JPH0337513A - Three-dimensional position/speed measuring apparatus - Google Patents

Three-dimensional position/speed measuring apparatus

Info

Publication number
JPH0337513A
JPH0337513A JP17229689A JP17229689A JPH0337513A JP H0337513 A JPH0337513 A JP H0337513A JP 17229689 A JP17229689 A JP 17229689A JP 17229689 A JP17229689 A JP 17229689A JP H0337513 A JPH0337513 A JP H0337513A
Authority
JP
Japan
Prior art keywords
moving body
image
dimensional position
solid
state imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17229689A
Other languages
Japanese (ja)
Inventor
Masatoshi Harikae
正敏 張替
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP17229689A priority Critical patent/JPH0337513A/en
Publication of JPH0337513A publication Critical patent/JPH0337513A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To detect three-dimensional positions and speeds highly accurately with a simple constitution by picking up the image of a moving body with two solid image sensing cameras which are arranged at positions having the different bearing angles and elevation angles, taking out only the image of the moving body, and performing specified analysis. CONSTITUTION:Solid image sensing cameras 10a and 10b housing, e.g. CCDs each having 500 vertically arranged pixels X 500 laterally arranged pixels are arranged at positions having the different bearing angles and elevation angles with respect to a moving body such as aircraft. The image of a moving body is picked up by the cameras 10a and 10b at the same time. The images are stored in memory parts 12a and 12b. The stored images are processed in image processing parts 13a and 13b. Only the images of the moving body are taken out. The three-dimensional positions and speeds of the moving body are computed in real time in an analyzing part 14 from the positions having said bearing angles and elevation angles of the cameras 10a and 19b and the images of the moving body by using a triangulation method. Therefore, this apparatus is simplified and the operability can be simplified.

Description

【発明の詳細な説明】 [発明の目的] (産業の利用分野) この発明は、例えば飛行機等の運動体の3次元位置・速
度情報を実時間で計測するのに用いられる3次元位置・
速度計測装置に関する。
[Detailed Description of the Invention] [Object of the Invention] (Field of Industrial Application) This invention relates to a three-dimensional position/velocity information of a moving body such as an airplane, which is used to measure the three-dimensional position/velocity information in real time.
This invention relates to a speed measuring device.

(従来の技術) 一般に、航空管制システムや、航空機誘導システム等に
おいては、飛行場周辺における飛行機の3次元位置・速
度を3次元位置・速度計測装置を用いて実時間で計測し
ている。このような従来の3次元位置・速度計測装置と
しては、第6図及び第7図に示すようなレーダトラッキ
ングシステム及びレーザ光トラッキングシステム等があ
る。
(Prior Art) Generally, in air traffic control systems, aircraft guidance systems, etc., the three-dimensional position and speed of an airplane around an airport is measured in real time using a three-dimensional position and speed measuring device. Such conventional three-dimensional position/velocity measuring devices include radar tracking systems and laser beam tracking systems as shown in FIGS. 6 and 7.

第6図のレーダトラッキングシステムは、レーダトラッ
キング技術を応用したもので、アンテナ1を回転駆動部
2を介して回転自在に配設し、アンテナ1からの電波を
飛行機3に照射して、その反射波を受けた時点における
アンテナ1の角度及び時間をそれぞれ計測する。そして
、このアンテナ1の角度及び時間を基にして、アンテナ
1から飛行機3までの方位角、仰角及び距離を求め、こ
れらの値に基づいて飛行機3の3次元位置・速度を算出
する。
The radar tracking system shown in Fig. 6 is an application of radar tracking technology, in which an antenna 1 is rotatably arranged via a rotary drive unit 2, and radio waves from the antenna 1 are irradiated to an airplane 3, and the radio waves are reflected. The angle and time of the antenna 1 at the time of receiving the waves are measured. Then, based on the angle and time of the antenna 1, the azimuth angle, elevation angle, and distance from the antenna 1 to the airplane 3 are determined, and the three-dimensional position and speed of the airplane 3 are calculated based on these values.

また、第7図のレーザ光トラッキングシステムは、レー
ザ光トラッキング技術を応用したもので、トラッキング
制御自在なレーザ光発射器4及びレーザ光検出器5を備
え、レーザ光発射器4から発射したレーザ光を飛行機3
に照射して、その反射したレーザ光をレーザ光検出器4
で検出する。この際、レーザ光発射器4からのレーザ光
の発射角度より方位角及び仰角を検出し、そのレーザ光
をレーザ光検出器5で検出した時間から距離を検出して
、これらを基に3次元位置・速度を求める。
The laser beam tracking system shown in FIG. 7 is an application of laser beam tracking technology, and includes a laser beam emitter 4 and a laser beam detector 5 that can be freely tracked. the plane 3
and the reflected laser light is sent to the laser light detector 4.
Detect with. At this time, the azimuth angle and the elevation angle are detected from the emission angle of the laser beam from the laser beam emitter 4, the distance is detected from the time when the laser beam is detected by the laser beam detector 5, and based on these, the 3D Find position and speed.

ところが、上記3次元位置・速度計測装置では、いずれ
も電波あるいはレーザ光を飛行機3に照射して、その反
射した電波あるいは反射したレーザ光を検出することに
より、3次元位置・速度を求める構成上、その構成要素
が非常に多くなり、構成が非常に複雑となると共に、そ
の取扱い操作が非常に面倒であるという問題を有してい
た。
However, the three-dimensional position/velocity measurement devices described above have a structure in which the three-dimensional position/velocity is determined by irradiating radio waves or laser light onto the airplane 3 and detecting the reflected radio waves or reflected laser light. However, there are problems in that the number of components is very large, the structure is very complicated, and the handling operation is very troublesome.

なお、係る事情は、自動車等の運動体の3次元位置・速
度を計測する場合においても同様のものである。
Note that the same situation applies when measuring the three-dimensional position and velocity of a moving body such as a car.

(発明の解決しようとする課題) 以上述べたように、従来の3次元位置・速度計測装置で
は、構成要素が非常に多くなるために、その構成が非常
に複雑であると共に、取扱い操作が非常に面倒であると
いう問題を有していた。
(Problems to be Solved by the Invention) As described above, the conventional three-dimensional position/velocity measurement device has a large number of components, so its configuration is very complicated and the handling operation is extremely difficult. The problem was that it was troublesome.

この発明は上記の事情に鑑みてなされたもので、構成簡
易にして、高精度な3次元位置及び速度の検出を実現し
得るようにした3次元位置・速度計測装置を提供するこ
とを目的とする。
This invention was made in view of the above circumstances, and an object of the present invention is to provide a three-dimensional position/velocity measuring device that has a simple configuration and is capable of realizing highly accurate three-dimensional position and velocity detection. do.

[発明の構成コ (発明の解決しようとする手段) この発明は、異なる方位角・仰角位置より目標方向に向
けて配置され、運動体を同時に撮影する複数の固体撮像
カメラと、この固体撮像カメラで撮影した画像を記憶す
る記憶手段と、この記憶手段に記憶された画像を画像処
理して前記運動体の画像のみを抽出する画像処理手段と
、前記固体撮像カメラの方位・仰角位置及び方向を県に
前記画像処理手段で抽出した運動体の画像より前記運動
体の3次元位置及び速度を三角alll量の手法を用い
て求める解析手段とを備えて3次元位置・速度計測装置
を構成したものである。
[Structure of the Invention (Means to be Solved by the Invention) This invention provides a plurality of solid-state imaging cameras that are arranged toward a target direction from different azimuth and elevation angle positions and that simultaneously take pictures of a moving object, and the solid-state imaging camera. storage means for storing images taken by the camera; image processing means for processing the images stored in the storage means to extract only images of the moving body; A three-dimensional position/velocity measuring device comprising: prefecture analysis means for calculating the three-dimensional position and velocity of the moving body from the image of the moving body extracted by the image processing means using a triangular all quantity method; It is.

(作用) 上記構成によれば、運動体を複数の固体撮像カメラで撮
影して、その画像より運動体の画像を抽出し、その抽出
した画像を解析手段で周知の三角測量の手法を用いて解
析することにより、3次元位置及び速度が実時間で検出
される。従って、従来のような電波やレーザ光等の計測
媒体を運動体に照射して、その反射媒体を受けるという
構成が不要となるために、可及的に構成の簡易化が図れ
ると共に、その取扱い操作性の簡便化が図れる。
(Operation) According to the above configuration, a moving object is photographed by a plurality of solid-state imaging cameras, an image of the moving object is extracted from the images, and the extracted image is used by the analysis means using a well-known triangulation method. Through analysis, three-dimensional position and velocity are detected in real time. Therefore, there is no need for the conventional configuration of irradiating a measuring medium such as radio waves or laser light onto a moving object and receiving the reflected medium, making the configuration as simple as possible and making handling easier. Operability can be simplified.

(実施例) 以下、この発明の実施例について、図面を参照して詳細
に説明する。
(Example) Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

第1図はこの発明の一実施例に係る3次元位置・速度計
測装置を示すもので、図中10a。
FIG. 1 shows a three-dimensional position/velocity measuring device according to an embodiment of the present invention.

10bは、例えば縦500画素、横500画素の解像度
をもつ周知の固体撮像素子(CCD)を内臓した固体撮
像カメラである。固体撮像カメラ10a、10bは、例
えば滑走路における航空機11の侵入方向に対向されて
配置され、その撮影画面が50°×500に設定されて
、1画素分て飛行機の位置が特定可能な、角度0,1o
の解像度を有するように調整される。そして、固体撮像
カメラ10a、10bの出力端にはそれぞれ、VRAM
 (ビジュアルRAM)等の記憶部12a。
10b is a solid-state imaging camera incorporating a well-known solid-state imaging device (CCD) having a resolution of, for example, 500 pixels in the vertical direction and 500 pixels in the horizontal direction. The solid-state imaging cameras 10a and 10b are arranged, for example, to face the intrusion direction of the aircraft 11 on the runway, and their photographic screen is set to 50° x 500, so that the angle at which the position of the aircraft can be identified by one pixel is determined. 0,1o
is adjusted to have a resolution of A VRAM is installed at the output end of the solid-state imaging cameras 10a and 10b, respectively.
(visual RAM) or the like storage unit 12a.

12bが接続され、この記憶部12a、12bには、D
SP (ディジタル信号処理プロセッサ)等の画像処理
部13a、13bが接続される。そして、この画像処理
部13a、13bにはパーソナルコンピュータ等の解析
部14が接続される。この解析部14には、例えば上記
固体撮像カメラ10a、10bの方位角・仰角位置及び
方向が記憶されており、この方位角・仰角位置及び方向
を基に、後述するように航空機11の3次元位置及び速
度を算出する。
12b is connected, and these storage units 12a and 12b have D
Image processing units 13a and 13b such as SP (digital signal processing processor) are connected. An analysis section 14 such as a personal computer is connected to the image processing sections 13a and 13b. The analysis unit 14 stores, for example, the azimuth/elevation positions and directions of the solid-state imaging cameras 10a and 10b, and based on these azimuth/elevation positions and directions, the three-dimensional image of the aircraft 11 is calculated as described below. Calculate position and velocity.

なお、解析部14に記憶される固体撮像カメラ10a、
10bの方位角・仰角位置及び方向については、例えば
月等の予め方位角及び仰角の特定されるものを基準にし
て求められる。
Note that the solid-state imaging camera 10a stored in the analysis unit 14,
The azimuth angle/elevation angle position and direction of the object 10b are determined based on an object whose azimuth angle and elevation angle are specified in advance, such as the moon.

上記構成において、図示しない操作部の操作に連動して
、固体撮像カメラ10a、10bは目標方向の画像を撮
影して、その画像データを各記憶部12a、12bに出
力する。この画像データは記憶部12a、12bに記憶
され(第2図参照)、その画像データが画像処理部13
a、13bで、一定時間、例えば0.1秒程度前の画像
信号と比較され、変化のあった画像データ、すなわち航
空機11の画像データのみが抽出される(第3図参照)
。そして、この抽出された画像データは解析部14に導
かれる。解析部14は入力した画像データが500画素
×500画素の画面のどの位置が1画素(500の画角
で、0.1°に対応)単位で検出して、固体撮像カメラ
10a、10bから飛行機11の方位角及び仰角を求め
る(第4図参照)。また、解析部14は飛行機11の方
位角及び仰角と、予め記憶されている固体撮像カメラ1
0a、10bの方位・仰角位置及び方向より、周知の三
角測量の手法を用いて3次元位置を求める(第5図参照
)。同時に、解析部14は画像処理部13a、13bか
ら一定時間(0,1秒程度)毎に入力する画像データの
位置の移動より、速度を求める。なお、上記固体撮像カ
メラ10a。
In the above configuration, the solid-state imaging cameras 10a and 10b capture an image in the target direction in conjunction with the operation of an operation unit (not shown), and output the image data to the respective storage units 12a and 12b. This image data is stored in the storage units 12a and 12b (see FIG. 2), and the image data is stored in the image processing unit 13.
At steps a and 13b, the image signal is compared with an image signal from a certain period of time, for example, about 0.1 seconds ago, and only the image data that has changed, that is, the image data of the aircraft 11, is extracted (see Fig. 3).
. This extracted image data is then led to the analysis section 14. The analysis unit 14 detects the position of the input image data on a 500 pixel x 500 pixel screen in units of 1 pixel (corresponding to 0.1° in a 500 pixel angle of view), and detects the position of the input image data from the solid-state imaging cameras 10a and 10b on the airplane. Find the azimuth and elevation angle of 11 (see Figure 4). The analysis unit 14 also uses the azimuth and elevation angles of the airplane 11 and the solid-state imaging camera 1 stored in advance.
From the azimuth/elevation angle positions and directions of 0a and 10b, a three-dimensional position is determined using a well-known triangulation method (see FIG. 5). At the same time, the analysis section 14 calculates the speed from the movement of the position of the image data inputted at fixed time intervals (approximately 0.1 seconds) from the image processing sections 13a and 13b. Note that the solid-state imaging camera 10a is the solid-state imaging camera 10a.

10bの設定によれば、論理的には、その方位角の精度
が約0,10となり、例えば固体撮像カメラ10a、1
0bより500m離れた飛行機11を撮影すると、約1
m程度の位置測定誤差となり、固体撮像カメラ10a、
10bより5km離れた飛行機11を撮影すると、10
m程度の位置測定誤差となる。
According to the settings of the solid-state imaging cameras 10a and 10b, logically, the accuracy of the azimuth angle is approximately 0.10.
When photographing airplane 11 500m away from 0b, it is approximately 1
This results in a position measurement error of about m, and the solid-state imaging camera 10a,
If you take a picture of airplane 11, which is 5km away from 10b, then 10
This results in a position measurement error of about m.

このように、上記3次元位置・速度計測装置は、2台の
固体撮像カメラ10a、10bで飛行機11を撮影して
、その画像データを記憶部12a。
In this manner, the three-dimensional position/velocity measuring device photographs the airplane 11 using the two solid-state imaging cameras 10a and 10b, and stores the image data in the storage unit 12a.

12bに記憶し、その画像データより画像処理部13a
、13bで飛行機11のみの画像データを抽出し、その
抽出した画像データを解析部14で周知の三角測量の手
法を用いて解析することにより、3次元位置及び速度を
実時間で検出するように構成した。これによれば、従来
のような電波やレーザ光等の計測媒体を飛行機に照射し
て、その反射媒体を受けるという構成が不要となるため
、その構成の簡易化が図れると共に、その取扱い操作の
簡便化が図れる。
12b, and the image processing unit 13a uses the image data.
, 13b extracts image data of only the airplane 11, and the analysis unit 14 analyzes the extracted image data using a well-known triangulation method, thereby detecting the three-dimensional position and velocity in real time. Configured. This eliminates the need for the conventional configuration of irradiating measuring media such as radio waves or laser beams onto an airplane and receiving the reflected medium, which simplifies the configuration and simplifies handling operations. It can be simplified.

なお、上記実施例では、運動体として、飛行機11の3
次元位置及び速度を測定するように構成したが、これに
限ることなく、例えば自動車等の運動体の3次元位置・
速度を検出するように構成することも可能である。また
、測量分野のいわゆる動体測量における、被測量動体の
3次元位置・速度の検出用としても適用可能である。
In the above embodiment, three of the airplanes 11 are used as moving bodies.
Although the structure is configured to measure the dimensional position and velocity, the present invention is not limited to this, and for example, the three-dimensional position and velocity of a moving body such as a car can be measured.
It is also possible to configure it to detect speed. It is also applicable to detecting the three-dimensional position and velocity of a moving object to be surveyed in so-called moving object surveying in the field of surveying.

さらに、上記実施例では、2台の固体撮像カメラ10a
、10bを用いて構成した場合で説明したが、この台数
に限ることなく、2台以上の複数の固体撮像カメラを用
いて構成することが可能である。
Furthermore, in the above embodiment, two solid-state imaging cameras 10a
, 10b has been described, but the number is not limited to this, and it is possible to configure using two or more solid-state imaging cameras.

よって、この発明は上記実施例に限ることなく、その他
、この発明の要旨を逸脱しない範囲で種々の変形を実施
し得ることは勿論のことである。
Therefore, it goes without saying that the present invention is not limited to the above embodiments, and that various modifications can be made without departing from the spirit of the invention.

[発明の効果] 以上詳述したように、この発明によれば、構成簡易にし
て、高精度な3次元位置及び速度の検出を実現し得るよ
うにした3次元位置・速度計測装置を提供することがで
きる。
[Effects of the Invention] As described in detail above, the present invention provides a three-dimensional position/velocity measuring device that has a simple configuration and can realize highly accurate three-dimensional position and velocity detection. be able to.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例に係る3次元位置・速度計
測装置を示す構成図、第2図乃至第5図は第1図の動作
を説明するために示した図、第6図及び第7図は従来の
3次元位置・速度計測装置を示す構成図である。 10a、10・・・固体撮像カメラ、11・・・飛行機
、12a、12b−・・記憶部、13a、13b−・・
画像処理部、14・・・解析部。
FIG. 1 is a configuration diagram showing a three-dimensional position/velocity measuring device according to an embodiment of the present invention, FIGS. 2 to 5 are diagrams shown to explain the operation of FIG. 1, and FIGS. FIG. 7 is a configuration diagram showing a conventional three-dimensional position/velocity measuring device. 10a, 10...Solid-state imaging camera, 11...Airplane, 12a, 12b-...Storage unit, 13a, 13b-...
Image processing section, 14... analysis section.

Claims (1)

【特許請求の範囲】  異なる方位角・仰角位置より目標方向に向けて配置さ
れ、運動体を同時に撮影する複数の固体撮像カメラと、 この固体撮像カメラで撮影した画像を記憶する記憶手段
と、 この記憶手段に記憶された画像を画像処理して前記運動
体の画像のみを抽出する画像処理手段と、前記固体撮像
カメラの方位角・仰角位置及び方向を基に前記画像処理
手段で抽出した運動体の画像より前記運動体の3次元位
置及び速度を三角測量の手法を用いて求める解析手段と
を具備したことを特徴とする3次元位置・速度計測装置
[Scope of Claims] A plurality of solid-state imaging cameras that are arranged toward a target from different azimuth and elevation angle positions and that simultaneously take pictures of a moving object; a storage means that stores images taken by the solid-state imaging cameras; an image processing means for processing an image stored in a storage means to extract only an image of the moving body; and a moving body extracted by the image processing means based on the azimuth/elevation position and direction of the solid-state imaging camera. A three-dimensional position/velocity measuring device comprising: analysis means for determining the three-dimensional position and velocity of the moving body from the image using a triangulation method.
JP17229689A 1989-07-04 1989-07-04 Three-dimensional position/speed measuring apparatus Pending JPH0337513A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17229689A JPH0337513A (en) 1989-07-04 1989-07-04 Three-dimensional position/speed measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17229689A JPH0337513A (en) 1989-07-04 1989-07-04 Three-dimensional position/speed measuring apparatus

Publications (1)

Publication Number Publication Date
JPH0337513A true JPH0337513A (en) 1991-02-18

Family

ID=15939300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17229689A Pending JPH0337513A (en) 1989-07-04 1989-07-04 Three-dimensional position/speed measuring apparatus

Country Status (1)

Country Link
JP (1) JPH0337513A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0552933A (en) * 1991-08-29 1993-03-02 Japan Radio Co Ltd System and device for measuring position of traveling object
JPH10132562A (en) * 1996-10-31 1998-05-22 Nippon Denki Ido Tsushin Kk Distance measuring equipment
JP2002533721A (en) * 1998-12-23 2002-10-08 イメージ・ガイディッド・テクノロジーズ・インコーポレイテッド Hybrid 3D probe tracked by multiple sensors
KR20040043558A (en) * 2002-11-19 2004-05-24 한국항공우주연구원 Movable Speed Calibration Method and Equipment for Aircraft
KR100477756B1 (en) * 2002-05-31 2005-03-21 정원철 A device for making 3d movement data by detecting an object in 3d space by camera
WO2013054690A1 (en) * 2011-10-11 2013-04-18 Ntn株式会社 Laser tracker
JP2017215340A (en) * 2017-08-04 2017-12-07 株式会社トプコン Aerial photographing system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0552933A (en) * 1991-08-29 1993-03-02 Japan Radio Co Ltd System and device for measuring position of traveling object
JPH10132562A (en) * 1996-10-31 1998-05-22 Nippon Denki Ido Tsushin Kk Distance measuring equipment
JP2002533721A (en) * 1998-12-23 2002-10-08 イメージ・ガイディッド・テクノロジーズ・インコーポレイテッド Hybrid 3D probe tracked by multiple sensors
KR100477756B1 (en) * 2002-05-31 2005-03-21 정원철 A device for making 3d movement data by detecting an object in 3d space by camera
KR20040043558A (en) * 2002-11-19 2004-05-24 한국항공우주연구원 Movable Speed Calibration Method and Equipment for Aircraft
WO2013054690A1 (en) * 2011-10-11 2013-04-18 Ntn株式会社 Laser tracker
JP2017215340A (en) * 2017-08-04 2017-12-07 株式会社トプコン Aerial photographing system

Similar Documents

Publication Publication Date Title
US8699005B2 (en) Indoor surveying apparatus
US7973276B2 (en) Calibration method for video and radiation imagers
JP3953103B2 (en) Method and apparatus for quickly detecting the position of a target mark
JP3494075B2 (en) Self-locating device for moving objects
US20200357141A1 (en) Systems and methods for calibrating an optical system of a movable object
US20100111365A1 (en) Passive single camera imaging system for determining motor vehicle speed
GB2300082A (en) Distance measuring apparatus
JP2009188980A (en) Stereo camera having 360 degree field of view
JP2003279351A (en) Surveying apparatus and method for acquisition of image data by using the same
EP3353492B1 (en) Device and method to locate a measurement point with an image capture device
JP2000504418A (en) Distance and / or position measuring device
CN101271590A (en) Method for acquiring cam contour object shape
JPH0337513A (en) Three-dimensional position/speed measuring apparatus
JP2001317915A (en) Three-dimensional measurement apparatus
US7839490B2 (en) Single-aperture passive rangefinder and method of determining a range
JPH09210722A (en) Device for measuring performance of takeoff and landing of aircraft
JP2003075148A (en) Displacement measuring instrument using digital still camera
JP3512894B2 (en) Relative moving amount calculating apparatus and relative moving amount calculating method
CN107037414A (en) It is imaged positioning metal ball radar calibration method
JPH0792111A (en) Method and system for determining depth of defect
KR20160090632A (en) Flight information estimator and estimation method of the flying objects
RU2804376C1 (en) Device for panoramic spatial photography
JPH06186035A (en) Three-dimenisonal position measuring system
JPH02151828A (en) All-azimuth observation device
JP4824861B2 (en) Height measurement method