole that penetrates the wall thickness of the tube.
 本発明に係る空調機の腐食進行抑制方法、空調機および冷媒管によれば、りん脱酸銅または無酸素銅からなる冷媒管を用いた熱交換器を有する室内機を備える構成において、冷媒管における特に蟻の巣状腐食の腐食進行抑制効果に優れる。その結果、空調機において冷媒の漏れが抑制され、熱交換器の交換頻度を延ばすことができ、空調機の運用コストが低くなる。
 また、Cuの含有量が99.95%以上、酸素の含有量が10ppm以下であり、残部が不可避不純物である空調機用銅管からなる冷媒管を用いた熱交換器を有する室内機を備える構成において、冷媒管における特に蟻の巣状腐食の腐食進行抑制効果に優れる。その結果、空調機において冷媒の漏れが抑制され、熱交換器の交換頻度を延ばすことができ、空調機の運用コストが低くなる。
According to the corrosion progress inhibiting method for an air conditioner, the air conditioner, and the refrigerant pipe according to the present invention, in a configuration including an indoor unit having a heat exchanger using a refrigerant pipe made of phosphorus deoxidized copper or oxygen-free copper, the refrigerant pipe In particular, it is excellent in the effect of suppressing the corrosion progress of ant nest corrosion. As a result, leakage of the refrigerant in the air conditioner can be suppressed, the frequency of exchanging the heat exchanger can be extended, and the operating cost of the air conditioner can be reduced.
Further, an indoor unit having a heat exchanger using a refrigerant pipe made of a copper pipe for an air conditioner, the Cu content of which is 99.95% or more, the oxygen content of which is 10 ppm or less, and the balance of which is an unavoidable impurity is provided. In the constitution, it is excellent in the effect of suppressing the progress of corrosion, especially the ant nest corrosion in the refrigerant pipe. As a result, leakage of the refrigerant in the air conditioner can be suppressed, the frequency of exchanging the heat exchanger can be extended, and the operating cost of the air conditioner can be reduced.
本発明に係る空調機の構成を模式的に示すサイクル図である。It is a cycle diagram which shows typically the structure of the air conditioner which concerns on this invention. 本発明に係る空調機の室内機の構成を模式的に示す断面図である。It is sectional drawing which shows typically the structure of the indoor unit of the air conditioner which concerns on this invention. 室内機に用いられる熱交換器の構成を示す部分正面図である。It is a partial front view which shows the structure of the heat exchanger used for an indoor unit. 室内機に用いられる制御装置の構成を示すブロック図である。It is a block diagram which shows the structure of the control apparatus used for an indoor unit. 腐食再現装置の構成を示す正面図である。It is a front view which shows the structure of a corrosion reproduction apparatus. 本発明に係る空調機の冷媒管に形成された蟻の巣状腐食孔に亜酸化銅を設けた状態を模式的に示す断面図である。It is sectional drawing which shows typically the state which provided the cuprous oxide in the ant nest-like corrosion hole formed in the refrigerant pipe of the air conditioner which concerns on this invention. 図6AのAの領域を拡大して模式的に示す断面図である。It is sectional drawing which expands the area | region of A of FIG. 6A, and is shown typically. 本発明に係る空調機の冷媒管において、0.5%ギ酸の雰囲気中に試験期間20日中で1日2回の乾燥した場合の腐食の進行状態を、X線CTスキャナ(島津製作所製、型式inspeXio SMX-225CT FPD)で観察した写真である。In the refrigerant pipe of the air conditioner according to the present invention, the progress state of corrosion when dried twice a day in a test period of 20 days in an atmosphere of 0.5% formic acid was measured by an X-ray CT scanner (manufactured by Shimadzu Corporation, It is a photograph observed with a model type inspeXio SMX-225CT FPD). 図7Aにおいて観察ポイントの腐食孔の位置を冷媒管の長手方向に切断した状態でのX線CTスキャナ(島津製作所製、型式inspeXio SMX-225CT FPD)で観察した写真である。7A is a photograph observed with an X-ray CT scanner (manufactured by Shimadzu Corporation, model inspeXio SMX-225CT FPD) in a state in which the position of the corrosion hole at the observation point is cut in the longitudinal direction of the refrigerant pipe in FIG. 7A. 本発明に係る空調機の冷媒管において、0.5%ギ酸の雰囲気中に試験期間20日中で乾燥しなかった場合の腐食の進行状態を、X線CTスキャナ(島津製作所製、型式inspeXio SMX-225CT FPD)で観察した写真である。In the refrigerant pipe of the air conditioner according to the present invention, the progress of corrosion when not dried in the atmosphere of 0.5% formic acid during the test period of 20 days was measured by an X-ray CT scanner (manufactured by Shimadzu Corporation, model inspeXio SMX). -225CT FPD). 図8Aにおいて観察ポイントの腐食孔の位置を冷媒管の長手方向に切断した状態でのX線CTスキャナ(島津製作所製、型式inspeXio SMX-225CT FPD)で観察した写真である。8A is a photograph observed with an X-ray CT scanner (manufactured by Shimadzu, model inspeXio SMX-225CT FPD) in a state in which the position of the corrosion hole at the observation point in FIG. 8A is cut in the longitudinal direction of the refrigerant pipe. 本発明に係る空調機の冷媒管において、試験期間10日中で観察前に1回、乾燥した場合の腐食の進行状態を、X線CTスキャナ(島津製作所製、型式inspeXio SMX-225CT FPD)で観察した写真である。In the refrigerant pipe of the air conditioner according to the present invention, the progress of corrosion once dried before observation was observed with an X-ray CT scanner (manufactured by Shimadzu Corporation, model inspeXio SMX-225CT FPD) once before observation in a test period of 10 days. It is an observed photograph. 図9Aにおいて観察ポイントの腐食孔の位置を冷媒管の長手方向に切断した状態でのX線CTスキャナ(島津製作所製、型式inspeXio SMX-225CT FPD)で観察した写真である。9A is a photograph observed with an X-ray CT scanner (manufactured by Shimadzu Corporation, model inspeXio SMX-225CT FPD) with the position of the corrosion hole at the observation point in FIG. 9A being cut in the longitudinal direction of the refrigerant pipe. 図9Aの観察ポイントの腐食孔の位置を拡大した写真である。It is the photograph which expanded the position of the corrosion hole of the observation point of FIG. 9A. 図9Bの観察ポイントの腐食孔の位置を拡大した写真である。It is the photograph which expanded the position of the corrosion hole of the observation point of FIG. 9B. 本発明に係る空調機の冷媒管において、試験期間20日中で観察前に2回、乾燥した場合の腐食の進行状態を、X線CTスキャナ(島津製作所製、型式inspeXio SMX-225CT FPD)で観察した写真である。In the refrigerant pipe of the air conditioner according to the present invention, the progress of corrosion when dried twice before observation during the test period of 20 days was confirmed by an X-ray CT scanner (manufactured by Shimadzu Corporation, model inspeXio SMX-225CT FPD). It is an observed photograph. 図10Aにおいて観察ポイントの腐食孔の位置を冷媒管の長手方向に切断した状態でのX線CTスキャナ(島津製作所製、型式inspeXio SMX-225CT FPD)で観察した写真である。FIG. 10A is a photograph observed with an X-ray CT scanner (manufactured by Shimadzu Corporation, model inspeXio SMX-225CT FPD) with the position of the corrosion hole at the observation point in FIG. 10A being cut in the longitudinal direction of the refrigerant pipe. 図10Aの観察ポイントの腐食孔の位置を拡大した写真である。It is the photograph which expanded the position of the corrosion hole of the observation point of FIG. 10A. 図10Bの観察ポイントの腐食孔の位置を拡大した写真である。It is the photograph which expanded the position of the corrosion hole of the observation point of FIG. 10B. 本発明に係る空調機の冷媒管において、試験期間30日中で観察前に3回、乾燥した場合の腐食の進行状態を、X線CTスキャナ(島津製作所製、型式inspeXio SMX-225CT FPD)で観察した写真である。In the refrigerant pipe of the air conditioner according to the present invention, the progress of corrosion when dried 3 times before observation during the test period of 30 days was measured by an X-ray CT scanner (Shimadzu Corporation, model inspeXio SMX-225CT FPD). It is an observed photograph. 図11Aにおいて観察ポイントの腐食孔の位置を冷媒管の長手方向に切断した状態でのX線CTスキャナ(島津製作所製、型式inspeXio SMX225CT FPD)で観察した写真である。FIG. 11B is a photograph observed with an X-ray CT scanner (manufactured by Shimadzu Corporation, model inspeXio SMX225CT FPD) in a state in which the position of the corrosion hole at the observation point in FIG. 11A is cut in the longitudinal direction of the refrigerant pipe. 図11Aの観察ポイントの腐食孔の位置を拡大した写真である。It is the photograph which expanded the position of the corrosion hole of the observation point of FIG. 11A. 図11Bの観察ポイントの腐食孔の位置を拡大した写真である。It is the photograph which expanded the position of the corrosion hole of the observation point of FIG. 11B. 本発明に係る空調機の冷媒管において、試験期間40日中で観察前に4回、乾燥した場合の腐食の進行状態を、X線CTスキャナ(島津製作所製、型式inspeXio SMX-225CT FPD)で観察した写真である。In the refrigerant pipe of the air conditioner according to the present invention, the progress of corrosion when dried 4 times before observation in 40 days of the test period was measured by an X-ray CT scanner (manufactured by Shimadzu Corporation, model inspeXio SMX-225CT FPD). It is an observed photograph. 図12Aにおいて観察ポイントの腐食孔の位置を冷媒管の長手方向に切断した状態でのX線CTスキャナ(島津製作所製、型式inspeXio SMX-225CT FPD)で観察した写真である。12A is a photograph observed by an X-ray CT scanner (manufactured by Shimadzu Corporation, model inspeXio SMX-225CT FPD) in a state in which the position of the corrosion hole at the observation point in FIG. 12A is cut in the longitudinal direction of the refrigerant pipe. 図12Aの観察ポイントの腐食孔の位置を拡大した写真である。It is the photograph which expanded the position of the corrosion hole of the observation point of FIG. 12A. 図12Bの観察ポイントの腐食孔の位置を拡大した写真である。It is the photograph which expanded the position of the corrosion hole of the observation point of FIG. 12B. 本発明に係る空調機の冷媒管において、試験期間50日中で観察前に5回、乾燥した場合の腐食の進行状態を、X線CTスキャナ(島津製作所製、型式inspeXio SMX-225CT FPD)で観察した写真である。In the refrigerant pipe of the air conditioner according to the present invention, the progress of corrosion when dried 5 times before observation in a test period of 50 days was performed by an X-ray CT scanner (manufactured by Shimadzu Corporation, model inspeXio SMX-225CT FPD). It is an observed photograph. 図13Aにおいて観察ポイントの腐食孔の位置を冷媒管の長手方向に切断した状態でのX線CTスキャナ(島津製作所製、型式inspeXio SMX-225CT FPD)で観察した写真である。FIG. 13A is a photograph observed with an X-ray CT scanner (manufactured by Shimadzu Corp., model inspeXio SMX-225CT FPD) in a state where the position of the corrosion hole at the observation point in FIG. 13A is cut in the longitudinal direction of the refrigerant pipe. 図13Aの観察ポイントの腐食孔の位置を拡大した写真である。It is the photograph which expanded the position of the corrosion hole of the observation point of FIG. 13A. 図13Bの観察ポイントの腐食孔の位置を拡大した写真である。It is the photograph which expanded the position of the corrosion hole of the observation point of FIG. 13B. 本発明に係る空調機の冷媒管において、試験期間60日中で観察前に6回、乾燥した場合の腐食の進行状態を、X線CTスキャナ(島津製作所製、型式inspeXio SMX-225CT FPD)で観察した写真である。In the refrigerant pipe of the air conditioner according to the present invention, the progress of corrosion when dried six times before observation in the test period of 60 days was confirmed by an X-ray CT scanner (manufactured by Shimadzu Corporation, model inspeXio SMX-225CT FPD). It is an observed photograph. 図14Aにおいて観察ポイントの腐食孔の位置を冷媒管の長手方向に切断した状態でのX線CTスキャナ(島津製作所製、型式inspeXio SMX-225CT FPD)で観察した写真である。It is the photograph observed with the X-ray CT scanner (the Shimadzu Corporation make, model inspeXio SMX-225CT FPD) in the state which cut | disconnected the position of the corrosion hole of the observation point in FIG. 14A in the longitudinal direction of the refrigerant pipe. 図14Aの観察ポイントの腐食孔の位置を拡大した写真である。It is the photograph which expanded the position of the corrosion hole of the observation point of FIG. 14A. 図14Bの観察ポイントの腐食孔の位置を拡大した写真である。It is the photograph which expanded the position of the corrosion hole of the observation point of FIG. 14B. 本発明に係る空調機の冷媒管において、試験期間90日中で観察前に7回、乾燥した場合の腐食の進行状態を、X線CTスキャナ(島津製作所製、型式inspeXio SMX-225CT FPD)で観察した写真である。In the refrigerant pipe of the air conditioner according to the present invention, the progress of corrosion when dried 7 times before observation within 90 days of the test period was measured by an X-ray CT scanner (manufactured by Shimadzu Corporation, model inspeXio SMX-225CT FPD). It is an observed photograph. 図15Aにおいて観察ポイントの腐食孔の位置を冷媒管の長手方向に切断した状態でのX線CTスキャナ(島津製作所製、型式inspeXio SMX-225CT FPD)で観察した写真である。It is the photograph observed with the X-ray CT scanner (the Shimadzu Corporation make, model inspeXio SMX-225CT FPD) in the state which cut | disconnected the position of the corrosion hole of the observation point in FIG. 15A in the longitudinal direction of the refrigerant pipe. 図15Aの観察ポイントの腐食孔の位置を拡大した写真である。It is the photograph which expanded the position of the corrosion hole of the observation point of FIG. 15A. 図15Bの観察ポイントの腐食孔の位置を拡大した写真である。It is the photograph which expanded the position of the corrosion hole of the observation point of FIG. 15B. 本発明に係る空調機の冷媒管において、試験期間120日中観察前に8回、乾燥した場合の腐食の進行状態を、X線CTスキャナ(島津製作所製、型式inspeXio SMX-225CT FPD)で観察した写真である。In the refrigerant pipe of the air conditioner according to the present invention, the progress of corrosion when dried 8 times before observation for 120 days during the test period is observed with an X-ray CT scanner (Shimadzu Corporation, model inspeXio SMX-225CT FPD). It is a photograph taken. 図16Aにおいて観察ポイントの腐食孔の位置を冷媒管の長手方向に切断した状態でのX線CTスキャナ(島津製作所製、型式inspeXio SMX-225CT FPD)で観察した写真である。FIG. 16B is a photograph observed with an X-ray CT scanner (manufactured by Shimadzu Corp., model inspeXio SMX-225CT FPD) in a state where the position of the corrosion hole at the observation point in FIG. 16A is cut in the longitudinal direction of the refrigerant pipe. 図16Aの観察ポイントの腐食孔の位置を拡大した写真である。It is the photograph which expanded the position of the corrosion hole of the observation point of FIG. 16A. 図16Bの観察ポイントの腐食孔の位置を拡大した写真である。It is the photograph which expanded the position of the corrosion hole of the observation point of FIG. 16B.
 まず、本発明の腐食進行抑制方法に用いる空調機、室内機および室内熱交換器について、図面を参照して説明する。 First, an air conditioner, an indoor unit, and an indoor heat exchanger used in the corrosion progress inhibiting method of the present invention will be described with reference to the drawings.
<空調機>
 図1に示すように、空調機1は、室外機2と、室内機3と、制御装置17(図2参照)とを備え、室外機2と室内機3とが冷媒配管9を介して接続されている。室外機2は、冷媒を圧縮する圧縮機4と、冷媒の流れを切り換える四方弁5と、冷媒による熱交換を行う室外熱交換器6と、冷媒を膨張する膨張弁7と、各々を接続する冷媒配管9とを備えている。室内機3は、冷媒配管9を介して四方弁5および膨張弁7と接続し冷媒による熱交換を行う室内熱交換器8を備えている。
<Air conditioner>
As shown in FIG. 1, the air conditioner 1 includes an outdoor unit 2, an indoor unit 3, and a control device 17 (see FIG. 2), and the outdoor unit 2 and the indoor unit 3 are connected via a refrigerant pipe 9. Has been done. The outdoor unit 2 connects a compressor 4 for compressing a refrigerant, a four-way valve 5 for switching the flow of the refrigerant, an outdoor heat exchanger 6 for exchanging heat with the refrigerant, and an expansion valve 7 for expanding the refrigerant, respectively. The refrigerant pipe 9 is provided. The indoor unit 3 includes an indoor heat exchanger 8 that is connected to the four-way valve 5 and the expansion valve 7 via a refrigerant pipe 9 to exchange heat with the refrigerant.
 空調機1では、冷房運転時または除湿運転時には、圧縮機4から吐出された冷媒は、四方弁5、室外熱交換器6、膨張弁7、室内熱交換器8と流れ、再び四方弁5を経由して圧縮機4に吸入されて冷房運転または除湿運転が実施される。 In the air conditioner 1, during the cooling operation or the dehumidifying operation, the refrigerant discharged from the compressor 4 flows through the four-way valve 5, the outdoor heat exchanger 6, the expansion valve 7, the indoor heat exchanger 8 and the four-way valve 5 again. The air is sucked into the compressor 4 via the air conditioning system and the cooling operation or the dehumidifying operation is performed.
 空調機1では、暖房運転時には、圧縮機4から吐出された冷媒は、四方弁5、室内熱交換器8、膨張弁7、室外熱交換器6と流れ、再び四方弁5を経由して圧縮機4に吸入されて暖房運転が実施される。 In the air conditioner 1, during the heating operation, the refrigerant discharged from the compressor 4 flows through the four-way valve 5, the indoor heat exchanger 8, the expansion valve 7, and the outdoor heat exchanger 6, and is compressed again via the four-way valve 5. It is sucked into the machine 4 and the heating operation is performed.
<室内機>
 図2、図3に示すように、室内機3は、室内風路13を形成するケーシング14および吸入グリル12と、室内風路13に配置される室内熱交換器8および室内送風機10と、後記する腐食進行抑制方法を用いて空調機1を制御する制御装置17と、制御装置17の制御によって室内熱交換器8の冷媒管21に発生した腐食孔の内部の水分除去に用いられるヒーター11、ルーバー15、ドレイン配管16および減圧ポンプ19と、を備えている。室内機3は、複数の室内熱交換器8と、複数の室内送風機10を備えていてもよく、室内熱交換器8と室内送風機10とは同数でなくてもよい。なお、本実施形態においては制御装置17を室内機3に配置しているが、本実施形態に限定されるものではない。また、水分除去運転を空調機1の暖房運転によって行う場合、ヒーター11および減圧ポンプ19は必ずしも必要でない。
<Indoor unit>
As shown in FIGS. 2 and 3, the indoor unit 3 includes a casing 14 and an intake grill 12 that form an indoor air duct 13, an indoor heat exchanger 8 and an indoor blower 10 that are arranged in the indoor air duct 13, and will be described later. A controller 17 for controlling the air conditioner 1 by using the corrosion progress suppressing method described above, and a heater 11 used for removing water inside the corrosion holes generated in the refrigerant pipe 21 of the indoor heat exchanger 8 under the control of the controller 17. The louver 15, the drain pipe 16, and the decompression pump 19 are provided. The indoor unit 3 may include a plurality of indoor heat exchangers 8 and a plurality of indoor fans 10, and the number of the indoor heat exchangers 8 and the number of the indoor fans 10 do not have to be the same. Although the control device 17 is arranged in the indoor unit 3 in the present embodiment, the present invention is not limited to this embodiment. Further, when the moisture removal operation is performed by the heating operation of the air conditioner 1, the heater 11 and the decompression pump 19 are not always necessary.
 室内機3では、冷房運転時、除湿運転時または暖房運転時には、吸入グリル12から吸入された室内空気は、室内熱交換器8により冷風または暖風に熱交換され、その冷風または暖風を室内送風機10によって吹出口18から居住空間である室内に吹き出して冷房運転、除湿運転または暖房運転が実施される。 In the indoor unit 3, during the cooling operation, the dehumidifying operation, or the heating operation, the indoor air sucked from the intake grill 12 is heat-exchanged by the indoor heat exchanger 8 into cold air or warm air, and the cold air or warm air is used indoors. The blower 10 blows the air from the air outlet 18 into a room that is a living space to perform a cooling operation, a dehumidifying operation, or a heating operation.
<室内熱交換器>
 図3に示すように、室内熱交換器8は、並列された多数の直管21aと直管21aの両端部に接合された多数のリターンベンド管21bとからなる冷媒管21と、直管21aの外表面に一定間隔で並列された多数の板状のフィン22と、を備える。冷媒管21には、熱伝導性および加工性の観点から、JIS H 3300:2012(CDA10200)で規定されたりん脱酸銅C1220または無酸素銅C1020からなる銅管が用いられる。フィン22には、熱伝導性および加工性の観点から、アルミニウムフィンが用いられる。
<Indoor heat exchanger>
As shown in FIG. 3, the indoor heat exchanger 8 includes a straight pipe 21a and a refrigerant pipe 21 including a large number of straight pipes 21a arranged in parallel and a large number of return bend pipes 21b joined to both ends of the straight pipe 21a. And a large number of plate-shaped fins 22 arranged in parallel on the outer surface of the plate at regular intervals. As the refrigerant pipe 21, a copper pipe made of phosphorus deoxidized copper C1220 or oxygen-free copper C1020 specified in JIS H 3300: 2012 (CDA10200) is used from the viewpoint of thermal conductivity and workability. An aluminum fin is used for the fin 22 from the viewpoint of thermal conductivity and workability.
 直管21aには、管内表面が平滑な平滑管が用いられるが、熱伝導性を向上させるために、管内表面に所定形状の溝が形成された溝付管を用いることが好ましい。溝形状としては、特に限定されないが、溝の溝リード角が15~45度、溝深さが0.10~0.35mm、溝間に形成されたフィン22の山頂角が5~30度、フィン根元半径が溝深さの1/10~1/3であることが好ましい。また、リターンベンド管21bには、管内表面が平滑な平滑管が用いられるが、熱伝導性を向上させるために、直管21aと同様な溝付管を用いることが好ましい。これらの管の管肉厚は一般的に0.2mm前後である。 A straight tube having a smooth inner surface is used as the straight tube 21a, but in order to improve thermal conductivity, it is preferable to use a grooved tube in which a groove having a predetermined shape is formed on the inner surface of the tube. The shape of the groove is not particularly limited, but the groove lead angle of the groove is 15 to 45 degrees, the groove depth is 0.10 to 0.35 mm, and the crest angle of the fin 22 formed between the grooves is 5 to 30 degrees. The fin root radius is preferably 1/10 to 1/3 of the groove depth. Further, although a smooth pipe having a smooth inner surface is used as the return bend pipe 21b, it is preferable to use a grooved pipe similar to the straight pipe 21a in order to improve thermal conductivity. The wall thickness of these tubes is generally around 0.2 mm.
 室内熱交換器8では、冷房運転時または除湿運転時には、室外機2の膨張弁7から膨張された冷媒が冷媒管21の内部に供給されることによって、室内空気は冷風に熱交換され冷房運転、除湿運転が実施される。この時、室内熱交換器8の冷媒管21を流れる冷媒により、冷媒管21の外面に設置されたフィン22が室温より低温に冷却される。これにより、フィン22の周りの空気が冷却され、室内空気の露点はフィン22の温度より高いため、フィン22に結露が発生する。室内機3が設置されている雰囲気に低級カルボン酸などが含まれていると、結露水に溶け込み、冷媒管21に蟻の巣状腐食を発生させることがある。 In the indoor heat exchanger 8, during the cooling operation or the dehumidifying operation, the refrigerant expanded by the expansion valve 7 of the outdoor unit 2 is supplied to the inside of the refrigerant pipe 21, whereby the indoor air is heat-exchanged with the cool air and the cooling operation is performed. The dehumidifying operation is performed. At this time, the fins 22 installed on the outer surface of the refrigerant tube 21 are cooled to a temperature lower than room temperature by the refrigerant flowing through the refrigerant tube 21 of the indoor heat exchanger 8. Thereby, the air around the fins 22 is cooled, and the dew point of the indoor air is higher than the temperature of the fins 22, so that dew condensation occurs on the fins 22. If the atmosphere in which the indoor unit 3 is installed contains a lower carboxylic acid or the like, it may dissolve in dew condensation water and cause ant nest corrosion in the refrigerant pipe 21.
 室内熱交換器8では、暖房運転時には、室外機2の圧縮機4から吐出された冷媒が四方弁5を介して冷媒管21の内部に供給されることによって、室内空気は暖風に熱交換され暖房運転が実施される。 In the indoor heat exchanger 8, during the heating operation, the refrigerant discharged from the compressor 4 of the outdoor unit 2 is supplied to the inside of the refrigerant pipe 21 via the four-way valve 5, so that the indoor air exchanges heat with warm air. The heating operation is performed.
<制御装置>
 制御装置17は、空調機1の運転の際、最初の冷房運転または除湿運転の終了後から所定期間経過した後、または、最後の水分除去運転後の最初の冷房運転または除湿運転の終了後、所定期間経過した後に、室内機3(室内熱交換器8)の冷媒管21に発生した腐食孔の内部に存在する水分の除去を行う水分除去運転を行うように、空調機1を制御する。なお、最初の冷房運転または除湿運転とは、複数回の冷房運転または除湿運転された場合、最初の冷房運転または除湿運転を意味する。ここで、水分除去運転は、加熱乾燥または真空引きの2種の水分除去運転モードを有することが好ましい。
<Control device>
The controller 17 operates the air conditioner 1 after a predetermined period has elapsed from the end of the first cooling operation or dehumidifying operation, or after the first cooling operation or dehumidifying operation after the last moisture removal operation, After a lapse of a predetermined period, the air conditioner 1 is controlled so as to perform a moisture removal operation for removing moisture existing inside the corrosion holes generated in the refrigerant pipe 21 of the indoor unit 3 (indoor heat exchanger 8). The first cooling operation or dehumidifying operation means the first cooling operation or dehumidifying operation when the cooling operation or dehumidifying operation is performed a plurality of times. Here, it is preferable that the moisture removal operation has two types of moisture removal operation modes of heating and drying or evacuation.
 図4に示すように、制御装置17は、記憶部17Aと、出力部17Bと、演算部17Dと、を備える。記憶部17Aは、空調機1の冷房運転、暖房運転、水分除去運転等の運転モード、および、運転時間等の時間情報を含む運転履歴を記憶する。出力部17Bは、空調機1(室内機3、または、室外機2と室内機3)に水分除去運転を行う命令(信号)を出力する。演算部17Dは、記憶部17Aの運転履歴等に基づいて出力部17Bに命令を出力するように指示する。制御装置17は、空調機1の水分除去運転の際にリモコン等から水分除去運転モードの信号を受け取る入力部17Cをさらに備えることが好ましい。記憶部17Aは、水分除去運転が行われていない水分除去運転待機期間を記憶する。演算部17Dは、図示しないタイマー等の時間情報に基づいて水分除去運転待機期間をカウントし、記憶部17Aに記憶させる。記憶部17Aは、水分除去運転における条件、具体的には加熱乾燥条件および真空引き条件を記憶している。ここで、加熱乾燥条件としては、予め設定された温度および時間である。また、加熱乾燥条件としては、下記に示す関係式(1)を満たす冷媒管21の保持温度Xおよび保持時間Y、関係式(2)を満たす冷媒管21の保持時間Yおよび環境温度との温度差Zを記憶していることが好ましい。関係式(1)、(2)についての詳細は後述する。
 Y≧4000e-0.11X     (1)
 Y≧1100Z-1.5      (2)
As shown in FIG. 4, the control device 17 includes a storage unit 17A, an output unit 17B, and a calculation unit 17D. The storage unit 17A stores the operation history including the cooling mode, the heating mode, the water removal mode, and other operation modes of the air conditioner 1, and the time information such as the operation time. The output unit 17B outputs to the air conditioner 1 (the indoor unit 3 or the outdoor unit 2 and the indoor unit 3) a command (signal) for performing the moisture removal operation. The calculation unit 17D instructs the output unit 17B to output a command based on the operation history of the storage unit 17A and the like. It is preferable that the control device 17 further includes an input unit 17C that receives a signal of the moisture removal operation mode from a remote controller or the like during the moisture removal operation of the air conditioner 1. The storage unit 17A stores the water removal operation standby period in which the water removal operation is not performed. The calculation unit 17D counts the water removal operation standby period based on time information such as a timer (not shown), and stores it in the storage unit 17A. The storage unit 17A stores conditions in the water removal operation, specifically, heat drying conditions and vacuum evacuation conditions. Here, the heating and drying conditions are a preset temperature and time. Further, as the heating and drying conditions, the holding temperature X and the holding time Y of the refrigerant pipe 21 that satisfies the following relational expression (1), the holding time Y of the refrigerant pipe 21 that satisfies the relational expression (2), and the temperature with the environmental temperature. It is preferable to store the difference Z. Details of the relational expressions (1) and (2) will be described later.
Y ≧ 4000e −0.11X (1)
Y ≧ 1100Z −1.5 (2)
 演算部17Dは、記憶部17Aの運転履歴に基づいて、冷房運転または除湿運転の終了後から所定日数経過するまでの間に、すなわち、水分除去運転待機期間が所定値に達するまでの間に空調機1の水分除去運転を行う命令を出力部17Bから自動的に(所定値に達するまでの間で設定された条件(時間)に達したら)出力するように指示を行う。なお、所定日数は、水分除去運転待機期間(所定期間)を超えない日数の範囲内で任意に設定できる。また、演算部17Dは、リモコン等からの水分除去運転モードの入力に基づいて、空調機1の水分除去運転を行う命令を出力するように出力部17Bに指示を行う。ここで、水分除去運転待機期間は、りん脱酸銅からなる冷媒管21の場合には10日、無酸素銅からなる冷媒管21の場合には60日である。また、出力部17Bまたはリモコン等から水分除去運転の命令が出力された場合、演算部17Dは、記憶部17Aに記憶されていた水分除去運転待機期間をカウントしているカウンターをゼロにリセットする。なお、リモコン等からの水分除去運転モードの入力がない場合には、演算部17Dは、水分除去運転モード(加熱乾燥または真空引き)を予め設定されたモードで選択し、選択された水分除去運転モードに基づいて、空調機1の水分除去運転を行う命令を出力するよう出力部17Bに指示する。 The calculation unit 17D, based on the operation history of the storage unit 17A, performs air conditioning until a predetermined number of days elapses after the cooling operation or the dehumidifying operation ends, that is, until the moisture removal operation standby period reaches a predetermined value. The output unit 17B is instructed to automatically output (when the set condition (time) is reached until the predetermined value is reached) for performing the moisture removal operation of the machine 1. The predetermined number of days can be arbitrarily set within the range of the number of days not exceeding the water removal operation standby period (predetermined period). The calculation unit 17D also instructs the output unit 17B to output a command to perform the moisture removal operation of the air conditioner 1 based on the input of the moisture removal operation mode from the remote controller or the like. Here, the water removal operation standby period is 10 days in the case of the refrigerant tube 21 made of phosphorus deoxidized copper, and 60 days in the case of the refrigerant tube 21 made of oxygen-free copper. In addition, when the moisture removal operation command is output from the output unit 17B, the remote controller, or the like, the calculation unit 17D resets the counter, which is stored in the storage unit 17A and is counting the moisture removal operation standby period, to zero. When the moisture removal operation mode is not input from the remote controller or the like, the calculation unit 17D selects the moisture removal operation mode (heat drying or evacuation) in a preset mode, and the selected moisture removal operation is performed. Based on the mode, the output unit 17B is instructed to output a command to perform the moisture removal operation of the air conditioner 1.
 演算部17Dは、入力部17Cが受け取った水分除去運転モードの信号が加熱乾燥である場合、室外機2と室内機3とに通常の暖房運転時の駆動命令を出力するよう出力部17Bに指示することが好ましく、暖房運転の開始と共に、ルーバー15またはドレイン配管16による排気阻止および排熱阻止の命令を出力するよう出力部17Bに指示することがさらに好ましい。なお、演算部17Dは、入力部17Cが受け取った水分除去運転モードの信号が加熱乾燥である場合、室内機3のヒーター11に駆動命令を出力するよう出力部17Bに指示してもよい。
 また、演算部17Dは、入力部17Cが受け取った水分除去運転モードの信号が真空引きである場合には、室内機3の減圧ポンプ19に駆動命令を出力するよう出力部17Bに指示することが好ましい。
When the signal of the moisture removal operation mode received by the input unit 17C is heating and drying, the calculation unit 17D instructs the output unit 17B to output the drive command during the normal heating operation to the outdoor unit 2 and the indoor unit 3. It is more preferable to instruct the output unit 17B to output a command to block exhaust and exhaust heat by the louver 15 or the drain pipe 16 when the heating operation is started. The arithmetic unit 17D may instruct the output unit 17B to output a drive command to the heater 11 of the indoor unit 3 when the moisture removal operation mode signal received by the input unit 17C is heating and drying.
In addition, when the signal of the moisture removal operation mode received by the input unit 17C is evacuation, the calculation unit 17D may instruct the output unit 17B to output a drive command to the decompression pump 19 of the indoor unit 3. preferable.
 水分除去運転モードが加熱乾燥である場合、演算部17Dは、空調機1の水分除去運転の際に、リモコン等から入力部17Cに入力された加熱乾燥の際の希望温度または希望時間に基づいて、上記した関係式(1)(Y≧4000e-0.11X)を満足する加熱乾燥時の冷媒管21の保持温度X(℃)または保持時間Y(min)を演算する。つまり、関係式(1)のYの値あるいはXの値のどちらか一方を入力した場合、演算部17Dが、加熱乾燥の加熱時間および加熱温度を関係式(1)に基づいて演算し設定を変更する。演算部17Dは、演算部17Dで演算された冷媒管21の保持温度X(℃)または保持時間Y(min)で室内機3(ヒーター11)、または、室外機2と室内機3が加熱乾燥されるように出力部17Bに指示を行う。なお、リモコン等からの入力は、加熱乾燥の命令のみであってもよく、その場合には、リモコン等の操作で、加熱乾燥の動作が行われるように命令が出力部17Bに出力される。 When the moisture removal operation mode is heating and drying, the calculation unit 17D is based on the desired temperature or the desired time for heating and drying input to the input unit 17C from the remote controller or the like during the moisture removal operation of the air conditioner 1. The holding temperature X (° C.) or the holding time Y (min) of the refrigerant pipe 21 during heating and drying that satisfies the above relational expression (1) (Y ≧ 4000e −0.11X 2 ) is calculated. That is, when either the Y value or the X value of the relational expression (1) is input, the calculation unit 17D calculates and sets the heating time and the heating temperature of the heating and drying based on the relational expression (1). change. The calculation unit 17D heats and dries the indoor unit 3 (heater 11) or the outdoor unit 2 and the indoor unit 3 at the holding temperature X (° C) or the holding time Y (min) of the refrigerant pipe 21 calculated by the calculation unit 17D. The output unit 17B is instructed to do so. It should be noted that the input from the remote controller or the like may be only a heating / drying command. In that case, the command is output to the output unit 17B so that the heating / drying operation is performed by the operation of the remote controller or the like.
 演算部17Dでは、冷媒管21の保持温度X(℃)の代わりに、加熱乾燥の際の空調機1が設置される環境の環境温度と冷媒管21の保持温度Xとの温度差Zを用いて、冷媒管21の保持温度Xまたは保持時間Yを演算してもよい。その際、演算部17Dでは、上記した関係式(2)(Y≧1100Z-1.5)を用いる。また、環境温度は、室内機3等に備えられた図示しない温度センサー等によって測定され、記憶部17Aで記憶される。温度差Zおよび保持時間Yは、ユーザーによって希望値がリモコン等によって入力部17Cに入力され、演算部17Dに送られる。なお、リモコン等からの入力は、加熱乾燥の命令のみであってもよい。その場合、演算部17Dは、記憶部17Aが予め記憶している冷媒管21の保持時間Yおよび温度差Zを出力部17Bに出力する。なお、演算部17Dは、記憶部17Aに記憶されている、予め設定された温度と時間とにより加熱乾燥の終了を検出し、加熱乾燥を終了させる命令を出力するように出力部17Bに指示を行う。また、演算部17Dは、記憶部17Aに記憶されている、冷媒管21の温度または環境温度との温度差で、関係式(1)または(2)の経過時間経過したか否かを判定することで、加熱乾燥の終了を検出し、加熱乾燥を終了させる命令を出力するように出力部17Bに指示を行う。 In the calculation unit 17D, instead of the holding temperature X (° C.) of the refrigerant pipe 21, the temperature difference Z between the environmental temperature of the environment in which the air conditioner 1 is installed during heating and drying and the holding temperature X of the refrigerant pipe 21 is used. Then, the holding temperature X or the holding time Y of the refrigerant pipe 21 may be calculated. At that time, the calculation unit 17D uses the above relational expression (2) (Y ≧ 1100Z−1.5). The ambient temperature is measured by a temperature sensor (not shown) provided in the indoor unit 3 or the like and stored in the storage unit 17A. Desired values of the temperature difference Z and the holding time Y are input by the user to the input unit 17C by a remote controller or the like and sent to the calculation unit 17D. It should be noted that the input from the remote controller or the like may be only a command for heating and drying. In that case, the calculation unit 17D outputs the holding time Y and the temperature difference Z of the refrigerant pipe 21 stored in advance in the storage unit 17A to the output unit 17B. The arithmetic unit 17D detects the end of heating and drying based on the preset temperature and time stored in the storage unit 17A, and instructs the output unit 17B to output a command to end the heating and drying. To do. In addition, the calculation unit 17D determines whether or not the elapsed time of the relational expression (1) or (2) has elapsed based on the temperature difference between the temperature of the refrigerant pipe 21 and the ambient temperature stored in the storage unit 17A. Thus, the end of heating and drying is detected, and the output unit 17B is instructed to output a command to end the heating and drying.
 制御装置17は、冷房運転または除湿運転の終了後に水分除去運転が必要であることをユーザーに伝える表示運転を、水分除去運転に加えて行うように、空調機1を制御することが好ましい。また、制御装置17は、最初の表示運転が、冷房運転または除湿運転の終了後から所定日数経過するまでの間に行われるように、空調機1を制御することがさらに好ましい。ここで、所定日数は、所定期間(水分除去運転待機期間)よりも少ない日数であり、りん脱酸銅からなる冷媒管21の場合には一例として5日、無酸素銅からなる冷媒管21の場合には一例として50日である。表示運転は、水分除去運転が行われるまで継続して行うことが好ましい。 It is preferable that the control device 17 controls the air conditioner 1 so as to perform, in addition to the water removal operation, a display operation that notifies the user that the water removal operation is necessary after the cooling operation or the dehumidification operation is completed. Further, it is more preferable that the control device 17 controls the air conditioner 1 so that the first display operation is performed after the end of the cooling operation or the dehumidifying operation and before the lapse of a predetermined number of days. Here, the predetermined number of days is less than a predetermined period (water removal operation standby period), and in the case of the refrigerant pipe 21 made of phosphorus deoxidized copper, for example, 5 days, the refrigerant pipe 21 made of oxygen-free copper is used. In one case, it is 50 days. It is preferable that the display operation is continuously performed until the water removal operation is performed.
 制御装置17は、記憶部17Aの運転履歴等に基づいて、冷房運転または除湿運転の終了後から所定期間が経過した時点で、水分除去運転が必要であることをユーザーに伝えるアラームを室内機3またはリモコンに表示または点灯させる命令を演算部17Dから出力部17Bに指示して出力し、リモコンあるいは室内機3に送ることが好ましい。
 制御装置17では、水分除去運転(加熱乾燥)中に、室内熱交換器8等に備えられた図示しない温度センサー等によって測定された冷媒管21の温度データを演算部17Dにフィードバックして冷媒管21の保持温度Xまたは保持時間Yを演算部17Dが演算し直し、その結果を出力部17Bに指示して出力してもよい。
Based on the operation history of the storage unit 17A, the control device 17 gives an alarm to the user that the water removal operation is necessary at the time when a predetermined period has elapsed from the end of the cooling operation or the dehumidification operation. Alternatively, it is preferable that the arithmetic unit 17D instructs the output unit 17B to output a command to be displayed or lighted on the remote controller, output the command, and send the command to the remote controller or the indoor unit 3.
In the controller 17, the temperature data of the refrigerant pipe 21 measured by a temperature sensor (not shown) provided in the indoor heat exchanger 8 or the like is fed back to the calculation unit 17D during the moisture removal operation (heating and drying) to feed the refrigerant pipe. The holding temperature X or the holding time Y of 21 may be recalculated by the calculation unit 17D, and the result may be instructed and output to the output unit 17B.
<腐食進行抑制方法>
 本発明に係る空調機の腐食進行抑制方法について説明する。なお、空調機、室内機、室内熱交換器の構成については、図1~図3を参照して説明する。
 本発明の腐食進行抑制方法は、冷媒管21を用いた室内熱交換器8を有する室内機3を備える空調機1の腐食進行抑制方法であって、水分除去運転を行うこととする。
<Corrosion progress control method>
A method for suppressing the progress of corrosion of an air conditioner according to the present invention will be described. The configurations of the air conditioner, the indoor unit, and the indoor heat exchanger will be described with reference to FIGS. 1 to 3.
The corrosion progress suppressing method of the present invention is a corrosion progress suppressing method for an air conditioner 1 including an indoor unit 3 having an indoor heat exchanger 8 using a refrigerant pipe 21, and a water removal operation is performed.
(水分除去運転)
 水分除去運転は、空調機1の運転の際、冷房運転または除湿運転の終了後に、冷媒管21に発生した腐食孔の内部に存在する水分の除去を行うものとする。
 水分除去運転は、その実施が、最初の冷房運転または除湿運転の終了後から所定期間(水分除去運転待機期間)経過するまでの間に行われる。また、水分除去運転の終了後、空調機1を停止あるいは暖房運転した場合にも、その後の最初の冷房運転または除湿運転の終了後から所定期間の間に水分除去運転を実施する。ここで、最初の冷房運転または除湿運転とは、複数回の冷房運転または除湿運転がなされた場合の最初の冷房運転または除湿運転を意味する。水分除去運転待機期間は、りん脱酸銅からなる冷媒管21の場合には10日、無酸素銅からなる冷媒管21の場合には60日である。そして、このように、水分除去運転が所定期間内で行われることによって、冷媒管21に発生した腐食孔が、管肉厚を貫通する貫通孔にまで進行することが抑制される。
(Water removal operation)
In the moisture removal operation, when the air conditioner 1 is in operation, after the cooling operation or the dehumidification operation is completed, the water present inside the corrosion holes generated in the refrigerant pipe 21 is removed.
The water removal operation is performed during the period from the end of the first cooling operation or dehumidification operation to the elapse of a predetermined period (water removal operation standby period). In addition, even when the air conditioner 1 is stopped or the heating operation is performed after the water removal operation is completed, the water removal operation is performed for a predetermined period after the end of the first cooling operation or dehumidification operation thereafter. Here, the first cooling operation or dehumidifying operation means the first cooling operation or dehumidifying operation when the cooling operation or dehumidifying operation is performed a plurality of times. The water removal operation standby period is 10 days for the refrigerant pipe 21 made of phosphorus-deoxidized copper and 60 days for the refrigerant pipe 21 made of oxygen-free copper. Then, by performing the moisture removal operation within the predetermined period in this manner, the corrosion holes generated in the refrigerant pipe 21 are suppressed from proceeding to the through holes penetrating the pipe wall thickness.
 水分除去運転の実施は、室内機3に備えられた制御装置17によって制御され、予め設定された条件に基づいて自動的に実施されることが好ましいが、空調機1のリモコン(有線接続型および無線接続型:図4参照)で使用者が手動で実施を制御してもよい。 The water removal operation is preferably controlled by the control device 17 provided in the indoor unit 3 and automatically performed based on preset conditions, but the remote controller of the air conditioner 1 (wired connection type and The wireless connection type: see FIG. 4), the user may manually control the implementation.
 水分除去運転は、冷媒管21に発生した腐食孔の内部に存在する水分の除去を行うことが可能であれば特に限定されないが、排気阻止および排熱阻止を伴わない加熱乾燥、排気阻止および排熱阻止を伴う加熱乾燥、または、真空引きが好ましい。 The moisture removal operation is not particularly limited as long as it is possible to remove the moisture present inside the corrosion holes generated in the refrigerant pipe 21, but the heat drying, the exhaust prevention and the exhaust prevention without the exhaust prevention and the exhaust heat prevention. Heat drying with heat inhibition or evacuation is preferable.
 水分除去運転を行うことによって、腐食孔の内部に水分が残留しないため、水分除去運転後新たに腐食環境にさらされても腐食が進行することがなく、冷媒管21に発生した腐食孔が、管肉厚を貫通する貫通孔にまで進行することを抑制できる。 By performing the moisture removal operation, since moisture does not remain inside the corrosion holes, the corrosion does not proceed even if the corrosion holes are newly exposed to the corrosion environment after the moisture removal operation, and the corrosion holes generated in the refrigerant pipe 21 are It is possible to suppress the progress to the through hole penetrating the wall thickness of the pipe.
 また、貫通孔の抑制機構は、以下のとおりと考えられる。空調機の冷房運転または除湿運転のときに発生する結露水に雰囲気中に含まれる蟻酸などの腐食媒が溶解し、冷媒管21の外表面にとどまることにより蟻の巣状腐食の起点が形成される。この起点より、蟻の巣状形態の腐食孔を形成しながら、冷媒管内部に向かって腐食が進行する。腐食の進行中、腐食孔内部には腐食媒を含む水分と腐食生成物である亜酸化銅(CuO)が形成される。ここで、亜酸化銅は、腐食孔の内表面を被覆する等、腐食孔内部の少なくとも一部を満たしている。腐食孔が冷媒管21を貫通する前に、空調機に加熱乾燥、真空引き等の処理をすることにより、腐食孔内部から水分が除去され、腐食孔の内表面を乾燥した亜酸化銅が被覆し、腐食孔内面を腐食媒から保護する役割を果たす。水分除去後の腐食孔入り口から内部まで存在する亜酸化銅は、乾燥により腐食孔内部を緻密に充填されている(ただし、腐食孔内部は亜酸化銅のみではなく、不純物として酸化銅(CuO)がわずかに含まれる可能性がある)。また、腐食反応により一旦形成された亜酸化銅は、乾燥後、腐食媒を含む水分と再び接触しても安定して存在することができる。このため、乾燥後の冷媒管21の既存の腐食孔の入り口部分が腐食媒を含む水分により再び覆われることがあっても、腐食孔を充填する緻密な亜酸化銅が、腐食孔内部に水分が進入することを許さない。このようにして、既存の腐食孔における蟻の巣状腐食の進行が阻止される。その後、新たに形成される蟻の巣状腐食に対しても、腐食孔が冷媒管21を貫通する前に同様な処理をすることにより、蟻の巣状腐食の進行を止め、冷媒管の貫通を抑止することが可能になる。 Further, the mechanism of suppressing the through hole is considered as follows. A condensation medium generated during the cooling operation or dehumidifying operation of the air conditioner dissolves a corrosive medium such as formic acid contained in the atmosphere and stays on the outer surface of the refrigerant pipe 21 to form a starting point for ant nest corrosion. It From this starting point, the corrosion progresses toward the inside of the refrigerant pipe while forming a ant-hole-shaped corrosion hole. During the progress of corrosion, water containing a corrosion medium and cuprous oxide (Cu 2 O) that is a corrosion product are formed inside the corrosion holes. Here, the cuprous oxide fills at least a part of the inside of the corrosion hole by coating the inner surface of the corrosion hole. Before the corrosion hole penetrates the refrigerant pipe 21, the air conditioner is heated and dried, and vacuum treatment is performed to remove water from the inside of the corrosion hole, and the inner surface of the corrosion hole is covered with dried cuprous oxide. In addition, it plays a role of protecting the inner surface of the corrosion hole from the corrosion medium. The cuprous oxide existing from the entrance of the corrosion hole to the inside after removing the water is densely filled in the inside of the corrosion hole by drying (however, the inside of the corrosion hole is not only cuprous oxide but also copper oxide (CuO) as an impurity). May be slightly included). Further, the cuprous oxide once formed by the corrosion reaction can be stably present even after being dried and then contacted again with the water containing the corrosion medium. For this reason, even if the entrance portion of the existing corrosion hole of the dried refrigerant pipe 21 is again covered with the water containing the corrosion medium, the dense cuprous oxide filling the corrosion hole causes the moisture inside the corrosion hole. Does not allow him to enter. In this way, the progress of ant nest corrosion in the existing corrosion pits is prevented. After that, with respect to the newly formed ant nest corrosion, the same treatment is performed before the corrosion holes penetrate the refrigerant tube 21 to stop the ant nest corrosion from progressing and penetrate the refrigerant tube. Can be suppressed.
 腐食孔、特に蟻の巣状腐食孔は孔形状が非常に細いため、孔内部に一旦侵入した水分の除去には、孔内外での圧力差等の駆動力が必要となる。
 加熱乾燥の場合は、加熱によって孔内部で水分が体積膨張、気化する等で孔内部の圧力が上昇することで、孔内外で圧力差が生じる。この圧力差が孔内部の水分に孔内部からの除去の駆動力として作用する。
 真空引きの場合は、冷媒管外面の圧力が減少することで、孔内外で圧力差が生じる。この圧力差が孔内部の水分に孔内部からの除去の駆動力として作用する。
Corrosion holes, especially ant nest-like corrosion holes, have a very small hole shape, and therefore a driving force such as a pressure difference between the inside and outside of the hole is required to remove water that has once entered the inside of the hole.
In the case of heat drying, the pressure inside the pores rises due to volume expansion and vaporization of water inside the pores due to heating, resulting in a pressure difference inside and outside the pores. This pressure difference acts on the water inside the holes as a driving force for removal from the inside of the holes.
In the case of evacuation, the pressure on the outer surface of the refrigerant pipe decreases, so that a pressure difference occurs inside and outside the hole. This pressure difference acts on the water inside the holes as a driving force for removal from the inside of the holes.
 加熱乾燥は、室内熱交換器8の冷媒管21の加熱乾燥を行うものである。そして、加熱乾燥条件は、予め設定された温度および時間が設定されている。あるいは、加熱乾燥において冷媒管21の保持温度X(℃)、保持時間をY(min)としたとき、前述した下式(1)を満足することが好ましい。ここで、冷媒管21の保持温度Xは冷媒管21自体の到達温度である。そして、到達温度は、冷媒管21に直接設けたセンサーにより測定された値や、あるいは、室内熱交換器8を測定し、測定した温度から予め設定された算出式により算出された値を測定した温度としている。なお、冷媒管21を乾燥させるには冷媒管21の温度を室内機3の内部温度より高くする必要があることから、通常の運転においては、Xは、25℃以上であることが望ましい。
 Y≧4000e-0.11X     (1)
 加熱乾燥条件は、加熱乾燥において空調機1が設置された環境の環境温度(℃)と冷媒管21の保持温度X(℃)との温度差Z(℃)、冷媒管21の保持時間Y(min)としたとき、前述した下式(2)を満足するものであってもよい。
 Y≧1100Z-1.5     (2)
 また、前記した関係式(1)または(2)は、後述の(加熱乾燥条件確認試験)により導出したものである。
 なお、加熱乾燥を空調機の暖房運転により行う場合、室内熱交換器8を流れる冷媒の温度は上流側(冷媒の入側)で高く、下流側(冷媒の出側)で低くなる。このため、加熱乾燥を確実、且つ短時間で行うには、保持温度Xは室内熱交換器8の下流側の冷媒管において測定することが望ましい。また、室内機3に複数の室内熱交換器8が含まれる場合は、保持温度Xは、そのうち最も低温になる室内熱交換器8の値を用いることが望ましい。加熱乾燥をヒーターにより行う場合も、暖房運転の場合と同様に考えて、保持温度Xの測定点を定めればよい。
The heating and drying is for heating and drying the refrigerant pipe 21 of the indoor heat exchanger 8. The heating and drying conditions are set with preset temperature and time. Alternatively, when the holding temperature X (° C.) and the holding time of the refrigerant pipe 21 are set to Y (min) in the heat drying, it is preferable to satisfy the following formula (1). Here, the holding temperature X of the refrigerant pipe 21 is the reached temperature of the refrigerant pipe 21 itself. Then, the reached temperature is a value measured by a sensor directly provided in the refrigerant pipe 21, or a value calculated by measuring the indoor heat exchanger 8 and calculating a preset temperature from the measured temperature. It's temperature. Since it is necessary to make the temperature of the refrigerant pipe 21 higher than the internal temperature of the indoor unit 3 in order to dry the refrigerant pipe 21, X is preferably 25 ° C. or higher in normal operation.
Y ≧ 4000e −0.11X (1)
The heating and drying conditions include a temperature difference Z (° C.) between the environmental temperature (° C.) of the environment in which the air conditioner 1 is installed and the holding temperature X (° C.) of the refrigerant tube 21 in the heating and drying, and the holding time Y ( min) may satisfy the above-mentioned formula (2).
Y ≧ 1100Z −1.5 (2)
Further, the above relational expression (1) or (2) is derived by the (heating drying condition confirmation test) described later.
When the heating and drying are performed by the heating operation of the air conditioner, the temperature of the refrigerant flowing through the indoor heat exchanger 8 is high on the upstream side (refrigerant inlet side) and low on the downstream side (refrigerant outlet side). Therefore, in order to perform the heating and drying reliably and in a short time, it is desirable to measure the holding temperature X in the refrigerant pipe on the downstream side of the indoor heat exchanger 8. Further, when the indoor unit 3 includes a plurality of indoor heat exchangers 8, it is desirable to use the value of the indoor heat exchanger 8 that has the lowest temperature as the holding temperature X. Even when the heating and drying are performed by the heater, the measurement point of the holding temperature X may be determined in the same manner as in the heating operation.
 前記した設定した温度および時間、あるいは、上式(1)または上式(2)を満足する温度、時間で加熱乾燥を行うことによって、室内熱交換器8の冷媒管21に発生した腐食孔内部の水分を除去することができ、腐食孔が管肉厚を貫通する貫通孔にまで進行することを抑制できる。また、加熱乾燥と同時に送風を行うことによって、上式(1)または上式(2)よりも短時間で、腐食孔内部の水分を十分除去することができると考えられる。なお、送風は、例えば、室内機3の内部に備えられた室内送風機10によって行うことが好ましい。 The inside of the corrosion hole generated in the refrigerant pipe 21 of the indoor heat exchanger 8 by performing heat drying at the temperature and time set as described above, or at a temperature and time satisfying the above formula (1) or the above formula (2). The water content can be removed, and the corrosion holes can be prevented from advancing to the through holes penetrating the wall thickness of the pipe. Further, it is considered that the air inside the corrosion holes can be sufficiently removed in a shorter time than the above formula (1) or the above formula (2) by performing air blowing at the same time as heating and drying. In addition, it is preferable that the air is blown by, for example, the indoor blower 10 provided inside the indoor unit 3.
 室内熱交換器8を構成する冷媒管21はアルミニウムフィン22に覆われており、加熱乾燥した場合、冷媒管21とアルミニウムフィン22とが一体として温度が上昇していく。そして、アルミニウムフィン22間に保持されている水分の温度がまず上昇し、この水分の気化が始まる。気化により、アルミニウムフィン22間の水分が蒸発してしまうと、冷媒管21とアルミニウムフィン22の温度がさらに上昇し、冷媒管21とアルミニウムフィン22の隙間の水分、及び蟻の巣状腐食により形成された冷媒管21の腐食孔内部の水分の気化が盛んになる。冷媒管21はアルミニウムフィン22によりカバーされていることから、これらの水分の気化には時間がかかる。本発明においては、冷媒管21の腐食孔内部の水分まで気化させ、除去するものである。実際の室内熱交換器8においては、冷媒管21の外径、肉厚、アルミニウムフィン22の厚さ、ピッチ、室内熱交換器8を構成する冷媒管21の本数が異なる。そのため、実際の室内熱交換器8の乾燥に要する時間は、前記の関係式(1)または(2)に基づき、熱交換器の設計段階で実験的に決めることが望ましい。 The refrigerant pipe 21 forming the indoor heat exchanger 8 is covered with the aluminum fins 22, and when heated and dried, the temperature of the refrigerant pipe 21 and the aluminum fins 22 increases as a unit. Then, the temperature of the moisture retained between the aluminum fins 22 first rises, and the vaporization of this moisture begins. When the moisture between the aluminum fins 22 evaporates due to the vaporization, the temperature of the refrigerant pipe 21 and the aluminum fins 22 further rises, and the moisture in the gap between the refrigerant pipes 21 and the aluminum fins 22 and the ant nest-like corrosion are formed. Evaporation of water inside the corroded corrosion holes of the refrigerant pipe 21 becomes active. Since the refrigerant pipe 21 is covered with the aluminum fins 22, it takes time to vaporize the water. In the present invention, the water inside the corrosion holes of the refrigerant pipe 21 is also vaporized and removed. In the actual indoor heat exchanger 8, the outer diameter and wall thickness of the refrigerant tubes 21, the thickness of the aluminum fins 22, the pitch, and the number of the refrigerant tubes 21 forming the indoor heat exchanger 8 are different. Therefore, it is desirable to experimentally determine the actual time required to dry the indoor heat exchanger 8 based on the relational expression (1) or (2) at the design stage of the heat exchanger.
 なお、従来より、結露水により室内熱交換器8内部に発生するカビを防止するため、冷房、または除湿運転後、室内機3内に送風する運転、または暖房しながら送風運転する技術が公知である。これらの技術においては、アルミニウムフィン22間にたまった結露水を風圧により除去することを主目的とするものであり、アルミニウムフィン22と冷媒管(銅管)21の隙間の水分の除去まで考慮したものではない。仮に、アルミニウムフィン22と冷媒管(銅管)21の隙間に水分が残存しても、銅の抗菌作用によりこの部分でのカビの発生が抑えられるからである。本発明である空調機の腐食抑制方法および空調機においては、アルミニウムフィン22と冷媒管(銅管)21の隙間に水分、及び銅管に形成された腐食孔内部の水分まで除去する技術であり、この点が防カビを目的とする前記技術と異なる。 In addition, conventionally, in order to prevent mold that is generated inside the indoor heat exchanger 8 due to dew condensation water, a technique of blowing air into the indoor unit 3 after cooling or dehumidifying operation, or performing a blowing operation while heating is known. is there. In these techniques, the main purpose is to remove the condensed water accumulated between the aluminum fins 22 by the wind pressure, and the removal of moisture in the gap between the aluminum fins 22 and the refrigerant pipes (copper pipes) 21 is also taken into consideration. Not a thing. Even if water remains in the gap between the aluminum fin 22 and the refrigerant pipe (copper pipe) 21, the antibacterial action of copper suppresses the generation of mold in this portion. The method for suppressing corrosion of an air conditioner and the air conditioner according to the present invention is a technique for removing even water in the gap between the aluminum fin 22 and the refrigerant pipe (copper pipe) 21 and the water inside the corrosion hole formed in the copper pipe. This point is different from the above-mentioned technique for the purpose of preventing mildew.
 加熱乾燥は、空調機1の暖房運転、または、図2で記載した室内機3に備えられたヒーター11の駆動、あるいは空調機1の暖房運転と室内機3に備えられたヒーター11駆動を同時に行うことによって行われることが好ましい。そして、空調機1の暖房運転、または、ヒーター11の駆動は、室内機3に備えられた制御装置17によって制御される。なお、空調機1の暖房運転は、前記した通常の暖房運転と同様である。 For heating and drying, the heating operation of the air conditioner 1 or the driving of the heater 11 provided in the indoor unit 3 described in FIG. 2, or the heating operation of the air conditioner 1 and the driving of the heater 11 provided in the indoor unit 3 are performed at the same time. It is preferably carried out by carrying out. The heating operation of the air conditioner 1 or the driving of the heater 11 is controlled by the control device 17 provided in the indoor unit 3. The heating operation of the air conditioner 1 is the same as the normal heating operation described above.
 ヒーター11は、図2に記載されているように、室内風路13において、室内熱交換器8と室内送風機10との間に配置されるが、室内熱交換器8で熱交換された冷風または暖風を室内送風機10で送風する際に、送風の妨げにならない位置に配置されることが好ましい。ヒーター11の個数は、1つに限定されず複数であってもよいが、室内熱交換器8と同数、または、室内熱交換器8の半数であることが好ましい。また、ヒーター11は、室内熱交換器8のうち腐食が進行しやすい箇所を集中的に加熱乾燥できるような位置に設置されることが好ましい。腐食が進行しやすい箇所としては、例えば、水分が比較的多く存在するドレンパン周辺等が考えられる。 As shown in FIG. 2, the heater 11 is disposed between the indoor heat exchanger 8 and the indoor blower 10 in the indoor air passage 13, but the cold air that has been heat-exchanged by the indoor heat exchanger 8 or When the warm air is blown by the indoor blower 10, it is preferably arranged at a position where it does not hinder the blowing. The number of heaters 11 is not limited to one and may be plural, but it is preferable that the number is the same as the number of indoor heat exchangers 8 or half of the number of indoor heat exchangers 8. Further, it is preferable that the heater 11 is installed at a position where concentrated heat can be dried on a portion of the indoor heat exchanger 8 where corrosion is likely to proceed. As a place where corrosion easily progresses, for example, a drain pan and the like where water is relatively present can be considered.
 加熱乾燥は、室内機3からの室内への排気阻止および排熱阻止と共に行われることが好ましい。排気阻止および排熱阻止は、図2に記載された室内機3に備えられたルーバー15またはドレイン配管16によって行われることが好ましい。 It is preferable that the heating and drying be performed together with the prevention of exhaust from the indoor unit 3 to the room and the prevention of exhaust heat. It is preferable that the exhaust prevention and the exhaust heat prevention are performed by the louver 15 or the drain pipe 16 provided in the indoor unit 3 shown in FIG.
 ルーバー15は、ケーシング14の吹出口18に備えられ、その閉鎖によって、加熱乾燥運転によって発生した高熱や高湿度気相が、吹出口18から室内に排気および排熱されることを阻止できる。また、室内機3に、例えば、室外または室外機2につながる図示しない排気用風路を設け、排気用風路に送風機等を設けることによって、排気用風路を通して、室内風路13の高熱や高湿度気相を、外部に排気および排熱できる。 The louver 15 is provided at the air outlet 18 of the casing 14, and by closing it, high heat and high humidity gas phase generated by the heating and drying operation can be prevented from being exhausted and exhausted from the air outlet 18 into the room. Further, for example, by providing an exhaust air passage (not shown) connected to the outdoor unit or the outdoor unit 2 in the indoor unit 3 and providing a blower or the like in the exhaust air passage, high heat of the indoor air passage 13 can be passed through the exhaust air passage. High humidity gas phase can be exhausted and exhausted to the outside.
 ドレイン配管16は、室内風路13の室内熱交換器8の下部に、室内熱交換器8と同数で設けられる。また、ドレイン配管16を、例えば、図示しない排気用風路側に傾斜させ、排気用風路に送風機等を設けることによって、排気用風路を通して、加熱乾燥運転によって発生した室内風路13の高熱や高湿度気相を、外部に排気および排熱できる。その結果、加熱乾燥運転によって発生した高熱や高湿度気相が、吹出口18から室内に排気および排熱されることを阻止できる。 The same number of drain pipes 16 as the indoor heat exchangers 8 are provided below the indoor heat exchangers 8 in the indoor air duct 13. In addition, for example, the drain pipe 16 is inclined toward the exhaust air duct side (not shown), and a blower or the like is provided in the exhaust air duct, so that the high heat of the indoor air duct 13 generated by the heating and drying operation is generated through the exhaust air duct. High humidity gas phase can be exhausted and exhausted to the outside. As a result, it is possible to prevent the high heat and high humidity vapor phase generated by the heating and drying operation from being exhausted and exhausted from the air outlet 18 into the room.
 真空引きは、室内機3の室内風路13を減圧できれば特に限定されないが、ルーバー15を閉じた状態で、図2に記載された減圧ポンプ19によって行うことが好ましい。減圧ポンプ19、減圧度の制御は、室内機3に備えられた制御装置17によって行うことが好ましい。そして、このような真空引きが行われることによって、冷媒管21に発生した腐食孔の内部の水分が除去され、冷媒管21に発生した腐食孔が、管肉厚を貫通する貫通孔にまで進行することが抑制される。冷媒管21の腐食孔内の水分の蒸気圧は冷媒管21の温度により決まる。そのため、真空引きにより水分除去を行うには、室内機3内の真空度は、冷媒管21の温度から求まる蒸気圧より小さくなるように設定する必要がある。温度が高いほど蒸気圧は高くなるから、真空引きと暖房運転を組合わせるとより効果的な水分除去が可能になる。 The evacuation is not particularly limited as long as the indoor air passage 13 of the indoor unit 3 can be depressurized, but it is preferable to perform the evacuation with the decompression pump 19 shown in FIG. 2 with the louver 15 closed. The control of the decompression pump 19 and the degree of decompression is preferably performed by the control device 17 provided in the indoor unit 3. Then, by performing such vacuuming, the water inside the corrosion holes generated in the refrigerant pipe 21 is removed, and the corrosion holes generated in the refrigerant pipe 21 progress to the through holes penetrating the pipe wall thickness. Is suppressed. The vapor pressure of water in the corrosion holes of the refrigerant pipe 21 is determined by the temperature of the refrigerant pipe 21. Therefore, in order to remove water by vacuuming, it is necessary to set the degree of vacuum in the indoor unit 3 to be smaller than the vapor pressure obtained from the temperature of the refrigerant pipe 21. The higher the temperature, the higher the vapor pressure, so combining vacuum evacuation with heating operation enables more effective water removal.
 本発明に係る空調機の腐食進行抑制方法は、表示運転をさらに行うことが好ましい。
<表示運転>
 表示運転は、水分除去運転が必要であることをユーザーに伝えるもので、室内機3またはリモコンにアラームを表示または点灯させるものとする。なお、空調機1がインターネットに接続されているものであれば、メールによりアナウンスするものであってもよい。そして、表示運転の制御は、図2に記載された室内機3に備えられた制御装置17で行う。
In the method for suppressing the progress of corrosion of an air conditioner according to the present invention, it is preferable to further perform a display operation.
<Display operation>
The display operation informs the user that the water removal operation is necessary, and the alarm is displayed or lit on the indoor unit 3 or the remote controller. If the air conditioner 1 is connected to the Internet, it may be announced by e-mail. Then, the control of the display operation is performed by the control device 17 provided in the indoor unit 3 shown in FIG.
 表示運転は、その実施が、前記水分除去運転の前までで、最初の冷房運転または除湿運転の終了後から所定期間経過するまでの間に行われることが好ましい。また、表示運転によって実施された水分除去運転の終了後、空調機1を停止運転あるいは暖房運転した場合にも、その後の最初の冷房運転または除湿運転の終了後から所定期間経過するまでの間に表示運転を実施することが好ましい。ここで、最初の冷房運転または除湿運転とは、複数回の冷房運転または除湿運転がなされた場合の最初の冷房運転または除湿運転を意味する。所定期間は、りん脱酸銅からなる冷媒管21の場合には5日、無酸素銅からなる冷媒管21の場合には90日、より好ましくは60日、さらに好ましくは50日である。このように、表示運転をさらに行うことによって、水分除去運転が確実に実施されるため、冷媒管21に発生した腐食孔が、管肉厚を貫通する貫通孔まで進行することがさらに抑制される。 It is preferable that the display operation is performed before the water removal operation and before a predetermined period of time has elapsed after the end of the first cooling operation or dehumidification operation. In addition, even after the water removal operation performed by the display operation is completed, when the air conditioner 1 is stopped or heated, the predetermined period of time elapses after the end of the first cooling operation or dehumidifying operation thereafter. It is preferable to carry out the display operation. Here, the first cooling operation or dehumidifying operation means the first cooling operation or dehumidifying operation when the cooling operation or dehumidifying operation is performed a plurality of times. The predetermined period is 5 days in the case of the refrigerant pipe 21 made of phosphorus deoxidized copper, 90 days in the case of the refrigerant pipe 21 made of oxygen-free copper, more preferably 60 days, and further preferably 50 days. In this way, by further performing the display operation, the moisture removal operation is reliably performed, so that the corrosion holes generated in the refrigerant pipe 21 are further suppressed from advancing to the through holes penetrating the pipe wall thickness. .
 本発明の空調機の腐食進行抑制方法に用いる空調機用銅管は、Cuの含有量が99.95%以上、酸素の含有量が10ppm以下であり、残部が不可避不純物からなる。この組成は、JIS H 3300:2012で規定された無酸素銅C1020、及びCDA規格の無酸素銅C10200の組成を含むものである。前記組成の銅管を用いることにより、蟻の巣状腐食が発生後、水分除去処理を行ったときに、腐食生成物である亜酸化銅40が腐食孔内壁面に付着することにより、腐食孔内部において、腐食媒を含む腐食液が銅管母材(Cu)と接触することを防止する。そのため、腐食孔Chが新たに蟻の巣状腐食環境にさらされた場合でも、それ以上腐食が進行することを抑制することができ、腐食孔Chが銅管肉厚を貫通することを防止することができる。 The copper pipe for an air conditioner used in the method for suppressing the progress of corrosion of an air conditioner according to the present invention has a Cu content of 99.95% or more, an oxygen content of 10 ppm or less, and the balance being unavoidable impurities. This composition includes compositions of oxygen-free copper C1020 defined by JIS H3300: 2012 and oxygen-free copper C10200 of the CDA standard. By using the copper pipe having the above composition, when water removal treatment is performed after ant nest-like corrosion occurs, cuprous oxide 40, which is a corrosion product, adheres to the inner wall surface of the corrosion hole. It prevents the corrosive liquid containing the corrosive medium from coming into contact with the copper pipe base material (Cu) inside. Therefore, even when the corrosion hole Ch is newly exposed to the ant nest-like corrosion environment, it is possible to prevent the corrosion from further progressing and prevent the corrosion hole Ch from penetrating the thickness of the copper pipe. be able to.
 本発明の空調機用銅管として、C1020及びC10200を用いることができるが、これらの銅管は、酸素含有量が10ppm以下、導電率101%IACS以上の高純度の純銅であり、通常は真空溶解、雰囲気溶解等の特殊な溶解鋳造設備を用い、原料及び不純物に対しても厳しい管理をすることにより製造されている。また、その製造には、設備だけでなく、経験やノウハウに基づく高度な操業技術が必要になる。このため、製造コストが高くなりやすい。このため、本発明の空調機用銅管として、Cuの含有量が99.95%以上、酸素の含有量が10ppm以下であり、不可避不純物として、P、Si、Al、Mg、Zn、Be、Ca、Fe、Ni、Co、Mn、Ti、Cr、Zr等の元素より選択する1種または2種以上を最大0.035%まで含有する無酸素銅相当銅管を用いてもよい。前記無酸素銅相当銅管は、Cuより酸素との親和力が大きい元素を脱酸元素として活用することにより、無酸素銅より安価に製造することが可能になる。前記無酸素銅相当銅管の導電率は90%IACS以上が望ましく、95%IACS以上であることがより望ましい。導電率を前記範囲に保つには、微量でも導電率を低下させるP、Si、Al、及びFeの含有量をそれぞれ0.005%以下とすることが望ましい。特に、Pについては蟻の巣状腐食を促進する元素であることから、0.004%以下が望ましく、0.0035%以下がより望ましく、0.003%以下がさらに望ましい。 As the copper pipe for an air conditioner of the present invention, C1020 and C10200 can be used, but these copper pipes are high-purity pure copper having an oxygen content of 10 ppm or less and a conductivity of 101% IACS or more, and are usually vacuum. It is manufactured by using special melting and casting equipment such as melting and atmosphere melting, and strict control of raw materials and impurities. In addition, not only equipment but also advanced operation technology based on experience and know-how is required for its production. Therefore, the manufacturing cost tends to increase. Therefore, as the copper pipe for an air conditioner of the present invention, the Cu content is 99.95% or more and the oxygen content is 10 ppm or less, and P, Si, Al, Mg, Zn, Be, as unavoidable impurities, An oxygen-free copper equivalent copper tube containing up to 0.035% of one or more selected from elements such as Ca, Fe, Ni, Co, Mn, Ti, Cr, and Zr may be used. The oxygen-free copper equivalent copper tube can be manufactured at a lower cost than oxygen-free copper by utilizing an element having a greater affinity for oxygen than Cu as a deoxidizing element. The electrical conductivity of the copper tube corresponding to oxygen-free copper is preferably 90% IACS or more, and more preferably 95% IACS or more. In order to keep the conductivity within the above range, it is desirable that the contents of P, Si, Al, and Fe, which reduce the conductivity even in a small amount, be 0.005% or less. In particular, P is an element that promotes ant nest corrosion, so 0.004% or less is desirable, 0.0035% or less is more desirable, and 0.003% or less is even more desirable.
 本発明に係る腐食進行抑制方法の空調機実機における腐食進行抑制効果を評価するため、以下に示す模擬腐食試験を行った。また、本発明に係る空調機実機における加熱乾燥条件を導出するため加熱乾燥条件確認試験を行った。さらに、本発明に係る空調機実機における水分除去運転待機期間を導出するため水分除去運転待機期間確認試験を行った。 The following simulated corrosion test was conducted in order to evaluate the corrosion progress inhibiting effect of the corrosion progress inhibiting method according to the present invention in an actual air conditioner. In addition, a heating and drying condition confirmation test was conducted in order to derive the heating and drying conditions in the actual air conditioner according to the present invention. Further, a water removal operation standby period confirmation test was conducted in order to derive the water removal operation standby period in the actual air conditioner according to the present invention.
(模擬腐食試験)
 模擬腐食試験には、図5に示す腐食再現装置30を用いた。腐食再現装置30は、内容量2Lの密閉容器31と、密閉容器31の上部に設置されたシリコン栓34と、シリコン栓34に挿し込まれた冷媒管を模擬した供試材33と、を備える。
 密閉容器31は、腐食液32(腐食媒を含む水溶液)を500mL充填し、その内部を1L/minで5min酸素置換した。供試材33としては、JISH3300:2012に規定されたりん脱酸銅C1220または無酸素銅C1020からなる外径:9.52mm、肉厚:0.80mm、長さ:200mmの平滑管を用いた。平滑管は、シリコン栓34から腐食液32側に露出した下端部を封止した。
 密閉容器31の内部環境を湿度飽和状態に調整するため、密閉容器31を恒温槽内に設置した(試験雰囲気温度40℃)。シリコン栓34の腐食液32側から100mm露出した供試材33の管外面を腐食評価面とした。
(Simulation corrosion test)
For the simulated corrosion test, the corrosion reproduction device 30 shown in FIG. 5 was used. The corrosion reproducing apparatus 30 includes a closed container 31 having an internal capacity of 2 L, a silicon stopper 34 installed on the upper portion of the closed container 31, and a sample material 33 simulating a refrigerant pipe inserted in the silicon stopper 34. .
The sealed container 31 was filled with 500 mL of the corrosive liquid 32 (an aqueous solution containing a corrosive medium), and the inside thereof was replaced with oxygen at 1 L / min for 5 min. As the test material 33, a smooth tube made of phosphorus-deoxidized copper C1220 or oxygen-free copper C1020 specified in JIS H3300: 2012 with an outer diameter of 9.52 mm, a wall thickness of 0.80 mm, and a length of 200 mm was used. . The smooth tube sealed the lower end exposed from the silicon stopper 34 to the corrosive liquid 32 side.
In order to adjust the internal environment of the closed container 31 to the humidity saturated state, the closed container 31 was installed in a constant temperature bath (test atmosphere temperature 40 ° C.). The outer surface of the pipe of the test material 33 exposed 100 mm from the corrosive liquid 32 side of the silicon stopper 34 was used as the corrosion evaluation surface.
 供試材33が設置された腐食再現装置30を用いて、供試材33に所定の温度サイクル、具体的には冷却による水分付着(冷房運転を想定)、加熱または真空引きによる水分除去(水分除去運転を想定)、試験雰囲気温度40℃における保持(停止状態を想定)の温度サイクルを繰返し施すサイクル運転(一例として、1日2回の水分除去)を行った。供試材33の冷却、保持は、恒温槽内で行った。水分除去は、供試材33を取り出して、熱風を当てることにより行った。この時の銅管表面の温度は80℃であった。本試験において、図6A,図6Bに示すように、冷却により供試材33の外面に腐食液32より揮発した腐食媒を含む水滴が結露し、蟻の巣状腐食が発生、進行する。また、加熱により水分が気化して腐食孔内の水分も除去され、蟻の巣状腐食の進行が停止する。乾燥後、次の冷却サイクルにおいて、腐食液32を含む水分が付着した供試材33では新たな場所に蟻の巣状腐食が発生するが、既存の腐食孔の部分では腐食が進行しない。サイクル運転終了後、供試材33の管外面をX線CTスキャナ(島津製作所製、型式inspeXio SMX-225CTFPD)で観察し、管長さ10mmにおける管全周の範囲に発生した全ての腐食孔の腐食深さを測定し、最大腐食深さで腐食進行抑制効果を評価した(図7Aおよび図7B参照)。最大腐食深さが肉厚の1/4である0.20mm未満のときに腐食進行抑制効果があると評価した。 Using the corrosion reproducing device 30 in which the test material 33 is installed, the test material 33 is subjected to a predetermined temperature cycle, specifically, moisture adhesion by cooling (assuming cooling operation), water removal by heating or vacuuming (moisture removal). A cycle operation (assuming a removal operation) and a temperature cycle in which the test atmosphere temperature was kept at 40 ° C. (assuming a stopped state) were repeatedly performed (moisture removal twice a day). The test material 33 was cooled and held in a constant temperature bath. The water was removed by taking out the test material 33 and applying hot air thereto. At this time, the temperature of the copper tube surface was 80 ° C. In this test, as shown in FIGS. 6A and 6B, water droplets containing a corrosive medium volatilized from the corrosive liquid 32 are condensed on the outer surface of the test material 33 by cooling, and ant nest corrosion occurs and progresses. In addition, the water vaporizes due to heating and the water in the corrosion holes is also removed, and the progress of ant nest corrosion is stopped. After the drying, in the next cooling cycle, the test material 33 to which the water containing the corrosive liquid 32 adheres has ant nest-like corrosion at a new location, but the corrosion does not proceed at the existing corrosion hole portion. After completion of the cycle operation, the outer surface of the pipe of the test material 33 was observed with an X-ray CT scanner (Shimadzu Corporation, model inspeXio SMX-225CTFPD), and corrosion of all corrosion holes generated in the entire circumference of the pipe at a pipe length of 10 mm was observed. The depth was measured, and the corrosion progress inhibiting effect was evaluated at the maximum corrosion depth (see FIGS. 7A and 7B). When the maximum corrosion depth was less than 0.20 mm, which is ¼ of the wall thickness, it was evaluated that the corrosion progress inhibiting effect was obtained.
 なお、JIS H 3300:2012に規定されたりん脱酸銅C1220および無酸素銅C1020からなる外径:9.52mm、肉厚:0.80mm、長さ:200mmの平滑管を用い、水分除去を行わない点を除き、前記と同様な試験を行い、腐食の様子を同様に観察した(図8Aおよび図8B参照)。 A smooth tube made of phosphorus-deoxidized copper C1220 and oxygen-free copper C1020 specified in JIS H 3300: 2012 with an outer diameter of 9.52 mm, a wall thickness of 0.80 mm and a length of 200 mm is used to remove water. A test similar to the above was performed except that it was not performed, and the state of corrosion was observed in the same manner (see FIGS. 8A and 8B).
 空調機実機における腐食孔内部の水分除去による腐食進行抑制効果を確認するため、表1に示すサイクル運転条件で連続20日間運転を行った。なお、腐食液32としては、0.5vol%ギ酸溶液を使用した(腐食媒はギ酸)。運転終了後、最大腐食孔深さを測定した。その結果を表1に示す。 In order to confirm the effect of inhibiting the progress of corrosion by removing the water inside the corrosion holes in the actual air conditioner, the cycle operation conditions shown in Table 1 were run for 20 consecutive days. A 0.5 vol% formic acid solution was used as the corrosive liquid 32 (corrosion medium is formic acid). After the operation was completed, the maximum corrosion hole depth was measured. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
 表1の結果から、水分除去を行った本発明の要件を満足する実施例No.1~3では、最大腐食孔深さが0.20mm未満であり、腐食進行抑制効果があることが確認された。なお、水分除去を行わなかった本発明の要件を満足しない比較例No.4、5では、最大腐食孔深さが0.80mm、0.29mmであり、空調機に一般的に使用される銅管の管肉厚(0.20mm)を貫通する腐食孔が形成されていた。 From the results of Table 1, Example No. that satisfies the requirements of the present invention for removing water. In Nos. 1 to 3, the maximum corrosion hole depth was less than 0.20 mm, and it was confirmed that there was an effect of suppressing corrosion progress. In addition, Comparative example No. which does not satisfy the requirements of the present invention in which water is not removed. In Nos. 4 and 5, the maximum corrosive hole depths are 0.80 mm and 0.29 mm, and corrosive holes penetrating the wall thickness (0.20 mm) of the copper pipe generally used for air conditioners are formed. It was
(加熱乾燥条件確認試験)
 冷媒管の表面が結露し、蟻の巣状腐食が発生する雰囲気において、冷媒管の加熱乾燥に必要な時間を調べるために、腐食孔内の環境を模擬して湿度飽和環境下において試験を行った。
 加熱乾燥条件確認試験には、前記模擬腐食試験と同様に図5に示す腐食再現装置30を用いた。腐食液32に相当する媒体としては、純水を用いた。供試材33としては、りん脱酸銅C1220からなる平滑管を用いた。密閉容器31の内部環境を温度33℃、湿度飽和状態とするため、密閉容器31の底部を加熱した。前記以外の事項は前記模擬腐食試験と同様とした。
 シリコン栓34より上部(密閉容器31外)に露出した供試材33に取り付けた温調機で、供試材(銅管)33を5~10℃で、10分間保持後、表2に示す条件で供試材(銅管)33を乾燥した。乾燥後、供試材(銅管)33の表面の乾燥状態を目視確認した。なお、供試材33の一部については、5~10℃に冷却後、密閉容器31外に出して室内環境下(24℃)において、温調機により供試材(銅管)33を昇温しながら乾燥の様子を目視確認した。その結果、供試材(銅管)33が26.6℃に達したときに乾燥が完了し、乾燥に要した時間は11.5分であった。その結果を表2に示す。
(Heating and drying condition confirmation test)
In an environment where the surface of the refrigerant pipe is condensed and ant nest-like corrosion occurs, in order to investigate the time required for heating and drying the refrigerant pipe, we simulated the environment inside the corrosion hole and conducted a test in a humidity saturated environment. It was
For the heating and drying condition confirmation test, the corrosion reproducing apparatus 30 shown in FIG. 5 was used as in the simulated corrosion test. Pure water was used as a medium corresponding to the corrosive liquid 32. As the test material 33, a smooth tube made of phosphorus-deoxidized copper C1220 was used. The bottom of the closed container 31 was heated in order to keep the internal environment of the closed container 31 at a temperature of 33 ° C. and in a humidity saturated state. Items other than the above were the same as those in the simulated corrosion test.
Shown in Table 2 after holding the test material (copper tube) 33 at 5 to 10 ° C. for 10 minutes with a temperature controller attached to the test material 33 exposed above the silicon stopper 34 (outside the closed container 31). The test material (copper tube) 33 was dried under the conditions. After drying, the dried state of the surface of the test material (copper tube) 33 was visually confirmed. Regarding a part of the sample material 33, after cooling to 5 to 10 ° C., it is taken out of the closed container 31 and the sample material (copper tube) 33 is heated by a temperature controller in an indoor environment (24 ° C.). The state of drying was visually confirmed while warming. As a result, when the test material (copper tube) 33 reached 26.6 ° C., the drying was completed, and the time required for the drying was 11.5 minutes. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000002
 
 表2に示すように、加熱乾燥ありの実施例No.6~14は、湿度飽和環境下での乾燥であっても、加熱乾燥なしの比較例No.15の実環境下(室内環境下)での乾燥と同様の結露なしの乾燥状態を得ることができた。したがって、本発明の加熱乾燥条件であれば、実環境において、冷媒管(供試材)の管表面だけでなく、腐食孔内部の水分を十分に乾燥できると考えられる。 As shown in Table 2, Example No. with heating and drying. Comparative Examples Nos. 6 to 14 have no heating and drying even if they are dried in a humidity saturated environment. It was possible to obtain a dried state without condensation similar to the drying under the actual environment of 15 (indoor environment). Therefore, under the heating and drying conditions of the present invention, it is considered that not only the pipe surface of the refrigerant pipe (test material) but also the water inside the corrosion holes can be sufficiently dried in an actual environment.
 また、表2の結果から、加熱乾燥において冷媒管(銅管)の保持温度をX(℃)、保持時間をY(min)としたとき、下式(1)を満足する加熱乾燥条件であれば、腐食孔内部の水分を除去して、腐食進行を良好に抑制することができると考えられる。
 Y≧4000e-0.11X     (1)
 また、表2の結果から、加熱乾燥において室内機が設置される環境の環境温度と冷媒管(銅管)の保持温度をX(℃)との温度差をZ(℃)、保持時間をY(min)としたとき、下式(2)を満足する加熱乾燥条件であれば、腐食孔内部の水分を除去して、腐食進行を良好に抑制することができると考えられる。
 Y≧1100Z-1.5     (2)
In addition, from the results of Table 2, when the holding temperature of the refrigerant pipe (copper pipe) is X (° C.) and the holding time is Y (min) in the heating and drying, the heating and drying conditions satisfying the following formula (1) are required. For example, it is considered that the water inside the corrosion holes can be removed and the progress of corrosion can be suppressed well.
Y ≧ 4000e −0.11X (1)
Further, from the results of Table 2, the temperature difference between the environmental temperature of the environment in which the indoor unit is installed and the holding temperature of the refrigerant pipe (copper pipe) in heating and drying is X (° C) is Z (° C), and the holding time is Y. When it is set to (min), it is considered that if the heating and drying conditions satisfy the following formula (2), the water inside the corrosion holes can be removed and the progress of corrosion can be suppressed well.
Y ≧ 1100Z −1.5 (2)
(水分除去運転待機期間確認試験)
 腐食進行抑制に必要な水分除去運転待機期間を調べるために、前記模擬腐食試験と同様に図5に示す腐食再現装置30を用いて、供試材(銅管)33に20℃で120分間の冷却(冷房運転による水分付着を想定)、40℃で1320分間の保持(停止状態を想定)の温度サイクルを繰り返し施すサイクル運転を行った(水分除去はなし)。所定日数の経過後、供試材33の最大腐食深さを、前記模擬腐食試験と同様にして測定した。その結果を表3に示す。
 本試験の供試材33としては、りん脱酸銅C1220または無酸素銅C1020からなる外径:9.52mm、肉厚:0.80mm、長さ200mmの平滑管を用い、腐食液32として実環境を模擬した0.01vol%ギ酸溶液を用いた。
(Water removal operation standby period confirmation test)
In order to investigate the water removal operation standby period required for suppressing the progress of corrosion, the test material (copper tube) 33 was tested for 120 minutes at 20 ° C. for 120 minutes using the corrosion reproducing apparatus 30 shown in FIG. A cycle operation was performed in which a temperature cycle of cooling (assuming water adhesion due to cooling operation) and holding at 40 ° C. for 1320 minutes (assuming a stopped state) was repeatedly performed (no water removal). After the lapse of a predetermined number of days, the maximum corrosion depth of the test material 33 was measured in the same manner as the simulated corrosion test. The results are shown in Table 3.
As the test material 33 of this test, a smooth tube made of phosphorus-deoxidized copper C1220 or oxygen-free copper C1020 with an outer diameter of 9.52 mm, a wall thickness of 0.80 mm, and a length of 200 mm was used. A 0.01 vol% formic acid solution simulating the environment was used.
Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000003
 
 表3の結果から、りん脱酸銅からなる供試材33では、10日経過後の最大腐食深さが0.19mm、30日経過後で0.34mmであった。無酸素銅からなる供試材33では60日経過後であっても最大腐食深さが0.12mmであった。
 空調機の冷媒管として使用される一般的な銅管の肉厚は、0.20mmであるので、りん脱酸銅C1220からなる冷媒管を用いた空調機では、水分除去運転待機期間を10日に設定、すなわち、最初の冷房運転または除湿運転の終了後から10日経過するまでの間(10日以内)に水分除去運転を行えば、冷媒管の管肉厚を貫通する腐食孔の発生を抑制できることが確認できた。無酸素銅C1020からなる冷媒管を用いた空調機では、水分除去運転待機期間を60日に設定、すなわち、最初の冷房運転または除湿運転の終了後から60日経過するまでの間(60日以内)に水分除去運転を行えば、冷媒管の管肉厚を貫通する腐食孔の発生を抑制できることが確認できた。
From the results of Table 3, in the test material 33 made of phosphorus deoxidized copper, the maximum corrosion depth after 10 days was 0.19 mm and after 30 days was 0.34 mm. The sample 33 made of oxygen-free copper had a maximum corrosion depth of 0.12 mm even after 60 days.
Since the thickness of a general copper pipe used as a refrigerant pipe of an air conditioner is 0.20 mm, a water removal operation standby period is 10 days in an air conditioner using a refrigerant pipe made of phosphorus deoxidized copper C1220. If the water removal operation is set to 10 days (10 days or less) after the completion of the first cooling operation or dehumidification operation, corrosion holes that penetrate the wall thickness of the refrigerant pipe are generated. It was confirmed that it could be suppressed. In an air conditioner using a refrigerant pipe made of oxygen-free copper C1020, the water removal operation standby period is set to 60 days, that is, 60 days after the end of the first cooling operation or dehumidification operation (within 60 days). It was confirmed that the generation of corrosion holes penetrating the wall thickness of the refrigerant pipe can be suppressed by performing the water removal operation on (1).
(加熱乾燥の効果確認試験)
 加熱乾燥による長期間にわたる腐食制御の効果を調べるために、腐食液32として空調機が使用される実環境を模擬した0.5vol%ギ酸溶液(腐食媒はギ酸)を用いて湿度飽和環境下において試験を行った。
 本試験には、前記模擬腐食試験と同様に図5に示す腐食再現装置30を用いた。供試材33としては、無酸素銅C1020からなる平滑管(外径:9.52mm、肉厚:0.80mm、長さ:200mm)を用いた。試験要領は以下のとおりである。
(Heat drying effect confirmation test)
In order to investigate the effect of corrosion control over a long period of time by heating and drying, a 0.5 vol% formic acid solution (corrosion medium is formic acid) simulating an actual environment in which an air conditioner is used as the corrosive liquid 32 is used in a humidity saturated environment. The test was conducted.
In this test, the corrosion reproducing apparatus 30 shown in FIG. 5 was used as in the simulated corrosion test. As the test material 33, a smooth tube (outer diameter: 9.52 mm, wall thickness: 0.80 mm, length: 200 mm) made of oxygen-free copper C1020 was used. The test procedure is as follows.
(1)試験開始後60日まで
 以下の〔第1項目〕と〔第2項目〕を6回繰り返す。
〔第1項目〕密閉容器31の内部環境を温度40℃で22時間および20℃で2時間とするサイクルで供試材を10日間保持する(10サイクル)。
〔第2項目〕10日経過後、供試材33を密閉容器31外に取り出して、熱風を当てる水分除去処理(供試材の表面温度は80℃)を行ってから、前記したX線CTスキャナで観察観測する。
(1) Up to 60 days after the start of the test The following [first item] and [second item] are repeated 6 times.
[First Item] The test material is held for 10 days in a cycle in which the internal environment of the closed container 31 is set to a temperature of 40 ° C. for 22 hours and a temperature of 20 ° C. for 2 hours (10 cycles).
[Second item] After 10 days, the test material 33 is taken out of the closed container 31 and subjected to a moisture removal treatment by applying hot air (the surface temperature of the test material is 80 ° C.), and then the X-ray CT scanner described above. Observe and observe.
(2)試験開始後60日~120日まで
 1の試験で60日保持した供試材33に対して以下の〔第3項目〕と〔第4項目〕を2回繰り返す。
〔第3項目〕密閉容器31の内部環境を温度40℃で22時間および20℃で2時間とするサイクルで供試材を30日間保持する(30サイクル)。
〔第4項目〕30日経過後、供試材33を密閉容器31外に取り出して、熱風を当てる水分除去処理(供試材の表面温度は80℃)を行ってから、前記したX線CTスキャナで観察観測する。
(2) From 60 days to 120 days after the start of the test The following [third item] and [fourth item] are repeated twice for the test material 33 held for 60 days in one test.
[Third item] The test material is held for 30 days in a cycle in which the internal environment of the closed container 31 is set to a temperature of 40 ° C for 22 hours and a temperature of 20 ° C for 2 hours (30 cycles).
[Fourth item] After 30 days have passed, the test material 33 is taken out of the closed container 31 and subjected to a moisture removal treatment by applying hot air (the surface temperature of the test material is 80 ° C.), and then the X-ray CT scanner described above. Observe and observe.
 加熱乾燥の効果確認試験においてX線CTスキャナで観察した結果を図9A~図9D乃至図16A~図16Dを参照して示す。なお、供試材33では、形式的に番号を付けた第1腐食孔Ch1(腐食深さが最も深い腐食孔)を基準にして観察することとして説明する。また、蟻の巣状腐食は三次元的に進行することから、一断面だけの観察でその全体像を観察する事はできない。そこで、10日目に存在する第1腐食孔Ch1を含む[範囲]を規定し、管軸方向および管軸直交方向の断面について、定めた範囲内に存在する腐食孔を、全て一断面へと重ね合せ処理を実施した。なお、ここでは、サンプル全長10mmの範囲を1000枚のスライス像に含まれる腐食孔Chの全てを1画面上に表示するように図9A~図9D乃至図16A~図16Dでは示している。このような重な合せ処理により、観察したい第1腐食孔Ch1及び他の腐食孔Chの全体像を観察する事ができた。 Results of observation with an X-ray CT scanner in the effect confirmation test of heat drying are shown with reference to FIGS. 9A to 9D to 16A to 16D. In addition, in the test material 33, it is assumed that the first corrosion hole Ch1 (corrosion hole having the deepest corrosion depth) that is formally numbered is used as a reference for the observation. Also, since the ant nest corrosion progresses three-dimensionally, it is not possible to observe the whole image by observing only one cross section. Therefore, the [range] including the first corrosion hole Ch1 existing on the 10th day is defined, and all the corrosion holes existing within the defined range in the cross section in the pipe axis direction and the pipe axis orthogonal direction are changed to one cross section. Superposition processing was performed. In addition, here, in FIG. 9A to FIG. 9D to FIG. 16A to FIG. 16D, it is shown that all the corrosion holes Ch included in the slice images of 1000 sheets are displayed on one screen in the range of the total sample length of 10 mm. By such an overlapping process, it was possible to observe the entire image of the first corrosion hole Ch1 and other corrosion holes Ch to be observed.
 図9Aは、空調機の冷媒管において、試験期間10日中で観察前に1回、乾燥した場合の腐食の進行状態を、前記したCTスキャナで観察した写真である。図9Bは、図9Aにおいて観察ポイントの腐食孔の位置を冷媒管の長手方向に切断した状態での前記したCTスキャナで観察した写真である。図9Cは、図9Aの観察ポイントの腐食孔の位置を拡大した写真である。図9Dは、図9Bの観察ポイントの腐食孔の位置を拡大した写真である。なお、図10A~図10D乃至図16A~図16Dは、図9A~図9Dと同じ位置関係であり試験期間が異なるものである。 FIG. 9A is a photograph of the progress state of corrosion in the refrigerant pipe of the air conditioner, which was observed once during the test period of 10 days before observation by the CT scanner. FIG. 9B is a photograph observed by the above-mentioned CT scanner in a state where the position of the corrosion hole at the observation point in FIG. 9A is cut in the longitudinal direction of the refrigerant pipe. FIG. 9C is an enlarged photograph of the position of the corrosion hole at the observation point in FIG. 9A. FIG. 9D is an enlarged photograph of the position of the corrosion hole at the observation point in FIG. 9B. 10A to 10D to 16A to 16D have the same positional relationship as in FIGS. 9A to 9D, but the test period is different.
 図9A~図9Dに示すように、10日目の供試材33の腐食状態では、供試材33の第1腐食孔Ch1およびその他の腐食孔Chが管表面に形成されている。このときの第1腐食孔Ch1の深さは、0.24mmである。
 図10A~図10Dに示すように、20日目の供試材33の腐食状態では、供試材33の第1腐食孔Ch1およびその他の腐食孔Chが管表面に形成されている。このときの第1腐食孔Ch1の深さは、0.24mmである。
 図11A~図11Dに示すように、30日目の供試材33の腐食状態では、供試材33の第1腐食孔Ch1およびその他の腐食孔Chが管表面に形成されている。このときの第1腐食孔Ch1の深さは、0.24mmである。
 図12A~図12Dに示すように、40日目の供試材33の腐食状態では、供試材33の第1腐食孔Ch1およびその他の腐食孔Chが管表面に形成されている。このときの第1腐食孔Ch1の深さは、0.24mmである。
As shown in FIGS. 9A to 9D, in the corroded state of the sample material 33 on the 10th day, the first corrosion hole Ch1 of the sample material 33 and other corrosion holes Ch are formed on the pipe surface. The depth of the first corrosion hole Ch1 at this time is 0.24 mm.
As shown in FIGS. 10A to 10D, in the corroded state of the sample material 33 on the 20th day, the first corrosion hole Ch1 of the sample material 33 and the other corrosion holes Ch are formed on the pipe surface. The depth of the first corrosion hole Ch1 at this time is 0.24 mm.
As shown in FIGS. 11A to 11D, in the corroded state of the sample material 33 on the 30th day, the first corrosion hole Ch1 of the sample material 33 and other corrosion holes Ch are formed on the pipe surface. The depth of the first corrosion hole Ch1 at this time is 0.24 mm.
As shown in FIGS. 12A to 12D, in the corroded state of the sample material 33 on the 40th day, the first corrosion hole Ch1 of the sample material 33 and other corrosion holes Ch are formed on the pipe surface. The depth of the first corrosion hole Ch1 at this time is 0.24 mm.
 図13A~図13Dに示すように、50日目の供試材33の腐食状態では、供試材33の第1腐食孔Ch1およびその他の腐食孔Chが管表面に形成されている。このときの第1腐食孔Ch1の深さは、0.24mmである。
 図14A~図14Dに示すように、60日目の供試材33の腐食状態では、供試材33の第1腐食孔Ch1およびその他の腐食孔Chが管表面に形成されている。このときの第1腐食孔Ch1の深さは、0.24mmである。
 図15A~図15Dに示すように、90日目の供試材33の腐食状態では、供試材33の第1腐食孔Ch1およびその他の腐食孔Chが管表面に形成されている。このときの第1腐食孔Ch1の深さは、0.24mmである。
 図16A~図16Dに示すように、120日目の供試材33の腐食状態では、供試材33の第1腐食孔Ch1およびその他の腐食孔Chが管表面に形成されている。このときの第1腐食孔Ch1の深さは、0.24mmである。
As shown in FIGS. 13A to 13D, in the corroded state of the sample material 33 on the 50th day, the first corrosion hole Ch1 of the sample material 33 and other corrosion holes Ch are formed on the pipe surface. The depth of the first corrosion hole Ch1 at this time is 0.24 mm.
As shown in FIGS. 14A to 14D, in the corroded state of the sample material 33 on the 60th day, the first corrosion hole Ch1 of the sample material 33 and other corrosion holes Ch are formed on the pipe surface. The depth of the first corrosion hole Ch1 at this time is 0.24 mm.
As shown in FIGS. 15A to 15D, in the corroded state of the sample material 33 on the 90th day, the first corrosion hole Ch1 of the sample material 33 and other corrosion holes Ch are formed on the pipe surface. The depth of the first corrosion hole Ch1 at this time is 0.24 mm.
As shown in FIGS. 16A to 16D, in the corroded state of the sample material 33 on the 120th day, the first corrosion hole Ch1 of the sample material 33 and other corrosion holes Ch are formed on the pipe surface. The depth of the first corrosion hole Ch1 at this time is 0.24 mm.
 前記したように供試材33は、加熱乾燥ありの試験期間において、第1腐食孔Ch1では、内部に亜酸化銅40が設けられているため、腐食が進行していないことが判断できる。したがって、本発明での加熱乾燥条件であれば、実環境において、冷媒管(供試材)の管表面だけでなく、腐食孔内部の水分を十分に乾燥でき、腐食孔内に亜酸化銅40を設けることで腐食の進行を抑制すると考えられる。 As described above, in the test material 33, during the test period with heating and drying, it is possible to determine that the corrosion has not progressed because the cuprous oxide 40 is provided inside the first corrosion hole Ch1. Therefore, under the heating and drying conditions of the present invention, not only the pipe surface of the refrigerant pipe (test material) but also the water inside the corrosion holes can be sufficiently dried in the actual environment, and the cuprous oxide 40 can be contained in the corrosion holes. It is considered that the provision of the element suppresses the progress of corrosion.
 上記では冷媒管について説明したが、本発明は、室外機と室内機とを接続する冷媒用配管が銅管である場合にも好適に適用される。上述のような空調機の運転によれば、冷媒用配管内も必然的に水分除去される状況であり、同様の効果を奏するものと考えられる。また上記では所定期間を日数で指定したが、時間で指定しても良い。無酸素銅からなる冷媒管を用いる場合、好ましくは、最初の冷房運転または除湿運転の終了後、または、最後の水分除去運転後の最初の冷房運転または除湿運転の終了後から1440時間以内に水分除去運転が行われる。さらに、水分除去運転のタイミングは、60日として設定して説明したが、図15A~図15Dおよび図16A~図16Dで示したように、120日以内の期間であれば、冷媒管21に貫通する状態が発生していないため、120日以内であれば、例えば、90日あるいは100日として設定することとしても構わない。 Although the refrigerant pipe has been described above, the present invention is also suitably applied when the refrigerant pipe connecting the outdoor unit and the indoor unit is a copper pipe. According to the operation of the air conditioner as described above, water is inevitably removed from the inside of the refrigerant pipe, and it is considered that the same effect is achieved. Further, in the above, the predetermined period is designated by the number of days, but it may be designated by the time. When a refrigerant pipe made of oxygen-free copper is used, it is preferable that the moisture content be within 1440 hours after the first cooling operation or the dehumidifying operation is completed or after the first cooling operation or the dehumidifying operation is completed after the last water removing operation. The removal operation is performed. Furthermore, the timing of the water removal operation is set to 60 days in the description, but as shown in FIGS. 15A to 15D and 16A to 16D, the refrigerant pipe 21 is penetrated during the period of 120 days or less. Since no state has occurred, if it is within 120 days, it may be set as 90 days or 100 days, for example.
 以上、図面を参照しながら各種の実施の形態について説明したが、本発明はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。また、発明の趣旨を逸脱しない範囲において、上記実施の形態における各構成要素を任意に組み合わせてもよい。 Although various embodiments have been described above with reference to the drawings, it goes without saying that the present invention is not limited to such examples. It is obvious to those skilled in the art that various changes or modifications can be conceived within the scope described in the claims, and naturally, they also belong to the technical scope of the present invention. Understood. Further, the constituent elements in the above-described embodiments may be arbitrarily combined without departing from the spirit of the invention.
 本出願は2018年10月16日出願の日本国特許出願(特願2018-194942)、及び2018年10月16日出願の日本国特許出願(特願2018-194943)に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on the Japanese patent application filed on Oct. 16, 2018 (Japanese Patent Application No. 2018-194942) and the Japanese patent application filed on Oct. 16, 2018 (Japanese Patent Application No. 2018-194943). The contents are hereby incorporated by reference.
1 空調機
2 室外機
3 室内機
4 圧縮機
5 四方弁
6 室外熱交換器
7 膨張弁
8 室内熱交換器
9 冷媒配管
10 室内送風機
11 ヒーター
12 吸入グリル
13 室内風路
14 ケーシング
15 ルーバー
16 ドレイン配管
17 制御装置
17A 記憶部
17B 出力部
17C 入力部
17D 演算部
18 吹出口
19 減圧ポンプ
21 冷媒管
21a 直管
21b リターンベンド管
22 アルミニウムフィン(フィン)
30 腐食再現装置
31 密閉容器
32 腐食液
33 供試材
34 シリコン栓
40 亜酸化銅
Ch 腐食孔(蟻の巣状腐食孔)
CH1 第1腐食孔(蟻の巣状腐食孔)
1 Air Conditioner 2 Outdoor Unit 3 Indoor Unit 4 Compressor 5 Four-Way Valve 6 Outdoor Heat Exchanger 7 Expansion Valve 8 Indoor Heat Exchanger 9 Refrigerant Pipe 10 Indoor Blower 11 Heater 12 Intake Grill 13 Indoor Airway 14 Casing 15 Louver 16 Drain Pipe 17 Control device 17A Storage unit 17B Output unit 17C Input unit 17D Calculation unit 18 Air outlet 19 Decompression pump 21 Refrigerant pipe 21a Straight pipe 21b Return bend pipe 22 Aluminum fin (fin)
30 Corrosion reproducing device 31 Sealed container 32 Corrosion liquid 33 Specimen material 34 Silicon stopper 40 Cuprous oxide Ch Corrosion hole (ant nest-like corrosion hole)
CH1 1st corrosion hole (ant nest corrosion hole)

Claims (23)

  1.  りん脱酸銅からなる冷媒管を用いた室内熱交換器を有する室内機を備える空調機の腐食進行抑制方法であって、前記空調機の運転の際、冷房運転または除湿運転の終了後に、前記冷媒管に発生した腐食孔の内部に存在する水分の除去を行う水分除去運転を行い、前記水分除去運転が、前記冷房運転または前記除湿運転の終了後から10日経過するまでの間に行われることを特徴とする空調機の腐食進行抑制方法。 A method for inhibiting corrosion progress of an air conditioner having an indoor unit having an indoor heat exchanger using a refrigerant tube made of phosphorus deoxidized copper, wherein during operation of the air conditioner, after completion of cooling operation or dehumidifying operation, the A water removal operation for removing water existing inside the corrosion holes generated in the refrigerant pipe is performed, and the water removal operation is performed within 10 days after the end of the cooling operation or the dehumidification operation. A method for suppressing the progress of corrosion of an air conditioner, which is characterized by the following.
  2.  前記水分除去運転が必要であることをユーザーに伝える表示運転を前記水分除去運転の前までにさらに行うことを特徴とする請求項1に記載の空調機の腐食進行抑制方法。 The method for suppressing the progress of corrosion of an air conditioner according to claim 1, further comprising a display operation for notifying the user that the water removal operation is necessary before the water removal operation.
  3.  前記表示運転が、前記冷房運転または前記除湿運転の終了後から5日経過するまでの間に行われることを特徴とする請求項2に記載の空調機の腐食進行抑制方法。 The method for suppressing corrosion progress of an air conditioner according to claim 2, wherein the display operation is performed within 5 days after the end of the cooling operation or the dehumidifying operation.
  4.  無酸素銅からなる冷媒管を用いた室内熱交換器を有する室内機を備える空調機の腐食進行抑制方法であって、前記空調機の運転の際、冷房運転または除湿運転の終了後に、前記冷媒管に発生した腐食孔の内部に存在する水分の除去を行う水分除去運転を行い、前記水分除去運転が、前記冷房運転または前記除湿運転の終了後から60日経過するまでの間に行われることを特徴とする空調機の腐食進行抑制方法。 A method for suppressing the progress of corrosion of an air conditioner having an indoor unit having an indoor heat exchanger using a refrigerant pipe made of oxygen-free copper, wherein during operation of the air conditioner, after completion of a cooling operation or a dehumidifying operation, the refrigerant Performing a water removal operation for removing the water existing inside the corrosion hole generated in the pipe, and the water removal operation is performed within 60 days after the end of the cooling operation or the dehumidification operation. A method for suppressing the progress of corrosion of an air conditioner, which is characterized by:
  5.  前記水分除去運転が必要であることをユーザーに伝える表示運転を前記水分除去運転の前までにさらに行うことを特徴とする請求項4に記載の空調機の腐食進行抑制方法。 The method for suppressing the progress of corrosion of an air conditioner according to claim 4, wherein a display operation for notifying the user that the water removal operation is necessary is further performed before the water removal operation.
  6.  前記表示運転が、前記冷房運転または前記除湿運転の終了後から50日経過するまでの間に行われることを特徴とする請求項5に記載の空調機の腐食進行抑制方法。 The method for suppressing the progress of corrosion of an air conditioner according to claim 5, wherein the display operation is performed within 50 days after the end of the cooling operation or the dehumidifying operation.
  7.  前記水分除去運転が、前記冷媒管の加熱乾燥によって行われることを特徴とする請求項1に記載の空調機の腐食進行抑制方法。 The method for suppressing the progress of corrosion of an air conditioner according to claim 1, wherein the water removal operation is performed by heating and drying the refrigerant pipe.
  8.  前記水分除去運転が、前記冷媒管の加熱乾燥によって行われることを特徴とする請求項4に記載の空調機の腐食進行抑制方法。 The method for suppressing the progress of corrosion of an air conditioner according to claim 4, wherein the water removal operation is performed by heating and drying the refrigerant pipe.
  9.  前記加熱乾燥が、前記冷媒管の保持温度をX(℃)、保持時間をY(min)としたとき、下式(1)を満足することを特徴とする請求項7に記載の空調機の腐食進行抑制方法。
     Y≧4000e-0.11X     (1)
    8. The air conditioner according to claim 7, wherein the heating and drying satisfy the following expression (1) when the holding temperature of the refrigerant pipe is X (° C.) and the holding time is Y (min). Corrosion progress control method.
    Y ≧ 4000e −0.11X (1)
  10.  前記加熱乾燥が、前記冷媒管の保持温度をX(℃)、保持時間をY(min)としたとき、下式(1)を満足することを特徴とする請求項8に記載の空調機の腐食進行抑制方法。
     Y≧4000e-0.11X     (1)
    9. The air conditioner according to claim 8, wherein the heating and drying satisfy the following expression (1) when the holding temperature of the refrigerant pipe is X (° C.) and the holding time is Y (min). Corrosion progress control method.
    Y ≧ 4000e −0.11X (1)
  11.  空調機の室内機に用いられるCuの含有量が99.95%以上、酸素の含有量が10ppm以下であり、残部が不可避不純物である空調機用銅管からなる冷媒管に形成された腐食孔の内壁面に亜酸化銅を設けることを特徴とする空調機の腐食進行抑制方法。 Corrosion holes formed in a refrigerant pipe made of a copper pipe for an air conditioner, which has a Cu content of 99.95% or more and an oxygen content of 10 ppm or less with the balance being an unavoidable impurity used in an indoor unit of an air conditioner. A method for suppressing the progress of corrosion of an air conditioner, characterized by providing cuprous oxide on the inner wall surface of the air conditioner.
  12.  前記腐食孔に亜酸化銅を設けるために水分除去運転を行い、前記水分除去運転が、前記冷媒管の加熱乾燥によって行われることを特徴とする請求項11に記載の空調機の腐食進行抑制方法。 The method for suppressing the progress of corrosion of an air conditioner according to claim 11, wherein a water removal operation is performed to provide cuprous oxide in the corrosion holes, and the water removal operation is performed by heating and drying the refrigerant pipe. .
  13.  前記水分除去運転が、前記空調機の冷房運転または除湿運転の終了後から60日経過するまでの間に行われることを特徴とする請求項12記載の空調機の腐食進行抑制方法。 13. The method for suppressing the progress of corrosion of an air conditioner according to claim 12, wherein the water removal operation is performed within 60 days after the completion of the cooling operation or the dehumidifying operation of the air conditioner.
  14.  前記水分除去運転が必要であることをユーザーに伝える表示運転を、前記水分除去運転前までに、さらに行うことを特徴とする請求項12に記載の空調機の腐食進行抑制方法。 The method for suppressing the progress of corrosion of an air conditioner according to claim 12, wherein a display operation for notifying the user that the water removal operation is necessary is further performed before the water removal operation.
  15.  前記表示運転が、前記空調機の冷房運転または除湿運転の終了後から50日経過するまでの間に行われることを特徴とする請求項14に記載の空調機の腐食進行抑制方法。 The method for suppressing corrosion progress of an air conditioner according to claim 14, wherein the display operation is performed within 50 days after the end of the cooling operation or the dehumidifying operation of the air conditioner.
  16.  前記加熱乾燥が、前記空調機の暖房運転によって行われることを特徴とする請求項7,8,10のいずれか1項に記載の空調機の腐食進行抑制方法。 The method for suppressing the progress of corrosion of an air conditioner according to any one of claims 7, 8 and 10, wherein the heating and drying is performed by a heating operation of the air conditioner.
  17.  前記加熱乾燥が、前記室内機が備えるヒーターによって行われることを特徴とする請求項7,8,10のいずれか1項に記載の空調機の腐食進行抑制方法。 The method for suppressing the progress of corrosion of an air conditioner according to any one of claims 7, 8 and 10, wherein the heating and drying is performed by a heater provided in the indoor unit.
  18.  前記加熱乾燥が、前記室内機からの室内への排気阻止および排熱阻止と共に行われることを特徴とする請求項7,8,10のいずれか1項に記載の空調機の腐食進行抑制方法。 The method for suppressing the progress of corrosion of an air conditioner according to any one of claims 7, 8 and 10, wherein the heating and drying are performed together with the prevention of exhaust from the indoor unit to the room and the prevention of exhaust heat.
  19.  前記排気阻止および前記排熱阻止が、前記室内機に備えられたルーバーによって行われることを特徴とする請求項18に記載の空調機の腐食進行抑制方法。 The method for suppressing the progress of corrosion of an air conditioner according to claim 18, wherein the exhaust prevention and the exhaust heat prevention are performed by a louver provided in the indoor unit.
  20.  前記排気阻止および前記排熱阻止が、前記室内機に備えられたドレイン配管によって行われることを特徴とする請求項18に記載の空調機の腐食進行抑制方法。 The method for suppressing the progress of corrosion of an air conditioner according to claim 18, wherein the exhaust prevention and the exhaust heat prevention are performed by a drain pipe provided in the indoor unit.
  21.  前記水分除去運転が、前記室内機の内部を減圧する真空引きによって行われることを特徴とする請求項1,4,12のいずれか一項に記載の空調機の腐食進行抑制方法。 The method for suppressing the progress of corrosion of an air conditioner according to any one of claims 1, 4 and 12, wherein the water removal operation is performed by vacuuming to reduce the pressure inside the indoor unit.
  22.  室外機と、室内機と、制御装置と、を備え、前記室内機は、冷媒管を用いた室内熱交換器を有し、前記制御装置は、請求項1,4,11のいずれか一項に記載の前記空調機の腐食進行抑制方法を用いて前記空調機を制御することを特徴とする空調機。 An outdoor unit, an indoor unit, and a control device are provided, the indoor unit has an indoor heat exchanger using a refrigerant pipe, and the control device is any one of claims 1, 4, and 11. The air conditioner is controlled by using the method for suppressing the progress of corrosion of the air conditioner according to claim 4.
  23.  空調機の室内機に備えられた室内熱交換器に用いられる冷媒管であって、請求項1,4,11のいずれか一項に記載の前記空調機の腐食進行抑制方法を用いて、前記冷媒管に発生した腐食孔の内部に亜酸化銅が形成されたことを特徴とする冷媒管。 A refrigerant pipe used for an indoor heat exchanger provided in an indoor unit of an air conditioner, wherein the corrosion progress suppressing method for the air conditioner according to any one of claims 1, 4 and 11 is used, A refrigerant pipe, characterized in that cuprous oxide is formed inside a corrosion hole generated in the refrigerant pipe.
PCT/JP2019/040722 2018-10-16 2019-10-16 Method for inhibiting progress of corrosion in air conditioners, air conditioner, and refrigerant piping WO2020080426A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018194942A JP7078510B2 (en) 2018-10-16 2018-10-16 How to control the progress of corrosion of air conditioners, air conditioners and refrigerant pipes
JP2018-194943 2018-10-16
JP2018-194942 2018-10-16
JP2018194943A JP7128080B2 (en) 2018-10-16 2018-10-16 Corrosion suppression method for air conditioner, and air conditioner

Publications (1)

Publication Number Publication Date
WO2020080426A1 true WO2020080426A1 (en) 2020-04-23

Family

ID=70284381

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/040722 WO2020080426A1 (en) 2018-10-16 2019-10-16 Method for inhibiting progress of corrosion in air conditioners, air conditioner, and refrigerant piping

Country Status (1)

Country Link
WO (1) WO2020080426A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113081783A (en) * 2021-03-26 2021-07-09 赣南医学院第一附属医院 Gynaecology and obstetrics is with stifling appearance of taking care of postpartum
JP2023014643A (en) * 2021-07-19 2023-01-31 日立ジョンソンコントロールズ空調株式会社 air conditioner

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0610166A (en) * 1992-06-26 1994-01-18 Mitsubishi Materials Corp Corrosion inhibitor for copper-based material and lubricating oil containing the same
JP2002303428A (en) * 2001-04-03 2002-10-18 Mitsubishi Electric Corp Method for preventing corrosion of copper heat transfer tube and air conditioner
JP2004360951A (en) * 2003-06-03 2004-12-24 Hitachi Home & Life Solutions Inc Air conditioner
JP2008202813A (en) * 2007-02-16 2008-09-04 Mitsubishi Electric Corp Refrigerating cycle device and its manufacturing method
JP2009168327A (en) * 2008-01-16 2009-07-30 Daikin Ind Ltd Indoor unit of air conditioner
JP2011027346A (en) * 2009-07-27 2011-02-10 Iwasaki Kogyo:Kk Cross fin tube type heat exchanger
JP2011075221A (en) * 2009-09-30 2011-04-14 Daikin Industries Ltd Refrigerating device and method for injecting seal material in the refrigerating device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0610166A (en) * 1992-06-26 1994-01-18 Mitsubishi Materials Corp Corrosion inhibitor for copper-based material and lubricating oil containing the same
JP2002303428A (en) * 2001-04-03 2002-10-18 Mitsubishi Electric Corp Method for preventing corrosion of copper heat transfer tube and air conditioner
JP2004360951A (en) * 2003-06-03 2004-12-24 Hitachi Home & Life Solutions Inc Air conditioner
JP2008202813A (en) * 2007-02-16 2008-09-04 Mitsubishi Electric Corp Refrigerating cycle device and its manufacturing method
JP2009168327A (en) * 2008-01-16 2009-07-30 Daikin Ind Ltd Indoor unit of air conditioner
JP2011027346A (en) * 2009-07-27 2011-02-10 Iwasaki Kogyo:Kk Cross fin tube type heat exchanger
JP2011075221A (en) * 2009-09-30 2011-04-14 Daikin Industries Ltd Refrigerating device and method for injecting seal material in the refrigerating device

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ATSUMI, TETSURO ET AL.: "Ant's Nest Corrosion and Its Prevention of ACR Copper Tubes based on Experience", SUMITOMO LIGHT METAL TECHNICAL REPORTS, vol. 44, no. 1, 30 January 2004 (2004-01-30), pages 69 - 75 *
NOTOYA, TAKENORI ET AL.: "Formicary corrosion in copper tubes in wet atmospheric conditions", SUMITOMO LIGHT METAL TECHNICAL REPORTS, vol. 30, no. 3, July 1989 (1989-07-01), pages 9 - 14 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113081783A (en) * 2021-03-26 2021-07-09 赣南医学院第一附属医院 Gynaecology and obstetrics is with stifling appearance of taking care of postpartum
CN113081783B (en) * 2021-03-26 2023-04-25 赣南医学院第一附属医院 Gynaecology and obstetrics is with stifling appearance of nursing in palm
JP2023014643A (en) * 2021-07-19 2023-01-31 日立ジョンソンコントロールズ空調株式会社 air conditioner

Similar Documents

Publication Publication Date Title
WO2020080426A1 (en) Method for inhibiting progress of corrosion in air conditioners, air conditioner, and refrigerant piping
EP2357434A1 (en) Air conditioning device
JP5997060B2 (en) Air conditioner
JP7034254B2 (en) Air conditioner
JP7128080B2 (en) Corrosion suppression method for air conditioner, and air conditioner
JP6058154B2 (en) Corrosion resistance life diagnosis parts, heat exchanger, refrigeration air conditioner
JP2014095524A (en) Air conditioner
CN103562667A (en) Heat exchanger fin, heat exchanger and air-conditioning device
JP6825233B2 (en) Air conditioner
JP4711438B2 (en) Refrigeration air conditioner and refrigeration air conditioning method
JP5966327B2 (en) Air conditioning indoor unit
JP7078510B2 (en) How to control the progress of corrosion of air conditioners, air conditioners and refrigerant pipes
JP6878918B2 (en) Refrigeration cycle equipment
JP6962874B2 (en) How to control the progress of corrosion of air conditioners, air conditioners and refrigerant pipes
JP6252627B2 (en) Multi-type air conditioner
WO2019189803A1 (en) Method for suppressing progress of corrosion in air conditioner, air conditioner, and refrigerant pipe
JP2008075998A (en) Air conditioner
JP2008121996A (en) Air conditioner
JP2011242097A (en) Refrigerating apparatus
JP6603125B2 (en) Air conditioner
TWI309706B (en) Flooded chiller and method for controlling refrigerant level thereof
JP2021018024A (en) Refrigerating device
JP4178906B2 (en) Air conditioner and control method of air conditioner
JP2008121995A (en) Air conditioner
JP2022152750A (en) air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19874033

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19874033

Country of ref document: EP

Kind code of ref document: A1