JP2006284179A - Dimensional measuring apparatus and apparatus and method for measuring dimension of vehicle - Google Patents

Dimensional measuring apparatus and apparatus and method for measuring dimension of vehicle Download PDF

Info

Publication number
JP2006284179A
JP2006284179A JP2005100301A JP2005100301A JP2006284179A JP 2006284179 A JP2006284179 A JP 2006284179A JP 2005100301 A JP2005100301 A JP 2005100301A JP 2005100301 A JP2005100301 A JP 2005100301A JP 2006284179 A JP2006284179 A JP 2006284179A
Authority
JP
Japan
Prior art keywords
light
vehicle
slit
projecting
edge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005100301A
Other languages
Japanese (ja)
Inventor
Shigeo Takamatsu
繁男 高松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP2005100301A priority Critical patent/JP2006284179A/en
Publication of JP2006284179A publication Critical patent/JP2006284179A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Traffic Control Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dimension measuring apparatus and an apparatus and a method for measuring dimensions of vehicles, capable of highly accurate dimension measurements. <P>SOLUTION: The dimension measuring apparatus is provided with a first projector 1 and a second projector 2 for projecting first slit light S1 and second slit light S2 distinguishable from each other from vertically different positions above the same light projection plane F from above a vehicle on a road surface; imaging devices 3A and 3B for detecting the positions of reflected light edges e1, e1', e2 and e2' of a road surface by the first slit light S1 and the second slit light S2 from above the vehicle M; and an arithmetic processing unit for determining the detected positions of the vehicle M on a light section plane on the basis of coordinates of two reflected light edges e1, e1', e2 and e2' of the vehicle detected by the imaging devices 3A and 3B and computing dimensions W of the vehicle M on the light section plane on the basis of the two detected positions. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、たとえば不特定の車両を、許容寸法がある車庫に入庫する際に、入庫の可否を判断するために、高精度で寸法を測定する寸法計測装置および車両の寸法計測装置ならびに方法に関する。   The present invention relates to a dimension measuring apparatus, a dimension measuring apparatus for a vehicle, and a method for measuring a dimension with high accuracy in order to determine whether or not an unspecified vehicle is stored in a garage having an allowable dimension, for example. .

従来、不特定の車両が入庫される機械式駐車設備では、たとえば特許文献1に示すように、入庫前に車長や車幅、高さなどの寸法計測が実施されている。特許文献1の車幅測定センサは、通路の上方に設けられた幅方向に配列された複数の半導体レーザおよびCCDセンサカメラと、路面に設置された乱反射板とで構成されている。
特開平11−7600号公報
2. Description of the Related Art Conventionally, in a mechanical parking facility in which an unspecified vehicle is stored, as shown in Patent Document 1, for example, dimensions such as a vehicle length, a vehicle width, and a height are measured before the storage. The vehicle width measurement sensor of Patent Document 1 is composed of a plurality of semiconductor lasers and CCD sensor cameras arranged in the width direction provided above a passage, and a diffuse reflector installed on a road surface.
Japanese Patent Laid-Open No. 11-7600

しかしながら、上記構成では、車体が半導体レーザを遮ることで車幅を計測するが、車幅の最大部分は左右のドアミラー間であり、ドアミラー周辺部は形状が複雑であるため、遮られるレーザ光の本数や光量も少なく、安定した計測ができず、計測精度を上げるのは困難であるという問題があった。   However, in the above configuration, the vehicle width is measured by blocking the semiconductor laser by the vehicle body, but the maximum width of the vehicle width is between the left and right door mirrors, and the shape of the periphery of the door mirror is complicated, so the laser beam that is blocked is blocked. There is a problem that the number and quantity of light are small, stable measurement cannot be performed, and it is difficult to increase measurement accuracy.

本発明は上記問題点を解決して、高精度で寸法計測ができる寸法計測装置および車両の寸法計測装置ならびに車両の寸法計測方法を提供することを目的とする。   An object of the present invention is to solve the above-mentioned problems and to provide a dimension measuring apparatus, a dimension measuring apparatus for a vehicle, and a dimension measuring method for a vehicle that can measure dimensions with high accuracy.

請求項1記載の寸法計測装置は、載置面上の計測体に上方から、識別可能な第1スリット光および第2スリット光を同一投光面上で上下に異なる位置から投光する第1投光手段および第2投光手段と、前記第1スリット光および第2スリット光による載置面の反射光を計測体の上方から検出して、反射光エッジの位置をそれぞれ求めるエッジ検出手段と、前記エッジ検出手段により検出された2つの前記反射光エッジの位置から前記投光面における計測体の光切断面の検出位置を求め、複数の前記検出位置から前記光切断面上の計測体の寸法を演算する演算手段と、を具備したものである。   The dimension measuring apparatus according to claim 1, wherein the first slit light and the second slit light that are identifiable from above are projected on the measurement body on the mounting surface from above at different positions on the same light projection surface. A light projecting unit and a second light projecting unit; and an edge detecting unit for detecting the reflected light of the mounting surface by the first slit light and the second slit light from above the measuring body and determining the position of the reflected light edge, respectively. The detection position of the light cutting surface of the measuring body on the light projecting surface is obtained from the positions of the two reflected light edges detected by the edge detecting means, and the measuring body on the light cutting surface is detected from the plurality of detection positions. Computing means for computing dimensions.

請求項2記載の発明は、第1投光手段および第2投光手段を一体に回動させて第1スリット光および第2スリット光をスキャンさせる投光走査手段を設けたものである。
請求項3記載の発明は、載置面上の計測体に上方から第1スリット光および第2スリット光を互いに平行な投光面上で上下に異なる位置から投光する第1投光手段および第2投光手段と、前記計測体を第1投光手段と第2投光手段の配列方向に移動させる移動手段と、前記計測体の移動速度を検出する速度検出手段と、前記第1スリット光および第2スリット光の載置面の反射光を計測体の上方から検出して反射光エッジの位置をそれぞれ求めるエッジ検出手段と、前記速度検出手段により検出された計測体の速度に基いて、前記エッジ検出手段により検出された2つの反射光エッジを有する光切断面を一致させ、前記反射光エッジの位置から前記計測体の光切断面の検出位置を求め、複数の前記検出位置から前記光切断面上の計測体の寸法を演算する演算手段と、を具備したものである。
According to a second aspect of the present invention, there is provided a light projecting scanning means for scanning the first slit light and the second slit light by integrally rotating the first light projecting means and the second light projecting means.
According to a third aspect of the present invention, there is provided a first light projecting means for projecting the first slit light and the second slit light from above onto the measuring body on the mounting surface from different positions on the light projecting surface parallel to each other. A second light projecting means; a moving means for moving the measuring body in the arrangement direction of the first light projecting means and the second light projecting means; a speed detecting means for detecting a moving speed of the measuring body; and the first slit. Based on the speed of the measuring body detected by the speed detecting means and edge detecting means for detecting the reflected light on the mounting surface of the light and the second slit light from above the measuring body and determining the position of the reflected light edge respectively. , The light cutting surface having two reflected light edges detected by the edge detection means is matched, the detection position of the light cutting surface of the measuring body is obtained from the position of the reflected light edge, and the plurality of detection positions from the detection position Dimensions of measuring object on the light section Calculating means for calculating, those provided with the.

請求項4記載の発明は、路面上の車両に上方から、識別可能な第1スリット光および第2スリット光を同一投光面上で上下に異なる位置から投光する第1投光手段および第2投光手段と、前記第1スリット光および第2スリット光による路面の反射光を車両の上方から検出して、反射光エッジの位置をそれぞれ求めるエッジ検出手段と、前記エッジ検出手段により検出された2つの前記反射光エッジの位置から前記投光面における車両の光切断面の検出位置を求め、複数の前記検出位置から前記光切断面上の車両の寸法を演算する演算手段と、を具備したものである。   According to a fourth aspect of the present invention, the first light projecting means and the first light projecting means for projecting the identifiable first slit light and second slit light from above and below on the same light projecting surface from above to the vehicle on the road surface. 2 light projecting means, edge detection means for detecting the reflected light of the road surface by the first slit light and the second slit light from above the vehicle and determining the position of the reflected light edge respectively, and detected by the edge detection means Calculating means for obtaining a detection position of the light cutting surface of the vehicle on the light projecting surface from the positions of the two reflected light edges, and calculating a dimension of the vehicle on the light cutting surface from the plurality of detection positions; It is what.

請求項5記載の発明は、路面上を移動する車両に上方から第1スリット光および第2スリット光を互いに平行な投光面上で投光するとともに、上下に異なる位置でかつ車両の移動方向に離間して配置された第1投光手段および第2投光手段と、前記車両の移動速度を検出する速度検出手段と、前記第1スリット光および第2スリット光の路面の反射光を車両の上方から検出して反射光エッジの位置をそれぞれ求めるエッジ検出手段と、前記速度検出手段により検出された車両の速度に基いて、前記エッジ検出手段により検出された2つの反射光エッジを有する光切断面を一致させ、前記反射光エッジの位置から前記車両の光切断面の検出位置を求め、複数の前記検出位置から前記光切断面上の車両の寸法を演算する演算手段とを具備したものである。   According to the fifth aspect of the present invention, the first slit light and the second slit light are projected on the light projecting surfaces parallel to each other from above on the vehicle moving on the road surface, and at different positions in the vertical direction and the vehicle moving direction. The first light projecting means and the second light projecting means that are spaced apart from each other, the speed detecting means for detecting the moving speed of the vehicle, and the reflected light from the road surface of the first slit light and the second slit light Light having two reflected light edges detected by the edge detecting means based on the vehicle speed detected by the speed detecting means and edge detecting means for detecting the position of the reflected light edge respectively from above Computation means for obtaining a detection position of the light cutting surface of the vehicle from the position of the reflected light edge, calculating a vehicle dimension on the light cutting surface from a plurality of the detection positions A.

請求項6記載の発明は、第1投光手段および第2投光手段は、車両の上方で計測寸法の両側にそれぞれ配置され、左右の第1スリット光および第2スリット光は、車両の両側で同一平面上の光切断面を計測するように構成されたものである。   According to a sixth aspect of the present invention, the first light projecting means and the second light projecting means are respectively arranged on both sides of the measurement dimension above the vehicle, and the first slit light and the second slit light on the left and right sides are arranged on both sides of the vehicle. The optical cutting plane on the same plane is measured.

請求項7記載の発明は、路面上の車両に上方から、識別可能な第1スリット光および第2スリット光を同一投光面上で上下に異なる位置から投光し、車両の上方から前記第1スリット光および第2スリット光による路面の反射光エッジの位置をそれぞれ検出し、検出された2つの反射光エッジの位置から前記投光面における車両の光切断面の検出位置を求め、複数の前記検出位置から前記光切断面上の車両の寸法を演算するものである。   According to the seventh aspect of the present invention, the discriminating first slit light and the second slit light are projected from above on the same light projecting surface to the vehicle on the road surface from above, and the first slit light and the second slit light are projected from above the vehicle. The positions of the reflected light edges of the road surface by the 1 slit light and the second slit light are respectively detected, and the detection positions of the light cutting surfaces of the vehicle on the light projecting surface are obtained from the detected positions of the two reflected light edges. The size of the vehicle on the light cut surface is calculated from the detection position.

請求項1記載の発明によれば、第1,第2投光手段により、計測体の上方で異なる高さ位置からを同一投光面上に沿って計測体に投光し、エッジ検出手段により載置面の第1,第2スリット光の反射光エッジをそれぞれ検出し、演算手段により光切断面上の寸法を計測するので、計測体の寸法を高精度で検出することができる。   According to the first aspect of the present invention, the first and second light projecting means project light from different height positions above the measurement body onto the measurement body along the same light projecting surface, and the edge detection means. Since the reflected light edges of the first and second slit lights on the mounting surface are respectively detected and the dimensions on the light cutting surface are measured by the arithmetic means, the dimensions of the measuring body can be detected with high accuracy.

請求項2記載の発明によれば、投光走査手段により第1投光手段と第2投光手段を一体に回動させてスキャンすることで、停止された計測体の寸法を高精度で検出することができる。   According to the second aspect of the present invention, the dimension of the stopped measuring body can be detected with high accuracy by scanning the first light projecting means and the second light projecting means together by the light projecting scanning means. can do.

請求項3記載の発明によれば、第1,第2投光手段により、第1,第2スリット光を互いに平行な投光面に沿って投光し、エッジ検出手段により載置面の反射光のエッジを検出し、速度検出手段の検出値に基いて光切断面を一致させて光切断面上の計測体の寸法を演算するので、移動する計測体の寸法をより高精度で検出することができる。   According to the third aspect of the invention, the first and second light projecting units project the first and second slit lights along the light projecting surfaces parallel to each other, and the edge detecting unit reflects the mounting surface. The edge of the light is detected, and the dimension of the measuring object on the light cutting surface is calculated by matching the light cutting surface based on the detection value of the speed detection means, so that the dimension of the moving measuring object is detected with higher accuracy. be able to.

請求項5記載の発明によれば、第1,第2スリット光を互いに平行な投光面に沿って投光し、路面の反射光エッジを検出し、速度検出手段の検出値に基いて光切断面を一致させて光切断面上の車両の寸法を演算するので、走行する車両の寸法をより高精度で検出することができる。   According to the invention described in claim 5, the first and second slit lights are projected along the light projecting surfaces parallel to each other, the reflected light edge of the road surface is detected, and the light is detected based on the detection value of the speed detecting means. Since the dimensions of the vehicle on the light cutting surface are calculated by matching the cut surfaces, the dimensions of the traveling vehicle can be detected with higher accuracy.

請求項6記載の発明によれば、車両の上方で両側に第1,第2投光手段を配置したので、路面に反射される反射光の範囲を狭くして全体をコンパクトに構成することができる。
請求項7記載の発明によれば、上方で異なる高さ位置から第1,第2スリット光を同一投光面上に沿って車両に投光し、路面の反射光のエッジを検出して光切断面上の寸法を計測するので、車両の光切断面の寸法を高精度で検出することができる。
According to the sixth aspect of the invention, since the first and second light projecting means are arranged on both sides above the vehicle, the range of the reflected light reflected on the road surface can be narrowed to make the whole compact. it can.
According to the seventh aspect of the present invention, the first and second slit lights are projected onto the vehicle along the same light projecting surface from different height positions above, and the edge of the reflected light on the road surface is detected to generate the light. Since the dimensions on the cut surface are measured, the dimensions of the light cut surface of the vehicle can be detected with high accuracy.

以下、本発明の実施の形態を図面に基づいて説明する。
この計測装置は、いわゆるスリット光投影法(別名、光切断法という)を採用し、図1(a)に示すように、車両Mの上方で高さの異なる位置の第1投光器1および第2投光器2から同一投光面F上で(たとえば波長やパルスなど時差照射により)識別可能な2つのスリット光S1,S2を投光し、たとえばCCD素子やCMOS素子などを有する検出器、ここでCCD撮像装置3により、これら2つのスリット光S1,S2の路面の反射光を検出し、画像処理により反射光エッジe1,e1’,e2,e2’の位置(座標)をそれぞれ求める。そして各反射光エッジe1,e1’,e2,e2’と、基準位置(ここでは第1,第2投光器1,2を通る鉛直線)間のそれぞれの距離(寸法)w1,w1’,w2,w2’と、第1投光器1および第2投光器2の高さH1,H2と、により車両Mの最大の車幅(ここでは左右のドアミラー間の幅をいう)Wを測定する。なお、ここで「反射光エッジ」は、路面上で車両で光切断された反射光の端部をいい、路面上の反射光の終端部ではない。また、ここで「光切断面」とは、スリット光S1,S2の投光面F上の車両Mの断面をいう。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
This measuring device employs a so-called slit light projection method (also called a light cutting method), and as shown in FIG. Two slit lights S1 and S2 that can be distinguished from the projector 2 on the same projection surface F (for example, by time difference irradiation such as wavelength and pulse) are projected, and a detector having a CCD element, a CMOS element, etc. The imaging device 3 detects the reflected light on the road surface of these two slit lights S1 and S2, and obtains the positions (coordinates) of the reflected light edges e1, e1 ′, e2, and e2 ′ by image processing. Then, the respective distances (dimensions) w1, w1 ′, w2, between the reflected light edges e1, e1 ′, e2, e2 ′ and the reference positions (here, vertical lines passing through the first and second projectors 1, 2). The maximum vehicle width W (referred to here as the width between the left and right door mirrors) W of the vehicle M is measured by w2 ′ and the heights H1, H2 of the first projector 1 and the second projector 2. Here, the “reflected light edge” refers to an end portion of the reflected light that is light-cut by the vehicle on the road surface, and is not a terminal portion of the reflected light on the road surface. Here, the “light cutting surface” refers to a cross section of the vehicle M on the light projection surface F of the slit lights S1 and S2.

車幅Wの演算は、たとえばスリット光の投光面における関係を示す図2のように、車幅方向と高さ方向の平面座標(x,z)を想定し、この平面座標上で、第1投光器1の座標(0,z1)と反射光エッジe1,e1’の座標(x1,0),(−x1’,0)とを結ぶ直線L1,L1’と、第2投光器2の座標(0,z2)と反射光エッジe2,e2’の座標(x2,0),(−x2’,0)の座標とを結ぶ直線L2,L2’の交点(計測対象点)P,P’の座標(x,z),(−x’,−z’)をそれぞれ演算し、光切断面における交点P,P’の距離、すなわち左右のドアミラーの外端寸法を最大車幅Wとして求めるものである。
[実施の形態1]
実施の形態1は、機械式立体駐車設備の入口などに設置される車両寸法計測装置で、車両Mの最大幅を検出することにより、最大車幅Wに対応した駐車室に入庫させるもので、図1〜図4を参照して説明する。
The calculation of the vehicle width W assumes, for example, the plane coordinates (x, z) in the vehicle width direction and the height direction, as shown in FIG. A straight line L1, L1 ′ connecting the coordinates (0, z1) of one projector 1 and the coordinates (x1, 0), (−x1 ′, 0) of the reflected light edges e1, e1 ′ and the coordinates of the second projector 2 ( 0, z2) and the coordinates (x2, 0), (−x2 ′, 0) of the reflected light edges e2, e2 ′, and the coordinates of the intersections (measurement target points) P, P ′ of the straight lines L2, L2 ′ (X, z) and (−x ′, −z ′) are respectively calculated, and the distance between the intersections P and P ′ on the light cutting plane, that is, the outer end dimension of the left and right door mirrors is obtained as the maximum vehicle width W. .
[Embodiment 1]
The first embodiment is a vehicle size measuring device installed at the entrance of a mechanical multi-story parking facility or the like, and detects the maximum width of the vehicle M so as to enter a parking room corresponding to the maximum vehicle width W. A description will be given with reference to FIGS.

路面(載置面)上の車両(計測体)Mに、上方から識別可能な第1スリット光S1および第2スリット光S2を同一投光面F上で上下に異なる位置から投光する第1投光器(第1投光手段)1および第2投光器(第2投光手段)2と、車両Mの上方から前記第1スリット光S1および第2スリット光S2による路面反射光(載置面反射光)を撮像するCCD撮像装置3A,3Bと、路面反射光画像を画像処理して反射光エッジe1,e2とe1’,e2’の位置をそれぞれ検出する図4に示す画像処理装置4A,4Bと、前記車両の反射光エッジe1,e1’,e2,e2’の位置から車両Mの光切断面上の車幅(寸法)を演算する図4に示す演算処理装置(演算手段)5を具備している。前記撮像装置3A,3Bと画像処理装置4A,4Bとでエッジ検出手段が構成される。   A first slit light S1 and a second slit light S2 that are identifiable from above on a vehicle (measuring body) M on the road surface (mounting surface) are first projected from different positions on the same light projection surface F. Road surface reflected light (mounting surface reflected light) by the first slit light S1 and the second slit light S2 from above the vehicle M, and the light projector (first light projecting means) 1 and the second light projector (second light projecting means) 2. 4), and image processing apparatuses 4A and 4B shown in FIG. 4 for detecting the positions of the reflected light edges e1, e2 and e1 ′, e2 ′, respectively, by processing the road surface reflected light image. 4 includes a calculation processing device (calculation means) 5 shown in FIG. 4 for calculating the vehicle width (dimension) on the light cutting surface of the vehicle M from the positions of the reflected light edges e1, e1 ′, e2, e2 ′ of the vehicle. ing. The imaging devices 3A and 3B and the image processing devices 4A and 4B constitute an edge detection means.

ここで前記第1,第2投光器1,2が鉛直投光面Fを通る鉛直線(基準位置)O上に配置され、また撮像装置3A,3Bも第1,第2投光器1,2の鉛直線O上で上方位置に配置されている。   Here, the first and second projectors 1 and 2 are arranged on a vertical line (reference position) O that passes through the vertical projection surface F, and the imaging devices 3A and 3B are also perpendicular to the first and second projectors 1 and 2, respectively. It is arranged at an upper position on the line O.

第1投光器1および第2投光器2は、それぞれたとえばスリット光S1,S2が波長(色)の異なる光が投射されるもので、たとえばレーザ光源からの光をシンドリカルレンズやポリゴンミラーなどを介して投射したり、または白色光源をスリットマスクと投光レンズを介して投射したり、あるいはライン状LEDの光を投光レンズを介してスリット光S1,S2を形成している。なお、ここではシンドリカルレンズを使用し放射状にスリット光を発生するものが使用される。   In the first projector 1 and the second projector 2, for example, slit lights S1 and S2 are projected with light having different wavelengths (colors). For example, light from a laser light source is transmitted through a cylindrical lens or a polygon mirror. Projection is performed, or a white light source is projected through a slit mask and a light projection lens, or light from a line LED is formed through the light projection lens to form slit lights S1 and S2. Here, a lens that uses a cylindrical lens and generates slit light radially is used.

また撮像装置3A,3Bは、波長の異なるスリット光S1,S2をそれぞれ波長に対応したフィルタを具備し、路面に投射されたスリット光S1,S2をフィルタを介して検出している。   The imaging devices 3A and 3B include filters corresponding to the wavelengths of the slit lights S1 and S2 having different wavelengths, and detect the slit lights S1 and S2 projected on the road surface through the filters.

なお、スリット光S1,S2に照射タイミングの異なるパルス光を使用し、撮像装置に設けられたパルス周期検出部を介してスリット光S1,S2を識別してもよい。
図4に示すように、2つの撮像装置3A,3Bの画像信号は画像処理装置4A,4Bにおいて、エッジ検出部により反射光エッジe1,e2,e1’,e2’の位置が検出され、座標演算部により反射光エッジe1,e2,e1’,e2’の座標位置x1,x2,x1’,x2’がそれぞれ求められる。そして演算処理装置5に入力されて最大車幅Wが演算される。またこの演算処理装置5からスリット光照射処理部9A,9Bを介して第1,第2投光器1,2に操作信号が出力される。
It should be noted that pulsed light having different irradiation timings may be used for the slit light S1 and S2, and the slit light S1 and S2 may be identified through a pulse period detector provided in the imaging apparatus.
As shown in FIG. 4, the image signals from the two imaging devices 3A and 3B are detected by the edge detection unit in the image processing devices 4A and 4B, and the positions of the reflected light edges e1, e2, e1 ′, and e2 ′ are detected. The coordinate positions x1, x2, x1 ′, x2 ′ of the reflected light edges e1, e2, e1 ′, e2 ′ are respectively determined by the unit. And it inputs into the arithmetic processing unit 5, and the largest vehicle width W is calculated. In addition, an operation signal is output from the arithmetic processing unit 5 to the first and second projectors 1 and 2 via the slit light irradiation processing units 9A and 9B.

ところで、最大幅Wは車種により大きく異なっている。したがって、車両Mに対して、第1投光器1および第2投光器2から一定時間ごとにスリット光S1,S2を投光し、演算処理装置5では、複数の計測画像を取得して車両Mの同一位置をスリット光で切断した計測画像どうしを使って車幅を求め、それらを比較し最大車幅Wを求めている。そして最大車幅Wの演算値に基いて、この車両Mの入庫の可否が決定され、入庫可の場合には入庫する駐車室が決定され、入庫バースに誘導されて乗員が降車した後、目的の駐車室に運ばれる。ここで入庫用昇降装置や搬送台車などを操作する入庫操作装置6に操作信号が出力される。またたとえばドアミラーが開いていると確認された場合、運転者が乗っているような時にはドアミラー開閉警告装置7に操作信号が出力される。また得られた車両のデータは、車両データ記録装置8に記録される。   By the way, the maximum width W differs greatly depending on the vehicle type. Therefore, the slit light S1 and S2 are projected on the vehicle M from the first projector 1 and the second projector 2 at regular intervals, and the arithmetic processing unit 5 acquires a plurality of measurement images to obtain the same vehicle M. The vehicle width is obtained by using the measurement images whose positions are cut by the slit light, and the vehicle width W is obtained by comparing them. Then, based on the calculated value of the maximum vehicle width W, whether or not the vehicle M can be stored is determined. If the storage is possible, the parking room to be stored is determined, and after the occupant gets off after being guided to the storage berth, To the parking room. Here, an operation signal is output to the warehousing operation device 6 that operates the warehousing elevating device, the transport carriage, and the like. For example, when it is confirmed that the door mirror is open, an operation signal is output to the door mirror opening / closing warning device 7 when the driver is riding. The obtained vehicle data is recorded in the vehicle data recording device 8.

なお、スリット光S1,S2が投光される投光面Fを鉛直面としたが、傾斜した平面であってもよい。
[実施の形態2]
図5〜図8を参照して実施の形態2を説明する。なお、実施の形態1と同一部材には同一符号を付して説明を省略する。実施の形態2では、スリット光S1,S2の投光面F1,F2を2箇所に設けたものである。
In addition, although the light projection surface F on which the slit lights S1 and S2 are projected is a vertical surface, it may be an inclined plane.
[Embodiment 2]
The second embodiment will be described with reference to FIGS. The same members as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted. In the second embodiment, the light projection surfaces F1 and F2 of the slit lights S1 and S2 are provided at two locations.

すなわち、投光面F1,F2は、車両Mの前後走行方向にLだけ離間し、かつ互いに平行配置されるもので、所定の周期で撮像される撮像装置3A,3Bの画像を処理する車両速度検出装置(移動速度検出手段)31を具備している。   In other words, the light projecting surfaces F1 and F2 are spaced apart by L in the front-rear traveling direction of the vehicle M and are arranged in parallel with each other, and the vehicle speed at which the images of the imaging devices 3A and 3B imaged at a predetermined cycle are processed. A detection device (movement speed detection means) 31 is provided.

前記車両速度検出装置31は、図8に示すように、車両前端検出部32A.32Bにより、撮像装置3A,3Bにより撮像された画像から、車両Mの前端部が最初に撮像された画像を選択し、座標演算部33A,33Bにより前記画像から車両Mの前端部の座標を特定し、時間差検出部34により撮像装置3A,3Bの設置位置データと前記座標位置から時間差と距離とを演算し、速度検出部35により車両Mの速度を求めるように構成されている。   As shown in FIG. 8, the vehicle speed detection device 31 includes a vehicle front end detection unit 32A. 32B selects an image in which the front end of the vehicle M is first captured from the images captured by the imaging devices 3A and 3B, and specifies the coordinates of the front end of the vehicle M from the images by the coordinate calculation units 33A and 33B. The time difference detection unit 34 calculates the time difference and the distance from the installation position data of the imaging devices 3A and 3B and the coordinate position, and the speed detection unit 35 calculates the speed of the vehicle M.

したがって、演算処理装置5では、車両速度検出装置31により検出された車両Mの速度から、撮像装置3A,3Bにより所定の周期でに撮像された各画像のうち、最初に検出された反射光エッジe2,e2’の最大幅の画像と、これと同一の光切断面となる車両Mの同一位置の画像を選択し、同一となる光切断面画像のそれぞれの座標を用いて反射光エッジの座標から、光切断面上の最大車幅Wを演算するように構成している。   Therefore, in the arithmetic processing unit 5, the reflected light edge detected first among the images captured at predetermined intervals by the imaging devices 3 </ b> A and 3 </ b> B from the speed of the vehicle M detected by the vehicle speed detection device 31. Select the image of the maximum width of e2 and e2 'and the image of the same position of the vehicle M that will be the same light cut surface, and use the coordinates of the light cut surface image to be the coordinates of the reflected light edge Thus, the maximum vehicle width W on the light section is calculated.

なお、前後の投光面F1,F2におけるスリット光S1,S2の撮像装置3A,3Bの撮像タイミングは同一の光切断面が得られるように設定されているが、車両M毎の走行速度が異なると、光切断面が位置ずれするおそれがある。そこで、投光面F1,F2の離間距離Lと車両速度検出装置31による車両Mの検出速度から、進行方向前方の投光面F1のスリット光S1の撮像タイミングを計算して、撮像装置3Aによるスリット光S1の撮像タイミングを、撮像装置3Bの撮像タイミングに対してずらせる時間調整(但し、撮像装置3A,3Bの撮像周期は同じ)を行うことで、光切断面を一致させている。   Note that the imaging timings of the imaging devices 3A and 3B of the slit lights S1 and S2 on the front and rear projection surfaces F1 and F2 are set so as to obtain the same light section, but the traveling speeds of the vehicles M are different. Then, there is a possibility that the light cut surface is displaced. Therefore, the imaging timing of the slit light S1 on the projection surface F1 forward in the traveling direction is calculated from the separation distance L between the projection surfaces F1 and F2 and the detection speed of the vehicle M by the vehicle speed detection device 31, and the imaging device 3A By adjusting the time for shifting the imaging timing of the slit light S1 with respect to the imaging timing of the imaging device 3B (however, the imaging cycles of the imaging devices 3A and 3B are the same), the optical cutting planes are matched.

また、上記実施の形態2では実施の形態1と同じく波長の異なるスリット光S1,S2をそれぞれの波長に対応したフィルタにより識別検出することを前提とし、さらにスリット光S1,S2は連続照射することを前提に説明したが、パルス光をスリット光S1,S2として用いる場合は、前述の撮像タイミングの時間調整に応じて、パルス光の照射タイミングを時間調整することになる。もちろん、照射周期は撮像周期と同じとなる。   In the second embodiment, it is assumed that the slit lights S1 and S2 having different wavelengths are identified and detected by filters corresponding to the respective wavelengths as in the first embodiment, and the slit lights S1 and S2 are continuously irradiated. However, when pulse light is used as the slit light S1 and S2, the irradiation timing of the pulse light is time-adjusted according to the above-described time adjustment of the imaging timing. Of course, the irradiation cycle is the same as the imaging cycle.

上記実施の形態2によれば、走行移動中の車両であっても、最大車幅Wを高精度で検出することができる。
なお、上記車両速度検出装置31に替えて、レーザ式の車両速度検出装置であってもよい。
According to the second embodiment, the maximum vehicle width W can be detected with high accuracy even for a vehicle that is traveling.
Instead of the vehicle speed detection device 31, a laser type vehicle speed detection device may be used.

[実施の形態3]
図9〜図11を参照して実施の形態3を説明する。なお、実施の形態1と同一部材には同一符号を付して説明を省略する。実施の形態1では、第1,第2スリット光S1,S2の投光面Fを車両幅方向の鉛直面上に固定して配置したが、実施の形態3では、車両Mの上方で車両幅方向の水平軸心OHを中心に所定角度αの範囲で往復回動する回動投光面Fs上に、第1,第2スリット光S1,S2が位置するようにそれぞれスキャニングし、停止された車両Mの最大幅Wを計測するものである。
[Embodiment 3]
The third embodiment will be described with reference to FIGS. The same members as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted. In the first embodiment, the light projecting surface F of the first and second slit lights S1 and S2 is fixed and arranged on the vertical plane in the vehicle width direction, but in the third embodiment, the vehicle width is set above the vehicle M. The first and second slit lights S1 and S2 were respectively scanned and stopped on the rotating light projecting surface Fs that reciprocally rotates around the horizontal axis OH in the direction within a predetermined angle α. The maximum width W of the vehicle M is measured.

図8,図9に示すように、第1投光器1および第2投光器2がたとえば支持部材により投光面が一致するように一体化され、前記支持部材を水平軸心OHを中心に往復回動させるスキャニング装置(投光走査手段)21が設けられ、スリット光掃引処理部12によりスキャニング装置21が制御される。そしてスキャニング装置21により水平軸心OH周りに回動投光面Fsを所定角度範囲αで往復回動させる。この回動投光面Fsの傾斜角θは、スキャン角検出器22により検出されて画像処理装置4A,4Bの座標演算部に入力される。   As shown in FIGS. 8 and 9, the first projector 1 and the second projector 2 are integrated so that the projection surfaces thereof coincide with each other, for example, by a support member, and the support member is reciprocally rotated about the horizontal axis OH. A scanning device (light projection scanning means) 21 is provided, and the scanning device 21 is controlled by the slit light sweep processing unit 12. Then, the scanning light projection surface Fs is reciprocally rotated around the horizontal axis OH within a predetermined angle range α by the scanning device 21. The tilt angle θ of the rotating light projecting surface Fs is detected by the scan angle detector 22 and input to the coordinate calculation units of the image processing apparatuses 4A and 4B.

演算処理装置では、図11に示すように、車幅方向xと前後方向yと高さ方向zの三次元座標を想定し、回動中心が第2投光器2を通るとすると、第1投光器1の座標(0,ya,za)と撮像装置3Aに検出された座標(x1,ys,0),(−x1’,ys,0)とを結ぶ線L1,L1’と、第2投光器2の座標(0,0,z2)と撮像装置3Bに検出された座標(x2,ys,0),(−x2’,ys,0)とを結ぶ線L2,L2’との交点P,P’の座標(x,y,z),(−x’,−y’,−z’)を求め、最大車幅Wとして演算する。ここでスキャン角θとすると、ya=(H2−H1)sinθ,za=H2−(H2−H1)cosθ、またys=H2tanθである。   In the arithmetic processing unit, as shown in FIG. 11, assuming a three-dimensional coordinate in the vehicle width direction x, the front-rear direction y, and the height direction z, and the rotation center passes through the second projector 2, the first projector 1 Lines L1, L1 ′ connecting the coordinates (0, ya, za) of the image and the coordinates (x1, ys, 0), (−x1 ′, ys, 0) detected by the imaging device 3A, and the second projector 2 Of intersections P, P ′ of lines L2, L2 ′ connecting the coordinates (0, 0, z2) and the coordinates (x2, ys, 0), (−x2 ′, ys, 0) detected by the imaging device 3B. Coordinates (x, y, z), (−x ′, −y ′, −z ′) are obtained and calculated as the maximum vehicle width W. Here, assuming that the scan angle θ, ya = (H2−H1) sinθ, za = H2− (H2−H1) cosθ, and ys = H2tanθ.

上記実施の形態3によれば、回動投光面Fsを回動させて第1,第2スリット光S1,S2をそれぞれ車両の長さ方向にスキャニングさせることにより、停止された車両Mの最大車幅Wを高精度で検出することができる。   According to Embodiment 3 described above, the maximum of the stopped vehicle M is obtained by rotating the rotation light projecting surface Fs and scanning the first and second slit lights S1 and S2 in the vehicle length direction, respectively. The vehicle width W can be detected with high accuracy.

[実施の形態4]
実施の形態1〜3では、車両Mの上方で中央部に第1,第2投光器1,2および撮像装置3A,3Bを設けたが、実施の形態4では、図12に示すように、車両Mの左右両側にそれぞれ第1,第2投光器1,2および撮像装置3A,3Bを配置している。
[Embodiment 4]
In the first to third embodiments, the first and second projectors 1 and 2 and the imaging devices 3A and 3B are provided in the center above the vehicle M. However, in the fourth embodiment, as shown in FIG. The first and second projectors 1 and 2 and the imaging devices 3A and 3B are arranged on the left and right sides of M, respectively.

ここでは、撮像装置3A,3Bもそれぞれ両側に2組設置したが、仮想線で示すように、車両Mの中央部上方に1組であってもよい。
上記実施の形態4によれば、反射スリット光を受ける路面が狭かったり、天井部が低い場合でも、容易に設置することができ、コンパクトに構成することができ、また車両Mの最大車幅Wを高精度で検出することができる。
Here, although two sets of image pickup apparatuses 3A and 3B are installed on both sides, respectively, one set may be provided above the center of the vehicle M as indicated by a virtual line.
According to the fourth embodiment, even when the road surface that receives the reflected slit light is narrow or the ceiling is low, it can be easily installed, can be configured compactly, and the maximum vehicle width W of the vehicle M can be achieved. Can be detected with high accuracy.

なお、車両Mの左右両側に設けられた第1,第2投光器1,2および撮像装置3A,3Bを、実施の形態2と同様に前後に配置してもよく、実施の形態3と同様に、スキャンさせることもできる。   Note that the first and second projectors 1 and 2 and the imaging devices 3A and 3B provided on the left and right sides of the vehicle M may be arranged in the front and rear as in the second embodiment, and as in the third embodiment. You can also scan.

また計測対象となる計測体は、車両に限るもりのではなく、コンベヤなどで搬送されてくる不特定の寸法の物品や商品、農作物などを計測することができる。   The measuring object to be measured is not limited to a vehicle, but can measure articles, products, agricultural products, etc. of unspecified dimensions conveyed by a conveyor or the like.

本発明に係る車両の寸法計測装置の実施の形態1を示す正面図である。It is a front view which shows Embodiment 1 of the dimension measuring apparatus of the vehicle which concerns on this invention. 同車両の寸法計測装置の演算処理装置における座標の説明図である。It is explanatory drawing of the coordinate in the arithmetic processing apparatus of the dimension measuring apparatus of the vehicle. 同車両の寸法計測装置の全体斜視図である。It is a whole perspective view of the dimension measuring device of the vehicle. 同車両の寸法計測装置の構成図である。It is a block diagram of the dimension measuring apparatus of the vehicle. 本発明に係る車両の寸法計測装置の実施の形態2を示す全体斜視図である。It is a whole perspective view which shows Embodiment 2 of the dimension measuring apparatus of the vehicle which concerns on this invention. (a)(b)はそれぞれ車両の寸法計測装置の計測画を示す模式図である。(A) (b) is a schematic diagram which shows the measurement image of the dimension measuring apparatus of a vehicle, respectively. 同車両の寸法計測装置の構成図である。It is a block diagram of the dimension measuring apparatus of the vehicle. 同寸法計測装置に設けられる速度検出器の別の形態を示す構成図である。It is a block diagram which shows another form of the speed detector provided in the same dimension measuring device. 本発明に係る車両の寸法計測装置の実施の形態3を示す全体斜視図である。It is a whole perspective view which shows Embodiment 3 of the dimension measuring apparatus of the vehicle which concerns on this invention. 同車両の寸法計測装置の構成図である。It is a block diagram of the dimension measuring apparatus of the vehicle. 同車両の寸法計測装置の演算処理装置における座標の説明図である。It is explanatory drawing of the coordinate in the arithmetic processing apparatus of the dimension measuring apparatus of the vehicle. 本発明に係る車両の寸法計測装置の実施の形態4を示す正面図である。It is a front view which shows Embodiment 4 of the dimension measuring apparatus of the vehicle which concerns on this invention.

符号の説明Explanation of symbols

M 車両
W 最大車幅
S1 第1スリット光
S2 第2スリット光
e1,e1’ 反射光エッジ
e2,e2’ 反射光エッジ
1 第1投光器
2 第2投光器
3A,3B 撮像装置
4A,4B 画像処理装置
5 演算手段
6 入庫操作装置
7 ドアミラー開閉警告装置
8 車両データ記録装置
9A,9B スリット光掃引処理部
11 速度検出器
21 スキャン装置
22 スキャン角検出器
31 車両速度検出装置
M vehicle W maximum vehicle width S1 first slit light S2 second slit light e1, e1 ′ reflected light edge e2, e2 ′ reflected light edge 1 first light projector 2 second light projector 3A, 3B imaging device 4A, 4B image processing device 5 Calculation means 6 Warehousing operation device 7 Door mirror opening / closing warning device 8 Vehicle data recording device 9A, 9B Slit light sweep processing unit 11 Speed detector 21 Scan device 22 Scan angle detector 31 Vehicle speed detection device

Claims (7)

載置面上の計測体に上方から、識別可能な第1スリット光および第2スリット光を同一投光面上で上下に異なる位置から投光する第1投光手段および第2投光手段と、
前記第1スリット光および第2スリット光による載置面の反射光を計測体の上方から検出して、反射光エッジの位置をそれぞれ求めるエッジ検出手段と、
前記エッジ検出手段により検出された2つの前記反射光エッジの位置から前記投光面における計測体の光切断面の検出位置を求め、複数の前記検出位置から前記光切断面上の計測体の寸法を演算する演算手段と、を具備した
寸法計測装置。
A first light projecting means and a second light projecting means for projecting the identifiable first slit light and the second slit light from above and below on the same light projecting surface from above to the measuring body on the mounting surface; ,
Edge detection means for detecting the reflected light of the mounting surface by the first slit light and the second slit light from above the measuring body and determining the position of the reflected light edge;
The detection position of the light cutting surface of the measuring body on the projection surface is obtained from the positions of the two reflected light edges detected by the edge detection means, and the dimensions of the measuring body on the light cutting surface from the plurality of detection positions. A dimension measuring device comprising: a computing means for computing
第1投光手段および第2投光手段を一体に回動させて第1スリット光および第2スリット光をスキャンさせる投光走査手段を設けた
請求項1記載の寸法計測装置。
The dimension measuring apparatus according to claim 1, further comprising a light projecting scanning unit configured to rotate the first light projecting unit and the second light projecting unit integrally to scan the first slit light and the second slit light.
載置面上の計測体に上方から第1スリット光および第2スリット光を互いに平行な投光面上で上下に異なる位置から投光する第1投光手段および第2投光手段と、
前記計測体を第1投光手段と第2投光手段の配列方向に移動させる移動手段と、
前記計測体の移動速度を検出する速度検出手段と、
前記第1スリット光および第2スリット光の載置面の反射光を計測体の上方から検出して反射光エッジの位置をそれぞれ求めるエッジ検出手段と、
前記速度検出手段により検出された計測体の速度に基いて、前記エッジ検出手段により検出された2つの反射光エッジを有する光切断面を一致させ、前記反射光エッジの位置から前記計測体の光切断面の検出位置を求め、複数の前記検出位置から前記光切断面上の計測体の寸法を演算する演算手段と、を具備した
寸法計測装置。
A first light projecting means and a second light projecting means for projecting the first slit light and the second slit light from above on the measuring body on the mounting surface from above and below on the light projecting surfaces parallel to each other;
Moving means for moving the measuring body in the arrangement direction of the first light projecting means and the second light projecting means;
Speed detecting means for detecting the moving speed of the measuring body;
Edge detection means for detecting the reflected light of the mounting surface of the first slit light and the second slit light from above the measuring body to determine the position of the reflected light edge, respectively;
Based on the speed of the measuring body detected by the speed detecting means, the light cutting plane having two reflected light edges detected by the edge detecting means is matched, and the light of the measuring body is detected from the position of the reflected light edge. A dimension measuring device comprising: a calculation unit that obtains a detection position of the cut surface and calculates a dimension of the measurement body on the light cutting surface from the plurality of detection positions.
路面上の車両に上方から、識別可能な第1スリット光および第2スリット光を同一投光面上で上下に異なる位置から投光する第1投光手段および第2投光手段と、
前記第1スリット光および第2スリット光による路面の反射光を車両の上方から検出して、反射光エッジの位置をそれぞれ求めるエッジ検出手段と、
前記エッジ検出手段により検出された2つの前記反射光エッジの位置から前記投光面における車両の光切断面の検出位置を求め、複数の前記検出位置から前記光切断面上の車両の寸法を演算する演算手段と、を具備した
車両の寸法計測装置。
A first light projecting means and a second light projecting means for projecting an identifiable first slit light and second slit light from above and below on the same light projecting surface from above on the vehicle on the road surface;
Edge detection means for detecting the reflected light of the road surface from the first slit light and the second slit light from above the vehicle and determining the position of the reflected light edge, respectively;
The detection position of the light cutting surface of the vehicle on the light projection surface is obtained from the positions of the two reflected light edges detected by the edge detection means, and the dimensions of the vehicle on the light cutting surface are calculated from the plurality of detection positions. And a vehicle dimension measuring device.
路面上を移動する車両に上方から第1スリット光および第2スリット光を互いに平行な投光面上で投光するとともに、上下に異なる位置でかつ車両の移動方向に離間して配置された第1投光手段および第2投光手段と、
前記車両の移動速度を検出する速度検出手段と、
前記第1スリット光および第2スリット光の路面の反射光を車両の上方から検出して反射光エッジの位置をそれぞれ求めるエッジ検出手段と、
前記速度検出手段により検出された車両の速度に基いて、前記エッジ検出手段により検出された2つの反射光エッジを有する光切断面を一致させ、前記反射光エッジの位置から前記車両の光切断面の検出位置を求め、複数の前記検出位置から前記光切断面上の車両の寸法を演算する演算手段とを具備した
車両の寸法計測装置。
The first slit light and the second slit light are projected from above on the vehicle moving on the road surface on the light projecting surfaces parallel to each other, and the first slit light and the second slit light are arranged at different positions in the vertical direction and spaced apart in the moving direction of the vehicle. 1 light projecting means and 2nd light projecting means;
Speed detecting means for detecting the moving speed of the vehicle;
Edge detection means for detecting reflected light on the road surface of the first slit light and the second slit light from above the vehicle to obtain the position of the reflected light edge, respectively;
Based on the speed of the vehicle detected by the speed detecting means, the light cutting surface having two reflected light edges detected by the edge detecting means is matched, and the light cutting surface of the vehicle is determined from the position of the reflected light edge. A vehicle dimension measuring apparatus comprising: a calculation unit that calculates a vehicle position on the light cut surface from a plurality of the detection positions.
第1投光手段および第2投光手段は、車両の上方で計測寸法の両側にそれぞれ配置され、左右の第1スリット光および第2スリット光は、車両の両側で同一平面上の光切断面を計測するように構成された
請求項4または5記載の車両の寸法計測装置。
The first light projecting means and the second light projecting means are respectively arranged on both sides of the measurement dimension above the vehicle, and the first slit light and the second slit light on the left and right sides are on the same plane on both sides of the vehicle. The vehicle dimension measuring device according to claim 4, wherein the vehicle dimension measuring device is configured to measure the vehicle dimension.
路面上の車両に上方から、識別可能な第1スリット光および第2スリット光を同一投光面上で上下に異なる位置から投光し、
車両の上方から前記第1スリット光および第2スリット光による路面の反射光エッジの位置をそれぞれ検出し、
検出された2つの反射光エッジの位置から前記投光面における車両の光切断面の検出位置を求め、複数の前記検出位置から前記光切断面上の車両の寸法を演算する
車両の寸法計測方法。
From above, the first slit light and the second slit light that can be identified are projected from different positions up and down on the same light projecting surface to the vehicle on the road surface.
Detecting the position of the reflected light edge of the road surface by the first slit light and the second slit light from above the vehicle,
A vehicle dimension measurement method for obtaining a detection position of a light cutting surface of a vehicle on the light projecting surface from the detected positions of two reflected light edges, and calculating a size of the vehicle on the light cutting surface from the plurality of detection positions .
JP2005100301A 2005-03-31 2005-03-31 Dimensional measuring apparatus and apparatus and method for measuring dimension of vehicle Pending JP2006284179A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005100301A JP2006284179A (en) 2005-03-31 2005-03-31 Dimensional measuring apparatus and apparatus and method for measuring dimension of vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005100301A JP2006284179A (en) 2005-03-31 2005-03-31 Dimensional measuring apparatus and apparatus and method for measuring dimension of vehicle

Publications (1)

Publication Number Publication Date
JP2006284179A true JP2006284179A (en) 2006-10-19

Family

ID=37406283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005100301A Pending JP2006284179A (en) 2005-03-31 2005-03-31 Dimensional measuring apparatus and apparatus and method for measuring dimension of vehicle

Country Status (1)

Country Link
JP (1) JP2006284179A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007163172A (en) * 2005-12-09 2007-06-28 Nagoya Electric Works Co Ltd Apparatus, method, and program for measuring vehicle
JP2010255377A (en) * 2009-04-28 2010-11-11 Ihi Transport Machinery Co Ltd Method and device for detecting projected part of vehicle to be parked in mechanical type parking device
CN103741971A (en) * 2013-12-27 2014-04-23 广西科技大学 Protection system and control method for lifting parking platform
CN106179984A (en) * 2016-08-29 2016-12-07 上海邮政科学研究院 A kind of halved belt sorter piece supplying table mail is in the computational methods of main ring direction projection size
JP2020041288A (en) * 2018-09-07 2020-03-19 三菱重工機械システム株式会社 Parking support system, parking support method, parking support program, mechanical parking system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007163172A (en) * 2005-12-09 2007-06-28 Nagoya Electric Works Co Ltd Apparatus, method, and program for measuring vehicle
JP2010255377A (en) * 2009-04-28 2010-11-11 Ihi Transport Machinery Co Ltd Method and device for detecting projected part of vehicle to be parked in mechanical type parking device
CN103741971A (en) * 2013-12-27 2014-04-23 广西科技大学 Protection system and control method for lifting parking platform
CN106179984A (en) * 2016-08-29 2016-12-07 上海邮政科学研究院 A kind of halved belt sorter piece supplying table mail is in the computational methods of main ring direction projection size
CN106179984B (en) * 2016-08-29 2019-01-08 上海邮政科学研究院 A kind of calculation method of halved belt sorter piece supplying table mail in main ring direction projection size
JP2020041288A (en) * 2018-09-07 2020-03-19 三菱重工機械システム株式会社 Parking support system, parking support method, parking support program, mechanical parking system
JP7154900B2 (en) 2018-09-07 2022-10-18 三菱重工機械システム株式会社 Parking assistance system, parking assistance method, parking assistance program, and mechanical parking device

Similar Documents

Publication Publication Date Title
JP5016245B2 (en) Measurement system for determining the six degrees of freedom of an object
JP5092613B2 (en) Distance measuring method and apparatus, and vehicle equipped with distance measuring apparatus
US7538864B2 (en) Vehicle wheel alignment system scanned beam imaging sensor
KR101762664B1 (en) Method and apparatus for measurement of the profile geometry of cylindrical bodies
JPH10507003A (en) Dimension measurement system
JP2006038843A (en) Method for calibrating distance image sensor
JP5782786B2 (en) Shape measuring device
JP2006284179A (en) Dimensional measuring apparatus and apparatus and method for measuring dimension of vehicle
JP6811661B2 (en) Mobile imager and mobile
JPH11224397A (en) Vehicle measurement device
JP4960599B2 (en) Collision prevention device and vehicle equipped with collision prevention device
US9562761B2 (en) Position measuring device
JP5320880B2 (en) Distance measuring device, distance measuring method and vehicle
JP2014115277A (en) Shape measurement system
JP7348414B2 (en) Method and device for recognizing blooming in lidar measurement
JPWO2020129720A5 (en)
RU2679923C1 (en) Method for obtaining spatial model of environment in real time on basis of laser location and device for implementation thereof
JP6485616B2 (en) Appearance measurement system, image processing method, and program
JP2008051759A (en) Device and method for measuring distance
KR20220084173A (en) Techniques for filtering measurement data of active optical sensor systems
JPH0758172B2 (en) Shape measuring method and apparatus
JP3498532B2 (en) Vehicle shape discriminator
JP2006258507A (en) Apparatus for recognizing object in front
JP7179571B2 (en) Vehicle inspection device and method
KR101833055B1 (en) 3-dimensional measuring system