WO2020080101A1 - 映像処理装置、映像処理方法、及び映像処理プログラム - Google Patents

映像処理装置、映像処理方法、及び映像処理プログラム Download PDF

Info

Publication number
WO2020080101A1
WO2020080101A1 PCT/JP2019/038873 JP2019038873W WO2020080101A1 WO 2020080101 A1 WO2020080101 A1 WO 2020080101A1 JP 2019038873 W JP2019038873 W JP 2019038873W WO 2020080101 A1 WO2020080101 A1 WO 2020080101A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
video
distortion
target object
processing
Prior art date
Application number
PCT/JP2019/038873
Other languages
English (en)
French (fr)
Inventor
拓宏 水野
Original Assignee
株式会社アルファコード
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アルファコード filed Critical 株式会社アルファコード
Publication of WO2020080101A1 publication Critical patent/WO2020080101A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T3/00Geometric image transformations in the plane of the image
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/387Composing, repositioning or otherwise geometrically modifying originals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast

Definitions

  • the present invention relates to a technique for image processing a 360 ° image.
  • FIG. 12 is a diagram showing a conventional configuration of the VR video processing system 100.
  • the VR camera 3 shoots a three-dimensional real space in the direction of 360 ° and transmits it to the video processing device 1 for the purpose of video distribution to a third party.
  • the video input unit 11 of the video processing device 1 inputs the 360 ° video from the VR camera 3 and stores it in the original video storage unit 12 in association with the file name of the video.
  • the video output unit 19 of the video processing device 1 reads the 360 ° video that received the video request from the original video storage unit 12 and outputs it as a VR video.
  • the 360 ° image is an image obtained by projecting the three-dimensional real space in the 360 ° direction on the screen of the two-dimensional plane, and the image shape is distorted in the image region vertically separated from the region on the center line in the horizontal direction. Therefore, the image correction unit 18 corrects the distortion of the image shape in the 360 ° image to a shape without distortion (distortion correction).
  • the VR goggles 5 receive the VR video corresponding to the video request from the video processing device 1, and display the video of the part corresponding to the direction and the inclination of the VR goggles 5 on the screen.
  • a part of the 360 ° image is displayed in a peeping state. Since distortion correction is applied to the 360 ° image, the VR goggles 5 display an image without distortion.
  • the viewer of the VR goggles 5 can correctly see the image in the direction and direction in which he or she is facing in the 360 ° direction without distortion. For example, if you turn to the right, you can see the virtual landscape in the right direction, and if you turn to the bottom, you can see the virtual landscape in the downward direction from the perspective of the travel destination, and you can experience the mood of travel while staying at home.
  • the 360 ° image captures every corner of the three-dimensional real space in the 360 ° direction, so of course, personal information is also included.
  • the provider of the VR video performs the mosaic processing on the personal information and correctly displays the mosaic display on the VR goggles 5. I expect that.
  • the computer cannot identify the personal information from the image. For example, even if the personal information is a “face”, the faces displayed on the upper and lower sides in the image are displayed in a stretched state, and thus the face may deviate from the standard shape of the “face”. , The computer cannot recognize the face in that state as a "face”.
  • a first object of the present invention is to accurately perform mosaic processing on an object to be mosaic-processed in an image of 360 ° video, and to generate a VR video accurately and without distortion.
  • the second purpose is to perform mosaic processing by using the above method.
  • the image processing device of the present invention includes an image dividing unit that divides an original image that is a 360 ° image, an image correcting unit that corrects distortion of the image shape in the divided image to a shape without distortion, and a divided image after distortion correction.
  • An image processing unit that calculates a corresponding position in the original image corresponding to the position of the target object detected by using, and performs image processing on the distorted target object in the original image formed at the corresponding position. And are provided.
  • the image processing unit distorts the mosaic processing object and attaches it to the distorted target object.
  • the image processing unit calculates a corresponding position in the original image by converting a position of a point representing the shape of the target object into a position in an image coordinate system before distortion correction. It is characterized by
  • the image correction unit designates the type of the target object and the number of points representing the shape of the target object to the object detection device, and the image processing unit responds to the designated number. It is characterized by receiving the position information of a certain number of points.
  • the image dividing unit divides the original image so that adjacent divided images partially overlap each other.
  • the above-mentioned video processing device is characterized by further comprising a video output unit for outputting the 360 ° video subjected to the image processing as a VR (Virtual Reality) video.
  • a video output unit for outputting the 360 ° video subjected to the image processing as a VR (Virtual Reality) video.
  • a video processing method is a video processing method performed by a video processing device, comprising the steps of dividing an original image that is a 360 ° video, and correcting distortion of the image shape in the divided image to a shape without distortion.
  • the corresponding position in the original image corresponding to the position of the target object detected using the divided image after distortion correction is calculated, and the target object having distortion in the original image formed at the corresponding position is calculated.
  • a step of performing image processing is a video processing method performed by a video processing device, comprising the steps of dividing an original image that is a 360 ° video, and correcting distortion of the image shape in the divided image to a shape without distortion.
  • the video processing program of the present invention is characterized by causing a computer to function as the above video processing device.
  • mosaic processing it is possible to accurately perform mosaic processing on a target object to be mosaic-processed in a 360 ° video image.
  • mosaic processing can be performed on a VR image accurately and without distortion.
  • the present invention has an object to detect a target object of mosaic processing from a distorted 360 ° video image and apply a mosaic.
  • the image processing device 1 divides an original image that is a 360 ° image, corrects the distortion of the image shape in the divided image to a shape without distortion, and uses the divided image after distortion correction.
  • the corresponding position in the original image corresponding to the detected position of the target object is calculated, and the distorted target object in the original image formed at the corresponding position is subjected to image processing (mosaic processing).
  • the present invention has an object to distort and mosaic the mosaic processing object so that it is correctly displayed when displayed on the VR goggles.
  • the video processing device 1 distorts the mosaic processing object and attaches it to the distorted target object.
  • FIG. 1 is a diagram showing the overall configuration of a VR video processing system 100 according to this embodiment.
  • the VR video processing system 100 includes a video processing device 1, an object detection device 2, a VR camera 3, a VR video editing terminal 4, and a VR goggles 5.
  • the video processing device 1 is arranged in the cloud of the Internet together with the object detection device 2, and is connected to the object detection device 2, the VR camera 3, the VR video editing terminal 4, and the VR goggles 5 via a communication network. Physically and electrically connected so that they can communicate with each other.
  • the video processing device 1 includes a video input unit 11, an original video storage unit 12, a video editing request reception unit 13, an image division unit 14, an image correction unit 15, and an image processing unit 16.
  • the image processing video storage unit 17, the video correction unit 18, and the video output unit 19 are provided.
  • the video input unit 11 has a function of inputting a 360 ° video transmitted from the VR camera 3.
  • the 360 ° image is an image obtained by photographing a three-dimensional real space (omnidirectional and omnidirectional real space of the VR camera 3) in the 360 ° direction centering on the body of the VR camera 3.
  • the 360 ° image is, for example, a moving image taken while the VR camera 3 is moved or fixed, a still image that is temporally continuous in the moving image, or a single still image that is not continuous.
  • the original image storage unit 12 has a function of storing the 360 ° image input by the image input unit 11 as the original image in association with the file name of the 360 ° image so that the image can be read out.
  • the file name of the 360 ° image is an example of an identifier for identifying the 360 ° image (hereinafter, also referred to as an image ID).
  • the original image storage unit 12 for example, the shooting time of the 360 ° image, the input time of the 360 ° image, the summary of the 360 ° image, the title of the 360 ° image, 360 ° Sequential numbers assigned to each video may be further associated and managed in the original video management table.
  • the video editing request receiving unit 13 provides a video editing request receiving screen used for editing a 360 ° video in response to access from the VR video editing terminal 4, and the video editing request input on the video editing request receiving screen is provided. It has a function to accept.
  • the operator of the VR video editing terminal 4 is assumed to be the same as the operator of the VR camera 3, and corresponds to the provider of the VR video.
  • the video ID of the mosaic processing target In the screen, the video ID of the mosaic processing target, the type of personal information (hereinafter, target object) to be subjected to the mosaic processing, and the number of points (hereinafter, shape points) representing the shape of the target object are designated, A video editing request including those conditions is transmitted to the video processing device 1.
  • the type of target object is, for example, the face of a person, the number of a car, or a nameplate.
  • the video editing request receiving unit 13 reads out the 360 ° video corresponding to the video ID specified in the video editing request from the original video storage unit 12, and sends the 360 ° video to the image dividing unit 14 and the image processing unit 16.
  • a function is provided for transmitting the respective types of the target object designated by the video editing request and the designated number of shape points to the image correction unit 15 via the image division unit 14 while transmitting each.
  • the image dividing unit 14 has a function of dividing an image of a 360 ° image (hereinafter, also referred to as an original image) received from the image edit request receiving unit 13 into a plurality of images (hereinafter, divided images).
  • the image of the 360 ° video is a moving image
  • the image dividing unit 14 divides each of the plurality of still images forming the moving image.
  • the image dividing unit 14 has a function of dividing the image of the 360 ° image received from the image edit request receiving unit 13 so that adjacent divided images partially overlap each other.
  • the image of the 360 ° image is an image obtained by projecting the three-dimensional real space in the 360 ° direction on the screen of the two-dimensional plane, it is an image distant from the area on the horizontal center line of the original image in the upper and lower vertical directions.
  • the image shape of the region is distorted, and the image shape is distorted at positions corresponding to the divided images as well.
  • the image correction unit 15 has a function of correcting the distortion of the image shape in the plurality of divided images to a shape without distortion (distortion correction). For example, since the image coordinate system in the divided image is polar coordinates, the image correction unit 15 converts the distortion of the image shape in the divided image into a shape without distortion by converting the polar coordinates to the orthogonal coordinates.
  • the image correction unit 15 transmits the plurality of divided images after the distortion correction to the object detection device 2, and also determines the type of the target object and the designated number of shape points received from the video editing request reception unit 13 as the object detection conditions.
  • the object detection device 2 is provided with a function of transmitting an object detection request including
  • the image processing unit 16 calculates the corresponding position in the original image of the 360 ° image corresponding to the position of the target object detected by the object detection device 2 using the plurality of divided images after distortion correction, and the corresponding position. It has a function of performing image processing on a distorted target object in the original image formed by the.
  • the image processing referred to here is, for example, image processing that makes the target object irreversibly difficult to see in pixel units, processing that adds a mosaic processing object to the target object, and the like.
  • the mosaic processing object is, for example, a black line over both eyes, an image over the face, or the like.
  • the image processing unit 16 converts the position of the shape point of the target object detected by the object detection device 2 using the divided image after distortion correction into the position in the image coordinate system of the original image before distortion correction ( Corresponding positions in the original image are calculated by converting the orthogonal coordinates to polar coordinates. Further, the image processing unit 16 generates a mosaic processing object in a Cartesian coordinate system, distorts the mosaic processing object by converting the image coordinate system from Cartesian coordinates to polar coordinates, and there is distortion in the original image. Assign to the target object.
  • the image-processed video storage unit 17 has a function of readablely storing a 360 ° image obtained by performing image processing (mosaic processing) on a target object in association with the file name of the 360 ° image.
  • the image-processed video storage unit 17 uses the file name of the 360 ° video as a search key to acquire the title of the 360 ° video from the original video management table of the video edit request reception unit 13 and uses it as an image-processed video management table. You may manage it.
  • the video correction unit 18 determines the image shape of the 360 ° video after the image processing (mosaic processing) corresponding to the video request from the VR goggles 5. It is equipped with a function to correct distortion (shape correction) into a shape without distortion. For example, since the image coordinate system in the original image of the 360 ° image is polar coordinates, the image correction unit 18 converts the distortion of the image shape in the 360 ° image into a distortion-free shape by converting the polar coordinates to the orthogonal coordinates. Convert.
  • the video output unit 19 When the video output unit 19 receives a video request from the VR goggles 5, the video output unit 19 reads the 360 ° video after the image processing (mosaic processing) corresponding to the video request from the image-processed video storage unit 17, and reads the 360 ° video within the 360 ° video.
  • An image correction request is sent to the image correction unit 18 in order to correct the distortion of the image shape to a shape without distortion, and the 360 ° image after the image correction is output as a VR (Virtual Reality) image to the VR goggles 5 that requested the image. It has a function to send it.
  • the video processing device 1 can be realized by a computer including a CPU, a memory, a hard disk, a communication interface, a keyboard, a mouse, and the like. It is also possible to create a video processing program for causing a computer to function as the video processing device 1, and it is also possible to create a storage medium for the video processing program.
  • the object detection device 2 responds to an object detection request from the video processing device 1 that is the object detection request source, and sends back object detection result data that matches the object detection condition included in the object detection request, a machine learning device, deep learning A device or an AI (Artificial Intelligence) device.
  • This object detection device 2 already exists on the Internet, and an existing AI device or the like can be used.
  • the object detection device 2 when the object detection device 2 receives a plurality of divided images after distortion correction and object detection conditions (type of target object, designated number of shape points) from the video processing device 1, While detecting the target object that matches the type from the divided images, the position of the shape point of the detected target object, the size of the target object, etc. are also detected, and the number of shape points corresponding to the specified number of specified shape points is detected.
  • the position information, the size of the target object, and the like are associated with the type of the target object to be detected and returned.
  • the VR camera 3 is a camera which is also called a 360 ° camera. While being fixed to a moving body such as a photographer or a vehicle body, the VR camera 3 moves along with the movement of the moving body while the VR camera 3 is rotated around the main body of the VR camera 3 in a 360 ° direction. The three-dimensional real space is captured, and a 360 ° image captured according to a transmission instruction from the photographer is transmitted (uploaded) to the image processing device 1. At this time, the image processing device 1 receives one or more 360 ° images transmitted from one or more VR cameras 3. As the VR camera 3, an existing VR camera can be used.
  • the VR video editing terminal 4 is a computer that can execute a web browser and a video editing request application on an OS (Operating System), and displays a video editing request acceptance screen provided by the video editing request acceptance unit 13 of the video processing device 1.
  • OS Operating System
  • a general-purpose computer can be used as the VR video editing terminal 4.
  • the VR goggles 5 transmit a video request for requesting a VR video associated with a video ID designated by the viewer to the video processing device 1, and the VR video returned from the video processing device 1 in response to the video request. It has a function of receiving and displaying an image of a portion corresponding to the direction and inclination of the VR goggles 5 on the screen. Since the distortion correction is performed on the 360 ° image after the image processing (mosaic processing) by the image correction unit 18 of the image processing device 1, the VR goggles 5 display an image without distortion.
  • VR goggles 5 existing VR goggles such as a dedicated VR goggles having a screen (monitor) integrated therein, a VR goggles having a smartphone terminal inserted in a goggle housing, and the like can be used.
  • a computer web browser may be used instead of the VR goggles 5.
  • FIG. 2 is a diagram showing a processing flow of the video processing operation.
  • Step S101 First, the video input unit 11 of the video processing device 1 inputs the 360 ° video uploaded from the VR camera 3, and stores the 360 ° video in the original video storage unit 12 in association with the video ID of the 360 ° video. .
  • the 360 ° image is an image obtained by photographing a three-dimensional real space in the 360 ° direction centering on the body of the VR camera 3.
  • Step S102; Next, the video editing request acceptance unit 13 provides a video editing request acceptance screen in response to the access from the VR video editing terminal 4, and accepts the video editing request input on the video editing request acceptance screen.
  • a plurality of video IDs are displayed in a selectable manner on the video editing request reception screen, and the operator of the VR video editing terminal 4 selects the video ID to be subjected to mosaic processing and the mosaic processing from among them.
  • the type of the target object to be performed (“face” in this example) and the number of shape points of the target object (“6” in this example) are designated.
  • a video editing request including those conditions is transmitted to the video processing device 1.
  • the video editing request receiving unit 13 After receiving the video editing request, the video editing request receiving unit 13 reads out the 360 ° video corresponding to the specified video ID from the original video storage unit 12 and transmits it to the image dividing unit 14 and the image processing unit 16, respectively. , The target object type (“face”) and the designated number of shape points (“6”) are transmitted to the image correction unit 15 via the image division unit 14.
  • the image of the 360 ° image is an image of the polar coordinate system in which the three-dimensional real space in the 360 ° direction is projected on the screen of the two-dimensional plane.
  • the image shape is distorted.
  • An example of a 360 ° video image is shown in FIG. It can be seen that there is distortion on the upper and lower sides of the image.
  • the person A at the lower left corner and the person B at the lower right corner are the same person, but since the image coordinate system is polar coordinates, the person image near the pole is displayed in a horizontally stretched state at the screen edge of the two-dimensional plane.
  • Step S103 the image dividing unit 14 divides the image (original image) of the 360 ° image transmitted from the image edit request receiving unit 13 into n ⁇ m (n, m; natural number). In this example, as shown in FIG. 4, it is divided into four in the horizontal direction and five in the vertical direction. As a result, a divided image having a size smaller than the original image is formed.
  • step S103 it is difficult to perform distortion correction (conversion from polar coordinates to Cartesian coordinates) of the spherical 360 ° video image as it is at once by the image correction unit 15 in the subsequent stage. It is divided into various areas.
  • Step S104 the image correction unit 15 performs a process of converting the image coordinate system of the divided image from polar coordinates to rectangular coordinates by using an existing mathematical expression that performs an inverse transformation f ′ of the polar coordinate transformation f for each of the plurality of divided images. To do. As a result, the distortion of the image shape in the divided image is eliminated, and the divided image having no distortion in the image shape is formed.
  • each divided image in the first column shown in FIG. 4 becomes a divided image as shown in FIG.
  • the fan-shaped black areas shown at the four corners represent a state in which the areas that were not in the divided image before the conversion processing have become apparent by the conversion processing.
  • the distortion of the image shape is corrected to a distortion-free state so that the object detection device 2 can detect the target object.
  • Step S105 Next, the image correction unit 15 transmits the plurality of divided images after distortion correction to the object detection device 2, and at the same time, the object type (“face”) and the designated number of shape points (“6”) are set as the object. An object detection request included as a detection condition is transmitted to the object detection device 2.
  • Step S108 the image processing unit 16 receives the position coordinates of the shape points according to the specified number of object detection conditions from the object detection device 2, and uses the existing mathematical formula for polar coordinate conversion f for the position coordinates of all the shape points. Then, the process of converting from rectangular coordinates to polar coordinates is performed. Since this conversion process corresponds to the inverse conversion process of step S104, as shown in FIG. 7, the corresponding position coordinates ⁇ P 1 '(0, 6) in the image coordinate system of the divided image before distortion correction or the original image are corrected. , P 2 ′ (0,22), P 3 ′ (13,26), P 4 ′ (14,21), P 5 ′ (20,11), P 6 ′ (9,7) ⁇ are calculated. .
  • Step S109 the image processing unit 16 generates an image of a standard rectangular mosaic processing object and converts the image coordinate system of the image from rectangular coordinates to polar coordinates using an existing mathematical expression that performs polar coordinate conversion f. Distortion is generated by performing the processing described above, and the distortion is added on the position coordinates of the “6” shape points for which the polar coordinate conversion f was performed in step S108. After that, the image processing unit 16 notifies the video editing request reception unit 13 that the mosaic processing has been completed, and the video editing request reception unit 13 returns a video editing end response to the VR video editing terminal 4.
  • a rectangular mosaic image M is subjected to polar coordinate conversion f to generate a divergent quarter arc-shaped mosaic image M ′, and the position coordinates where the polar coordinate conversion f was performed. It is superposed on ⁇ P 1 ′, P 2 ′, P 3 ′, P 4 ′, P 5 ′, P 6 ′ ⁇ .
  • the image of the mosaic processing object having a distorted shape is superimposed on the “face” of the distorted target object.
  • the image processing unit 16 may use, as the mosaic processing object, for example, a line or a point consisting of only a single number, a line group or a point group composed of a plurality of lines or points, or the like. The size of each line or each point may be different or the same. Further, the image processing unit 16 does not add the mosaic processing object, but instead of the area surrounded by the position coordinates ⁇ P 1 ′, P 2 ′, P 3 ′, P 4 ′, P 5 ′, P 6 ′ ⁇ . Image processing may be performed to make the distorted image irreversibly difficult to see.
  • the video processing device 1 performs steps S103 to S109 for all the images forming the designated 360 ° video. Then, the image processing unit 16 stores the mosaiced 360 ° image in the image processed image storage unit 17. The image-processed video storage unit 17 stores the image-processed video storage unit 17 in association with the video ID of the image-processed video storage unit 17. The video processing device 1 performs steps S102 to S109 each time a video editing request is received from the VR video editing terminal 4.
  • Step S110 After that, when receiving the video request from the VR goggles 5, the video output unit 19 reads the mosaiced 360 ° video corresponding to the video request from the image processing video storage unit 17, and the video correction unit 18 performs the video correction. Submit your request.
  • the video output unit 19 transmits the 360 ° video in which the inverse conversion f ′ of the polar coordinate conversion f is performed based on the video correction request to the VR goggles 5 as a VR video.
  • the mosaic image M in a correct state without distortion is displayed for the “face” of the person A without distortion, and a mosaic without discomfort is displayed. It can be applied to a desired target object.
  • step S103 the case has been described in which the original image of the 360 ° image is divided so that the divided images do not overlap each other.
  • the image dividing unit 14 may divide the original image of the 360 ° video so that adjacent divided images partially overlap each other.
  • this division method for example, the same person A is included in each of the two divided images, so that the detection accuracy of the target object performed by the object detection device 2 can be improved.
  • step S107 If the original image is divided in step S103 so that the adjacent images partially overlap each other, the same target object is included in each of the two adjacent divided images as shown in FIG.
  • different position coordinates are returned to the same target object for each divided image. For example, R 1 ⁇ P 11 (0,5), P 12 (0,20), P 13 (12,26), P 14 (10,20), P 15 (8,10), P 16 (3, 4), Face ⁇ , R 2 ⁇ P 21 (0, 5), P 22 (0, 10), P 23 (8, 10), P 24 (7, 8), P 25 (6, 0), P 26 (3,0), Face ⁇ is returned.
  • the coordinate position and the position of the target object are uniquely specified in the original original image I.
  • P 14 and P 24 indicate the same position of the target object
  • R 2 ⁇ P 24 (7,8) ⁇ ⁇ ⁇ f ⁇ ⁇ I ⁇ P 4 '(14,21) ⁇ and indicate the same position in the distorted original image I.
  • the positions and sizes of the target objects included in the divided images are integrated in the original original image I.
  • the image dividing unit 14 divides the original image which is a 360 ° image
  • the image correcting unit 15 corrects the distortion of the image shape in the divided image to a shape without distortion
  • the image processing unit. 16 calculates the corresponding position in the original image corresponding to the position of the target object detected by the object detection device 2 using the divided image after distortion correction, and the distortion in the original image formed at the corresponding position. Since image processing is performed on a certain target object, it is possible to accurately perform the mosaic processing on the target object of the mosaic processing included in the image of the 360 ° image.
  • the image processing unit 16 distorts the mosaic processing object and attaches it to the distorted target object, so that the mosaic processing target object included in the image of the 360 ° image is accurately and distorted. First, it is possible to perform mosaic processing on a VR image.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Image Processing (AREA)
  • Closed-Circuit Television Systems (AREA)
  • Editing Of Facsimile Originals (AREA)

Abstract

360°映像の画像に含まれるモザイク処理を行う対象オブジェクトを正確かつ歪まずにVR映像にてモザイク処理する。映像処理装置1において、画像分割部14が、360°映像である原画像を分割し、画像補正部15が、分割画像内の画像形状の歪みを歪みのない形状に補正し、画像処理部16が、歪み補正後の分割画像を用いてオブジェクト検出装置2により検出された対象オブジェクトの位置に対応する原画像内での対応位置を算出し、その対応位置に形成される原画像内の歪みのある対象オブジェクトを画像処理する。また、画像処理部16が、モザイク処理用オブジェクトを歪ませて、原画像内の歪みのある対象オブジェクトに付与する。

Description

映像処理装置、映像処理方法、及び映像処理プログラム
 本発明は、360°映像を画像処理する技術に関する。
 現在、VR(Virtual Reality)映像に関する技術が研究開発されている。図12は、VR映像処理システム100の従来構成を示す図である。VRカメラ3は、360°方向の3次元実空間を撮影し、第三者への映像配信を目的として映像処理装置1へ送信する。そして、映像処理装置1の映像入力部11は、VRカメラ3からの360°映像を入力し、その映像のファイル名に関連付けて原映像記憶部12に記憶する。
 その後、第三者のVRゴーグル5から映像要求を受けた場合、映像処理装置1の映像出力部19は、映像要求を受けた360°映像を原映像記憶部12から読み出してVR映像として出力する。このとき、360°映像は360°方向の3次元実空間を2次元平面の画面に投射した映像であり、水平方向の中央線上の領域から上下の垂直方向に離れた画像領域において画像形状に歪みが生じていることから、映像補正部18は、360°映像内の画像形状の歪みを歪みのない形状に補正(歪み補正)する。
 一方、VRゴーグル5は、映像要求に応じたVR映像を映像処理装置1から受信し、VRゴーグル5の向き及び傾きに対応する部分の映像を画面に表示する。VRゴーグル5の画面には、360°映像の一部が覗き見る状態で表示される。360°映像に対して歪み補正が施されているので、VRゴーグル5には歪みのない映像が表示される。
 これにより、VRゴーグル5の視聴者は、360°方向のうち自身が向いている方向及び方角の映像を歪みのない形状で正しく見ることができる。例えば、右を向けば右方向の仮想風景、下を向けば下方向の仮想風景を旅行先の視点で見ることができ、家に居ながら旅気分を疑似的に味わうことができる。
 なお、VR映像の仕組みについては、例えば、非特許文献1に記載されている。
"VRの仕組みをわかりやすく解説"、[online]、VR JOURNAL、2018.01.14、[平成30年10月11日検索]、インターネット、<https://vrjour.jp/mechanism/>
 360°映像には、360°方向の3次元実空間が隅々まで撮影されているので、個人情報も当然に含まれている。一方、不特定多数に開示予定のVR映像には個人情報を含めるべきでないため、VR映像の提供元は、個人情報にモザイク処理を施し、かつ、モザイク表示についてもVRゴーグル5で正しく表示されることを期待する。
 しかしながら、360°映像の画像には歪みがあるため、コンピュータは、その画像から個人情報を特定できない。例えば、個人情報が「顔」であっても、画像内の上側や下側に表示された顔は引き伸ばされた状態で表示されているため、「顔」の標準的な形状と乖離することから、コンピュータは、その状態の顔を「顔」として認識できない。
 また、個人情報に対して標準的な矩形状のモザイク画像を施したとしても、映像処理装置1の映像補正部18により360°映像の画像全体に対して歪み補正が施されるため、画像内の個人情報については歪みのない形状に変換されて正しく表示される反面、モザイク画像については歪みが生じてしまう。
 本発明は、上記事情を鑑みてなされたものであり、360°映像の画像において、モザイク処理を行う対象オブジェクトを正確にモザイク処理することを第1の目的とし、正確かつ歪まずにVR映像にてモザイク処理することを第2の目的とする。
 本発明の映像処理装置は、360°映像である原画像を分割する画像分割部と、分割画像内の画像形状の歪みを歪みのない形状に補正する画像補正部と、歪み補正後の分割画像を用いて検出された対象オブジェクトの位置に対応する前記原画像内での対応位置を算出し、前記対応位置に形成される前記原画像内の歪みのある前記対象オブジェクトを画像処理する画像処理部と、を備えることを特徴とする。
 上記映像処理装置において、前記画像処理部は、モザイク処理用オブジェクトを歪ませて前記歪みのある対象オブジェクトに付与することを特徴とする。
 上記映像処理装置において、前記画像処理部は、前記対象オブジェクトの形状を表す点の位置を歪み補正前の画像座標系での位置に変換することにより、前記原画像内での対応位置を算出することを特徴とする。
 上記映像処理装置において、前記画像補正部は、前記対象オブジェクトの種類と前記対象オブジェクトの形状を表す点の数とをオブジェクト検出装置に対して指定し、前記画像処理部は、指定した数に応じた数の点の位置情報を受け取ることを特徴とする。
 上記映像処理装置において、前記画像分割部は、隣り合う分割画像で画像の一部が重なるように前記原画像を分割することを特徴とする。
 上記映像処理装置において、前記画像処理を行った360°映像をVR(Virtual Reality)映像として出力する映像出力部を更に備えることを特徴とする。
 本発明の映像処理方法は、映像処理装置で行う映像処理方法において、360°映像である原画像を分割するステップと、分割画像内の画像形状の歪みを歪みのない形状に補正するステップと、歪み補正後の分割画像を用いて検出された対象オブジェクトの位置に対応する前記原画像内での対応位置を算出し、前記対応位置に形成される前記原画像内の歪みのある前記対象オブジェクトを画像処理するステップと、を行うことを特徴とする。
 本発明の映像処理プログラムは、上記映像処理装置としてコンピュータを機能させることを特徴とする。
 本発明によれば、360°映像の画像において、モザイク処理を行う対象オブジェクトを正確にモザイク処理することができる。また、正確かつ歪まずにVR映像にてモザイク処理することができる。
VR映像処理システムの全体構成を示す図である。 VR映像処理システムの動作を示すシーケンスである。 360°映像の原画像例を示す図である。 原画像の分割例を示す図である。 分割画像の歪み補正例を示す図である。 歪み補正後の分割画像からの対象オブジェクトの形状点の検出例を示す図である。 歪み補正前の原画像における対象オブジェクトの形状点の例を示す図である。 対象オブジェクトに対するモザイク処理例を示す図である。 モザイク処理後の対象オブジェクトのVR映像例を示す図である。 原画像の分割例(変形例)を示す図である。 歪み補正後の分割画像からの対象オブジェクトの形状点の検出例(変形例)を示す図である。 VR映像処理システムの従来構成を示す図である。
 本発明は、上記課題を解決するため、歪みのある360°映像の画像からモザイク処理の対象オブジェクトを検出してモザイクをかけることを目的とする。この目的を達成するため、映像処理装置1は、360°映像である原画像を分割し、分割画像内の画像形状の歪みを歪みのない形状に補正して、歪み補正後の分割画像を用いて検出された対象オブジェクトの位置に対応する原画像内での対応位置を算出し、その対応位置に形成される原画像内の歪みのある対象オブジェクトを画像処理(モザイク処理)する。
 また、本発明は、上記課題を解決するため、モザイク処理用オブジェクトがVRゴーグルに表示される際に正しく表示されるように歪ませてモザイクをかけることを目的とする。この目的を達成するため、映像処理装置1は、モザイク処理用オブジェクトを歪ませて歪みのある対象オブジェクトに付与する。
 以下、本発明を実施する一実施の形態について図面を用いて説明する。
 <VR映像処理システム100の全体構成>
 図1は、本実施形態に係るVR映像処理システム100の全体構成を示す図である。VR映像処理システム100は、図1に示すように、映像処理装置1と、オブジェクト検出装置2と、VRカメラ3と、VR映像編集端末4と、VRゴーグル5と、を備えて構成される。映像処理装置1は、オブジェクト検出装置2とともにインターネットのクラウド内に配置されており、オブジェクト検出装置2と、VRカメラ3と、VR映像編集端末4と、VRゴーグル5とに、通信ネットワークを介して相互通信可能に物理的及び電気的に接続されている。
 <映像処理装置1の機能>
 次に、映像処理装置1の機能について説明する。映像処理装置1は、図1に示したように、映像入力部11と、原映像記憶部12と、映像編集要求受付部13と、画像分割部14、画像補正部15と、画像処理部16と、画像処理映像記憶部17と、映像補正部18と、映像出力部19と、を備えて構成される。
 映像入力部11は、VRカメラ3から送信された360°映像を入力する機能を備える。360°映像とは、VRカメラ3の本体を中心に360°方向の3次元実空間(VRカメラ3の全方位・全天球の実空間)を撮影した映像である。360°映像は、例えば、VRカメラ3を移動させながら又は固定した状態で撮影された動画、動画を構成する時系的に連続性のある静止画、連続性のない単独の静止画である。
 原映像記憶部12は、映像入力部11で入力した360°映像を原映像として、360°映像のファイル名に関連付けて読み出し可能に記憶する機能を備える。360°映像のファイル名は、360°映像を識別するための識別子の例である(以下、映像IDとも称する)。原映像記憶部12は、VRカメラ3から送信される360°映像毎に、例えば、360°映像の撮影時刻、360°映像の入力時刻、360°映像の要約文、360°映像のタイトル、360°映像毎に割り振ったシーケンシャルな数字、を更に関連付けて原映像管理テーブルで管理してもよい。
 映像編集要求受付部13は、VR映像編集端末4からのアクセスに応じて360°映像を編集するために用いる映像編集要求受付画面を提供し、その映像編集要求受付画面で入力された映像編集要求を受け付ける機能を備える。VR映像編集端末4の操作者は、VRカメラ3の操作者と同一であることが想定され、VR映像の提供元に相当する。VR映像の提供元(=VR映像編集端末4の操作者)は、撮影した360°映像に含まれる個人情報にモザイク処理を施すため、VR映像編集端末4の画面に表示された映像編集要求受付画面内で、モザイク処理対象の映像IDと、モザイク処理を行う個人情報(以下、対象オブジェクト)の種類と、対象オブジェクトの形状を表す点(以下、形状点)の数と、をそれぞれ指定し、それらの条件を含む映像編集要求を映像処理装置1に送信する。なお、対象オブジェクトの種類とは、例えば、人物の顔、車のナンバー、表札等である。
 また、映像編集要求受付部13は、映像編集要求で指定された映像IDに対応する360°映像を原映像記憶部12から読み出して、その360°映像を画像分割部14と画像処理部16へそれぞれ送信するとともに、映像編集要求で指定された対象オブジェクトの種別と形状点の指定数とを画像分割部14を介して画像補正部15へ送信する機能を備える。
 画像分割部14は、映像編集要求受付部13から受け取った360°映像の画像(以下、原画像とも称する)を複数の画像(以下、分割画像)に分割する機能を備える。360°映像の画像が動画像の場合、画像分割部14は、その動画を構成する複数の静止画をそれぞれ分割する。また、画像分割部14は、映像編集要求受付部13から受け取った360°映像の画像を、隣り合う分割画像で画像の一部が重なるように分割する機能を備える。なお、360°映像の画像は、360°方向の3次元実空間を2次元平面の画面に投射した画像であるため、原画像の水平方向の中央線上の領域から上下の垂直方向に離れた画像領域の画像形状には歪みが生じており、分割画像にも対応する位置に画像形状に歪みが生じている。
 画像補正部15は、複数の分割画像内の画像形状の歪みを歪みのない形状に補正(歪み補正)する機能を備える。例えば、画像補正部15は、分割画像内の画像座標系は極座標であるため、極座標から直交座標へ変換することにより、分割画像内の画像形状の歪みを歪みのない形状に変換する。
 また、画像補正部15は、歪み補正後の複数の分割画像をオブジェクト検出装置2へ送信するとともに、映像編集要求受付部13から受け取った対象オブジェクトの種類と形状点の指定数とをオブジェクト検出条件として含むオブジェクト検出要求をオブジェクト検出装置2へ送信する機能を備える。
 画像処理部16は、歪み補正後の複数の分割画像を用いてオブジェクト検出装置2により検出された対象オブジェクトの位置に対応する360°映像の原画像内での対応位置を算出し、その対応位置に形成される原画像内の歪みのある対象オブジェクトを画像処理する機能を備える。ここでいう画像処理とは、例えば、対象オブジェクトを非可逆的にピクセル単位で見えにくくする画像処理、対象オブジェクトにモザイク処理用オブジェクトを付与する処理等である。モザイク処理用オブジェクトとは、例えば、両目に被せる黒い線、顔に被せる画像等である。
 例えば、画像処理部16は、歪み補正後の分割画像を用いてオブジェクト検出装置2により検出された対象オブジェクトの形状点の位置を、歪み補正前の原画像の画像座標系での位置に変換(直交座標から極座標へ変換)することにより、原画像内で対応する対応位置を算出する。また、画像処理部16は、直交座標系のモザイク処理用オブジェクトを生成し、その画像座標系を直交座標から極座標へ変換することによりモザイク処理用オブジェクトを歪ませて、原画像内の歪みのある対象オブジェクトに付与する。
 画像処理映像記憶部17は、対象オブジェクトに画像処理(モザイク処理)が施された360°映像を当該360°映像のファイル名に関連付けて読み出し可能に記憶する機能を備える。画像処理映像記憶部17は、360°映像のファイル名を検索キーに用いて映像編集要求受付部13の原映像管理テーブルから当該360°映像のタイトル等を取得し、画像処理映像管理テーブルとして独自に管理してもよい。
 映像補正部18は、映像出力部19からの映像補正要求に応じ、VRゴーグル5からの映像要求に対応する画像処理(モザイク処理)後の360°映像について、その360°映像内の画像形状の歪みを歪みのない形状に補正(歪み補正)する機能を備える。例えば、映像補正部18は、360°映像の原画像内の画像座標系は極座標であるため、極座標から直交座標へ変換することにより、360°映像内の画像形状の歪みを歪みのない形状に変換する。
 映像出力部19は、VRゴーグル5から映像要求を受けた場合、その映像要求に対応する画像処理(モザイク処理)後の360°映像を画像処理映像記憶部17から読み出して、360°映像内の画像形状の歪みを歪みのない形状に補正するために映像補正要求を映像補正部18に送信し、映像補正後の360°映像をVR(Virtual Reality)映像として映像要求元のVRゴーグル5へ出力して送信する機能を備える。
 ここまで、映像処理装置1の機能について説明した。本実施形態に係る映像処理装置1は、CPU、メモリ、ハードディスク、通信インタフェース、キーボード、マウス等を備えたコンピュータで実現可能である。また、映像処理装置1としてコンピュータを機能させるための映像処理プログラムを作成することも可能であり、その映像処理プログラムの記憶媒体を作成することも可能である。
 <オブジェクト検出装置2の機能>
 次に、オブジェクト検出装置2について説明する。オブジェクト検出装置2は、オブジェクト検出要求元である映像処理装置1からのオブジェクト検出要求に応じ、そのオブジェクト検出要求に含まれるオブジェクト検出条件に合致するオブジェクト検出結果データを返信する機械学習装置、深層学習装置、又はAI(Artificial Intelligence)装置である。このオブジェクト検出装置2は、インターネット上に既に存在し、既存のAI装置等を流用可能である。
 本実施形態では、オブジェクト検出装置2は、映像処理装置1から、歪み補正後の複数の分割画像と、オブジェクト検出条件(対象オブジェクトの種類,形状点の指定数)と、を受信した場合、その分割画像から当該種類に合致する対象オブジェクトを検出するとともに、検出した対象オブジェクトの形状点の位置、対象オブジェクトの大きさ等を検出し、指定された形状点の指定数に応じた数の形状点の位置情報、対象オブジェクトの大きさ等を、検出対象である対象オブジェクトの種類に関連付けて返信する機能を備える。
 <VRカメラ3の機能>
 次に、VRカメラ3について説明する。VRカメラ3は、360°カメラとも称されるカメラであり、撮影者や車体等の移動体に固定された状態で移動体の移動とともに移動しながら、VRカメラ3の本体を中心に360°方向の3次元実空間を撮影し、撮影者による送信指示に応じて撮影した360°映像を映像処理装置1へ送信(アップロード)する機能を備える。このとき、映像処理装置1は、1つ以上のVRカメラ3から送信される1つ以上の360°映像を受信する。VRカメラ3は、既存のVRカメラを流用可能である。
 <VR映像編集端末4の機能>
 次に、VR映像編集端末4について説明する。VR映像編集端末4は、OS(Operating System)上でウェブブラウザや映像編集要求用アプリを実行可能なコンピュータであり、映像処理装置1の映像編集要求受付部13が提供する映像編集要求受付画面をウェブブラウザ内に表示し、又は映像編集要求用アプリを実行して映像編集要求受付画面をアプリ内に表示して、VR映像編集端末4の操作者により入力されたモザイク処理を行うためのオブジェクト検出条件を含む映像編集要求を映像処理装置1に送信する機能を備える。VR映像編集端末4は、汎用のコンピュータ(いわゆるパソコン)を流用可能である。
 <VRゴーグル5の機能>
 次に、VRゴーグル5について説明する。VRゴーグル5は、視聴者により指定された映像IDに係るVR映像を要求するための映像要求を映像処理装置1に送信し、その映像要求に応じて映像処理装置1から返信されたVR映像を受信し、VRゴーグル5の向き及び傾きに対応する部分の映像を画面に表示する機能を備える。映像処理装置1の映像補正部18により画像処理(モザイク処理)後の360°映像に対して歪み補正が施されているので、VRゴーグル5には歪みのない映像が表示される。VRゴーグル5は、例えば、画面(モニタ)が一体化された専用VRゴーグル、スマートフォン端末をゴーグル筐体内に挿入して用いるVRゴーグル等、既存のVRゴーグルを流用可能である。VRゴーグル5に代えて、コンピュータのウェブブラウザを用いてもよい。
 <VR映像処理システム100で行う映像処理動作>
 次に、VR映像処理システム100で行う映像処理方法の映像処理動作について説明する。図2は、映像処理動作の処理フローを示す図である。
 ステップS101;
 まず、映像処理装置1の映像入力部11は、VRカメラ3からアップロードされた360°映像を入力し、その360°映像を当該360°映像の映像IDに関連付けて原映像記憶部12に記憶する。360°映像とは、VRカメラ3の本体を中心に360°方向の3次元実空間を撮影した映像である。
 ステップS102;
 次に、映像編集要求受付部13は、VR映像編集端末4からのアクセスに応じて映像編集要求受付画面を提供し、その映像編集要求受付画面で入力された映像編集要求を受け付ける。
 具体的には、映像編集要求受付画面には、複数の映像IDが選択可能に表示されており、VR映像編集端末4の操作者は、その中からモザイク処理を施す映像IDと、モザイク処理を行う対象オブジェクトの種類(本例では「顔」)と、その対象オブジェクトの形状点の数(本例では「6」)と、をそれぞれ指定する。その後、その操作者が画面内の要求ボタンを押し下げると、それらの条件を含む映像編集要求が映像処理装置1に送信される。
 映像編集要求を受け付けた後、映像編集要求受付部13は、指定された映像IDに対応する360°映像を原映像記憶部12から読み出して画像分割部14と画像処理部16へそれぞれ送信するとともに、対象オブジェクトの種別(「顔」)と形状点の指定数(「6」)とを画像分割部14を介して画像補正部15へ送信する。
 ここで、360°映像を構成する画像の特徴について説明する。360°映像の画像は、360°方向の3次元実空間を2次元平面の画面に投射した極座標系の画像であるため、画像水平方向の中央線上の領域から上下の垂直方向に離れた画像領域の画像形状には歪みが生じている。360°映像の画像の例を図3に示す。画像の上側や下側に歪みがあることが分かる。左下端の人物Aと右下端の人物Bは同一人物であるが、画像座標系は極座標であるため、2次元平面の画面端では極付近の人物像が横方向に引き伸ばされた状態で表示される。
 ステップS103;
 次に、画像分割部14は、映像編集要求受付部13から送信された360°映像の画像(原画像)をn×m(n,m;自然数)に分割する。本例では、図4に示すように、横方向に4分割し、縦方向に5分割する。これにより、原画像よりも小さいサイズの分割画像が形成される。ステップS103では、球体状の360°映像の画像をそのまま丸ごと後段の画像補正部15で一度に歪み補正(極座標から直交座標へ変換)することは困難であるため、大サイズの原画像を局所的な領域に分割している。
 ステップS104;
 次に、画像補正部15は、複数の分割画像について、それぞれ、極座標変換fの逆変換f’を行う既存の数式を用いて、分割画像の画像座標系を極座標から直交座標へ変換する処理を行う。これにより、分割画像内の画像形状の歪みが解消され、画像形状に歪みのない分割画像が形成される。
 例えば、図4に示した1列目の各分割画像は、図5に示すような分割画像となる。四隅に示された扇状の黒色領域は、変換処理前の分割画像内にはなかった領域が変換処理により顕在化した状態を表している。ステップS104では、オブジェクト検出装置2が対象オブジェクトを検出できるように、画像形状の歪みを歪みのない状態に歪み補正している。
 ステップS105;
 次に、画像補正部15は、歪み補正後の複数の分割画像をオブジェクト検出装置2へ送信するとともに、対象オブジェクトの種別(「顔」)と形状点の指定数(「6」)とをオブジェクト検出条件として含むオブジェクト検出要求をオブジェクト検出装置2へ送信する。
 ステップS106,S107;
 次に、オブジェクト検出装置2は、映像処理装置1からオブジェクト検出要求を受信すると、歪み補正後の複数の分割画像からオブジェクト検出条件である対象オブジェクトの「顔」を検出し、検出した「顔」の輪郭形状を表す形状点の位置座標を指定数分(「6」つ)検出し、「顔」の領域に対応する大きさを算出して、映像処理装置1へ返信する。複数の分割画像は歪み補正されているので、オブジェクト検出装置2は、対象オブジェクト等を検出可能である。
 例えば、図5に示した1列目a行目の分割画像については、図6に示すように、「顔」である対象オブジェクトRを囲む6つの形状点が検出され、その検出結果を示すR{P(0,5),P(0,20),P(12,26),P(10,20),P(8,10),P(3,4),Face}が返信される。
 ステップS108;
 次に、画像処理部16は、オブジェクト検出条件の指定数に応じた形状点の位置座標をオブジェクト検出装置2から受け取り、全ての形状点の位置座標について、極座標変換fを行う既存の数式を用いて、直交座標から極座標へ変換する処理を行う。この変換処理は、ステップS104の逆変換処理に相当するので、図7に示すように、歪み補正前の分割画像又は原画像の画像座標系で対応する位置座標{P’(0,6),P’(0,22),P’(13,26),P’(14,21),P’(20,11),P’(9,7)}が算出される。
 ステップS109;
 次に、画像処理部16は、標準的な矩形状のモザイク処理用オブジェクトの画像を生成し、極座標変換fを行う既存の数式を用いて、その画像の画像座標系を直交座標から極座標に変換する処理を行うことで歪みを生じさせ、ステップS108で極座標変換fを行っていた「6」つの形状点の位置座標の上に付与する。その後、画像処理部16は、モザイク処理が終了したことを映像編集要求受付部13に伝え、映像編集要求受付部13は、映像編集終了応答をVR映像編集端末4へ返信する。
 例えば、図8に示すように、矩形状のモザイク画像Mに対して極座標変換fを行うことで末広がりの1/4円弧状のモザイク画像M’を生成し、極座標変換fを行っていた位置座標{P’,P’,P’,P’,P’,P’}に重畳する。これにより、歪みのある対象オブジェクトの「顔」に対して、歪みのある形状のモザイク処理用オブジェクトの画像が重畳される。
 画像処理部16は、モザイク処理用オブジェクトとして、例えば、単一数のみからなる線又は点、複数の線又は点で構成される線群又は点群等を用いてもよい。各線又は各点の大きさは異なってもよいし同一でもよい。また、画像処理部16は、モザイク処理用オブジェクトを付与する代わりに、位置座標{P’,P’,P’,P’,P’,P’}で囲まれる領域内の歪みのある画像を非可逆的に見えににくくする画像処理を行ってもよい。
 映像処理装置1は、ステップS103~ステップS109を指定された360°映像を構成する全ての画像についてそれぞれ行う。その後、画像処理部16は、モザイク処理を行った360°映像を画像処理映像記憶部17に記憶する。画像処理映像記憶部17は、その画像処理映像記憶部17を当該画像処理映像記憶部17の映像IDに関連付けて記憶する。映像処理装置1は、VR映像編集端末4から映像編集要求を受け付ける毎にステップS102~ステップS109を行う。
 ステップS110;
 その後、VRゴーグル5から映像要求を受けた場合、映像出力部19は、その映像要求に対応するモザイク処理後の360°映像を画像処理映像記憶部17から読み出して、映像補正部18に映像補正要求を送信する。
 そして、映像出力部19は、映像補正要求に基づき極座標変換fの逆変換f’が行われた360°映像をVR映像としてVRゴーグル5へ送信する。これにより、図9に示すように、VRゴーグル5で見たときに、歪みのない人物Aの「顔」に対して、歪みのない正しい状態のモザイク画像Mが表示され、違和感のないモザイクを所望の対象オブジェクトにかけることができる。
 <映像処理動作の処理フローの変形例>
 次に、前述した映像処理動作の処理フローの変形例について説明する。
 ステップS103では、360°映像の原画像を、隣り合う分割画像で画像の一部が重ならないように分割する場合について説明した。一方、画像分割部14は、図10に示すように、隣り合う分割画像で画像の一部が重なるように360°映像の原画像を分割してもよい。この分割方法を用いることにより、例えば2つの分割画像内に同一の人物Aがそれぞれ含まれるので、オブジェクト検出装置2で行う対象オブジェクトの検出精度を向上できる。
 ステップS103で隣り合う分割画像で画像の一部が重なるように原画像を分割していた場合、図11に示すように、同一の対象オブジェクトが隣接する2つの分割画像にそれぞれ含まれるので、ステップS107では、当該同一の対象オブジェクトに対して分割画像毎に異なる位置座標が返信される。例えば、R{P11(0,5),P12(0,20),P13(12,26),P14(10,20),P15(8,10),P16(3,4),Face},R{P21(0,5),P22(0,10),P23(8,10),P24(7,8),P25(6,0),P26(3,0),Face}が返信される。
 このとき、ステップS108でRとRをそれぞれ極座標変換fすることにより、元の原画像Iでは、対象オブジェクトの座標位置及び位置が一意に特定される。例えば、P14とP24が対象オブジェクトの同一位置を示す場合、それぞれを極座標変換fすることにより、R{P14(10,20)}×{f}→I{P’(14,21)}、R{P24(7,8)}×{f}→I{P’(14,21)}となり、歪みのある元の原画像Iにおいて同一の位置を示すことになり、分割画像にそれぞれ含まれていた各対象オブジェクトが元の原画像Iでは位置及び大きさが統合されることになる。
 <実施形態の効果>
 最後に、本実施形態の効果について説明する。
 本実施形態によれば、画像分割部14が、360°映像である原画像を分割し、画像補正部15が、分割画像内の画像形状の歪みを歪みのない形状に補正し、画像処理部16が、歪み補正後の分割画像を用いてオブジェクト検出装置2により検出された対象オブジェクトの位置に対応する原画像内での対応位置を算出し、その対応位置に形成される原画像内の歪みのある対象オブジェクトを画像処理するので、360°映像の画像に含まれるモザイク処理の対象オブジェクトを正確にモザイク処理することができる。
 また、本実施形態によれば、画像処理部16が、モザイク処理用オブジェクトを歪ませて歪みのある対象オブジェクトに付与するので、360°映像の画像に含まれるモザイク処理の対象オブジェクトを正確かつ歪まずにVR映像にてモザイク処理することができる。
 1…映像処理装置
 11…映像入力部
 12…原映像記憶部
 13…映像編集要求受付部
 14…画像分割部
 15…画像補正部
 16…画像処理部
 17…画像処理映像記憶部
 18…映像補正部
 19…映像出力部
 2…オブジェクト検出装置
 3…VRカメラ
 4…VR映像編集端末
 5…VRゴーグル

Claims (8)

  1.  360°映像である原画像を分割する画像分割部と、
     分割画像内の画像形状の歪みを歪みのない形状に補正する画像補正部と、
     歪み補正後の分割画像を用いて検出された対象オブジェクトの位置に対応する前記原画像内での対応位置を算出し、前記対応位置に形成される前記原画像内の歪みのある前記対象オブジェクトを画像処理する画像処理部と、
     を備えることを特徴とする映像処理装置。
  2.  前記画像処理部は、
     モザイク処理用オブジェクトを歪ませて前記歪みのある対象オブジェクトに付与することを特徴とする請求項1に記載の映像処理装置。
  3.  前記画像処理部は、
     前記対象オブジェクトの形状を表す点の位置を歪み補正前の画像座標系での位置に変換することにより、前記原画像内での対応位置を算出することを特徴とする請求項1又は2に記載の映像処理装置。
  4.  前記画像補正部は、前記対象オブジェクトの種類と前記対象オブジェクトの形状を表す点の数とをオブジェクト検出装置に対して指定し、
     前記画像処理部は、
     指定した数に応じた数の点の位置情報を受け取ることを特徴とする請求項1乃至3のいずれかに記載の映像処理装置。
  5.  前記画像分割部は、
     隣り合う分割画像で画像の一部が重なるように前記原画像を分割することを特徴とする請求項1乃至4のいずれかに記載の映像処理装置。
  6.  前記画像処理を行った360°映像をVR(Virtual Reality)映像として出力する映像出力部を更に備えることを特徴とする請求項1乃至5のいずれかに記載の映像処理装置。
  7.  映像処理装置で行う映像処理方法において、
     360°映像である原画像を分割するステップと、
     分割画像内の画像形状の歪みを歪みのない形状に補正するステップと、
     歪み補正後の分割画像を用いて検出された対象オブジェクトの位置に対応する前記原画像内での対応位置を算出し、前記対応位置に形成される前記原画像内の歪みのある前記対象オブジェクトを画像処理するステップと、
     を行うことを特徴とする映像処理方法。
  8.  請求項1乃至6のいずれかに記載の映像処理装置としてコンピュータを機能させることを特徴とする映像処理プログラム。
PCT/JP2019/038873 2018-10-15 2019-10-02 映像処理装置、映像処理方法、及び映像処理プログラム WO2020080101A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-194427 2018-10-15
JP2018194427A JP6700539B2 (ja) 2018-10-15 2018-10-15 映像処理装置、映像処理方法、及び映像処理プログラム

Publications (1)

Publication Number Publication Date
WO2020080101A1 true WO2020080101A1 (ja) 2020-04-23

Family

ID=70284555

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/038873 WO2020080101A1 (ja) 2018-10-15 2019-10-02 映像処理装置、映像処理方法、及び映像処理プログラム

Country Status (2)

Country Link
JP (1) JP6700539B2 (ja)
WO (1) WO2020080101A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005286468A (ja) * 2004-03-29 2005-10-13 Mitsubishi Electric Corp マスキング機能付き監視システムおよびカメラ、並びに該カメラとともに用いられるマスク解除装置
JP2008102620A (ja) * 2006-10-17 2008-05-01 Toyota Motor Corp 画像処理装置
JP2016185319A (ja) * 2015-07-13 2016-10-27 グリー株式会社 プログラム、ゲームの制御方法、および情報処理装置
WO2016185522A1 (ja) * 2015-05-15 2016-11-24 三菱電機株式会社 画像処理装置及び画像処理方法及び画像処理プログラム
JP2017126352A (ja) * 2012-01-31 2017-07-20 パナソニックIpマネジメント株式会社 画像表示装置及び画像表示方法
JP2018085571A (ja) * 2016-11-21 2018-05-31 ソニー株式会社 情報処理装置、情報処理方法、およびプログラム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005286468A (ja) * 2004-03-29 2005-10-13 Mitsubishi Electric Corp マスキング機能付き監視システムおよびカメラ、並びに該カメラとともに用いられるマスク解除装置
JP2008102620A (ja) * 2006-10-17 2008-05-01 Toyota Motor Corp 画像処理装置
JP2017126352A (ja) * 2012-01-31 2017-07-20 パナソニックIpマネジメント株式会社 画像表示装置及び画像表示方法
WO2016185522A1 (ja) * 2015-05-15 2016-11-24 三菱電機株式会社 画像処理装置及び画像処理方法及び画像処理プログラム
JP2016185319A (ja) * 2015-07-13 2016-10-27 グリー株式会社 プログラム、ゲームの制御方法、および情報処理装置
JP2018085571A (ja) * 2016-11-21 2018-05-31 ソニー株式会社 情報処理装置、情報処理方法、およびプログラム

Also Published As

Publication number Publication date
JP2020065114A (ja) 2020-04-23
JP6700539B2 (ja) 2020-05-27

Similar Documents

Publication Publication Date Title
KR101761751B1 (ko) 직접적인 기하학적 모델링이 행해지는 hmd 보정
EP3334156B1 (en) Electronic device for generating 360 degree three-dimensional image, and method therefor
CN110809786B (zh) 校准装置、校准图表、图表图案生成装置和校准方法
JP5067476B2 (ja) 三次元モデル作成システム
KR101694969B1 (ko) 카메라 캘리브레이션 방법 및 장치
JP7024812B2 (ja) 画像処理方法、装置及びコンピュータ読み取り可能な記憶媒体
JP2012253444A (ja) 撮像装置、画像処理装置およびその方法
JP5067477B2 (ja) 撮像パラメータ取得装置、撮像パラメータ取得方法、及び、プログラム
JP5886242B2 (ja) 画像処理装置、画像処理方法及び画像処理プログラム
JP2018026064A (ja) 画像処理装置、画像処理方法、システム
CN110807814A (zh) 摄影机位姿计算方法、装置、设备及存储介质
JP2010217984A (ja) 像検出装置及び像検出方法
WO2020255766A1 (ja) 情報処理装置、情報処理方法、プログラム、投映装置、および情報処理システム
JP4554231B2 (ja) 歪みパラメータの生成方法及び映像発生方法並びに歪みパラメータ生成装置及び映像発生装置
JP2015156540A (ja) 画像処理装置、画像処理方法および画像処理プログラム
JP6700539B2 (ja) 映像処理装置、映像処理方法、及び映像処理プログラム
JP5326816B2 (ja) 遠隔会議システム、情報処理装置、及びプログラム
JP2017215706A (ja) 映像合成方法、映像取得装置、映像合成装置、映像合成システム及びコンピュータプログラム。
JP2023527679A (ja) モバイルカメラを用いたパノラマ生成
CN117218320B (zh) 基于混合现实的空间标注方法
JP6937722B2 (ja) 画像処理装置および画像処理方法
Zhang et al. A setup for panoramic stereo imaging
JP2022077221A (ja) 画像処理装置、画像処理システム、画像処理方法、およびプログラム
JP2022178000A (ja) 撮像装置および方法
JP2000348199A (ja) テクスチャマッピング方法及び装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19872615

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19872615

Country of ref document: EP

Kind code of ref document: A1