WO2020080230A1 - 光照射装置、画像形成装置、除菌装置、スキャナ装置、および掃除機 - Google Patents
光照射装置、画像形成装置、除菌装置、スキャナ装置、および掃除機 Download PDFInfo
- Publication number
- WO2020080230A1 WO2020080230A1 PCT/JP2019/039873 JP2019039873W WO2020080230A1 WO 2020080230 A1 WO2020080230 A1 WO 2020080230A1 JP 2019039873 W JP2019039873 W JP 2019039873W WO 2020080230 A1 WO2020080230 A1 WO 2020080230A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light
- guide plate
- light source
- light guide
- irradiation device
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G21/00—Arrangements not provided for by groups G03G13/00 - G03G19/00, e.g. cleaning, elimination of residual charge
- G03G21/06—Eliminating residual charges from a reusable imaging member
- G03G21/08—Eliminating residual charges from a reusable imaging member using optical radiation
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05F—STATIC ELECTRICITY; NATURALLY-OCCURRING ELECTRICITY
- H05F3/00—Carrying-off electrostatic charges
- H05F3/06—Carrying-off electrostatic charges by means of ionising radiation
Definitions
- the present invention relates to a light irradiation device that irradiates light.
- the light irradiation device is used in various situations, for example, it is used in an electrophotographic image forming apparatus.
- image formation is performed in the following process.
- a photoconductor eg, a photoconductor drum acting as an image carrier
- the charged region is imagewise exposed with a laser beam to form an electrostatic latent image.
- the electrostatic latent image formed on the photoconductor is developed as a toner image, and the developed toner image is electrostatically transferred to an intermediate transfer body such as an intermediate transfer belt or a recording material such as recording paper.
- the electrophotographic image forming apparatus is equipped with a static eliminator for removing charges on the surface of the photoconductor before charging the surface of the photoconductor.
- a static eliminator for removing charges on the surface of the photoconductor before charging the surface of the photoconductor.
- the static eliminator disclosed in Patent Document 1 has an incident surface on which light from a light source is incident and an emission surface on which light incident from the incident surface is emitted, and an outer peripheral surface other than the incident surface and the emission surface. , A light reflecting member is provided. With the above configuration, the light amount of the light with which the photoconductor is irradiated is increased.
- JP-A-2016-161796 (Published September 5, 2016)
- Patent Document 1 has a problem in that the light reflected by the reflecting member is diffused into an undesired region, and conductivity is imparted to an unintended region of the photoconductor.
- An object of one embodiment of the present invention is to realize a light irradiation device that can suppress irradiation of light to an undesired region.
- a light irradiation device guides the light emitted from the light source and incident through an incident surface, and guides the guided light at a reflective surface.
- a static eliminator comprising: a light guide plate that reflects and emits from an emission surface different from the incident surface, wherein among the light emitted from the light source, when viewed from a normal direction of the emission surface, A structure that shields at least a part of light having an angle greater than or equal to a predetermined angle with the optical axis of the light source, and a direction in which the traveling direction of the light having the predetermined angle or greater is closer to the optical axis of the light source than the traveling direction. At least one of the structures to be converted into.
- FIG. 3 is an enlarged view of the image forming apparatus around the photoconductor drum included in the image forming apparatus according to the first exemplary embodiment of the present invention.
- FIG. 3 is a perspective view showing a configuration of a static eliminator included in the image forming apparatus.
- FIG. 3 is a diagram of a light source, a light guide plate, and a light blocking member included in the image forming apparatus, as viewed from the ⁇ Z axis direction in FIG. 2. It is the figure which looked at the said light source, the said light guide plate, and the said light shielding member from the + Y-axis direction in FIG.
- FIG. 5A is a diagram showing an irradiation range of light on the photoconductor drum by the conventional static eliminator, and FIG.
- 5B is a view of irradiating light on the photoconductor drum by the static eliminator according to the first embodiment of the present invention. It is a figure which shows a range. It is a figure which shows progress of the light radiate
- FIG. 6 is a diagram illustrating a light source, a light guide plate, and a light blocking member included in a static eliminator as a modification of the static eliminator according to the first embodiment.
- FIG. 7A and 7B are views showing a housing in a modified example of the static eliminator according to Embodiment 1, where FIG. 7A is a front view of the housing, FIG. 7B is a side view of the housing, and FIG. It is the sectional view on the AA line in a), and (d) is the sectional view on the AA line in (b).
- FIG. 6 is a diagram showing a light source, a light guide plate, and a lens included in a static eliminator as a further modification of the static eliminator according to the first embodiment.
- FIG. 6 is a diagram showing a light source and a light guide plate included in a static eliminator as a further modification of the static eliminator according to the first embodiment.
- FIG. 6 is a diagram showing a light source and a light guide plate included in a static eliminator as a further modification of the static eliminator according to the first embodiment.
- FIG. 6 is a diagram showing a light source and a light guide plate included in a static eliminator as a further modification of the static eliminator according to the first embodiment.
- FIG. 6 is a diagram showing a light source and a light guide plate included in a static eliminator as a further modification of the static eliminator according to the first embodiment.
- FIG. 7 is a diagram showing a light source, a light guide plate, and an absorbing member included in a static eliminator as a further modification of the static eliminator according to Embodiment 1.
- FIG. FIG. 6 is a diagram showing a light source and a light guide plate included in a static eliminator as a further modification of the static eliminator according to the first embodiment.
- FIG. 8 is a diagram showing a light guide plate and a housing included in a static eliminator as a further modification of the static eliminator according to the first embodiment.
- (A) is a top view of the static eliminator as a further modification of the static eliminator according to Embodiment 1
- (b) is a side view of the static eliminator.
- FIG. (A) is a top view of a static eliminator L as a further modified example of the static eliminator according to the first embodiment, and (b) is a static eliminator 10M as another further modified example of the static eliminator according to the first embodiment.
- FIG. (A) is a perspective view which shows the shape of the optical path changing part in the further modified example of the static eliminator concerning Embodiment 1, (b) shows the shape of the optical path changing part as a modified example of the said optical path changing part. It is a perspective view.
- (A)-(c) is a figure which shows the light guide plate as a modification of the said light guide plate.
- FIG. 7 is a diagram showing a configuration of an image forming apparatus as a modified example of the image forming apparatus according to the first exemplary embodiment.
- FIG. 7 is a side view of a static eliminator as a further modification of the static eliminator according to the first embodiment.
- FIG. 7 is a side view of a static eliminator as a further modification of the static eliminator according to the first embodiment.
- FIG. 6 is a diagram showing the progress of light emitted from the light source 11 in the static eliminator 10A as the light irradiation device of one embodiment of the present invention.
- the static eliminator 10A is a device that irradiates light to remove electric charges on the surface of the photosensitive drum. As shown in FIG. 6, the static eliminator 10A includes a light source 11, a light guide plate 20, an optical sensor 12, a light blocking member 30, and a housing 13.
- the static eliminator 10A the light emitted from the light source 11 is incident on the light guide plate 20, and the light guided inside the light guide plate 20 is emitted toward the photoconductor drum.
- the static eliminator 10A includes a light blocking member 30 between the light source 11 and the light guide plate 20.
- the light blocking member 30 has an opening structure having an opening 30C through which the light emitted from the light source 11 passes.
- the light reflectance of the inner surface of the opening 30C (that is, the first facing surface 30Aa and the second facing surface 30Ba) is 50% or less.
- one of the light emitted from the light source 11 and having an angle with the optical axis of the light source 11 when viewed from the normal direction (Y-axis direction) of the emission surface is equal to or larger than a predetermined angle.
- the portion can be shielded by the light shielding member 30. This makes it possible to reduce the proportion of light that is emitted from the light source 11 and enters the light guide plate 20 and that forms an angle greater than or equal to a predetermined angle with the optical axis of the light source 11.
- the photoconductor drum can be irradiated with light only in a desired range. In other words, it is possible to suppress irradiation of light to an undesired area.
- FIG. 1 is an enlarged view of the image forming apparatus 1 around the photoconductor drum 2 included in the image forming apparatus 1.
- the image forming apparatus 1 forms (prints) an image by an electrophotographic method, and is, for example, a copying machine, a printer, a facsimile, or a complex machine thereof. It should be noted that, in the image forming apparatus 1, members other than the members described below may be interpreted as being similar to known members.
- the image forming apparatus 1 includes a photosensitive drum 2, which is a photosensitive member that functions as an image carrier, a charger 3, an exposure device 4, a developing device 5, a transfer device 6, and a fixing device.
- the apparatus 7, the cleaning device 8, and the static eliminator 10A (light irradiation device) are provided.
- the operation of printing on the recording paper in the image forming apparatus 1 will be described.
- the surface of the photosensitive drum 2 is uniformly charged by the charger 3.
- the photosensitive drum 2 has a drum shape, and rotates in the direction of the arrow shown inside the photosensitive drum 2 in FIG.
- the surface of the photosensitive drum 2 is exposed to laser light by the exposure device 4. As a result, an electrostatic latent image based on the image data is formed on the surface of the photosensitive drum 2.
- the developing device 5 causes the toner agent to adhere to the surface of the photoconductor drum 2 and develops the toner image (visual image) based on the above electrostatic latent image on the surface of the photoconductor drum 2.
- the transfer device 6 transfers the toner image developed on the surface of the photosensitive drum 2 to a recording paper.
- the fixing device 7 heats and pressurizes the recording paper to melt the toner image transferred to the recording paper and fix the toner image on the recording paper. As a result, the image is printed on the recording paper.
- the toner agent remaining on the surface of the photosensitive drum 2 after the transfer is removed by the cleaning device 8. Then, the surface of the photoconductor drum 2 is irradiated with light by the charge removing device 10A to remove the electric charges (residual charges) remaining on the surface of the photoconductor drum 2. As a result, the photosensitive drum 2 becomes ready for printing on the next recording sheet.
- FIG. 2 is a perspective view showing the configuration of the static eliminator 10A.
- the static eliminator 10A includes a light source 11, a light guide plate 20, an optical sensor 12, a light blocking member 30, and a housing 13.
- FIG. 3 is a view of the light source 11, the light guide plate 20, and the light shielding member 30 as seen from the ⁇ Z axis direction in FIG. 2.
- FIG. 4 is a view of the light source 11, the light guide plate 20, and the light shielding member 30 as viewed from the + Y axis direction in FIG.
- the light source 11 irradiates the light guide plate 20 with light.
- the light source 11 is an LED (Light Emitting diode) light source. As shown in FIGS. 2 and 3, the light source 11 has a rectangular parallelepiped shape and has an LED chip 11a as a light emitting element therein. Further, the light source 11 is a flat package type LED including a flat emission window 11b that emits light from the LED chip 11a to the outside. The light source 11 is installed so that the emission window 11b faces an incident surface 20a of the light guide plate 20 described later. The light source 11 is installed in the center of the light guide plate 20 in the width direction (Y-axis direction).
- the photosensitive drum 2 has a wavelength that is easily discharged depending on its design. Therefore, it is preferable that the light source 11 emits light in a narrow wavelength region including light having a wavelength suitable for eliminating the charge on the photosensitive drum 2.
- the light guide plate 20 guides the light incident from the light source 11, reflects the guided light at an optical path changing unit 21 (more specifically, a reflecting surface 21 a) described later, and emits the light toward the photosensitive drum 2. It is a member that does.
- the light guide plate 20 is formed of a transparent resin material having a relatively high refractive index.
- a material for forming the light guide plate 20 for example, a polycarbonate resin, a polymethylmethacrylate resin, a cycloolefin polymer resin, or the like can be used.
- the light guide plate 20 is made of polycarbonate resin.
- the light guide plate 20 has a rectangular parallelepiped shape, and includes an entrance surface 20a, a bottom surface 20b (first surface), an exit surface 20c, and a facing surface 20d facing the entrance surface 20a. , A side surface 20e and a side surface 20f.
- the incident surface 20a is a surface on which the light emitted from the light source 11 enters the inside of the light guide plate 20.
- the bottom surface 20b is a surface perpendicular to the incident surface 20a, and a plurality of optical path changing portions 21 that reflect the light incident from the incident surface 20a toward the emission surface 20c are formed.
- the optical path changing portion 21 (reflection structure portion) has a triangular prism shape whose height direction is the Y-axis direction, as shown in FIGS. 3 and 4.
- the optical path changing unit 21 includes a reflecting surface 21 a that reflects the light guided inside the light guide plate 20.
- the optical path changing portion 21 is formed on the bottom surface 20b so as to extend in the width direction (Y-axis direction) of the light guide plate 20, and is formed over the entire width direction of the light guide plate 20. In the light guide plate 20, the number of the optical path changing portions 21 per unit area increases as the distance from the incident surface 20a increases.
- the emitting surface 20c is a surface parallel to the bottom surface 20b, and emits the light reflected by the reflecting surface 21a of the optical path changing unit 21 toward the photosensitive drum 2.
- the light shielding member 30 has the optical axis of the light source 11 (that is, the X axis direction) when viewed from the normal direction (Z axis direction) of the emission surface 20c of the light guide plate 20. At least a part of light having an angle formed by a predetermined angle or more (for example, 45 ° or more) is blocked.
- the light blocking member 30 is arranged between the light source 11 and the light guide plate 20, and is composed of two rectangular parallelepiped first members 30A and second members 30B. As shown in FIG. 4, the first member 30A and the second member 30B are installed at positions sandwiching the emission window 11b of the light source 11 in the Y-axis direction.
- the first facing surface 30Aa facing the second member 30B of the first member 30A and the second facing surface 30Ba facing the first member 30A of the second member 30B are formed so that the light reflectance is 50% or less.
- the first facing surface 30Aa and the second facing surface 30Ba are formed to have a light reflectance of 50% or less by applying a black paint.
- the static eliminator 10A is installed such that the emitting surface 20c of the light guide plate 20 faces the photoconductor drum 2 and the longitudinal direction of the emitting surface 20c is the width direction of the photoconductor drum 2 (see FIG. 2).
- the optical sensor 12 is a sensor which is installed on the facing surface 20d of the light guide plate 20 and measures the amount of light reaching the facing surface 20d.
- the case 13 supports each part of the static eliminator 10A inside.
- the housing 13 has a rectangular parallelepiped shape, and only the surface corresponding to the emission surface 20c of the light guide plate 20 has an opening.
- FIG. 5A is a diagram showing a light irradiation range of the conventional static eliminator on the photosensitive drum
- FIG. 5B is a view of light irradiating the photosensitive drum by the static eliminator 10A of the present embodiment. It is a figure which shows a range. 5A and 5B, the range of light having an intensity range of 10% or more with respect to the light intensity of the optical axis is shown.
- FIG. 6 is a diagram showing the progress of the light emitted from the light source 11 in the static eliminator 10A.
- the conventional problems will be described with reference to FIG.
- the range of the light flux reflected by the reflection member and emitted from the emission surface of the light guide plate becomes large. Therefore, as shown in FIG. 5A, the range of the light flux emitted from the emission surface of the light guide plate is larger than the area to be irradiated onto the photosensitive drum. As a result, there is a problem that conductivity is given to an unintended region of the photosensitive drum.
- the light blocking member 30 is provided between the light source 11 and the incident surface 20a of the light guide plate 20.
- the light blocking member 30 has an opening structure having an opening 30C through which the light emitted from the light source 11 passes by the first facing surface 30Aa of the first member 30A and the second facing surface 30Ba of the second member 30B.
- the light reflectance of the inner surface of the opening 30C (that is, the first facing surface 30Aa and the second facing surface 30Ba) is 50% or less.
- the optical axis of the light source 11 when viewed from the direction normal to the emission surface (Y-axis direction).
- Light e.g., light L1 and light L2 in FIG. 6 whose angle with respect to A) is a predetermined angle or more reaches the first facing surface 30Aa of the first member 30A or the second facing surface 30Ba of the second member 30B.
- the photoconductor drum 2 can be irradiated with light only in a desired range. In other words, it is possible to suppress irradiation of light to an undesired area.
- FIG. 7 is a graph showing the angles of the light flux emitted from the emission surface of the light guide plate with respect to the light reflectances of the first opposed surface 30Aa and the second opposed surface 30Ba.
- the horizontal axis of the graph shown in FIG. 7 is the light reflectance of the first facing surface 30Aa and the second facing surface 30Ba, and the vertical axis of the graph shown in FIG. 7 is 10% with respect to the light intensity of the optical axis. This is a range of angles at which the light of the above intensity is emitted from the emission surface 20c. Note that FIG. 7 also shows data when the light shielding member 30 is not provided.
- the angle at which light having an intensity of 10% or more with respect to the optical intensity of the optical axis is emitted from the emission surface 20c is set. It is preferably 90 ° or less. As shown in FIG. 7, the above conditions can be satisfied by setting the light reflectances of the first facing surface 30Aa and the second facing surface 30Ba to 50% or less.
- the angle range in which the light having the intensity of 10% or more with respect to the light intensity of the optical axis is irradiated is about 150 °. That is, the range of the light flux emitted from the emission surface of the light guide plate becomes extremely wide.
- the distance (L1 shown in FIG. 6) from the exit window 11b of the light source 11 to the end of the opening 30C on the light guide plate 20 side in the direction along the optical axis L of the light source 11 is the light guide plate 20 of the opening 30C.
- 7 is a graph showing a range of an angle at which light having an intensity of 10% or more of the light intensity on the optical axis is emitted from the emission surface 20c with respect to a value divided by the side opening width (L2 shown in FIG. 6). As shown in FIG. 8, the distance (L1 shown in FIG. 6) from the exit window 11b of the light source 11 to the end of the opening 30C on the light guide plate 20 side in the direction along the optical axis L of the light source 11 is the light guide plate 20 of the opening 30C.
- 7 is a graph showing a range of an angle at which light having an intensity of 10% or more of the light intensity on the optical axis is emitted from the emission surface 20c with respect to a value divided by the side opening
- the opening 30C from the exit window 11b of the light source 11 to the end of the opening 30C on the light guide plate 20 side in the direction along the optical axis L of the light source 11 is defined as the opening 30C.
- the number of the optical path changing units 21 per unit area increases as the distance from the incident surface 20a increases.
- the number of the optical path changing units 21 per unit area is small, and thus the region that reflects light is small.
- the number of the optical path changing units 21 per unit area is large, and thus the region for reflecting the light is large.
- the area of the reflecting surface 21a per unit area of the bottom surface 20b differs depending on the distance from the incident surface 20a.
- the amount of light emitted from the emission surface 20c can be suppressed in the length direction of the light guide plate 20 (in other words, the direction in which light is guided inside the light guide plate 20). In other words, the amount of light emitted from the emission surface 20c can be made uniform in the length direction of the light guide plate 20.
- FIG. 9 is a figure which shows the light source 11, the light guide plate 20, and the light shielding member 40 with which the static elimination apparatus 10A in this modification is equipped.
- the static eliminator 10A includes a light blocking member 40 instead of the light blocking member 30 in the first embodiment.
- the light blocking member 40 includes a first member 40A and a second member 40B.
- the first member 40A and the second member 40B have substantially the same structure as the first member 30A and the second member 30B in the first embodiment, respectively.
- the light blocking member 40 has an opening structure having an opening 40C through which the light emitted from the light source 11 passes by the first facing surface 40Aa of the first member 40A and the second facing surface 40Ba of the second member 40B.
- the opening 40C has a width smaller than the width of the emission window 11b of the light source 11 when viewed in the normal direction (Z-axis direction) of the emission surface 20c of the light guide plate 20.
- the light guide plate transmits a light beam having a higher proportion of light having a smaller angle with the optical axis of the light source 11 in the light emitted from the light source 11 than in the static eliminator 10 according to the first embodiment. 20 can be made incident. Thereby, the angular range of the light flux emitted from the light guide plate 20 can be further narrowed.
- FIG. 10 is a figure which shows the structure of the static elimination apparatus 10B in this modification.
- the static eliminator 10B includes a casing 13A instead of the casing 13 of the static eliminator 10 according to the first embodiment. Further, the static eliminator 10B does not include the light shielding member 30 in the first embodiment.
- the casing 13A stores the light guide plate 20 inside. Further, the light source 11 is installed outside the end portion in the length direction of the housing 13A, and the exit window 11b is installed so as to face the incident surface 20a of the light guide plate 20.
- An opening 13Ac through which light emitted from the light source 11 passes is formed by the surface 13Aa and the surface 13Ab at the end of the housing 13A on the side where the light source 11 is installed.
- the surface 13Aa and the surface 13Ab are formed so that the light reflectance is 50% or less. That is, in the static eliminator 10B, the opening structure according to the first embodiment is formed in the housing 13A.
- the above configuration 50% or more of the light reaching the surface 13Aa or the surface 13Ab can be blocked.
- This makes it possible to reduce the proportion of light that is emitted from the light source 11 and enters the light guide plate 20 and that forms an angle greater than or equal to a predetermined angle with the optical axis of the light source 11.
- the angular range of the light flux emitted from the light guide plate 20 can be narrowed.
- the number of members can be reduced as compared with the static eliminator 10 of the first embodiment.
- FIG. 11A and 11B show a housing 13B in the present modification, where FIG. 11A is a front view of the housing 13B, FIG. 11B is a side view of the housing 13B, and FIG. It is the sectional view on the AA line in a), and (d) is the sectional view on the AA line in (b).
- the housing 13B includes a bottom surface 13Ba, a top surface 13Bb, a side surface 13Bc, and a side surface 13Bd.
- the light guide plate 20 is installed between the bottom surface 13Ba and the top surface 13Bb such that the bottom surface 20b of the light guide plate 20 is on the bottom surface 13Ba side.
- the side surface 13Bc is formed with a recess for installing the light source 11. As shown in FIGS. 11B and 11C, the side surface 13Bc is formed with an opening 13Bca through which the light emitted from the light source 11 passes.
- the width of the top surface 13Bb is shorter than the width of the bottom surface 13Ba. That is, the housing 13B has a J-shaped cross section perpendicular to the length direction. Even with such a configuration, a static eliminator having a small number of members can be realized as in the static eliminator 10B according to Modification 2.
- FIG. 12 is a figure which shows the light source 11, the light guide plate 20, and the lens 50 with which the static elimination apparatus 10C in this modification is equipped.
- the static eliminator 10C includes a lens 50 (lens structure) instead of the light blocking member 30 in the first embodiment.
- the lens 50 is arranged between the light source 11 and the light guide plate 20.
- the lens 50 is a lens that converts the traveling direction of the light emitted from the light source 11 into a direction close to parallel to the optical axis of the light source 11.
- the lens 50 can cause the light guide plate 20 to enter a light flux having a high proportion of light having an angle smaller than the optical axis of the light source 11. Thereby, the angular range of the light flux emitted from the light guide plate 20 can be further narrowed.
- FIG. 13 is a figure which shows 11 A of light sources and the light guide plate 20 with which the static elimination apparatus 10D in this modification is equipped.
- the static eliminator 10D includes a light source 11A instead of the light source 11 in the first embodiment. Further, the static eliminator 10D does not include the light blocking member 30 according to the first embodiment.
- the light source 11A is a shell-type LED that includes an LED chip 11a and a lens 11Aa. That is, the light source 11A has the light source 11 and the lens 50 in Modification 4 integrated with each other.
- the light guide plate 20 enter a light beam having a high proportion of light having an angle smaller than the optical axis of the light source 11 with a smaller number of members.
- FIG. 14 is a figure which shows the light source 11 and the light guide plate 20A with which the static elimination apparatus 10E in this modification is equipped.
- the static eliminator 10E includes a light guide plate 20A instead of the light guide plate 20 in the first embodiment. Further, the static eliminator 10E does not include the light shielding member 30 in the first embodiment.
- the light guide plate 20A has the same configuration as that of the light guide plate 20 except that the light guide plate 20A is provided with an incident surface 20Aa instead of the incident surface 20a of the first embodiment.
- the incident surface 20Aa has a curved surface shape protruding in the ⁇ X axis direction and has a lens structure.
- the light emitted from the light source 11 and incident on the light guide plate 20A is converted into a direction in which the traveling direction is substantially parallel to the optical axis of the light source 11 when entering the light guide plate 20A.
- the light guide plate 20 it is possible to cause the light guide plate 20 to enter a light beam having a high proportion of light having an angle smaller than the optical axis of the light source 11.
- the angular range of the light flux emitted from the light guide plate 20 can be made narrower.
- FIG. 15 is a figure which shows the light source 11 and the light guide plate 20B with which the static elimination apparatus 10F in this modification is equipped.
- the static eliminator 10F includes a light guide plate 20B instead of the light guide plate 20 in the first embodiment. Further, the static eliminator 10F does not include the light shielding member 30 in the first embodiment.
- the light guide plate 20B has a structure in which two corners on the incident surface 20a side of the light guide plate 20 in the first embodiment are cut out when viewed from the direction normal to the emission surface 20c. More specifically, the light guide plate 20B includes a first connecting surface 20Ba that connects the incident surface 20a and the side surface 20e, and a second connecting surface 20Bb that connects the incident surface 20a and the side surface 20f. The first connection surface 20Ba and the second connection surface 20Bb are flat surfaces. As a result, the light guide plate 20B is a straight line when viewed from the direction normal to the emitting surface 20c.
- the light guide plate 20B has a narrowed structure in which the width of the end portion on the incident surface 20a side becomes narrower toward the incident surface 20a when viewed from the direction normal to the emitting surface 20c.
- the light having an angle with the optical axis of the light source 11 that is greater than or equal to a predetermined angle is By reflecting the light by the first connection surface 20Ba or the second connection surface 20Bb, the traveling direction of the light can be converted into a direction close to the optical axis of the light source 11.
- the angular range of the light flux emitted from the light guide plate 20 can be made narrower.
- the light guide plate 20 can be easily manufactured.
- FIG. 16 is a figure which shows the light source 11 and 20 C of light guide plates which the static elimination apparatus 10G in this modification comprises.
- the static eliminator 10G includes a light guide plate 20C instead of the light guide plate 20 in the first embodiment. Further, the static eliminator 10G does not include the light shielding member 30 in the first embodiment.
- the light guide plate 20C includes a first connection surface 20Ca and a second connection surface 20Cb instead of the first connection surface 20Ba and the second connection surface 20Bb of the light guide plate 20B in the modified example 7.
- the first connection surface 20Ca and the second connection surface 20Cb are curved surfaces. More specifically, the first connection surface 20Ca and the second connection surface 20Cb are curved surfaces that are convex curves in the outward direction of the light guide plate 20C when viewed from the normal direction of the emission surface 20c. That is, the light guide plate 20C has a narrowed structure in which the width of the end portion on the incident surface 20a side becomes narrower toward the incident surface 20a when viewed from the direction normal to the emitting surface 20c.
- the angle formed by the optical axis of the light source 11 is equal to or larger than a predetermined angle when viewed from the direction normal to the emission surface.
- first connection surface 20Ca and the second connection surface 20Cb may be curved surfaces that are curved as a part of a parabola whose focal point is the light source 11 when viewed from the direction normal to the emission surface 20c. Thereby, the traveling direction of the light reflected by the first connection surface 20Ca or the second connection surface 2CBb can be made parallel to the optical axis of the light source 11.
- FIG. 17 is a diagram showing the light source 11, the light guide plate 20C, and the absorbing members 51 and 52 included in the static eliminator 10H in the present modification.
- the static eliminator 10H includes a light absorbing member 51 and a light absorbing member 52 in addition to the configuration of the static eliminator 10 in the first embodiment. Further, the static eliminator 10F does not include the light shielding member 30 in the first embodiment.
- the light absorbing member 51 and the light absorbing member 52 are provided outside the end portions of the side surface 20e and the side surface 20f of the light guide plate 20 on the incident surface 20a side between the light absorbing member 51 and the light absorbing member 52 and the light guide plate 20. It is installed so that it does not exist.
- the light absorbing member 51 and the light absorbing member 52 are formed so that the light reflectance is 50% or less. In other words, the light absorbing member 51 and the light absorbing member 52 absorb a larger proportion of the arrived light than 50%.
- the light absorbing member 51 and the light absorbing member 52 may be made by, for example, painting resin black, or may be a black tape.
- FIG. 18 is a figure which shows the light source 11 and the light guide plate 20D with which the static elimination apparatus 10I in this modification is equipped.
- the static eliminator 10I includes a light guide plate 20D instead of the light guide plate 20 in the first embodiment. Further, the static eliminator 10I does not include the light shielding member 30 in the first embodiment.
- the light guide plate 20D includes side faces 20De and side faces 20Df instead of the side faces 20e and side faces 20f of the light guide plate 20 in the first embodiment.
- the ends of the side surface 20e and the side surface 20f on the side of the incident surface 20a have fine irregularities.
- the uneven shape on the side surface 20e or the side surface 20f becomes uneven.
- a part of the light makes an angle with the uneven shape larger than the critical angle.
- the light emitted to the outside of the light guide plate 20D is absorbed by the housing 13.
- the housing 13 is made of a member that absorbs light, or has a structure that absorbs light (a light absorbing structure).
- the light of the predetermined angle or more reaches the area of the side surface 20e or the side surface 20f where the uneven shape is formed, a part of the light is reflected by the uneven shape, but The angle formed by the optical axis of the light source 11 becomes large when viewed from the normal direction.
- the angle with the side surface 20e or the side surface 20f becomes larger than the critical angle.
- a part of the light is emitted to the outside of the light guide plate 20D without being reflected by the side surface 20e or the side surface 20f.
- the light emitted to the outside of the light guide plate 20D is absorbed by the housing 13.
- a part of the light emitted from the light source 11 and having an angle with the optical axis of the light source 11 when viewed from the normal direction of the emission surface is a predetermined angle or more.
- the light can be emitted to the outside of the light guide plate 20D. This makes it possible to increase the proportion of light having a smaller angle with the optical axis of the light source 11 in the light guided inside the light guide plate 20. As a result, the angular range of the light flux emitted from the light guide plate 20 can be made narrower.
- the light emitted to the outside of the light guide plate 20D can be absorbed by the housing 13, it is possible to prevent the light from becoming stray light.
- the static eliminator 10I can be easily manufactured.
- FIG. 19 is a figure which shows the light guide plate 20 and housing
- the housing 13C includes a side surface 13Ca that faces the side surface 20e of the light guide plate 20, and a side surface 13Cb that faces the side surface 20f of the light guide plate 20.
- the housing 13C is made of white resin and can reflect light.
- the casing 13C is arranged such that the side surface 13Ca is on the side where the photosensitive drum 2 rotates with respect to the side surface 13Cb (in other words, the side on which the charger 3 is installed).
- the side surface 13Ca and the side surface 13Cb are formed such that the end portion on the photoconductor drum 2 side is higher than the emission surface 20c of the light guide plate 20.
- the charger 3 side is irradiated with unexpected light, it adversely affects the charging of the photoconductor drum 2 by the charger 3. Therefore, as shown in FIG. 19, the height of the side surface 13Ca on the charger 3 side is higher than the height of the side surface 13Cb. This makes it difficult for unexpected light to be emitted to the charger 3 side.
- the housing 13C may be made of black resin. With this, the light that is not emitted in the desired direction can be absorbed by the side surfaces 13Ca and 13Cb, and thus it is possible to prevent the light emitted from the static eliminator from being applied to an unexpected location.
- FIG. 20A is a top view of the static eliminator 10K in the present modification
- FIG. 20B is a side view of the static eliminator 10K.
- the static eliminator 10K includes a light guide plate 20E instead of the light guide plate 20 in the first embodiment.
- the light guide plate 20E includes optical path changing units 23Ea to 23Ee as optical path changing units.
- the optical path changing parts 23Ea to 23Ee the angles formed by the reflecting surface 20Eb of the light guide plate 20E and the reflecting surfaces of the optical path changing parts 23Ea to 23Ee are the same.
- the optical path changing portions 23Ea to 23Ee are formed so as to extend in the width direction (Y-axis direction) of the light guide plate 20E, and are formed over the entire width direction of the light guide plate 20E.
- the height of the optical path changing portion increases as the distance from the incident surface 20a increases. That is, the height of the optical path changing unit 23Ea is lower, and the height is higher in the order of the optical path changing unit 23Eb, the optical path changing unit 23Ec, the optical path changing unit 23Ed, and the optical path changing unit 23Ee.
- the height of the optical path changing portion (for example, the optical path changing portion 23Ea) is low in the area near the incident surface 20a where a large amount of light from the light source 11 reaches, the area that reflects light is small.
- the height of the optical path changing portion (for example, the optical path changing portion 23Ee) is high, and thus the area for reflecting the light is large.
- variations in the amount of light emitted from the emission surface 20c can be suppressed in the length direction of the light guide plate 20E (in other words, the direction in which light is guided inside the light guide plate 20E). In other words, the amount of light emitted from the emission surface 20c can be made uniform in the length direction of the light guide plate 20E.
- the light guide plate 20E has been described as including five optical path changing units (optical path changing units 23A to 23E), but the number of optical path changing units is not particularly limited and may be changed as appropriate. You may.
- FIG. 21A is a top view of a static eliminator 10L as another modification
- FIG. 21B is a top view of a static eliminator 10M as a further modification.
- the static eliminator 10L includes a light guide plate 20F instead of the light guide plate 20 in the first embodiment.
- the light guide plate 20F includes optical path changing units 24A to 24G as optical path changing units.
- the angle formed by the reflecting surface 20Fb of the light guide plate 20F and the reflecting surface of the optical path changing parts 24A to 24G is the same.
- the optical path changing parts 24A to 24G are formed to extend in the width direction (Y-axis direction) of the light guide plate 20F.
- the heights of the optical path changing parts 24A to 24G are the same.
- the length in the direction parallel to the incident surface of the optical path changing portion becomes longer as the distance from the incident surface 20a increases.
- the length in the Y-axis direction of the optical path changing unit 24A is the shortest, and the Y-axis is in the order of the optical path changing unit 24B, the optical path changing unit 24C, the optical path changing unit 24D, the optical path changing unit 24E, the optical path changing unit 24F, and the optical path changing unit 24G.
- the direction length is getting longer.
- the length of the optical path changing unit (for example, the optical path changing unit 24A) in the Y-axis direction is short in the region near the incident surface 20a where the light from the light source 11 reaches a large amount, the light is reflected.
- the area to do is small.
- the length of the optical path changing portion (optical path changing portion 24G) in the Y-axis direction is long, and thus the area for reflecting the light is large. .
- the amount of light emitted from the emission surface 20c can be suppressed in the length direction of the light guide plate 20F (in other words, the direction in which light is guided inside the light guide plate 20F). In other words, the amount of light emitted from the emission surface 20c can be made uniform in the length direction of the light guide plate 20F.
- the light guide plate 20F has been described as having seven optical path changing units (optical path changing units 24A to 24G), but the number of the optical path changing units is not particularly limited and may be changed as appropriate. You may.
- the static eliminator 10M includes a light guide plate 20G instead of the light guide plate 20 in the first embodiment.
- a large number of optical path changing parts 25 are formed on the bottom surface 20b of the light guide plate 20G.
- FIG. 22A is a perspective view showing the shape of the optical path changing unit 25 in the present modification
- FIG. 22B shows the shape of the optical path changing unit 25A as a modification of the optical path changing unit 25. It is a perspective view.
- the optical path changing unit 25 is configured by an arcuate cone and has a reflecting surface 25a that is a flat surface.
- the optical path changing unit 25 is formed such that the side where the reflecting surface 25a and the bottom surface 20b are in contact is in the width direction (that is, the Y-axis direction). Thereby, the light incident from the incident surface 20a is reflected by the reflecting surface 25a toward the emitting surface 20c (in other words, reflected in the + Z-axis direction).
- the optical path changing portion formed on the bottom surface 20b is not limited to the shape shown in FIG. 22 (a), and may have any shape as long as it has a flat reflecting surface.
- the optical path changing portion 25A formed on the bottom surface 20b may have a triangular prism shape including a reflecting surface 25Aa.
- the number of the optical path changing portions 25 formed on the bottom surface 20b increases as the distance from the incident surface 20a increases (in other words, the optical path changing operation).
- the density of the portion 25 is high).
- the area for reflecting the light per unit area is small, while the light from the light source 11 reaches the light.
- a large area reflects light per unit area.
- the angle formed by the bottom surface 20b of the light guide plate 20G and the reflection surface 25a of the optical path changing unit 25 is preferably 35 ° to 55 °.
- the traveling direction of the light reflected by the reflecting surface 25a can be set to an angle close to perpendicular to the emitting surface 20c.
- 23A to 23C are diagrams showing a light guide plate 20H, a light guide plate 20I, and a light guide plate 20J as modified examples of the light guide plate 20.
- the length in the Z-axis direction on the incident surface 20Ha side (that is, the distance between the bottom surface 20Hb and the emission surface 20Hc) is Z in other regions. It is higher than the axial length.
- the length in the Z-axis direction is long on the side of the incident surface 20Ha, so that the light from the light source 11 can be sufficiently incident through the incident surface 20Ha.
- the length in the Z-axis direction is short, so that the light guide plate 20I can be thinned.
- the exit surface 20Hc side is higher than the other areas at the end portion on the entrance surface 20Ha side, but the invention is not limited to this.
- the light guide plate of one aspect of the present invention may have a configuration in which the bottom surface 20Hb side is lower than the other area at the end portion on the incident surface 20Ha side. Furthermore, in the light guide plate of one aspect of the present invention, the exit surface 20Hc side is higher than the other area and the bottom surface 20Hb side is lower than the other area at the end portion on the incident surface 20Ha side. It may be.
- the entire area of the bottom surface 20Ib is a reflective member, and the bottom surface 20Ib is inclined with respect to the emission surface 20Ic. It may be a mode.
- the bottom surface 20Jb is inclined with respect to the emission surface 20Ic, and the optical path changing portion 21 is formed on the bottom surface 20Jb. It may be a mode.
- FIG. 24 is a diagram showing the configuration of the image forming apparatus 1A according to this modification.
- the platform 60 is provided. This makes it possible to irradiate the light emitted from the static eliminator 10 to the region of the photosensitive drum 2 to which the light is to be irradiated.
- ⁇ Modification 15> 25A is a top view of the static eliminator 10N in the present modification, and FIG. 25B is a side view of the static eliminator 10N.
- the static eliminator 10N includes a light guide plate 20K instead of the light guide plate 20 in the first embodiment.
- the optical path of the optical path changing unit 21 and the optical axis of the light source 11 form a predetermined angle with respect to the optical path of the reflection surface 21a.
- the changing portion 21 is formed.
- FIG. 26 is a diagram showing an irradiation direction of light from the static eliminator 10N. As shown in FIG. 26, by having the above configuration, light can be emitted in a direction different from the direction in which light is emitted from the static eliminator 10 in the first embodiment. This makes it possible to irradiate the light emitted from the static eliminator 10 to the region of the photosensitive drum 2 to which the light is to be irradiated.
- light can be emitted in any direction by appropriately adjusting the angle formed by the normal line of the reflecting surface 21a of the optical path changing unit 21 and the optical axis of the light source 11.
- FIG. 27 is a graph showing an angle at which light is emitted from the emission surface of the static eliminator 10 of the first embodiment, the static eliminator 10C of Modification 4, the static eliminator 10F of Modification 7, and the conventional static eliminator.
- the horizontal axis of the graph shown in FIG. 27 is the angle of the outgoing light with respect to the normal line direction of the outgoing surface, and the vertical axis is the light intensity when the light intensity of the optical axis is 1.
- the conventional static eliminator emits high-intensity light at a wide angle.
- the static eliminator 10C of the modified example 4 and the static eliminator 10F of the modified example 7 light is applied to a narrower area.
- FIG. 28 is a side view of the static eliminator 10P.
- the static eliminator 10P includes a light guide plate 101 and a light reflecting portion 102 instead of the light guide plate 20 of the static eliminator 10 according to the first embodiment.
- the light guide plate 101 is made of glass (for example, fused stone, synthetic quartz, etc.).
- the light guide plate 101 guides the light incident from the light source 11.
- the light reflection part 102 is arranged so as to overlap the light guide plate 101. It is desirable that the light reflecting portion 102 be made of a resin having a refractive index higher than or equal to that of the glass forming the light guide plate 101. Further, an optical path changing portion 103 is formed on a surface 102b of the light reflecting portion 102 which is opposite to the surface 102a in contact with the light guide plate 101.
- the optical path changing unit 103 can be formed by ultraviolet curing, inkjet printing, insert molding, or the like.
- the static eliminator 10P when the light guided in the light guide plate 101 reaches the boundary between the light guide plate 101 and the light reflecting portion 102, the light that is not totally reflected or Fresnel reflected at the boundary is inside the light reflecting portion 102. Incident. Then, the light that has entered the light reflecting section 102 is reflected by the optical path changing section 103, then again enters the inside of the light guide plate 101, and exits from the exit surface 10 a of the light guide plate 101.
- the resin deteriorates.
- the static eliminator 10P since only the light reflecting portion 102 is made of resin, the distance that light is guided in the light reflecting portion 102 can be reduced. As a result, it is possible to reduce the deterioration of the light reflecting portion 102 made of resin.
- FIG. 29 is a side view of the static eliminator 10Q. As shown in FIG. 29, the static eliminator 10Q includes an optical path changing unit 104 instead of the light reflecting unit 102 in the modification 17.
- the optical path changing unit 104 is formed so as to project in a direction opposite to the emission surface 101a side on the surface 101b of the light guide plate 101 that faces the emission surface 101a.
- the optical path changing unit 104 is made of a resin having a refractive index higher than that of the glass forming the light guide plate 101.
- the optical path changing unit 104 can be formed by ultraviolet curing, inkjet printing, insert molding, or the like.
- the static eliminator 10Q when the light guided in the light guide plate 101 reaches the boundary between the light guide plate 101 and the optical path changing unit 104, the light is an optical path formed of a resin having a higher refractive index than glass. The light enters the changing unit 104. Then, the light that has entered the optical path changing unit 104 is reflected by the reflecting surface 104 a of the optical path changing unit 104, then enters the inside of the light guide plate 101 again, and is emitted from the emitting surface 101 a of the light guide plate 101.
- the optical path changing unit 104 can be formed so as to project in the direction opposite to the emitting surface 101a side on the surface 101b of the light guide plate 101 that faces the emitting surface 101a. 104 can be easily formed.
- FIG. 30 is a diagram showing an example in which the light irradiation device of the present invention is applied to a sterilization device.
- the disinfection device 200 includes a light irradiation device 201 as a disinfection unit.
- the light irradiation device 201 is the same as the static eliminator 10 in the first embodiment except that the wavelength of the light emitted from the light source is different.
- the light source 11 emits light having a short wavelength (specifically, light having a wavelength of 240 to 480 nm). Therefore, the bacteria can be sterilized by the ultraviolet light emitted from the light irradiation device 201.
- the light irradiation device 201 can block a part of the light whose angle formed by the optical axis of the light source 11 is a predetermined angle or more by the light blocking member 30. This makes it possible to reduce the proportion of light that is emitted from the light source 11 and enters the light guide plate 20 and that forms an angle greater than or equal to a predetermined angle with the optical axis of the light source 11.
- the sterilization apparatus 200 can be applied to, for example, household sterilizers such as air conditioners and air purifiers, and food / agricultural crop sterilizers.
- FIG. 31 is a diagram showing an example in which the light irradiation device of the present invention is applied to a scanner device.
- the scanner device 300 includes a light irradiation device 301 as a reading unit that reads an image printed on a sheet.
- the light irradiation device 301 has the same configuration as the static elimination device 10 in the first embodiment. Since the scanner device 300 includes the light irradiation device 301, it is possible to irradiate the light only in the desired range, and thus it is possible to read only the image in the desired range.
- FIG. 32 is a diagram showing an example in which the light irradiation device of the present invention is applied to a vacuum cleaner. Note that FIG. 32 shows only the suction unit 402 of the cleaner 400.
- the cleaner 400 includes a light irradiation device 401 as an illumination unit that illuminates the surface to be cleaned, and a suction unit 402 that sucks dust. Note that, as the members other than the suction unit 402, known members can be used, and thus the description thereof will be omitted.
- a vacuum cleaner in order to make it easier to find dust on the surface to be cleaned, a vacuum cleaner is known that includes a suction unit 402 of the cleaner with an illumination unit that irradiates the surface to be cleaned with light.
- a vacuum cleaner it is desired to increase the irradiation amount of light to the surface to be cleaned in order to make it easier to find dust on the surface to be cleaned.
- the vacuum cleaner 400 includes a light irradiation device 401 as an illumination unit.
- the light irradiation device 401 can irradiate light only on a desired region, as described above. In other words, the irradiation amount of light to a desired area can be increased.
- the light emitted by the light irradiation device 401 is preferably white light or green light in order to make dust easier to find.
- a light irradiation device guides a light source and light emitted from the light source and incident through an incident surface, and reflects the guided light at a reflective surface, which is different from the incident surface.
- the above configuration among the light emitted from the light source, when viewed from the normal direction of the emission surface, at least a part of the light having an angle with the optical axis of the light source that is equal to or more than a predetermined value is shielded. Or a structure that converts the traveling direction of light having a predetermined angle or more into a direction closer to the optical axis of the light source than the traveling direction, in the light guided in the light guide plate. It is possible to reduce the proportion of light having an angle formed with the optical axis of a predetermined angle or more. As a result, the angular range of the light beam emitted from the light guide plate can be narrowed. Therefore, it is possible to irradiate light only in a desired range. In other words, it is possible to suppress irradiation of light to an undesired area.
- an opening structure having an opening through which light emitted from the light source passes, among the inner surfaces of the opening, At least the light reflectance of the inner surface parallel to the normal line direction of the emission surface may be 50% or less.
- a part of the light whose angle with the optical axis of the light source 11 is greater than or equal to a predetermined angle is part of the inner surface of the opening. Can be shielded from light. This makes it possible to reduce the proportion of light, which is emitted from the light source and enters the light guide plate, whose angle formed by the optical axis of the light source is equal to or larger than a predetermined angle. As a result, the angular range of the light beam emitted from the light guide plate can be narrowed.
- the light source includes an emission window that is a region that emits light to the outside, and the opening is viewed from a direction normal to the emission surface. , Has a width smaller than the width of the exit window.
- the light source includes an emission window that is a region that emits light to the outside, and in the direction along the optical axis of the light source, from the emission window,
- the distance to the end of the opening on the light guide plate side is preferably 0.5 times or more the width of the opening on the light guide plate side.
- the light irradiation device may further include a housing that supports the light guide plate, and the opening structure may be provided in the housing.
- a configuration is provided that includes a lens structure that converts a traveling direction of light emitted from the light source into a direction closer to an optical axis of the light source than the traveling direction. It may be.
- the lens structure can reduce the proportion of the light guided inside the light guide plate that has an angle with the optical axis of the light source that is equal to or greater than a predetermined angle.
- the lens structure may be a lens provided between the light source and the incident surface.
- the light source may have a configuration in which the lens structure and a light emitting element that emits the light are integrated.
- the lens structure may be formed on the incident surface of the light guide plate.
- the light guide plate has a width of an end portion on the incident surface side that narrows as approaching the incident surface when viewed from a direction normal to the emission surface.
- the structure may have a narrowed structure.
- the traveling direction of the light can be converted into a direction close to the optical axis of the light source.
- the ratio of the light having the smaller angle with the optical axis of the light source it is possible to increase the ratio of the light having the smaller angle with the optical axis of the light source.
- the angular range of the light beam emitted from the light guide plate can be narrowed.
- the constriction structure may be a straight line when viewed from a direction normal to the emission surface.
- the narrowed structure is a flat surface, the light guide plate can be easily manufactured.
- the constriction structure may be a curved curve that is convex toward the outside of the light guide plate when viewed from the direction normal to the exit surface.
- the direction of travel of the light whose angle with the optical axis of the light source is greater than or equal to a predetermined angle is the optical axis of the light source. Can be converted to a direction closer to parallel to.
- light absorption with a light reflectance of 50% or less is performed at an end portion on a side of the incident surface of a side surface of the light guide plate which is perpendicular to the incident surface and the emission surface.
- the member may be installed.
- the light that forms an angle with the optical axis of the light source 11 at a predetermined angle or more when viewed from the direction normal to the emission surface reaches the side surface of the light guide plate. At times, more than 50% of the light can be absorbed by the light absorbing member. As a result, in the light guided inside the light guide plate, it is possible to increase the ratio of the light having the smaller angle with the optical axis of the light source. Therefore, the angular range of the light flux emitted from the light guide plate can be narrowed.
- an end portion of the light guide plate on a side of the incident surface of a side surface perpendicular to the incident surface and the exit surface has a fine uneven shape
- the light guide plate may be supported, and a case having a light absorbing structure may further be provided, and the case may be configured to block light emitted from the uneven shape.
- the light emitted from the light source when viewed from the normal direction of the emission surface, a part of the light whose angle formed by the optical axis of the light source is equal to or more than a predetermined angle is formed into an uneven shape.
- the light can be emitted to the outside of the light guide plate through. Then, since the light emitted to the outside of the light guide plate can be absorbed by the housing, it is possible to prevent the light from becoming stray light.
- the static eliminator can be easily manufactured.
- the light guide plate includes a plurality of reflective structure portions that are perpendicular to the incident surface and that reflect the light incident from the incident surface by the reflective surface. It is preferable that the first surface is provided, and the area of the reflective surface per unit area of the first surface is different depending on the distance from the incident surface. According to the above configuration, it is possible to suppress variations in the amount of light emitted from the emission surface in the direction in which light is guided inside the light guide plate. In other words, the amount of light emitted from the emission surface can be made uniform in the length direction of the light guide plate.
- an angle formed by a normal line of the reflection surface and an optical axis of the light source when viewed from a normal line direction of the emission surface, has a predetermined angle. It may be configured.
- light can be emitted in any direction by appropriately adjusting the angle formed by the normal line of the reflecting surface and the optical axis of the light source.
- An image forming apparatus includes the light irradiation device according to any one of the above, which serves as a charge eliminating device, and a photoconductor drum whose charge is removed by the charge eliminating device.
- a disinfection device includes the light irradiation device according to any one of the above as a disinfection unit for removing bacteria.
- a scanner device includes the light irradiation device according to any one of the above as a reading unit that reads an image on a sheet.
- a vacuum cleaner includes the light irradiation device according to any one of the above as an illumination unit that illuminates a cleaning area.
- Photoreceptor drum 10 10A to 10N Static eliminator (light irradiation device) 11, 11A light source 11a LED chip (light emitting element) 11b Emitting window 13, 13A to 13c Housing 13Ac, 13Bca, 30C, 40C Opening 20, 20A to 20H, 20I to 20K Light guide plate 20a, 20Aa, 20Ha Incident surface 20b, 20Hb, 20Ib, 20Jb Bottom surface (first surface) 20c, 20Hc, 20Ic Emitting surface 20Eb, 20Fb, 21a, 25a, 25Aa Reflecting surface 21, 23A, 23Ea to 23Ee, 24A to 24G, 25, 25A Optical path changing part (reflection structure part) 30, 40 Light-shielding member 50 Lens 51, 52 Light-absorbing member 200 Sterilization device 201, 301, 401 Light irradiation device 300 Scanner device 400 Vacuum cleaner
Landscapes
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Discharging, Photosensitive Material Shape In Electrophotography (AREA)
Abstract
所望しない領域への光の照射を抑制することを目的とする。除電装置(10)は、光源(11)、導光板(20)および遮光部材(30)を備える。遮光部材(30)は、光源(11)と導光板(20)の入射面(20a)との間に設けられている。遮光部材(30)は、光源(11)から出射された光が通過する開口(30C)を有する。また、開口30Cの内面の光反射率が50%以下となっている。
Description
本発明は、光を照射する光照射装置などに関する。
光を照射装置は、様々な場面で使用されており、例えば、電子写真方式の画像形成装置に使用されている。
電子写真方式の画像形成装置では、以下のような過程で画像形成(印刷)が行われる。まず、像担持体として作用する感光体(例えば、感光体ドラム)の表面を静電気によって帯電し、帯電された領域に対してレーザー光により画像露光して静電潜像を形成する。次に、感光体上に形成した静電潜像をトナー像として現像し、現像されたトナー像を中間転写ベルトなどの中間転写体や記録紙などの記録材に静電的に転写する。
電子写真方式の画像形成装置では、感光体の表面を帯電する前に感光体の表面上の電荷を除去するための除電装置を備えている。このような除電装置が、例えば特許文献1に開示されている。
特許文献1に開示された除電装置は、光源からの光を入射する入射面と、入射面から入射した光を出射する出射面とを有しており、入射面及び出射面以外の外周面に、光反射部材が設けられている。上記の構成により、感光体に照射される光の光量を大きくさせている。
ここで、光源から出射される光束は、所定の範囲の角度を有する。そのため、特許文献1の技術では、反射部材に反射された光が所望しない領域へ拡散されてしまい、感光体に対して意図しない領域に導電性を与えてしまうという問題があった。
本発明の一態様は、所望しない領域への光の照射を抑制することができる光照射装置を実現することを目的とする。
上記の課題を解決するために、本発明の一態様に係る光照射装置は、光源と、当該光源から出射され入射面を介して入射した光を導光し、導光した光を反射面で反射して前記入射面とは異なる出射面から出射する導光板と、を備える除電装置であって、前記光源から出射された光のうち、前記出射面の法線方向から見たときに、前記光源の光軸とのなす角度が所定以上の光の少なくとも一部を遮光する構造、および、前記角度が所定以上の光の進行方向を当該進行方向よりも前記光源の光軸に平行に近い方向に変換する構造の少なくともいずれか一方の構造を備える。
本発明の一態様によれば、所望しない領域への光の照射を抑制することができる。
〔実施形態1〕
以下、本発明の一側面に係る実施の形態(以下、「本実施形態」とも表記する)を、図面に基づいて説明する。
以下、本発明の一側面に係る実施の形態(以下、「本実施形態」とも表記する)を、図面に基づいて説明する。
§1 適用例
まず、図6を用いて、本発明が適用される場面の一例について説明する。図6は、本発明の一態様の光照射装置としての除電装置10Aにおける光源11から出射された光の進行を示す図である。
まず、図6を用いて、本発明が適用される場面の一例について説明する。図6は、本発明の一態様の光照射装置としての除電装置10Aにおける光源11から出射された光の進行を示す図である。
除電装置10Aは、感光体ドラムの表面上の電荷を除去するために光を照射する装置である。図6に示すように、除電装置10Aは、光源11と、導光板20と、光センサ12と、遮光部材30と、筐体13とを備えている。
除電装置10Aでは、光源11から出射された光を導光板20に入射させて、導光板20の内部を導光した光を感光体ドラムに向けて出射させる。除電装置10Aは、光源11と、導光板20との間に、遮光部材30を備えている。
遮光部材30は、光源11から出射された光が通過する開口30Cを有する開口構造を備えている。また、開口30Cの内面(すなわち、第1対向面30Aaおよび第2対向面30Ba)の光反射率が50%以下となっている。
上記の構成によれば、光源11から出射された光のうち、出射面の法線方向(Y軸方向)からみたときに光源11の光軸とのなす角度が所定の角度以上の光の一部を、遮光部材30によって遮光することができる。これにより、光源11から出射され導光板20に入射する光における、光源11の光軸とのなす角度が所定の角度以上の光の割合を小さくすることができる。その結果、感光体ドラムに対して、所望する範囲のみに光を照射することができる。換言すれば、所望しない領域への光の照射を抑制することができる。
§2 構成例
以下、本発明一態様の除電装置10Aおよび除電装置10Aを備える画像形成装置1の構成例を、図面を参照して説明する。
以下、本発明一態様の除電装置10Aおよび除電装置10Aを備える画像形成装置1の構成例を、図面を参照して説明する。
図1は、画像形成装置1が備える感光体ドラム2の周辺における画像形成装置1の拡大図である。画像形成装置1は、電子写真方式によって画像を形成(印刷)するものであり、例えば、複写機、プリンタ、ファクシミリ、およびそれらの複合機などである。なお、画像形成装置1について、以下に示す部材以外の部材については、公知の部材と同様であると解釈されてよい。
図1に示すように、画像形成装置1は、像担持体として機能する感光体である感光体ドラム2と、帯電器3と、露光装置4と、現像装置5と、転写装置6と、定着装置7と、クリーニング装置8と、除電装置10A(光照射装置)と、を備えている。
ここで、画像形成装置1における記録紙への印刷の動作について説明する。画像形成装置1における印刷動作では、まず、帯電器3により感光体ドラム2の表面を一様に帯電させる。なお、感光体ドラム2は、ドラム形状をしており、図1において感光体ドラム2の内部に示す矢印方向に回転する。
次に、露光装置4により感光体ドラム2の表面にレーザー光を露光させる。これにより、画像データに基づく静電潜像が感光体ドラム2の表面に形成される。次に、現像装置5が、トナー剤を感光体ドラム2の表面に付着させ、上述の静電潜像に基づくトナー像(顕像)を感光体ドラム2の表面に現像する。次に、転写装置6が、感光体ドラム2の表面に現像されたトナー像を記録紙に転写する。次に、定着装置7が、記録紙を加熱および加圧することにより、記録紙に転写されたトナー像を融解させ、記録紙にトナー像を定着させる。これにより、記録紙に画像が印刷される。
転写後の感光体ドラム2の表面に残留するトナー剤は、クリーニング装置8によって除去される。そして、除電装置10Aによって感光体ドラム2の表面に光を照射することにより、感光体ドラム2の表面に残留する電荷(残留電荷)を除去する。これにより、感光体ドラム2が次の記録紙への印刷が可能な状態となる。
(除電装置10A)
次に、本実施形態における除電装置10Aについて図面を参照しながら詳細に説明する。
次に、本実施形態における除電装置10Aについて図面を参照しながら詳細に説明する。
図2は、除電装置10Aの構成を示す斜視図である。図2に示すように、除電装置10Aは、光源11と、導光板20と、光センサ12と、遮光部材30と、筐体13とを備えている。
図3は、光源11、導光板20、および遮光部材30を、図2における-Z軸方向から見た図である。図4は、光源11、導光板20、および遮光部材30を、図2における+Y軸方向から見た図である。
光源11は、導光板20に光を照射する。光源11は、LED(Light Emitting diode)光源である。光源11は、図2および図3に示すように、直方体形状をしており、内部に発光素子としてのLEDチップ11aを備えている。また、光源11は、LEDチップ11aからの光を外部に向けて出射する、平面からなる出射窓11bを備えるフラットパッケージ型のLEDである。光源11は、出射窓11bが後述する導光板20の入射面20aに対向するように設置されている。光源11は、導光板20の幅方向(Y軸方向)の中央に設置されている。
なお、感光体ドラム2は、その設計に応じて除電されやすい波長が存在する。そのため、光源11は、感光体ドラム2の除電に好適な波長の光を含む狭い波長領域の光を照射することが好ましい。
導光板20は、光源11から入射された光を導光し、導光した光を後述する光路変更部21(より詳細には、反射面21a)で反射して感光体ドラム2へ向けて出射する部材である。導光板20は、透明で屈折率が比較的高い樹脂材料で成形される。導光板20を形成する材料としては、例えばポリカーボネイト樹脂、ポリメチルメタクリレート樹脂、シクロオレフィンポリマー樹脂などを使用することができる。本実施形態では、導光板20は、ポリカーボネイト樹脂によって成形されている。
図2~4に示すように、導光板20は、直方体形状をしており、入射面20aと、底面20b(第1面)と、出射面20cと、入射面20aと対向する対向面20dと、側面20eと、側面20fとを備えている。
入射面20aは、光源11から出射された光が導光板20の内部に入射する面である。
底面20bは、入射面20aに対して垂直な面であり、入射面20aから入射された光を出射面20cへ向けて反射する複数の光路変更部21が形成されている。
光路変更部21(反射構造部)は、図3および図4に示すように、高さ方向がY軸方向である三角柱形状となっている。光路変更部21は、導光板20の内部を導光された光を反射する反射面21aを備えている。光路変更部21は、底面20bにおいて、導光板20の幅方向(Y軸方向)に延びて形成されており、導光板20の幅方向全体にわたって形成されている。導光板20では、入射面20aからの距離が大きくなるにつれて単位面積当たりの光路変更部21の数が多くなっている。
出射面20cは、底面20bと平行な面であり、光路変更部21の反射面21aによって反射された光を感光体ドラム2へ向けて出射する。
遮光部材30は、光源11から出射された光のうち、導光板20の出射面20cの法線方向(Z軸方向)から見たときに、光源11の光軸(すなわち、X軸方向)とのなす角度が所定以上(例えば、45°以上)の光の少なくとも一部を遮光する。
遮光部材30は、光源11と導光板20との間に配置されており、2つの直方体形状の第1部材30Aおよび第2部材30Bからなっている。第1部材30Aおよび第2部材30Bは、図4に示すように、Y軸方向において光源11の出射窓11bを間に挟む位置に設置されている。第1部材30Aの第2部材30Bと対向する第1対向面30Aaおよび第2部材の30Bの第1部材30Aと対向する第2対向面30Baは、光反射率が50%以下となるように形成されている。例えば、第1対向面30Aaおよび第2対向面30Baは、黒色の塗料が塗布されることにより、光反射率が50%以下となるように形成されている。
除電装置10Aは、導光板20の出射面20cが感光体ドラム2に対向し、かつ、出射面20cの長手方向が感光体ドラム2の幅方向となるように設置される(図2参照)。
光センサ12は、導光板20の対向面20dに設置されており、対向面20dに到達した光の光量を測定するセンサである。
筐体13は、除電装置10Aの各部を内部に支持する。筐体13は、直方体形状をしており、導光板20の出射面20cに対応する面のみが開口となっている。
次に、除電装置10Aによる効果について説明する。図5の(a)は、従来の除電装置による感光体ドラムに対する光の照射範囲を示す図であり、図5の(b)は、本実施形態の除電装置10Aによる感光体ドラムに対する光の照射範囲を示す図である。なお、図5の(a)および(b)では、光軸の光強度に対して10%以上の強度の範囲の光の範囲を示している。図6は、除電装置10Aにおける光源11から出射された光の進行を示す図である。
まず、従来の問題点について、図5の(a)を参照しながら説明する。従来の除電装置では、光源から出射される光束が所定の範囲の角度を有するため、反射部材によって反射され導光板の出射面から出射される光束の範囲が大きくなってしまう。そのため、図5の(a)に示すように、導光板の出射面から出射される光束の範囲が感光体ドラムに対して照射させたい領域よりも大きな範囲となっていた。その結果、感光体ドラムに対して意図しない領域に導電性を与えてしまうという問題があった。
これに対して、本実施形態の除電装置10Aでは、上述のように、光源11と導光板20の入射面20aとの間に、遮光部材30が設けられている。遮光部材30は、第1部材30Aの第1対向面30Aaおよび第2部材30Bの第2対向面30Baによって、光源11から出射された光が通過する開口30Cを有する開口構造を備えている。また、開口30Cの内面(すなわち、第1対向面30Aaおよび第2対向面30Ba)の光反射率が50%以下となっている。
上記の構成によれば、図6に示すように、光源11から出射された光のうち、出射面の法線方向(Y軸方向)からみたときに、光源11の光軸(図6における直線A)とのなす角度が所定の角度以上の光(例:図6における光L1および光L2)は、第1部材30Aの第1対向面30Aaまたは第2部材30Bの第2対向面30Baに到達する。第1対向面30Aaおよび第2対向面30Baの光反射率が50%以下となっているため、第1対向面30Aaまたは第2対向面30Baに到達した光のうちの50%以上の光は、第1対向面30Aaまたは第2対向面30Baによって遮光される。これにより、光源11から出射され導光板20に入射する光における、光源11の光軸とのなす角度が所定の角度以上の光の割合を小さくすることができる。その結果、図5の(b)に示すように、感光体ドラム2に対して、所望する範囲のみに光を照射することができる。換言すれば、所望しない領域への光の照射を抑制することができる。
ここで、第1対向面30Aaおよび第2対向面30Baの光反射率について図7を参照しながら説明する。
図7は、第1対向面30Aaおよび第2対向面30Baの光反射率に対する、導光板の出射面から出射される光束の角度を示すグラフである。なお、図7に示すグラフの横軸は、第1対向面30Aaおよび第2対向面30Baの光反射率であり、図7に示すグラフの縦軸は、光軸の光強度に対して10%以上の強度の光が出射面20cから照射される角度の範囲である。なお、図7には、遮光部材30を設けない場合におけるデータも合わせて示している。
感光体ドラム2に対して感光体に対して意図しない領域に導電性を与えないためには、光軸の光強度に対して10%以上の強度の光が出射面20cから照射される角度が90°以下となることが好ましい。図7に示すように、第1対向面30Aaおよび第2対向面30Baの光反射率が50%以下とすることにより、上記の条件を満たすことができる。
なお、図7に示すように、遮光部材を設けない場合には、光軸の光強度に対して10%以上の強度の光が照射される角度範囲は、約150°となる。すなわち、導光板の出射面から出射される光束の範囲が非常に広くなる。
図8は、光源11の光軸Lに沿った方向における、光源11の出射窓11bから開口30Cの導光板20側の端部までの距離(図6に示すL1)を開口30Cの導光板20側の開口幅(図6に示すL2)で除した値に対する、光軸の光強度に対して10%以上の強度の光が出射面20cから照射される角度の範囲を示すグラフである。図8に示すように、光源11の光軸Lに沿った方向における、光源11の出射窓11bから開口30Cの導光板20側の端部までの距離(図6に示すL1)を、開口30Cの導光板20側の開口幅(図6に示すL2)の0.5倍以上とすることにより、光源11から出射され導光板20に入射する光における、光源11の光軸とのなす角度が所定の角度(具体的には、90°)以上の光の割合を小さくすることができる。
また、本実施形態における除電装置10Aにおける導光板20では、入射面20aからの距離が大きくなるにつれて単位面積当たりの光路変更部21の数が多くなっている。
上記の構成によれば、光源11からの光量が大きい光が到達する入射面20aに近い領域では、単位面積当たりの光路変更部21の数が少ないため、光を反射する領域が小さい。その一方で、光源11からの光量が小さい光が到達する入射面20aから遠い領域では、単位面積当たりの光路変更部21の数が多いため、光を反射する領域が大きい。換言すれば、入射面20aからの距離に応じて、底面20bにおける単位面積当たりの反射面21aの面積が異なっている。その結果、導光板20の長さ方向(換言すれば、導光板20の内部を光が導光される方向)において、出射面20cから出射される光の光量のバラツキを抑えることができる。換言すれば、導光板20の長さ方向において、出射面20cから出射される光の光量を均一化することができる。
§3 変形例
以上、本開示の実施の形態を詳細に説明してきたが、前述までの説明はあらゆる点において本開示の例示に過ぎない。本開示の範囲を逸脱することなく種々の改良や変形を行うことができることは言うまでもない。例えば、以下のような変更が可能である。なお、以下では、上記実施形態と同様の構成要素に関しては同様の符号を用い、上記実施形態と同様の点については、適宜説明を省略した。以下の変形例は適宜組み合わせ可能である。
以上、本開示の実施の形態を詳細に説明してきたが、前述までの説明はあらゆる点において本開示の例示に過ぎない。本開示の範囲を逸脱することなく種々の改良や変形を行うことができることは言うまでもない。例えば、以下のような変更が可能である。なお、以下では、上記実施形態と同様の構成要素に関しては同様の符号を用い、上記実施形態と同様の点については、適宜説明を省略した。以下の変形例は適宜組み合わせ可能である。
<変形例1>
図9は、本変形例における除電装置10Aが備える光源11、導光板20、および遮光部材40を示す図である。
図9は、本変形例における除電装置10Aが備える光源11、導光板20、および遮光部材40を示す図である。
図9に示すように、除電装置10Aは、実施形態1における遮光部材30に代えて遮光部材40を備えている。
遮光部材40は、第1部材40Aと、第2部材40Bとを備えている。第1部材40Aおよび第2部材40Bは、実施形態1における第1部材30Aおよび第2部材30Bとそれぞれほぼ同様の構造をしている。
遮光部材40では、第1部材40Aの第1対向面40Aaおよび第2部材40Bの第2対向面40Baによって、光源11から出射された光が通過する開口40Cを有する開口構造を備えている。開口40Cは、導光板20の出射面20cの法線方向(Z軸方向)から見たときに、光源11の出射窓11bの幅よりも小さい幅を有している。
上記の構成によれば、実施形態1における除電装置10に比べて、光源11から出射された光のうち光源11の光軸とのなす角度がより小さい角度の光の割合が高い光束を導光板20に入射させることができる。これにより、導光板20から出射される光束の角度範囲をより狭くすることができる。
<変形例2>
図10は、本変形例における除電装置10Bの構成を示す図である。図10に示すように、除電装置10Bは、実施形態1における除電装置10の筐体13に代えて筐体13Aを備えている。また、除電装置10Bは、実施形態1における遮光部材30を備えていない。
図10は、本変形例における除電装置10Bの構成を示す図である。図10に示すように、除電装置10Bは、実施形態1における除電装置10の筐体13に代えて筐体13Aを備えている。また、除電装置10Bは、実施形態1における遮光部材30を備えていない。
筐体13Aは、導光板20を内部に格納している。また、光源11は、筐体13Aの長さ方向の端部の外側に設置されており、出射窓11bが導光板20の入射面20aと対向するように設置されている。筐体13Aにおける光源11が設置されている側の端部には、面13Aaおよび面13Abによって光源11から出射された光が通過する開口13Acが形成されている。面13Aaおよび面13Abは、光反射率が50%以下となるように形成されている。すなわち、除電装置10Bでは、実施形態1における開口構造が、筐体13Aに形成されている。
上記の構成によれば、面13Aaまたは面13Abに到達した光のうちの50%以上の光を遮光することができる。これにより、光源11から出射され導光板20に入射する光における、光源11の光軸とのなす角度が所定の角度以上の光の割合を小さくすることができる。これにより、導光板20から出射される光束の角度範囲を狭くすることができる。また、実施形態1の除電装置10に比べて、部材点数を少なくすることができる。
<変形例3>
図11は、本変形例における筐体13Bを示すものであり、(a)は、筐体13Bの正面図であり、(b)は筐体13Bの側面図であり、(c)は、(a)におけるA-A線矢視断面図であり、(d)は、(b)におけるA-A線矢視断面図である。
図11は、本変形例における筐体13Bを示すものであり、(a)は、筐体13Bの正面図であり、(b)は筐体13Bの側面図であり、(c)は、(a)におけるA-A線矢視断面図であり、(d)は、(b)におけるA-A線矢視断面図である。
図11に示すように、筐体13Bは、底面13Baと、上面13Bbと、側面13Bcと、側面13Bdとを備えている。筐体13Bでは、底面13Baと、上面13Bbとの間に、導光板20の底面20bが底面13Ba側となるように、導光板20が設置される。
図11の(c)に示すように、側面13Bcには、光源11を設置するための凹部が形成されている。また、図11の(b)および(c)に示すように、側面13Bcには、光源11から出射された光が通過する開口13Bcaが形成されている。
図11の(d)に示すように、上面13Bbの幅は、底面13Baの幅よりも短くなっている。すなわち、筐体13Bは、長さ方向に垂直な断面の形状がJ字形状になっている。このような構成においても、変形例2における除電装置10Bと同様に、部材点数が少ない除電装置を実現することができる。
<変形例4>
図12は、本変形例における除電装置10Cが備える光源11、導光板20、およびレンズ50を示す図である。
図12は、本変形例における除電装置10Cが備える光源11、導光板20、およびレンズ50を示す図である。
図12に示すように、除電装置10Cは、実施形態1における遮光部材30に代えてレンズ50(レンズ構造)を備えている。
レンズ50は、光源11と導光板20との間に配置されている。レンズ50は、光源11から出射された光の進行方向を、光源11の光軸に対して平行に近い方向に変換するレンズである。
上記の構成によれば、レンズ50によって、光源11の光軸とのなす角度がより小さい角度の光の割合が高い光束を導光板20に入射させることができる。これにより、導光板20から出射される光束の角度範囲をより狭くすることができる。
<変形例5>
図13は、本変形例における除電装置10Dが備える光源11Aおよび導光板20を示す図である。
図13は、本変形例における除電装置10Dが備える光源11Aおよび導光板20を示す図である。
図13に示すように、除電装置10Dは、実施形態1における光源11に代えて光源11Aを備えている。また、除電装置10Dは、実施形態1における遮光部材30を備えていない。
光源11Aは、LEDチップ11aおよびレンズ11Aaを備える砲弾型LEDである。すなわち、光源11Aは、変形例4における光源11とレンズ50とが一体となったものである。
上記によれば、より少ない部材点数で、光源11の光軸とのなす角度がより小さい角度の光の割合が高い光束を導光板20に入射させることができる。
<変形例6>
図14は、本変形例における除電装置10Eが備える光源11および導光板20Aを示す図である。
図14は、本変形例における除電装置10Eが備える光源11および導光板20Aを示す図である。
図14に示すように、除電装置10Eは、実施形態1における導光板20に代えて導光板20Aを備えている。また、除電装置10Eは、実施形態1における遮光部材30を備えていない。
導光板20Aは、実施形態1における導光板20の入射面20aに代えて入射面20Aaを備えている点以外は、導光板20と同様の構成である。入射面20Aaは、-X軸方向に突出する曲面形状をしており、レンズ構造となっている。
上記によれば、光源11から出射され導光板20Aに入射する光は、導光板20Aに入射する際に、進行方向が光源11の光軸に対して平行に近い方向に変換される。これにおり、光源11の光軸とのなす角度がより小さい角度の光の割合が高い光束を導光板20に入射させることができる。その結果、導光板20から出射される光束の角度範囲をより狭くすることができる。
<変形例7>
図15は、本変形例における除電装置10Fが備える光源11および導光板20Bを示す図である。
図15は、本変形例における除電装置10Fが備える光源11および導光板20Bを示す図である。
図15に示すように、除電装置10Fは、実施形態1における導光板20に代えて導光板20Bを備えている。また、除電装置10Fは、実施形態1における遮光部材30を備えていない。
導光板20Bは、出射面20cの法線方向から見たときに、実施形態1における導光板20における入射面20a側の2つの角を切り欠いた構造となっている。より詳細には、導光板20Bは、入射面20aと側面20eとを接続する第1接続面20Ba、および入射面20aと側面20fとを接続する第2接続面20Bbを備えている。第1接続面20Baおよび第2接続面20Bbは、平面にてなっている。これにより、導光板20Bは、出射面20cの法線方向から見たときに直線となっている。
すなわち、導光板20Bは、出射面20cの法線方向から見たときに、入射面20a側の端部の幅が、入射面20aに近づくにつれて狭くなっている狭窄構造を有している。これにより、図15に示すように、光源11から出射された光のうち、出射面の法線方向からみたときに、光源11の光軸とのなす角度が所定の角度以上の光を、第1接続面20Baまたは第2接続面20Bbによって反射させることによって、当該光の進行方向を光源11の光軸に対して平行に近い方向に変換することができる。その結果、導光板20の内部を導光する光における、光源11の光軸とのなす角度がより小さい角度の光の割合を高くすることができる。その結果、導光板20から出射される光束の角度範囲をより狭くすることができる。
また、第1接続面20Baおよび第2接続面20Bbは、平面にてなっているため、導光板20を簡易に製造することができる。
<変形例8>
図16は、本変形例における除電装置10Gが備える光源11および導光板20Cを示す図である。
図16は、本変形例における除電装置10Gが備える光源11および導光板20Cを示す図である。
図16に示すように、除電装置10Gは、実施形態1における導光板20に代えて導光板20Cを備えている。また、除電装置10Gは、実施形態1における遮光部材30を備えていない。
導光板20Cは、変形例7における導光板20Bの第1接続面20Baおよび第2接続面20Bbに代えて、第1接続面20Caおよび第2接続面20Cbを備えている。
第1接続面20Caおよび第2接続面20Cbは、曲面からなっている。より詳細には、第1接続面20Caおよび第2接続面20Cbは、出射面20cの法線方向から見たときに導光板20Cの外部方向に凸形状の曲線となる曲面となっている。すなわち、導光板20Cは、出射面20cの法線方向から見たときに、入射面20a側の端部の幅が、入射面20aに近づくにつれて狭くなっている狭窄構造を有している。
上記の構成によれば、図16に示すように、光源11から出射された光のうち、出射面の法線方向からみたときに、光源11の光軸とのなす角度が所定の角度以上の光を、第1接続面20Caまたは第2接続面2CBbによって反射させることによって、変形例7に比べて当該光の進行方向を光源11の光軸に対して平行により近い方向に変換することができる。
なお、第1接続面20Caおよび第2接続面20Cbは、出射面20cの法線方向から見たときに、光源11を焦点とする放物線の一部としての曲線となる曲面であってもよい。これにより、第1接続面20Caまたは第2接続面2CBbによって反射された光の進行方向を、光源11の光軸に平行な方向にすることができる。
<変形例9>
図17は、本変形例における除電装置10Hが備える光源11、導光板20Cおよび吸収部材51・52を示す図である。
図17は、本変形例における除電装置10Hが備える光源11、導光板20Cおよび吸収部材51・52を示す図である。
図17に示すように、除電装置10Hは、実施形態1における除電装置10の構成に加えて、光吸収部材51および光吸収部材52を備えている。また、除電装置10Fは、実施形態1における遮光部材30を備えていない。
光吸収部材51および光吸収部材52は、導光板20の側面20eおよび側面20fにおける入射面20a側の端部の外側に、光吸収部材51および光吸収部材52と導光板20との間に空気が存在しないように密着して設置されている。光吸収部材51および光吸収部材52は、光反射率が50%以下となるように形成されている。換言すれば、光吸収部材51および光吸収部材52は、到達した光のうち50%よりも大きい割合の光を吸収する。光吸収部材51および光吸収部材52は、例えば樹脂を黒く塗ることによって作製されてもよいし、黒色のテープであってもよい。
上記の構成によれば、図17に示すように、光源11から出射された光のうち、出射面の法線方向からみたときに光源11の光軸とのなす角度が所定の角度以上の光が側面20eまたは側面20fに到達したときに、50%よりも大きい割合の光が光吸収部材51または光吸収部材52によって吸収される。その結果、導光板20の内部を導光する光における、光源11の光軸とのなす角度がより小さい角度の光の割合を高くすることができる。したがって、導光板20から出射される光束の角度範囲をより狭くすることができる。
<変形例10>
図18は、本変形例における除電装置10Iが備える光源11および導光板20Dを示す図である。
図18は、本変形例における除電装置10Iが備える光源11および導光板20Dを示す図である。
図18に示すように、除電装置10Iは、実施形態1における導光板20に代えて導光板20Dを備えている。また、除電装置10Iは、実施形態1における遮光部材30を備えていない。
導光板20Dは、実施形態1における導光板20の側面20eおよび側面20fに代えて、側面20Deおよび側面20Dfを備えている。
側面20eおよび側面20fの入射面20a側の端部は、微細な凹凸形状となっている。これにより、光源11から出射された光のうち、出射面の法線方向からみたときに光源11の光軸とのなす角度が所定の角度以上の光が側面20eまたは側面20fにおける上記凹凸形状が形成されている領域に到達したときに、当該光の一部は、上記凹凸形状とのなす角度が臨界角よりも大きくなる。これにより、当該光の一部は、側面20eまたは側面20fにおいて反射せずに導光板20Dの外部へ出射される。導光板20Dの外部へ出射された光は、筐体13により吸収される。なお、本実施形態では、筐体13は、光を吸収する部材からなっている、または、光を吸収する構造(光吸収構造)を有している。
また、上記所定の角度以上の光が側面20eまたは側面20fにおける上記凹凸形状が形成されている領域に到達したときに、当該光の一部は、上記凹凸形状によって反射されるが、出射面の法線方向からみたときに光源11の光軸とのなす角度が大きくなる。その結果、当該光が、側面20eまたは側面20fにおける上記凹凸形状が形成されていない領域に到達したときに、側面20eまたは側面20fとなす角度が臨界角よりも大きくなる。これにより、当該光の一部は、側面20eまたは側面20fにおいて反射せずに導光板20Dの外部へ出射される。導光板20Dの外部へ出射された光は、筐体13により吸収される。
このように、除電装置10Iでは、光源11から出射された光のうち、出射面の法線方向からみたときに、光源11の光軸とのなす角度が所定の角度以上の光の一部を導光板20Dの外部へ出射させることができる。これにより、導光板20の内部を導光する光における、光源11の光軸とのなす角度がより小さい角度の光の割合を高くすることができる。その結果、導光板20から出射される光束の角度範囲をより狭くすることができる。
また、導光板20Dの外部へ出射した光を筐体13によって吸収させることができるので、当該光が迷光になることを防止することができる。
また、上記凹凸形状は、導光板20Dに形成されており、光を導光板20Dの外部に出射させるために他の部材を必要としないので、除電装置10Iを簡易に作製することができる。
<変形例11>
図19は、本変形例における除電装置10Jが備える導光板20および筐体13Cを示す図である。
図19は、本変形例における除電装置10Jが備える導光板20および筐体13Cを示す図である。
図19に示すように、筐体13Cは、導光板20の側面20eと対向する側面13Caと、導光板20の側面20fと対向する側面13Cbとを備えている。筐体13Cは、白色の樹脂にて形成されており、光を反射できるようになっている。
筐体13Cは、側面13Caが側面13Cbに対して感光体ドラム2が回転する側(換言すれば、帯電器3が設置されている側)となるように配置されている。図19に示すように、側面13Caおよび側面13Cbは、感光体ドラム2側の端部が、導光板20の出射面20cよりも高くなるように形成されている。これにより、出射面20cから出射されたときに、所望の方向に照射されない光を側面13Caおよび側面13Cbによって反射することができる。これにより、除電装置10Jから照射される光が予期しない箇所に照射されることを防ぐことができる。
特に、帯電器3側に予期しない光が照射されてしまうと、感光体ドラム2を帯電器3によって帯電する際に悪影響を及ぼしてしまう。そのため、図19に示すように、帯電器3側となる側面13Caの高さが、側面13Cbの高さよりも高くなっている。これにより、帯電器3側に予期しない光が照射されにくくなっている。
なお、本発明の一態様の除電装置では、筐体13Cは黒色の樹脂にて構成されてもよい。これにより、所望の方向に照射されない光を側面13Caおよび側面13Cbによって吸収することができるので、除電装置から照射される光が予期しない箇所に照射されることを防ぐことができる。
<変形例12>
図20の(a)は、本変形例における除電装置10Kの上面図であり、(b)は、除電装置10Kの側面図である。
図20の(a)は、本変形例における除電装置10Kの上面図であり、(b)は、除電装置10Kの側面図である。
図20の(a)および(b)に示すように、除電装置10Kは、実施形態1における導光板20に代えて導光板20Eを備えている。
導光板20Eは、光路変更部として光路変更部23Ea~23Eeを備えている。光路変更部23Ea~23Eeは、導光板20Eの反射面20Ebと、光路変更部23Ea~23Eeの反射面とのなす角度が同一となっている。光路変更部23Ea~23Eeは、導光板20Eの幅方向(Y軸方向)に延びて形成されており、導光板20Eの幅方向全体にわたって形成されている。導光板20Eでは、入射面20aからの距離が大きくなるにつれて、光路変更部の高さが高くなっている。すなわち、光路変更部23Eaの高さがもっと低く、光路変更部23Eb、光路変更部23Ec、光路変更部23Ed、光路変更部23Eeの順に高さが高くなっている。
上記の構成によれば、光源11からの光量が大きい光が到達する入射面20aに近い領域では光路変更部(例えば、光路変更部23Ea)の高さが低いため、光を反射する領域が小さい。その一方で、光源11からの光量が小さい光が到達する入射面20aから遠い領域では、光路変更部(例えば、光路変更部23Ee)の高さが高いため、光を反射する領域が大きい。その結果、導光板20Eの長さ方向(換言すれば、導光板20Eの内部を光が導光される方向)において、出射面20cから出射される光の光量のバラツキを抑えることができる。換言すれば、導光板20Eの長さ方向において、出射面20cから出射される光の光量を均一化することができる。
なお、上記の説明では、導光板20Eは、5つの光路変更部(光路変更部23A~23E)を備える構成について説明したが、光路変更部の数は、特に限定されるものではなく、適宜変更してもよい。
図21の(a)は、他の変形例としての除電装置10Lの上面図であり、(b)は、更なる変形例としての除電装置10Mの上面図である。
図21の(a)に示すように、除電装置10Lは、実施形態1における導光板20に代えて導光板20Fを備えている。
導光板20Fは、光路変更部として光路変更部24A~24Gを備えている。光路変更部24A~24Gは、導光板20Fの反射面20Fbと、光路変更部24A~24Gの反射面とのなす角度が同一となっている。光路変更部24A~24Gは、導光板20Fの幅方向(Y軸方向)に延びて形成されている。光路変更部24A~24Gの高さは、同一となっている。導光板20Fでは、入射面20aからの距離が大きくなるにつれて、光路変更部の入射面と平行な方向(Y軸方向)の長さが長くなっている。すなわち、光路変更部24AのY軸方向の長さが最も短く、光路変更部24B、光路変更部24C、光路変更部24D、光路変更部24E、光路変更部24F、光路変更部24Gの順にY軸方向の長さが長くなっている。
上記の構成によれば、光源11からの光量が大きい光が到達する入射面20aに近い領域では光路変更部(例えば、光路変更部24A)のY軸方向の長さが短いため、光を反射する領域が小さい。その一方で、光源11からの光量が小さい光が到達する入射面20aから遠い領域では、光路変更部(光路変更部24G)のY軸方向の長さが長いため、光を反射する領域が大きい。その結果、導光板20Fの長さ方向(換言すれば、導光板20Fの内部を光が導光される方向)において、出射面20cから出射される光の光量のバラツキを抑えることができる。換言すれば、導光板20Fの長さ方向において、出射面20cから出射される光の光量を均一化することができる。
なお、上記の説明では、導光板20Fは、7つの光路変更部(光路変更部24A~24G)を備える構成について説明したが、光路変更部の数は、特に限定されるものではなく、適宜変更してもよい。
図21の(b)に示すように、除電装置10Mは、実施形態1における導光板20に代えて導光板20Gを備えている。
図21の(b)に示すように、導光板20Gの底面20bには、多数の光路変更部25が形成されている。
図22の(a)は、本変形例における光路変更部25の形状を示す斜視図であり、図22の(b)は、光路変更部25の変形例としての光路変更部25Aの形状を示す斜視図である。図22の(a)に示すように、光路変更部25は、円弧状の錐にて構成されており、平面である反射面25aを備えている。本変形例では、反射面25aと、底面20bとが接する辺が幅方向(すなわち、Y軸方向)となるように、光路変更部25が形成されている。これにより、入射面20aから入射した光は、反射面25aによって出射面20cに向かって反射される(換言すれば、+Z軸方向に向けて反射される)。
なお、底面20bに形成される光路変更部は、図22の(a)に示す形状に限られるものではなく、平面の反射面を有する形状であればどのような形状であってもよい。例えば、図22の(b)に示すように、底面20bに形成される光路変更部25Aは、反射面25Aaを備える三角柱形状であってもよい。なお、光路変更部を図22の(a)に示す形状にすることにより、光路変更部の両端部が平面となっていないので、光路変更部を射出成型して形成する際にダレが発生せず成形性が高いという利点がある。
図21の(b)に示すように、除電装置10Mでは、入射面20aからの距離が大きくなるにつれて底面20bに形成される光路変更部25の数が多くなっている(換言すれば、光路変更部25の密度が高くなっている)。
上記の構成によれば、光源11からの光量が大きい光が到達する入射面20aに近い領域では単位面積当たりの光を反射する面積が小さい一方で、光源11からの光量が小さい光が到達する入射面20aから遠い領域では単位面積当たりの光を反射する面積が大きい。その結果、導光板20Gの長さ方向(換言すれば、導光板20Gの内部を光が導光される方向)において、出射面20cから出射される光の光量のバラツキを抑えることができる。換言すれば、導光板20Gの長さ方向において、出射面20cから出射される光の光量を均一化することができる。
また、導光板20Gの底面20bと、光路変更部25の反射面25aとのなす角度は、35°~55°であることが好ましい。これにより、反射面25aによって反射された光の進行方向を出射面20cに対して垂直に近い角度とすることができる。その結果、除電装置10Mから照射される光が予期しない箇所に照射されることを防ぐことができる。
<変形例13>
図23の(a)~(c)は、導光板20の変形例としての導光板20H、導光板20I、および導光板20Jを示す図である。
図23の(a)~(c)は、導光板20の変形例としての導光板20H、導光板20I、および導光板20Jを示す図である。
図23の(a)に示すように、導光板20Hは、入射面20Ha側におけるZ軸方向の長さ(すなわち、底面20Hbと、出射面20Hcとの間の距離)が、他の領域におけるZ軸方向の長さに比べて高くなっている。上記の構成によれば、入射面20Ha側においてZ軸方向の長さが長くなっているので、光源11からの光を、入射面20Haを介して十分に入射させることができる。さらに、上記他の領域においては、Z軸方向の長さが短くなっていることにより、導光板20Iを薄型化することができる。なお、図23の(a)に示す導光板20Hでは、入射面20Ha側の端部において、出射面20Hc側が他の領域よりも高くなっていたがこれに限られない。本発明の一態様の導光板では、入射面20Ha側の端部において、底面20Hb側が他の領域よりも低くなっている構成であってもよい。さらに、本発明の一態様の導光板では、入射面20Ha側の端部において、出射面20Hc側が他の領域よりも高くなっているとともに、底面20Hb側が他の領域よりも低くなっている構成であってもよい。
また、本発明の一態様では、図23の(b)に示す導光板20Iのように、底面20Ibの全領域が反射部材となっており、底面20Ibが出射面20Icに対して傾斜している態様であってもよい。
さらに、本発明の一態様では、図23の(c)に示す導光板20Jのように、底面20Jbが出射面20Icに対して傾斜しており、底面20Jbに光路変更部21が形成されている態様であってもよい。
<変形例14>
図24は、本変形例における画像形成装置1Aの構成を示す図である。
図24は、本変形例における画像形成装置1Aの構成を示す図である。
画像形成装置における除電装置を設置する設置面に、除電装置を設置する際に、装置の構成上、実施形態1における除電装置10を、感光体ドラム2における光を照射させたい領域に照射できる位置に配置できない場合がある。
そこで、本変形例における画像形成装置1Aでは、図24に示すように、導光板20の出射面20cが設置面に対して所定の角度傾くように除電装置10を設置面に設置するための設置台60を備えている。これにより、除電装置10から出射した光を、感光体ドラム2における光を照射させたい領域に照射できるようにすることができる。
<変形例15>
図25の(a)は、本変形例における除電装置10Nの上面図であり、(b)は、除電装置10Nの側面図である。
図25の(a)は、本変形例における除電装置10Nの上面図であり、(b)は、除電装置10Nの側面図である。
図25の(a)および(b)に示すように、除電装置10Nは、実施形態1における導光板20に代えて導光板20Kを備えている。
導光板20Kでは、出射面20cの法線方向から見たときに、光路変更部21の反射面21aの法線と、光源11の光軸とがなす角度が所定の角度を有するように、光路変更部21が形成されている。
図26は、除電装置10Nからの光の照射方向を示す図である。図26に示すように、上記の構成を有することにより、実施形態1における除電装置10から光が出射される方向とは異なる方向へ光を照射することができる。これにより、除電装置10から出射した光を、感光体ドラム2における光を照射させたい領域に照射できるようにすることができる。
除電装置10Nでは、光路変更部21の反射面21aの法線と、光源11の光軸とがなす角度を適宜調節することにより、任意の方向へ光を照射することができる。
<効果>
図27は、実施形態1の除電装置10、変形例4の除電装置10C、変形例7の除電装置10F、および従来の除電装置について、出射面から光が照射される角度を示すグラフである。図27に示すグラフの横軸は、出射光の出射面の法線方向に対する角度であり、縦軸は、光軸の光強度を1とした場合の光の強度である。
図27は、実施形態1の除電装置10、変形例4の除電装置10C、変形例7の除電装置10F、および従来の除電装置について、出射面から光が照射される角度を示すグラフである。図27に示すグラフの横軸は、出射光の出射面の法線方向に対する角度であり、縦軸は、光軸の光強度を1とした場合の光の強度である。
図27に示すように、従来の除電装置では、広い角度において強度の高い光が照射される。これに対して、実施形態1の除電装置10、変形例4の除電装置10C、および変形例7の除電装置10Fでは、より狭い範囲の領域に光が照射される。
<変形例16>
図28は、除電装置10Pの側面図である。図28に示すように、除電装置10Pは、実施形態1における除電装置10の導光板20に代えて、導光板101と、光反射部102とを備えている。
図28は、除電装置10Pの側面図である。図28に示すように、除電装置10Pは、実施形態1における除電装置10の導光板20に代えて、導光板101と、光反射部102とを備えている。
導光板101は、ガラス(例えば、溶融石製、合成石英など)にて構成されている。導光板101は、光源11から入射した光を導光する。
光反射部102は、導光板101に重なるように配置されている。光反射部102は、導光板101を構成するガラスの屈折率よりも高い屈折率または同じ屈折率を有する樹脂にて構成されていることが望ましい。また、光反射部102の導光板101に接する面102aと反対側の面102bには、光路変更部103が形成されている。光路変更部103は、紫外線硬化、インクジェット印刷、インサート成形などにより形成することができる。
除電装置10Pでは、導光板101内を導光した光が導光板101と光反射部102との境界に達した場合、当該境界において全反射またはフレネル反射されない光は、光反射部102の内部に入射する。そして、光反射部102に入射した光は、光路変更部103によって反射されたのち、導光板101の内部に再度入射し、導光板101の出射面10aから出射される。
ここで、光源11から出射される光が波長の短い光(例えば、紫外光)である場合、導光板が樹脂にて構成されている場合は、樹脂が劣化してしまう。これに対して、除電装置10Pでは、樹脂で構成されているのは光反射部102のみであるため、光が光反射部102内を導光する距離を小さくすることができる。その結果、樹脂にて構成されている光反射部102の劣化を低減することができる。
<変形例17>
図29は、除電装置10Qの側面図である。図29に示すように、除電装置10Qは、変形例17における光反射部102に代えて、光路変更部104を備えている。
図29は、除電装置10Qの側面図である。図29に示すように、除電装置10Qは、変形例17における光反射部102に代えて、光路変更部104を備えている。
光路変更部104は、導光板101の出射面101aと対向する面101bにおいて、出射面101a側とは反対側方向に突出するように形成されている。光路変更部104は、導光板101を構成するガラスの屈折率よりも高い屈折率を有する樹脂にて構成されている。光路変更部104は、紫外線硬化、インクジェット印刷、インサート成形などにより形成することができる。
除電装置10Qでは、導光板101内を導光した光が導光板101と光路変更部104との境界に達した場合、光は、ガラスよりも高い屈折率を有する樹脂にて構成されている光路変更部104の内部に入射する。そして、光路変更部104に入射した光は、光路変更部104の反射面104aによって反射されたのち、導光板101の内部に再度入射し、導光板101の出射面101aから出射される。
上記の構成によれば、光路変更部104が導光板101の出射面101aと対向する面101bにおいて、出射面101a側とは反対側方向に突出するように形成することができるため、光路変更部104を簡易に形成することができる。
<変形例18>
上記の説明では、光照射装置を除電装置として使用する態様について説明してきたが、本発明の光照射装置は、除電装置以外の装置にも、光を所望の範囲に照射することが好ましい機器に適用することができる。光照射装置の他の使用例について、図30~32を参照しながら説明する。
上記の説明では、光照射装置を除電装置として使用する態様について説明してきたが、本発明の光照射装置は、除電装置以外の装置にも、光を所望の範囲に照射することが好ましい機器に適用することができる。光照射装置の他の使用例について、図30~32を参照しながら説明する。
図30は、本願発明の光照射装置を除菌装置に適用した例を示す図である。図30に示すように、除菌装置200は、除菌部として光照射装置201を備えている。なお、光照射装置201は、光源が出射する光の波長が異なっている点を除いて、実施形態1における除電装置10と同様である。
光照射装置201では、光源11が波長の短い光(具体的には、240~480nmの波長の光)を照射する。そのため、光照射装置201から出射される紫外光によって除菌することができる。実施形態1において説明したように、光照射装置201は、光源11の光軸とのなす角度が所定の角度以上の光の一部を、遮光部材30によって遮光することができる。これにより、光源11から出射され導光板20に入射する光における、光源11の光軸とのなす角度が所定の角度以上の光の割合を小さくすることができる。その結果、所望する範囲のみに光を照射することができ、除菌したい領域のみに紫外光を照射することができる。除菌装置200は、例えば、空気調和機、空気清浄機などの家庭用殺菌装置や、食品・農作物の殺菌装置などに適用することができる。
図31は、本願発明の光照射装置をスキャナ装置に適用した例を示す図である。スキャナ装置300は、用紙に記載された画像を読み取る読取部として光照射装置301を備えている。光照射装置301は、実施形態1における除電装置10と同様の構成である。スキャナ装置300では、光照射装置301を備えていることにより、所望する範囲のみに光を照射することができるので、所望の範囲の画像のみを読み取ることができる。
図32は、本願発明の光照射装置を掃除機に適用した例を示す図である。なお、図32では、掃除機400の吸引部402のみを図示している。掃除機400は、被掃除面を照明する照明部として光照射装置401を、塵埃を吸引する吸引部402に備えている。なお、吸引部402以外の部材については、公知のものを使用することができるので、説明を省略する。
従来、被掃除面上の塵埃を見つけやすくするために、掃除機の吸引部402に被掃除面に光を照射する照明部を備える掃除機が知られている。このような掃除機では、被掃除面上の塵埃をより見つけやすくするために、被掃除面に対する光の照射量を大きくすることが望まれている。
掃除機400では、照明部として光照射装置401を備えている。光照射装置401は、上述のように、所望する領域にのみ光を照射することができる。換言すれば、所望する領域に対する光の照射量を大きくすることができる。なお、光照射装置401が照射する光は、塵埃をより見つけやすくするために、白色光または緑色光であることが好ましい。
〔まとめ〕
本発明の一態様に係る光照射装置は、光源と、当該光源から出射され入射面を介して入射した光を導光し、導光した光を反射面で反射して前記入射面とは異なる出射面から出射する導光板と、を備える除電装置であって、前記光源から出射された光のうち、前記出射面の法線方向から見たときに、前記光源の光軸とのなす角度が所定以上の光の少なくとも一部を遮光する構造、および、前記角度が所定以上の光の進行方向を当該進行方向よりも前記光源の光軸に平行に近い方向に変換する構造の少なくともいずれか一方の構造を備える。
本発明の一態様に係る光照射装置は、光源と、当該光源から出射され入射面を介して入射した光を導光し、導光した光を反射面で反射して前記入射面とは異なる出射面から出射する導光板と、を備える除電装置であって、前記光源から出射された光のうち、前記出射面の法線方向から見たときに、前記光源の光軸とのなす角度が所定以上の光の少なくとも一部を遮光する構造、および、前記角度が所定以上の光の進行方向を当該進行方向よりも前記光源の光軸に平行に近い方向に変換する構造の少なくともいずれか一方の構造を備える。
上記の構成によれば、前記光源から出射された光のうち、前記出射面の法線方向から見たときに、前記光源の光軸とのなす角度が所定以上の光の少なくとも一部を遮光する構造、または、前記角度が所定以上の光の進行方向を当該進行方向よりも前記光源の光軸に平行に近い方向に変換する構造によって、導光板の内部を導光される光における、光源の光軸とのなす角度が所定の角度以上の光の割合を小さくすることができる。その結果、導光板から出射される光束の角度範囲を狭くすることができる。したがって、所望する範囲のみに光を照射することができる。換言すれば、所望しない領域への光の照射を抑制することができる。
また、本発明の一態様に係る光照射装置において、前記光源と前記入射面との間に、前記光源から出射された光が通過する開口を有する開口構造を備え、前記開口の内面のうち、少なくとも前記出射面の法線方向に平行な内面の光反射率が50%以下である構成であってもよい。
上記の構成によれば、光源から出射された光のうち、出射面の法線方向からみたときに、光源11の光軸とのなす角度が所定の角度以上の光の一部を開口の内面によって遮光することができる。これにより、光源から出射され導光板に入射する光における、光源の光軸とのなす角度が所定の角度以上の光の割合を小さくすることができる。その結果、導光板から出射される光束の角度範囲を狭くすることができる。
また、本発明の一態様に係る光照射装置において、前記光源は、光を外部へ出射する領域である出射窓を備えており、前記開口は、前記出射面の法線方向から見たときに、前記出射窓の幅よりも小さい幅を有する。
上記の構成によれば、光源から出射された光のうち光源の光軸とのなす角度がより小さい角度の光の割合が高い光束を導光板に入射させることができる。これにより、導光板から出射される光束の角度範囲をより狭くすることができる。
また、本発明の一態様に係る光照射装置において、前記光源は、光を外部へ出射する領域である出射窓を備えており、前記光源の光軸に沿った方向における、前記出射窓から前記開口の前記導光板側の端部までの距離は、前記開口の前記導光板側の開口幅の0.5倍以上であることが好ましい。
上記の構成によれば、光源から出射され導光板に入射する光における、光源の光軸とのなす角度が所定の角度以上の光の割合をさらに小さくすることができる。
また、本発明の一態様に係る光照射装置において、前記導光板を支持する筐体をさらに備え、前記開口構造は、前記筐体に設けられている構成であってもよい。
上記の構成によれば、部品点数を少なくすることができる。
また、本発明の一態様に係る光照射装置において、前記光源から出射された光の進行方向を、当該進行方向よりも前記光源の光軸に平行に近い方向に変換するレンズ構造を備える構成であってもよい。
上記の構成によれば、レンズ構造により、導光板の内部を導光される光における、光源の光軸とのなす角度が所定の角度以上の光の割合を小さくすることができる。
また、本発明の一態様に係る光照射装置において、前記レンズ構造は、前記光源と前記入射面との間に設けられているレンズであってもよい。
また、本発明の一態様に係る光照射装置において、前記光源は、前記レンズ構造と前記光を発光する発光素子とが一体となっている構成であってもよい。
上記の構成によれば、より少ない部材点数で、光源の光軸とのなす角度がより小さい角度の光の割合が高い光束を導光板に入射させることができる。
また、本発明の一態様に係る光照射装置において、前記レンズ構造は、前記導光板の前記入射面に形成されている構成であってもよい。
上記の構成によれば、より少ない部材点数で、光源の光軸とのなす角度がより小さい角度の光の割合が高い光束を導光板に入射させることができる。
また、本発明の一態様に係る光照射装置において、前記導光板は、前記出射面の法線方向から見たときに、前記入射面側の端部の幅が、前記入射面に近づくにつれて狭くなっている狭窄構造を有する構成であってもよい。
上記の構成によれば、光源から出射された光のうち、出射面の法線方向からみたときに、光源の光軸とのなす角度が所定の角度以上の光を、狭窄構造によって反射させることによって、当該光の進行方向を光源の光軸に対して平行に近い方向に変換することができる。その結果、導光板の内部を導光する光における、光源の光軸とのなす角度がより小さい角度の光の割合を高くすることができる。その結果、導光板から出射される光束の角度範囲を狭くすることができる。
また、本発明の一態様に係る光照射装置において、前記狭窄構造は、前記出射面の法線方向から見たときに直線であってもよい。
上記の構成によれば、狭窄構造が平面となるので、導光板を簡易に製造することができる。
また、本発明の一態様に係る光照射装置において、前記狭窄構造は、前記出射面の法線方向から見たときに、前記導光板の外部方向に凸形状の曲線であってもよい。
上記の構成によれば、光源から出射された光のうち、出射面の法線方向からみたときに、光源の光軸とのなす角度が所定の角度以上の光の進行方向を光源の光軸に対して平行により近い方向に変換することができる。
また、本発明の一態様に係る光照射装置において、前記導光板の、前記入射面および前記出射面に垂直な側面の前記入射面側の端部に、光反射率が50%以下の光吸収部材が設置されている構成であってもよい。
上記の構成によれば、光源から出射された光のうち、出射面の法線方向からみたときに光源11の光軸とのなす角度が所定の角度以上の光が導光板の側面に到達したときに、50%よりも大きい割合の光を光吸収部材によって吸収することができる。その結果、導光板の内部を導光する光における、光源の光軸とのなす角度がより小さい角度の光の割合を高くすることができる。したがって、導光板から出射される光束の角度範囲を狭くすることができる。
また、本発明の一態様に係る光照射装置において、前記導光板の、前記入射面および前記出射面に垂直な側面の前記入射面側の端部は、微細な凹凸形状となっており、前記導光板を支持し、光吸収構造を有する筐体をさらに備え、前記筐体は、前記凹凸形状から出射した光を遮光する構成であってもよい。
上記の構成によれば、光源から出射された光のうち、出射面の法線方向からみたときに、光源の光軸とのなす角度が所定の角度以上の光の一部を、凹凸形状を介して導光板の外部へ出射させることができる。そして、導光板の外部へ出射した光を筐体によって吸収させることができるので、当該光が迷光になることを防止することができる。
また、上記凹凸形状は、導光板に形成されているため、光を導光板の外部に出射させるために他の部材を必要としない。その結果、除電装置を簡易に作製することができる。
また、本発明の一態様に係る光照射装置において、前記導光板は、前記入射面に対して垂直であり、前記入射面から入射された光を前記反射面によって反射する複数の反射構造部を備える第1面を備え、前記入射面からの距離に応じて、前記第1面における単位面積当たりの前記反射面の面積が異なっている構成であることが好ましい、
上記の構成によれば、導光板の内部を光が導光される方向において、出射面から出射される光の光量のバラツキを抑えることができる。換言すれば、導光板の長さ方向において、出射面から出射される光の光量を均一化することができる。
上記の構成によれば、導光板の内部を光が導光される方向において、出射面から出射される光の光量のバラツキを抑えることができる。換言すれば、導光板の長さ方向において、出射面から出射される光の光量を均一化することができる。
また、本発明の一態様に係る光照射装置において、前記出射面の法線方向から見たときに、前記反射面の法線と、前記光源の光軸とがなす角度が所定の角度を有する構成であってもよい。
上記の構成によれば、反射面の法線と、光源の光軸とがなす角度を適宜調節することにより、任意の方向へ光を照射することができる。
本発明の一態様に係る画像形成装置は、除電装置としての、上記のいずれかに記載の光照射装置と、前記除電装置によって除電が行われる感光体ドラムと、を備える。
本発明の一態様に係る除菌装置は、菌を除去する除菌部として、上記のいずれかに記載の光照射装置を備える。
本発明の一態様に係るスキャナ装置は、用紙に記載された画像を読み取る読取部として、上記のいずれかに記載の光照射装置を備える。
本発明の一態様に係る掃除機は、掃除領域を照明する照明部として、上記のいずれかに記載の光照射装置を備える。
本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
1、1A 画像形成装置
2 感光体ドラム
10、10A~10N 除電装置(光照射装置)
11、11A 光源
11a LEDチップ(発光素子)
11b 出射窓
13、13A~13c 筐体
13Ac、13Bca、30C、40C 開口
20、20A~20H、20I~20K 導光板
20a、20Aa、20Ha 入射面
20b、20Hb、20Ib、20Jb 底面(第1面)
20c、20Hc、20Ic 出射面
20Eb、20Fb、21a、25a、25Aa 反射面
21、23A、23Ea~23Ee、24A~24G、25、25A 光路変更部(反射構造部)
30、40 遮光部材
50 レンズ
51、52 光吸収部材
200 除菌装置
201、301、401 光照射装置
300 スキャナ装置
400 掃除機
2 感光体ドラム
10、10A~10N 除電装置(光照射装置)
11、11A 光源
11a LEDチップ(発光素子)
11b 出射窓
13、13A~13c 筐体
13Ac、13Bca、30C、40C 開口
20、20A~20H、20I~20K 導光板
20a、20Aa、20Ha 入射面
20b、20Hb、20Ib、20Jb 底面(第1面)
20c、20Hc、20Ic 出射面
20Eb、20Fb、21a、25a、25Aa 反射面
21、23A、23Ea~23Ee、24A~24G、25、25A 光路変更部(反射構造部)
30、40 遮光部材
50 レンズ
51、52 光吸収部材
200 除菌装置
201、301、401 光照射装置
300 スキャナ装置
400 掃除機
Claims (20)
- 光源と、当該光源から出射され入射面を介して入射した光を導光し、導光した光を反射面で反射して前記入射面とは異なる出射面から出射する導光板と、を備える光照射装置であって、
前記光源から出射された光のうち、前記出射面の法線方向から見たときに、前記光源の光軸とのなす角度が所定以上の光の少なくとも一部を遮光する構造、および、前記角度が所定以上の光の進行方向を当該進行方向よりも前記光源の光軸に平行に近い方向に変換する構造の少なくともいずれか一方の構造を備える、光照射装置。 - 前記光源と前記入射面との間に、前記光源から出射された光が通過する開口を有する開口構造を備え、
前記開口の内面のうち、少なくとも前記出射面の法線方向に平行な内面の光反射率が50%以下である、請求項1に記載の光照射装置。 - 前記光源は、光を外部へ出射する領域である出射窓を備えており、
前記開口は、前記出射面の法線方向から見たときに、前記出射窓の幅よりも小さい幅を有する、請求項2に記載の光照射装置。 - 前記光源は、光を外部へ出射する領域である出射窓を備えており、
前記光源の光軸に沿った方向における、前記出射窓から前記開口の前記導光板側の端部までの距離は、前記開口の前記導光板側の開口幅の0.5倍以上である、請求項2または3に記載の光照射装置。 - 前記導光板を支持する筐体をさらに備え、
前記開口構造は、前記筐体に設けられている、請求項2~4のいずれか1項に記載の光照射装置。 - 前記光源から出射された光の進行方向を、当該進行方向よりも前記光源の光軸に平行に近い方向に変換するレンズ構造を備える、請求項1~5のいずれか1項に記載の光照射装置。
- 前記レンズ構造は、前記光源と前記入射面との間に設けられているレンズである、請求項6に記載の光照射装置。
- 前記光源は、前記レンズ構造と前記光を発光する発光素子とが一体となっている、請求項6に記載の光照射装置。
- 前記レンズ構造は、前記導光板の前記入射面に形成されている、請求項6に記載の光照射装置。
- 前記導光板は、前記出射面の法線方向から見たときに、前記入射面側の端部の幅が、前記入射面に近づくにつれて狭くなっている狭窄構造を有する、請求項1~9のいずれか1項に記載の光照射装置。
- 前記狭窄構造は、前記出射面の法線方向から見たときに直線である、請求項10に記載の光照射装置。
- 前記狭窄構造は、前記出射面の法線方向から見たときに、前記導光板の外部方向に凸形状の曲線である、請求項10に記載の光照射装置。
- 前記導光板の、前記入射面および前記出射面に垂直な側面の前記入射面側の端部に、光反射率が50%以下の光吸収部材が設置されている、請求項1~12のいずれか1項に記載の光照射装置。
- 前記導光板の、前記入射面および前記出射面に垂直な側面の前記入射面側の端部は、微細な凹凸形状となっており、
前記導光板を支持し、光吸収構造を有する筐体をさらに備え、
前記筐体は、前記凹凸形状から出射した光を遮光する、請求項1~12のいずれか1項に記載の光照射装置。 - 前記導光板は、前記入射面に対して垂直であり、前記入射面から入射された光を前記反射面によって反射する複数の反射構造部を備える第1面を備え、
前記入射面からの距離に応じて、前記第1面における単位面積当たりの前記反射面の面積が異なっている、請求項1~14のいずれか1項に記載の光照射装置。 - 前記出射面の法線方向から見たときに、前記反射面の法線と、前記光源の光軸とがなす角度が所定の角度を有する、請求項1~15のいずれか1項に記載の光照射装置。
- 除電装置としての、請求項1~16のいずれか1項に記載の光照射装置と、
前記除電装置によって除電が行われる感光体ドラムと、を備える画像形成装置。 - 菌を除去する除菌部として、請求項1~16のいずれか1項に記載の光照射装置を備える、除菌装置。
- 用紙に記載された画像を読み取る読取部として、請求項1~16のいずれか1項に記載の光照射装置を備える、スキャナ装置。
- 掃除領域を照明する照明部として、請求項1~16のいずれか1項に記載の光照射装置を備える、掃除機。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018194430 | 2018-10-15 | ||
JP2018-194430 | 2018-10-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020080230A1 true WO2020080230A1 (ja) | 2020-04-23 |
Family
ID=70284674
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/039873 WO2020080230A1 (ja) | 2018-10-15 | 2019-10-09 | 光照射装置、画像形成装置、除菌装置、スキャナ装置、および掃除機 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2020080230A1 (ja) |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05173463A (ja) * | 1991-12-26 | 1993-07-13 | Konica Corp | 複写機等の画像域外除電装置 |
JP2002251046A (ja) * | 2001-02-23 | 2002-09-06 | Fuji Xerox Co Ltd | 画像形成装置 |
JP2009169200A (ja) * | 2008-01-18 | 2009-07-30 | Fuji Xerox Co Ltd | 光照射体,像形成構造体及び画像形成装置 |
JP2009229799A (ja) * | 2008-03-24 | 2009-10-08 | Fuji Xerox Co Ltd | 光照射体,像形成構造体及び画像形成装置 |
JP2010008725A (ja) * | 2008-06-27 | 2010-01-14 | Brother Ind Ltd | 除電装置およびプロセスカートリッジ |
US20100183333A1 (en) * | 2009-01-16 | 2010-07-22 | Samsung Electronics Co., Ltd. | Light guide and charge eliminating unit, image forming apparatus and image reading apparatus having the same |
JP2011112812A (ja) * | 2009-11-26 | 2011-06-09 | Oki Data Corp | 除電装置、現像装置及び画像形成装置 |
JP2016099556A (ja) * | 2014-11-25 | 2016-05-30 | 京セラドキュメントソリューションズ株式会社 | 画像形成装置 |
JP2016107133A (ja) * | 2014-07-23 | 2016-06-20 | パナソニックIpマネジメント株式会社 | 電気掃除機およびその吸込具 |
JP2017181878A (ja) * | 2016-03-31 | 2017-10-05 | 京セラドキュメントソリューションズ株式会社 | 除電装置およびそれを備えた画像形成装置 |
JP2018042581A (ja) * | 2016-09-12 | 2018-03-22 | パナソニックIpマネジメント株式会社 | 洗濯機用照明装置及びこれを備えた洗濯機 |
-
2019
- 2019-10-09 WO PCT/JP2019/039873 patent/WO2020080230A1/ja active Application Filing
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05173463A (ja) * | 1991-12-26 | 1993-07-13 | Konica Corp | 複写機等の画像域外除電装置 |
JP2002251046A (ja) * | 2001-02-23 | 2002-09-06 | Fuji Xerox Co Ltd | 画像形成装置 |
JP2009169200A (ja) * | 2008-01-18 | 2009-07-30 | Fuji Xerox Co Ltd | 光照射体,像形成構造体及び画像形成装置 |
JP2009229799A (ja) * | 2008-03-24 | 2009-10-08 | Fuji Xerox Co Ltd | 光照射体,像形成構造体及び画像形成装置 |
JP2010008725A (ja) * | 2008-06-27 | 2010-01-14 | Brother Ind Ltd | 除電装置およびプロセスカートリッジ |
US20100183333A1 (en) * | 2009-01-16 | 2010-07-22 | Samsung Electronics Co., Ltd. | Light guide and charge eliminating unit, image forming apparatus and image reading apparatus having the same |
JP2011112812A (ja) * | 2009-11-26 | 2011-06-09 | Oki Data Corp | 除電装置、現像装置及び画像形成装置 |
JP2016107133A (ja) * | 2014-07-23 | 2016-06-20 | パナソニックIpマネジメント株式会社 | 電気掃除機およびその吸込具 |
JP2016099556A (ja) * | 2014-11-25 | 2016-05-30 | 京セラドキュメントソリューションズ株式会社 | 画像形成装置 |
JP2017181878A (ja) * | 2016-03-31 | 2017-10-05 | 京セラドキュメントソリューションズ株式会社 | 除電装置およびそれを備えた画像形成装置 |
JP2018042581A (ja) * | 2016-09-12 | 2018-03-22 | パナソニックIpマネジメント株式会社 | 洗濯機用照明装置及びこれを備えた洗濯機 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4170818B2 (ja) | 照明装置・原稿読み取り装置・画像形成装置 | |
JP6211019B2 (ja) | レンズミラーアレイ、光学ユニット及び画像形成装置 | |
JP5580274B2 (ja) | 結像素子アレイ及び画像形成装置 | |
JP4592791B2 (ja) | 光学走査装置及び画像形成装置 | |
JP2013201746A (ja) | 光照射光学系、画像読取装置及び画像形成装置 | |
US8169671B2 (en) | Lighting unit, image reading apparatus and image forming apparatus using the same | |
JP6355446B2 (ja) | 画像読取装置、及びそれを備えた画像形成装置 | |
JP2005102112A (ja) | 照明装置、画像読取装置及び画像形成装置 | |
US6847474B2 (en) | Optical scanning device, scanning optical system, scanning imaging optical component, optical scanning method, ghost image preventing method and image forming apparatus | |
US20130314797A1 (en) | Image device array and image forming apparatus | |
JP2016225888A (ja) | 照明装置、画像読取装置および画像形成装置 | |
WO2020080230A1 (ja) | 光照射装置、画像形成装置、除菌装置、スキャナ装置、および掃除機 | |
JP6338084B2 (ja) | 光照射光学系、画像読取装置、画像形成装置 | |
US5521681A (en) | Image forming apparatus | |
JP7060076B2 (ja) | 除電装置および画像形成装置 | |
JP4307869B2 (ja) | 光書き込み装置及びこれを備えた画像形成装置 | |
JP3693929B2 (ja) | 光走査装置 | |
KR100644686B1 (ko) | 광주사기 및 이를 구비한 전자사진방식 화상형성장치 | |
JP2527328B2 (ja) | 原稿走査用光学装置 | |
JP2019200295A (ja) | 光走査装置および画像形成装置 | |
JP5910924B2 (ja) | 照明装置、画像読取装置、および画像形成装置 | |
JP4841965B2 (ja) | 画像形成装置 | |
JP4402962B2 (ja) | 照明装置、画像読取装置及び画像形成装置 | |
JPH06148549A (ja) | レーザビーム走査光学系 | |
JP3862972B2 (ja) | 画像形成装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19872625 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19872625 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |