WO2020080091A1 - Vehicle inspection device and method - Google Patents

Vehicle inspection device and method Download PDF

Info

Publication number
WO2020080091A1
WO2020080091A1 PCT/JP2019/038676 JP2019038676W WO2020080091A1 WO 2020080091 A1 WO2020080091 A1 WO 2020080091A1 JP 2019038676 W JP2019038676 W JP 2019038676W WO 2020080091 A1 WO2020080091 A1 WO 2020080091A1
Authority
WO
WIPO (PCT)
Prior art keywords
speed
vehicle
measuring means
speed measuring
dimensional
Prior art date
Application number
PCT/JP2019/038676
Other languages
French (fr)
Japanese (ja)
Inventor
信博 知原
宣隆 木村
聖岳 堀江
剛渡 上野
鈴木 寛
Original Assignee
株式会社日立ハイテクファインシステムズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテクファインシステムズ filed Critical 株式会社日立ハイテクファインシステムズ
Publication of WO2020080091A1 publication Critical patent/WO2020080091A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61KAUXILIARY EQUIPMENT SPECIALLY ADAPTED FOR RAILWAYS, NOT OTHERWISE PROVIDED FOR
    • B61K13/00Other auxiliaries or accessories for railways
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61KAUXILIARY EQUIPMENT SPECIALLY ADAPTED FOR RAILWAYS, NOT OTHERWISE PROVIDED FOR
    • B61K9/00Railway vehicle profile gauges; Detecting or indicating overheating of components; Apparatus on locomotives or cars to indicate bad track sections; General design of track recording vehicles
    • B61K9/12Measuring or surveying wheel-rims
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L25/00Recording or indicating positions or identities of vehicles or vehicle trains or setting of track apparatus
    • B61L25/02Indicating or recording positions or identities of vehicles or vehicle trains
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L25/00Recording or indicating positions or identities of vehicles or vehicle trains or setting of track apparatus
    • B61L25/02Indicating or recording positions or identities of vehicles or vehicle trains
    • B61L25/04Indicating or recording train identities
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures

Definitions

  • the present invention relates to a technique for inspecting the appearance of a vehicle.
  • Patent Document 1 a line camera in which a plurality of sensors are arranged in a line in a direction orthogonal to the traveling direction of the vehicle is used, and the bottom surface of the vehicle is photographed by the line camera.
  • a technique has been disclosed in which the distortion at the screen edge, which has been performed, can be eliminated and the size can be reduced.
  • Patent Document 2 discloses a technique in which a vehicle that has been parked is stopped at a fixed position based on a position sensor, a spring of the vehicle is photographed by a camera, and a maintenance guidance for adjustment is output from the length of the spring. .
  • a fixed-point observation of the appearance of railway vehicles can be performed by performing a visual inspection at the time when the railway vehicle leaves the garage and at the time of returning to detect changes, for example, by extracting the difference. It will be possible.
  • visual inspection for example, it is conceivable to use a line camera (also referred to as a line sensor camera, a line scan camera, etc.) for taking a photograph, a light cutting camera using a light cutting method, or a three-dimensional measurement method using laser light.
  • Imaging with a line camera is an imaging method with the same principle as a scanner or copier, in which an image of a predetermined surface is obtained by continuously acquiring images with sensors (line sensors) arranged in a row.
  • the line camera is suitable for obtaining a clear two-dimensional image (two-dimensional plane image).
  • 3D measurement with a light-section camera allows you to irradiate a vehicle with a linear laser beam and obtain the 3D shape (3D image) of the object to be measured based on triangulation from the reflected light.
  • the three-dimensional shape of the entire vehicle is acquired by moving the vehicle relative to the linear laser light.
  • a spot-shaped laser may be scanned in one direction.
  • the line camera even in the case of photographing using the light-section camera, it is necessary to make the photographing intervals uniform in order to obtain an image without distortion, and information on the moving speed of the vehicle is necessary.
  • an object to be measured such as a line camera or a light-section camera
  • two-dimensional or more measurement information two-dimensional image or 3
  • An image pickup device and a detection device for obtaining dimensional shape information
  • the information obtained by the one-dimensional sensor may not be one-dimensional in a strict sense, but it is a convenient name focusing on the measurement direction.
  • the direction of measurement (direction intersecting with the moving direction of the object to be measured)
  • the region measured by one measurement will be referred to as "measurement region”.
  • a line camera will be described as an example of the one-dimensional sensor.
  • a Doppler laser (also called a laser Doppler velocity meter, Doppler sensor, etc.) is known as a device that measures the moving speed of an object with high accuracy.
  • the Doppler laser irradiates the measurement object with laser light and detects scattered light from the measurement object.
  • the scattered light becomes light whose frequency is shifted due to the Doppler effect generated by the movement of the measured object, and the speed of the measured object is calculated with high accuracy by processing the frequency-shifted component as a signal.
  • FIG. 8 is a diagram showing an example of a photographing device that controls the photographing timing of a line camera with a Doppler laser.
  • the traveling direction of the vehicle 140 (generally the longitudinal direction of the railway vehicle) is x
  • the direction perpendicular to the ground is z
  • the direction perpendicular to x and z (generally the width direction of the railway vehicle) is y.
  • the coordinate system is defined as.
  • the measurement surface is the lateral surface (xz surface) of the vehicle
  • the measurement direction is the y direction.
  • the high-precision Doppler laser 110L is arranged so as to be shifted from the line camera 120 in the x-axis direction.
  • the Doppler laser 110L and the line camera 120 are controlled by the controller 130.
  • the Doppler laser 110L is always activated.
  • the vehicle imaged by the line camera one-dimensional sensor
  • the shooting timing of the line camera 120 is controlled. Therefore, when the vehicle 140 passes, the vehicle speed of the vehicle 140 is first measured by the Doppler sensor 110L. After a while, the positional relationship is set such that the vehicle 140 passes over the line camera 120.
  • the device configuration example in Fig. 1 can be considered as one of the solutions to this problem.
  • high-precision Doppler lasers 110L and 110R are arranged on both the left and right sides of the line camera 120.
  • the Doppler lasers 110L and 110R and the line camera 120 are controlled by the control device 130. In this case, the Doppler lasers 110L and 110R are always activated.
  • the speed is measured by the Doppler laser 110L and the imaging timing of the line camera 120 is controlled by the speed signal.
  • the speed is measured by the Doppler laser 110R and the same processing is performed.
  • the line camera 120 can be controlled, so that both measurements at the time of leaving and entering can be supported.
  • this method requires the use of two Doppler lasers 110.
  • High-precision Doppler lasers are expensive and therefore increase equipment cost.
  • the laser output of the Doppler laser is relatively large, power consumption is large and cost is high when the laser is constantly irradiated.
  • an object of the present invention is to provide a technique that can automatically perform a visual inspection of a vehicle moving in two directions while suppressing an increase in cost.
  • a preferred aspect of the present invention includes a first speed measuring unit, a second speed measuring unit, a one-dimensional sensor, and a control device, and the one-dimensional sensor extends along a direction intersecting a moving vehicle with a moving direction of the moving vehicle.
  • It is a vehicle inspection device that obtains inspection information including two-dimensional or more information based on the measurement result by performing multiple measurements.
  • the inspection information can be acquired both when the vehicle moves in the first direction and when the vehicle moves in the second direction opposite to the first direction, and the second speed measuring means. Is more accurate than the first speed measuring means.
  • the control device is obtained by the first speed measuring means.
  • the control is performed in the first control mode in which the measurement timing of the one-dimensional sensor is controlled by the speed information.
  • the control device is in the second control mode in which the measurement timing of the one-dimensional sensor is controlled by the speed information obtained by the second speed measuring means. Control.
  • Another preferable aspect of the present invention uses a first speed measuring unit, a second speed measuring unit, and a one-dimensional sensor, and the one-dimensional sensor is arranged along a direction intersecting a moving vehicle with a moving direction of the moving vehicle.
  • This is a vehicle inspection method that obtains inspection information including two-dimensional or more information based on the measurement result by measuring a plurality of times. The inspection information can be acquired both when the vehicle moves in the first direction and when the vehicle moves in the second direction opposite to the first direction.
  • the second speed measuring means has higher accuracy than the first speed measuring means.
  • This method includes a first step of activating the first speed measuring means and keeping the second speed measuring means and the one-dimensional sensor inactive, and detecting the speed of the vehicle by the first speed measuring means.
  • the second step of activating the second speed measuring means and the one-dimensional sensor, the speed information obtained by the first speed measuring means, and the speed information obtained by the first speed measuring means are recorded.
  • the third step of executing the first control mode in which the measurement timing of the one-dimensional sensor is controlled by the first measurement mode and the second speed measuring means detecting the speed of the vehicle the first step is performed.
  • the speed information obtained by the speed measuring means and the speed information obtained by the second speed measuring means are recorded, and the measurement information of the one-dimensional sensor is controlled by the speed information obtained by the second speed measuring means to perform the measurement.
  • the second control mode Performing a fourth step of performing a de, a.
  • a two-dimensional plane image or a three-dimensional stereoscopic image which is inspection information including two-dimensional or more information based on the measurement results measured in the first control mode and the second control mode, is used.
  • two-dimensional measurement is performed using the speed information obtained by the first speed measuring means and the speed information obtained by the second speed measuring means, which are measured in the first control mode and the second control mode.
  • At least one of the two-dimensional image or the three-dimensional image is corrected in the moving direction of the vehicle. In particular, it is desirable to correct the image based on the measurement in the first control mode.
  • FIG. 6 is a table showing an example of a format of imaging data recorded by a control device.
  • the image figure which shows the example of the synthesized two-dimensional image.
  • the conceptual diagram which plotted the speed signal of a low-precision speedometer and the speed signal of a Doppler laser.
  • the schematic diagram of the imaging device which arrange
  • the notations such as “first”, “second”, and “third” in this specification and the like are used to identify components, and necessarily limit the number, order, or content thereof. is not. Further, the numbers for identifying the constituents are used for each context, and the numbers used in one context do not always indicate the same configuration in other contexts. Further, it does not prevent a component identified by a certain number from having a function of a component identified by another number.
  • the vehicle speed required for line camera control cannot be measured until the vehicle passes in front of the high-accuracy speed sensor.
  • the technique of the embodiment provides a uniform two-dimensional image required for automatic inspection.
  • FIG. 2 is a schematic diagram illustrating the vehicle inspection device according to the first embodiment.
  • the traveling direction of the vehicle 140 (generally the longitudinal direction of the railway vehicle) is x
  • the direction perpendicular to the ground is z
  • the direction perpendicular to x and z (generally the width direction of the railway vehicle) is y.
  • the coordinate system is defined as.
  • This figure is a schematic view of the vehicle 140 viewed from the z direction.
  • the vehicle inspection device 100 of the present embodiment uses only one high-precision Doppler laser 110, and low-precision speedometers 210L and 210R are arranged on both sides in the traveling direction.
  • the Doppler laser 110, the low-accuracy speedometers 210L and 210R, and the line camera 120 are controlled by the controller 130.
  • the imaging direction (measurement direction) by the line camera 120 intersects the x direction, which is the traveling direction (movement direction) of the vehicle, and is the y direction in this example.
  • An image of a region (measurement region) that is divided into long and narrow parts in the y direction of the vehicle 140 is acquired by one-time imaging by the line sensor of the line camera.
  • the control device 130 may be, for example, a personal computer (PC) including a processing device, a storage device, an input device, and an output device.
  • PC personal computer
  • various processes described in the embodiment are realized by the processing device executing software stored in the storage device.
  • the control device may be configured by a single computer, or any part of the input device, the output device, the processing device, and the storage device may be configured by another computer connected via a network.
  • the function equivalent to the function configured by software can be realized by hardware such as FPGA (Field Programmable Gate Array) and ASIC (Application Specific Integrated Circuit).
  • An example of the low-precision speedometer 210 is an ultrasonic Doppler speedometer.
  • the measurement principle of the ultrasonic Doppler velocimeter uses the Doppler effect as in the case of the Doppler laser, but the waves used are ultrasonic waves. Ultrasonic waves have a longer wavelength than light, are greatly attenuated, and are affected by temperature and atmospheric pressure on measured values, and thus are inferior in accuracy to Doppler lasers, but are relatively inexpensive devices.
  • the ultrasonic Doppler velocimeter has a relatively low operating cost compared to the Doppler laser even if it is constantly operated.
  • FIG. 3 is a flowchart illustrating a processing sequence of the vehicle inspection device 100.
  • the low-precision speedometers 210L and 210R are always activated under the control of the control device 130.
  • the Doppler laser 110 is in a state where it does not emit laser (stop or standby state) until instructed by the control device 130 (step S301). In terms of accuracy, the standby (warm-up) state is preferable.
  • the line camera 120 is also turned off.
  • step S302 When the vehicle 140 moves in the direction of the arrow 150R in FIG. 2, it first enters the measurable range of the low-accuracy speedometer 210L, which detects the speed (step S302). The detected speed signal is sent to the control device 130. At this time, the control device 130 determines the traveling direction of the vehicle by identifying which of the low-accuracy speedometers 210L and 210R has detected the speed signal.
  • the control device 130 activates the Doppler laser 110 and the line camera 120 upon detection of the speed of the low-accuracy speedometer 210L (step S303). This causes the Doppler laser 110 to start emitting the laser.
  • the vehicle inspection device 100 operates in “control mode 1” under the control of the control device 130.
  • the control mode 1 the speed signal of the low speed speedometer 210 is recorded.
  • the imaging timing (for example, scan rate) of the line camera 120 is controlled to image the vehicle 140 (step S304).
  • an arbitrary portion of the vehicle 140 can be selected as the image capturing location, for example, the bottom surface of the vehicle is captured.
  • the image data captured by the line camera 120 is sent to the control device 130 and stored in the storage device.
  • the moving direction resolution of the object imaged by the line camera depends on the moving speed of the object and the shortest scanning cycle of the line sensor. Therefore, in order to obtain a two-dimensional image using the line camera, it is necessary to adjust the scan rate (the time required to capture an image per line) according to the moving speed of the vehicle.
  • the imaging timing of the line camera 120 is controlled based on the speed signal of the speedometer 210 with low accuracy.
  • the Doppler laser 110 starts speed detection (step S305).
  • the speed signal detected by the Doppler laser 110 is sent to the control device 130.
  • the control device 130 switches from the control mode 1 to the “control mode 2” by using the speed detection of the Doppler laser 110 as a trigger.
  • the control mode 2 the low-accuracy speed signal of the speedometer 210 and the speed signal of the Doppler laser 110 are recorded.
  • the image pickup timing of the line camera 120 is controlled to pick up the image of the vehicle (step S306).
  • the image data captured by the line camera 120 is sent to the control device 130 and stored in the storage device.
  • the control mode may not be switched immediately after the speed of the Doppler laser 110 is detected, but may be switched after a predetermined time so that the Doppler laser 110 can perform stable measurement.
  • step S307 When the image of the entire vehicle 140 has been captured, the captured images are combined (step S307: described later). Whether or not the photographing is completed can be determined by eliminating the low-accuracy speed signal of the speedometer 210 or the speed signal of the Doppler laser 110 when the vehicle passes.
  • the low-accuracy speedometer 210 measures the speed of the vehicle instead and controls the imaging timing of the line camera 120. Therefore, only one expensive Doppler laser 110 is required, and the laser light of the Doppler laser 110 is emitted only for a necessary period, so that power consumption can be reduced.
  • the image pickup timing of the line camera is kept constant, and the image data and the speed signal at the time of image pickup are associated with each other to process the image synthesis. You can also deal with. However, in the latter method, the required resolution may not be obtained unless the imaging timing is set in correspondence with the assumed maximum speed. Therefore, the power consumption for imaging and the cost of the storage capacity for accumulating the captured images increase. In this embodiment, a method of controlling the image pickup timing of the line camera by the speed signal will be described.
  • FIG. 4 is an example of a format of image pickup data recorded by the control device 130.
  • Identification information 401 control flag 402, imaging data (data body or address for specifying it) 403, identification information 404 of low-accuracy speedometer that has acquired the speed signal, speed signal 405 from low-accuracy speedometer, Doppler laser Items such as speed signal 406 from In addition to this, other information may be added.
  • the imaged data 403 is stored with the identification information 401 attached to each line data captured by the line camera.
  • the imaging time may be recorded instead of or in addition to the identification information.
  • the control flag 402 is whether the image data 403 is imaged by a line camera controlled by the speed information of the low-speed speedometer 210 (that is, data in control mode 1) or controlled by the speed information of the Doppler laser 110. A distinction is made as to whether or not the image was taken by a line camera (that is, data according to control mode 2).
  • the speed signal 405 is a speed signal obtained by the low-accuracy speedometer 210
  • the speed signal 406 is a speed signal obtained by the Doppler laser 110. Since there are two low-accuracy speedometers 210, low-accuracy speedometer identification information 404 is added to indicate which speedometer.
  • the identification information 404 indicates, for example, the right side (R) or the left side (L).
  • the traveling direction of the vehicle can be determined based on this information. The traveling direction of the vehicle is used to determine in which direction the measurement data of the measurement region is connected when the two-dimensional images are combined.
  • the speed signal 406 from the Doppler laser is “n / a”. (Not applicable) ”. While the speed signal 406 from the Doppler laser is “n / a (not applicable)”, the line camera 120 is controlled by the speed signal of the speedometer 210 with low accuracy, and thus the control flag 402 indicates low accuracy. It is “Low” and is “High” indicating high accuracy after the Doppler laser 110 is activated.
  • step S307 the synthesis processing of the captured images (step S307) will be described. If the speed of the vehicle 140 is accurately detected, one line data (measurement data of the measurement area) captured by the line camera 120 whose image capturing timing is controlled by the speed information is combined (joined) to obtain an accurate result. 2D images can be reproduced.
  • FIG. 5 shows an example of a synthesized two-dimensional image. This image represents a situation in which the lateral side of the vehicle 140 is imaged.
  • FIG. 5A shows a two-dimensional image 510 in which the 1-line data (imaging data 403) of FIG. 4 is directly combined.
  • the area 501 is an area imaged in “control mode 1” in which the line camera is controlled by the speed signal of the low-speed speedometer 210.
  • “Low” indicating low accuracy is added to the 1-line data as the control flag 402.
  • the area 502 is an area imaged in the “control mode 2” in which the line camera is controlled by the speed signal of the Doppler laser 110 with high accuracy.
  • “High” indicating high accuracy is attached to the 1-line data as the control flag 402.
  • the two-dimensional image will expand or contract from the actual one.
  • the scan rate is high, the scan interval becomes narrow, and an image in which the same portion is included in adjacent lines is captured, so that the image becomes an extended two-dimensional image.
  • the scan rate is slow, the scan interval becomes wide, and there are some parts that are not photographed, so the image becomes a contracted two-dimensional image.
  • the speed signal of the low-accuracy speedometer 210 since the speed signal of the low-accuracy speedometer 210 is slower than the actual traveling speed of the vehicle, the speed signal of the low-accuracy speedometer 210 has a slower estimated scan rate In 501, the image is a reduced two-dimensional image.
  • the case where the low-accuracy speedometer 210 measures a speed slower than the actual speed is described.
  • the measurement accuracy of the low-accuracy speedometer 210 is low, an actual numerical value is obtained. It is also possible that faster speeds are measured.
  • FIG. 6 is a conceptual diagram in which the speed signal of the low-accuracy speedometer 210 and the speed signal of the Doppler laser 110 are graphed.
  • the vertical axis represents speed (m / sec) and the horizontal axis represents time (sec).
  • a dotted line 601 that is the speed signal of the low-accuracy speedometer 210 and a solid line 602 that is the speed signal of the Doppler laser 110 represent the speed signal 405 from the low-accuracy speedometer and the speed signal 406 from the Doppler laser in FIG. Corresponds to what is plotted.
  • control mode 1 and the control mode 2 are switched at the timing of the vertical line 603, and the image acquired in the control mode 1 is the area 501 in FIG. 5A and the image acquired in the control mode 2 is the area. It corresponds to 502. As described above, the two-dimensional image of the area 501 is distorted.
  • the velocity v2 (t) in the control mode 1 is estimated as the value of the highly accurate velocity signal 406 from the Doppler laser at the timing when the control mode 1 is switched to the control mode 2. There is a way.
  • the scale signal in the traveling direction (x direction) of the area 501 in FIG. 5A is corrected using the estimated speed signal from the Doppler laser as the true vehicle speed, a more accurate two-dimensional image 520 is obtained as shown in FIG. 5B. Is obtained.
  • the scale of the vehicle body in the moving direction (x direction) can be similarly corrected for a three-dimensional stereoscopic image.
  • the speed signal 405 from the low-accuracy speedometer 210 is slower than the actual speed, the scan rate may slow down, and the resolution of the corrected image may decrease. Therefore, it is desirable to adjust the measurement error of the low-accuracy speedometer so that it is shifted to the higher speed.
  • a high-precision two-dimensional image can be obtained using a line camera. It can be obtained without image loss.
  • the two-dimensional image can be stored in the storage device of the control device 130 or can be displayed on the image monitor which is an output device, and the user can perform inspection work using it. Alternatively, it is also possible to check the image data using artificial intelligence (AI) or the like.
  • AI artificial intelligence
  • one line data is acquired in the direction perpendicular to the moving direction of the measured object, and the data is combined to obtain three-dimensional shape information. It is possible.
  • the low-accuracy speedometer 210 is used has been described, but this is sufficient as long as the speed can be measured, and the measuring means is not limited.
  • a mechanical speedometer or a magnetic sensor may be used to detect the rotation speed of the rotating shaft of the vehicle.
  • a signal from a speedometer included in the vehicle itself may be used.
  • FIG. 7 shows another embodiment. This embodiment corresponds to the embodiment 1 shown in FIG. 2 with one low-precision speedometer 210 omitted.
  • the process when the vehicle 140 moves in the direction of the arrow 150R is the same as that in the first embodiment.
  • the Doppler laser 110 is arranged in front of the line camera 120 because there is no low-precision speedometer 210 on that side.
  • the Doppler laser 110 is always activated, and when the vehicle 140 moves in the direction of the arrow 150L, the high-precision two-dimensional image is acquired by operating in the "control mode 2" from the beginning.
  • control device 130 activates both the low-accuracy speedometer 210 and the Doppler laser 110 in the initial state, but does not activate the line camera 120. Then, the line camera 120 is activated when the speed information of the vehicle 140 is measured by the low-accuracy speedometer 210 or the Doppler laser 110.
  • the Doppler laser 110 needs to be activated at all times, but one arrangement is sufficient for the same effect as in the first embodiment. Further, in the second embodiment, since only one low-accuracy speedometer 210 is required, there is a cost reduction effect. In addition, if an optical sensor or the like for detecting only the approach of the vehicle 140 is separately arranged in front of the Doppler laser 110 (to the right in the x-axis) and the Doppler laser 110 is activated by a signal from the optical sensor, the Doppler laser 110 can be activated. The laser 110 may not always be activated.
  • the present invention can be used for inspecting the appearance of a vehicle or the like.
  • Vehicle inspection device 100 Doppler laser 110, line camera 120, control device 130, vehicle 140, low-accuracy speedometer 210

Abstract

The present invention makes it possible to automatically perform an appearance inspection of a vehicle moving in two directions with minimal increase in cost. One preferred aspect of the present invention is a vehicle inspection device comprising a first speed measurement means, a second speed measurement means, a one-dimensional sensor, and a control device, wherein the one-dimensional sensor measures a moving vehicle a plurality of times along a direction intersecting the moving direction and obtains inspection information including two-or-more-dimensional information on the basis of the measurement result. In this device, the inspection information can be obtained both when the vehicle moves in a first direction and when the vehicle moves in a second direction opposite to the first direction, and the second speed measurement means has higher accuracy than the first speed measurement means. If the speed information of the vehicle is not measured by the second speed measurement means and is measured by the first speed measurement means, the control device performs control in a first control mode in which the measurement timing of the one-dimensional sensor is controlled on the basis of the speed information obtained by the first speed measurement means. If the speed information of the vehicle is measured by the second speed measurement means, the control device performs control in a second control mode in which the measurement timing of the one-dimensional sensor is controlled on the basis of the speed information obtained by the second speed measurement means.

Description

車両点検装置および方法Vehicle inspection apparatus and method
 本発明は、車両の外観を検査する技術に関わる。 The present invention relates to a technique for inspecting the appearance of a vehicle.
 従来から装置の外観を種々のセンサで測定し、装置の維持管理に役立てようとする技術がある。 Conventionally, there is a technology that measures the appearance of the device with various sensors and tries to utilize it for the maintenance of the device.
 例えば、特許文献1には、複数のセンサを車両進行方向に対して直交する方向に一列に配置してなるラインカメラを用い、ラインカメラで車両底面を撮影することで、二次元センサ撮影で発生していた画面端の歪みをなくし、小型化も実現できるという技術が開示されている。 For example, in Patent Document 1, a line camera in which a plurality of sensors are arranged in a line in a direction orthogonal to the traveling direction of the vehicle is used, and the bottom surface of the vehicle is photographed by the line camera. A technique has been disclosed in which the distortion at the screen edge, which has been performed, can be eliminated and the size can be reduced.
 また、特許文献2には、入庫した車両を位置センサに基づき定位置に停止させ、カメラによって車両のバネを撮影し、バネの長さから調整用メンテナンスガイダンスを出力するという技術が開示されている。 In addition, Patent Document 2 discloses a technique in which a vehicle that has been parked is stopped at a fixed position based on a position sensor, a spring of the vehicle is photographed by a camera, and a maintenance guidance for adjustment is output from the length of the spring. .
特開2009-10906号公報JP, 2009-10906, A 特開2002-87256号公報JP-A-2002-87256
 鉄道車両の安全な運用を図るため、鉄道車両が車庫を出発した時点と、帰着した時点の外観検査を行って変化を検出し、例えば差分を抽出することにより、鉄道車両の外観の定点観測が可能となる。外観検査のためには、例えばラインカメラ(ラインセンサカメラ、ラインスキャンカメラ等ともいう)による写真撮影や、光切断法を用いる光切断カメラや、レーザ光による三次元計測法の利用が考えられる。 In order to ensure safe operation of railway vehicles, a fixed-point observation of the appearance of railway vehicles can be performed by performing a visual inspection at the time when the railway vehicle leaves the garage and at the time of returning to detect changes, for example, by extracting the difference. It will be possible. For visual inspection, for example, it is conceivable to use a line camera (also referred to as a line sensor camera, a line scan camera, etc.) for taking a photograph, a light cutting camera using a light cutting method, or a three-dimensional measurement method using laser light.
 車両外観の定点観測の省力化を図るためには、鉄道車両が車庫を出発した時点と、帰着した時点に車両を停止させることなく、人手を介さずに検査が行なえることが理想的である。 In order to save labor for fixed-point observation of vehicle appearance, it is ideal to be able to perform inspections without human intervention at the time when a railroad vehicle leaves the garage and when it returns to the garage. .
 ラインカメラによる撮像は、一列に配列されたセンサ(ラインセンサ)により画像を連続的に取得することで、所定の面の画像を得るという、スキャナーやコピー機と同じ原理の撮像方式である。ラインカメラは鮮明な2次元画像(2次元平面画像)を得るのに好適である。固定位置にあるラインセンサが一定間隔のタイミングで撮像する場合、車両が一定速度で移動していれば、画像を合成するだけで歪みの無い2次元画像が得られる。ただし、車両の速度が一定ではない場合には、画像が歪んでしまう。 Imaging with a line camera is an imaging method with the same principle as a scanner or copier, in which an image of a predetermined surface is obtained by continuously acquiring images with sensors (line sensors) arranged in a row. The line camera is suitable for obtaining a clear two-dimensional image (two-dimensional plane image). When the line sensor at a fixed position captures images at regular intervals, if the vehicle is moving at a constant speed, a two-dimensional image without distortion can be obtained only by combining the images. However, if the vehicle speed is not constant, the image will be distorted.
 このため、車両が移動している状態で撮影や計測を行なうためには、高精度な車両の移動速度の情報を得、ラインカメラによる撮像タイミングの制御、あるいは画像合成時の補正を行なう必要がある。この時、撮影結果の画像の歪みは、車両の移動速度の計測精度に依存する。 Therefore, in order to perform shooting and measurement while the vehicle is moving, it is necessary to obtain highly accurate information on the moving speed of the vehicle, control the image capturing timing by the line camera, or perform correction during image composition. is there. At this time, the distortion of the captured image depends on the measurement accuracy of the moving speed of the vehicle.
 光切断カメラによる3次元計測は、ライン状のレーザ光を車両に照射し、その反射光から三角測量に基づいて被測定物の3次元形状(3次元立体像)を得ることができる。測定時にはライン状のレーザ光に対して、車両を相対的に移動させることで、車両全体の3次元形状を取得する。また、ライン状のレーザ光の代わりに、スポット状のレーザを一方向にスキャンしてもよい。光切断カメラを用いた撮影においても、ラインカメラと同様に、歪みの無い画像取得のためには撮影間隔を均一にする必要があり、車両の移動速度の情報が必要である。 3D measurement with a light-section camera allows you to irradiate a vehicle with a linear laser beam and obtain the 3D shape (3D image) of the object to be measured based on triangulation from the reflected light. At the time of measurement, the three-dimensional shape of the entire vehicle is acquired by moving the vehicle relative to the linear laser light. Further, instead of the line-shaped laser light, a spot-shaped laser may be scanned in one direction. Similarly to the line camera, even in the case of photographing using the light-section camera, it is necessary to make the photographing intervals uniform in order to obtain an image without distortion, and information on the moving speed of the vehicle is necessary.
 本明細書等では、ラインカメラや光切断カメラ等、被測定物をその移動方向と交差する方向に沿って複数回測定し、測定結果に基づいて2次元以上の測定情報(2次元画像や3次元形状情報)を得るための撮像装置や検出装置を、「1次元センサ」と呼ぶことにする。1次元センサで得られる情報は厳密には1次元ではない場合があるが、その測定方向に着目した便宜的な名称である。また上記測定する方向(被測定物の移動方向と交差する方向)を「測定方向」と、1回の測定で測定した領域を「測定領域」と呼ぶことにする。以下の実施例では、1次元センサとしてラインカメラを例にして説明する。 In this specification and the like, an object to be measured, such as a line camera or a light-section camera, is measured a plurality of times along a direction intersecting the moving direction, and two-dimensional or more measurement information (two-dimensional image or 3 An image pickup device and a detection device for obtaining (dimensional shape information) will be referred to as a "one-dimensional sensor". The information obtained by the one-dimensional sensor may not be one-dimensional in a strict sense, but it is a convenient name focusing on the measurement direction. Further, the direction of measurement (direction intersecting with the moving direction of the object to be measured) will be referred to as "measurement direction", and the region measured by one measurement will be referred to as "measurement region". In the following embodiments, a line camera will be described as an example of the one-dimensional sensor.
 物体の移動速度を高精度に測定する装置として、ドップラーレーザ(レーザドップラー速度計、ドップラーセンサ等ともいう)が知られている。ドップラーレーザは、測定物にレーザを照射し、測定物からの散乱光を検出する。散乱光は測定物の移動により発生するドップラー効果により周波数シフトした光となり、周波数シフト成分を信号処理することにより測定物の速度を高精度に算出する。 A Doppler laser (also called a laser Doppler velocity meter, Doppler sensor, etc.) is known as a device that measures the moving speed of an object with high accuracy. The Doppler laser irradiates the measurement object with laser light and detects scattered light from the measurement object. The scattered light becomes light whose frequency is shifted due to the Doppler effect generated by the movement of the measured object, and the speed of the measured object is calculated with high accuracy by processing the frequency-shifted component as a signal.
 図8は、ドップラーレーザでラインカメラの撮影タイミングを制御する撮影装置の例を示した図である。 FIG. 8 is a diagram showing an example of a photographing device that controls the photographing timing of a line camera with a Doppler laser.
 鉄道車両を進行方向に垂直方向(横方向)から見た模式図としている。説明の便宜を図るためのみの目的で、車両140の進行方向(一般に鉄道車両の長手方向)をx、地面に垂直方向をz、xとzに垂直方向(一般に鉄道車両の幅方向)をyとして座標系を定義しておく。この例では、測定面は車両の横面(xz面)であり、測定方向はy方向となる。 It is a schematic view of the railway car seen from the vertical direction (lateral direction) to the traveling direction. For convenience of description only, the traveling direction of the vehicle 140 (generally the longitudinal direction of the railway vehicle) is x, the direction perpendicular to the ground is z, and the direction perpendicular to x and z (generally the width direction of the railway vehicle) is y. The coordinate system is defined as. In this example, the measurement surface is the lateral surface (xz surface) of the vehicle, and the measurement direction is the y direction.
 この構成では、高精度なドップラーレーザ110Lをラインカメラ120からx軸方向にズラして配置する。ドップラーレーザ110L,ラインカメラ120は、制御装置130で制御されている。この場合、ドップラーレーザ110Lは常時起動しておく。既に述べたように、鉄道車両が車庫を出発した時点と、帰着した時点の外観検査を行おうとする場合、ラインカメラ(1次元センサ)で撮像される車両は、車庫から出る方向と車庫に入る方向のいずれかに移動する。この時、ドップラーセンサ110Lで車両の速度を計測してから、ラインカメラ120の撮影タイミングを制御するため、車両140が通過する際には、ドップラーセンサ110Lで先に車両140の車速を計測し始め、その後しばらくしてから車両140がラインカメラ120上を通過するような位置関係にする。 In this configuration, the high-precision Doppler laser 110L is arranged so as to be shifted from the line camera 120 in the x-axis direction. The Doppler laser 110L and the line camera 120 are controlled by the controller 130. In this case, the Doppler laser 110L is always activated. As described above, when an appearance inspection is performed at the time when a railroad vehicle leaves the garage and when it returns, the vehicle imaged by the line camera (one-dimensional sensor) enters the garage and enters the garage. Move in one of the directions. At this time, since the speed of the vehicle is measured by the Doppler sensor 110L, the shooting timing of the line camera 120 is controlled. Therefore, when the vehicle 140 passes, the vehicle speed of the vehicle 140 is first measured by the Doppler sensor 110L. After a while, the positional relationship is set such that the vehicle 140 passes over the line camera 120.
 しかし、この方式では、装置の両方向から列車が通過するため、例えば図8の通り車両140が右方向150Rに通過することを想定した配置とすると、左方向150Lに車両140が通過する場合には車両140がラインカメラ120上を先に通過してしまい、その場合は車両140の先頭部分の撮影が行えないという課題があった。 However, in this method, since trains pass from both directions of the device, assuming that the arrangement is such that the vehicle 140 passes in the right direction 150R as shown in FIG. 8, when the vehicle 140 passes in the left direction 150L, The vehicle 140 passes over the line camera 120 first, and in that case, there is a problem that the top portion of the vehicle 140 cannot be photographed.
 この課題の解決策の一つとして図1の装置構成例が考えられる。この構成では、高精度なドップラーレーザ110L,110Rをラインカメラ120の左右両側に配置する。 The device configuration example in Fig. 1 can be considered as one of the solutions to this problem. In this configuration, high-precision Doppler lasers 110L and 110R are arranged on both the left and right sides of the line camera 120.
 ドップラーレーザ110L,110R、ラインカメラ120は、制御装置130で制御されている。この場合ドップラーレーザ110L,110Rは常時起動しておく。 The Doppler lasers 110L and 110R and the line camera 120 are controlled by the control device 130. In this case, the Doppler lasers 110L and 110R are always activated.
 車両140が矢印150Rの方向に移動してくる場合には、ドップラーレーザ110Lで速度を計測し、速度信号によってラインカメラ120の撮像タイミングを制御する。車両140が矢印150Lの方向に移動してくる場合には、ドップラーレーザ110Rで速度を計測し、同様の処理を行なう。 When the vehicle 140 moves in the direction of the arrow 150R, the speed is measured by the Doppler laser 110L and the imaging timing of the line camera 120 is controlled by the speed signal. When the vehicle 140 moves in the direction of the arrow 150L, the speed is measured by the Doppler laser 110R and the same processing is performed.
 図1のように構成すれば、車両通過時に左右いずれかのドップラーレーザ110で速度が計測できたら、ラインカメラ120の制御を行うことができるので、出庫時および入庫時双方の測定に対応できる。 With the configuration shown in FIG. 1, if the speed can be measured by either the left or right Doppler laser 110 when the vehicle is passing, the line camera 120 can be controlled, so that both measurements at the time of leaving and entering can be supported.
 しかし、この方式では、ドップラーレーザ110を2つ使用する必要がある。高精度のドップラーレーザは、高価なため装置コストが増加する。また、ドップラーレーザのレーザ出力は比較的大きいため、レーザを常時照射する場合は消費電力が大きくコストがかかる。 However, this method requires the use of two Doppler lasers 110. High-precision Doppler lasers are expensive and therefore increase equipment cost. Moreover, since the laser output of the Doppler laser is relatively large, power consumption is large and cost is high when the laser is constantly irradiated.
 そこで本発明の目的は、2方向に移動する車両の外観検査のために、コストの増加を抑制しつつ、自動的に行いうる技術を提供することにある。 Therefore, an object of the present invention is to provide a technique that can automatically perform a visual inspection of a vehicle moving in two directions while suppressing an increase in cost.
 本発明の好ましい一側面は、第1の速度計測手段、第2の速度計測手段、1次元センサ、および制御装置を備え、1次元センサが、移動する車両をその移動方向と交差する方向に沿って複数回測定し、測定結果に基づいて2次元以上の情報を含む点検情報を得る車両点検装置である。この装置では、点検情報は、車両が第1の方向に移動する場合と、第1の方向と逆向きの第2の方向に移動する場合の双方で取得可能であり、第2の速度計測手段は第1の速度計測手段よりも高精度である。第2の速度計測手段で車両の速度情報が測定されず、かつ、第1の速度計測手段で車両の速度情報が測定される場合には、制御装置は、第1の速度計測手段で得た速度情報により1次元センサの測定タイミングを制御する第1の制御モードで制御する。第2の速度計測手段で車両の速度情報が測定される場合には、制御装置は、第2の速度計測手段で得た速度情報により1次元センサの測定タイミングを制御する第2の制御モードで制御する。 A preferred aspect of the present invention includes a first speed measuring unit, a second speed measuring unit, a one-dimensional sensor, and a control device, and the one-dimensional sensor extends along a direction intersecting a moving vehicle with a moving direction of the moving vehicle. It is a vehicle inspection device that obtains inspection information including two-dimensional or more information based on the measurement result by performing multiple measurements. In this device, the inspection information can be acquired both when the vehicle moves in the first direction and when the vehicle moves in the second direction opposite to the first direction, and the second speed measuring means. Is more accurate than the first speed measuring means. When the speed information of the vehicle is not measured by the second speed measuring means and the speed information of the vehicle is measured by the first speed measuring means, the control device is obtained by the first speed measuring means. The control is performed in the first control mode in which the measurement timing of the one-dimensional sensor is controlled by the speed information. When the speed information of the vehicle is measured by the second speed measuring means, the control device is in the second control mode in which the measurement timing of the one-dimensional sensor is controlled by the speed information obtained by the second speed measuring means. Control.
 本発明の好ましい他の一側面は、第1の速度計測手段、第2の速度計測手段、および1次元センサを用い、1次元センサが、移動する車両をその移動方向と交差する方向に沿って複数回測定し、測定結果に基づいて2次元以上の情報を含む点検情報を得る車両点検方法である。点検情報は、車両が第1の方向に移動する場合と、第1の方向と逆向きの第2の方向に移動する場合の双方で取得可能である。また、第2の速度計測手段は第1の速度計測手段よりも高精度である。この方法は、第1の速度計測手段を起動し、第2の速度計測手段および1次元センサを起動しない状態におく第1のステップと、第1の速度計測手段が車両の速度を検出することを契機に、第2の速度計測手段および1次元センサを起動する第2のステップと、第1の速度計測手段で得た速度情報を記録するとともに、第1の速度計測手段で得た速度情報により1次元センサの測定タイミングを制御して測定を行なう、第1の制御モードを実行する第3のステップと、第2の速度計測手段が車両の速度を検出することを契機に、第1の速度計測手段で得た速度情報および第2の速度計測手段で得た速度情報を記録するとともに、第2の速度計測手段で得た速度情報により1次元センサの測定タイミングを制御して測定を行なう、第2の制御モードを実行する第4のステップと、を実行する。 Another preferable aspect of the present invention uses a first speed measuring unit, a second speed measuring unit, and a one-dimensional sensor, and the one-dimensional sensor is arranged along a direction intersecting a moving vehicle with a moving direction of the moving vehicle. This is a vehicle inspection method that obtains inspection information including two-dimensional or more information based on the measurement result by measuring a plurality of times. The inspection information can be acquired both when the vehicle moves in the first direction and when the vehicle moves in the second direction opposite to the first direction. Further, the second speed measuring means has higher accuracy than the first speed measuring means. This method includes a first step of activating the first speed measuring means and keeping the second speed measuring means and the one-dimensional sensor inactive, and detecting the speed of the vehicle by the first speed measuring means. The second step of activating the second speed measuring means and the one-dimensional sensor, the speed information obtained by the first speed measuring means, and the speed information obtained by the first speed measuring means are recorded. With the third step of executing the first control mode in which the measurement timing of the one-dimensional sensor is controlled by the first measurement mode and the second speed measuring means detecting the speed of the vehicle, the first step is performed. The speed information obtained by the speed measuring means and the speed information obtained by the second speed measuring means are recorded, and the measurement information of the one-dimensional sensor is controlled by the speed information obtained by the second speed measuring means to perform the measurement. , The second control mode Performing a fourth step of performing a de, a.
 さらに具体的な方法の例では、第1の制御モードおよび第2の制御モードで測定した測定結果に基づいて2次元以上の情報を含む点検情報である、2次元平面画像または3次元立体像の少なくとも一つを得る第5のステップを実行する。第5のステップでは、第1の制御モードおよび第2の制御モードで測定した、第1の速度計測手段で得た速度情報および第2の速度計測手段で得た速度情報を用いて、2次元平面画像または3次元立体像の少なくとも一つの、車両の移動方向の縮尺を補正する。特に第1の制御モードでの測定に基づく像を補正することが望ましい。 In a more specific example of the method, a two-dimensional plane image or a three-dimensional stereoscopic image, which is inspection information including two-dimensional or more information based on the measurement results measured in the first control mode and the second control mode, is used. Perform a fifth step of obtaining at least one. In the fifth step, two-dimensional measurement is performed using the speed information obtained by the first speed measuring means and the speed information obtained by the second speed measuring means, which are measured in the first control mode and the second control mode. At least one of the two-dimensional image or the three-dimensional image is corrected in the moving direction of the vehicle. In particular, it is desirable to correct the image based on the measurement in the first control mode.
 2方向に移動する車両の外観検査を、コストの増加を抑制しつつ車両全体に対して自動的に行ないうる技術を提供することができる。 -It is possible to provide a technology capable of automatically performing visual inspection of a vehicle moving in two directions for the entire vehicle while suppressing an increase in cost.
ドップラーレーザをラインカメラの左右に配置した例を示す模式図。The schematic diagram which shows the example which has arrange | positioned the Doppler laser on the right and left of the line camera. 第1の実施例の車両点検装置を説明する模式図。The schematic diagram explaining the vehicle inspection apparatus of 1st Example. 車両点検装置の処理シーケンスを説明するフロー図。The flow figure explaining the processing sequence of a vehicle inspection device. 制御装置が記録する撮像データのフォーマットの一例を示す表図。FIG. 6 is a table showing an example of a format of imaging data recorded by a control device. 合成した2次元画像の例を示すイメージ図。The image figure which shows the example of the synthesized two-dimensional image. 低精度の速度計の速度信号とドップラーレーザの速度信号とをグラフ化した概念図。The conceptual diagram which plotted the speed signal of a low-precision speedometer and the speed signal of a Doppler laser. 第2の実施例の車両点検装置を説明する模式図。The schematic diagram explaining the vehicle inspection apparatus of the 2nd Example. ドップラーレーザとラインカメラを配置した撮影装置の模式図。The schematic diagram of the imaging device which arrange | positioned the Doppler laser and the line camera.
 実施の形態について、図面を用いて詳細に説明する。ただし、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。本発明の思想ないし趣旨から逸脱しない範囲で、その具体的構成を変更し得ることは当業者であれば容易に理解される。 Embodiments will be described in detail with reference to the drawings. However, the present invention should not be construed as being limited to the description of the embodiments below. It is easily understood by those skilled in the art that the specific configuration can be changed without departing from the idea or the spirit of the present invention.
 本明細書では、同一部分又は同様な機能を有する部分には同一の符号を異なる図面間で共通して用い、重複する説明は省略することがある。 In this specification, the same reference numerals are commonly used in different drawings for the same portion or a portion having a similar function, and redundant description may be omitted.
 同一あるいは同様な機能を有する要素が複数ある場合には、同一の符号に異なる添字を付して説明する場合がある。ただし、複数の要素を区別する必要がない場合には、添字を省略して説明する場合がある。 If there are multiple elements that have the same or similar functions, the same code may be explained with different subscripts. However, when it is not necessary to distinguish a plurality of elements, the description may be omitted with the subscript omitted.
 本明細書等における「第1」、「第2」、「第3」などの表記は、構成要素を識別するために付するものであり、必ずしも、数、順序、もしくはその内容を限定するものではない。また、構成要素の識別のための番号は文脈毎に用いられ、一つの文脈で用いた番号が、他の文脈で必ずしも同一の構成を示すとは限らない。また、ある番号で識別された構成要素が、他の番号で識別された構成要素の機能を兼ねることを妨げるものではない。 The notations such as “first”, “second”, and “third” in this specification and the like are used to identify components, and necessarily limit the number, order, or content thereof. is not. Further, the numbers for identifying the constituents are used for each context, and the numbers used in one context do not always indicate the same configuration in other contexts. Further, it does not prevent a component identified by a certain number from having a function of a component identified by another number.
 図面等において示す各構成の位置、大きさ、形状、範囲などは、発明の理解を容易にするため、実際の位置、大きさ、形状、範囲などを表していない場合がある。このため、本発明は、必ずしも、図面等に開示された位置、大きさ、形状、範囲などに限定されない。 The position, size, shape, range, etc. of each component shown in the drawings, etc. may not represent the actual position, size, shape, range, etc., in order to facilitate understanding of the invention. Therefore, the present invention is not necessarily limited to the position, size, shape, range, etc. disclosed in the drawings and the like.
 本明細書において単数形で表される構成要素は、特段文脈で明らかに示されない限り、複数形を含むものとする。 In the present specification, a component expressed in the singular form includes the plural form unless clearly indicated otherwise.
 以下で詳細に説明する実施例では、高精度な速度センサ前を車両が通過するまでラインカメラ制御に必要な車両速度を計測できないため、車両先頭部分はラインカメラ制御ができないという課題を低コストで克服し、速度計で計測した車両の移動速度に応じてカメラの撮像タイミングを制御し均一な写真を撮影する例を提案する。実施例の技術により、自動検査に必要な均一な2次元画像が得られる。 In the embodiment described in detail below, the vehicle speed required for line camera control cannot be measured until the vehicle passes in front of the high-accuracy speed sensor. We propose an example of overcoming and controlling the imaging timing of the camera according to the moving speed of the vehicle measured by the speedometer to take a uniform picture. The technique of the embodiment provides a uniform two-dimensional image required for automatic inspection.
 図2は、第1の実施例の車両点検装置を説明する模式図である。説明の便宜を図るためのみの目的で、車両140の進行方向(一般に鉄道車両の長手方向)をx、地面に垂直方向をz、xとzに垂直方向(一般に鉄道車両の幅方向)をyとして座標系を定義しておく。本図は、車両140をz方向から見た模式図としている。 FIG. 2 is a schematic diagram illustrating the vehicle inspection device according to the first embodiment. For convenience of description only, the traveling direction of the vehicle 140 (generally the longitudinal direction of the railway vehicle) is x, the direction perpendicular to the ground is z, and the direction perpendicular to x and z (generally the width direction of the railway vehicle) is y. The coordinate system is defined as. This figure is a schematic view of the vehicle 140 viewed from the z direction.
 本実施例の車両点検装置100は、高精度なドップラーレーザ110を一つだけ用い、進行方向の両側に低精度な速度計210L,210Rを配置している。ドップラーレーザ110、低精度な速度計210L,210R、ラインカメラ120は、制御装置130で制御されている。ラインカメラ120による撮像方向(測定方向)は、車両の進行方向(移動方向)であるx方向に交差し、この例ではy方向となる。車両140のy方向に細長く分割された領域(測定領域)のイメージが、ラインカメラのラインセンサによる1回の撮像で取得されることになる。 The vehicle inspection device 100 of the present embodiment uses only one high-precision Doppler laser 110, and low- precision speedometers 210L and 210R are arranged on both sides in the traveling direction. The Doppler laser 110, the low- accuracy speedometers 210L and 210R, and the line camera 120 are controlled by the controller 130. The imaging direction (measurement direction) by the line camera 120 intersects the x direction, which is the traveling direction (movement direction) of the vehicle, and is the y direction in this example. An image of a region (measurement region) that is divided into long and narrow parts in the y direction of the vehicle 140 is acquired by one-time imaging by the line sensor of the line camera.
 制御装置130は、処理装置、記憶装置、入力装置、および出力装置を備える、例えばパーソナルコンピュータ(PC)を用いることができる。この場合、実施例で説明する各種の処理は、記憶装置に格納されたソフトウェアを処理装置が実行することで実現される。制御装置の構成は、単体のコンピュータで構成してもよいし、あるいは、入力装置、出力装置、処理装置、記憶装置の任意の部分が、ネットワークで接続された他のコンピュータで構成されてもよい。また、ソフトウェアで構成した機能と同等の機能は、FPGA(Field Programmable Gate Array)、ASIC(Application Specific Integrated Circuit)などのハードウエアでも実現できる。 The control device 130 may be, for example, a personal computer (PC) including a processing device, a storage device, an input device, and an output device. In this case, various processes described in the embodiment are realized by the processing device executing software stored in the storage device. The control device may be configured by a single computer, or any part of the input device, the output device, the processing device, and the storage device may be configured by another computer connected via a network. . Moreover, the function equivalent to the function configured by software can be realized by hardware such as FPGA (Field Programmable Gate Array) and ASIC (Application Specific Integrated Circuit).
 低精度な速度計210の例としては、超音波ドップラー速度計がある。超音波ドップラー速度計の測定原理は、ドップラーレーザと同様にドップラー効果を用いるが、使用する波が超音波となる。超音波は光に比べ波長が長く、減衰が大きく、測定値に温度や気圧の影響がある等により、精度はドップラーレーザに比べて劣るが比較的安価な装置である。超音波ドップラー速度計は、ドップラーレーザに比べて常時動作させても運用コストが比較的安い。 An example of the low-precision speedometer 210 is an ultrasonic Doppler speedometer. The measurement principle of the ultrasonic Doppler velocimeter uses the Doppler effect as in the case of the Doppler laser, but the waves used are ultrasonic waves. Ultrasonic waves have a longer wavelength than light, are greatly attenuated, and are affected by temperature and atmospheric pressure on measured values, and thus are inferior in accuracy to Doppler lasers, but are relatively inexpensive devices. The ultrasonic Doppler velocimeter has a relatively low operating cost compared to the Doppler laser even if it is constantly operated.
 図3は、車両点検装置100の処理シーケンスを説明するフロー図である。最初、制御装置130の制御により、低精度な速度計210L,210Rを常時起動しておく。一方、ドップラーレーザ110は、制御装置130からの指示があるまではレーザを放射しない状態(停止あるいはスタンバイ状態)である(ステップS301)。精度の点からは、スタンバイ(ウォームアップ)状態が好ましい。また、ラインカメラ120もオフ状態しておく。 FIG. 3 is a flowchart illustrating a processing sequence of the vehicle inspection device 100. First, the low- precision speedometers 210L and 210R are always activated under the control of the control device 130. On the other hand, the Doppler laser 110 is in a state where it does not emit laser (stop or standby state) until instructed by the control device 130 (step S301). In terms of accuracy, the standby (warm-up) state is preferable. The line camera 120 is also turned off.
 車両140が図2の矢印150Rの方向に移動してくる場合には、最初に低精度な速度計210Lの測定可能範囲に進入し、これが速度を検出する(ステップS302)。検出した速度信号は、制御装置130に送られる。また、このとき低精度な速度計210L,210Rのいずれが速度信号を検出したかを識別することにより、制御装置130は車両の進行方向を判別する。 When the vehicle 140 moves in the direction of the arrow 150R in FIG. 2, it first enters the measurable range of the low-accuracy speedometer 210L, which detects the speed (step S302). The detected speed signal is sent to the control device 130. At this time, the control device 130 determines the traveling direction of the vehicle by identifying which of the low- accuracy speedometers 210L and 210R has detected the speed signal.
 制御装置130は、低精度な速度計210Lの速度検出を契機にして、ドップラーレーザ110とラインカメラ120を起動する(ステップS303)。これにより、ドップラーレーザ110はレーザの放射を開始する。 The control device 130 activates the Doppler laser 110 and the line camera 120 upon detection of the speed of the low-accuracy speedometer 210L (step S303). This causes the Doppler laser 110 to start emitting the laser.
 その後、車両点検装置100は、制御装置130の制御により「制御モード1」で動作する。制御モード1では、低精度な速度計210の速度信号を記録する。また、低精度な速度計210の速度信号に基づいて、ラインカメラ120の撮像タイミング(例えばスキャンレート)を制御し、車両140の撮像を行なう(ステップS304)。撮像箇所は車両140の任意の部分を選択できるが、例えば、車両の底面を撮像する。ラインカメラ120が撮像した撮像データは、制御装置130に送られ、記憶装置に保存される。 After that, the vehicle inspection device 100 operates in “control mode 1” under the control of the control device 130. In the control mode 1, the speed signal of the low speed speedometer 210 is recorded. Further, based on the speed signal of the low-accuracy speedometer 210, the imaging timing (for example, scan rate) of the line camera 120 is controlled to image the vehicle 140 (step S304). Although an arbitrary portion of the vehicle 140 can be selected as the image capturing location, for example, the bottom surface of the vehicle is captured. The image data captured by the line camera 120 is sent to the control device 130 and stored in the storage device.
 公知であるが、ラインカメラで撮像した対象物の移動方向分解能は、対象物の移動速度とラインセンサの最短スキャン周期に依存する。よって、ラインカメラを使用して2次元の画像を得るためには、車両の移動速度に応じて、スキャンレート(1ライン当たりの撮像にかかる時間)を調整する必要がある。本実施例では、制御モード1においては、低精度な速度計210の速度信号に基づいて、ラインカメラ120の撮像タイミングが制御されている。 As is well known, the moving direction resolution of the object imaged by the line camera depends on the moving speed of the object and the shortest scanning cycle of the line sensor. Therefore, in order to obtain a two-dimensional image using the line camera, it is necessary to adjust the scan rate (the time required to capture an image per line) according to the moving speed of the vehicle. In the present embodiment, in the control mode 1, the imaging timing of the line camera 120 is controlled based on the speed signal of the speedometer 210 with low accuracy.
 車両140がドップラーレーザ110の測定可能範囲まで到達すると、ドップラーレーザ110が速度の検出を開始する(ステップS305)。ドップラーレーザ110が検出した速度信号は、制御装置130に送られる。 When the vehicle 140 reaches the measurable range of the Doppler laser 110, the Doppler laser 110 starts speed detection (step S305). The speed signal detected by the Doppler laser 110 is sent to the control device 130.
 制御装置130は、ドップラーレーザ110の速度検出をトリガーにして、制御モード1から「制御モード2」に切り替える。制御モード2では、低精度な速度計210の速度信号およびドップラーレーザ110の速度信号を記録する。また、ドップラーレーザ110の速度信号に基づいて、ラインカメラ120の撮像タイミングを制御し、車両の撮像を行なう(ステップS306)。ラインカメラ120が撮像した撮像データは、制御装置130に送られ、記憶装置に保存される。なお、ドップラーレーザ110の速度検出直後に制御モードを切り替えるのではなく、所定時間を置いてから切り替えて、ドップラーレーザ110が安定して測定できるようにしてもよい。 The control device 130 switches from the control mode 1 to the “control mode 2” by using the speed detection of the Doppler laser 110 as a trigger. In the control mode 2, the low-accuracy speed signal of the speedometer 210 and the speed signal of the Doppler laser 110 are recorded. Further, based on the speed signal of the Doppler laser 110, the image pickup timing of the line camera 120 is controlled to pick up the image of the vehicle (step S306). The image data captured by the line camera 120 is sent to the control device 130 and stored in the storage device. The control mode may not be switched immediately after the speed of the Doppler laser 110 is detected, but may be switched after a predetermined time so that the Doppler laser 110 can perform stable measurement.
 車両140全体の画像を撮影し終わると、撮像した画像の合成処理を行なう(ステップS307:後に別途説明する)。撮影が終了するかどうかは、車両が通過すると低精度な速度計210の速度信号あるいはドップラーレーザ110の速度信号が無くなることにより判定できる。 When the image of the entire vehicle 140 has been captured, the captured images are combined (step S307: described later). Whether or not the photographing is completed can be determined by eliminating the low-accuracy speed signal of the speedometer 210 or the speed signal of the Doppler laser 110 when the vehicle passes.
 以上の説明は、車両140が矢印150Rの方向に移動してくる場合であるが、車両140が矢印150Lの方向に移動してくる場合には、低精度な速度計210Lの代わりに低精度な速度計210Rが動作することで、上記と同様の処理を行なう。 The above description is for the case where the vehicle 140 moves in the direction of the arrow 150R, but when the vehicle 140 moves in the direction of the arrow 150L, a low-accuracy speedometer 210L is used instead of the low-accuracy speedometer 210L. The same processing as above is performed by operating the speedometer 210R.
 以上の構成によれば、ドップラーレーザ110が車両140の速度を測定できない期間は、代わりに低精度な速度計210が車両の速度を測定し、ラインカメラ120の撮像タイミングを制御する。したがって、高価なドップラーレーザ110は1つだけで済み、また、ドップラーレーザ110のレーザ光は必要な期間のみ放射されるので、消費電力を低減できる。 According to the above configuration, during the period when the Doppler laser 110 cannot measure the speed of the vehicle 140, the low-accuracy speedometer 210 measures the speed of the vehicle instead and controls the imaging timing of the line camera 120. Therefore, only one expensive Doppler laser 110 is required, and the laser light of the Doppler laser 110 is emitted only for a necessary period, so that power consumption can be reduced.
 なお、既述のように、速度信号によってラインカメラの撮像タイミングを制御する代わりに、ラインカメラの撮像タイミングは一定としておき、撮像データと撮像時点の速度信号を関連付け、画像を合成する際の処理で対応することもできる。ただし、後者の手法では、想定される最大の速度に対応して撮像タイミングを設定しなければ、必要な分解能が得られない可能性がある。そのため、撮像のための消費電力や、撮像した画像を蓄積するための記憶容量のコストが増加する。本実施例では、速度信号によってラインカメラの撮像タイミングを制御する手法で説明を行なう。 As described above, instead of controlling the image pickup timing of the line camera by the speed signal, the image pickup timing of the line camera is kept constant, and the image data and the speed signal at the time of image pickup are associated with each other to process the image synthesis. You can also deal with. However, in the latter method, the required resolution may not be obtained unless the imaging timing is set in correspondence with the assumed maximum speed. Therefore, the power consumption for imaging and the cost of the storage capacity for accumulating the captured images increase. In this embodiment, a method of controlling the image pickup timing of the line camera by the speed signal will be described.
 図4は、制御装置130が記録する撮像データのフォーマットの一例である。識別情報401、制御フラグ402、撮像データ(データ本体あるいはそれを指定するアドレス)403、速度信号を取得した低精度の速度計の識別情報404、低精度の速度計からの速度信号405、ドップラーレーザからの速度信号406等の項目を含む。これに加え他の情報を追加しても良い。 FIG. 4 is an example of a format of image pickup data recorded by the control device 130. Identification information 401, control flag 402, imaging data (data body or address for specifying it) 403, identification information 404 of low-accuracy speedometer that has acquired the speed signal, speed signal 405 from low-accuracy speedometer, Doppler laser Items such as speed signal 406 from In addition to this, other information may be added.
 撮像データ403は、ラインカメラで撮像された1ラインデータずつ、識別情報401を付して格納される。識別情報の代わりに、あるいはこれに付加して、撮像時間を記録しても良い。 The imaged data 403 is stored with the identification information 401 attached to each line data captured by the line camera. The imaging time may be recorded instead of or in addition to the identification information.
 制御フラグ402は、撮像データ403が、低精度の速度計210の速度情報で制御されたラインカメラで撮像されたか(すなわち制御モード1によるデータ)、あるいは、ドップラーレーザ110の速度情報で制御されたラインカメラで撮像されたか(すなわち制御モード2によるデータ)、の区別を示す。 The control flag 402 is whether the image data 403 is imaged by a line camera controlled by the speed information of the low-speed speedometer 210 (that is, data in control mode 1) or controlled by the speed information of the Doppler laser 110. A distinction is made as to whether or not the image was taken by a line camera (that is, data according to control mode 2).
 速度信号405は低精度の速度計210で得られた速度信号であり、速度信号406はドップラーレーザ110で得られた速度信号である。低精度の速度計210は2つあるため、どちらの速度計かを示すための、低精度の速度計の識別情報404を付加している。識別情報404は、例えば右側(R)か左側(L)かの区別を示す。この情報に基づいて車両の進行方向を判別することができる。車両の進行方向は、2次元画像を合成する際に、測定領域の測定データをどちらの方向に繋げるか判定するため用いる。 The speed signal 405 is a speed signal obtained by the low-accuracy speedometer 210, and the speed signal 406 is a speed signal obtained by the Doppler laser 110. Since there are two low-accuracy speedometers 210, low-accuracy speedometer identification information 404 is added to indicate which speedometer. The identification information 404 indicates, for example, the right side (R) or the left side (L). The traveling direction of the vehicle can be determined based on this information. The traveling direction of the vehicle is used to determine in which direction the measurement data of the measurement region is connected when the two-dimensional images are combined.
 図3で説明したように、最初は低精度の速度計210だけが動作し、ドップラーレーザ110は動作していないので、ID001とID002のデータでは、ドップラーレーザからの速度信号406は「n/a(該当なし)」となっている。そして、ドップラーレーザからの速度信号406は「n/a(該当なし)」の間は、ラインカメラ120は低精度の速度計210の速度信号で制御されるので、制御フラグ402は低精度を示す「Low」であり、ドップラーレーザ110起動後は高精度を示す「High」になっている。 As described in FIG. 3, only the low-accuracy speedometer 210 operates initially and the Doppler laser 110 does not operate. Therefore, in the data of ID001 and ID002, the speed signal 406 from the Doppler laser is “n / a”. (Not applicable) ”. While the speed signal 406 from the Doppler laser is “n / a (not applicable)”, the line camera 120 is controlled by the speed signal of the speedometer 210 with low accuracy, and thus the control flag 402 indicates low accuracy. It is “Low” and is “High” indicating high accuracy after the Doppler laser 110 is activated.
 次に、撮像した画像の合成処理(ステップS307)について説明する。車両140の速度が正確に検出されていれば、その速度情報で撮像タイミングを制御されたラインカメラ120で撮像した1ラインデータ(測定領域の測定データ)を合成する(つなぎ合わせる)ことで、正確な2次元画像が再現できる。 Next, the synthesis processing of the captured images (step S307) will be described. If the speed of the vehicle 140 is accurately detected, one line data (measurement data of the measurement area) captured by the line camera 120 whose image capturing timing is controlled by the speed information is combined (joined) to obtain an accurate result. 2D images can be reproduced.
 しかしながら、低精度の速度計210による速度信号はドップラーレーザ110の速度信号より精度が低いため、図4に示したように、両者の値が異なる場合がある。 However, since the speed signal of the low-accuracy speedometer 210 has lower accuracy than the speed signal of the Doppler laser 110, the two values may be different as shown in FIG.
 図5に合成した2次元画像の例を示す。この画像は車両140の横側を撮像した状況をイメージしている。図5(a)は、図4の1ラインデータ(撮像データ403)をそのまま合成した2次元画像510を示している。ここで、領域501は、ラインカメラが低精度の速度計210の速度信号で制御されていた「制御モード1」で撮像された領域である。この領域では、1ラインデータには、低精度を示す「Low」が制御フラグ402として付されている。また、領域502は、ラインカメラが高精度のドップラーレーザ110の速度信号で制御されていた「制御モード2」で撮像された領域である。この領域では、1ラインデータには、高精度を示す「High」が制御フラグ402として付されている。 Fig. 5 shows an example of a synthesized two-dimensional image. This image represents a situation in which the lateral side of the vehicle 140 is imaged. FIG. 5A shows a two-dimensional image 510 in which the 1-line data (imaging data 403) of FIG. 4 is directly combined. Here, the area 501 is an area imaged in “control mode 1” in which the line camera is controlled by the speed signal of the low-speed speedometer 210. In this area, “Low” indicating low accuracy is added to the 1-line data as the control flag 402. The area 502 is an area imaged in the “control mode 2” in which the line camera is controlled by the speed signal of the Doppler laser 110 with high accuracy. In this area, “High” indicating high accuracy is attached to the 1-line data as the control flag 402.
 被写体(車両)の移動速度とカメラのスキャンレートが整合していない場合、2次元画像は実物より伸びたり、縮んだりしてしまう。スキャンレートが早いとスキャン間隔が狭くなり、隣合うラインに同じ部分が含まれた画像が撮像されるため、伸びた2次元画像になる。スキャンレートが遅いとスキャン間隔が広くなり、撮影されない部分が出てくるため、逆に縮んだ2次元画像になる。 If the moving speed of the subject (vehicle) and the scan rate of the camera do not match, the two-dimensional image will expand or contract from the actual one. When the scan rate is high, the scan interval becomes narrow, and an image in which the same portion is included in adjacent lines is captured, so that the image becomes an extended two-dimensional image. When the scan rate is slow, the scan interval becomes wide, and there are some parts that are not photographed, so the image becomes a contracted two-dimensional image.
 図5(a)に示した例では、低精度の速度計210の速度信号が実際の車両の移動速度よりも遅かったため、低精度の速度計210の速度信号は推定したスキャンレートが遅くなり領域501では縮んだ2次元画像になっている。なお、図5(a)に示した例では、低精度の速度計210が実際よりも遅い速度を計測した場合を記載したが、低精度の速度計210の計測精度は低いため、実際の数値よりも早い速度が計測される場合も考えられる。 In the example shown in FIG. 5A, since the speed signal of the low-accuracy speedometer 210 is slower than the actual traveling speed of the vehicle, the speed signal of the low-accuracy speedometer 210 has a slower estimated scan rate In 501, the image is a reduced two-dimensional image. In addition, in the example shown in FIG. 5A, the case where the low-accuracy speedometer 210 measures a speed slower than the actual speed is described. However, since the measurement accuracy of the low-accuracy speedometer 210 is low, an actual numerical value is obtained. It is also possible that faster speeds are measured.
 図6は、低精度の速度計210の速度信号とドップラーレーザ110の速度信号とを、グラフ化した概念図である。縦軸が速度(m/秒)、横軸が時間(秒)である。低精度の速度計210の速度信号である点線601と、ドップラーレーザ110の速度信号である実線602は、図4の低精度の速度計からの速度信号405と、ドップラーレーザからの速度信号406をプロットしたものに対応する。 FIG. 6 is a conceptual diagram in which the speed signal of the low-accuracy speedometer 210 and the speed signal of the Doppler laser 110 are graphed. The vertical axis represents speed (m / sec) and the horizontal axis represents time (sec). A dotted line 601 that is the speed signal of the low-accuracy speedometer 210 and a solid line 602 that is the speed signal of the Doppler laser 110 represent the speed signal 405 from the low-accuracy speedometer and the speed signal 406 from the Doppler laser in FIG. Corresponds to what is plotted.
 ここで、縦線603のタイミングで制御モード1と制御モード2が切り替わることになり、制御モード1で取得された画像が図5(a)の領域501、制御モード2で取得された画像が領域502に相当する。上述のように領域501の2次元画像は歪んでいる。 Here, the control mode 1 and the control mode 2 are switched at the timing of the vertical line 603, and the image acquired in the control mode 1 is the area 501 in FIG. 5A and the image acquired in the control mode 2 is the area. It corresponds to 502. As described above, the two-dimensional image of the area 501 is distorted.
 そこで、制御モード1および制御モード2における低精度の速度計からの速度信号405(図6の点線601)と、制御モード2におけるドップラーレーザからの速度信号406(図6の実線602)を用いて、制御モード1におけるドップラーレーザからの速度信号(図6の一点鎖線604)を推定する。推定方法は種々考えられるが、一般的には、低精度の速度計からの速度信号を時間の関数v1(t)、ドップラーレーザからの速度信号時間の関数v2(t)としたとき、制御モード2で得た速度情報から両者の関係「v2(t)=f(v1(t))」を導出し、関数fに制御モード1で得たv1(t)を代入して、ドップラーレーザからの速度信号v2(t)を計算すればよい。 Therefore, using the speed signal 405 (dotted line 601 in FIG. 6) from the low-accuracy speedometer in control mode 1 and control mode 2 and the speed signal 406 (solid line 602 in FIG. 6) from the Doppler laser in control mode 2 , The velocity signal from the Doppler laser in the control mode 1 (dashed line 604 in FIG. 6) is estimated. Although various estimation methods are possible, generally, when a speed signal from a low-accuracy speedometer is a function of time v1 (t) and a function of speed signal time from a Doppler laser is v2 (t), the control mode is The relationship "v2 (t) = f (v1 (t))" between the two is derived from the velocity information obtained in 2, and v1 (t) obtained in the control mode 1 is substituted into the function f to obtain the value from the Doppler laser. The speed signal v2 (t) may be calculated.
 推定方法の一例としては、f(v1(t))=α×v1(t)として補正値αを定義し、制御モード2における低精度の速度信号405と、制御モード2におけるドップラーレーザからの高精度の速度信号406の値からα=v2(t)/v1(t)を計算することで補正値αの値を求め、制御モード1における低精度の速度信号405からv2(t)=α×v1(t)としてv2(t)を推定する方法がある。 As an example of the estimation method, the correction value α is defined as f (v1 (t)) = α × v1 (t), and the low-accuracy velocity signal 405 in the control mode 2 and the high value from the Doppler laser in the control mode 2 are defined. The value of the correction value α is obtained by calculating α = v2 (t) / v1 (t) from the value of the precision speed signal 406, and v2 (t) = α × from the low precision speed signal 405 in the control mode 1. There is a method of estimating v2 (t) as v1 (t).
 また、別の推定方法の一例としては制御モード1の場合の速度v2(t)は、制御モード1から制御モード2に切り替わったタイミングのドップラーレーザからの高精度の速度信号406の値として推定する方法がある。 As another example of the estimation method, the velocity v2 (t) in the control mode 1 is estimated as the value of the highly accurate velocity signal 406 from the Doppler laser at the timing when the control mode 1 is switched to the control mode 2. There is a way.
 推定したドップラーレーザからの速度信号を真の車両の速度として、図5(a)の領域501の走行方向(x方向)の縮尺を補正すると、より正確な2次元画像520として図5(b)が得られる。上記の例では、2次元平面画像の補正例であるが、3次元立体像でも同様に車体の移動方向(x方向)の縮尺を補正することができる。 If the scale signal in the traveling direction (x direction) of the area 501 in FIG. 5A is corrected using the estimated speed signal from the Doppler laser as the true vehicle speed, a more accurate two-dimensional image 520 is obtained as shown in FIG. 5B. Is obtained. Although the above example is an example of correction of a two-dimensional plane image, the scale of the vehicle body in the moving direction (x direction) can be similarly corrected for a three-dimensional stereoscopic image.
 なお、低精度の速度計210からの速度信号405が実際の速度より遅い場合には、スキャンレートが遅くなり、補正後の画像の分解能が下がる可能性がある。よって、低精度の速度計の測定誤差は、速度が大きいほうにシフトするよう調整を行なうことが望ましい。具体的な調整例としては、ドップラーレーザ110からの速度信号より低精度の速度計210の速度信号が大きくなるように設定しておくのが良い。 Note that if the speed signal 405 from the low-accuracy speedometer 210 is slower than the actual speed, the scan rate may slow down, and the resolution of the corrected image may decrease. Therefore, it is desirable to adjust the measurement error of the low-accuracy speedometer so that it is shifted to the higher speed. As a specific adjustment example, it is preferable to set the speed signal of the low-accuracy speedometer 210 to be larger than the speed signal from the Doppler laser 110.
 以上説明した実施例によれば、速度検出器として高価なドップラーレーザを複数用いる必要がなく、また、ドップラーレーザを常時起動させておく必要もなく、ラインカメラを用いて高精度な2次元画像を画像の欠けなく得ることができる。2次元画像は、制御装置130の記憶装置に記憶したり、出力装置である画像モニタに表示したりすることができ、ユーザはそれを使用して点検作業を行なうことが可能となる。あるいは人工知能(AI)などを用いて、画像データをチェックすることも可能である。 According to the embodiment described above, it is not necessary to use a plurality of expensive Doppler lasers as a speed detector, and it is not necessary to always activate the Doppler lasers, and a high-precision two-dimensional image can be obtained using a line camera. It can be obtained without image loss. The two-dimensional image can be stored in the storage device of the control device 130 or can be displayed on the image monitor which is an output device, and the user can perform inspection work using it. Alternatively, it is also possible to check the image data using artificial intelligence (AI) or the like.
 ラインカメラ以外でも、測定物の移動方向に垂直な方向に1ラインデータを取得し、それを合成して3次元形状情報を得る、光切断カメラやレーザ光による三次元計測にも同様に適用が可能である。 In addition to line cameras, one line data is acquired in the direction perpendicular to the moving direction of the measured object, and the data is combined to obtain three-dimensional shape information. It is possible.
 なお、本実施例では、低精度な速度計210を用いる例を説明しているが、これは速度測定可能であれば良く、その測定手段は問わない。 In the present embodiment, an example in which the low-accuracy speedometer 210 is used has been described, but this is sufficient as long as the speed can be measured, and the measuring means is not limited.
 例えば間隔Lで設置した車両センサが車両検知するときの時間差Δtを用い、v=L/Δtの式に基づいて速度vを算出する速度計測手段などでもよい。あるいは、機械式の速度計や磁気センサを利用して車両の回転軸の回転数を検知してもよい。あるいは、車両自体が備える速度計からの信号を利用するものであってよい。 For example, a speed measuring means may be used which calculates the speed v based on the equation v = L / Δt using the time difference Δt when the vehicle sensor installed at the interval L detects the vehicle. Alternatively, a mechanical speedometer or a magnetic sensor may be used to detect the rotation speed of the rotating shaft of the vehicle. Alternatively, a signal from a speedometer included in the vehicle itself may be used.
 図7に他の実施例を示す。この実施例は、図2に示した実施例1から低精度の速度計210を一つ省略したものに相当する。車両140が矢印150Rの方向に移動する場合の処理は、実施例1と同じである。 FIG. 7 shows another embodiment. This embodiment corresponds to the embodiment 1 shown in FIG. 2 with one low-precision speedometer 210 omitted. The process when the vehicle 140 moves in the direction of the arrow 150R is the same as that in the first embodiment.
 逆に、車両140が矢印150Lの方向に移動する場合は、そちらの側に低精度の速度計210がないため、ラインカメラ120の手前にはドップラーレーザ110を配置する。ドップラーレーザ110は常時起動させておき、車両140が矢印150Lの方向に移動する場合は、最初から「制御モード2」で動作させることで、高精度の2次元画像を取得する。 On the contrary, when the vehicle 140 moves in the direction of the arrow 150L, the Doppler laser 110 is arranged in front of the line camera 120 because there is no low-precision speedometer 210 on that side. The Doppler laser 110 is always activated, and when the vehicle 140 moves in the direction of the arrow 150L, the high-precision two-dimensional image is acquired by operating in the "control mode 2" from the beginning.
 したがって、制御装置130は、初期状態では低精度の速度計210およびドップラーレーザ110の両方を起動しておくとともに、ラインカメラ120は起動しないでおく。そして、低精度の速度計210またはドップラーレーザ110で車両140の速度情報が測定されることを契機に、ラインカメラ120を起動する。 Therefore, the control device 130 activates both the low-accuracy speedometer 210 and the Doppler laser 110 in the initial state, but does not activate the line camera 120. Then, the line camera 120 is activated when the speed information of the vehicle 140 is measured by the low-accuracy speedometer 210 or the Doppler laser 110.
 実施例2では、ドップラーレーザ110を常時起動する必要があるが、1つの配置で済む点は実施例1と同様の効果である。また、実施例2では低精度の速度計210も1つで済むので、コスト削減効果がある。また、別途車両140の進入のみ検知する光センサ等をドップラーレーザ110の前方(x軸右方向)に配置しておき、光センサからの信号でドップラーレーザ110を起動するように構成すれば、ドップラーレーザ110を常時起動させないこともできる。 In the second embodiment, the Doppler laser 110 needs to be activated at all times, but one arrangement is sufficient for the same effect as in the first embodiment. Further, in the second embodiment, since only one low-accuracy speedometer 210 is required, there is a cost reduction effect. In addition, if an optical sensor or the like for detecting only the approach of the vehicle 140 is separately arranged in front of the Doppler laser 110 (to the right in the x-axis) and the Doppler laser 110 is activated by a signal from the optical sensor, the Doppler laser 110 can be activated. The laser 110 may not always be activated.
 本発明は、車両等の外観を検査することに利用可能である。 The present invention can be used for inspecting the appearance of a vehicle or the like.
 車両点検装置100、ドップラーレーザ110、ラインカメラ120、制御装置130、車両140、低精度な速度計210 Vehicle inspection device 100, Doppler laser 110, line camera 120, control device 130, vehicle 140, low-accuracy speedometer 210

Claims (15)

  1.  第1の速度計測手段、第2の速度計測手段、1次元センサ、および制御装置を備え、前記1次元センサが、移動する車両をその移動方向と交差する方向に沿って複数回測定し、測定結果に基づいて2次元以上の情報を含む点検情報を得る車両点検装置であって、
     前記点検情報は、前記車両が第1の方向に移動する場合と、前記第1の方向と逆向きの第2の方向に移動する場合の双方で取得可能であり、
     前記第2の速度計測手段は前記第1の速度計測手段よりも高精度であり、
     前記第2の速度計測手段で車両の速度情報が測定されず、かつ、前記第1の速度計測手段で車両の速度情報が測定される場合には、前記制御装置は、前記第1の速度計測手段で得た速度情報により前記1次元センサの測定タイミングを制御する第1の制御モードで制御し、
     前記第2の速度計測手段で車両の速度情報が測定される場合には、前記制御装置は、前記第2の速度計測手段で得た速度情報により前記1次元センサの測定タイミングを制御する第2の制御モードで制御する、
     車両点検装置。
    A first speed measuring unit, a second speed measuring unit, a one-dimensional sensor, and a control device are provided, and the one-dimensional sensor measures a moving vehicle a plurality of times along a direction intersecting the moving direction, A vehicle inspection device for obtaining inspection information including two-dimensional or more information based on a result,
    The inspection information can be acquired both when the vehicle moves in a first direction and when the vehicle moves in a second direction opposite to the first direction,
    The second speed measuring means has higher accuracy than the first speed measuring means,
    When the speed information of the vehicle is not measured by the second speed measuring means and the speed information of the vehicle is measured by the first speed measuring means, the control device is configured to measure the first speed. Control in a first control mode in which the measurement timing of the one-dimensional sensor is controlled by the speed information obtained by the means,
    When the speed information of the vehicle is measured by the second speed measuring means, the control device controls the measurement timing of the one-dimensional sensor based on the speed information obtained by the second speed measuring means. Control in the control mode of
    Vehicle inspection device.
  2.  前記第1の速度計測手段を2つ備え、
     前記第1の速度計測手段は、前記車両の移動方向に沿って、前記第2の速度計測手段および前記1次元センサの両側に配置されている、
     請求項1記載の車両点検装置。
    Two of the first speed measuring means are provided,
    The first speed measuring means is arranged on both sides of the second speed measuring means and the one-dimensional sensor along a moving direction of the vehicle.
    The vehicle inspection device according to claim 1.
  3.  前記制御装置は、
     初期状態では前記第1の速度計測手段を起動しておくとともに、前記第2の速度計測手段および前記1次元センサは起動せず、
     前記第1の速度計測手段で車両の速度情報が測定されることを契機に、前記第2の速度計測手段と前記1次元センサを起動する、
     請求項2記載の車両点検装置。
    The control device is
    In the initial state, the first speed measuring means is activated, and the second speed measuring means and the one-dimensional sensor are not activated,
    When the speed information of the vehicle is measured by the first speed measuring means, the second speed measuring means and the one-dimensional sensor are activated.
    The vehicle inspection device according to claim 2.
  4.  前記第1の速度計測手段を1つのみ備え、
     前記第1の速度計測手段および前記第2の速度計測手段は、前記車両の移動方向に沿って、前記1次元センサの両側に配置されている、
     請求項1記載の車両点検装置。
    Only one of the first speed measuring means is provided,
    The first speed measuring means and the second speed measuring means are arranged on both sides of the one-dimensional sensor along the moving direction of the vehicle.
    The vehicle inspection device according to claim 1.
  5.  前記制御装置は、
     初期状態では前記第1の速度計測手段および前記第2の速度計測手段を起動しておくとともに、前記1次元センサは起動せず、
     前記第1の速度計測手段または前記第2の速度計測手段で車両の速度情報が測定されることを契機に、前記1次元センサを起動する、
     請求項4記載の車両点検装置。
    The control device is
    In the initial state, the first speed measuring means and the second speed measuring means are activated, and the one-dimensional sensor is not activated,
    The one-dimensional sensor is activated when the speed information of the vehicle is measured by the first speed measuring means or the second speed measuring means.
    The vehicle inspection device according to claim 4.
  6.  前記制御装置は、
     前記1次元センサが測定した前記測定結果が、前記第1の速度計測手段で得た速度情報で測定タイミングが制御されたか、あるいは、前記第2の速度計測手段で得た速度情報で測定タイミングが制御されたかを記録する、
     請求項1記載の車両点検装置。
    The control device is
    In the measurement result measured by the one-dimensional sensor, the measurement timing is controlled by the speed information obtained by the first speed measuring means, or the measurement timing is controlled by the speed information obtained by the second speed measuring means. Record what was controlled,
    The vehicle inspection device according to claim 1.
  7.  前記制御装置は、
     前記第1の制御モードの間の前記測定結果に基づいて前記点検情報を得る際に、補正処理を行なう、
     請求項6記載の車両点検装置。
    The control device is
    Correction processing is performed when the inspection information is obtained based on the measurement result during the first control mode,
    The vehicle inspection device according to claim 6.
  8.  前記制御装置は、
     前記第1の速度計測手段で得た速度情報および前記第2の速度計測手段で得た速度情報を、速度記録として記録しておき、
     前記第1の制御モードの間の車両の速度を、前記速度記録に基づいて推定し、
     推定された車両の速度を用いて前記補正処理を行なう、
     請求項7記載の車両点検装置。
    The control device is
    The speed information obtained by the first speed measuring means and the speed information obtained by the second speed measuring means are recorded as a speed record,
    Estimating the speed of the vehicle during the first control mode based on the speed record;
    The correction process is performed using the estimated vehicle speed,
    The vehicle inspection device according to claim 7.
  9.  前記点検情報は、2次元平面画像または3次元立体像の少なくとも一つであり、
     前記補正処理では、2次元平面画像または3次元立体像の少なくとも一つの、前記車両の移動方向の縮尺を補正する、
     請求項8記載の車両点検装置。
    The inspection information is at least one of a two-dimensional plane image and a three-dimensional stereoscopic image,
    In the correction processing, the scale of at least one of a two-dimensional plane image and a three-dimensional stereoscopic image in the moving direction of the vehicle is corrected.
    The vehicle inspection device according to claim 8.
  10.  前記1次元センサは、ラインカメラまたは光切断カメラの少なくとも一つである、
     請求項1または請求項9に記載の車両点検装置。
    The one-dimensional sensor is at least one of a line camera or a light-section camera,
    The vehicle inspection device according to claim 1 or 9.
  11.  前記第2の速度計測手段はドップラーレーザである、
     請求項1記載の車両点検装置。
    The second speed measuring means is a Doppler laser,
    The vehicle inspection device according to claim 1.
  12.  前記第1の速度計測手段で得た速度情報は、前記第2の速度計測手段で得た速度情報より、大きな速度を示すように調整されている、
     請求項1記載の車両点検装置。
    The speed information obtained by the first speed measuring means is adjusted so as to show a larger speed than the speed information obtained by the second speed measuring means,
    The vehicle inspection device according to claim 1.
  13.  前記制御装置は、
     前記第1の速度計測手段で得た速度情報に基づいて、前記車両が前記第1の方向に移動しているか前記第2の方向に移動しているかを判別する、
     請求項1記載の車両点検装置。
    The control device is
    It is determined whether the vehicle is moving in the first direction or the second direction based on the speed information obtained by the first speed measuring means.
    The vehicle inspection device according to claim 1.
  14.  第1の速度計測手段、第2の速度計測手段、および1次元センサを用い、前記1次元センサが、移動する車両をその移動方向と交差する方向に沿って複数回測定し、測定結果に基づいて2次元以上の情報を含む点検情報を得る車両点検方法であって、
     前記点検情報は、前記車両が第1の方向に移動する場合と、前記第1の方向と逆向きの第2の方向に移動する場合の双方で取得可能であり、
     前記第2の速度計測手段は前記第1の速度計測手段よりも高精度であり、
     前記第1の速度計測手段を起動し、前記第2の速度計測手段および前記1次元センサを起動しない状態におく第1のステップと、
     前記第1の速度計測手段が前記車両の速度を検出することを契機に、前記第2の速度計測手段および前記1次元センサを起動する第2のステップと、
     前記第1の速度計測手段で得た速度情報を記録するとともに、前記第1の速度計測手段で得た速度情報により前記1次元センサの測定タイミングを制御して測定を行なう、第1の制御モードを実行する第3のステップと、
     前記第2の速度計測手段が前記車両の速度を検出することを契機に、前記第1の速度計測手段で得た速度情報および前記第2の速度計測手段で得た速度情報を記録するとともに、前記第2の速度計測手段で得た速度情報により前記1次元センサの測定タイミングを制御して測定を行なう、第2の制御モードを実行する第4のステップと、
     を実行する車両点検方法。
    Using the first speed measuring means, the second speed measuring means, and the one-dimensional sensor, the one-dimensional sensor measures a moving vehicle a plurality of times along a direction intersecting the moving direction, and based on the measurement result. A vehicle inspection method for obtaining inspection information including two-dimensional or more information,
    The inspection information can be acquired both when the vehicle moves in a first direction and when the vehicle moves in a second direction opposite to the first direction,
    The second speed measuring means has higher accuracy than the first speed measuring means,
    A first step of activating the first speed measuring means and keeping the second speed measuring means and the one-dimensional sensor inactive.
    A second step of activating the second speed measuring means and the one-dimensional sensor when the first speed measuring means detects the speed of the vehicle;
    A first control mode in which the speed information obtained by the first speed measuring means is recorded and the measurement timing of the one-dimensional sensor is controlled by the speed information obtained by the first speed measuring means to perform measurement. A third step of executing
    When the second speed measuring means detects the speed of the vehicle, the speed information obtained by the first speed measuring means and the speed information obtained by the second speed measuring means are recorded, and A fourth step of executing a second control mode, in which the measurement timing of the one-dimensional sensor is controlled by the speed information obtained by the second speed measuring means to perform measurement;
    Vehicle inspection method to perform.
  15.  前記第1の制御モードおよび前記第2の制御モードで測定した測定結果に基づいて2次元以上の情報を含む点検情報である、2次元平面画像または3次元立体像の少なくとも一つを得る第5のステップを実行し、
     前記第5のステップでは、
     前記第1の制御モードおよび前記第2の制御モードで測定した、前記第1の速度計測手段で得た速度情報および前記第2の速度計測手段で得た速度情報を用いて、前記2次元平面画像または3次元立体像の少なくとも一つの、前記車両の移動方向の縮尺を補正する、
     請求項14記載の車両点検方法。
    A fifth one of obtaining at least one of a two-dimensional plane image and a three-dimensional stereoscopic image, which is inspection information including two-dimensional or more information, based on the measurement results measured in the first control mode and the second control mode. The steps of
    In the fifth step,
    Using the speed information obtained by the first speed measuring means and the speed information obtained by the second speed measuring means measured in the first control mode and the second control mode, the two-dimensional plane Correcting the scale of at least one of the image or the three-dimensional stereoscopic image in the moving direction of the vehicle,
    The vehicle inspection method according to claim 14.
PCT/JP2019/038676 2018-10-16 2019-10-01 Vehicle inspection device and method WO2020080091A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018194706A JP7179571B2 (en) 2018-10-16 2018-10-16 Vehicle inspection device and method
JP2018-194706 2018-10-16

Publications (1)

Publication Number Publication Date
WO2020080091A1 true WO2020080091A1 (en) 2020-04-23

Family

ID=70284559

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/038676 WO2020080091A1 (en) 2018-10-16 2019-10-01 Vehicle inspection device and method

Country Status (3)

Country Link
JP (1) JP7179571B2 (en)
TW (1) TW202015948A (en)
WO (1) WO2020080091A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112977535A (en) * 2021-05-11 2021-06-18 领视科技成都有限公司 Electrified railway clearance detection method and system based on laser scanning

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017215220A (en) * 2016-06-01 2017-12-07 東日本旅客鉄道株式会社 Railway vehicle appearance inspection device
JP2017215823A (en) * 2016-06-01 2017-12-07 東日本旅客鉄道株式会社 Inspection image creation device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017215220A (en) * 2016-06-01 2017-12-07 東日本旅客鉄道株式会社 Railway vehicle appearance inspection device
JP2017215823A (en) * 2016-06-01 2017-12-07 東日本旅客鉄道株式会社 Inspection image creation device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112977535A (en) * 2021-05-11 2021-06-18 领视科技成都有限公司 Electrified railway clearance detection method and system based on laser scanning

Also Published As

Publication number Publication date
TW202015948A (en) 2020-05-01
JP7179571B2 (en) 2022-11-29
JP2020063931A (en) 2020-04-23

Similar Documents

Publication Publication Date Title
EP1996010B1 (en) Time of flight teat location system
KR100352423B1 (en) Vehicle distance measuring device
JP2017096777A (en) Stereo camera system
TW201250201A (en) Tire surface shape measuring device and tire surface shape measuring method
CN106896370B (en) Structured light ranging device and method
JP2002139304A (en) Distance measuring device and distance measuring method
JP2000504418A (en) Distance and / or position measuring device
JP2018036117A (en) Distance measuring device and image controller
WO2020080091A1 (en) Vehicle inspection device and method
JP5320880B2 (en) Distance measuring device, distance measuring method and vehicle
JP2000011157A (en) Image pickup device
JP5631642B2 (en) Vehicle dimension measuring method and apparatus
JP7348414B2 (en) Method and device for recognizing blooming in lidar measurement
JPH1144533A (en) Preceding vehicle detector
JP2017203744A (en) Aircraft panel appearance inspection method
JP2006118901A (en) Wheel profile measuring device
JP2002022425A (en) Three-dimensional image input device
JP2006284179A (en) Dimensional measuring apparatus and apparatus and method for measuring dimension of vehicle
JP2016138761A (en) Three-dimensional measurement method by optical cutting method and three-dimensional measuring instrument
JP5612905B2 (en) Wheel shape measuring device, wheel shape measuring method, and wheel shape measuring program
JPH0511052A (en) Vehicle mounted type obstacle detecting apparatus
JP2006337270A (en) Measuring method for cross-sectional shape and device therefor
JP5375239B2 (en) Image processing apparatus, inspection apparatus for long objects, and computer program
JP3723881B2 (en) Orbit spacing measurement method and orbit spacing measuring apparatus
JPH0337513A (en) Three-dimensional position/speed measuring apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19872817

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19872817

Country of ref document: EP

Kind code of ref document: A1