JP2008202813A - Refrigerating cycle device and its manufacturing method - Google Patents

Refrigerating cycle device and its manufacturing method Download PDF

Info

Publication number
JP2008202813A
JP2008202813A JP2007036192A JP2007036192A JP2008202813A JP 2008202813 A JP2008202813 A JP 2008202813A JP 2007036192 A JP2007036192 A JP 2007036192A JP 2007036192 A JP2007036192 A JP 2007036192A JP 2008202813 A JP2008202813 A JP 2008202813A
Authority
JP
Japan
Prior art keywords
refrigerant
brazing
refrigerant flow
pipe
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007036192A
Other languages
Japanese (ja)
Inventor
Rumi Okajima
るみ 岡島
Moriya Miyamoto
守也 宮本
Kazukuni Miya
一晋 宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2007036192A priority Critical patent/JP2008202813A/en
Publication of JP2008202813A publication Critical patent/JP2008202813A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a refrigerating cycle device having high durability and a long service life even when it is installed under a severe air-conditioning environment. <P>SOLUTION: In this refrigerating cycle device, a refrigerant flow channel 1A constituting a refrigerant circuit 1 is composed of oxygen free copper. A refrigerant pipe 8 of an evaporator 5 of the refrigerant circuit 1 is applied as the refrigerant flow channel 1A composed of oxygen free copper, a temperature-rising part in brazing the refrigerant flow channel 1A is coated with a rust-proof coating film, silver brazing filler metal is applied as brazing filler metal used in brazing the refrigerant flow channel 1A, and hydrogen embrittlement prevention treatment is performed in brazing the refrigerant flow channel 1A. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、例えば空気調和装置や冷凍装置に用いられる冷媒回路を備えた冷凍サイクル装置およびその製造方法に関する。   The present invention relates to a refrigeration cycle apparatus including a refrigerant circuit used in, for example, an air conditioner or a refrigeration apparatus, and a method for manufacturing the refrigeration cycle apparatus.

従来、この種の冷凍サイクル装置の冷媒回路は、圧縮機、凝縮器、冷媒絞り弁、および蒸発器がそれぞれ冷媒配管を介して環状に連結された冷媒流路を有している。この冷凍サイクル装置において、冷媒配管、凝縮器の冷媒管、および蒸発器の冷媒管は、安価で、後述する水素脆化が起こりにくいりん脱酸銅(JIS−H−3100、合金番号1201)で構成され、ロウ付けにより管同士が接続されている。   Conventionally, the refrigerant circuit of this type of refrigeration cycle apparatus has a refrigerant flow path in which a compressor, a condenser, a refrigerant throttle valve, and an evaporator are connected in an annular shape through refrigerant piping. In this refrigeration cycle apparatus, the refrigerant pipe, the condenser refrigerant pipe, and the evaporator refrigerant pipe are made of phosphorous deoxidized copper (JIS-H-3100, alloy number 1201) which is inexpensive and hardly causes hydrogen embrittlement described later. The tubes are connected by brazing.

特開2002−303428号公報JP 2002-303428 A

ところで、機械加工・食品加工工場などのようにオイルミストが発生する環境下に設置される空気調和装置では、オイルミストが酸化して生じたギ酸・酢酸などの有機酸により、銅管製の冷媒配管や熱交換器の冷媒管が腐食して寿命が短くなるという不具合がある。特に、りん脱酸銅製の冷媒管を用いた従来の蒸発器の場合、特定のpH範囲(特に、2.8以上4未満)において腐食速度が急激に高くなり侵食深さの深い蟻の巣状腐食を多発させるといったこと(図4中の曲線F参照)が従来より知られている。そのために、生産リードタイムが長くなる防食塗装処理を行ったり、加工性の悪い銅合金を用いたりしなければならないことから、有機酸に対し耐食性の高い機器が嘱望されていた。
そこで、室内機内に吸着材を配備した空気調和装置が上記の特許文献1に記載されている。この空気調和装置では、空調環境から室内機内に流入した有機酸を吸着材が吸着除去することにより、熱交換器の冷媒管の腐食を抑制するようになっている。しかしながら、上記した空調環境から流入するオイルミストの量は非常に多いので、活性炭などに代表される吸着材の吸着能力が短期間で失なわれ、短期間で吸着材の交換を余儀なくされ、交換などメンテナンスの手間や吸着材コストがかかるという問題があった。
By the way, in an air conditioner installed in an environment where oil mist is generated, such as in a machine processing / food processing factory, etc., a refrigerant made of copper tube is formed by organic acids such as formic acid and acetic acid generated by oxidation of the oil mist. There is a problem in that the refrigerant pipe of the pipe and the heat exchanger is corroded and the life is shortened. In particular, in the case of a conventional evaporator using a phosphorous-deoxidized copper refrigerant tube, the corrosion rate increases rapidly in a specific pH range (especially 2.8 or more and less than 4), and the ant nest shape has a deep erosion depth. It has been conventionally known that corrosion frequently occurs (see curve F in FIG. 4). For this reason, an anticorrosive coating process that increases the production lead time or a copper alloy with poor workability must be used, and thus a device with high corrosion resistance against organic acids has been desired.
Therefore, an air conditioner in which an adsorbent is provided in the indoor unit is described in Patent Document 1 described above. In this air conditioner, the adsorbent adsorbs and removes the organic acid flowing into the indoor unit from the air-conditioning environment, thereby suppressing corrosion of the refrigerant pipe of the heat exchanger. However, since the amount of oil mist flowing from the air conditioning environment described above is very large, the adsorption capacity of adsorbents such as activated carbon is lost in a short period of time, and the adsorbent must be replaced in a short period of time. There was a problem that maintenance work and adsorbent cost were required.

本発明は、上記した従来の問題点に鑑みてなされたものであって、過酷な設置環境下であっても耐久性が高くメンテナンスの手間が少なくて済む冷凍サイクル装置およびその製造方法の提供を目的とする。   The present invention has been made in view of the above-described conventional problems, and provides a refrigeration cycle apparatus and a method for manufacturing the same that have high durability and require less labor for maintenance even under severe installation environments. Objective.

上記目的を達成するために、本発明に係る冷凍サイクル装置は、冷媒回路を構成する冷媒流路を無酸素銅で構成したものである。   In order to achieve the above object, a refrigeration cycle apparatus according to the present invention is configured such that a refrigerant flow path constituting a refrigerant circuit is made of oxygen-free copper.

本発明に係る冷凍サイクル装置によれば、冷媒回路の冷媒流路が無酸素銅で構成されているので、従来のりん脱酸銅と比べて、使用時間経過に伴う侵食深さが格段に小さくなるうえ、特定pH範囲での腐食速度の急騰をもたらすことがない。従って、いわゆる蟻の巣状腐食の多発を防止でき、耐久性が高く長寿命の冷凍サイクル装置を提供することができる。   According to the refrigeration cycle apparatus according to the present invention, since the refrigerant flow path of the refrigerant circuit is made of oxygen-free copper, the erosion depth with the passage of time of use is significantly smaller than that of conventional phosphorous deoxidized copper. Moreover, it does not cause a rapid increase in the corrosion rate in a specific pH range. Therefore, frequent occurrence of so-called ant nest corrosion can be prevented, and a refrigeration cycle apparatus with high durability and long life can be provided.

実施の形態1.
図1は本発明の一実施形態に係る冷凍サイクル装置の冷媒回路を示す概略構成図である。
図1において、この実施形態に係る冷凍サイクル装置は、冷凍サイクル動作を行なう冷媒回路1を備えた空気調和装置の例を示している。冷媒回路1は、圧縮機2、凝縮器3、冷媒絞り弁4、および蒸発器5がそれぞれ冷媒配管7,7,7,7を介して環状に連結されている。すなわち、圧縮機2内の冷媒流通部分、冷媒配管7、凝縮器3の冷媒管9、冷媒配管7、冷媒絞り弁4内の冷媒流通部分、冷媒配管7、蒸発器5の冷媒管8、および冷媒配管7が環状に連通することにより、冷媒回路1の冷媒流路1Aが構成される。蒸発器5は冷房を行なう空調環境Aに配置されていて、例えばフィンチューブ式に構成されている。空調環境Aは例えばオイルミストが発生する機械加工工場などの環境である。
Embodiment 1 FIG.
FIG. 1 is a schematic configuration diagram showing a refrigerant circuit of a refrigeration cycle apparatus according to an embodiment of the present invention.
In FIG. 1, the refrigeration cycle apparatus according to this embodiment shows an example of an air conditioner including a refrigerant circuit 1 that performs a refrigeration cycle operation. In the refrigerant circuit 1, a compressor 2, a condenser 3, a refrigerant throttle valve 4, and an evaporator 5 are connected in an annular manner via refrigerant pipes 7, 7, 7, and 7, respectively. That is, the refrigerant circulation part in the compressor 2, the refrigerant pipe 7, the refrigerant pipe 9 of the condenser 3, the refrigerant pipe 7, the refrigerant circulation part in the refrigerant throttle valve 4, the refrigerant pipe 7, the refrigerant pipe 8 of the evaporator 5, and The refrigerant flow path 1A of the refrigerant circuit 1 is configured by the refrigerant pipe 7 communicating in an annular shape. The evaporator 5 is disposed in an air-conditioning environment A that performs cooling, and is configured, for example, as a fin tube type. The air conditioning environment A is an environment such as a machining factory where oil mist is generated.

前記の蒸発器5では、図2および図3に示すように、横方向所定間隔で並設された多数のフィン10,10,10,・・・に、縦方向所定間隔の管挿通穴(図示省略)が形成されている。各フィン10は管挿通穴形成の際に切り起こされたカラー15の存在により隣り合うフィン10との間に所定隙間が保持されている。そして、各フィン10の管挿通穴には、ヘアピン状配管11,11,11,・・・がフィン組体の一端側から挿通されている。各ヘアピン状配管11の管端部11A,11Bはフィン組体の他端側から突出した状態にされ、或るヘアピン状配管11の管端部11Bと次のヘアピン状配管11の管端部11AとがU字状の管継手12を介して連結されている。すなわち、ヘアピン状配管11,11,11,・・・と管継手12,12,12,・・・とから、蒸発器5の冷媒管8が構成される。この実施形態では、ヘアピン状配管11および管継手12が無酸素銅(JIS−H−3100、合金番号C−1020)で構成されている。 In the evaporator 5, as shown in FIGS. 2 and 3, a plurality of fins 10, 10, 10,... (Omitted) is formed. Each fin 10 has a predetermined gap between adjacent fins 10 due to the presence of the collar 15 cut and raised when the tube insertion hole is formed. And the hairpin-shaped piping 11, 11, 11, ... is penetrated from the one end side of a fin assembly to the pipe insertion hole of each fin 10. As shown in FIG. The tube end portions 11A and 11B of each hairpin-shaped pipe 11 are projected from the other end side of the fin assembly, and the tube end portion 11B of a certain hairpin-shaped tube 11 and the tube end portion 11A of the next hairpin-shaped tube 11 are used. Are connected via a U-shaped pipe joint 12. That is, the refrigerant pipe 8 of the evaporator 5 is constituted by the hairpin-shaped pipes 11, 11, 11,... And the pipe joints 12, 12, 12,. In this embodiment, the hairpin-shaped pipe 11 and the pipe joint 12 are made of oxygen-free copper (JIS-H-3100, alloy number C-1020).

そして、ヘアピン状配管11,11の管端部11Bと管端部11Aは、管継手12の両端の大径部13,13にそれぞれ挿し込まれ、挿し込み部およびその近傍が800℃程度に加熱されたのちにロウ付け(ロウ付け部14)されている。このようなロウ付けに用いるロウ材としては、いわゆる硬ロウ付けで使用される450℃以上の溶融点を持つものであれば特に限定されない。このようなロウ材としては、例えば銀ロウ、金ロウ、黄銅ロウ、真鍮ロウ、ニッケルロウ、アルミニウムロウなどが挙げられる。この実施形態では例えば銀ロウを使用してある。 And the pipe end part 11B and the pipe end part 11A of the hairpin-like pipes 11 and 11 are respectively inserted into the large diameter parts 13 and 13 at both ends of the pipe joint 12, and the insertion part and its vicinity are heated to about 800 ° C. After that, brazing (brazing unit 14) is performed. The brazing material used for such brazing is not particularly limited as long as it has a melting point of 450 ° C. or higher used in so-called hard brazing. Examples of such a brazing material include silver brazing, gold brazing, brass brazing, brass brazing, nickel brazing, and aluminum brazing. In this embodiment, for example, silver wax is used.

上記のように構成された空気調和装置の冷媒回路1の冷房運転動作を次に説明する。圧縮機2から吐出された高温高圧のガス冷媒は凝縮器3の冷媒管9へ流入し室外空気により冷却されて凝縮液化する。凝縮器3から出た冷媒は冷媒絞り弁4で減圧され、蒸発器5の冷媒管8へ流入する。蒸発器5において冷媒は空調環境Aの空気を冷却するとともに自身は冷媒管8内で気化して蒸発器5を出る。蒸発器5から流出したガス冷媒はアキュムレータ6を経て圧縮機2に戻る。このような冷凍サイクル動作が繰り返される。
前記の冷媒回路1において、蒸発器5の冷媒管8の表面では空調環境Aの空気中の水分が結露してドレン水として滴下し排水される。この場合、空調環境Aはオイルミストが発生する機械加工・食品加工工場などの環境の場合は、オイルミストの酸化により生じたギ酸・酢酸などによって、冷媒管8の表面はpHの低い(すなわち酸性度の高い)湿潤状態となっている場合が多い。
Next, the cooling operation of the refrigerant circuit 1 of the air conditioner configured as described above will be described. The high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the refrigerant pipe 9 of the condenser 3 and is cooled by the outdoor air to be condensed and liquefied. The refrigerant discharged from the condenser 3 is decompressed by the refrigerant throttle valve 4 and flows into the refrigerant pipe 8 of the evaporator 5. In the evaporator 5, the refrigerant cools the air in the air-conditioning environment A and evaporates in the refrigerant pipe 8 and exits the evaporator 5. The gas refrigerant flowing out of the evaporator 5 returns to the compressor 2 through the accumulator 6. Such a refrigeration cycle operation is repeated.
In the refrigerant circuit 1, moisture in the air of the air-conditioning environment A is condensed on the surface of the refrigerant pipe 8 of the evaporator 5 and is dripped and drained as drain water. In this case, if the air-conditioning environment A is an environment such as a machining / food processing factory where oil mist is generated, the surface of the refrigerant pipe 8 has a low pH (that is, acidic) due to formic acid, acetic acid, etc. generated by oxidation of the oil mist. It is often in a wet state.

図4は試験で得られた蒸発器冷媒管部分の湿潤環境での、pHと侵食速度との関係を示すグラフである。ここで、Eは無酸素銅の状態を示し、Fはりん脱酸銅の状態を示している。本グラフで示す通り、無酸素銅の場合は、pHの低下に伴い侵食速度は徐々に速くなる。一方、りん脱酸銅の場合は、特定のpHの範囲(特に、2.8以上4未満)において侵食速度が急激に速くなり、いわゆる蟻の巣状腐食が進行する。
図5は同様に、試験室レベル(加速試験)で得られた蒸発器冷媒管部分の湿潤環境での、経過時間と侵食深さとの関係を示すグラフである。また、試験室の環境は、蟻の巣状腐食が進行しやすい、pH(特に、2.8以上4未満)環境である。ここで、Gは無酸素銅の状態を示し、Fはりん脱酸銅の状態を示している。
つまり、この実施形態の冷凍サイクル装置は、図5のグラフにおいて曲線Gで示すように、加速試験開始から40日を経過しても、孔食の侵食深さが100〜200μm程度と大きくならず、極めて耐久性の高い蒸発器5を提供することができる。一般に、フィン10のカラー15と微小な隙間を隔てて対面する冷媒管の面には蟻の巣状腐食が発生しやすいが、本実施形態の冷媒管8ではカラー15との対面位置にも蟻の巣状腐食や孔食がほとんど発生していない。
これに対し、同グラフ中の曲線Hで示すように、従来汎用の蒸発器の冷媒管は加速試験開始当初より特に蟻の巣状腐食に関して大きな侵食深さを呈しており、加速試験開始から40日目で600〜1200μm程度と、本実施形態の冷媒管8と比べてほぼ6倍も深い侵食深さに達したのである。冷媒管の腐食が前記のように深い侵食深さになると、冷媒管の耐圧強度の観点から、侵食深さが冷媒管の初期管肉厚に等しくなる(貫通する)と予測される加速試験経過日数Bよりも前の短期間で、従来の蒸発器は寿命となってしまう。
FIG. 4 is a graph showing the relationship between the pH and the erosion rate in a humid environment of the evaporator refrigerant pipe portion obtained in the test. Here, E shows the state of oxygen-free copper, and F shows the state of phosphorus deoxidized copper. As shown in this graph, in the case of oxygen-free copper, the erosion rate gradually increases as the pH decreases. On the other hand, in the case of phosphorous deoxidized copper, the erosion rate rapidly increases in a specific pH range (especially 2.8 or more and less than 4), and so-called ant nest corrosion progresses.
FIG. 5 is also a graph showing the relationship between the elapsed time and the erosion depth in the humid environment of the evaporator refrigerant tube portion obtained at the laboratory level (acceleration test). The environment of the test room is a pH environment (especially 2.8 or more and less than 4) in which ant nest corrosion tends to proceed. Here, G shows the state of oxygen-free copper, and F shows the state of phosphorus deoxidized copper.
That is, in the refrigeration cycle apparatus of this embodiment, as indicated by the curve G in the graph of FIG. 5, even after 40 days have passed since the start of the acceleration test, the erosion depth of pitting corrosion does not increase to about 100 to 200 μm. The extremely durable evaporator 5 can be provided. In general, ant nest-like corrosion is likely to occur on the surface of the refrigerant pipe facing the collar 15 of the fin 10 with a minute gap, but in the refrigerant pipe 8 of this embodiment, the ant There is almost no nest-like corrosion or pitting corrosion.
On the other hand, as shown by the curve H in the graph, the refrigerant pipe of the conventional general-purpose evaporator has exhibited a large erosion depth particularly from the beginning of the acceleration test, particularly with respect to the ant nest-like corrosion. On the day, the erosion depth reached approximately 600 to 1200 μm, which is about 6 times deeper than that of the refrigerant pipe 8 of the present embodiment. If the corrosion of the refrigerant pipe reaches a deep erosion depth as described above, it is predicted that the erosion depth is equal to (penetrates) the initial pipe wall thickness of the refrigerant pipe from the viewpoint of the pressure resistance of the refrigerant pipe. In a short period before the number of days B, the conventional evaporator will have a lifetime.

そして、この実施形態では、上述した冷媒管8のヘアピン状配管11と管継手12をロウ付けする際に、水素脆化防止処理を施した。ここで、水素脆化とは、水素が材料内部に入り、脆くなる現象を言う。よって、水素脆化防止処理とは、ロウ付け時に、水素の進入を防止する処理のことである。この水素脆化防止処理の一例としては、例えば800℃に達した後、ロウ付け作業時間を60秒以下(より好ましくは20秒以下である。また、一般的な作業時間は10秒以下である。)に収めることである。ここでいうロウ付け作業時間とは、加熱するためのトーチにより配管(ここでは、外径7.94mm、肉厚0.25mmの銅管を用いた)を加熱して或る一定温度、例えば800℃に達したのち、ロウ材を投入してからトーチを外して加熱を止めるまでの時間である。加熱温度が高い場合、さらにロウ付け作業時間は短くなる。
そこで、ロウ付け後に常温まで放熱したのち冷媒管8の表面に生じたボイド(孔)の数を計数した。図6のグラフ中の曲線Iは、前記のロウ付け作業時間と、ロウ付け後の冷媒管8の表面に生じたボイドの数との関係を示している。ボイドの数はサンプル表面を顕微鏡で観察して計数した250×250μmあたりの個数である。すなわち、曲線Iから明らかなように、60秒以下でロウ付け作業時間を行なうと、水素脆化性割れの起点となるボイドの発生を抑制し、ひいては水素脆化による耐圧強度低下の問題を解消することができる。
And in this embodiment, when brazing the hairpin-shaped piping 11 and the pipe joint 12 of the refrigerant pipe 8 mentioned above, the hydrogen embrittlement prevention process was performed. Here, hydrogen embrittlement refers to a phenomenon in which hydrogen enters the material and becomes brittle. Therefore, the hydrogen embrittlement prevention process is a process for preventing the entry of hydrogen during brazing. As an example of this hydrogen embrittlement prevention treatment, for example, after reaching 800 ° C., the brazing operation time is 60 seconds or less (more preferably 20 seconds or less. Further, the general operation time is 10 seconds or less. .). The brazing operation time here refers to heating a pipe (here, a copper tube having an outer diameter of 7.94 mm and a wall thickness of 0.25 mm) with a torch for heating, and a certain constant temperature, for example, 800 It is the time from the introduction of the brazing material to the removal of the torch and the stop of heating after reaching the temperature. When the heating temperature is high, the brazing time is further shortened.
Therefore, the number of voids (holes) generated on the surface of the refrigerant tube 8 after the heat release to room temperature after brazing was counted. A curve I in the graph of FIG. 6 shows the relationship between the brazing operation time and the number of voids generated on the surface of the refrigerant pipe 8 after brazing. The number of voids is the number per 250 × 250 μm counted by observing the sample surface with a microscope. That is, as is clear from curve I, when the brazing operation time is performed for 60 seconds or less, the generation of voids as the starting point of hydrogen embrittlement cracking is suppressed, and the problem of reduced pressure strength due to hydrogen embrittlement is solved. can do.

通常、加熱温度が不適切な場合やロウ材の量が適正でない場合には、再度800℃まで加熱してロウ付けの手直しが行なわれる。そこで、水素脆化防止処理の別例としては、ロウ付けの手直し作業を2回までに収めることである。すなわち、図7のグラフからわかるように、ロウ付けの手直し作業が2回までであれば、ボイドの発生を防ぐことができる。 Usually, when the heating temperature is inappropriate or when the amount of brazing material is not appropriate, the brazing is reworked by heating to 800 ° C. again. Therefore, as another example of the hydrogen embrittlement prevention treatment, reworking of brazing is performed up to two times. That is, as can be seen from the graph of FIG. 7, if the brazing reworking operation is performed up to two times, generation of voids can be prevented.

また、水素脆化は酸素の存在下で発生することが知られている。そこで、水素脆化防止処理の他のいくつかの例として、窒素ガスを封入した容器内でロウ付けを行なう処理、冷媒管のロウ付けされる部分に向けて窒素ガスを流しながらロウ付けを行なう処理、真空にした容器内でロウ付けを行なう処理などが挙げられる。これらの処理によっても、ボイドの発生を防ぐことができる。   Further, it is known that hydrogen embrittlement occurs in the presence of oxygen. Therefore, as some other examples of the hydrogen embrittlement prevention process, brazing is performed in a container filled with nitrogen gas, and brazing is performed while flowing nitrogen gas toward the brazed portion of the refrigerant pipe. Examples thereof include a treatment and a treatment of brazing in a vacuumed container. These processes can also prevent the generation of voids.

ところで、冷媒管8においてロウ付け時に昇温した部分は加熱酸化による無酸素銅の特性が失われているので、そのままでは腐食を抑制することができない。このようにロウ付け時に昇温する部分は、例えばヘアピン状配管11と管継手12を接続したロウ付け部14と、ロウ付け部14近傍のヘアピン状配管11および管継手12である。そこで、図8に示すように、これら昇温部分の表面に防錆塗料を塗布し防錆塗膜16として被覆しておく。これにより、ロウ付け部14およびその近傍の冷媒管8の腐食を防ぐことができる。尚、防錆塗料としては、塗膜の防錆性および耐久性が高く塗装作業が容易なものであれば特に限定されないが、例えばエポキシ樹脂系塗料、タールエポキシ樹脂系塗料、アクリル樹脂系塗料、アルキルシリケート樹脂系塗料などが挙げられる。 By the way, the portion of the refrigerant pipe 8 that has been heated during brazing loses the characteristics of oxygen-free copper due to thermal oxidation. Thus, the part which heats up at the time of brazing is the brazing part 14 which connected the hairpin-shaped piping 11 and the pipe joint 12, for example, and the hairpin-shaped piping 11 and the pipe joint 12 of the brazing part 14 vicinity. Therefore, as shown in FIG. 8, a rust preventive paint is applied to the surface of these temperature rising portions and coated as a rust preventive coating film 16. Thereby, corrosion of brazing part 14 and refrigerant pipe 8 of the neighborhood can be prevented. The anti-corrosion paint is not particularly limited as long as the coating film has high anti-rust and durability properties and can be easily applied. For example, an epoxy resin paint, a tar epoxy resin paint, an acrylic resin paint, Examples thereof include alkyl silicate resin paints.

また、この実施形態ではロウ材として、耐食性が高く燐を含まない銀ロウを用いているので、冷媒管8の無酸素銅の特性を阻害することがなく、管同士のロウ付けによる防食効果の低下を阻止することができる。 Further, in this embodiment, since the silver brazing material having high corrosion resistance and containing no phosphorus is used as the brazing material, it does not impede the characteristics of the oxygen-free copper of the refrigerant pipe 8 and has an anticorrosive effect by brazing the pipes. Decline can be prevented.

尚、上記の実施形態では、無酸素銅で構成する部分として蒸発器の冷媒管を例示したが、本発明はそれに限定されるものでなく、例えば圧縮機の冷媒流通部分、凝縮器の冷媒管、冷媒絞り弁の冷媒流通部分、蒸発器の冷媒管、または各部をつなぐ冷媒配管など、冷媒流路の構成部品を可能な限り無酸素銅で構成してよいことは言うまでもない。
また、上記では冷凍サイクル装置の例として空気調和装置を例示したが、本発明は空気調和装置に限るものでなく、冷凍装置や冷蔵装置にも適用可能である。
In the above-described embodiment, the refrigerant pipe of the evaporator is illustrated as the part made of oxygen-free copper. However, the present invention is not limited thereto, and for example, the refrigerant circulation part of the compressor, the refrigerant pipe of the condenser Needless to say, the components of the refrigerant flow path, such as the refrigerant flow part of the refrigerant throttle valve, the refrigerant pipe of the evaporator, or the refrigerant pipe connecting the respective parts, may be made of oxygen-free copper as much as possible.
Moreover, although the air conditioning apparatus was illustrated as an example of the refrigerating cycle apparatus in the above, this invention is not restricted to an air conditioning apparatus, It can apply also to a freezing apparatus and a refrigerator.

本発明の一実施形態に係る冷凍サイクル装置の冷媒回路を示す概略構成図である。It is a schematic block diagram which shows the refrigerant circuit of the refrigerating-cycle apparatus which concerns on one Embodiment of this invention. 前記冷凍サイクル装置の蒸発器を示す概略正面図である。It is a schematic front view which shows the evaporator of the said refrigeration cycle apparatus. 前記蒸発器の冷媒管の連結態様を示す一部断面を含む部分正面図である。It is a partial front view including the partial cross section which shows the connection aspect of the refrigerant pipe of the said evaporator. 前記蒸発器の冷媒管に関する腐食速度と結露環境のpHとの関係を示すグラフである。It is a graph which shows the relationship between the corrosion rate regarding the refrigerant | coolant tube | pipe of the said evaporator, and pH of a dew condensation environment. 前記蒸発器の冷媒管に関する侵食深さと使用経過時間との関係を示すグラフである。It is a graph which shows the relationship between the erosion depth regarding the refrigerant pipe of the said evaporator, and use elapsed time. 前記冷媒管のロウ付けに要した時間とその後に発生したボイドの数との関係を示すグラフである。It is a graph which shows the relationship between the time required for brazing of the said refrigerant | coolant pipe | tube, and the number of the voids which generate | occur | produced after that. 前記冷媒管におけるロウ付けの手直し回数とその後に発生したボイドの数との関係を示すグラフである。It is a graph which shows the relationship between the number of times of reworking brazing in the refrigerant pipe and the number of voids generated thereafter. 前記冷媒管のロウ付け時に昇温した部分の一部断面を含む部分正面図である。It is a partial front view including the partial cross section of the part heated up at the time of brazing of the said refrigerant | coolant pipe | tube.

符号の説明Explanation of symbols

1 冷媒回路、1A 冷媒流路、5 蒸発器、7 冷媒配管、8 冷媒管、11 ヘアピン状配管、12 管継手、14 ロウ付け部、16 防錆塗膜、A 空調環境。 DESCRIPTION OF SYMBOLS 1 Refrigerant circuit, 1A Refrigerant flow path, 5 Evaporator, 7 Refrigerant piping, 8 Refrigerant tube, 11 Hairpin-shaped piping, 12 Pipe joint, 14 Brazing part, 16 Antirust coating, A Air-conditioning environment.

Claims (5)

冷媒回路を構成する冷媒流路を無酸素銅で構成したことを特徴とする冷凍サイクル装置。 A refrigeration cycle apparatus characterized in that a refrigerant flow path constituting a refrigerant circuit is made of oxygen-free copper. 無酸素銅で構成される冷媒流路が冷媒回路の蒸発器の冷媒管であることを特徴とする請求項1に記載の冷凍サイクル装置。 2. The refrigeration cycle apparatus according to claim 1, wherein the refrigerant flow path made of oxygen-free copper is a refrigerant pipe of an evaporator of a refrigerant circuit. 冷媒流路のロウ付け時の昇温部分を防錆塗膜で被覆したことを特徴とする請求項1または請求項2に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to claim 1 or 2, wherein a temperature rising portion at the time of brazing of the refrigerant flow path is covered with a rust preventive coating. 冷媒流路のロウ付けに用いるロウ材が銀ロウであることを特徴とする請求項1から請求項3のいずれか一項に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to any one of claims 1 to 3, wherein the brazing material used for brazing the refrigerant flow path is silver brazing. 請求項1から請求項4のいずれか一項に記載の冷凍サイクル装置に係る冷媒流路をロウ付けする際に、水素脆化防止処理を施したことを特徴とする冷凍サイクル装置の製造方法。 A method for manufacturing a refrigeration cycle apparatus, wherein hydrogen embrittlement prevention treatment is performed when brazing the refrigerant flow path according to the refrigeration cycle apparatus according to any one of claims 1 to 4.
JP2007036192A 2007-02-16 2007-02-16 Refrigerating cycle device and its manufacturing method Pending JP2008202813A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007036192A JP2008202813A (en) 2007-02-16 2007-02-16 Refrigerating cycle device and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007036192A JP2008202813A (en) 2007-02-16 2007-02-16 Refrigerating cycle device and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2008202813A true JP2008202813A (en) 2008-09-04

Family

ID=39780517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007036192A Pending JP2008202813A (en) 2007-02-16 2007-02-16 Refrigerating cycle device and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2008202813A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014012283A1 (en) * 2012-07-20 2014-01-23 广州市华德工业有限公司 Heat exchange pipe piece used for filler coupling coil pipe evaporative type condenser
JP2014122734A (en) * 2012-12-20 2014-07-03 Mitsubishi Electric Corp Heat exchanger and heat exchanger manufacturing method
JP2015049016A (en) * 2013-09-04 2015-03-16 新菱冷熱工業株式会社 Heat exchanger for air conditioning equipment
CN107339827A (en) * 2017-07-25 2017-11-10 广东美的制冷设备有限公司 Heat exchanger, air conditioner and refrigeration plant
WO2019189803A1 (en) * 2018-03-30 2019-10-03 株式会社コベルコ マテリアル銅管 Method for suppressing progress of corrosion in air conditioner, air conditioner, and refrigerant pipe
JP2019184221A (en) * 2018-03-30 2019-10-24 株式会社コベルコ マテリアル銅管 Corrosion progress control method of air conditioner, air conditioner and refrigerant pipe
JP2020063867A (en) * 2018-10-16 2020-04-23 株式会社コベルコ マテリアル銅管 Air conditioner corrosion progress suppression method and air conditioner
WO2020080426A1 (en) * 2018-10-16 2020-04-23 株式会社コベルコ マテリアル銅管 Method for inhibiting progress of corrosion in air conditioners, air conditioner, and refrigerant piping
JP2020063866A (en) * 2018-10-16 2020-04-23 株式会社コベルコ マテリアル銅管 Air conditioner corrosion progress suppression method, air conditioner, and refrigerant pipe

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10263688A (en) * 1997-03-21 1998-10-06 Fuji Dies Kk Production of evaporator tube for cooling device and its tube
JPH11223479A (en) * 1998-02-10 1999-08-17 Furukawa Electric Co Ltd:The Planar heat pipe and cooling structure employing it
JP2005308292A (en) * 2004-04-21 2005-11-04 Matsushita Electric Ind Co Ltd Fin and tube type heat exchanger and its manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10263688A (en) * 1997-03-21 1998-10-06 Fuji Dies Kk Production of evaporator tube for cooling device and its tube
JPH11223479A (en) * 1998-02-10 1999-08-17 Furukawa Electric Co Ltd:The Planar heat pipe and cooling structure employing it
JP2005308292A (en) * 2004-04-21 2005-11-04 Matsushita Electric Ind Co Ltd Fin and tube type heat exchanger and its manufacturing method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014012283A1 (en) * 2012-07-20 2014-01-23 广州市华德工业有限公司 Heat exchange pipe piece used for filler coupling coil pipe evaporative type condenser
JP2014122734A (en) * 2012-12-20 2014-07-03 Mitsubishi Electric Corp Heat exchanger and heat exchanger manufacturing method
JP2015049016A (en) * 2013-09-04 2015-03-16 新菱冷熱工業株式会社 Heat exchanger for air conditioning equipment
CN107339827A (en) * 2017-07-25 2017-11-10 广东美的制冷设备有限公司 Heat exchanger, air conditioner and refrigeration plant
CN107339827B (en) * 2017-07-25 2024-03-19 广东美的制冷设备有限公司 Heat exchanger, air conditioner and refrigeration equipment
WO2019189803A1 (en) * 2018-03-30 2019-10-03 株式会社コベルコ マテリアル銅管 Method for suppressing progress of corrosion in air conditioner, air conditioner, and refrigerant pipe
JP2019184221A (en) * 2018-03-30 2019-10-24 株式会社コベルコ マテリアル銅管 Corrosion progress control method of air conditioner, air conditioner and refrigerant pipe
JP2020063867A (en) * 2018-10-16 2020-04-23 株式会社コベルコ マテリアル銅管 Air conditioner corrosion progress suppression method and air conditioner
WO2020080426A1 (en) * 2018-10-16 2020-04-23 株式会社コベルコ マテリアル銅管 Method for inhibiting progress of corrosion in air conditioners, air conditioner, and refrigerant piping
JP2020063866A (en) * 2018-10-16 2020-04-23 株式会社コベルコ マテリアル銅管 Air conditioner corrosion progress suppression method, air conditioner, and refrigerant pipe
JP7078510B2 (en) 2018-10-16 2022-05-31 株式会社Kmct How to control the progress of corrosion of air conditioners, air conditioners and refrigerant pipes
JP7128080B2 (en) 2018-10-16 2022-08-30 株式会社Kmct Corrosion suppression method for air conditioner, and air conditioner

Similar Documents

Publication Publication Date Title
JP2008202813A (en) Refrigerating cycle device and its manufacturing method
JP5775238B2 (en) High corrosion resistance copper tube
CN102589056B (en) Refrigerant pipe connection structure for air conditioner
JP6058154B2 (en) Corrosion resistance life diagnosis parts, heat exchanger, refrigeration air conditioner
CN1950665B (en) Heat transfer tube constructed of tin brass alloy
WO2016190347A1 (en) Method for producing evaporator for refrigeration device
US10175009B2 (en) Method for manufacturing refrigerant distributor, refrigerant distributor manufacturing apparatus, refrigerant distributor, heat exchanger, and air-conditioning device
WO2016009713A1 (en) Refrigeration cycle device and manufacturing method for cross fin tube-type heat exchanger used by refrigeration cycle device
JP4615422B2 (en) Heat transfer tubes, heat exchangers for hot water supply and heat pump water heaters
WO2017017789A1 (en) Heat exchanger and refrigeration cycle apparatus
JP5932597B2 (en) HEAT EXCHANGER, MANUFACTURING METHOD THEREOF, AND AIR CONDITIONER HAVING THE HEAT EXCHANGER
KR101002027B1 (en) suction pipe connection assembly and manufacturing method for suction pipe connection assembly
JP2016099037A (en) Heat exchanger of refrigeration cycle device
CN108351138A (en) Air-conditioning
JP2014001869A (en) Heat exchanger and refrigeration cycle device
JP2014126311A (en) Heat exchanger
JP2018009742A (en) Heat exchanger of refrigeration cycle device
KR100624372B1 (en) The metod for preventing corrosion of pin of the heat exchznger
JP4799151B2 (en) Pitting corrosion resistant copper or copper alloy tube
Nagata et al. Failure and Its Countermeasure of Copper Tubes of Air Conditioners and Refrigerators
Nygård Comparison of pipe materials for cooling systems
Nelson CO2 Evaporator Design
JP2010249405A (en) Internally-grooved pipe and method of manufacturing the same
JP2011027280A (en) Heat transfer pipe for hot water supply
JP2004176178A (en) Aluminum pipe and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20110701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110729

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111025